
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. 1–21

SOME 3CNF PROPERTIES ARE HARD TO TEST∗

ELI BEN-SASSON† , PRAHLADH HARSHA‡ , AND SOFYA RASKHODNIKOVA§

Abstract. For a Boolean formula ϕ on n variables, the associated property Pϕ is the collection
of n-bit strings that satisfy ϕ. We study the query complexity of tests that distinguish (with high
probability) between strings in Pϕ and strings that are far from Pϕ in Hamming distance. We prove
that there are 3CNF formulae (with O(n) clauses) such that testing for the associated property
requires Ω(n) queries, even with adaptive tests. This contrasts with 2CNF formulae, whose associated
properties are always testable with O(

√
n) queries [E. Fischer et al., Monotonicity testing over general

poset domains, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing, ACM,
New York, 2002, pp. 474–483]. Notice that for every negative instance (i.e., an assignment that does
not satisfy ϕ) there are three bit queries that witness this fact. Nevertheless, finding such a short
witness requires reading a constant fraction of the input, even when the input is very far from
satisfying the formula that is associated with the property.

A property is linear if its elements form a linear space. We provide sufficient conditions for linear
properties to be hard to test, and in the course of the proof include the following observations which
are of independent interest:

1. In the context of testing for linear properties, adaptive two-sided error tests have no more
power than nonadaptive one-sided error tests. Moreover, without loss of generality, any
test for a linear property is a linear test. A linear test verifies that a portion of the input
satisfies a set of linear constraints, which define the property, and rejects if and only if it
finds a falsified constraint. A linear test is by definition nonadaptive and, when applied to
linear properties, has a one-sided error.

2. Random low density parity check codes (which are known to have linear distance and
constant rate) are not locally testable. In fact, testing such a code of length n requires
Ω(n) queries.
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1. Introduction. Property testing deals with a relaxation of decision problems,
where one must determine whether an input belongs to a particular set, called a
property, or is far from it. “Far” usually means that many characters of the input
have to be modified to obtain an element in the set. Property testing was first
formulated by Rubinfeld and Sudan [RS96] in the context of linear functions and was
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applied to combinatorial objects, especially graphs, by Goldreich, Goldwasser, and
Ron [GGR98]. Property testing has recently become quite an active research area;
see [Ron01, Fis01] for surveys on the topic.

One of the important problems in property testing is characterizing properties
that can be tested with a sublinear1 number of queries to the input (cf. [GGR98,
AKNS01, New02, FN04, AFKS00, Fis01, GT03]; see also section 1.1 for more infor-
mation). Our paper continues this line of research by trying to relate the testability
of properties over the binary alphabet with their formula complexity. We prove a
linear lower bound for testing some properties with very small formula complexity,
thus showing that the formula complexity of the property does not always help to
assess the testability of the property. In section 1.1 several strong lower bounds on
the query complexity [GGR98, GT03, BOT02, GR02] are discussed and compared to
our lower bound.

Testing kCNFs. A property is a collection of strings of a fixed size n. Every
property over the binary alphabet can be represented by a conjunctive normal form
(CNF) formula, whose set of satisfying assignments equals the set of strings in the
property. Testing this property can be viewed as testing whether a given assignment to
Boolean variables of the corresponding CNF is close to one that satisfies the formula.2

Goldreich, Goldwasser, and Ron [GGR98] prove that there exist properties over the
binary alphabet that require testing algorithms to read a linear portion of the input.
This implies that testing assignments to general CNF formulae is hard. A natural
question is whether restricting CNF formulae to a constant number of variables, k, per
clause allows for faster testers. Observe that the standard reduction from satisfiability
(SAT) to 3SAT does not apply because it introduces auxiliary variables and thus
changes the testing problem.

At first glance, there seems to be hope of obtaining good testers for every fixed
k because, for any assignment that does not satisfy the formula, there exists a set
of k queries that witnesses this fact. Indeed, Fischer et al. [FLN+02] prove that
properties expressible as sets of satisfying assignments to 2CNF formulae are testable
with O(

√
n) queries, where n is the length of the input. However, we will show that,

already for k = 3, testing whether an input assignment is close to satisfying a fixed
kCNF formula might require a linear number of queries.

Results and techniques. We show the existence of families of 3CNF formulae over
n variables (for arbitrarily large n) of size O(n) such that the corresponding properties
are not testable with o(n) queries. Thus, we present a gap between 2CNFs and 3CNFs.
Our lower bound applies to adaptive tests, i.e., tests in which queries might depend
on the answers to previous queries. This gives a class of properties which are easy to
decide in the standard sense3 but are hard to test.

Each hard 3CNF property we use is a linear4 space V ⊆ {0, 1}n that can be
expressed as the set of solutions to a set of homogeneous linear constraints of weight
3 (i.e., a 3LIN formula). While proving the lower bound, we show that every adaptive

1We measure the query complexity as a function of the input length. Thus, linear (sublinear,
respectively) query complexity means query complexity that is linear (sublinear) in the input length.

2Our problem should not be confused with the problem of testing whether a CNF formula is
“close” to being satisfiable (under a proper definition of closeness). In our problem the CNF formula
is fixed and known to the tester. See section 1.1 for a discussion of the seemingly related problem.

3A property is easy to decide in the following standard sense: given the entire assignment, it
can be checked in time linear in the number of variables and size of the formula, whether or not the
assignment is a satisfying one.

4We work over the field with two elements and our linear space is defined over this field.
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two-sided error test for checking membership in a vector space can be converted to
a nonadaptive one-sided error test with the same query complexity and essentially
identical parameters. This allows us to consider only one-sided error nonadaptive
tests. In order to prove that a particular linear space V is hard, we need to find, for
every such test T , a bad vector b ∈ {0, 1}n (that is, far from V ) such that T accepts
b with significant probability (i.e., T fails to reject b, as it should). Yao’s minimax
principle allows us to switch the quantifiers. In other words, in order to prove our
lower bound, it suffices to present a distribution B over bad vectors such that any
deterministic test (making few queries) fails to reject a random b (selected according
to the distribution B) with significant probability.

We now give a rough picture of how to get a vector space V that is hard to test
and a distribution B that shows this hardness (per Yao’s minimax principle). Fix
0 < κ < 1 and let V be the set of solutions to a system A of m = κn random linear
constraints over n Boolean variables, where each constraint is the sum of a constant
number of randomly selected variables, and each variable appears in a constant number
of constraints. Such linear spaces are called random low density parity check (LDPC)
codes.5 These codes were introduced by Gallager [Gal63], who showed that they have
constant rate and (with high probability) large minimal distance. It is possible to show
that with high probability the random constraints are linearly independent. Our bad
distribution B is the uniform distribution over vectors that satisfy all but one random
constraint of A. Since the constraints are linearly independent, this distribution is
well defined. By definition, each input chosen according to B is not in the property.
It is less obvious, but still true, that each such input is far from the property. The
tricky part is to show that every deterministic test making o(n) queries will fail to
reject a random input chosen according to B.

A natural way to test if an input belongs to V is to select a few random constraints
in A, query all entries lying in their supports, and accept if and only if all constraints
are satisfied. This test always accepts inputs in V . It correctly rejects an input
distributed according to B when the unique random constraint falsified by the input is
queried. This method is costly in query complexity because there are O(n) constraints,
and only one randomly chosen constraint is not satisfied. A more efficient way to
attack the distribution B would be to use linearity, as follows. If an input satisfies a
set of constraints, it must satisfy their sum; if it falsifies exactly one of the constraints
in the sum, it must falsify the sum. Thus, one might choose a set of constraints in A,
take their sum, and query the entries in the support of the sum. The summation might
cancel out some entries (namely, those that appear in an even number of summands)
and reduce the query complexity. This suggests the following general test for testing
membership in V : query the input in a small subset of entries and accept if and only if
these entries satisfy all possible sums (of constraints in A), whose support lies entirely
within the small subset. In fact, it can be easily observed that any nonadaptive one-
sided error test for membership in V is of the above form. Furthermore, we prove that,
without loss of generality, the only possible tests (for membership in a linear space)
are of the above mentioned form (see Theorem 3.3). The crux of our proof consists of
showing that this general method does not significantly reduce the query complexity.
Namely, we show that the sum of any large subset of the constraints of A has large
support, and thus results in large query complexity. The reason for this phenomenon
is the underlying expansion of the random set of constraints. Thus, any deterministic

5LDPC codes are linear codes defined as solutions to a system of linear constraints with small
support.
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testing algorithm making o(n) queries essentially checks only o(m) constraints of A,
and thus will reject a random input from B with subconstant probability.

Connections to coding theory. Our results shed some light on the question of
optimal locally testable codes. An infinite family of codes {C}n is called locally testable
if the property Cn is testable with constant query complexity. These codes play a vital
role in probabilistically checkable proof (PCP) constructions and are of fundamental
importance in theoretical computer science. Recently, Ben-Sasson et al. [BSVW03,
BGH+04], following the work of Goldreich and Sudan [GS02], proved the existence of
such codes, which achieve linear distance and near constant rate, resulting in better
PCP constructions.

As mentioned earlier, the vector spaces we use (which are hard to test) are built
upon random LDPC codes, which are heavily studied in coding theory (cf. [Gal63] and
[Spi95, Chap. 2] and references therein). It follows from an intermediate step in our
proof that this important class of codes is not locally testable. Moreover, the property
that makes random codes so good in terms of minimal distance, namely expansion,
is also behind the poor testability of these codes. In his thesis, Spielman informally
discusses why expander codes might not be locally testable and states that a high
level of redundancy among the constraints of the code might be required to make it
testable ([Spi95, Chap. 5]. In our proof, we make this argument formal and prove
that random (c, d)-regular LDPC codes are not locally testable (see Theorem 3.7).
This sheds some light on the question of optimal locally testable codes. The existence
of such optimal codes that (i) achieve constant rate, (ii) achieve linear distance, and
(iii) are locally testable (or even testable with a sublinear number of queries) remains
an interesting open problem.

1.1. Connection to previous results.
Classes of testable properties. One of the important problems in property testing

is characterizing properties that can be tested with a sublinear number of queries
to the input. A series of works identified classes of properties testable with con-
stant query complexity. Goldreich, Goldwasser, and Ron [GGR98] found many such
properties. Alon et al. [AKNS01] proved that all regular languages are testable with
constant complexity. Newman [New02] extended their result to properties that can
be computed by oblivious read-once constant-width branching programs. Fischer and
Newman [FN04] demonstrated a property that requires superconstant query com-
plexity and is computable by a read-twice constant-width branching program, thus
showing that Newman’s result does not generalize to read-twice branching programs.
Several papers [AFKS00, Fis05] worked on the logical characterization of graph prop-
erties testable with a constant number of queries. Goldreich and Trevisan [GT03]
provide a characterization of properties testable with a constant number of queries
and one-sided error in the framework of graph partition properties.

Linear lower bounds. The published linear lower bounds are the aforementioned
generic bound due to Goldreich, Goldwasser, and Ron [GGR98], later extended by
Goldreich and Trevisan [GT03] to monotone graph properties in NP, and the bound
for testing 3-coloring in bounded degree graphs due to Bogdanov, Obata, and Tre-
visan [BOT02]. In addition, there is a simple and elegant unpublished linear lower
bound, observed by Madhu Sudan in a personal communication to the authors. His
property consists of polynomials of degree at most n/2 over a finite field Fn of size
n, where each polynomial is given by its evaluation on all elements of the field. It is
not hard to see that every nonadaptive one-sided error test for this property requires
linear query complexity. Since the property of low-degree polynomials is linear, our
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reduction from general to nonadaptive one-sided error tests implies a linear lower
bound for adaptive two-sided tests for this property. A related property, suggested
by Oded Goldreich in a personal communication to the authors, consists of a random
linear code. It is not hard to show, using similar reasoning, that with high probability
testing this property requires linear query complexity. Observe that both of these
properties (low degree polynomials and random codes) are easy to decide once all the
input is read, but both cannot be represented by a family of 3CNF formulae.6

The aforementioned linear lower bounds of Sudan and Goldreich and of Bogdanov,
Obata, and Trevisan capitalize on the existence of inputs that are far from having
the property, yet any local view of a constant fraction of them can be extended to
an element having the property.7 But if the property is defined by a kCNF ϕ, this
cannot happen. Clearly, any string that does not have the property must falsify at
least one clause of ϕ. Thus, there is some view of the input of size k that proves
that the input does not have the property. Our result shows that, in certain cases,
finding such a falsified clause requires reading a constant fraction of the input, even
if the assignment is far from any satisfying one. A similar phenomenon is exhibited
by Goldreich and Ron for testing bipartiteness in 3-regular, n-vertex graphs [GR02].
They showed a lower bound of Ω(

√
n) on the query complexity; despite this, short

witnesses of nonbipartiteness do exist in the form of odd cycles of length poly(logn).
Our result strengthens this finding, since in our case the query complexity is linear,
whereas the witness size is constant.

Testing an input kCNF. A related problem, but very different from ours, is that
of testing whether an input kCNF formula is satisfiable. (Recall that in our setting the
input is an assignment to a fixed kCNF formula.) The exact version of this problem is
a classical NP-complete problem. The property testing version was studied by Alon
and Shapira [AS03]. They showed that satisfiability of kCNF formulae is testable
with complexity independent of the input size.8 In contrast, our problem is very easy
in its exact version but hard in its property testing version for k ≥ 3.

2. Definitions.

Property testing. A property is a collection of strings of a fixed size n. A
property is linear if it forms a vector space (over some underlying field). In this
paper, strings are over a binary alphabet unless mentioned otherwise. The distance
dist(x,P) of a string x to a property P is minx′∈P dist(x, x′), where dist(x, x′) denotes
the Hamming distance between the two strings x and x′. The relative distance of x
to P is its distance to P divided by n. A string is ε-far from P if its relative distance
to P is at least ε.

A test for property P with distance parameter ε, positive error η+, negative error
η− and query complexity q is a probabilistic algorithm that queries at most q bits of
the input, accepts strings in P with probability at least 1 − η+, and accepts strings
that are ε-far from P with probability at most η−, for some 0 ≤ η− < 1 − η+ ≤ 1.

6In other words, these properties cannot be decided by a family of circuits of depth 2, where the
output gate of the circuit is an AND-gate, the next level of gates are all OR-gates of fan-in 3, and
the inputs to the OR-gates are either the input bits or their negations.

7For example, in Sudan’s construction any evaluation of a polynomial on d points can be extended
to an evaluation of a polynomial of degree d′ > d. Thus, n/2 values of the polynomial cannot prove
or disprove that the polynomial has degree at most n/2.

8Complexity of a testing problem depends on the definition of distance; in Alon and Shapira’s
work the distance from the input to a satisfiable formula is defined as the number of clauses that
have to be removed to make the input formula satisfiable.



6 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

Note that the positive error η+ is the maximum error made by the test on the YES-
instances (i.e., strings in P), and the negative error η− is the maximum error made
on NO-instances (i.e., strings ε-far from P). Sometimes we refer to η+ + η− as the
sum of errors made by the test T . A test is said to have error η if η+, η− ≤ η (for
η < 1

2 ). If a test T accepts input x, we say T (x) = 1. Otherwise, we say T (x) = 0. A
test with distance parameter ε and error η is referred to as an (ε, η)-test (analogously,
(ε, η+, η−)-test). An ε-test denotes a test with distance parameter ε. A property is
(ε, η, q)-testable if it has an (ε, η)-test that makes at most q queries on every input;
(ε, η+, η−, q)-testable is defined analogously.

Two special classes of tests are of interest. An algorithm is nonadaptive if it makes
all queries in advance before getting the answers. Namely, a query may not depend
on the answers to previous queries. An algorithm has a one-sided error if it always
accepts an input that has the property. In other words, an algorithm has a one-sided
error if the positive error η+ is 0.

CNF and linear formulae. Recall that a Boolean formula is in CNF if it is a
conjunction of clauses, where every clause is a disjunction of literals. (A literal is a
Boolean variable or a negated Boolean variable.) If all clauses contain at most three
literals, the formula is a 3CNF.

A linear (LIN) Boolean formula is a conjunction of constraints, where every con-
straint is satisfied if and only if the variables in the constraint add up to 0 mod 2. If
all constraints contain at most d literals, the formula is a dLIN.

Let ϕ be a formula on n variables. An n-bit string satisfies ϕ if it satisfies all
clauses (constraints) of the formula. An n-bit string is ε-far from satisfying ϕ if at
least an ε fraction of the bits needs to be changed to make the string satisfy ϕ. Each
formula ϕ defines a property {x| x satisfies ϕ}. For brevity, we refer to a test for this
property as a test for ϕ.

Random regular bipartite graphs and LDPC codes. Let G = 〈L,R,E〉
be a bipartite multigraph, with |L| = n, |R| = m, and let d(v) be the degree of a
vertex v. G is called (c, d)-regular if for all v ∈ L, d(v) = c, and if for all v ∈
R, d(v) = d. A random (c, d)-regular graph with n left vertices and m = c

dn right
vertices9 is obtained by selecting a random matching between cn “left” nodes labeled
{v1

1 , . . . , v
c
1, v

1
2 , . . . , v

c
n} and dm = cn “right” nodes labeled {u1

1, . . . , u
d
m}, collapsing

every c consecutive nodes on the left to obtain n c-regular vertices, and collapsing
every d consecutive nodes on the right to obtain m d-regular vertices. Formally, let
L = {v1, . . . , vn}, R = {u1, . . . , um}, and connect vertex vi to uj if and only if there

exist α ∈ [c], β ∈ [d] such that (vαi , u
β
j ) is an edge of the random matching. Notice

that the resulting graph may be a multigraph (i.e., have multiple edges between two
vertices). The code associated with G, called an LDPC code, was first described and
analyzed by Gallager [Gal63].

Definition 2.1 (LDPC Code). Let G = 〈L,R,E〉 be a bipartite multigraph
with |L| = n, |R| = m. Associate a distinct Boolean variable xi with any i ∈ L.
For each j ∈ R, let N(j) ⊆ L be the set of neighbors of j. The jth constraint
is Aj(x1, . . . , xn) =

∑
i∈N(j) xi mod 2. (Notice that a variable may appear several

times in a constraint because G is a multigraph.) Let A(G) be the dLIN formula

9Typically, one fixes c, d to be constants, whereas n,m are unbounded.
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A(G) =
∧m

j=1

(
Aj(x) = 0

)
. The code defined by G is the property defined by A(G),

namely,

C(G) = {x ∈ {0, 1}n|∀j ∈ [m] Aj(x) = 0}.

A random (c, d)-regular LDPC code of length n is obtained by taking C(G) for a
random (c, d)-regular graph G with n left vertices.

3. Main theorem. In this section we state and prove the main theorem and
show that some 3CNF properties are hard to test.

Theorem 3.1 (main). There exist 0 < δ�, ε�, η� < 1 such that, for every suffi-
ciently large n, there is a 3CNF formula ϕ on n� = Θ(n) variables with Θ(n) clauses
such that every adaptive (ε�, η+, η−, q)-test for ϕ with the sum of errors η+ +η− ≤ η�

makes at least q = δ�n� queries.
To prove Theorem 3.1, we need to find 3CNF formulae that define hard properties.

Our main idea is to work with linear properties (i.e., vector spaces). We prove that,
for linear properties, tests of a very simple kind, which we call linear, are as powerful
as general tests. In particular, linear tests are nonadaptive and have a one-sided
error. Working with linear properties allows us to focus on proving a lower bound for
this simple kind of tests—bypassing often insurmountable issues of adaptivity and
two-sided error.

To explain how we find 3CNF formulae that define hard linear properties, we need
some linear algebra terminology. Let F be a field. We say that two vectors u, v ∈ F

n

are orthogonal to each other (denoted u ⊥ v) if
∑n

i=1 ui · vi = 0. Furthermore, we
say that a vector u is orthogonal to a subset S ⊆ F

n (denoted by u ⊥ S) if u ⊥ v
for all vectors v ∈ S. For a linear space V ⊆ F

n over the field F, the dual space V ⊥

is defined as the set of all vectors orthogonal to V (i.e., V ⊥ �
= {u ∈ F

n : u ⊥ V }).
For I ⊆ [n], let V ⊥

I be the subset of V ⊥ composed of all vectors with support in
I (i.e., u ∈ V ⊥

I if and only if u ∈ V ⊥ and the indices of nonzero entries of u lie
in I).

Definition 3.2 (linear test). A test for a linear property V ⊆ F
n is called a

linear test if it is performed by selecting I = {i1, . . . , iq} ⊆ [n] (according to some
distribution), querying w at coordinates I, and accepting if and only if w ⊥ V ⊥

I .
Linear tests are by definition nonadaptive and have only a one-sided error (mem-

bers of V are always accepted). Since the inception of property testing, linear proper-
ties have been invariably tested by linear tests (starting with [BLR93]). The following
theorem shows this is not a coincidence.

Theorem 3.3 (linear properties have linear tests). If a linear property V ⊆ F
n

over a finite field F has a two-sided error adaptive (ε, η+, η−, q)-test, then it has a
linear (ε, 0, η+ + η−, q)-test.

The proof of Theorem 3.3 appears in section 5. The reduction to linear tests
does not increase the overall error but rather shifts it from the YES-instances to the
NO-instances, maintaining the sum of errors η+ + η−. Although stated for general
finite fields, this theorem is used in our paper only for linear properties over the binary
alphabet, namely, with F = GF (2).

Consider a vector space V ⊆ GF (2)n and let A = (A1, . . . , Am) be a basis for
the dual space V ⊥. Denote the ith coordinate of x ∈ GF (2)n by xi. For two vectors
x, y ∈ GF (2)n, let 〈x, y〉 =

∑n
i=1 xiyi mod 2. We can view each vector Ai ∈ A as a

linear constraint on Boolean variables x1, . . . , xn of the form 〈x,Ai〉 = 0. This gives
us a way to see a vector space as a set of vectors satisfying all constraints in the dual
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space, or, equivalently, in the basis of the dual space: V = {x|〈x,Ai〉 = 0 for all
Ai ∈ A}. Linear constraints can be thought of as linear formulae.

Let |x| denote the size of the support of vector x ∈ GF (2)n. Viewing each Ai as
a constraint, we can represent V as a dLIN formula, where d = maxAi∈A |Ai|. We
work with an arbitrary constant d and later show how to reduce it to 3. Since each
3LIN formula has an equivalent 3CNF, to prove Theorem 3.1 it is enough to find hard
3LINs.

We now present sufficient conditions for a vector space to be hard to test. To
understand the conditions, keep in mind that later we employ Yao’s minimax principle
to show that all vector spaces satisfying these conditions are hard for linear tests.
Yao’s principle implies that to prove that each low-query probabilistic linear test fails
on some input, it is enough to give a distribution on the inputs on which each low-
query deterministic linear test fails. Therefore, we need to exhibit a distribution on
vectors that are far from the vector space but are orthogonal with high probability to
any fixed set of linear constraints that have support ≤ q.

Definition 3.4 (hard linear properties). Let V ⊆ GF (2)n be a vector space and
let A be a basis for V ⊥. Fix 0 < ε, μ < 1.

• A is ε-separating if every x ∈ GF (2)n that falsifies exactly one constraint in
A has |x| ≥ εn.

• A is (q, μ)-local if every α ∈ GF (2)n that is a sum of at least μm vectors in
A has |α| ≥ q.

For the proof that every vector space satisfying the above conditions is hard to
test, our bad distribution that foils low-query tests is over strings that falsify exactly
one constraint. The falsified constraint is chosen uniformly at random. The first con-
dition ensures that the distribution is over vectors which are ε-far from the vector
space. (To see this, notice that if the distance of x from y ∈ V is less than εn,
then |x + y| < εn and x + y falsifies exactly one constraint, contradicting the first
condition.)

The second condition ensures that the distribution is hard to test. Assume that
each deterministic linear test corresponds to some vector u ∈ V ⊥, |u| ≤ q. (This is
oversimplified because a deterministic linear test may read several dual vectors, whose
combined support size is at most q. However, this simple case clarifies our approach
and is not far from the formal proof given in section 4.) Vector u can be expressed as
a linear combination of vectors in the basis: u =

∑
j∈J Aj for some J ⊂ [m]. Let Ak

be the (random) constraint falsified by a vector w in our hard distribution. Clearly,
u will reject w if and only if k ∈ J . The second condition implies that this will occur
with probability at most μ. This intuitive discussion is formalized by the following
theorem, proved in section 4.

Theorem 3.5. Let V ⊆ GF (2)n be a linear space. If V ⊥ has an ε-separating
(q, μ)-local basis A = (A1, . . . , Am) and 0 < μ < 1/2, then every linear ε-test for it
with error ≤ 1 − 2μ requires q queries.

We now turn to constructing linear spaces that are hard to test. In particular, we
show that for sufficiently large constants c, d, with high probability a random (c, d)-
regular LDPC code (per Definition 2.1) is hard according to Definition 3.4. The proof
of this lemma, which uses the probabilistic method, appears in section 6. (We do not
attempt to optimize constants.)

Lemma 3.6 (hard linear properties exist). Fix odd integer c ≥ 7 and constants
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μ, ε, δ, d > 0 satisfying

μ ≤ 1

100
· c−2; δ < μc; d >

2μc2

(μc − δ)2
; ε ≤ 1

100
· d−2.

Then, for all sufficiently large n, with high probability for a random (c, d)-regular
graph G with n left vertices, the dLIN formula A(G) (as in Definition 2.1) is linearly
independent, ε-separating, and (δn, μ)-local.

We now have an abundance of dLIN formulae that are hard to test for sufficiently
large d. As an immediate corollary, we conclude that random LDPC codes are hard
to test.

Theorem 3.7 (random (c, d)-regular LDPC codes are hard to test). Let c, d, μ, ε, δ
satisfy the conditions of Lemma 3.6. For sufficiently large n, with high probability a
random (c, d)-regular LDPC code C(G) of length n satisfies the following: Every adap-
tive (ε, η+, η−, q)-test for C(G) with the sum of errors η+ +η− ≤ 1−2μ makes at least
q = δn queries.

Proof. The proof follows directly from Lemma 3.6 and Theorems 3.3 and
3.5.

The following reduction brings d down to 3 while preserving the conditions of
Definition 3.4 (with smaller constants).

Lemma 3.8 (reduction to 3CNFs). Suppose A ⊆ {0, 1}n is a set of m = c
dn

vectors, each vector of weight at most d. Suppose furthermore A is (i) linearly inde-
pendent, (ii) ε-separating, and (iii) (δn, μ)-local. Then there exists a set A� ⊂ {0, 1}n�

of m� vectors, each vector of weight at most 3, such that A� is (i) linearly independent,
(ii) ε�-separating, and (iii) (δ�n�, μ�)-local, for

m� ≤ 2dm ; n ≤ n� ≤ (2c + 1) · n ; ε ≥ ε∗ ≥ ε

(2c + 1)
;

δ ≥ δ� ≥ δ

dlog d+1 · (2c + 1)
; μ� ≤ μ +

δ(log d + 1)

c
.

Lemma 3.8 is proved in section 7. We now complete the proof of our main theorem.
Proof of Theorem 3.1 (main). We start by fixing the following parameters:

c = 7; μ =
1

100
· c−2; δ =

μc

2
; d =

⌈
4μc2

(μc − δ)2

⌉
=

⌈
16c2μ1−2c

⌉
; ε =

1

100
· d−2.

We pick An ⊂ {0, 1}n to be a linearly independent, (δn, μ)-local, ε-separating collec-
tion of vectors, of weight ≤ d. By Lemma 3.6, such a set An exists for our setting of
μ, ε, δ, d and sufficiently large n.

Next, let A�
n� ⊂ {0, 1}n�

be a linearly independent, (δ�n�, μ�)-local, ε�-separating
set of vectors of weight at most 3, ensured by Lemma 3.8 (where δ�, μ�, ε�, n� are as
stated in this lemma). Recall that for every 3LIN formula there is an equivalent 3CNF
and let ϕ be the 3CNF formula equivalent to A�

n� . Moreover, because m�, n� = Θ(n)
and each 3LIN constraint translates into a constant number of 3CNF constraints, we
conclude that the number of clauses in ϕ is linear in n�.

Notice δ�, ε�, μ� > 0 because δ, ε, μ, d > 0, and δ�, ε� < 1 because δ, ε < 1.
Furthermore, for our setting of constants,

μ� ≤ μ +
δ(log d + 1)

c
= μ +

μc(log(16c2μ−(2c−1)) + 1)

2c
<

1

2
.

Therefore, 0 < 1 − 2μ∗ < 1. Set η� = 1 − 2μ�. By Theorem 3.5, every linear ε�-
test for A�

n� with error ≤ η� requires δ�n� queries. Theorem 3.3 implies that every
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adaptive (ε�, η+, η−, q)-test for A�
n� with η+ + η− ≤ η� makes at least δ�n� queries.

This completes the proof of our main theorem.

4. Lower bounds for linear tests: Proof of Theorem 3.5. We employ Yao’s
minimax principle. It states that to prove that every q-query randomized linear test
fails with probability more than η, it is enough to exhibit a distribution B on the
inputs for which every q-query deterministic linear test fails with probability more
than η. For i = 1, . . . ,m let Bi be the uniform distribution over n-bit strings that
falsify constraint Ai and satisfy the rest. The distribution B is the uniform distribution
over the Bi’s. The comment after Definition 3.4 shows that the distribution B is over
strings which are ε-far from V .

A deterministic linear test T is identified by a subset I ⊆ [n], |I| = q and rejects
the input w only if w is not orthogonal to V ⊥

I (see Definition 3.2). Write each vector
u ∈ V ⊥ in the basis A as u = A · bu, where A is interpreted as the m × n matrix
whose ith row is Ai and bu ∈ GF (2)m. Let JT = ∪V ⊥

I
supp(bu). We claim T rejects

w distributed according to B if and only if the index of the unique constraint falsified
by w belongs to JT . This is because w is orthogonal to all but one Ai ∈ A, so the
subspace of V ⊥ that is orthogonal to w is precisely the span of A \ {Ai}. Summing
up, the probability that T rejects w is precisely |JT |/m. We now give an upper bound

on |JT |. Notice that V ⊥
I is a vector space, so the set V ′ �

= {bu : u ∈ V ⊥
I } is also

a vector space (it is the image of the vector space V ⊥
I under the linear map A−1).

Since A is (q, μ)-local, we know |bu| ≤ μm for every u ∈ V ⊥
I . Thus, V ′ is a vector

space over GF (2) in which each element has support size ≤ μm. We claim that
|JT | = | ∪v′∈V ′ supp(v′)| ≤ 2μm. To see this, pick a uniformly random vector of
v ∈ V ′. We claim that

Ev′∈V ′ |v| = | ∪v′′∈V ′ supp(v′′)|/2.

This follows from the linearity of expectation and the fact that the projection of V ′

onto any j ∈ ∪V ′ supp(v′) is a linear function, so the expected value of v′j is 1/2.
Since A is (q, μ)-local, we know Ev′∈V ′ |v′| ≤ μm, which means that |JT | ≤ 2μm. This
implies that our deterministic test (reading q entries of w) will detect a violation with
probability at most |JT |/m ≤ 2μ. The proof of Theorem 3.5 is complete.

5. Reducing general tests to linear ones. In this section we prove Theo-
rem 3.3 by presenting a generic reduction that converts any adaptive two-sided error
test for a linear property to a linear test, as in Definition 3.2. We perform this re-
duction in two stages: we first reduce an adaptive test with two-sided error to an
adaptive linear test (Theorem 5.3), maintaining the sum of the positive and negative
errors (η+ + η−), and then remove the adaptivity and maintain all other parameters
(Theorem 5.6). The second reduction was suggested by Madhu Sudan. We state and
prove these reductions for the general case when the linear spaces V considered are
over any finite field F, though we require them only for the case F = GF (2).

Preliminaries. Any probabilistic test can be viewed as a distribution over deter-
ministic tests, and each deterministic test can be represented by a decision tree. Thus,
any test T can be represented by an ordered pair (ΥT ,DT ), where ΥT = {Γ1,Γ2, . . . }
is a set of decision trees and DT is a distribution on this set such that on input x, T
chooses a decision tree Γ with probability DT (Γ) and then answers according to Γ(x).

We say that a test detects a violation if no string in V is consistent with the
answers to the queries. By linearity, it is equivalent to having a constraint α in V ⊥
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such that 〈x, α〉 �= 0 for all x ∈ F
n, which are consistent with the answers to the

queries.
Let V be a vector space. For any leaf l of decision tree Γ, let Vl be the set of

all vectors in V that are consistent with the answers along the path leading to l.
Similarly, for any string x ∈ F

n, let V x
l be the set of all vectors in x + V that are

consistent with the answers along the path leading to l.
Claim 5.1. Let F be a finite field and V ⊆ F

n be a vector space. Let x ∈ F
n. For

any decision tree Γ and a leaf l in Γ, if both Vl and V x
l are nonempty, then |Vl| = |V x

l |.
Proof. Let U be the set of all strings in V which have the element 0 in all the

positions queried along the path leading to l. Since 0n ∈ U , we have that U is
nonempty. Observe that if u ∈ U and v ∈ Vl, then u + v ∈ Vl. In fact, if Vl �= ∅,
Vl = v + U for any v ∈ Vl. Hence, |Vl| = |U |. Similarly, if V x

l �= ∅, we have that
V x
l = y + U for any y ∈ V x

l . Hence, |V x
l | = |U | and the lemma follows.

5.1. Reduction from adaptive two-sided to adaptive linear.
Definition 5.2 (adaptive linear test). A test for a linear property V ⊆ F

n is
called adaptive linear if it is performed by making adaptive queries I = {i1, . . . , iq}
(according to some distribution) to w and accepting if and only if w ⊥ V ⊥

I .
Notice that adaptive linear tests have a one-sided error: every w ∈ V is always

accepted.
Theorem 5.3. Let F be a finite field and V ⊆ F

n a vector space. If V has an
adaptive (ε, η+, η−, q)-test T , then it has a (one-sided error) adaptive linear (ε, 0, η++
η−, q)-test T

′.
Proof. Let T = (ΥT ,DT ) be a two-sided error (adaptive) (ε, η, q)-test for V .

To convert T to an adaptive linear one, we modify the test so that it rejects if and
only if it observes that a constraint in V ⊥ has been violated. We say that a leaf l is
labeled optimally if its label is 0 when the query answers on the path to l falsify some
constraint in V ⊥, and its label is 1 otherwise. We relabel the leaves of each tree Γ in
ΥT optimally to obtain the tree Γopt.

Relabeling produces a one-sided error test with unchanged query complexity.
However, the new test performs well only on “average.” To get good performance on
every string, we randomize the input x by adding a random vector v from V to it and
perform the test on x + v instead of x. Now we formally define T ′.

Definition 5.4. Given a two-sided error (adaptive) test T for V , define the test
T ′ as follows: On input x, choose a decision tree Γ according to the distribution DT

as T does, choose a random v ∈ V , and answer according to Γopt(x + v).
Clearly, T ′ is adaptive linear and has the same query complexity as T . It remains

to check that T ′ has error η+ + η− on negative instances.
For any x ∈ F

n and any test T , let ρTx be the average acceptance probability
of test T over all strings in x + V , i.e., ρTx = averagey∈x+V

(
Pr[T (y) = 1]

)
. For

notational brevity, we denote ρT0n , the average acceptance probability of strings in V ,
by ρT . Observe that, for the new test T ′, for each input x, Pr[T ′(x) = 1] = ρT

′

x .
Claim 5.5 below shows that the transformation to a one-sided error test given by

Definition 5.4 increases the acceptance probability of any string not in V by at most
ρT

′ − ρT . Notice that all vectors in x + V have the same distance to V . Therefore
if x is ε-far from V , then ρTx ≤ η−. Together with Claim 5.5, it implies that for all
vectors x that are ε-far from V , the error is low:

Pr[T ′(x) = 1] = ρT
′

x ≤ ρT
′ − ρT + ρTx ≤ 1 − (1 − η+) + η− = η+ + η−.

This completes the proof of Theorem 5.3
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Claim 5.5. ρT − ρTx ≤ ρT
′ − ρT

′

x for any vector x ∈ F
n.

Proof. Let x ∈ F
n. It is enough to prove that relabeling one leaf l of a decision

tree Γ in ΥT optimally does not decrease ρT − ρTx . Then we obtain the claim by
relabeling one leaf at a time to get T ′ from T . There are two cases to consider.

Case (i) The path to l falsifies some constraint in V ⊥. Then l is relabeled from
1 to 0. This change preserves ρT because it only affects strings that falsify some
constraint. Moreover, it can only decrease the acceptance probability for such strings.
Therefore, ρTx does not increase. Hence, ρT − ρTx does not decrease.

Case (ii) The path to l does not falsify any constraint in V ⊥. Then l is relabeled
from 0 to 1. Let Vl and V x

l , respectively, be the set of vectors in V and x+V that are
consistent with the answers observed along the path to l. Thus, every string in Vl∪V x

l

was rejected before relabeling but is accepted now. The behavior of the algorithm on
the remaining strings in V and x+V is unaltered. Hence, the probability ρT increases

by the quantity DT (Γ) · |Vl|
|V | . Similarly, ρTx increases by DT (Γ) · |V x

l |
|V | .

It suffices to show that |Vl| ≥ |V x
l |. Since the path leading to l does not falsify

any constraint, Vl is nonempty. If V x
l is empty, we are done. Otherwise, both Vl and

V x
l are nonempty, and by Claim 5.1, |Vl| = |V x

l |.
5.2. Reduction to linear tests. In this section, we remove the adaptivity from

the linear tests. The intuition behind this is as follows: To check if a linear constraint
is satisfied, a test needs to query all the variables that participate in that constraint.
Based on any partial view involving some of the variables, the test cannot guess if the
constraint is going to be satisfied or not until it reads the final variable. Hence, any
adaptive decision based on such a partial view does not help.

Theorem 5.6. If V ⊆ F
n is a vector space over a finite field F that has an

adaptive linear (ε, 0, η, q)-test, then it has a (nonadaptive) linear (ε, 0, η, q)-test.
Proof. Let T be an adaptive linear (ε, 0, η, q)-test for V . Let ΥT and DT be the

associated set of decision trees and the corresponding distribution, respectively.
Definition 5.7. Given an adaptive linear test T for V , define the test T ′as

follows: On input x, choose a random v ∈ V , query x on all variables that T queries
on input v, and reject if a violation is detected; otherwise accept.

T ′ makes the same number of queries as T . Moreover, the queries depend only
on the random v ∈ V and not on the input x. Hence, the test T ′ is nonadaptive.
The following claim relates the acceptance probability of T ′ to the average acceptance
probability of T .

Claim 5.8. Let T be an adaptive linear test and T ′ the nonadaptive version of
T (as in Definition 5.7). Then, for any string x ∈ F

n,

Pr[T ′(x) = 1] = average
v∈V

(Pr[T (x + v) = 1]) .

Proof. For any decision tree Γ, let l1(Γ) denote the set of leaves in Γ that are
labeled 1. For any leaf l in a decision tree Γ, let var(l) denote the set of variables
queried along the path leading to l in the tree Γ. Following the notation of Claim 5.1,
let Vl and V x

l be the set of all vectors in V and x+V , respectively, that are consistent
with the answers along the path leading to l. Also let Ixl be a binary variable which
is set to 1 if and only if x does not violate any constraint in V ⊥ involving only the
variables var(l). Observe that if test T ′ chooses the decision tree Γ ∈ ΥT and the
vector v ∈ V such that v ∈ Vl for some leaf l labeled 1 in the tree Γ, then Ixl = 1 if
and only if T ′(x) = 1.

The quantity “averagev∈V (Pr[T (x + v) = 1])” can be obtained as follows: First,
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choose a decision tree Γ ∈ ΥT according to the distribution DT . Then for each leaf l
labeled 1 in Γ, find the fraction of vectors in x + V that follow the path leading to l.
The weighted sum of these fractions is averagev∈V (Pr[T (x + v) = 1]). Thus,

average
v∈V

(Pr[T (x + v) = 1]) =
∑

Γ∈ΥT

DT (Γ)

⎛
⎝ ∑

l∈l1(Γ)

|V x
l |

|V |

⎞
⎠ .(5.1)

Now consider the quantity Pr[T ′(x) = 1]. Test T ′ can be viewed in the following
fashion: On input x, T ′ chooses a random decision tree Γ ∈ ΥT according to the
distribution DT . It then chooses a leaf l labeled 1 in Γ with probability proportional
to the fraction of vectors v ∈ V that are accepted along the path leading to l (i.e.,
|Vl|/|V |), queries x on all variables in var(l), accepts if Ixl = 1, and rejects otherwise.
This gives us the following expression for Pr[T ′(x) = 1]:

Pr[T ′(x) = 1] =
∑

Γ∈ΥT

DT (Γ)

⎛
⎝ ∑

l∈l1(Γ)

|Vl|
|V | · I

x
l

⎞
⎠ .(5.2)

From (5.1) and (5.2), it suffices to prove that |V x
l | = Ixl · |Vl| for all leaves l labeled 1

in order to prove the claim.
Observe that |Vl| is nonempty since l is labeled 1. Hence, by Claim 5.1, |Vl| = |V x

l |
if V x

l is also nonempty. It now suffices to show that V x
l is nonempty if and only if

Ixl = 1.
Suppose V x

l is nonempty. Then there exists y ∈ x + V that does not violate any
constraint involving only the variables var(l). But y and x satisfy the same set of
constraints. Hence, x also does not violate any constraint involving only the variables
var(l). Thus, Ixl = 1.

Now, for the other direction, suppose Ixl = 1. Then the values of the variables
var(l) of x do not violate any constraint in V ⊥. Hence, there exists u ∈ V that
has the same values as x for the variables var(l). Let v ∈ Vl. Then, the vector
x − u + v ∈ x + V has the same values for the variables var(l) as v. Hence, V x

l is
nonempty. This concludes the proof of the claim.

The above claim proves that T ′ inherits its acceptance probability from T . As
mentioned earlier, T ′ inherits its query complexity from T . Hence T ′ is a linear
(ε, 0, η, q)-test for V .

6. Random codes require a linear number of queries. In this section we
prove Lemma 3.6. We start by analyzing the expansion properties of random regular
graphs.

6.1. Some expansion properties of random regular graphs. To prove that
a random C(G) obeys Definition 3.4 with high probability, we use standard arguments
about expansion of the random graph G. We reduce each requirement on A(G) to
a requirement on G and then show that the expansion of a random graph G implies
that it satisfies the requirements. We need the following notions of neighborhood and
expansion.

Definition 6.1 (neighborhood). Let G = 〈V,E〉 be a graph. For S ⊂ V , let
(i) N(S) be the set of neighbors of S.
(ii) N1(S) be the set of unique neighbors of S, i.e., vertices with exactly one

neighbor in S.
(iii) Nodd(S) be the set of neighbors of S with an odd number of neighbors in S.
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Notice that N1(S) ⊆ Nodd(S).
Definition 6.2 (expansion). Let G = 〈L,R,E〉 be a bipartite graph with |L| =

n, |R| = m.
(i) G is called a (λ, γ)-right expander if

∀S ⊂ R, |S| ≤ γn, |N(S)| > λ · |S|.

(ii) G is called a (λ, γ)-right unique neighbor expander if

∀S ⊂ R, |S| ≤ γn, |N1(S)| > λ · |S|.

(iii) G is called a (λ, γ)-right odd expander if

∀S ⊂ R, |S| ≥ γn, |Nodd(S)| > λ · |S|.

Notice that the definitions of an expander and a unique neighbor expander deal
with subsets of size at most γn, whereas the definition of an odd expander deals with
subsets of size at least γn. Left expanders (all three of them) are defined analogously
by taking S ⊂ L in Definition 6.2.

Lemmas 6.3 and 6.6 are proved using standard techniques for analysis of expansion
of random graphs, such as those appearing in, for example, [CS88, Spi95].

Lemma 6.3. For any integers c ≥ 7, d ≥ 2 and sufficiently large n, a random
(c, d)-regular graph with n left vertices is with high probability a (1, 1

100 ·d−2)-left unique
neighbor expander.

Proof. We need the following claims, the proofs of which will follow.
Claim 6.4. For any integers c ≥ 2, d, any constant α < c − 1, and sufficiently

large n, a random (c, d)-regular bipartite graph with n left vertices is with high proba-
bility a (α, ε)-left expander for any ε satisfying

ε ≤
(

2e(1+α) ·
(
αd

c

)(c−α)
)− 1

c−α−1

.(6.1)

Claim 6.5. Let G be a (c, d)-regular bipartite graph with n left vertices. If G is
a (α, ε)-left expander, then G is a (2α− c, ε)-left unique neighbor expander.

Set α = c+1
2 . Then c

2 < α < c − 1 for c ≥ 7. Let G be a random (c, d)-regular
bipartite graph. By Claim 6.4, with high probability G is an (α, ε)-right expander for
any ε satisfying (6.1).

The following inequalities hold for our selection of α and any c ≥ 7:

(1 + α)

(c− α− 1)
≤ 3,

α

c
>

1

2
,

(c− α)

(c− α− 1)
≤ 2.

Hence, ε = 1
100 · d−2 satisfies (6.1). Claim 6.5 completes the proof of

Lemma 6.3.
Proof of Claim 6.4. Let BAD be the event in which the random graph is not an

expander. This means there is some S ⊂ L, |S| ≤ εn such that |N(S)| ≤ α · |S|.
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Fix sets S ⊂ L, T ⊂ R, |S| = s ≤ εn, |T | = αs, and let Bs be the event in which
all edges leaving S land inside T . We upper-bound the probability of this bad event:

Pr[Bs] =

c·s−1∏
i=0

αds− i

cn− i
≤

(
αds

cn

)cs

.

The inequality above holds as long as αds < cn. In the following, we now use a
union bound over all sets S ⊂ L, |S| = s ≤ εn and all sets T ⊂ R, |T | = αs. Let κ

be the constant κ = e1+α ·
(
αd
c

)c−α
.

Pr[BAD] ≤
εn∑
s=1

(
n

s

)
·
(
m

αs

)
· Pr[Bs]

≤
εn∑
s=1

(en
s

)s

·
(em
αs

)αs

·
(
αds

cn

)cs

=

εn∑
s=1

[
e1+α ·

(
αd

c

)c−α

·
( s

n

)c−α−1
]s

=

εn∑
s=1

[
κ ·

( s

n

)c−α−1
]s

.(6.2)

By definition of α, c− α− 1 > 0. Hence
(
s
n

)c−α−1 ≤ 1. Set

ε ≤ (2κ)
−1

(c−α−1) =

(
2e(1+α) ·

(
αd

c

)(c−α)
)− 1

c−α−1

.(6.3)

For this value of ε, each term of the sum (6.2) is at most 1
2 .

Set λ = min{ 1
3 ,

c−α−1
2 } and split the sum (6.2) into two subsums:

Pr[BAD] ≤
εn∑
s=1

[
κ ·

( s

n

)c−α−1
]s

≤
nλ∑
s=1

[
κ ·

( s

n

)c−α−1
]s

+

εn∑
s=nλ

[
κ ·

( s

n

)c−α−1
]s

≤ nλ · κ · n(λ−1)2λ + n · 2−nλ

= κ · n−λ+2λ2

+ n · 2−nλ

≤ κ · n− 1
9 + n · 2−nλ

= o(1).

We conclude that, with high probability, G is an (α, ε)-left expander.
Proof of Claim 6.5. Let S ⊂ L, |S| ≤ ε|L|. Then by expansion,

α · |S| < |N(S)|.

Any neighbor of S that is not a unique neighbor must be touched by at least two
edges leaving S. Since the left degree of G is c,

|N(S)| ≤ |N1(S)| + c · |S| − |N1(S)|
2

=
c · |S| + |N1(S)|

2
.



16 E. BEN-SASSON, P. HARSHA, AND S. RASKHODNIKOVA

Combining the two equations, we get our claim.
Lemma 6.6. For any odd integer c, any constants μ > 0, δ < μc, and any integer

d > 2μc2

(μc−δ)2 , a random (c, d)-regular graph is with high probability a (δ, μ)-right odd

expander.
Proof. In the proof, we make use of the following theorem (see [MR95]).
Theorem 6.7 (Azuma’s inequality). If X0, . . . , Xt is a martingale sequence such

that |Xi −Xi+1| ≤ 1 for all i, then

Pr[|Xt −X0| ≥ λ
√
t] ≤ 2e−λ2/2.

Fix T ⊆ R |T | = t ≥ μm. Let X = |Nodd(T )|. We start by computing E[X].
For i = 1, . . . , n, let Xi be the random variable indicating whether vertex i ∈ L is
in Nodd(T ). Clearly, X =

∑n
i=1 Xi, so by the linearity of expectation, we need only

compute E[Xi]. Recall that cn = dm. Let odd(c) = {1, 3, 5, . . . , c} be the set of
positive odd integers ≤ c, and notice that c ∈ odd(c) because c is odd:

E[Xi] =

∑
i∈odd(c)

(
μdm
i

)
·
(
(1−μ)dm

c−i

)
(
cn
c

)
≥

(
μcn
c

)(
cn
c

) = μc −O

(
1

n

)
.

We conclude by linearity of expectation:

E[X] ≥ μc · n−O(1).

We now use the following edge-exposure martingale to show concentration of X around
its expectation. Fix an ordering on the μdm edges leaving T and define a sequence
of random variables Y0, . . . , Yμdm as follows: Yi is the random variable that is equal
to the expected size of Nodd(T ) after the first i edges leaving T have been revealed.
By definition, Yμdm = X, Y0 = E[X], and the sequence is a martingale, where

|Yi − Yi+1| ≤ 1 for all i ≤ μdm. Since d > 2μc2

(μc−δ)2 , Azuma’s inequality (Theorem 6.7)
gives us

Pr[X ≤ δn] ≤ Pr[|Yμdm − Y0| ≥ (μc − δ)n]

= Pr

[
|Yμdm − Y0| ≥ (μc − δ)

d

c
m

]

≤ 2e
− d(μc−δ)2

2μc2
·m ≤ 2e−(1+ε)m,

where ε = d(μc−δ)2

2μc2 − 1 > 0. Since there are at most 2m possible sets T ⊆ R, by the
union bound,

Pr

[
∃T ⊂ R |T | ≥ μm,

∣∣∣∣∣
∑
j∈T

Aj

∣∣∣∣∣ ≤ δn

]
≤ 2m · 2e−(1+ε)m

= o(1).

We conclude that with high probability A(G) is a (δ, μ)-right odd expander.
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6.2. Proof of Lemma 3.6. Let G be a random (c, d)-regular graph G with n
left vertices. We prove that A(G) is with high probability (i) linearly independent,
(ii) (δn, μ)-local, and (iii) ε-separating.

(i) We need to show that adding up any subset of A(G) cannot yield �0. Since
we are working modulo 2, this is equivalent to proving

∀T ⊆ R, Nodd(T ) �= ∅.

For small T we use unique neighbor expansion, and for large T we use odd
neighbor expansion.
Fix c, and reverse the roles of left and right in Lemma 6.3. We conclude that,
for any d ≥ 7 and for our setting of μ, G is with high probability a (1, μ)-right
unique neighbor expander. This implies that if |T | ≤ μ|R|, then Nodd(T ) �= ∅
because Nodd(T ) ⊇ N1(T ) and N1(T ) �= ∅.
Lemma 6.6 says that for any μ > 0, and for our selection of d, all sets of size
at least μm have a nonempty odd neighborhood. (Actually, the lemma shows
that the odd neighborhood is of linear size, which is more than we need here.)
This completes the proof of the first claim.

(ii) Notice that if T ⊆ R, then Nodd(T ) is exactly the support of
∑

j∈T Aj . Thus,

it suffices to show that Nodd(T ) is large for large subsets T .
By definition of d, μ, δ and by Lemma 6.6, with high probability G is a (δn, μ)-
right odd expander. This means A(G) is (δn, μ)-local. Part (ii) is proved.

(iii) Let G−j be the graph obtained from G by removing vertex j ∈ R and all
edges touching it. Since A(G) is linearly independent, it is sufficient to show
that C(G−j) has no nonzero element of Hamming weight < εn.
Let x be a nonzero element of C(G−j), and let Sx ⊆ L be the set of coordinates
at which x is 1. Consider the graph G−j . In this graph, the set of unique
neighbors of Sx is empty because x ∈ C(G−j) (otherwise, some j′ ∈ N1(Sx),
so 〈Aj′ , x〉 = 1, a contradiction). Thus,

N1(Sx) ⊆ {j},(6.4)

where N1(Sx) is the set of unique neighbors of Sx in G. Clearly, |Sx| > 1
because the left degree of G is c > 1. But if |Sx| ≤ 1

100 · d−2 · n, then by
Lemma 6.3 |N1(Sx)| ≥ |Sx| > 1, in contradiction to (6.4). We conclude that
for any x ∈ C(G−j), |x| ≥ 1

100 · d−2, so A(G) is ε-separating for our selection
of ε. Part (iii) is complete.

This completes the proof of Lemma 3.6.

7. Reducing dLIN to 3LIN. This section proves Lemma 3.8. The randomized
construction from section 6 produces d-linear formulae, which are hard to test for some
constant d. We would like to make d as small as possible. This section obtains 3-
linear, hard-to-test formulae. First, we give a reduction from d-linear to �d

2�+1-linear
formulae and then apply it log d times to get 3-linear formulae.

Let ϕ be a d-linear formula on variables in X = {x1, . . . , xn}. The reduction
maps ϕ to a (�d

2� + 1)-linear formula on variables X ∪ Z, where Z is a collection of
new variables {z1, . . . , zm}. For each constraint Ai, say x1 ⊕ · · · ⊕ xd = 0, in ϕ, two
constraints, A1

i and A2
i , are formed: x1⊕· · ·⊕x� d

2 	
⊕zi = 0 and x� d

2 	+1⊕· · ·⊕xd⊕zi =

0. Let V ⊆ {0, 1}n be the vector space of vectors satisfying ϕ, and let A be an m-
dimensional basis for the vector space V ⊥ of constraints. Define R(A) to be the
collection of 2m vectors in {0, 1}n+m formed by splitting every constraint in A in
two, as described above.
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The following three claims show that the reduction preserves the properties which
make the formula hard to test. A parameter followed by a prime denotes the value
of the parameter after one application of the reduction: for example, m′ = 2m,
n′ = m + n, and d′ = �d

2� + 1.
Claim 7.1. R(A) is independent.
Proof. It is enough to prove that no set of constraints in R(A) sums up to 0. Let

C be a subset of constraints in R(A). If only one of the two constraints involving a
new variable z appears in C, then the sum of vectors in C has 1 in z’s position. If,
on the other hand, all constraints appear in pairs, then the sum of vectors in C is
equal to the sum of the constraints in A from which C’s constraints were formed. By
independence of old constraints, this sum is not 0.

Claim 7.2. If A is ε-separating, then R(A) is ε′-separating, where ε′ = ε
1+(m/n) .

Proof. Let x′ be a vector in {0, 1}n+m that falsifies exactly one constraint, say
A1

i , in R(A). Namely, 〈x′, A1
i 〉 = 1 and 〈x′, A′〉 = 0 for all A′ ∈ R(A), A′ �= A1

i . Let
x = x′

1 . . . x
′
n. Then 〈x,Ai〉 = 〈x′, A1

i + A2
i 〉 = 〈x′, A1

i 〉 + 〈x′, A2
i 〉 = 1, and similarly,

〈x,A〉 = 0 for all A ∈ A, A �= Ai. Thus, x falsifies exactly one constraint in A.
Since A is ε-separating, |x| ≥ εn. It follows that |x′| ≥ εn, implying that R(A) is
( εn
n+m )-separating.

Claim 7.3. If A is (q, μ)-local, then R(A) is (q′, μ′)-local, where q′ = q
d′ and

μ′ = μ + q′

m′ .
Proof. Let α′ ∈ {0, 1}m+n be the sum of a subset T of μ′ ·m′ constraints in R(A).

Let T2 be the subset of constraints in T which appear in pairs. Namely, for every new
variable z, both constraints with z are either in T2 or not in T2. Let T1 = T \ T2.

Case 1. |T1| ≥ q′. For every constraint in T1, the new variable z from that
constraint does not appear in any other constraint in T . Therefore, α′ is 1 on z’s
coordinate. Hence, |α′| ≥ |T1| ≥ q′.

Case 2. |T1| < q′. Then |T2| = |T |−|T1| ≥ μ′ ·m′−q′ = μ·m′ = 2μm. Let S be the
set of constraints in A that gave rise to constraints in T2. Then |S| = |T2|/2 ≥ μm.
Old variables appear in the same number of constraints in S and in T2. Thus,∣∣∣∣∣

∑
A′∈T2

A′

∣∣∣∣∣ ≥
∣∣∣∣∣
∑
A∈S

A

∣∣∣∣∣ ≥ q.

The last inequality follows from the fact that A is (q, μ)-local. When constraints
from T1 are added to

∑
A′∈T2

A′, each T1 constraint zeros out at most �d
2� = d′ − 1

coordinates:

|α′| ≥
∣∣∣∣∣
∑

A′∈T2

A′

∣∣∣∣∣− d

2

∣∣∣∣∣
∑

A′∈T1

A′

∣∣∣∣∣ ≥ q − (d′ − 1)q′ = q′.

If the reduction is applied �log(d− 2)� times, the number of terms in a constraint
drops to 3. To see this, think of applying the reduction i times to a formula with
d ≤ 2i + 2 terms per constraint. Successive iterations will decrease the clause size to
≤ 2i−1 +2, ≤ 2i−2 +2, etc. We apply the reduction �log d� times to obtain hard 3LIN
formulae from hard dLIN formulae, as shown in Lemma 3.8.

Proof of Lemma 3.8. For A ⊂ {0, 1}n as in the statement of our lemma, let
R(0)(A) = A, and for i ≥ 1 let R(i)(A) = R(R(i−1)(A)). Let A� = R(�log d	)(A).
As explained above, each constraint in A� has weight at most 3. We now calculate
the remaining parameters of A�. In doing so, we denote the value of a parameter in



SOME 3CNF PROPERTIES ARE HARD TO TEST 19

R(i)(A) by the superscript (i), and the superscript � signifies the final value of the
parameter in A�.

Since each application of the reduction doubles the dimension, m� = 2�log d	m ≤
2dm. To calculate n�, observe that the reduction does not change m − n and recall
that dm = cn. Therefore,

n� = n + m� −m ≤ n + 2dm = (2c + 1) · n.

Claim 7.1 guarantees that A� is independent. By Claim 7.2, ε′ = ε
1+(m/n) = ε n

n′ .

Thus,

ε ≥ ε� = ε · n

n(1)
· n

(1)

n(2)
· · · n

(�log d	−1)

n�
= ε

n

n�
≥ ε

2c + 1
.

Let q = δn. Applying Claim 7.3 �log d� times, we obtain

q ≥ q� =
q

d(1) × d(2) × · · · × d�
≥ q

d�log d	 ≥ q

dlog d+1
;

δ ≥ δ� =
q�

n�
≥ q

dlog d+1 · (2c + 1)n
=

δ

dlog d+1 · (2c + 1)
;

μ� = μ +
q(1)

m(1)
+

q(2)

m(2)
+ · · · + q�

m�

< μ +
q

m

(
1

2d(1)
+

1

4d(1)d(2)
+ · · · + 1

d · d(1)d(2) · · · d�

)

≤ μ +
q

m

�log d�
d

≤ μ +
dδn

cn
· log d + 1

d
= μ +

δ(log d + 1)

c
.

This completes the proof of Lemma 3.8.
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[CS88] V. Chvátal and E. Szemerédi, Many hard examples for resolution, J. ACM, 35 (1988),
pp. 759–768.

[Fis01] E. Fischer, The art of uninformed decisions: A primer to property testing, Bull.
European Assoc. Theoret. Comput. Sci., 75 (2001), pp. 97–126.

[Fis05] E. Fischer, Testing graphs for colorability properties, Random Structures Algorithms,
26 (2005), pp. 289–309. (A preliminary version appears in Proceeding of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadel-
phia, ACM, New York, 2001, pp. 873–882.)

[FLN+02] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A.

Samorodnitsky, Monotonicity testing over general poset domains, in Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, New York, May
19–21, 2002, pp. 474–483.

[FN04] E. Fischer and I. Newman, Functions that have read-twice constant width branching
programs are not necessarily testable, Random Structures Algorithms, 24 (2004),
pp. 175–193. (A preliminary version appears in Proceedings of the 17th Annual
Conference on Computational Complexity, IEEE, Los Alamitos, CA, 2002, pp.
55–61.)

[Gal63] R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, MA, 1963.
[GGR98] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection

to learning and approximation, J. ACM, 45 (1998), pp. 653–750. (A preliminary
version appears in Proceedings of the 37th Annual Symposium on Foundations of
Computer Science (FOCS), IEEE, Los Alamitos, CA, 1996, pp. 339–348.)

[GR02] O. Goldreich and D. Ron, Property testing in bounded degree graphs, Algorithmica,
32 (2002), pp. 302–343. (A preliminary version appears in Proceedings of the 29th
Annual Symposium on Theory of Computing (STOC), ACM, New York, 1997, pp.
406–415.)

[GS02] O. Goldreich and M. Sudan, Locally testable codes and PCPs of almost linear length,
in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computers
Science, Vancouver, Canada, Nov. 16–19, 2002, pp. 13–22.

[GT03] O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties,
Random Structures Algorithms, 23 (2003), pp. 23–57. (A preliminary version ap-
pears in Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, Los Alamitos, CA, 2001, pp. 460–469.)

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
Cambridge, UK, 1995.

[New02] I. Newman, Testing membership in languages that have small width branching pro-
grams, SIAM J. Comput., 31 (2002), pp. 1557–1570. (A preliminary version ap-
pears in Proceedings of the 41st Annual Symposium on Foundations of Computer
Science (FOCS), IEEE, Los Alamitos, CA, 2000, pp. 251–258.)

[Ron01] D. Ron, Property testing (a tutorial), in Handbook of Randomized Computing, Comb.
Optim. 9, S. Rajasekaran, P. M. Pardalos, J. H. Reif, and J. D. P. Rolim, eds.,
Kluwer Academic Publishers, Dordrecht 2001, pp. 597–649.



SOME 3CNF PROPERTIES ARE HARD TO TEST 21

[RS96] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applica-
tions to program testing, SIAM J. Comput., 25 (1996), pp. 252–271. (Preliminary
versions appear in Proceedings of the 23rd Symposium on Theory of Computing
(STOC), ACM, New York, 1991, pp. 33–42 and Proceedings of the 3rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia,
ACM, New York, 1992, pp. 23–32.)

[Spi95] Daniel A. Spielman, Computationally Efficient Error-Correcting Codes and Holo-
graphic Proofs, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1995.



SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. 22–58

A PROBABILISTIC ANALYSIS OF TRIE-BASED SORTING
OF LARGE COLLECTIONS OF LINE SEGMENTS

IN SPATIAL DATABASES∗
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Abstract. The size of five trie-based methods of sorting large collections of line segments in a
spatial database is investigated analytically using a random lines image model and geometric prob-
ability techniques. The methods are based on sorting the line segments with respect to the space
that they occupy. Since the space is two-dimensional, the trie is formed by interleaving the bits
corresponding to the binary representation of the x and y coordinates of the underlying space and
then testing two bits at each iteration. The result of this formulation yields a class of representations
that are referred to as quadtrie variants, although they have been traditionally referred to as quadtree
variants. The analysis differs from prior work in that it uses a detailed explicit model of the image
instead of relying on modeling the branching process represented by the tree and leaving the under-
lying image unspecified. The analysis provides analytic expressions and bounds on the expected size
of these quadtree variants. This enables the prediction of storage required by the representations
and of the associated performance of algorithms that rely on them. The results are useful in the
following two ways:

1. They reveal the properties of the various representations and permit their comparison using
analytic, nonexperimental criteria. Some of the results confirm previous analyses (e.g.,
that the storage requirement of the MX quadtree is proportional to the total lengths of
the line segments). An important new result is that for a PMR and Bucket PMR quadtree
with sufficiently high values of the splitting threshold (i.e., ≥ 4) the number of nodes is
proportional to the number of line segments and is independent of the maximum depth
of the tree. This provides a theoretical justification for the good behavior and use of the
PMR quadtree, which so far has been only of an empirical nature.

2. The random lines model was found to be general enough to approximate real data in
the sense that the properties of the trie representations, when used to store real data
(e.g., maps), are similar to their properties when storing random lines data. Therefore,
by specifying an equivalent random lines model for a real map, the proposed analytical
expressions can be applied to predict the storage required for real data. Specifying the
equivalent random lines model requires only an estimate of the effective number of random
lines in it. Several such estimates are derived for real images, and the accuracy of the
implied predictions is demonstrated on a real collection of maps. The agreement between
the predictions and real data suggests that they could serve as the basis of a cost model
that can be used by a query optimizer to generate an appropriate query evaluation plan.
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1. Introduction.

1.1. Background. The efficient management of data in large database systems
depends on grouping the data in such a way that similar data are aggregated and
also stored in proximity so that they can be operated upon at the same time or at
approximately the same time (see, e.g., [17]). This grouping is usually achieved by
sorting the data. The rationale for sorting the data is to facilitate the presentation
of the data to the user (e.g., in reports) and also to speed up query processing using
sort-based algorithms such as merge-join.

Although sorting has traditionally been applied to one-dimensional data, it is also
applicable to data of higher dimensions. This data can consist of points in a higher
dimensional space or of spatial objects that span the higher dimensional space (e.g.,
lines, regions, surfaces, volumes, etc.). In the case of spatial data in more than one
dimension, which is the focus of this paper, the result of applying conventional sorting
techniques does not always lead to simpler algorithms. For example, suppose that
the data are sorted with respect to a particular reference point (e.g., all U.S. cities,
represented as points, are sorted with respect to their distance from Chicago). In
this case, if we wish to obtain the points in the order of their distance from another
point (e.g., with respect to their distance from Omaha), then the sorting process will,
in general, have to be reapplied to the entire set of data. The problem is that the
data were sorted in an explicit manner. Instead, we need methods that provide an
implicit ordering. Examples of such techniques are called bucketing methods (see,
e.g., [43, 45]). In this case, the data are sorted on the basis of the space that they
occupy and are grouped into cells (i.e., buckets) of a finite capacity.

There are two principal methods for sorting spatial data. The first makes use of
an object hierarchy. It is based on propagating the space occupied by groups of the
data objects up through the hierarchy (e.g., members of the R-tree family [3, 18]). We
do not deal with this method in this paper. The second is based on a decomposition of
the space occupied by the data into disjoint cells which are aggregated into larger cells
(e.g., members of the quadtree family [44, 43, 45]). The decomposition can be either
tree-based or trie-based. The distinction is that the former is applied to the values of
the data (e.g., a binary search tree), while the latter makes use of the digits (termed
a trie [5, 16, 28]) that comprise the domain of the values of the data. Data structures
that make use of the latter in one dimension are also known as digital trees [28].

Our data consists mainly of line segments in two-dimensional space. Our focus is
on using tries to sort the line segments with respect to the space that they occupy. We
use tries because they result in partitioning different data sets at the same positions,
thereby making it very easy and efficient to use merge-join query processing algo-
rithms. Since the space is two-dimensional, the trie is formed by interleaving the bits
corresponding to the binary representation of the x and y coordinates of the underly-
ing space. Two similar, yet still different, trie-based data structures may be created
depending on whether we test one bit at each iteration (a k-d trie [15]) or two bits at
each iteration (a quadtrie [21, 43, 45]). In this paper, we focus on quadtries for collec-
tions of line segments. Unfortunately, the representations that make use of quadtries
have been traditionally referred to as quadtree variants (see, e.g., [26, 44, 43, 45]).
In our discussion, all quadtrees are based on tries and we precede the term quadtree
with an appropriate qualifier whenever there is a potential for confusion. Thus the
quadtrees that we discuss are distinct from those based on multidimensional binary
search trees that are used for points (see, e.g., [13, 14]).

Variants of quadtree structures have been used for many different spatial objects
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including points, regions, lines, rectangles, surfaces, volumes, etc. Algorithms us-
ing them generally have good average execution times while maintaining a relatively
compact representation [44, 43, 45]. To use these data structures in a database appli-
cation, we must be able to predict their size. The most obvious advantage of such a
capability is that it enables us to determine how much space will be required to store
different data sets and to choose between different data structures from an efficiency
standpoint. It may also be of use at query evaluation time to aid the estimation of
the cost of a particular query execution plan (i.e., processing strategy) to be used by
a query optimizer. For example, suppose that we are using a filter-and-refine strat-
egy [6] for processing a window query. In particular, suppose further that we have a
method of estimating the number of data structure blocks that intersect the window
based on the window’s size (see, e.g., [40]). Our results could be used in a reverse
sense to estimate the number of objects (i.e., line segments in our case) that intersect
these blocks. This could serve as a measure of the cost of the refinement step, which
must subsequently determine which of the lines actually intersect the query window.
Continuing the filter-and-refine query processing strategy, suppose that we are using
the histogram method (see, e.g., [29, 31, 34]) for estimating the number of objects
that intersect the query window. We can now plug this information into our results
to estimate the number of data structure blocks that intersect the window. This is a
good measure of the cost of the filter step, i.e., the I/O (Input/Output) cost for the
spatial data structure. An alternative factor in measuring performance when data
is disk-based is to examine how the various data structure blocks are declustered on
various disks (see, e.g., [33]), but this is beyond the scope of this paper and is not
discussed further here.

1.2. Related work. Traditional worst-case analysis is often inappropriate be-
cause the worst case tends to be both very bad and highly improbable. Thus most
approaches to the analysis of hierarchical data structures have been statistical in
nature.

A number of statistical approaches have been tried. The most common uses a
uniform distribution in the underlying space (see, e.g., [2, 11]). An alternative is to use
a nonuniform distribution. Some techniques that have been used include the Gaussian
distribution [36] as well as the clustering of uniformly distributed points [38] or even
predetermined shapes [3]. Another approach uses a fractal distribution [9] that has
the advantage of exhibiting self-similarity, which means that portions of a part of the
data set are statistically similar to the entire data set. The key to this approach is to
compute a fractal dimension for a particular point data set and then use it in a query
optimizer.

The methods described above are for point data sets.1 In this paper, we are inter-
ested in data where every object has nonzero size (e.g., collections of lines, regions, and
so on, instead of being restricted to collections of points). Tamminen [54] considers
the performance of quadtrees and bintrees under the assumption that the image con-
sists of a single random line treated as a region, and he analyzes the number of nodes
in them using geometric probability. Shaffer, Juvvadi, and Heath [52] follow Tammi-
nen’s approach and use a local straight line model to perform an analysis that yields
the relative (rather than absolute) storage requirements of the region quadtree and
bintree data structures. Other works on region data include Dyer [8], Shaffer [51], and

1The fractal model has been applied to points derived from a collection of line segments in the
sense that the points corresponded to intersections of line segments [9]. This was used to predict the
effective occupancy of nodes in an R-tree that stores point data.
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Faloutsos, Jagadish, and Manolopoulos [10], Mathieu, Puech, and Yahia [30], Puech
and Yahia [42], and Vassilakopoulos and Manolopoulos [56], and these investigate the
size of quadtree representations of region data and study some other related questions
using some assumptions on the branching probabilities of nodes in the tree. Nelson
and Samet [35, 36, 37] consider the distributions of node occupancies in hierarchical
geometric data structures that store a variable number of geometric data items per
node, which include points and lines. However, the methods of Nelson and Samet
have much wider applicability. This approach is similar to hashing [28], where each
node acts like a bucket.

Although these approaches sometimes lead to remarkable agreement between the-
ory and simulation (see, e.g., [1, 36]), they have a common drawback. The explicit
model of the image on which the statistical analysis is performed is either exceedingly
simple or is not given at all. When the model is not given, the model must be implied
from other assumptions. In particular, an assumption is made on the splitting prob-
ability in the data structure (see, e.g., [1, 30, 36, 42]), which implies the existence of
some implicit model on the data. However, when we ask what kind of data (real or
contrived) fit this model, the only possible answer is a circular one that says that the
data give rise to these probabilities. Unfortunately, there is no explicit indication of
whether there exists some image model associated with these splitting probabilities.
Thus the connection between the analysis and the performance with real image data is
not clear. In contrast, our approach, as described below, is to use an explicit nontriv-
ial random image model and to then show that data can be generated corresponding
to this model, which also fits the analysis. Note that we are not claiming that the
data we generate correspond exactly to typical images, although we deal with this
issue as well. In this sense our approach is complementary to the work of Flajolet and
Puech [15], who analyzed the partial match query time for hierarchical data struc-
tures, while we analyze their storage requirements. Unlike their data, which consist of
random points in a high-dimensional space whose coordinate values are drawn from
a uniform distribution, our data consist of randomly drawn lines. It is important to
note that a line is a qualitatively different data type than a point, as the action of
every line on the structure is not local.

An alternative nonstatistical approach was applied by Hunter [22] and Stei-
glitz [23] to show that, for a polygon of perimeter l, the size (i.e., the number of
nodes) of the corresponding MX quadtree (a variant of the region quadtree described
in more detail in section 2) is O(l). This classic result, although derived for simple
polygons, has been observed to be sufficiently general to be useful for predicting the
performance of a number of algorithms for different images represented by a region
quadtree [48].

As we pointed out above, in this paper we investigate the use of a random image
model consisting of M randomly drawn lines. Unlike Tamminen’s approach [54], which
considers a single random line, here we treat the much more general and complicated
situation of an arbitrary number of lines. We use geometric probability to analyze
four variants of the quadtree that can be built for data that obey this model by
determining the expected number of nodes in each variant. These variants are the
MX quadtree [23, 43, 45], the PM quadtree [49], the PMR quadtree [35, 36, 37], and
a new variant of the PMR quadtree representation, which we call a Bucket PMR
quadtree (see also [19, 20]).

1.3. Contributions. The analysis that we provide is important for two reasons.
First, it allows for a meaningful, quantitative, and analytic comparison of a number of
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different options for representing linear spatial data, and it provides tools for choosing
between these options in a way which is neither experimental nor domain dependent.
The second reason is even more practical: we found that we could actually predict
the storage requirements of these representation options by specifying an equivalent
random lines data set, with some equivalent number of lines, and use the proposed
analytic expressions for predicting its size.

In particular, our analysis shows that for images of the same complexity, the PMR
quadtree and the Bucket PMR quadtree for sufficiently high values of the splitting
threshold (i.e., ≥ 4) are the most efficient in the sense that they require the least
storage. The PM quadtree follows, and the MX quadtree requires the largest amount
of storage. This qualitative ordering verifies experimental results obtained in the
past [22, 23, 35, 49] and agrees with the extensive experimentation that we have
carried out. This verification, along with its accompanying theoretical justification,
is one of the contributions of our research.

The agreement between the results of our analysis and the data was not surprising
in the case of the MX quadtree because it confirmed previous results (i.e., [22, 23]).
However, in the case of the PMR and Bucket PMR quadtrees for sufficiently high
values of the splitting threshold (i.e., ≥ 4) our analysis breaks new ground because we
are able to derive theoretically and verify experimentally for both random data and
real map data that the number of nodes is asymptotically proportional to the number
of line segments. This is quite significant, as it enables us to predict the number
of nodes required by this representation, and, most importantly, to show that it is
independent of the maximum depth of the tree.

It is important to note that we do not claim that our proposed random image
model yields data instances which are visually similar to what appears in realistic
geometric applications, such as road networks. Nevertheless, we do show that the
analysis can be interpreted in terms of the geometric properties of the image, such as
line length and the number of intersections between lines. With this interpretation,
the predictions, derived for random images, may be applied to real data by measuring
the relevant geometric property and using it to specify equivalent random images.
Testing the predictions on a real set of maps yielded relatively accurate predictions
of the storage required for the maps.

Although our analysis is for a particular data type (i.e., collections of line seg-
ments) and data structures, we believe that it has wider applicability. In particular,
the geometric probability approach could be extended for data types other than line
segments (e.g., points, polygons, surfaces, solids, etc.). Furthermore, the random
image model can be used in a statistical analysis of other trie-based spatial data
structures.

The rest of this paper is organized as follows. Section 2 gives a brief overview of
the quadtree representations of collections of line segments, including the definitions
of the four variants that we analyze. Section 3 presents the random image model
and reviews some necessary results from geometric probability. Section 4 contains a
statistical analysis using the model and the results of its application to each of the
aforementioned quadtree variants. It also contains the results of some experiments
with instances of the random image model. Section 5 describes the application of
the analysis to predict the storage requirements for real data and presents results of
extensive experiments that support its validity. Section 6 contains concluding remarks
and gives some directions for future research.
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Fig. 1. (a) Block decomposition and (b) its tree representation for the region quadtree corre-
sponding to a collection of three regions A, B, and C.

2. Overview of quadtree representations of collections of line segments.
A quadtree is a hierarchical variable resolution data structure based on the recursive
partitioning of the two-dimensional plane into quadrants. It can be viewed as a 4-ary
tree, where each node represents a region in the plane called a block, and the children
of each node represent a partition of that region into four parts. This scheme is useful
for representing geometric data at a variable resolution. The most commonly known
version of the quadtree is the region quadtree [26]. It is used for the representation of
planar regions. In this case, for two-dimensional data, the environment containing the
regions is recursively decomposed into four rectangular congruent blocks until each
block either is completely occupied by a region or is empty (such a decomposition
process is termed regular). For example, Figure 1(a) is the block decomposition for
the region quadtree corresponding to three regions A, B, and C. Notice that, in this
case, all the blocks are square, have sides whose size is a power of 2, and are located
at specific positions.

The traditional, and most natural, access structure for a region quadtree corre-
sponding to a two-dimensional image is a tree with a fanout of 4 (see, e.g., Figure 1(b)).
Each leaf node in the tree corresponds to a different block b and contains the identity
of the region associated with b. Each nonleaf node f corresponds to a block whose
volume is the union of the blocks corresponding to the four children of f . In this case,
the tree is a containment hierarchy and closely parallels the decomposition in that
they are both recursive processes and the blocks corresponding to nodes at different
depths of the tree are similar in shape.

Quadtree variants exist for representing other spatial data types than just planar
regions. For example, they are used to represent collections of points [12, 46], col-
lections of line segments [35, 36, 37, 49], as well as more complicated objects (e.g.,
rectangles [25]). Generalizations of the quadtree to three and higher dimensions (e.g.,
octrees [22, 24, 32] and bintrees [27, 48, 55]) have also been investigated. These
generalizations have many of the same basic properties.

The different variants of the quadtree data structure can be subdivided into two
categories: those based on a regular decomposition of space using predefined positions
for the partition lines (i.e., trie-based), and those in which the positions of the partition
lines are determined explicitly by the data as they are inserted into the data structure
(i.e., tree-based or data-based). In most cases, use of regular decomposition indicates
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Fig. 2. (a) Collection of line segments in a 4 × 4 grid, (b) its MX quadtree, (c) its PM quadtree,
and (d) its Bucket PMR quadtree with a bucket capacity of 2. Only the resulting decomposition of
the underlying space into blocks is shown. The corresponding tree structure that acts as an access
structure to ensure logarithmic access times is not shown.

that the shape of the resulting data structure is independent of the order in which the
data are inserted into the structure when building it. This is not the case for data-
based decompositions. Interestingly, for most applications, regular decomposition
works at least as well as data-based decomposition. Moreover, regular decomposition
is easier to implement and analyze. At times, a distinction between different variants
of the quadtree data structure is also made on the basis of whether or not there is a
predefined maximum depth (denoted by N).

In this paper we only consider quadtree representations of collections of line seg-
ments. We restrict ourselves to quadtrees based on a regular decomposition. In the
rest of this section we review the different quadtree variants that we study. They
differ in the condition that is used to determine when a quadtree block should be
decomposed—this condition is termed a splitting rule.

The simplest quadtree representation is the MX quadtree, which assumes that
the underlying domain of the data is a 2N × 2N grid. The MX quadtree is built by
digitizing the line segments and labeling each unit-sized cell (i.e., pixel) through which
it passes as being of type boundary. The remaining pixels are marked WHITE and are
merged, if possible, into larger and larger quadtree blocks, as done in the region
quadtree. Figure 2(b) is the MX quadtree for the collection of line segment objects
in Figure 2(a). A drawback of the MX quadtree is that it associates a thickness with
a line. Also, it is difficult to detect the presence of a vertex whenever five or more
line segments meet. The above definition of the MX quadtree is given in a bottom-up
manner. We can also define it in a top-down manner. In particular, we start with one
block corresponding to the entire 2N × 2N space and recursively decompose it into
four blocks, halting the decomposition when a block is empty or is of size 1 × 1 (i.e.,
the block corresponds to a pixel).

The PM quadtree is a refinement of the MX quadtree that is motivated by the
observation that the number of blocks in the decomposition can be reduced by ter-
minating the subdivision whenever a line segment passes through a block completely
(i.e., it enters and exits the block rather than starting or terminating in the block).
Nevertheless, even when this observation is used, the resulting structure still has full
decomposition at each vertex or endpoint of a line segment. To avoid this situation,
we further modify the above top-down MX quadtree definition so that decomposition
takes place as long as more than one line segment passes through the block, unless all
of the line segments that pass through the block are incident at the same vertex, which
is also required to be in the same block. In addition, the decomposition is also halted
whenever a 1× 1 block is encountered. The PM quadtree is the structure that results
when these additional halting conditions are imposed on the top-down definition of
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the MX quadtree. The fact that the PM quadtree is defined in a top-down manner
means that each block is maximal. It should be clear that each block at a depth less
than the maximum depth contains at most one vertex. For example, Figure 2(c) is the
PM quadtree corresponding to the collection of line segment objects in Figure 2(a).

The PM quadtree is vertex-based in the sense that the vertices play a role in
determining when the decomposition process stops. In particular, the decomposition
process halts when there is more than one line segment in a block, provided that all
of the line segments are incident at the same vertex in the block. An alternative is to
use an edge-based representation, where a block is split whenever there are more than
q line segments passing through it. Thus the blocks serve as buckets with a capacity
q. This is known as a Bucket PMR quadtree. The drawback of this method is that,
whenever more than q line segments are incident at a vertex v, the block containing
v will be decomposed until reaching the maximum depth N , which corresponds to a
1 × 1 block. For example, Figure 2(d) is the Bucket PMR quadtree corresponding to
the collection of line segment objects in Figure 2(a) when using a bucket capacity of
q = 2 and a maximum depth N = 4.

As pointed out above, the drawback of the Bucket PMR quadtree is that if the
number of line segments incident at a vertex exceeds the bucket capacity, then the
decomposition in the neighborhood of the vertex will not halt unless we reach the
maximum allowable depth N . This problem is resolved by the PMR quadtree, which
is similar to a Bucket PMR quadtree with the difference that, in the PMR quadtree, a
block is decomposed once, and only once, if the insertion causes it to have more than
q line segments. Therefore, in the PMR quadtree, q serves as a splitting threshold,
which is quite different than a bucket capacity, which is its role in the Bucket PMR
quadtree. There is no maximum depth in the PMR quadtree.

The PMR quadtree is constructed by inserting the line segments one by one into
an initially empty structure consisting of one block. Each line segment is inserted
into all the blocks that it intersects or occupies in its entirety. During this process,
the occupancy of each block that is intersected by the line segment is checked to see
if the insertion causes it to exceed the splitting threshold. If the splitting threshold
is exceeded, the block is split once, and only once, into four blocks of equal size.

Figure 3(e) is the PMR quadtree for the collection of line segment objects in
Figure 2(a) with a splitting threshold of q = 2. The nine line segments, labeled a–i,
are inserted in alphabetic order. It should be clear that the shape of the PMR quadtree
for a given collection of line segments is not unique; instead, it depends on the order
in which the line segments are inserted into it. In contrast, the shapes of the MX,
PM, and Bucket PMR quadtrees are unique. Figure 3(a)–(e) shows some of the steps
in the process of building the PMR quadtree of Figure 3(e) with a splitting threshold
of 2. In each part of Figure 3(a)–(e), the line segment that caused the subdivision is
denoted by a thick line, while the gray regions indicate the blocks where a subdivision
has taken place.

The insertion of line segments c, e, g, h, and i causes the subdivisions in parts
(a), (b), (c), (d), and (e), respectively, of Figure 3. The insertion of line segment
i causes three blocks to be subdivided (i.e., the SE block in the SW quadrant, the
SE quadrant, and the SW block in the NE quadrant). The final result is shown in
Figure 3(e). Note the difference from the PM quadtree in Figure 2(c)—that is, the NE
block of the SW quadrant is decomposed in the PM quadtree, while the SE block of
the SW quadrant is not decomposed in the PM quadtree. We also observe that, unlike
the Bucket PMR quadtree in Figure 2(d), we did not have to split to the maximum
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Fig. 3. PMR quadtree with a splitting threshold of 2 for the collection of line segments of
Figure 2(a). (a)–(e) illustrate snapshots of the construction process with the final PMR quadtree
given in (e).

depth in the neighborhood of the vertices, where line segments c, d, i, as well as b, e,
i, meet.

It should be clear that the number of line segments in a PMR quadtree block
can exceed the value of the splitting threshold q. A value of four for q is usually
sufficient to store collections of line segments efficiently, as it implies that junctions
of two, three, and four line segments (which are common in maps of roads and rivers,
etc.) do not cause a split. Of course, there are situations in which more than four line
segments will meet at a vertex. However, we assume that such situations are rare.
Note that, at times, we want to express the dependence of the Bucket PMR quadtree
and the PMR quadtree on q explicitly, in which case we use the term bucket PMRq

quadtree and PMRq quadtree, respectively, to describe the structure.
Note that, in the general case, we may have a collection of line segments that

intersect, while the intersection point is not a vertex. Such a situation can result
when we are representing a nonplanar graph. As we shall see later, this is not an
issue for the line segment arrangements that are generated by our random image
model (described in section 3).

3. Random image models. In the first part of this paper (sections 3 and 4) we
assumed that the quadtree variants that are discussed represent geometric structures,
which are instances of a random process described as follows. Observe that the line
L(ρ, θ) consists of the points (x, y) satisfying the relation

L(ρ, θ) = {(x, y)|x cos θ + y sin θ = ρ}.

The line L(ρ, θ) is perpendicular to the vector (cosθ, sinθ) (see Figure 4(a)). Although
the position of every particular line, L(ρ, θ), naturally depends on the origin and
orientation of the coordinate system, we shall soon see that the probability of every
random line, drawn according to our model, does not. Therefore, the origin and
orientation of the coordinate system relative to the image does not make a difference.
The arbitrarily chosen location of the coordinate system in Figure 4(a) illustrates this
invariance property. For the rectangular region R,

R = {(x, y)| |x|, |y| < 2N−1},
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Fig. 4. The random image model: (a) The process of generating a random line (note that
the coordinate system is arbitrary with respect to the image). (b) A typical instance of the random
image constructed for M = 5 independently drawn lines labeled 1–5.

let T be the parameter set

T = {(ρ, θ)|L(ρ, θ) ∩R �= ∅},

which includes all the parameter pairs (ρ, θ) that represent lines intersecting with R.
Let

p(ρ, θ) =

{ 1
|T | (ρ, θ) ∈ T,

0 otherwise
(1)

be a probability density function, where

|T | =

∫
T

dρdθ.

This distribution, called the uniform density distribution, is the only one which
ensures that the probability of choosing a particular random line is independent of the
coordinate system in which ρ and θ are defined (i.e., it is independent of the trans-
lation or rotation of the coordinate system [50]). Therefore, it is the natural density
function to specify when modeling collections of random lines. As an illustration, see
Figure 4(b), where an instance of the random image containing five lines labeled 1–5
is described.

Every instance of our random image model is a 2N × 2N image with M random
lines that intersect it and which are chosen independently according to the density
function (1). The continuous uniform density distribution implies that three lines
intersect at the same point with probability zero. This follows from the observation
that two intersecting lines define a point, say (x0, y0), which can be regarded as
prespecified for the third line. The parameters of every line which intersects this point
must be in the set {(ρ, θ)|x0cosθ + y0sinθ = ρ}, the measure of which is zero (i.e., a
one-dimensional quantity) with respect to the measure of T (i.e., a two-dimensional
quantity). Therefore, after drawing a finite number of random lines, the probability
that any three of them will intersect (x0, y0) is zero. This property is usually satisfied
for real spatial data such as road maps, as intersections of four or more line segments
are rare (i.e., junctions of four or more roads).
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Each of the line segments clipped from a random infinite line by the boundary
of the image is subdivided further into smaller line segments by its intersection with
other infinite lines so that, eventually, no line segment crosses another line segment
except at the endpoints of the line segments.

Thus the data represented by the various quadtrees (in the first, analytical, part
of the paper) are a collection of random line segments specified as a set of M random
infinite lines. Note that the infinite lines are not of interest by themselves but are
useful for creating the distribution of line segments which we analyze.

We do not claim that our proposed random image model will enable us to generate
data that correlate with what appears in realistic geometric applications, such as road
networks. Finding such a correlation is unlikely, as realistic geometric data do not
consist of lines whose endpoints lie on the image boundary. Nevertheless, the analysis
can be interpreted, as we shall see later, in terms of the geometric properties of the
image, such as line length and the number of intersections between lines. This allows
us to apply its results to real data with similar geometric properties. Most impor-
tant, the analysis provides us a means to justify claims about the relative qualitative
behavior of the different data structures.

Before starting the analysis, we first present three results from geometric proba-
bility which form the basis of our results [50].

Geometric probability theorem 1 (Theorem GP1). Let C1 be a convex
planar set included in the convex planar set C ⊂ R. Let L1 and L be the perimeters
of C1 and C, respectively. Let l be a random line chosen using the uniform density
distribution given by (1). Therefore, the probability that a line l passing through C
also passes through C1 is

p{l ∩ C1 �= ∅|l ∩ C �= ∅} =
L1

L
.

Geometric probability theorem 2 (Theorem GP2). Let C ⊂ R be a convex
planar set with area A and perimeter L. Let l be a random line chosen using the
uniform density distribution given by (1). Suppose that l intersects with C and
creates a chord H with length |H|. Then the expected length of H is

E[ |H| ] =
πA

L
.

Geometric probability theorem 3 (Theorem GP3). Let C ⊂ R be a convex
planar set with area A and perimeter L. Let l1 and l2 be two random lines, inde-
pendently chosen using the uniform density distribution (1). If both lines l1 and l2
intersect with C, then the probability that l1 intersects with l2 inside C is

p{(l1 ∩ l2) ∩ C �= ∅|l1 ∩ C �= ∅, l2 ∩ C �= ∅} =
2πA

L2
.

4. Statistical analysis of quadtree representations of collections of line
segments. An image as defined in section 3 is an instance of a random event. It
follows that its hierarchical representation, using one of the quadtree variants, is also
a random event. Moreover, the existence of a node in the tree, or its being a leaf,
is a random event. Let v be a node of the tree, at depth d, corresponding to some
particular cell. Both the existence of v in the tree and its potential split are random
events corresponding to the particular arrangement of random lines. Let Pd be the
probability that both of these events happen. Recall that the distribution of the
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random lines is independent of the coordinate system translation, thereby implying
that Pd depends only on the depth.

Let ve denote the event that the node v exists. Let vs denote the event that the
splitting condition holds for the block corresponding to node v. Letting Prob(ve, vs)
be the probability of the joint event that both node v at depth d exists (ve) and that
the splitting condition is satisfied for the square region corresponding to node v (vs),
we have that

Pd = Prob(ve, vs) = Prob(vs)Prob(ve|vs).(2)

Prob(vs) is the probability that the splitting condition is satisfied for a particular
square region corresponding to a node v (at depth d), while Prob(ve|vs) is the con-
ditional probability that node v at depth d exists, given that the splitting condition
holds for the square region corresponding to v. Note that both vs and ve depend on
the depth d as well.2 For example, in the MX quadtree, Prob(vs) is the probability
that at least one line passes through this region. The node v exists if every member in
the sequence of its recursive parents splits as well. For the MX quadtree, this always
happens (if vs is true) because there is at least one line passing through all of them:
the line which passes through v and satisfies its splitting condition. Therefore, for
the MX quadtree, Prob(ve|vs) = 1 and Pd = Prob(vs). We shall see later that this
relation is not necessarily satisfied for every tree structure (e.g., the PM quadtree as
discussed in subsection 4.2.1).

Let S be the total number of nodes in the tree. Every nonleaf node at depth d−1
contributes 4 nodes at depth d. The maximal number of nodes at depth d−1 is 4d−1,
implying that the expected size of the tree is

E[S] = 1 +
N∑

d=1

4d · Pd−1.(3)

Note that while the splitting events associated with, say, neighboring nodes, are def-
initely dependent events, this does not effect the calculation of the expected value
[41].

Equation (3), which gives the expected number of nodes in the tree, serves as
the basis for our analysis. In the following subsections we focus on splitting rules
for each of the quadtree variants discussed in section 2. For each rule, we derive the
corresponding splitting probabilities Pd and then use (3) to calculate the expected
size of the data structure.

4.1. MX quadtree. An MX quadtree represents a collection of line segments
on the plane by partitioning the plane into square blocks using the splitting rule that
says a block is split if both the depth of its corresponding node is less than N and if the
block contains at least one line segment. If the block does not contain a line segment,
then it is not subdivided further and its corresponding node is a leaf. Otherwise, it
is subdivided and its corresponding node has four children (see Figure 2(b)).

2This “backward” decomposition was preferred over the “more natural” Prob(ve)Prob(vs|ve)
because it isolates the event vs, which is “local” and depends only on the configuration of the lines
intersecting the block corresponding to v. In contrast, ve is a more complex event, depending on the
existence of all of the ancestors of v.
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4.1.1. Analysis. In order to compute the probabilities Pd, we use the following
argument. A node (denoted v) at depth d corresponds to a 2N−d × 2N−d square
(denoted v as well). Theorem GP1 implies that a particular random line passes
through this region with probability

pd =
4 · 2N−d

4 · 2N =

(
1

2

)d

.

The probability that exactly k out of M lines pass through this region is

pd,k =

(
M

k

)(
1

2

)dk
[
1 −

(
1

2

)d
]M−k

.(4)

The probability that this region corresponds to a nonleaf node is

Pd = Prob(vs)Prob(ve|vs) = Prob(vs) = 1 − pd,0 = 1 −
[
1 −

(
1

2

)d
]M

,(5)

where Prob(vs) is the probability that one or more lines pass through this region,
thereby satisfying the splitting condition. As mentioned above, for the MX quadtree,
Prob(ve|vs) is always 1 because there is at least one line passing through all the regions
corresponding to the recursive parents of this region: the line which passes through v
and satisfies its splitting condition.

Inserting (5) into (3), we get

E[S] = 1 +

N∑
d=1

4d · Pd−1 =

N∑
d=1

4d

⎡
⎣1 −

[
1 −

(
1

2

)d−1
]M

⎤
⎦.(6)

It is difficult to derive closed forms of sums of this nature. To our knowledge, no
relevant solutions exist in the literature. Furthermore, we tried, without success, to
evaluate it using various symbolic equation solvers, and consulted their developers as
well. Therefore, as we are primarily interested in comparing the asymptotic behavior
of the storage requirements of the various data structures, we resort to closed form
upper and lower bounds for E[S]—that is, the expected number of nodes in the tree.
However, for practical use of this estimate, we suggest inserting the known parameters
(i.e., M and N) into the sum (6) and evaluating it numerically. These comments are
also applicable in the analyses of the rest of the data structures (see subsections 4.2.1
and 4.3).3

Our technique is based on decomposing (6) into two sums
∑

1 and
∑

2 corre-
sponding to the number of nodes at depth less than or equal to d0 and all the nodes
at a depth greater than d0, respectively. In essence, our analysis focuses on evaluat-
ing the second sum, while the first sum is bounded by the number of nodes in the
complete tree (when calculating the upper bound) or by zero (when calculating the
lower bound). We find it convenient to formulate our analysis of E[S] in terms of an

3Note that, although the form of the sum (6) intuitively calls for the use of the commonly known
1 + x ≤ ex inequality, it does not help here. The problem is that, in the case at hand, we want to

bound (6) from above, which means that the term
[
1−

(
1
2

)d−1 ]M
should be bound from below, but

this is not possible with this inequality.
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additional parameter β (as well as M and N), which is defined as

β = M

(
1

2

)d0

.(7)

The depth d0 is chosen so that β is less than 1. This enables us to make some
assumptions leading to crucial simplifications (i.e., that certain sums converge as the
index of summation gets infinitely large). The result (i.e., E[S]) is in terms of M ,
N , and β. Once the result has been obtained, the value of d0 is adjusted so that the
bounds on E[S] are as tight as possible under the constraints that d0 is an integer
bounded by N and that β < 1.

Decomposing E[S] into two sums
∑

1 and
∑

2 yields

E[S] = 1 +

d0∑
d=1

4d

⎡
⎣1 −

[
1 −

(
1

2

)d−1
]M

⎤
⎦ +

N∑
d=d0+1

4d

⎡
⎣1 −

[
1 −

(
1

2

)d−1
]M

⎤
⎦(8)

=
∑

1 +
∑

2·

∑
1 = 1 +

d0∑
d=1

4d

⎡
⎣1 −

[
1 −

(
1

2

)d−1
]M

⎤
⎦ ≤

d0∑
d=0

4d · 1 ≈ 4d0

1 − 1
4

≈ 4

3

M2

β2
.(9)

Note that what we have done is decompose E[S] into two parts,
∑

1 and
∑

2, where∑
1 corresponds to a complete tree at a depth less than or equal to d0. Taking the

binomial expansion of
∑

2, we get

∑
2 =

N∑
d=d0+1

4d

[
1 −

M∑
k=0

(
1

2

)kd−k (
M

k

)
(−1)k

]
(10)

=
N∑

d=d0+1

M∑
k=1

22d

(
1

2

)kd−k (
M

k

)
(−1)k−1.

Changing the order of summation and separating the k = 1 (
∑

3), k = 2 (
∑

4), and
k > 2 (

∑
5) cases, we get

∑
2 =

∑
3 +

∑
4 +

∑
5,(11)

∑
3 =

N∑
d=d0+1

22d

(
1

2

)d−1 (
M

1

)
(12)

=
N∑

d=d0+1

2d · 2 ·M = 4M(2N − 2d0) = 4M · 2N − 4M2

β
,

∑
4 = −

N∑
d=d0+1

22d

(
1

2

)2d−2 (
M

2

)
= −

N∑
d=d0+1

4

(
M

2

)
= −2M(M − 1)(N − d0),(13)
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(14)

∑
5 =

N∑
d=d0+1

M∑
k=3

2k
(
M

k

)(
1

2

)(k−2)d

(−1)k−1

≤
M∑
k=3

N∑
d=d0+1

2k
(
M

k

)(
1

2

)(k−2)d

≈
M∑
k=3

2k
(
M

k

)
( 1
2 )d0(k−2)( 1

2 )k−2

1 − ( 1
2 )k−2

=

M∑
k=3

4

(
M

k

)[
β

M

]k−2
1

1 − ( 1
2 )k−2

=

M∑
k=3

4 · M · (M − 1) · (M − 2) · · · (M − k + 1)

k!

βk−2

Mk−2

1

1 − ( 1
2 )k−2

≤ 4

3
M2 β

1 − β
.

Note that all approximations performed while calculating
∑

1 and
∑

5 are also upper
bounds. We continue by summing all contributions, which are partly expected values
and partly upper bounds for expected values, to get

(15)

E[S] =
∑

1 +
∑

3 +
∑

4 +
∑

5

≤ 4 ·M · 2N − 2 ·M(M − 1) ·N + M2

[
− 4

β
+

4

3

1

β2
+

4

3

β

1 − β
+ 2 log2

M

β

]
.

Figure 5 shows the value of the sum estimate given by (6) (second curve from the
top) as well as the upper bound (upper curve) given by (15) as a function of M at a
maximal depth of N = 10. Recall that the upper bounds in the figure are minimal in
the sense that, for each value of M , upper bounds were calculated for every possible
value of d0 (subject to the constraint β < 1) and the minimal (tightest) upper bound
was taken.

4.1.2. Interpretation. Asymptotically, the dominant contribution to the num-
ber of nodes comes from the first term in (15), which may be transformed into a more
familiar form using the GP2. Letting Li be the length of the ith line in our geometric
structure, the expected total length L of all lines is

E[L] =
M∑
i=1

E[Li] = M · π (2N )2

4 · 2N =
π

4
·M · 2N .(16)

Substituting (16) into the first term of (15), we get

E[S] ≈ 16

π
E[L].(17)

In other words, the expected number of nodes in an MX quadtree is proportional to
the total expected length of the lines, which agrees with results derived previously
under different (nonprobabilistic) models [22, 23].

4.1.3. A lower bound. The derivation of E[S] given by (9)–(15) may be used to
set a lower bound on the expected number of nodes. E[S] consists of the contributions
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Fig. 5. The upper bound (UB), the model prediction (Sum Estimate), the empirical estimate
(Empirical), and the lower bound (LB) on the number of nodes necessary to store an MX quadtree.
The empirical estimate almost coincides with the model prediction. These are the two middle curves,
which actually look like one curve. The x and y axes correspond to the number of lines and nodes,
respectively, for a tree of depth N = 10.

of
∑

1,
∑

3,
∑

4, and
∑

5.
∑

3 and
∑

4 are exact values,
∑

1 is positive, thereby having

a lower bound of 0, while
∑

5 can be easily bounded from below by − 4
3M

2 β
1−β . Thus,

E[S] ≥
∑
3

+
∑
4

− 4

3
M2 β

1 − β
.(18)

Furthermore, for large N satisfying 2N ≥ M ·N , we have that
∑

1,
∑

4, and
∑

5

are small with respect to
∑

3. Thus the difference between the upper bound and the
lower bound is small, and each of the bounds is a good approximation of E[S] (see
the lowest curve in Figure 5).

4.2. PM quadtree. Our variant of a PM quadtree represents a collection of line
segments in the plane. It partitions the plane into square blocks using the splitting
rule that says a block is split unless the depth of the corresponding node is N , or
only one line passes through the block, or there is just one vertex in the block and all
the lines that pass through the block meet at that vertex. Thus if the block contains
a single line, or all the lines pass through a common point in the block and there
is no other endpoint in the block, then the block is not subdivided further and its
corresponding node is a leaf. Otherwise, it is subdivided and its corresponding node
has four children (see Figure 2(c)).

4.2.1. Analysis. Recall from the opening remarks in section 4 that the prob-
ability that a region corresponds to a nonleaf node is Pd = Prob(vs)Prob(ve|vs).
Consider first Prob(vs), the probability that the splitting condition is satisfied. Let
α be the probability that two lines intersect inside a square region Q given that each
of these lines passes through Q. For a square 2N−d × 2N−d region (0 ≤ d ≤ N), the
probability that the splitting conditions of a PM quadtree are satisfied for a node v
in depth d may be written as

Prob(vs) = 1 − pd,0 − pd,1 − α · pd,2,(19)
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where pd,k is the probability that exactly k of M lines pass through a square region
of side 2N−d. The random image model implies that three lines intersect with zero
probability at a common point. Therefore, this event may be ignored, leading to the
conclusion that a region is always split if three or more lines pass through it. If only
two lines pass through the region, then the region is split only if the two lines do
not intersect within the region. The intersection probability α may be inferred from
Theorem GP3, which implies that

α =
2πA

L2
=

2π(2N−d)2

(4 · 2N−d)2
=

π

8
.

Hence,

Prob(vs) = 1 −
(
M

0

)[
1 −

(
1

2

)d
]M

(20)

−
(
M

1

)(
1

2

)d
[
1 −

(
1

2

)d
]M−1

− π

8

(
M

2

)(
1

2

)2d
[
1 −

(
1

2

)d
]M−2

.

In contrast to the other quadtree variants considered in this paper, the probability
Prob(ve|vs) is not 1 here. In particular, for a PM quadtree, it is possible that the
splitting condition is satisfied for some node (region) at depth d but not for its parent
node. For the random image model, this arises only in one case, which is when exactly
two lines pass through both the node v and its parent node, with their intersection
point lying inside the region corresponding to the parent node and outside the region
corresponding to the node v. In this case, we have the anomalous situation that,
although the node v does not exist, its corresponding region would be split (if it did
exist).

Note that Pd ≤ Prob(vs). We start our analysis by treating this bound, denoted
by P ′

d, as the splitting probability itself. The difference between the following anal-
ysis and the one carried out for the MX quadtree is that here the sum itself is an
upper bound as well. Later, we also derive a tighter bound, based on an asymptotic
approximation.

To obtain a bounded expressed in a simpler way, let us once again, as in the MX
quadtree, formulate our analysis of E[S] in terms of an additional parameter β (as
well as M and N), which is defined in (7). Here we shall not try to find a lower bound
on the sum, as the sum itself is an upper bound.

The result of inserting (20) into (3) (i.e., a bound on E[S]) is decomposed into
two sums

∑
1 and

∑
2 corresponding to the number of nodes at depth less than or

equal to d0, and all the nodes at a depth greater than d0, respectively. In essence, we
assume that the part of the tree at depth less than or equal to d0 is complete. The
value of d0 is adjusted later so that the bounds on E[S] are as tight as possible under
the constraints that d0 is an integer bounded by N and that β < 1.

Thus, we have

E[S] ≤ 1 +

N∑
1

4dP ′
d−1 = 1 +

d0∑
d=1

4dP ′
d−1 +

N∑
d=d0+1

4dP ′
d−1 =

∑
1

+
∑
2

.(21)
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A bound on
∑

1 is obtained as in the case of the MX quadtree:

∑
1 = 1 +

d0∑
d=1

P ′
d−14

d ≤
d0∑
d=0

4d ≈ 4

3
4d0 =

4

3

M2

β2
.(22)

∑
2 is evaluated by taking its binomial expansion to get a sum of the powers of

(
1
2

)d
(i.e.,

(
1
2

)0
,
(

1
2

)d
,
(

1
2

)2d
, . . .). After some algebraic manipulation, the

(
1
2

)0
and

(
1
2

)d
terms cancel out, and we get

∑
2 =

N∑
d=d0+1

M∑
k=2

Ck

(
1

2

)kd−k

· 4d,(23)

where

Ck = (−1)k−1

[(
M

k

)
−
(
M

1

)
·
(
M − 1

k − 1

)
+

(
M

2

)
·
(
M − 2

k − 2

)
π

8

]
.

Changing the order of summation and separating the k = 2 (
∑

3) and k > 2 (
∑

4)
cases yield ∑

2 =
∑

3 +
∑

4,(24)

∑
3 =

N∑
d=d0+1

C2

(
1

2

)2d−2

4d(25)

= 2
(
1 − π

8

)
M(M − 1)(N − d0) ≈ 1.215M(M − 1)(N − d0),

∑
4 =

M∑
k=3

Ck2
k

N∑
d=d0+1

(
1

2

)d(k−2)

≈
M∑
k=3

Ck2
k ( 1

2 )(k−2)(d0+1)

1 − ( 1
2 )k−2

(26)

= 4

M∑
k=3

Ck

1 − ( 1
2 )k−2

[
β

M

]k−2

.

Now, let us examine the coefficients Ck:

Ck = (−1)k−1

[(
M

k

)
−
(
M

1

)
·
(
M − 1

k − 1

)
+

(
M

2

)
·
(
M − 2

k − 2

)
π

8

]
(27)

= (−1)k−1

[(
M

k

)
−M · k

M
·
(
M

k

)
+

(
M

2

)
k(k − 1)

M(M − 1)
·
(
M

k

)
π

8

]

= (−1)k−1

(
M

k

)[
1 − k +

k(k − 1)

2

π

8

]
.

By checking a few values of k, it can be shown that, for k ≥ 3,

−0.137Mk ≤ Ck ≤ 0.027Mk.(28)

Inserting (28) into (27) and accounting for the worst cases lead to

−1.1M2 β

1 − β
≤

∑
4 ≤ 0.22M2 β

1 − β
.(29)
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Fig. 6. The upper bound (UB), the sum estimate (Sum Estimate), which is also an upper
bound, the empirical estimate (Empirical), and the asymptotic approximation (Asymptotic) on the
number of nodes in a PM quadtree. The x and y axes correspond to the number of lines and nodes,
respectively, for a tree of depth N = 10. Note the “rounded staircase-like” behavior of the upper
bound resulting from our method of analysis, which calculates several bounds (each for different
integer values of the d0 parameter) retaining the tightest one.

Therefore, the contribution of
∑

4 to E[S] is O(M2). Collecting the contributions of∑
1,

∑
3, and

∑
4, we have

E[S] =
∑

1 +
∑

3 +
∑

4

≤ 1.215M(M − 1)N + M2

[
4

3

1

β2
+ 0.22

β

1 − β
− 1.215 log2

M

β

]
.(30)

Once again, d0 is chosen to minimize (30), subject to the conditions that d0 is an
integer less than N and that β (as defined in (7)) is less than 1. Figure 6 shows the
value of the upper bounds given by (30) (the uppermost curve) as a function of M
at a maximal depth of N = 10, as well as the value of the sum (21) from which it is
derived (second curve from the top). Recall that, here, the sum is also an upper bound
itself. In addition, we also recall that the upper bounds in the figure are minimal in
the sense that, for each value of M , upper bounds were calculated for every possible
value of d0 (subject to the constraint β < 1) and the minimal (tightest) upper bound
was taken.

4.2.2. An asymptotic approximation. The bound developed above is valid
but may not be tight. We now propose an asymptotic approximation which is expected
to be more accurate when N is large. Denoting the parent node of v (as well as the
corresponding region) by fv, we have

(31)

Prob(ve|vs) = Prob((fve and fvs)|vs) = Prob(fvs|vs)Prob(fve|(vs and fvs))

= γdProb(fve|(vs and fvs)) ≤ γd,

where γd is the conditional probability Prob(fvs|vs). As discussed above, the only
possibility of this conditional event not happening is when exactly two lines cross both
the region v and its parent region fv, and when these lines are arranged so that they
do not intersect within v but do intersect within fv.

This probability does not have a simple expression, though, as it depends on the
number of lines intersecting the region, which is distributed differently for different
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depths. Note that, as the depth is increased, the probability that more than two lines
intersect the region (i.e.,

∑M
k=3 pd,k (see (4)) gets smaller and eventually becomes

negligible. Quantitatively, the ratio of the probability that three or more lines inter-
sect the region and the probability that exactly two lines intersect the region (i.e.,

(
∑M

k=3 pd,k)/pd,2) tends to zero as d increases. As a result, the probability γd cor-
respondingly decreases and reaches a constant asymptotic value γ∞ ≈ 0.405, which
corresponds to the assumption that exactly two lines intersect the parent region fv.
(The value of γ∞ was estimated by probabilistic simulation.)

Thus, with the asymptotic approximation, and relying on (31), we get a tighter
bound on Pd:

Pd = Prob(vs)Prob(ve|vs) ≤ Prob(vs)γ∞ = P∞
d .(32)

Using the bound P∞
d as P ′

d in the sum (21) we get an asymptotic approximation,
which is expected to better model the splitting process when the depth is high. Note
that this approximation is not an upper bound, as the asymptotic approximation
of the splitting probability holds only for large depths. Naturally, the asymptotic
approximation is good when the majority of the nodes satisfies the above assumption
but is expected to fail otherwise (i.e., when the maximal depth of the tree is small
and the number of lines is large). In our experiments, we show that this is indeed
the case (see Table 1). Note that technically the appoximation is equal to the upper
bound we obtained above (when we used P ′

d = Prob(vs) in the sum) multiplied by a
factor of γ∞. Figure 6 shows the value of the resulting asymptotic approximation as
a function of M at a maximal depth of N = 10 (lowest curve).

4.2.3. Interpretation. The number of possible line pairs in the image is
(
M
2

)
.

Multiplying this number by α yields the expected number of intersections. Approxi-
mating

(
M
2

)
by M2/2, we have that the expected number of vertices (line intersections)

in the whole image is approximately π
16M

2. Considering only the dominant first term
in (30), which is roughly proportional to N ·M2, we see that the results of the analysis
may be interpreted as confirming that both the number of vertices and the maximum
depth of the tree impact the number of nodes necessary. The dependence of E[S] on
the number of vertices (i.e., the factor M2) is intuitively clear, as each vertex will be
stored in a separate node in the tree.

The dependence of E[S] on the maximum depth of the tree (i.e., N) is less obvious.
On the one hand, it could be said that, since our result is only an upper bound, it may
be that the actual PM quadtree node count does not increase with the depth. However,
it actually confirms a known result that, when the vertices of the line segements are
constrained to lie on the grid points of a 2n × 2n grid, the PM quadtree can be as
deep as 4n [47]. In fact, for an image generated by the random line model, there is no
constraint on the positions of the vertices (i.e., the intersection points), and thus the
maximum decomposition depth can be even higher than 4·n, as this depth depends on
the locations of the vertices. Thus we see that this dependence is in agreement with
the fact that, in the worst case, some of the vertices created by a random configuration
of lines could appear in nodes at the maximum level. The linear dependence predicts
that the probability of the occurrence of such “bad” line sets is not zero. This behavior
was confirmed by our experiments, which found that the expected number of nodes in
the PM quadtree increases linearly, but very slowly, with depth (see subsection 4.6).
A related result is that, in most cases, the randomly generated PM quadtree is small,
but in some rare cases it can be very large.
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4.3. Bucket PMRq quadtree. A bucket PMRq quadtree represents a collec-
tion of line segments in the plane. It partitions the plane into square blocks using the
splitting rule that stipulates that a block is split if both the depth of its corresponding
node is less than N and more than q line segments pass through the block. Thus if
the block contains q or less line segments, then it is not subdivided further and its
corresponding node is a leaf. Otherwise, it is subdivided and its corresponding node
has four children (see Figure 2(d)).

Note that if the expected degree of a vertex v is k, then choosing q < k results in
splitting the node containing v to the maximal depth. Observe that for the random
image model, the degree of every vertex is 4. Thus, using a Bucket PMRq quadtree,
with q < 4 is not recommended. Nevertheless, for the sake of completeness, we briefly
comment on these special cases below.

The Bucket PMR0 quadtree is an MX quadtree. For the Bucket PMR1 quadtree,

Pd < Prob(vs) = 1 − pd,0 − pd,1.(33)

Observe that Prob(ve|vs) = 1 for all Bucket PMR quadtrees. For the Bucket PMR2

quadtree,

Pd < Prob(vs) = 1 − pd,0 − pd,1 − (1 − α) · pd,2.(34)

For the Bucket PMR3 quadtree, the splitting probability is the same as in (34) with the
subtraction of a term corresponding to the small probability that three line segments
intersect the region, but not each other. Thus, the splitting probabilities for q = 3
satisfy

Pd < Prob(vs) < 1 − pd,0 − pd,1 − (1 − α) · pd,2(35)

and are assumed to be very close to its bound.
For a Bucket PMR2 quadtree, it is clear that the splitting probability is identical

to that of the PM quadtree, apart from changing a multiplicative constant from α to
1 − α. Therefore, the expected number of nodes is given by an expression similar to
(30). The same considerations hold for the Bucket PMR3 quadtree.

While it is less obvious, the Bucket PMR1 quadtree behaves very similarly to the
PM quadtree as well. This is apparent by observing that the term

∑
3 (25), which

dominates the number of nodes in the PM quadtree, grows by a factor of 1/(1− π/8)
if the split probability (33) is used.

The situation, however, changes dramatically when considering bucket PMRq

quadtrees with values of q equal to 4 and higher. For q = 4, the splitting probability
satisfies

Pd < Prob(vs) = 1 − pd,0 − pd,1 − pd,2.(36)

The probability Pd is smaller than the right side of the above inequality because the
probabilities of some additional events that imply the absence of splitting are not
included. For example, if three or four lines intersect the region, but not each other,
then the region is not split. The inclusion of these contributions is complicated and
is not needed for computing an upper bound. Using the upper bound P ′

d = Prob(vs)
in (36) as the probability Pd, and the same techniques as in subsection 4.2, we define
β and d0 as in (7) and decompose the sum corresponding to E[S] into two sums,

∑
1
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from (22) and
∑

2 from (23). Here, however,

Ck = (−1)k−1

[(
M

k

)
−
(
M

1

)
·
(
M − 1

k − 1

)
+

(
M

2

)
·
(
M − 2

k − 2

)]
(37)

= (−1)k−1

[(
M

k

)
−
(
M

1

)
· k

M
·
(
M

k

)
+

(
M

2

)
· k(k − 1)

M(M − 1)
·
(
M

k

)]

= (−1)k−1

(
M

k

)[
(k − 1)(k − 2)

2

]
,

implying that C2 = 0 and that

−1

8
Mk ≤ Ck ≤ 1

6
Mk.(38)

The bounds (38) are derived by evaluating Ck for several values of k and by observing
that |Ck| decreases with k. The fact that C2 = 0 is important, as it means that

∑
3

is 0, and thus once we bound the finite geometric series in 1
2 by the infinite geometric

series, the expected number of nodes will no longer depend on N . Now,

∑
4 =

M∑
k=3

Ck2
k

N∑
d=d0+1

(
1

2

)d(k−2)

≈
M∑
k=3

Ck2
k ( 1

2 )(k−2)(d0+1)

1 − ( 1
2 )k−2

(39)

= 4

M∑
k=3

Ck

1 − ( 1
2 )k−2

[
β

M

]k−2

≤ 4

3
M2 β

1 − β
.(40)

This derivation is based on bounding the finite geometric progression with the cor-
responding infinite progression, expressing d0 in terms of β and M , and performing
some additional arithmetic manipulations. Therefore,

E[S] ≤ 4

3
M2

[
1

β2
+

β

1 − β

]
.(41)

Figure 7 shows the value of the upper bound given by (41) (uppermost curve)
as a function of M at a maximal depth of N = 10 as well as the value given by
the corresponding sum (middle curve). Again, we recall that the upper bounds in
the figure are minimal in the sense that, for each value of M , upper bounds were
calculated for every possible value of d0 (subject to the constraint β < 1) and the
minimal (tightest) upper bound was chosen. To get a clearer interpretation of the
bound, select a specific value for β, say, 0.75 (which corresponds to sets of 6, 12, 24, . . .
lines and to d0 values of 3, 4, 5, . . ., respectively). Then, we get

E[S] ≤ 6.37M2 (q = 4).(42)

The bound (42) means that for a bucket PMRq quadtree (with q = 4) the ex-
pected number of nodes is proportional to the expected number of intersection points

(approximately πM2

16 as derived in subsection 4.2.2), henceforth referred to as vertices,
and does not depend on the maximal depth N . Therefore, if the maximal depth is
large enough, the subdivision stops before reaching the maximal depth almost every-
where. Alternatively, the O(M2) intersection points result in O(M2) line segments.
Thus, an equally powerful characterization of this result is that the number of nodes
is proportional to the number of line segments and does not depend on the maximal
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Fig. 7. The upper bound (UB), the sum estimate (Sum Estimate), and the empirical estimate
(Empirical) on the number of nodes necessary to store a PMR4 quadtree. The x and y axes corre-
spond to the number of lines and nodes, respectively, for a tree of depth N = 10. Note the “rounded
staircase-like” behavior of the upper bound resulting from our method of analysis, which calculates
several bounds (each for different integer values of the d0 parameter) retaining the tightest one.

depth of the tree. Higher values of q require a more complicated analysis, as the num-
ber of line segments created by the intersection of more than two lines is a random
variable of more complicated statistics. In particular, we have more possibilities to
consider than just the two events corresponding to the intersection or nonintersection
of two lines. It is clear, however, that the splitting probability decreases as q increases,
and therefore, for q ≥ 4 the bound (41) still holds. Note that it is not possible to
reduce this bound by much (even for higher values of q) since the bound on the first

term,
∑

1, remains 4
3
M2

β2 < 4
3M

2.

Regions that contain a vertex (resulting from the intersection of lines) are split
if the number of line segments that are incident at this vertex is higher than q. This
explains the significant change in the quadtree size when q ≥ 4. For our random image
model, all vertices have four line segments incident at them, and therefore the regions
in a Bucket PMR2 quadtree must split until the maximal depth is achieved. On the
other hand, in the Bucket PMR4 quadtree (and for values of q ≥ 4), regions that
contain a single vertex are not split, which leads to a tree whose size is independent
of the maximal depth N .

4.4. PMRq quadtree. A PMRq quadtree represents a collection of line seg-
ments in the plane. It depends on a parameter q and is created as a dynamic result of
a sequence of insertion of line segments using the splitting rule that says a block b is
split once, and only once, if b is intersected by the new line segment and if b already
contains q or more line segments. Thus the block is subdivided at most once when a
new line segment, which intersects it, enters the structure. Clearly, this may not be
enough to ensure that the number of line segments stored in each leaf node is q or
less.

Note that since the PMRq quadtree depends on the order in which the line seg-
ments are inserted into it, we must specify some order. We assume that the M infinite
lines are generated in one step, followed by the insertion of the O(M2) line segments
in an arbitrary order. For the case that q ≥ 4, we may use the upper bound (41)
that we obtained on the number of nodes in a bucket PMRq quadtree to also bound
the number of nodes in a PMRq quadtree. First, note that the node set associated
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with the Bucket PMRq quadtree is a superset of the node set associated with the
PMRq quadtree, provided that the maximal depth of the tree is high enough, since
the number of times a node in the Bucket PMRq quadtree is split upon insertion is
at least as large as the number of times it is split in the PMRq quadtree. Second,
observe that the maximal depth of the PMRq quadtree for i line segments is i− q, as
the first split happens when the q+1st line segment is inserted. Therefore, the PMRq

quadtree representation of the O(M2) line segments created by the M infinite random
lines is of a maximal finite depth O(M2)− q. Thus, we can construct a bucket PMRq

quadtree with a maximal depth N = M2 so that, regardless of the order in which
the O(M2) line segments are inserted into the PMRq quadtree t, the nodes in t will
always be a subset of the nodes in the bucket PMRq quadtree v for the O(M2) line
segments. Recall that the bound on the number of nodes in a bucket PMRq quadtree
that we obtained was independent of the depth N of the bucket PMRq quadtree as we
let N go to infinity when we computed

∑
4 in (40). Thus the bound that we obtained

in (41) is also good for bucket PMRq quadtrees of any depth. Therefore, it is also
applicable to PMRq quadtrees subject to q ≥ 4.

Unfortunately, we cannot get a reasonable bound using this method for q < 4.
For q = 2, for example, recall that the number of nodes in the Bucket PMR2 quadtree
is similar to this number in the PM quadtree, which is given by (30). Therefore, the
upper bound on the number of nodes in the Bucket PMR2 quadtree is linear in the
maximum depth. The guarantee that the Bucket PMR2 quadtree is a superset of the
PMR2 quadtree requires setting the maximal depth of the Bucket PMR2 quadtree
higher than the maximal of the PMR2 quadtree. The latter, however, may be as
high as O(M2), where M is the number of infinite random lines, thus giving an
unrealistically high upper bound. Therefore, obtaining an upper bound on the number
of nodes in a PMR2 quadtree is an issue left for future research, although, as mentioned
before, the case of q ≥ 4 is more relevant from a practical standpoint, as we do not
want the common situation of a road junction (i.e., when four line segments meet at
a point) to cause an arbitrarily large amount of splitting. The same considerations
apply for q = 1 and q = 3.

4.5. A general discussion of the bounds. The bounds developed here lead
to the following asymptotic results on the expected number of nodes as a function of
the number of random lines M and the level of permitted subdivision N :

MX quadtree E [S ] = O(M · 2N ),(43)

PM quadtree E [S ] = O(M2 ·N),

PMRq quadtree E [S ] = O(M2) (q ≥ 4),

bucket PMRq quadtree E [S ] = O(M2 ·N) (q = 2),

bucket PMRq quadtree E [S ] = O(M2) (q ≥ 4).

These results were obtained by summing the expected number of nodes at each level
of the hierarchical structures. The differences are due to the different rates at which
the splitting probabilities decrease as the depth increases. For example, for the MX
quadtree, the probability that a node splits decreases with the depth, but does not
decrease fast enough, resulting in a tree of exponential size. On the other hand,
for the PM quadtree, the splitting probability decreases at a fast enough rate to
offset the exponential growth of the tree, thereby resulting in a tree whose size is
proportional to its depth. The same holds for the Bucket PMR2 quadtree. For q ≥ 4,
for both the PMRq quadtree and the bucket PMRq quadtree, the splitting probability
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decreases at an even faster rate, thereby implying that the expected number of nodes
at each level decreases exponentially with the depth and that the sum converges (i.e.,
is independent of the depth of the tree).

The main conclusions that can be drawn from these results are as follows. For
the MX quadtree, the number of nodes is proportional to the total length of the
line segments. This conclusion confirms a similar result obtained by Hunter [22]
and Hunter and Steiglitz [23]. For both the PM and Bucket PMR2 quadtrees, the
number of nodes can be interpreted as being proportional to the product of the number
of intersections among the lines (i.e., the original lines in the random image model
or, alternatively, the vertices of the resulting line segments) and the maximal depth
of the tree. For both the PMRq quadtree and the Bucket PMRq quadtree with
node capacities q ≥ 4, the number of nodes is proportional to the number of line
segments (recall that there are O(M2) intersection points for the M lines, resulting in
O(M2) line segments). It also appears that, for the PMRq (q ≥ 4) quadtree, almost
everywhere, the subdivision stops before the maximal depth, provided, of course, that
the density of the lines (i.e., the M random lines) does not make the tree almost full.

To get the actual values of the bounds (in contrast to the orders of magnitude
summarized above) we use the exact upper bounds as given in (15), (30), and (41),
which depend on a parameter β. It is worth re-emphasizing that the values d0 and β
are not a part of the random image model. They are just parameters used to simplify
the expression of the bounds. In order to apply these bounds, it is required to choose a
value of β which minimizes them while satisfying relation (7) (with d0 being an integer
bounded by N). Fixing the value of β at some constant (e.g., 0.75) gives a bound,
which may not be the tightest but is still useful for understanding the behavior of
the size of the data structure. From a strict theoretical standpoint, such an arbitrary
choice of a value for β is not justified because it usually implies a noninteger value
for d0. Note also that the upper bounds contain negative terms which reduce the
bounds and make them tighter. These negative terms compensate for nodes which
are counted twice in other (positive) terms. For example, nodes in the PM quadtree

at a depth less than d0 are accounted for both by the
∑

1 = 4
3
M2

β2 term and also by

the M2 · N term. The negative term −M2 log2
M
β ≈ −M2d0 compensates for this

situation. Note also that these bounds hold for all values of M and N . However, they
become trivial when M ≥ 2N .

The bounds in this paper were computed under the assumption of a particular
image model. We conjecture that the results apply also to more general images. In
section 5 we examine several methods for inferring the size of quadtrees that represent
real maps and test them experimentally. In essence, we characterize the map by some
property, which may be the total length of its constituent line segments, the number
of vertices, etc., and use this property to specify a class of random images which share
the same property (in an expected value sense). Next, we conjecture that the number
of quadtree nodes required to represent the real map is equal to the expected number
of nodes required to represent a random map from that class.

4.6. Some experimental results for instances of the random model. We
conducted several experiments with synthetic and real data. In this section we de-
scribe the tests that were made with synthetic data. They were aimed at determining
how close the upper and lower bounds on the expected storage costs come to the
actual storage costs when using random data. Section 5 describes the results of tests
with real data.

In these experiments, we built the MX, PM, and Bucket PMR4 quadtrees of
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Table 1

Comparison of the result of expression (3) in plain form (MODEL) and asymptotic form
(MODEL∞), upper bounds (UB), lower bounds (LB), and the actual (experimental) number of nodes
(ER) for M random lines and a maximal depth N in an MX, PM, and Bucket PMR4 quadtrees.

M N
MX PM

MODEL UB LB ER MODEL UB MODEL∞ ER

25 10 94.8K 97.5K 90.7K 94.9K 3.88K 5.35K 1.57K 2.58K
50 10 179K 189K 162K 181K 12.8K 19K 5.18K 9.43K
75 10 255K 269K 225K 256K 25.1K 43.2K 10.2K 19.3K

100 10 325K 365K 259K 325K 39.9K 64.9K 16.2K 32.2K
25 14 1.63M 1.63M 1.62M 1.62M 6.78K 8.27K 2.74K 2.94K
50 14 3.23M 3.24M 3.21M 3.24M 24.6K 30.9K 9.95K 11.7K
75 14 4.82M 4.83M 4.79M 4.80M 51.6K 70.2K 20.9K 25.5K

100 14 6.39M 6.43M 6.32M 6.37M 87K 113K 35.2K 45.2K

M N
Bucket PMR4

MODEL UB ER

25 10 0.846K 4.34K 0.669K
50 10 7.5K 32.5K 6.01K
75 10 3.38K 17.4K 2.73K

100 10 13.1K 69.5K 10.6K
25 14 0.863K 4.34K 0.681K
50 14 3.52K 17.4K 2.83K
75 14 7.97K 32.5K 6.35K

100 14 14.2K 69.5K 11.4K

several depths N , using random synthetic data created by the random image model
described in section 3. For each case, several instances of each random image were
created and the average quadtree size was calculated. The results are summarized in
Table 1 (see also Figure 5). They usually agree with the analytical predictions, and,
in particular, the nonasymptotic bounds for all of the quadtree variants always hold.

We also evaluated the expression (3) for the values of the number of lines M
and the maximum depth N of the quadtrees. We found that while this sum closely
approximates the actual expected number of nodes for the MX quadtree, it only
bounds the number of nodes for the PM and the Bucket PMR4 quadtrees. This is
expected because, for these trees, the P ′

d expressions, which we used, are bounds of
the probabilities and not the probabilities themselves. The PM quadtree asymptotic
approximation, which corrects every bound by the γ∞ factor (see subsection 4.2.2),
yields a more accurate estimate for trees with a high depth and a low number of lines
(as expected). For the Bucket PMR4 quadtree, the sum is a more accurate estimate
(as it errs only by about 25%).

The upper bounds obtained for the MX quadtree were consistently very close to
the observed node counts. In contrast, the upper bounds for the PM and Bucket
PMR4 quadtrees consistently exceed the observed node counts by factors as high as 3
and 7, respectively. This difference can be attributed to the simplifications made in the
bound derivation process. As mentioned above, we did not attach much significance
to obtaining tighter bounds, as they are not used for predictions but, instead, only for
performing a qualitative comparison between the different quadtree representations.

We also conducted some experiments to test the performance of the PM quadtree
under “asymptotic” conditions—that is, when N is relatively large and M is not
too high. These experiments were undertaken to determine whether or not the PM
quadtree grows linearly with the maximal depth N (like the upper bound that we
found). The results were still inconclusive; when examining the number of nodes,
we found that the average number (over 1000 random trials) increases slowly but
steadily with maximal depth, but the high variance still does not allow us to conduct
a decisive statistical test. We also examined histograms of the actual maximal depth



48 MICHAEL LINDENBAUM, HANAN SAMET, GISLI R. HJALTASON

Table 2

Description of the TIGER files maps (see Figure 8) used in the experiments as well as the
corresponding actual storage requirements for the MX, PM, and Bucket PMR4 quadtrees.

Map Name Depth Vertices NSV NormL Segments
Number of nodes

MX PM PMR4

Falls Church 10 448 317 16.77 638 76869 4105 1317
Falls Church 12 448 317 16.77 638 336873 4477 1349
Falls Church 14 448 317 16.77 638 1387557 4633 1381
Falls Church 16 448 317 16.77 638 5600821 4681 1413
Alexandria 10 4074 2123 49.89 5380 191469 25249 9709
Alexandria 12 4074 2123 49.89 5380 915025 28929 10105
Alexandria 14 4074 2123 49.89 5380 3873949 30413 10429
Alexandria 16 4074 2123 49.89 5380 15774517 31061 10753
Arlington 10 6657 3978 67.91 9205 242373 43913 17637
Arlington 12 6657 3978 67.91 9205 1234449 54753 18677
Arlington 14 6657 3978 67.91 9205 5339437 58949 19481
Arlington 16 6657 3978 67.91 9205 21891973 61277 20281
Howard 10 15009 5283 57.58 17419 191861 63361 29321
Howard 12 15009 5283 57.58 17419 1031317 95945 32921
Howard 14 15009 5283 57.58 17419 4563069 111169 33937
Howard 16 15009 5283 57.58 17419 18866341 118305 34713
DC 10 12818 8805 107.99 19183 332589 73477 35377
DC 12 12818 8805 107.99 19183 1805965 92153 37813
DC 14 12818 8805 107.99 19183 7971497 99093 39685
DC 16 12818 8805 107.99 19183 32905753 103297 41533
Calvert 10 29174 4690 60.39 31143 213965 88769 44057
Calvert 12 29174 4690 60.39 31143 1094453 125053 48129
Calvert 14 29174 4690 60.39 31143 4734589 133141 48493
Calvert 16 29174 4690 60.39 31143 19402105 135241 48665
Prince George’s 10 50161 18055 117.55 59551 315289 157977 88485
Prince George’s 12 50161 18055 117.55 59551 1937553 277209 104993
Prince George’s 14 50161 18055 117.55 59551 8993017 318889 107889
Prince George’s 16 50161 18055 117.55 59551 37751493 334265 109825
Montgomery 10 79822 19793 118.74 90022 299601 186265 115693
Montgomery 12 79822 19793 118.74 90022 1927197 365701 145389
Montgomery 14 79822 19793 118.74 90022 9068057 424869 149613
Montgomery 16 79822 19793 118.74 90022 38212101 449905 151913

as a function of the allowed maximal depth. Here we found that even for depths
as large as 30 we still had trials (and corresponding random collections of 25 lines),
where the PM quadtree had nodes at this maximal depth. In contrast, this never
happened for the PMR quadtree.

5. Predicting storage requirements for real data. In this section we show
that the expected storage predictions, derived for the random image model, are also
useful when real data is considered.

We conducted our tests using real data corresponding to U.S. city and county road
maps that are part of the TIGER files used by the U.S. Census Bureau (see Figure 8).
We used maps ranging from a small map having only 585 road segments (Falls Church,
Virginia) to the largest map having 39,719 segments (Montgomery County, Maryland).
The actual data for the maps, such as the depth (N), number of vertices, segments,
nonshape vertices (abbreviated NSV and described below), the normalized length
(abbreviated NormL and equal to the total length of the line segments divided by
2N ), and the number of nodes in the MX, PM, and Bucket PMR4 quadtrees, are
given in Table 2.

Our approach to applying the expected node count predictions to a real map r
depends on finding, for each map r, a class c of a random line image which shares
some property with r. The expected number of nodes required to represent a random
image from class c is taken to be the estimate for the number of nodes required to
represent the map r.
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a)

c)

e)

g)

b)

d)

f)

h)

Fig. 8. Eight maps used to test the estimates on the number of nodes in the representing
quadtrees.
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In most cases, the equivalent random image to a given map r is specified, as
in section 3, by the effective number of lines M̂ , which is inferred, in a number of
alternative ways (termed estimators and described below), from r. Another degree of
freedom in the specification of the equivalent random image is gained if we account
for sparse or empty image parts. Therefore, the equivalent random image is specified
in two stages. First, a random image is specified by M̂ . Second, only a fraction of this
image is retained, while the rest is considered to be empty. A normalization factor
is inferred from the image r and specifies the fraction that is retained. Thus, we
assume that the number of nodes is directly proportional to the portion of the area
that is nonempty, and we use this normalization factor to obtain the number of nodes
in the equivalent class. For most of the estimators, no normalization is done and
the images of the equivalent class are just random images resulting from the random
image model defined in section 3. The parameters specifying the class of random
images are estimated from other parameter values of the real map r such as the total
length Lmap, the total number of vertices Vmap, and the total number of segments
Smap.

The first estimator that we consider is termed an L-based estimator. This esti-
mator is based on measuring the total length Lmap of the line segments. Recall that,
for the random images created by the random image model, the expected total line
length E[L] is π/4 · M · 2N . This is the result of (16), which follows directly from
Theorem GP2. Therefore, the number of lines in every one of the random images
which share the “expected line length” property with the given map is estimated by
M̂ = (Lmap/2

N ) · (4/π). For this estimator, there is no area normalization (that is,
the equivalent random image is assumed not to contain empty regions). For example,
the total length of the line segments in the smallest map (i.e., Falls Church, Virginia
shown in Figure 8(a)) that we used is 16.77 · 2N , which yields M̂ ≈ 21 (the length
is normalized relative to the side of the map). Note that this has the effect of con-
verting the line segments of the test image to a different number of infinite lines, the
intersection of which, with the space in which they are embedded, has the same total
length (in an expected value sense).

The second estimator that we consider is termed a V-based estimator. It uses
the number of vertices Vmap in the map to estimate the effective number of lines M̂
by treating all vertices as intersection points between random lines. Recalling that
the expected number of intersection points between the lines of the random image
model is E[V ] = πM2/16, we have M̂ =

√
16Vmap/π. Here, again as in the case of

the L-based estimator, no area normalization is performed. Note, however, that most
vertices (termed shape points [7]) in a typical map image are the results of a piecewise
polygonal approximation of a curve, thereby implying that only two line segments
meet at them. This is in contrast to the intersection points in a random image, which
are true intersections (i.e., they correspond to the intersections of pairs of random
lines). A simple heuristic, which we use here, deletes these degree-2 vertices from
the total vertex count and yields the NSV estimator. Clearly, there are many cases
for which this heuristic is nonapplicable. For example, we could not apply it to a
non–self-intersecting curve (e.g., a spiral), as vertex deletion would predict that the
representation requires just a single node (which is clearly erroneous).

The third estimator that we consider is termed an S-based estimator. Like the L-
based and V-based estimators, it is based on replacing the given map with a random
line image of the same size, and no area normalization is performed. Again, we
calculate an effective number of random lines M̂ , but this time it is based on the
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number of line segments. We assume that each vertex corresponds to the intersection
of two random lines, and hence results in four line segments (also termed edges or
segments). Therefore, each vertex has degree 4. Each line segment is incident at two
vertices. This is approximately true, as only a small fraction of the line segments
(i.e., 2M) are incident at just one vertex, as the other endpoint of the line is on the
boundary of the image. Therefore, set the number of incidences (i.e., the sum of the
degrees of the vertices), which is four times the expected number of vertices (i.e.,
4 · πM2/16), to two times the number of edges (i.e., 2 · Smap) and solve for M̂ , which

is equal to
√

8Smap/π.
The fourth estimator that we consider is termed a d-based estimator. This esti-

mator is based on replacing the given map with a (usually smaller) random line image
having the same number of vertices and average line segment length (termed density
here). The expected segment length in the random line image is crudely approximated
as the ratio between the expected length of the part of a random line included in the
image and the expected number of vertices on the line. Using Theorem GP2 from
geometric probability, we know that the expected length of the part of a random line
included in the image is π · 2N/4, while the expected number of vertices in the map is
πM2/16. Since each vertex corresponds to the intersection of two lines and hence lies
on two lines, the expected number of vertices per line is (πM2/16)/(2M) = πM/8.
Therefore, the expected segment length is (π · 2N/4)/(πM/8) = 2 · 2N/M . Equat-
ing this expected segment length to the average segment length of the given map,
calculated simply as the ratio between the total length Lmap and the number of seg-

ments Smap (i.e., Lmap/Smap), and solving for M yield an estimate M̂ on the effective
number of lines, which is equal to 2 · Smap · 2N/Lmap.

Unlike instances of the random image model, real maps tend to be highly nonuni-
form, and, in particular, to have a large proportion of short segments and large empty
“white” regions. This implies that the value of the effective number of lines M̂ calcu-
lated for the d-based estimator above leads to node number estimates which are much
higher than the actual ones. Therefore, we have chosen to compensate for this devi-
ation by imposing the additional natural constraint that the total number of NSVs
in the actual map is equal to the expected number of vertices in the random line
images. This constraint, which was also used to obtain the effective number of lines
for the V-based estimator, is now used as an area normalization factor to specify the
nonuniform class of random images. In particular, every one of these images is equal
to the random lines image in one region and is empty in the rest of it. The area of
the “busy” part is specified to be

NSVmap

(π·M̂2/16)
and is usually smaller than 1. Note that

the expected density remains the same. Since the random image model defined in
section 3 is uniform, we can assume that the expected number of nodes representing
every region is proportional to its area, and thus the node count is reduced by the
aforementioned factor.

In order to estimate the number of nodes in the quadtrees representing the actual
maps, we round the different values of the estimate M̂ and insert this estimate into
the basic sum (3) for the expected number of nodes together with the appropriate
node splitting probability (which depends only on the quadtree type). These results
are tabulated in Table 3. Notice that we do not tabulate the S-based estimator, as it
is very similar to the V-based estimator, and the data bears this out. In particular,
the S-based estimator relies on the number of line segments. This number is related
to the number of vertices, which is the basis of the V-based estimator. Upper bounds,
which have a more compact form and do not require the evaluation of a sum, may be
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Table 3

Predicted storage requirements for the MX, PM, and bucket PMR4 quadtrees using the three
estimators. The numbers given in the table are the ratios between the predicted requirements using
the estimator and the actual ones given in Table 2.

Map Name Depth
L-estimator V-estimator d-estimator

MX PM PMR4 MX PM PMR4 MX PM PMR4

Falls Church 10 1.05 0.50 0.45 1.90 1.57 1.65 0.94 1.31 1.63
Falls Church 12 1.00 0.61 0.45 1.88 1.98 1.65 0.97 1.75 1.67
Falls Church 14 0.99 0.73 0.44 1.87 2.44 1.63 0.98 2.23 1.65
Falls Church 16 0.98 0.86 0.43 1.87 2.94 1.59 0.99 2.74 1.62
Alexandria 10 1.16 0.57 0.57 1.75 1.28 1.45 0.71 0.95 1.32
Alexandria 12 1.09 0.72 0.57 1.72 1.70 1.49 0.78 1.40 1.47
Alexandria 14 1.06 0.89 0.56 1.71 2.17 1.47 0.81 1.89 1.48
Alexandria 16 1.06 1.07 0.54 1.71 2.66 1.44 0.82 2.39 1.44
Arlington 10 1.18 0.54 0.55 1.77 1.22 1.44 0.78 0.91 1.30
Arlington 12 1.07 0.64 0.55 1.70 1.55 1.50 0.83 1.29 1.47
Arlington 14 1.03 0.79 0.54 1.69 1.97 1.47 0.87 1.73 1.47
Arlington 16 1.02 0.95 0.52 1.68 2.40 1.42 0.88 2.18 1.43
Howard 10 1.30 0.28 0.24 2.50 1.06 1.14 0.40 0.50 0.78
Howard 12 1.09 0.27 0.23 2.32 1.13 1.13 0.51 0.73 1.03
Howard 14 1.03 0.31 0.22 2.27 1.35 1.13 0.57 1.00 1.10
Howard 16 1.01 0.36 0.22 2.25 1.63 1.11 0.60 1.30 1.11
DC 10 1.26 0.69 0.67 1.74 1.37 1.51 0.86 1.03 1.33
DC 12 1.12 0.86 0.69 1.67 1.83 1.63 0.93 1.55 1.57
DC 14 1.09 1.10 0.67 1.66 2.41 1.61 0.97 2.14 1.59
DC 16 1.08 1.33 0.65 1.66 2.99 1.55 0.98 2.73 1.54
Calvert 10 1.22 0.22 0.18 2.15 0.70 0.68 0.13 0.19 0.32
Calvert 12 1.08 0.23 0.17 2.08 0.79 0.69 0.22 0.39 0.57
Calvert 14 1.04 0.29 0.17 2.07 1.02 0.70 0.27 0.64 0.67
Calvert 16 1.03 0.35 0.17 2.07 1.28 0.71 0.30 0.90 0.70
Prince George’s 10 1.42 0.37 0.32 2.32 1.08 1.14 0.35 0.42 0.63
Prince George’s 12 1.14 0.34 0.30 2.12 1.11 1.18 0.48 0.68 1.01
Prince George’s 14 1.06 0.40 0.30 2.07 1.41 1.20 0.56 1.03 1.16
Prince George’s 16 1.03 0.49 0.29 2.06 1.78 1.20 0.60 1.41 1.19
Montgomery 10 1.50 0.32 0.25 2.51 0.98 0.94 0.20 0.24 0.35
Montgomery 12 1.15 0.26 0.22 2.22 0.91 0.93 0.30 0.45 0.71
Montgomery 14 1.05 0.30 0.22 2.15 1.15 0.95 0.38 0.74 0.89
Montgomery 16 1.02 0.37 0.21 2.13 1.43 0.95 0.42 1.05 0.94

obtained by inserting the rounded estimate M̂ directly into the upper bounds (15),
(30), and (41), although we do not tabulate them here.

The particular estimators described have a number of inherent limitations. For
example, suppose that the scale of the line segments (roads) of the map is lowered by
a factor of 2 so that all the roads are totally embedded in the NW quadrant of the
original map image, while the rest of the scaled map image is empty. In this case, if
the depth is high enough, it is likely that the number of leaf nodes in PM and Bucket
PMR4 quadtrees will stay the same, while that in the MX quadtree will decrease
significantly. However, the total length of the lines in the quadtree of the scaled-
down map will be off by a factor of 2, thereby implying that the L-based estimator is
likely to be inaccurate for the PM and bucket PMR4 quadtrees. This is most relevant
for maps containing many line segments in a small area and appears to dampen the
suitability of the L-based estimator for arbitrary images, although it does seem to
work for images that span most of the space in which they are embedded.

From our experiments, the L-based estimator seems to perform best for the MX
quadtrees, while the V-based estimator seems to work best for the PM and PMR4

quadtrees. We constructed the d-based estimator to try to improve further on the
estimates for the PM and PMR4 quadtrees but found that it does not improve on
the V-based estimator, and sometimes even does worse. The good performance of the
L-based estimator for the MX quadtree was not surprising, as it confirms the original
result of the analysis of Hunter [22] and Hunter and Steiglitz [23], who found a propor-
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tionality to the perimeter of the image. The correlation between the estimated and
actual values that we observed is noteworthy, considering that the number of nodes in
the maps ranged between 77,000 and 38 million (i.e., a factor of 500). Nevertheless,
we believe that a more detailed examination of the differences between the actual
and predicted storage requirements, as well as other properties, of hierarchical spatial
data structures is an extremely interesting open problem.

We were also interested in testing the validity of the asymptotic results given in
(43) on the expected number of nodes as a function of the number of line segments
in real images and the level of permitted subdivision. To do that, we interpret these
results in terms of an actual map parameter—for example, by replacing the number
of infinite lines M with its estimate, as done above. For example, using the S-based
estimator indicates that the size of the PMR quadtree should be proportional to the
number of map segments and independent of the maximal depth (as long as both are
large). Note that this expectation is verified (or refuted) only on the basis of the real
map data and not on the basis of any modeling assumptions, although we were indeed
led to it by the random line model analysis.

We first examine the MX quadtree. Figure 9 shows the ratios of the node count to
the length of a side of the image (i.e., 2N ) as a function of the depth (i.e., N) for the
different maps, which are close to being constant (i.e., horizontal lines) as expected.
Figure 10 shows the ratios of the node count to the square root of the number of
line segments as a function of the number of line segments (i.e., M2) for the different
depths. These curves are close to being constant (i.e., horizontal lines) when the
number of line segments is large enough. This is expected when the S-estimator
(which stipulates that the number of nodes is proportional to the square root of the
number of segments) is used for M and implies that the asymptotic estimate is useful
for predicting the quadtree size for a wide range of maps. We used a logarithmic scale
in Figure 10 to illustrate a similar relative deviation in the ratios for the different
depths as the size of the data increases.

Next, we examine the PM quadtree. Figures 11 and 12 show the ratio of the
node count to the NSVs and to the number of line segments (i.e., M2), respectively,
as a function of the depth for the different maps, which are close to being constant
(i.e., horizontal lines). This means that the node count is independent of the depth.
This is contrary to the prediction of the asymptotic analysis and to the existing worst
cases that arise when the vertices of the line segments are constrained to lie on grid
points [47]. This difference may be explained by observing that, for images generated
using the random image model, factors that lead to the maximum depth (e.g., two
vertices or nonintersecting lines being very close to each other, or a vertex and a line
being very close [49]) are more likely to arise. For road networks, on the other hand,
it is unlikely that a pair of intersections 10 cm from each other will be specified. In
such a case, these intersections will be merged to a higher degree vertex, which is not
split for the PM quadtree. Thus, it seems that there is room for a better model for
road networks (and maybe for other types of real data), which takes such merging
processes into account. This subject is left for future research.

Finally, we examine the PMR4 quadtree. Figures 13 and 14 show the ratio of the
node count to the NSVs and to the number of line segments (i.e., M2), respectively,
as a function of the depth for the different maps, which we expect to be constant (i.e.,
horizontal lines), especially for the larger maps. At lower depths, the ratios increase
with depth for a particular map since the segment counts are constant and the number
of nodes does increase with depth until converging once the decomposition rule can
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no longer be applied. It is interesting to observe that the lines in Figures 13 and 14
are not quite horizontal (i.e., representing a constant function) in the sense that they
have a small positive slope. This is because the line segments in the maps are not
really formed by random infinite lines. Thus, it is not true that the probability that
more than two infinite lines intersect at a point is zero. In particular, we find that in
our maps there are instances when more than four line segments meet at a point, and
hence the number of nodes really grows linearly with depth (since the decomposition
rule is still applicable, and, in fact, will always be applicable in this case), although
this growth is not substantial in our graphs at higher depths. Experiments with
larger values of q verified that the number of nodes does in fact converge as the depth
increases. This can be seen in Figure 15 for q = 12. Figure 5 shows the ratio of the
node count to the segment count (i.e., M2) versus the segment count at depth 16 for
q = 4 and q = 12. The ratios are all within 6% of their average value. Figure 5 also
reveals a general trend in which the ratios decrease as the maps get larger. We used a
logarithmic scale to illustrate a similar relative deviation in the ratios for the different
values of q as the size of the maps increases.

To more clearly see the effect of the existence of points, where more than four line
segments intersect, consider the map of Washington, D.C. (Figure 8). From Figure
11, we can see that the number of nodes increases by a ratio of about 7:4 when the
depth is changed from 10 to 40. From Table 2, we can see that this amounts to an
increase of about (7/4 − 1) · 35, 000 = 26, 250 vertices. Now, let W be the number of
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vertices associated with the intersection of more than four roads. Each such vertex
leads to a split of its corresponding region until the maximal depth is reached. At
every depth, four nodes are added. Therefore, when the depth is changed from 10 to
40, the number of nodes that are added is W · (40 − 10) · 4 = 26, 250, implying that
the number of such high degree vertices is about 220. Given that the Washington,
D.C. map has 8805 NSVs (i.e., vertices of degree greater than 20), the fraction of such
high degree vertices is about 220/8805 = 0.025. While this number is larger than 0
(the value predicted by our model), it does not appear to change the predictions by
much, as is apparent from the relatively modest increase in the node count as the
depth increases. Note that for the other maps considered the relative increase in the
node count, as well as the fraction of high degree vertices, is much lower. Observe
also that the range of maximum tree depths considered in these graphs is much larger
than in any reasonable application. In particular, if the original map is embedded in
a 100 × 100 km square area, then a maximum depth of 40 amounts to a resolution
of 0.1 micron. Therefore, for a more reasonable maximum depth, the variation in the
predicted node count will be much lower even if, say, 0.025 of the vertices have high
degree.
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6. Concluding remarks. The analysis of the space requirements of a number
of trie-based hierarchical geometric data structures for storing large collections of line
segments was investigated using a random image model. An appropriate model was
developed for each of these structures and estimates of E[S], the expected number
of nodes, were found for them. Future work includes the investigation of the use
of these estimates in a cost model by a query optimizer to generate an appropriate
query evaluation plan in a spatial database application. The analysis presented here
is also of interest because it uses a detailed explicit model of the image, instead
of relying on modeling the branching process represented by the tree and leaving the
underlying image unspecified. The behavior of these expected values is intuitively and
concisely expressed by analytic upper and lower bounds. Other directions for future
research include the application of the geometric probability approach to additional
data types besides line segments (e.g., points, polygons, surfaces, solids, etc.), as well
as alternative trie-based spatial data structures.

We have demonstrated that these estimates, derived for a particular random
image model, are applicable to real data. Specifically, in the case of line map images,
we provided estimators which are based on simple characterizations of the map data,
and which enabled us to successfully apply the results of the analytic model to real
data and to obtain reasonably accurate and useful results. This was verified, however,
only for map data, and characterizing collections of other types of line segments, or
even more general types of spatial information, is still an open problem, and thus a
subject for further research.

Our results can be used to justify claims on the qualitative differences between the
different alternative spatial data structures. For example, we showed that the bucket
(and conventional) PMRq quadtree for q ≥ 4 is superior to the PM quadtree in terms
of the number of nodes that are required. The problem with the PM quadtree is that,
although its behavior is usually acceptable, there are cases in which it requires much
space due to certain point and line configurations. This follows from our analysis and
simulations, as well as from confirming earlier observations on the possible worst-case
behavior of the PM quadtree [47].

Perhaps our most important result is showing that the space requirements of the
Bucket PMRq and PMRq (q ≥ 4) quadtrees are asymptotically proportional to the
number of line segments. This was shown theoretically for a random image model and
was also found to hold for random data and real map data. This is quite significant
as it enables us to predict the number of nodes required by this representation, and,
most important, to show that it is independent of the maximum depth of the tree. It
is thus not surprising that the PMRq quadtree is useful in experimental systems (e.g.,
QUILT [53]) as well as commercial systems (e.g., United Parcel Service (UPS) [4]).
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1. Introduction. The power of randomness is a central issue in the theory of
computing. Although the use of random bits seems to simplify a lot of computational
tasks, their actual computational power remains open. We have techniques that al-
low us to eliminate the randomness from many important randomized algorithms at
a small cost. Just recently, a deterministic polynomial-time algorithm was discov-
ered for the “prime” example of a computational problem where randomness seemed
to provide a superpolynomial speed-up [AKS02]. For arbitrary (bounded-error) ran-
domized computations running in time t, we have strong indications that they can
be simulated deterministically in time tO(1). However, we have not even been able to
prove the existence of a deterministic simulation that runs in time o(2t).

The standard approach for deterministic simulations uses the notion of a pseu-
dorandom generator: an efficient deterministic procedure that expands short random
seeds into longer strings such that no small circuit can distinguish the outputs of
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the generator from truly random strings. Given a pseudorandom generator G that
“fools” circuits of size t, and a bounded-error randomized algorithm A that can be
implemented by circuits of size t, when A is run with G(σ) on its random tape for
seed σ chosen uniformly at random, the acceptance probability of A is approximately
the same as when it is run with truly random bits. Thus, we obtain a deterministic
simulation of A on a given input x by cycling through all short seeds σ, running A
on x using G(σ) as the random bit sequence, and outputting the majority result of
these runs.

As a result of a long line of research (e.g., [Yao82, BM84, NW94, BFNW93,
IW97]), we know that pseudorandom generators exist iff exponential time requires
large circuits. Thus, efficient deterministic simulations of arbitrary randomized com-
putations exist unless exponential time has small circuits. Recent work [IKW02, KI03]
indicates that circuit lower bounds are also necessary for the existence of such simu-
lations.

The connections between deterministic simulations and circuit lower bounds are
a double-edged sword. On the one hand, the connections between deterministic sim-
ulations and circuit lower bounds provide strong evidence that the randomness in
probabilistic polynomial-time algorithms can be eliminated, since exponential time is
widely believed to require large circuits. On the other hand, proving circuit lower
bounds for exponential time has been one of the most elusive pursuits in the theory
of computing. A justified attempt to circumvent that problem is to relax the notion
of simulation. Instead of requiring that the simulation be correct on every input,
we may content ourselves with simulations that err on few inputs, or for which it is
computationally hard to pinpoint an error [Kab01]. For example, we may be happy
if no probabilistic polynomial-time machine succeeds with significant probability in
generating, on input 0n, for infinitely many n, an input of length n on which the
simulation fails.1 Borrowing terminology from cryptography, we then say that the
simulation “fools” probabilistic polynomial-time adversaries. By allowing machines
other than probabilistic polynomial-time ones, we obtain other notions of simulations
against uniform adversaries; see section 2 for the precise definitions. The standard
notion of simulation coincides with the relaxed one for nonuniform adversaries, i.e.,
polynomial-size circuits instead of polynomial-time probabilistic machines.

We apply these relaxed notions of simulations to inclusions of deterministic and
nondeterministic time in small Merlin-Arthur classes [BM88]. In fact, we consider
four types of simulations of various types of computations: (i) the traditional one
against nonuniform adversaries, (ii) the recent one against uniform adversaries, (iii)
a slightly stronger type of simulation than (ii) in which the adversary only needs to
output a list of inputs (instead of a single input) such that the simulation fails on
at least one of these inputs, and (iv) a more quantitative notion. The last notion
uses the fraction of inputs on which the simulation works as the measure of success
[GW02]. Whereas a simulation against a uniform adversary may err on a substantial
fraction of the inputs, but these inputs are hard to generate, the quantitative type
of simulation is guaranteed to work on a large fraction of the inputs, but inputs on
which it errs may be easy to generate.

We establish new tradeoffs between deterministic simulations of randomized com-
putations and very efficient Merlin-Arthur simulations of deterministic and nondeter-
ministic time. We also prove an unconditional deterministic time o(2t) simulation of
randomized computations running in time t in the multitape Turing machine model.
Our results make use of the known pseudorandom generator constructions based on

1This has been proposed as an interesting formalization of the notion of a “heuristic” [IW01].
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hard functions, and of the results on holographic proofs (also known as probabilisti-
cally checkable proofs).

1.1. Simulations against uniform adversaries. Recall that efficient deter-
ministic simulations of arbitrary randomized computations against nonuniform ad-
versaries exist unless exponential time has small circuits. We investigate simulations
of deterministic and nondeterministic time against uniform adversaries that follow
from the assumption that exponential time has small circuits. Thus, we obtain trade-
offs between simulations of randomized computations against nonuniform adversaries,
and simulations of deterministic and nondeterministic computations against uniform
adversaries.

Following earlier work [KL82], Nisan (credited in [BFL91]) showed that if expo-
nential time has small circuits, then it collapses to MA (Merlin-Arthur polynomial
time). We show a stronger consequence by considering simulations of problems in P
(deterministic polynomial time). We need to settle for simulations of promise prob-
lems in P, where the promise is that the input is a codeword of a “nice” code E,
namely a polynomial-time decidable error-correcting code with relative distance at
least an inverse polylogarithmic fraction of the length of the codeword.

We first give the precise statement of our result and then explain our notation.
Theorem 1. If EXP ⊆ SIZE(poly) (where EXP refers to deterministic exponen-

tial time), then for each language L ∈ P and each nice code E, (E,L) ∈ quasiP-
MAPOLYLOG.

The consequent in the statement of Theorem 1 requires some explanation. (E,L)
is the promise problem consisting of the decision problem L restricted to inputs in
E. MAPOLYLOG is the “scaled-down” version of MA, where the verifier has random
access to the input and runs in polylogarithmic time. The “quasiP” refers to the
stronger type of simulation against an adversary that runs in P (type (iii) above).
More precisely, “(E,L) ∈ quasiP-MAPOLYLOG” means that there exists a machine
M for which no deterministic polynomial-time adversary can generate a list of inputs
such that M does not behave like a Merlin-Arthur polylogarithmic time machine for
L on all inputs in the list which belong to E. The inclusion EXP ⊆ MA follows from
the consequent of Theorem 1 and the existence of a polynomial-time computable
linear nice code E by a translation argument. Thus, Theorem 1 gives a stronger
consequence of the assumption that EXP has polynomial-size circuits than was known
before. Similar theorems hold for PSPACE and P�P.

In order to prove Theorem 1, we cast Nisan’s argument as an application of the
“easy witness” method [Kab01, IKW02] to holographic proofs, i.e., as a search for
holographic proofs that can be described by small circuits.

Given Theorem 1, the known connections between circuit lower bounds and de-
randomization imply tradeoffs between efficient simulations of P that fool uniform
adversaries and deterministic simulations of BPP (probabilistic polynomial time) for
a range of parameters. In a seminal paper, Sipser [Sip88] showed tradeoffs between
efficient simulations of P in deterministic space and derandomizations of RP (ran-
domized polynomial time with one-sided error)—indeed, the easy witness method is
implicit in [Sip88]. These results were extended by Nisan and Wigderson [NW94] and
by Lu [Lu01]. Using Theorem 1, we further strengthen these tradeoffs. For example,
we obtain the following corollary to Theorem 1.

Corollary 2. For each language L ∈ P and nice code E, (E,L) ∈ quasiP −
MAPOLYLOG, or BPP ⊆ infinitely often (i.o.) SUBEXP.

Theorem 1 provides an interesting perspective on proving circuit lower bounds
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for EXP. We observe that PARITY is not contained in MAPOLYLOG unconditionally.
Thus P is not contained in MAPOLYLOG. Theorem 1 says that a stronger separation of
P and MAPOLYLOG implies circuit lower bounds for EXP.2 This opens the possibility
that methods from low-level circuit complexity may be useful in this area. In fact,
we apply the circuit lower bounds of Hastad for PARITY [H̊as86] in a novel way to
obtain a partial converse to one of our results. See section 3 for more details.

We also show tradeoffs between simulations of NP in MAPOLYLOG that fool
nondeterministic adversaries, and nondeterministic simulations of MA. For technical
reasons explained in section 4, we cannot use our stronger notion of simulation against
uniform adversaries here but need to switch back to the weaker notion, where the
adversary outputs a single output of a given length on which the simulation is supposed
to fail. Among other results, we also give a different proof of the gap theorem due
to Impagliazzo, Kabanets, and Wigderson [IKW02] that either NEXP = MA or else
MA ⊆ i.o.[NTIME[2n

ε

]/nε] for every ε > 0.

1.2. Quantitative simulations. A second family of results in our paper con-
cerns a different, more quantitative notion of simulation, where the measure of success
is the fraction of inputs of a given length on which the simulation works. This relates
to recent work of Goldreich and Wigderson [GW02], who obtained efficient determin-
istic simulations of BPP that work on almost all inputs under a certain nonuniform
assumption (see section 5 for the precise assumption). Their idea, in a nutshell, is to
extract randomness from the input—most inputs are “random” enough that this can
be done. By combining the easy witness method and results on holographic proofs
with the idea of Goldreich and Wigderson, we derive a stronger and uniform version
of their result, as follows.

Theorem 3. If there is no polynomially bounded t such that P ⊆ [io− corr2/3]-
MATIME(t), then for every ε > 0, BPP ⊆ corr1−2nε/2nP.

This theorem states that if there is no fixed polynomial t such that for every lan-
guage L in P there is a machine M which is a Merlin-Arthur machine for L operating
in time t on at least a fraction 2/3 of the inputs for infinitely many input lengths,
then for every ε > 0 and every language L in BPP there is a simulation of L in P
which succeeds on all but 2n

ε

inputs for all input lengths.

1.3. Unconditional simulations. The standard approach to derandomization
in the time-bounded setting is the construction of an efficient pseudorandom generator
that fools all computations that run within time t on the model of computation under
consideration. It is well known that the existence of such a pseudorandom generator
gn : {0, 1}σ → {0, 1}n (where σ < n) implies the existence of an explicit problem
outside a nonuniform version of the class C being derandomized, namely the problem
of deciding whether a string of length σ+1 is the initial segment of a string in the range
of gn. If that problem were in the class C/n, running the decision procedure with the
correct advice on a random input of length σ+1 would accept with probability at most
1/2, whereas the simulated process using the pseudorandom generator would accept
with probability 1. Thus, short of establishing new lower bounds for explicit functions,
one can only hope to construct pseudorandom generators that are unconditionally
secure for settings where such bounds are known.

In general models of computation, only very weak lower bounds of the above type
are known. On one-tape Turing machines, the strongest known is a quadratic lower

2[AG91] also considers the consequences of strong separations of P from lower-level classes. The
notion of a “strong separation” there is different from ours.
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bound for deciding the palindromes. Almost matching that lower bound, [INW94]
managed to construct a pseudorandom generator with seed length σ = Õ(

√
t) for

probabilistic one-tape Turing machine computations that run in time t. The approach
of [INW94] does not yield any nontrivial results for multitape Turing machines with
more than one tape. For a fixed number k > 1 of tapes and a fixed alphabet, the best
lower bounds known are of the form cn for some constant c > 1, so one may hope to
obtain a pseudorandom generator with seed length σ = (1− δ)t, where δ is a positive
constant depending on the number of tapes and the alphabet size. We manage to do
so. The straightforward deterministic simulation using our pseudorandom generator
yields the following result.

Theorem 4. For any integers k > 0 and β > 0, there is a constant δ > 0
such that for each language L accepted by a bounded-error probabilistic k-tape Turing
machine with alphabet size β running in time t, L ∈ DTIME(2(1−δ)t).

To the best of our knowledge, the fact that time t probabilistic multitape Turing
machine computations can be simulated deterministically in time o(2t) is new. We
also demonstrate our technique for randomized NC1 computations.

Note that the typical constructions of pseudorandom generators [NW94, SU01]
are unable to establish Theorem 4 because these constructions lose a superlinear factor
in the transformation of a hard function into a pseudorandom generator, and we only
have linear lower bounds to start from. Thus, we need a different angle. Our approach
is inspired by the idea of Impagliazzo and Zuckerman [IZ89] to recycle random bits,
and specifically by an application of this idea due to Nisan and Zuckerman [NZ96].
The latter authors considered randomized space s computations, and argued as fol-
lows. Consider the configuration C reached after processing the first Θ(s) random
bits r. Since there are only 2O(s) possible configurations C in total, we can ignore
the contributions of those C’s that have probability less than 2−Ω(s) of occurring.
For every other C, the distribution of r conditioned on reaching C has Ω(s) bits of
randomness, which we can extract and feed to the randomized algorithm as the next
Ω(s) (pseudo-)random bits. This way, we save a number of random bits equal to Ω(s)
minus the seed length of the extractor.

The small number of reachable configurations plays a crucial role in the cor-
rectness argument. Reaching the same configuration C guarantees that the future
behavior of the original machine will be the same, irrespective of the actual value of
r. In our setting, we do not have strong bounds on the number of reachable configu-
rations. However, we can bound the number of different future behaviors of a Turing
machine during the next s steps. Since a Turing machine can move each of its k tape
heads over at most one position per step, only 2ks tape cells can affect the next s
steps. Thus, the number of different behaviors is bounded by O(α2ks), where α is the
alphabet size of the machine. Using this bound in the argument of [NZ96] and an
appropriate extractor, we obtain a simulation that runs in time polynomial in t and
uses only (1 − δ)t random bits for some positive constant δ.

1.4. Organization. The rest of this paper is organized as follows. We define our
main concepts in section 2. We discuss our simulations against uniform adversaries
for deterministic time in section 3, and then for nondeterministic time in section
4. Next we consider the quantitative simulations in section 5, and we end with our
unconditional simulation results in section 6.

2. Preliminaries. In this section, we describe the complexity classes we con-
sider, and formally define the various types of simulation between them. We review
results on pseudorandom generators and extractors, as well as on holographic proofs,
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and explain how the latter will be used in combination with “nice” codes in the rest
of the paper.

We will use numbered definitions for notions that originate in this paper or are
not widely known, and unnumbered definitions for more conventional notions.

2.1. Complexity classes. The definitions of standard deterministic, nondeter-
ministic, and probabilistic resource-bounded classes can be found in [BDG88] and
[BDG90]. We will also need definitions of sublinear time complexity classes. These
classes are defined by Turing machines with a separate index tape on which the ad-
dress of an input bit can be written. Given this address, the machine can access the bit
in constant time. Analogous to classes defined by polynomial-time machines, we can
define DPOLYLOG,NPOLYLOG,BPPOLYLOG, and MAPOLYLOG. All of our results
hold for both the one-sided and two-sided error version of MAPOLYLOG. In proofs, we
always choose the model that makes our results stronger. We can also define versions
of the classes above where the machine takes advice of a given length—we assume
that the advice is written on a separate tape and that the machine has random access
to the advice. If C is a complexity class defined by machines of a certain kind, C/poly
denotes the complexity class defined by machines of the right kind taking polynomial
length advice strings, and C/qpoly denotes the complexity class defined by machines
of the right kind taking quasi-polynomial (i.e., 2O(polylog(n))) length advice strings
(where the complexity is measured in terms of the original input size).

We use standard definitions of nonuniform classes. The class of languages with
circuits of size t is denoted by SIZE(t), and the class of languages that have A-oracle
circuits of size t for some complexity class A is denoted SIZEA(t).

If L is a language and C is a class, we say L ∈ i.o.C if there is a language L′ ∈ C
such that {n : L ∩ {0, 1}n = L′ ∩ {0, 1}n} is infinite.

In general, complexity classes are defined by acceptance and rejection criteria on
the behavior of a specific kind of computation device on an input. The acceptance and
rejection criteria are always exclusive but need not be exhaustive. Classes for which
they are not exhaustive, such as BPP and MA, are referred to as promise classes. We
introduce some notation to capture the general case in which the criteria may or may
not be exhaustive.

Definition 5. Given a complexity class C, a computation device M of the right
kind, and an input x, we say that M conforms to C on input x if the disjunction of
the acceptance and rejection criteria for C holds for the computation of M on input
x.

A promise problem is a formalization of the notion of a partially defined decision
problem. Formally, a promise problem is a pair (X,L), where X,L ⊆ {0, 1}∗. X
denotes the domain of the problem (the set of inputs that satisfy the “promise” of
the problem), and L denotes an underlying (fully defined) decision problem. We now
define what it means for a promise problem to belong to a complexity class.

Definition 6. Given a complexity class C, we write (X,L) ∈ C if there exists a
computation device M of the right kind such that for all x ∈ X, M conforms to C on
input x, and M accepts iff x ∈ L.

Note that the behavior of M on inputs x �∈ X may be arbitrary.

2.2. Simulations. In this paper, we are concerned with various simulations of
one type of computation by another type of computation. According to the conven-
tional notion, a simulation is successful if it fools all nonuniform adversaries, i.e., the
languages accepted by the two machines coincide on all but finitely many inputs. Ka-
banets [Kab01] formalized a notion of what it means for a simulation to fool uniform
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adversaries (which is weaker than the conventional notion of a simulation). He con-
sidered a simulation of a language L in a class C against adversaries in a class A to
correspond to a language L′ ∈ C such that no adversary in A can efficiently find an
input on which the simulation makes an error, i.e., an input on which L and L′ differ,
for infinitely many input lengths. We need to refine the notion of simulation against
uniform adversaries for the case of simulation by promise classes. In general, we con-
sider a simulation to correspond to a specific machine rather than to a language, and
say that the simulation makes an error on an input if either the simulating machine
does not conform to the simulating class on the input, or the simulating machine and
the simulated language do not agree on the input. Arguably, our notion of simulation
against uniform adversaries is more natural (though weaker) than the earlier notion
in the case of simulations by promise classes. We point out that this is the first paper
that considers the issues involved in such simulations, and that our notion coincides
with the earlier one in the case of simulations by nonpromise classes.

Definition 7. Given a complexity class C, a machine M of the right kind, a
language L, and an input x, M makes a simulation error on input x for the simulation
of L in C if one of the following two conditions holds:

1. M does not conform to C on input x, or
2. M accepts x iff x �∈ L.

Next, we formally define a notion of “uniform adversary.”

Definition 8. A refuter is a deterministic Turing machine that, on input 0n,
outputs a string of length n.

P and SUBEXP are the classes of refuters operating in polynomial time and subex-
ponential time, respectively, and Tally is the singleton class consisting of the refuter
that outputs 0n on input 0n. LOGSPACE is the class of refuters equipped with a
two-way read-only input tape, a one-way write-only output tape, and a logarithmic
amount of work space.

Next, we define what it means for a refuter to succeed against a simulation.

Definition 9. A refuter N succeeds at length n against a simulation M of a
language L in a complexity class C if M makes a simulation error on input N(0n) for
the simulation of L in C.

Definition 10. A refuter N succeeds against a simulation M of L in C if N
succeeds at length n against M for infinitely many n.

We say that a simulation M of L fools a refuter N if N does not succeed against
M . We define what it means to have simulations in a complexity class that fool
refuters from a given class.

Definition 11. Given a complexity class C and a class A of refuters, pseudoA-C
is the class of languages L such that there is a simulation M of L in C that fools every
refuter in A.

We reiterate that a successful simulation is a single machine that fools every
refuter in a class.

We introduce a weaker concept of refutation.

Definition 12. A weak refuter is a deterministic Turing machine that, on input
0n, outputs a set of strings, each of which is of length n.

Note that the resource bounds of the weak refuter implicitly define a limit on the
cardinality of the set of strings.

Definition 13. A weak refuter N succeeds at length n against a simulation M
of a language L in a complexity class C if there is at least one x ∈ N(0n) such that
M makes a simulation error on input x for the simulation of L in C.
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The notion of success of a weak refuter and the notion of a simulation fooling a
weak refuter are defined analogously to the corresponding notions for refuters.

Definition 14. Given a complexity class C and a class A of weak refuters,
quasiA-C is the class of languages L such that there is a simulation M of L in C that
fools every weak refuter in A.

Clearly, for each A and C, C ⊆ quasiA-C ⊆ pseudoA-C.

We can modify and extend the notions of “refuter” and “weak refuter” in various
ways. We can redefine the notion of success of a refuter to mean that a refuter succeeds
at length n for almost every n rather than for infinitely many n.

Definition 15. A refuter (resp., a weak refuter) N succeeds almost everywhere
against a simulation M of L in C if N succeeds at length n against M for all but
finitely many n.

Definition 16. [io−pseudoA]-C (resp., [io−quasiA]-C) is the class of languages
L such that there is a simulation M of L in class C for which no refuter (resp., weak
refuter) in A succeeds almost everywhere against the simulation.

We can also consider probabilistic and nondeterministic refuters, which can output
different strings on different computation paths.

Definition 17. A probabilistic refuter is a probabilistic Turing machine, which,
on input 0n, for each computation path outputs a string of length n.

Definition 18. A probabilistic refuter succeeds at length n against a simulation
M of L in C if, with probability at least 2/3 over the random bits of the refuter, M
makes a simulation error on the string output by the refuter for the simulation of L
in C.

Definition 19. A nondeterministic refuter is a nondeterministic Turing ma-
chine, which, on input 0n, outputs a string of length n on each computation path and
accepts on at least one computation path.

Definition 20. A nondeterministic refuter succeeds at length n against a simu-
lation M of L in C if, for all strings x produced by the refuter on accepting paths on
input 0n, M makes a simulation error on x for the simulation of L in C.

Probabilistic weak refuters have the same relation to probabilistic refuters as
deterministic weak refuters have to deterministic refuters.

Space-bounded refuters and weak refuters are equipped with a separate output
tape on which a string or list of strings is written. The output tape does not contribute
to the space usage.

The above notions generalize naturally to simulations of promise problems against
uniform adversaries.

Definition 21. A machine M makes a simulation error on input x for the
simulation of the promise problem (X,L) in complexity class C if x ∈ X and either
M does not conform to C on x or M does not agree with L on x.

The definitions of “(X,L) ∈ quasiA-C” and “(X,L) ∈ pseudoA-C” are the same
as for the underlying decision problem modulo the modified notion of simulation error.

We also define a quantitative notion of simulation, where the measure of success
is the fraction of inputs of a given length on which the simulation works.

Definition 22. Given a language L and a complexity class C, L ∈ corrs-C if
there is a machine M such that for each input length n, for at least an s fraction of
inputs x of length n, M conforms to C on x and agrees with L on x.

Definition 23. Given a language L and a complexity class C, L ∈ [io− corr]s-C
if there is a machine M such that for infinitely many input lengths n, for at least an
s fraction of inputs x of length n, M conforms to C on x and agrees with L on x.
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2.3. Pseudorandom generators and extractors. A pseudorandom generator
G is a sequence of functions gn, n � 1, where gn maps {0, 1}σ(n) to {0, 1}n for some
σ(n) < n, such that for all circuits C of size less than n,∣∣∣∣Pr

x
[C(x) = 1] − Pr

y
[C(gn(y)) = 1]

∣∣∣∣ <
1

n
,

where x is uniformly distributed over {0, 1}n and y is uniformly distributed over
{0, 1}σ(n). The pseudorandom generators we consider will be computable in time
2O(σ(n)). We will sometimes abuse notation and call gn a pseudorandom generator
for some output length n if gn fools all circuits of size less than n. We refer the reader
to the survey paper by Goldreich [Gol00] for more background on pseudorandom
generators.

The following theorem of Impagliazzo and Wigderson shows how to obtain a
pseudorandom generator with logarithmic seed length from the truth table of a hard
function.

Theorem 24 (see [IW97]). For every ε > 0, there are constants c and d and a
polynomial-time procedure, which, given as input the truth table of a Boolean function

f on log(n) inputs, computes the graph of a function gnε/c : {0, 1}d log(n) → {0, 1}nε/c

,
such that when f does not have circuits of size nε, gnε/c is a pseudorandom generator.

Note that the truth table of a language in E (linear exponential time) can be
generated in time polynomial in the size of the truth table (just by enumerating
inputs of a given length and checking, for each input, whether the input is in the
language or not). Thus the generator g corresponding to f ∈ E in Theorem 24 is
computable in time poly(n).

Impagliazzo and Wigderson also showed a tradeoff between uniform simulations
of EXP and efficient simulations of BPP, which can be expressed in our notation as
follows.

Theorem 25 (see [IW01]). If EXP �= BPP, then BPP ⊆ [io − pseudoBPP]-
SUBEXP.

Indeed, their argument actually gives the stronger consequence that BPP ⊆ [io−
quasiBPP]-SUBEXP.

For our results in section 6, we need to define the notion of an extractor. First
we give some notation and definitions concerning probability distributions. Let D be
a probability distribution on a finite set S. We write r ← D if r is a random variable
distributed according to D. Given x ∈ S and A ⊆ S, D(x) is the probability weight
assigned to element x of S by the distribution D, and D(A) is the probability that
the event A occurs. The min-entropy H∞(D) of the distribution D is defined to be
minx∈S log(1/D(x)). Given two distributions D1 and D2 over the same set S, the
statistical difference between D1 and D2 is defined to be maxA⊆S |D1(A) − D2(A)|.
D1 and D2 are said to be ε-close for ε � 0 if the statistical difference between D1 and
D2 � ε. If D1 and D2 are ε-close distributions on a set S, and f is a deterministic
function with domain S, the distributions f(D1) and f(D2) are also ε-close. We let
Un denote the uniform distribution on the set {0, 1}n.

An extractor is a function that transforms a distribution with high min-entropy
to one that is close to uniform, given a short random seed. More formally, a (k, ε) ex-
tractor is a function Ext : {0, 1}n×{0, 1}d → {0, 1}m such that for every distribution
D on {0, 1}n with H∞(D) � k, the distribution Ext(D,Ud) is ε-close to Um. There
has been a lot of work done on explicit constructions of “good” extractors, where a
good extractor is one with small seed length (ideally d = log(n−k)+2 log 1/ε+O(1))
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such that almost all the min-entropy in the original distribution is converted to near-
uniform random bits (ideally m = k + d− 2 log 1/ε−O(1)). We refer to the excellent
paper by Shaltiel [Sha02] for a survey of recent extractor constructions. We will use
the following extractor family, which has suboptimal seed length but extracts all the
min-entropy of the source and is very efficiently computable.

Theorem 26 (see [HR00]). For each constant ε > 0 and all functions k(n)
such that 0 � k(n) � n, there is a family of (k(n), ε) extractors Extk : {0, 1}n×
{0, 1}O((log(n))3) → {0, 1}k(n) that is uniformly computable in NC1.

2.4. Proofs. We need to define what it means for a promise problem to have
efficiently verifiable proofs.

Definition 27. Given a promise problem (X,L) and a complexity class C, (X,L)
is said to have proofs of size p(n) verifiable in C if there is a machine V (the verifier
for L) such that the following conditions hold for all x ∈ X (considering resource
bounds for V as functions of |x| rather than |x| + p(|x|)):

1. Completeness: If x ∈ L, there is a string P (x) (the proof for x) of length
p(|x|) such that V conforms to C on input 〈x, P (x)〉 and accepts 〈x, P (x)〉.

2. Soundness: If x �∈ L, then for all strings y of length p(|x|), V conforms to C
on input 〈x, y〉 and rejects 〈x, y〉.

Definition 28. A complexity class B is said to have proofs of size p(n) verifiable
in C if for every language L ∈ B, ({0, 1}∗, L) has proofs of size p(n) verifiable in C.

Holographic proofs are proofs for which there is a very efficient probabilistic ver-
ifier. Babai, Fortnow, and Lund [BFL91] showed that EXP has holographic proofs.
More precisely, every language L in EXP has proofs of exponential size verifiable in
coRP such that for x ∈ L a proof for x can be computed from x in exponential time.
In our applications, we require a “scaled-down” version of this result due to Babai et
al. [BFLS91]. The natural way to scale down the result in [BFL91] would be to show
that every language L in P has proofs of polynomial size verifiable in coRPOLYLOG
such that for x ∈ L a proof for x can be computed from x in polynomial time. How-
ever, such proofs cannot exist since a coRPOLYLOG verifier cannot read the entire
input and determine that the purported proof is indeed a proof for that input. What
we can do in randomized polylogarithmic time is verify a purported proof and, if it
passes the verification, extract each bit of the input for which it is a proof with high
probability.

The following theorem states that for each language decidable in deterministic
time t, where t is polynomially bounded, there are proofs of size nearly linear in
t with corresponding randomized polylogarithmic time proof verification and input
extraction procedures. We note that for our main results we actually need only the
existence of efficiently verifiable polynomial-sized proofs.

Theorem 29 (see [BFLS91]). For each language L ∈ DTIME(t), where t =
poly(n), and all ε > 0, there exist randomized polylog(n) time procedures V and I
and a deterministic poly(n) time procedure P with the following properties:

1. For each x ∈ L of length n, y = P (x) is a string of length t1+ε such that
(a) Pr[V (y) accepts ] = 1,
(b) Pr[I(y, i) = xi] = 1 for all 1 � i � n.

2. For each y of length t1+ε, if

Pr[V (y) accepts] � 1

2
,
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then there exists a unique x′ ∈ L of length n such that

Pr[I(y, i) = x′
i] � 2

3
for all 1 � i � n.

The procedure V in the statement of the theorem corresponds to the verifier in
the usual definition of a proof system, except that it has access only to the purported
proof and not to the input x. The correspondence between the proof and the input
is made via the auxiliary procedure I, which, given a proof y accepted with high
probability, computes with high probability each bit of an input x′ in the language.
Note that is not possible for a coRPOLYLOG procedure to check whether x′ is the
same as the actual input x, since x′ and x may differ in very few bit positions, and
there is not enough time for the procedure to check all bit positions. However, if
x and x′ were guaranteed to be codewords in a good error-correcting code, then a
coRPOLYLOG procedure could just compare x and x′ at a few randomly chosen bit
positions to determine whether they were the same.

We define “nice codes” as codes with strong enough properties that the argument
above can be made precise.

Definition 30. A nice code is an error-correcting code E such that

1. it is decidable in deterministic polynomial time whether a string is a codeword
of E;

2. E has relative distance bounded below by an inverse polylogarithmic function
of the size of the codeword.

Using Theorem 29, we can show the existence of efficient proof systems for promise
problems in P where the promise is that the input is a codeword in a nice code.

Theorem 31. For each language L ∈ P and each nice code E, (E,L) has proofs
of size poly(n) verifiable in coRPOLYLOG. Furthermore, given x ∈ L ∩ E, a proof
that x ∈ L is computable in time poly(n).

Proof. Let L ∈ P. Define the language L′ = L ∩ E. (E,L) has proofs of size
poly(n) verifiable in coRPOLYLOG iff (E,L′) has proofs of size poly(n) verifiable in
coRPOLYLOG; hence it suffices to make the argument for L′ rather than L. Since E is a
nice code, membership in E can be decided in polynomial time; hence L′ ∈ DTIME(t)
for some t = poly(n). Fix an ε > 0 and let V , I, and P be procedures as in the
statement of Theorem 29 corresponding to L′. Let k be a constant such that any two
different codewords of E of length m have relative distance at least 1/(log(n))k. We
define a verifier V ′ in coRPOLYLOG for (L′, E).

Given input 〈x, y〉 with |x| = n, V ′ runs in two phases. In the first phase, V ′

runs V on y. If V rejects, V ′ rejects. Otherwise, V ′ begins the second phase. It
picks O((log(n))k+1) positions i1, . . . , iO((log(n))k+1) between 1 and n independently
at random. For each position ij , 1 � j � n, V runs I(y, ij) and checks whether the
returned value is equal to xij . If all the checks succeed, V ′ accepts; otherwise it
rejects.

Clearly, V ′ runs in polylogarithmic time in the size of its input. We need to show
that when x ∈ L′, there is some y of length t1+ε = poly(n) such that V ′ accepts with
probability 1 on 〈x, y〉, and for x ∈ E \L′, V ′ rejects with probability at least 1/2 on
〈x, y〉 for all y of length t1+ε.

The first case is easy. When x ∈ L′, condition 1 in the statement of Theorem
29 holds. Thus, V accepts on P (x) with probability 1. Also, I(P (x), i) = xi with
probability 1, and hence all the checks made by V ′ succeed with probability 1. It
follows that V ′ accepts with probability 1 on input 〈x, P (x)〉.
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For the second case, let x ∈ E \ L′. We assume there is a y of length t1+ε such
that V ′ accepts with probability at least 1/2 on 〈x, y〉, and we derive a contradiction.
Since 〈x, y〉 passes the first phase of V ′, V accepts with probability at least 1/2 on
input y. This implies that there is a unique x′ ∈ L′ such that I extracts each bit of
x′ from y independently with probability � 2/3. Since L′ ⊆ E, x′ ∈ E. Since x �∈ L′

and x′ ∈ L′, x and x′ are different codewords of E, and hence they have relative
distance at least 1/((log(n))k). V ′ rejects 〈x, y〉 in the second phase if at least one
of the positions i on which x and x′ differ is selected, and for that i the call I(y, i)
returns x′

i. The first condition occurs with probability close to 1 (by the lower bound
on the relative distance of the codeword), and the second happens with probability
at least 2/3, which implies that V ′ rejects with probability greater than 1/2. This is
a contradiction.

It is well known that nice codes exist. In fact, the Justesen code [vL98] satisfies
much stronger properties, which we will need for some of our results.

Theorem 32. There are positive constants r and δ such that there is a linear
code E : {0, 1}rn → {0, 1}n that has relative distance at least δ and is computable and
invertible in quasi-linear time as well as in logarithmic space.

The existence of nice codes implies that Theorem 31 and the consequent of The-
orem 1 are not vacuously true.

3. Simulations of deterministic time against uniform adversaries. In
section 3.1, we prove our main result and show how it implies Nisan’s result. We also
explore the question of whether the restriction to nice codes in the consequent of our
main result can be eliminated. In section 3.2, we show variants of our main result in
different ranges of the parameters, and prove a partial converse to one of our results
using the idea of derandomizing probabilistic weak refuters. In section 3.3, we give
tradeoffs between simulations of P in small Merlin-Arthur classes and deterministic
simulations of BPP, which follow from our results and the connections between circuit
lower bounds and derandomization given in [BFNW93] and [IW97]. Finally, in section
3.4, we state an analogue of our main result in the space-bounded setting.

3.1. Main result.

3.1.1. Proof of main result. In this subsection, we show that the hypothesis
EXP ⊆ SIZE(poly) implies there exists a simulation of P in MAPOLYLOG that fools
uniform polynomial-time adversaries that output codewords from a nice code. In
order to do so, we cast Nisan’s argument that EXP ⊆ SIZE(poly) implies EXP ⊆ MA
as an application of the easy witness method to holographic proofs for exponential
time.

Recall that a language L has holographic proofs if it has an efficient probabilistic
verification system that needs to read only a small part of the proof for every sequence
of random bits. EXP can be characterized as the class of languages with holographic
proofs of exponential size that can be verified in probabilistic polynomial time and
computed in exponential time [BFL91]. The easy witness method suggests trying
proofs that are described by small circuits, i.e., proofs for which there exists a small
circuit that outputs the ith bit of the proof on input i. We will refer to such proofs
as “compressible.” This leads to the following Merlin-Arthur–type protocol for a
language L in EXP: Given an input x, Merlin sends Arthur a small circuit describing a
purported proof that x ∈ L. Arthur then runs the probabilistic verification procedure;
each time that procedure needs a bit of the proof, Arthur evaluates the circuit on the
corresponding input. By the properties of the holographic proof system, the only way
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the protocol can fail is if an input x ∈ L does not have a compressible proof. If that
happens only finitely often for every language L in EXP, we have that EXP ⊆ MA.
If it happens infinitely often for some L in EXP, consider the concatenation of the
holographic proofs for all inputs of a given length, and look upon that concatenation
as the truth table of a Boolean function f . Since each proof can be computed in
exponential time, we can generate the truth table of f for inputs of length n in time
exponential in n. Since infinitely many proofs cannot be described by small circuits,
f does not have small circuits. Thus, the function f is computable in exponential
time but does not have small circuits, and thus EXP �⊆ SIZE(poly).

In order to scale down, we apply the easy witness method to holographic proofs
for P. There are two issues in scaling down the above arguments. First, as explained
in section 2.4 (see Theorem 31), the verifier is guaranteed to work correctly only on
inputs that are codewords of a nice code E, not on all inputs of length n. This is why
we consider simulations of promise problems corresponding to languages in P, where
the promise is that the input belongs to E. Second, we cannot concatenate holographic
proofs of all inputs of length n which are codewords of E, because the resulting string
could be of exponential length, whereas we need one of polynomial length. This is
where the weak refuter comes in: a polynomial-time algorithm that produces, on
input 0n, a list of strings of length n such that the Merlin-Arthur protocol fails on at
least one of them. Concatenating the holographic proofs of the polynomially many
inputs on the list yields the truth table we need. If, for every L in P, every refuter
succeeds only finitely often, we have that (E,L) ∈ quasiP-MAPOLYLOG for all L ∈ P
by definition. Otherwise, we can generate in time nO(1) the truth table of a function
on O(log n) inputs that does not have circuits of size logO(1) n. Thus E �⊆ SIZE(poly).

We now fill in the details.

Proof of Theorem 1. Let L be a language in P and E a nice code. By Theorem
31, (E,L) has proofs of polynomial size that can be computed in polynomial time and
verified by a coRPOLYLOG machine VL.

Given an input x ∈ E of length n and an integer k, we look for k-compressible
proofs of membership of x in L, where a k-compressible proof is the truth table of a
Boolean circuit of size at most (log(n))k. If x �∈ L, no such proofs exist, i.e., any such
purported proof is rejected by VL with high probability. If x ∈ L, a k-compressible
proof may or may not exist. And if there are inputs in L∩E without k-compressible
proofs, such inputs may or may not be easy to generate. We consider two cases:

1. For each language L ∈ P, there exists a positive integer k such that large
inputs in L ∩ E without k-compressible proofs are hard to generate. More
precisely, no polynomial-time weak refuter can produce an input in L ∩ E
without a k-compressible proof for infinitely many input lengths. In this
case, we will argue that (E,L) ∈ quasiP-MAPOLYLOG for all L ∈ P.

2. There exists a language L ∈ P such that for each positive integer k there
exists a refuter Nk operating in polynomial time which for infinitely many n
produces at least one input of length n in L ∩ E without a k-compressible
proof. In this case, we will argue that EXP �⊆ SIZE(poly).

Case 1. Consider the following machine Mk that tries to decide L on input x:
Mk first guesses a circuit Ck of size less than (log(n))k, which takes inputs of length
O(log(n)). The circuit Ck is to be interpreted as a “k-compressed” representation of
a purported proof for x; i.e., the output of the circuit on input i is the ith bit of the
proof. Since the size of proofs can be polynomially bounded, the input to Ck need
only be of length O(log(n)). Mk then simulates VL as follows: When VL accesses a bit
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of the input x, Mk accesses the same bit; when VL accesses a bit of the (purported)
proof, Mk gives the address of the bit to Ck as input, runs Ck, and continues its
simulation of VL, assuming the value of the bit to be the answer given by Ck.

We now argue that under the Case 1 hypothesis, when we view Mk as a Merlin-
Arthur simulation of (E,L), no polynomial-time weak refuter succeeds against Mk.
Since machine Mk runs in polylogarithmic time,3 we can conclude that (E,L) ∈
quasiP − MAPOLYLOG.

Consider an arbitrary polynomial-time weak refuter N . We need to show that,
for large enough n, Mk does not make a simulation error on any x ∈ N(0n) for
the simulation of (E,L) in MAPOLYLOG. By assumption, for large enough n, all
x ∈ N(0n) which belong to L ∩ E have k-compressible proofs, and Mk accepts with
probability 1 for such inputs by guessing the correct circuit corresponding to the proof
and simulating the verifier VL. Hence, for such inputs x, Mk conforms to MAPOLYLOG
on x and agrees with L on x, which implies that it does not make a simulation error.
For x ∈ N(0n) that belong to E \ L, any circuit guessed by Mk corresponds to an
invalid proof, which is rejected with high probability. Hence again, Mk conforms to
MAPOLYLOG on x and agrees with L on x, which means that Mk does not make a
simulation error. Thus, for large enough n, Mk does not make a simulation error on
any x ∈ N(0n) ∩ E. In other words, the simulation Mk of (E,L) in MAPOLYLOG
fools N .

Case 2. For each positive integer k, we will define a polynomial-time procedure Qk

which, given 0n as input, outputs in time poly(n) the truth table of a Boolean function
on inputs of length O(log(n)), which does not have circuits of size (log(n))k−1, for
infinitely many n. Suppose for a moment that we have such a procedure Qk. We then
define a language Lk ∈ E such that, for infinitely many n, Lk does not have circuits
of size O(nk−2) on inputs of length n. Let the size of the truth table output by Qk on
input 0n be nc for some constant c > 1. We define the truth table of Lk on input length
n to be the concatenation of the outputs of Qk on inputs 0i, i = 2n/2c, . . . , 2(n+1)/2c,
padded with 0’s to size 2n. Then Lk ∈ E, and Lk infinitely often does not have circuits
of size (n/3c)k−1, and hence infinitely often does not have circuits of size O(nk−2).
Note that the language Lk depends on Qk. We obtain a fixed language L that does
not have circuits of size O(nk−2) for any k by considering any linear-time complete
language for E: If such a language L had circuits of size nk−2, then Lk would have
circuits of size O(nk−2), which is a contradiction.

We finish the proof by constructing the procedure Qk with the required properties.
Let (E,L) have proofs of length p(n), and let f : {0, 1}∗ → {0, 1}∗ be a polynomial-
time computable function that for each x ∈ L ∩ E outputs a proof for x of length
p(n). Let Nk be the refuter from the Case 2 hypothesis, which is supposed to output
for infinitely many n a list of inputs of length n, at least one of which is in L ∩ E
and has no k-compressible proof. Let qk(n) denote the running time of Nk. On input
0n, Qk first simulates Nk on 0n to get a list of strings x1, x2, . . . , where each string
is of length n and the size of the list is less than qk(n). Qk concatenates the strings
f(x1), f(x2), . . . into a single string that is of size at most p(n)qk(n) and outputs this
string. Since f is polynomial-time computable, Qk works in polynomial time. It
remains to show that the string output by Qk is the truth table of a function that
does not have circuits of size (log(n))k−1 for infinitely many n. Suppose this were
false. Since each f(xi) is an easily identifiable part of the truth table output by Qk

on input 0n, a circuit for f(xi) (interpreted as a truth table) of size (log(n))k can be

3Note that a polylogarithmic-time Turing machine can determine the length of its input and
verify that the length of the guessed string Ck is correct.
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derived from the circuit of size (log(n))k−1 for the truth table output by Qk. Thus,
each output xi of Nk that lies in L ∩ E has a k-compressible proof. This contradicts
the Case 2 hypothesis.

3.1.2. Comparison of main result with Nisan’s result. We now compare
the consequent of Theorem 1 and the statement EXP = MA, which was the strongest
previously known consequence, shown by Nisan, of the hypothesis that EXP has
polynomial-size circuits. Standard translation techniques show that the statement
EXP = MA is equivalent to the existence of simulations of P in MAPOLYLOG that
fool the tally refuter. We include the proof for completeness.

Lemma 33. EXP = MA iff P ⊆ pseudoTally-MAPOLYLOG.
Proof. By padding, EXP = MA iff E ⊆ MA. We show that E ⊆ MA iff P ⊆

pseudoTally-MAPOLYLOG.
For the forward direction, let L be a language in P. Let L′ = {n | 0n ∈ L}. L′ is in

E, and by hypothesis, there is a Merlin-Arthur machine M ′ running in polynomial time
accepting L′. Now we define a Merlin-Arthur machine M running in polylogarithmic
time as follows: M finds the length n of its input (which can be done in deterministic
polylogarithmic time) and runs M ′ on input n. By construction, M accepts a string
of the form 0n iff such a string is in L. Thus the simulation of L by M fools the tally
refuter.

For the converse, let L ∈ E. Consider the language L′ = {0n | n ∈ L}. L′ is in
P, and hence, by the hypothesis, there is a machine M ′ which runs in Merlin-Arthur
polylogarithmic time on all inputs of the form 0n and accepts exactly those inputs of
the form 0n which are in L′. We define a Merlin-Arthur machine M , which, given n,
runs M ′ on the input 0n. Whenever M ′ requests the ith bit of its input, M checks
whether i � n. If so, M continues the simulation of M ′, assuming that the input bit
is 0; otherwise it continues the simulation of M ′ by notifying M ′ that the requested
input bit does not exist. M is a Merlin-Arthur machine running in polynomial time
accepting L, and thus L ∈ MA.

We next argue that the existence of a polynomial-time computable linear code E
such that (E,L) ∈ quasiP -MAPOLYLOG for each L ∈ P implies that EXP = MA, or
equivalently that P ⊆ pseudoTally-MAPOLYLOG. The reason is that the tally refuter
essentially is a special case of a weak refuter restricted to such a code E.

Theorem 34. If there is a polynomial-time computable linear code E such that
for each language L ∈ P, (E,L) ∈ quasiP-MAPOLYLOG, then EXP = MA.

Proof. The proof is again via a translation argument. Let E be a polynomial-time
computable linear nice code mapping {0, 1}n to {0, 1}p(n) for some polynomial p(n).
By linearity of E, 0p(n) is a codeword of E for each integer n.

We show E ⊆ MA under the hypothesis, which implies EXP = MA by padding.
Let L ∈ E. Consider the language L′ = {0p(n) | n ∈ L}. Since p(n) is polynomial-time
computable (by the polynomial-time computability of E), L′ ∈ P. Hence there is a
machine M ′ which for each weak refuter N runs in Merlin-Arthur polylogarithmic
time on strings produced by N , which are codewords of E, and agrees with L′ on
such strings. In particular, M ′ is a successful simulation of (E,L′) in MAPOLYLOG
against the tally refuter. As in the proof of Lemma 33, we define a Merlin-Arthur
polynomial-time machine M accepting L. Hence, L ∈ MA.

Since there exists a polynomial-time computable linear nice code (Theorem 32),
Theorem 34 shows that the consequent of Theorem 1 implies that EXP = MA. Thus,
Theorem 1 is at least as strong as Nisan’s result. Since weak refuters restricted to
a polynomial-time computable linear nice code E are more powerful than the tally
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refuter (which is the weakest possible refuter), Theorem 1 seems stronger than Nisan’s
result.

3.1.3. Nonuniform simulations against weak refuters. We should point
out that very efficient simulations against polynomial-time weak refuters restricted to
a nice code E exist unconditionally in the nonuniform setting. The following result
states that for each language L and each nice code E there is a simulation of (E,L) by
decision trees of depth O(polylog(n)) that fools every polynomial-time weak refuter.
Recall that qpoly refers to advice of quasi-polynomial length, i.e., length 2O(polylog(n)).

Theorem 35. For each language L and nice code E, (E,L) ∈ quasiP-
DPOLYLOG/qpoly.

Proof. The idea of the proof is that the only codewords of E that a weak refuter
can produce are of low time-bounded Kolmogorov complexity and also, because E is
an error-correcting code, elements from E can be distinguished from each other by
looking at only a few selected bit positions. Since there are only few strings of low
time-bounded Kolmogorov complexity, membership information about them can be
determined from a table which is given as a quasi-polynomial length advice string.

We briefly describe the notion of time-bounded Kolmogorov complexity that we
need. Fix a standard deterministic universal Turing machine U , which takes an argu-
ment p, runs the program p on the empty string, and outputs the result. We consider
Levin’s measure Kt(x) = min{|p| + log(t) | p outputs x in t steps}. We need two
observations:

1. Each string output by a polynomial-time weak refuter has O(log(n)) Kt-
complexity. This is because the position of the string in the list of strings
output by the refuter serves as a description of the string. Since the re-
futer can be described by O(1) bits and the position by O(log(n)) bits, this
description is O(log(n)) bits long.

2. There are at most 2l strings x with Kt(x) < l for any l.
The second item holds irrespective of which notion of Kolmogorov complexity we

use, but Levin’s measure is convenient if we require the first item to hold as well.
Let L be any language and E be a nice code. Let k be a positive constant such

that any two distinct codewords of length m in E have relative distance at least
1/(log(m))k. Let ε < 1 be a positive constant. For each n, we define EZ(n) = {x ∈
E | |x| = n,Kt(x) � (log(n))1+ε}. Given any polynomial-time weak refuter, each
codeword of E of length n output by the weak refuter is in EZ(n) for all but finitely

many n, by observation 1 above. Also, |EZ(n)| � 2(log(n))1+ε

, by observation 2.
For any n, we consider the following experiment: pick positions i1, . . . , i(log(n))k+2

uniformly and independently at random between 1 and n. We claim that with prob-
ability at least 1/2, any distinct u and v in EZ(n) differ in at least one of these
positions. To see this, let u and v be a specific pair of distinct codewords in E.
E has relative distance bounded below by 1/(log(n))k; hence with probability at

least 1 − (1 − 1/(log(n))k)(log(n))k+2

, u and v differ in at least one of the positions

i1, . . . , i(log(n))k+2 . By a union bound, since |EZ(n)| � 2(log(n))1+ε

, the probability
that there are distinct u and v in EZ(n) which do not differ in any of the positions
is at most 1/2. Thus the claim is proved.

The probabilistic argument above shows that there is some sequence of positions
i1, . . . , i(log(n))k+2 between 1 and n such that every two distinct codewords in EZ(n)
differ in at least one of these positions. Fix such a sequence. For each n, we code
this sequence into the advice string for a DPOLYLOG machine simulating (E,L). We
also code into the advice string a table which contains, for each possible assignment
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of (0,1)-values to these positions, the value 1 if there is u ∈ E ∩ L of length n such
that u is consistent with that assignment of (0,1)-values to positions, and the value 0

otherwise. The length of the advice string is O(2(log(n))k+2

).

We now describe how a DPOLYLOG machine M simulating (E,L) behaves, given
an advice string as above. M , on input x of length n, first determines i1, . . . , i(log(n))k+2

from its advice string. It then reads these positions xi1 , . . . , xi
(log(n))k+2

and looks up

the corresponding entry in the table coded into the advice string. If the entry is 1, it
accepts; otherwise it rejects.

We need to show that this simulation succeeds against all polynomial-time weak
refuters. Let N be a polynomial-time weak refuter. Without loss of generality, we
can assume that N produces only codewords of E, since E is a nice code, and N
cannot fool the simulation by producing a noncodeword. Let x be a string of length
n produced by N . x ∈ EZ(n), and by the choice of positions ij , 1 � j � (log(n))k+2,
the bits of x in these positions determine x uniquely among all strings in EZ(n).
Thus the entry in the table coded in the advice string of M corresponding to the
assignment xi1 , . . . , xi

(log(n))k+2
of (0,1)-values to bit positions tells correctly whether

x ∈ L or not, and hence the simulation succeeds on input x. This argument works
for any large enough n, and hence the theorem follows.

Arguably, Theorem 35 points to a weakness in the kind of simulations of promise
problems we consider. Note, though, that nonuniformity of the simulating class plays
a crucial role. In fact, a diagonalization argument as in the proof of the time hierarchy
theorem yields a language L ∈ P such that (E,L) �∈ quasiP-DPOLYLOG for each nice
code E. Thus, we view Theorem 35 as an indication of the crucial role nonuniformity
plays in Theorem 1 and in Nisan’s argument.

Nevertheless, it would be more pleasing if we could lift the restriction to a nice
code E in Theorem 1. However, we can prove unconditionally that P �⊆ quasiP-
MAPOLYLOG.

Theorem 36. P �⊆ [io− quasiP]-MAPOLYLOG.

Proof. Consider the language L = {x | x has an even number of 1’s}. We show
that L �∈ [io− quasiP]-MAPOLYLOG. The basic idea of the proof is that the behavior
of a polylogarithmic-time Merlin-Arthur machine cannot change very much if one
bit of the input is changed. On the other hand, changing a bit of the input makes
the difference between membership in L and nonmembership in L. Thus, given a
set comprising an input x �∈ L and all inputs at Hamming distance 1 from x (all
of which are in L), every polylogarithmic-time Merlin-Arthur machine must fail to
behave correctly on at least one input in the set. We observe that there is such a set
that can be generated in polynomial time.

For any purported simulation of L in MAPOLYLOG, we use the same weak refuter,
which outputs the string of all 0’s and all strings with exactly one 1. Clearly, the
weak refuter can do this in polynomial time. We show that for every machine M ,
either there is an input of length n produced by the weak refuter such that M does
not conform to (bounded two-sided error) Merlin-Arthur polylogarithmic time on
the input, or there is an input of length n such that M does not agree with L on
the input, for almost all input lengths n. If M rejects the all 0’s input or if the
computation of M does not conform to Merlin-Arthur polylog time on the all 0’s
input, then we are done. Otherwise, fix an accepting nondeterministic path p of M
on the all 0’s input. At most a polylogarithmic number of different input bits can
be queried by this path—assume without loss of generality that each of these is one
of x1, x2, . . . , xpolylog(n). Now consider the associated subtree of randomized nodes,
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namely the subtree of configurations accessible by M , given that it has made the
nondeterministic choices corresponding to the path p. At least a fraction 2/3 of the
paths in this subtree end in an accepting node. Since only a polylogarithmic number
of input bits can be queried on any one path, there is some i, i > polylog(n), for which
xi is queried on less than a fraction polylog(n)/n of the paths. Now, if xi is flipped,
p is still a valid path for M to take, since xi is not queried on this path. Moreover,
in the subtree of randomized nodes associated with p, at least a 2/3-polylog(n)/n
fraction of the paths still end in accepting nodes since they do not query xi, and all
the other bits are unchanged. Thus either the computation of M does not conform
to Merlin-Arthur polylog time on the input with all 0’s except a 1 in the ith position,
or at least 2/3 of the paths of this subtree end in accepting nodes, which means that
M accepts the input. In this case, M does not agree with L on the string with all 0’s
except a 1 in the ith position.

The result above holds even if we consider nonuniform MAPOLYLOG, i.e., the
machine is also allowed a quasi-polynomial amount of advice (to which random access
is available).

3.1.4. Simulations without restriction to a nice code. If we allow a slightly
larger simulating class than MAPOLYLOG in the statement of Theorem 1, we can lift
the restriction to a nice code, as follows.

Theorem 37. If EXP ⊆ SIZE(poly(n)), then P ⊆ quasiP-Σ2-POLYLOG.
Proof sketch. The proof follows the same techniques as the proof of Theorem 1,

except that instead of Theorem 31, we use the fact that P has proofs of polynomial
size verifiable in coNPOLYLOG. This holds because the tableau of the computation
of a deterministic Turing machine on an input is a valid proof if the input is in the
language, and local consistency of the tableau can be checked in coNPOLYLOG. Since,
for each L ∈ P, proofs verifiable in coNPOLYLOG exist for all inputs in L, not just
inputs that are codewords of a nice code, we do not require the restriction to a nice
code in the statement of the theorem.

Note that while P �⊆ quasiP-MAPOLYLOG, as shown in Theorem 36, showing
nonexistence of simulations in a slightly larger class or against somewhat weaker
adversaries would imply that EXP does not have polynomial-size circuits.

Analogously to Theorem 35, we can show that the consequent of Theorem 37
holds unconditionally if the simulating class is nonuniform Σ2-POLYLOG rather than
uniform Σ2-POLYLOG.

Theorem 38. P ⊆ quasiP-Σ2-POLYLOG/qpoly.
Proof sketch. As in the proof of Theorem 35, we use the fact that polynomial-time

weak refuters can only produce strings of low time-bounded Kolmogorov complexity.
Let L be a language in P. We define a nonuniform Σ2-POLYLOG machine which
simulates L. The advice string for M at input length n is an enumeration of all x ∈ L
of length n with Kt(x) � (log(n))1+ε, for some constant ε. The length of the advice

string is thus O(2(log(n))1+ε

). The machine M operates as follows: given an input x of
length n, it tests whether x is the same as some string for which membership in L is
coded into the advice string. This is done in Σ2-POLYLOG by existentially guessing
a segment of the advice string and universally verifying that the segment matches x
bit-by-bit.

Note that all strings of length n produced by a weak refuter have time-bounded
Kolmogorov complexity O(log(n)) and hence are accounted for by the advice string
for large enough n. Thus the simulation succeeds against all polynomial-time weak
refuters.
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3.2. Variants. We can modify the parameters in Theorem 1 in several ways.
First, under the same hypothesis that EXP ⊆ SIZE(poly(n)), we can trade off the
simulation time and the running time of the adversary.

Theorem 39. If EXP ⊆ SIZE(poly(n)), then for each L ∈ P, each nice code E
and each ε > 0, (E,L) ∈ quasiSUBEXP-MATIME(nε).

Proof. The proof is analogous to the proof of Theorem 1. For each ε and each
language L ∈ P, we define a simulation of (E,L) in MATIME(nε) as before. If there is
a language L and an ε > 0 such that there is some subexponential-time weak refuter
not fooled almost everywhere by the simulation, the concatenation of the proofs of
the strings output by the refuter is the truth table of a function that does not have
polynomial-size circuits.

Similarly, we can prove the following result.

Theorem 40. If EXP ⊆ SIZE(poly(n)), then for each ε > 0, P ⊆ quasiSUBEXP-
Σ2-TIME(nε).

We can also use weaker hypotheses than EXP ⊆ SIZE(poly(n)), and obtain weaker
simulations.

Theorem 41. If E ⊆ SIZE(2εn) for each constant ε > 0, then for each time
bound t = nΩ(1), each language L ∈ DTIME(t), each nice code E decidable in time
O(t polylog(t)), and each δ > 0, (E,L) ∈ quasiP-MATIME(tδ).

Note that by Theorem 32, quasi-linear time decidable nice codes exist.

If the assumptions in Theorems 1 and 41 hold only for infinitely many input
lengths (instead of almost all), the simulation is correct on infinitely many input
lengths.

It is not clear whether the consequent of Theorem 40, that for all ε > 0, P ⊆
quasiSUBEXP-Σ2-TIME(nε), is unlikely to hold. We show below that the negation of
this statement holds under a reasonable circuit lower bound assumption. Thus, we
obtain a partial converse to Theorem 40. Interestingly, the nonuniform methods used
to show circuit lower bounds for AC0 circuits [Ajt83, FSS84, H̊as86] come in useful
here.

Lemma 42. There is a constant ε > 0 such that P �⊆ [io−corr2/3]-Σ2-TIME(nε).

This result immediately follows from the inapproximability of PARITY by subex-
ponential-size constant-depth circuits [H̊as86]. Note that Σ2-TIME(nε) can be simu-
lated by depth-d circuits of size 2n

ε

for some fixed constant d.

The average case hardness result of Lemma 42 has the following consequence for
simulations against probabilistic weak refuters.

Theorem 43. There is a constant ε > 0 such that P �⊆ [io − quasi]BPP-Σ2-
TIME(nε).

Proof. Let L be a language in P such that there is an ε > 0 for which L �∈ [io −
corr]2/3-Σ2-TIME(nε). By Lemma 42, such a language L exists. Given a purported
Σ2-TIME(nε) simulation L′ of L, the strategy of the probabilistic weak refuter is
simple and, in fact, independent of L′: it just picks c = O(1) strings of input length
at random and outputs them. There is a large enough c so that, for at least 2/3 of the
random choices of the probabilistic adversary, at least one of the strings it outputs on
this random choice is in L� L′.

Our strategy now is to show that under appropriate circuit lower bound assump-
tions, the probabilistic weak refuter can be derandomized, i.e., replaced by a deter-
ministic weak refuter. The proof will use the following derandomization lemma, which
shows how probabilistic computations satisfying certain conditions can be derandom-
ized under assumptions related to the complexity of testing for the conditions.
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Lemma 44 (see [KvM02]). Let D(x, r) : {0, 1}n × {0, 1}p(n) → {0, 1}∗ be a
polynomial-time computable function and C(y, r) a predicate such that C(D(x, r), r) =
1 for at least 2/3 of the random strings r. Let C be computable in SIZEA(poly(n)),
for some oracle A. If E �⊆ SIZEA(poly(n)), then there is a set S of strings such that
S ∩ {0, 1}p(n) is enumerable in time 2n

ε

for any ε > 0, and for infinitely many n,
C(D(x, r′), r′) = 1 for at least one of the strings r′ of length p(n) in S.

Theorem 45. If E �⊆ SIZEΣ2−POLY(poly(n)), then there is a constant ε > 0 such
that P �⊆ quasiSUBEXP-Σ2-TIME(nε).

Proof. From the proof of Theorem 43, we know that there is a language L ∈ P,
a probabilistic weak refuter M , and a constant ε > 0 such that for any language
L′ ∈ Σ2-TIME(nε), M weakly distinguishes L from L′. We would like to transform
M to a deterministic weak refuter M ′ for which the same property holds, under
an appropriate assumption. Intuitively, this is a “derandomization” because we are
trying to eliminate the randomness of the machine M . However, the derandomization
needs to preserve the distinguishing properties of M . We apply Lemma 44 in order
to do this.

In our application of Lemma 44, p(n) is the number of random bits used by the
probabilistic weak refuter, the function D(0n, r) specifies which string of length n is
output by the refuter on a given sequence of random bits r, and the predicate C tests
whether a given string output by the refuter is in the symmetric difference of L and
L′. Since both L and L′ are in Σ2-POLY, C is computable in SIZEΣ2−POLY(poly(n)).
Thus, by the theorem, if E �⊆ SIZEΣ2−POLY(poly(n)), there is a set S of strings such
that S ∩ {0, 1}p(n) is enumerable in time 2n

ε

for each ε > 0 and D(0n, r′) is in the
symmetric difference of L and L′ for at least one of the strings r′ ∈ S ∩ {0, 1}p(n).
We define the deterministic weak refuter M ′ to first generate S ∩ {0, 1}p(n) on input
0n and output the set of strings {D(0n, r′) | r′ ∈ S ∩ {0, 1}p(n)}. It follows from the
properties of M and Theorem 44 that M ′ weakly distinguishes L from L′ infinitely
often. Also, if S ∩{0, 1}p(n) is enumerable in time 2n

ε

for any ε > 0, then by using an
appropriate enumerator for S ∩ {0, 1}p(n), M ′ can be defined to operate in time 2n

ε

for any ε > 0, and hence the theorem follows.
Theorem 45 can be considered a partial converse to Theorem 40.

3.3. Consequences. In a straightforward way, the fact that circuit lower bounds
for EXP imply derandomization translates to tradeoffs between simulations of P in low-
level complexity classes that fool uniform adversaries and deterministic simulations
of probabilistic classes.

Theorem 46 (see [BFNW93]). If EXP �⊆ SIZE(poly), then BPP ⊆ i.o.SUBEXP.
Corollary 2 follows from Theorems 1 and 46.
Theorem 47 (see [IW97]). If E �⊆ SIZE(2εn), for some ε > 0, then BPP ⊆ i.o.P.
Corollary 48. For each ε > 0 and time bound t = nΩ(1), for each language

L ∈ DTIME(t) and each nice code E decidable in time O(t polylog(t)), (E,L) ∈
quasiP-MATIME(tε), or BPP ⊆ i.o.P.

Because MATIME(t) is trivially contained in DSPACE(t), our results also gener-
alize the space-randomness tradeoffs first shown by Sipser [Sip88] and later extended
by Nisan and Wigderson [NW94] and Lu [Lu01]. Sipser showed that, conditioned
on the explicit constructibility of a certain kind of disperser (later shown to hold in
[SSZ98]), if there does not exist an ε < 1 such that for all polynomially bounded
t, DTIME(t) ⊆ [io − pseudoTally]-DSPACE(tε), then RP = P. Nisan and Wigder-
son [NW94] extended this tradeoff to other ranges of parameters, and Lu [Lu01]
obtained derandomizations of AM under the same assumptions. We consider simu-
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lations against polynomial-time adversaries producing inputs in a nice code E, while
the aforementioned papers considered only tally adversaries.4

3.4. Extensions. We can prove an analogue of Theorem 1 for space, as follows.
Theorem 49. If PSPACE ⊆ SIZE(poly), then for each language L ∈ LOGSPACE

and each logspace-decidable nice code E, (E,L) ⊆ quasiLOGSPACE-MAPOLYLOG.
Proof sketch. The proof follows along the same lines as the proof of Theorem 49,

except that we use the analogue of Theorem 31 for LOGSPACE, which states that for
each language L ∈ LOGSPACE and each logspace-decidable nice code E, (E,L) has
proofs of size poly(n) verifiable in coRPOLYLOG, and given x ∈ L ∩ E, a proof that
x ∈ L can be computed in logarithmic space.

4. Simulations of nondeterministic time against uniform adversaries.
Using the ideas of section 3, we can show tradeoffs between simulations of nonde-
terministic time against uniform adversaries and simulations of probabilistic time in
nondeterministic time against nonuniform adversaries. The translation is straightfor-
ward except for two issues.

The first issue is that the hypothesis NEXP �⊆ SIZE(poly) is not known to yield
subexponential nondeterministic simulations of probabilistic computations. What
does suffice for the latter is a way to generate in nondeterministic exponential time
the truth table of a function that requires large circuits. In particular, we have the
following result.

Proposition 50. If for each k there is an NP machine Mk that accepts all inputs
of the form 02n

, and outputs the truth table of a function on n inputs that does not
have circuits of size nk on each accepting path, then MA ⊆ NSUBEXP.

It is open whether NEXP �⊆ SIZE(poly) implies that we can generate in nondeter-
ministic polynomial time the truth table of a function that requires large circuits.5

However, the proof strategy of Theorem 1 actually yields the latter, so we can obtain
the derandomization results directly from it.

The other issue is that we can no longer assume that the ability to generate a
list of inputs, such that at least one of them is in the language and has no easy
witnesses, implies the ability to generate the truth table of a hard function. The
reason is that a nondeterministic computation cannot verify that it guessed witnesses
for all inputs on the list that are in the language, and therefore may miss the one
that has no easy witnesses. In order to remedy this problem, we weaken the notion
of uniform simulation by requesting that the adversary outputs a single input. In our
terminology, we switch from “quasi-” simulations to the weaker “pseudo-” simulations
considered in other papers.

The following result is analogous to Corollary 2, except that the i.o. quantifier is
switched: It appears in the simulation against refuters rather than in the derandom-
ization.

Theorem 51. For each language L ∈ NP and each nice code E, (E,L) ∈ [io −
pseudo]NP-MAPOLYLOG or MA ⊆ NSUBEXP.

Proof sketch. The simulation is the same as the one in Theorem 1, and the proof
uses the holographic proofs of [BFLS91]. The condition we need for generation of
proofs now is that a proof for x can be generated from an NP-witness in polynomial
time. If the simulation doesn’t succeed against a restricted nondeterministic strong

4[NW94] and [Lu01] actually considered simulations of exponential time, but this is equivalent
to simulations of polynomial time against tally adversaries.

5The converse is known to hold [IKW02].
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refuter, the strong refuter can guess correctly a codeword of E on which the simulation
fails, guess an accepting computation on that input (since the simulation fails on an
input only if the input is in the NP language and in E but not in the simulating
language), compute a proof from this computation, and output the proof. The failure
of the simulation implies that every proof output on an accepting computation of the
strong refuter is hard, and these hard proofs can be used to derandomize MA.

A tradeoff result involving simulations against unrestricted strong refuters can be
shown in a similar way to Theorem 37, as follows.

Theorem 52. NP ⊆ [io− pseudo]NP-Σ2-POLYLOG or MA ⊆ NSUBEXP.
This is a strengthening of a theorem in [Kab01], where simulations of NP in

deterministic time are considered.
Analogous to Corollary 48, we have the following.
Theorem 53. For each ε > 0, each language L ∈ NP, and each nice code E,

(E,L) ∈ [io− pseudo]NP-MATIME(nε) or MA ⊆ NP.
Note that we are not able to switch the quantifiers a.e. and i.o. as we were able

to in the deterministic case of Corollaries 2 and 48. The reason is the same as that
for why we can only deal with strong refuters and not with weak ones. However, as
in [IKW02], the simulation of MA can use a small advice string to cue it to an input
on which the refuter succeeds.

Theorem 54. For each language L ∈ NP and each nice code E, (E,L) ∈
pseudoNP − MAPOLYLOG, or else for each ε > 0, MA ⊆ i.o.[NTIME(2n

ε

)/nε].
Using upward translation, we obtain a “gap” theorem for NEXP, as follows.
Corollary 55 (see [IKW02]). NEXP = MA, or else for each ε > 0, MA ⊆

i.o.[NTIME(2n
ε

)/nε].
By standard diagonalization techniques, the clauses in Corollary 55 are exclusive.
Under a slightly stronger hypothesis than in Theorem 51, we can derandomize

the class AM. First, we need the following result from [KvM02] showing that certain
circuit lower bounds imply a derandomization of AM.

Theorem 56. If EXP �⊆ i.o.SIZESAT(poly(n)), then AM ⊆ NSUBEXP.
We obtain our derandomization result for AM using a variation on the easy witness

method where, for L ∈ NP, an “easy” proof that x ∈ L is a proof that has small SAT-
oracle circuits, when the proof is considered as the truth table of a function.

Theorem 57. NP ⊆ [io− pseudo]NP-Σ3-POLYLOG or AM ⊆ NSUBEXP.
Proof sketch. We make a modification to the simulation of Theorem 51. We

will use proofs verified by “local checkability,” as in the proof of Theorem 37. Given
a language L ∈ NP, the simulating machine guesses a SAT-oracle circuit of small
size, and then verifies that this circuit is the truth table of a valid proof by using
the local checkability algorithm and querying the circuit when it needs a bit of the
proof. The problem is that the machine also needs to be able to answer SAT queries
in order to evaluate the circuit. This can be done using one additional alternation, by
guessing the queries and answers to queries at the beginning of a computation path
and verifying them on a parallel computation path. Since SAT is in nondeterministic
quasi-linear time and the queries are of size O(polylog(n)), the overhead incurred is
minimal.

5. Quantitative simulations. In this section, we consider a quantitative ver-
sion of simulation, where a simulation is guaranteed to work on a certain number of
inputs of any given input length. The simulations in previous sections correspond
to the following situation: A simulation may fail on many inputs, but it is infeasible
to find a place where this happens. The situation here is different: A simulation
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can fail on only a limited fraction of the inputs, but it may be easy to find an in-
put on which the simulation makes a mistake. By using the easy witness method and
coupling simulations together on an input-by-input basis rather than an input-length-
by-input-length basis, it is possible to prove nontrivial tradeoffs for certain ranges of
the parameters. More precisely, if an input x in a language L ∈ P does not have a
compressible proof, we can use its proof as the truth table of a hard function for the
pseudorandom generator of Theorem 24 to derandomize the computation of a BPP
machine on the same input x.

Our results are based on the following lemma, which is a corollary to Theorem
31.

Lemma 58. For each language L ∈ P and each polynomial-time invertible nice
code E, (E,E(L)) has proofs of size poly(n) verifiable in coRPOLYLOG, where E(L) =
{E(x) | x ∈ L}. Furthermore, given x ∈ L, a proof that E(x) ∈ E(L) is computable
in time poly(n).

Theorem 59. Fix a function s : N → [0, 1] such that s(n)2n is an integer for
all n ∈ N . There exists t = poly(n) such that P ⊆ corrs-MATIME(t) or BPP ⊆
[io− corr1−s]-P.

Proof. If for each polynomial t there is a language L ∈ P such that L �∈ corrs-
MATIME(t), we will show how to simulate BPTIME(t′) in [io − corr1−s]-P for each
polynomial-time bound t′. Given t′, let t = max(nd, (t′)k), where nd is the time
required to compute E(x), given x of length n, and k is a constant to be determined
later. By assumption, there is a language L ∈ P such that L �∈ corrs-MATIME(t).

Consider the following simulation for L: For each x, compute E(x), guess a circuit
of size

√
t, and check, using the probabilistic polylogarithmic-time verifier for E(L),

whether the truth table defined by the circuit is a proof that E(x) ∈ E(L). By the
properties of the proof system for E(L), for any input x which is not in E(L) or
has proofs with circuits of size �

√
t, this simulation operates in Merlin-Arthur time

t (since there are only polylogarithmically many queries made to the circuit and it
takes time at most

√
t to answer a query) and does not make an error on x.

By hypothesis, the simulation makes an error on x for at least a 1 − s fraction
of strings x of length n for infinitely many input lengths n. We show how to use
the failure of the simulation to obtain a deterministic simulation of any language R
accepted by a probabilistic polynomial-time machine M running in time t′. Given
an input x, compute a proof P (x) that x is in L (using Lemma 58). Use P (x) as
a hardness source in Theorem 24 to produce a polynomial-size list of pseudorandom
strings. Run M on each of these strings and output the majority result as the answer.

We show that this works if we set k large enough, e.g., k = 4c, where c is the
constant in the statement of Theorem 24. For each string x of length n, there are
two possible cases. The first is that P (x) has no circuits of size

√
t, in which case by

our choice of k, it can be used as a hardness source for the pseudorandom generator
of Theorem 24 to produce (t′)2 pseudorandom bits that fool circuits of size (t′)2, and
can therefore be used for the derandomization of BPTIME(t′) algorithms (which can
be simulated by circuits of size (t′)2). The second case is that P (x) has circuits of size√
t, which implies that the simulation of L in MATIME(t) does not make an error on

input x. Since there are infinitely many input lengths n such that the simulation of L
in MATIME(t) fails on at least a fraction 1− s of inputs of length n, the simulation of
any BPTIME(t′) language in P succeeds on at least a fraction 1− s of inputs of these
input lengths, proving the theorem.

Note that the i.o. and a.e. quantifiers can be interchanged in the preceding theo-
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rem.

We would like to increase the advantage for the deterministic simulation of prob-
abilistic time, given that the simulation of deterministic time does not succeed with
a certain other advantage. We can show how to do this for certain values of the
parameter s. Recall that we obtain our deterministic simulation of a BPP machine R
on input x by running the pseudorandom generator of Theorem 24 using a proof of
membership of x in a language L ∈ P as the truth table of a supposedly hard function
f . Whenever x does not have a compressible proof, the function f is indeed hard, and
so the pseudorandom generator succeeds in derandomizing R on input x. In order
to succeed on more inputs than just those without compressible proofs, we will not
just use the proof for x but also the proofs of a polynomial number of other inputs y
of the same length as x. If at least one of them does not have a compressible proof,
the concatenation of the polynomially many proofs will be incompressible enough and
define a hard function f that we can successfully use in the pseudorandom generator
of Theorem 24 to derandomize R on input x. We would like to pick the y’s such that,
for many inputs x, they hit the inputs of length n without compressible proofs. In
order to do so, we pick the y’s as the neighbors of x in an appropriate expander graph.

The formal proof will use the following two lemmas. The first one states the
property that forms the basis for amplification using expanders, and the second one
provides a family of expanders with the properties we need.

Lemma 60 (see [KPS85]). Let G = (V,E) be a D-regular graph with V = {0, 1}n
and second largest eigenvalue λ < D9/10. Let s < 1 be a constant. Let A ⊆ V be a
set of size greater than s2n, and let N(A) denote the neighborhood of A, i.e., the set
of vertices of G with at least one neighbor in A. Then |N(A)| � (1 −D−1/10/s)2n.

Lemma 61 (see [KPS85]). There is an explicit family of graphs {G}n such that
Gn has 2n vertices and is D = poly(n)-regular with second largest eigenvalue less than
D9/10. Given a vertex v of Gn, the neighbor set of G is computable in time poly(n).

Theorem 62. Let s < 1 and c > 1 be constants. There is a polynomial time
bound t such that P ⊆ corr1−s-MATIME(t) or BPP ⊆ [io− corr1−1/nc ]-P.

Proof. We improve the simulation of BPTIME(t′) in the proof of Theorem 59 by
using the amplification technique of [KPS85], while using the same simulation of P
by MATIME(t).

The idea is to interpret the set of strings of length n as the vertices of a D-regular
expander G with second largest eigenvalue less than D9/10, where D is polynomial in
n. Let {G}n be an explicit family of graphs as in Lemma 61. Given an input string
x, the set of neighbors yi, i = 1, . . . , D, of x in Gn is determined in polynomial time.
The concatenation of the strings P (yi) is used as hardness source for the deterministic
simulation (rather than the string P (x) as in the proof of Theorem 59).

Let t depend on t′ in the same way as in the proof of Theorem 59. If P �⊆ corr1−s-
MATIME(t), there is a language L such that the simulation in the proof of Theorem
59 makes an error on at least an s fraction of the inputs for infinitely many input
lengths n. Let us call a string y of length n “good” if P (y) can be used as a hardness
source in the deterministic simulation of a language R ∈ BPTIME(t′). It follows from
our hypothesis on L that at least an s fraction of the strings of length n are good for
infinitely many input lengths n. Fix an n for which at least an s fraction of the strings
are good, and let An be the set of good strings. By Lemma 60, |N(An)| � (1−1/nc)2n,
where c is a constant depending on D. Now note that the deterministic simulation
of R succeeds on all strings in N(An). Thus the simulation succeeds on at least an
1 − 1/nc fraction of strings of length n for infinitely many n, proving the theorem.



HOLOGRAPHIC PROOFS AND DERANDOMIZATION 83

Note that the quantifiers a.e. and i.o. in the statement of Theorem 62 can be
interchanged.

The advantage of the simulation of BPP can be traded off against the time required
for the simulation, but we do not pursue this direction here. Instead, we would like to
increase the advantage of the simulation even further while maintaining a polynomial
running time. We can do so, provided that we switch the a.e. and i.o. quantifiers. In
that case, we are no longer restricted in our search for inputs without compressible
proofs to y’s of the same length as the input x on which we want to simulate the BPP
machine R, but we can use y’s of length polynomially smaller than |x|. That allows us
to use dispersers instead of expanders, and obtain an advantage exponentially close
to 1.

Let us first recall the notion of a disperser. An (N,M, T )-disperser is a bipartite
multigraph G = (V,W,E) with |V | = N and |W | = M having the property that any
subset of V having at least T vertices has a neighbor set of size at least 2M/3.

We will use the dispersers provided by the following lemma.

Lemma 63 (see [SSZ98]). For all a, b, 1 � a > b � 0, for any T � 2log(N)a and

M � 2log(N)b , there is an explicit (N,M, T )-disperser G = (V,W,E) such that each
vertex in V has degree polylogarithmic in N and, for any vertex in V , the neighbor
set of the vertex can be computed in time polynomial in log(M + N) and the size of
the neighbor set.

Proof of Theorem 3. The idea of the proof is similar to the idea of the proof of
Theorem 62, except that we use disperser-based amplification rather than expander-
based amplification to achieve stronger parameters in this case. We simulate a BPP
algorithm R on input x of length n using the fact that the simulation of some lan-
guage L ∈ P by Merlin-Arthur machines operating within some fixed polynomial-
time bound has failed for at least 1/3 of the strings on every input length smaller
than n, specifically for input length nδ, δ < ε. By Lemma 63, there is an explicit

(2n, 2n
δ

, 2n
ε

)-disperser G = (V,W,E) such that neighbor sets of vertices in V are effi-
ciently computable. We can define a deterministic polynomial-time machine S which
simulates R by interpreting its input x as a vertex in V , computing the neighbors
x1, . . . , xpoly(n) of x in G, computing proofs P (x1), . . . , P (xpoly(n)) for these strings,
concatenating the proofs together, and using the resulting string as a hardness source
for the derandomization of R. It follows from the properties of the disperser G that
S works correctly on all but 2n

ε

inputs of length n, for each n.

Theorem 3 is a uniform strengthening of the following result by Goldreich and
Wigderson [GW02]. Recall that MATIME(t) ⊆ SIZESAT(poly(t)).

Theorem 64 (see [GW02]). There is a polynomial time bound t such that P ⊆
[io− corr2/3]-SIZESAT(t) or, for each ε > 0, BPP ⊆ corr1−2nε/2n-P.

Finally, we show a consequence of the hypothesis that P cannot be simulated
by MATIME(t), where the notion of simulation used is the conventional one. Before
stating and proving our result, we state the almost-everywhere hierarchy theorem for
deterministic time [GHS91], which is used in the proof.

Lemma 65 (see [GHS91]). Let T (n) and t(n) be constructible time bounds such
that t(n) log(t(n)) = o(T (n)). Then there is a language D in DTIME(T (n)) such that
neither D nor D has an infinite subset in DTIME(t(n)).

Theorem 66. There is a polynomial time bound t such that P ⊆ MATIME(t) or
DTIME(T ) �⊆ ZPP for any superpolynomial time bound T .

Proof. We shall show that, under the assumption that there is no polynomial-time
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bound t such that P ⊆ MATIME(t), for every language R in ZPP, either R has an
infinite subset in P or R has an infinite subset in P. Given this, the consequence that
DTIME(T ) �⊆ ZPP follows from Lemma 65.

We follow the proof of Theorem 59 for s(n)2n = 2n − 1. Let R be a language in
ZPP accepted by a zero-error probabilistic Turing machine M running in time t′. Let
L be a language in P that is not in MATIME(t) for t sufficiently larger than t′ but
still polynomial, as set in the proof of Theorem 59. Since L �∈ MATIME(t), there is an
infinite set X of strings x such that P (x) is a good hardness source for the simulation
of M on input x: Using P (x) as a hardness source in Theorem 24 yields a polynomial
length list of strings, at least one of which is a ZPP witness for M on input x. Since we
can check the validity of ZPP witnesses for M on input x in polynomial time, we have
an infinite set X in P for which we can decide the membership in R in polynomial
time. If R∩X is infinite, it is an infinite subset of R in P; otherwise, R∩X is infinite
and forms an infinite subset of R in P.

6. Unconditional simulations. The trivial deterministic simulation of a time
t probabilistic multitape Turing machine computation runs in time Ω(2t). All pre-
viously published o(2t) deterministic simulations work only under unproven lower
bound assumptions. This raises the question whether anything nontrivial can be
shown unconditionally.

The oracle relative to which there is a constant c such that DTIME(2cn) ⊆
BPTIME(n) [Hel86, KV96] can be considered a negative indication in this connec-
tion. Nevertheless, we show that nontrivial deterministic simulations do exist for
multitape Turing machines, as well as for restricted formulae and NC1 circuits.

As explained in the introduction, our technique involves recycling random bits.
Essentially, a large initial prefix of the random string used by the probabilistic algo-
rithm can be interpreted as a randomness source for an extractor to produce additional
almost-random bits and thus save on randomness later in the computation. We refer
to section 1.3 for a more detailed intuitive account of our approach. We now proceed
with the formal proof.

For the sake of economy of presentation, we use the single extractor family given
by Theorem 26 in the proofs of our results for Turing machines and NC1 circuits. For
each of our results, there are earlier constructions that have the properties needed
for the proof of that particular result, but the construction from Theorem 26 has all
these properties combined.

Theorem 67. For any integers k > 0 and β > 0, there is a constant δ >
0 such that for each language L accepted by a probabilistic k-tape Turing machine
with alphabet size β and constant error bound ε < 1/2 in time t, L is accepted by a
probabilistic Turing machine with error bound ε that runs in time poly(t) and uses
(1 − δ)t random bits.

Proof. Let M be a multitape probabilistic Turing machine with k tapes and
alphabet size β operating in time t and accepting the language L(M) with error
bounded by ε. Let ε′ be a small positive constant such that ε + ε′ < 1/2. We
construct a probabilistic Turing machine M ′ accepting L(M) with error bound ε+ ε′

and operating in time poly(t) that uses only (1−δ′)t+O((log(t))3) < (1−δ)t random
bits, where δ′ is a constant to be determined later, and δ is any positive constant less
than δ′. Given an input x, M ′ begins by simulating M for (1 − δ′)t steps. It stores
the random bits r it uses on a separate tape. Let Cr(x) be the configuration that M ′

attains after using the random bit sequence r. By Theorem 26, there is an explicit
(δ′t, ε′/2) extractor Ext : {0, 1}(1−δ′)t × {0, 1}c(log(t))3 → {0, 1}δ′t computable in NC1
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and hence in polynomial time. M ′ applies Ext to arguments r and l for a random
seed l ∈ {0, 1}c(log(t))3 and continues the simulation of M from Cr(x) on the string
Ext(r, l) instead of using a random string of length s = δ′t. M ′ operates in poly(t)
time and uses (1 − δ′)t + O((log(t))3) random bits. We show below that, when δ′ is
chosen appropriately, M ′ has error bound ε + ε′ and accepts x iff M does.

The basic observation that we need is that when M is a multitape Turing machine,
only ds bits of the configuration Cr are relevant to the last s steps of the computation
of M , where d = 2(k + 1) log(β). If we think of the random string r as inducing a
function from the last s random bits used by the computation to {0, 1}, the observation
above means there can be at most 2ds such functions. Let us denote the function
induced by random string r by fr. More precisely, given a random string r, let
fr : {0, 1}s → {0, 1} be the function that maps a string r′ to the outcome of M
on the random string R = rr′. Think of the function fr as a random variable on
the sample space defined by r. Now we consider two cases for any fixed function
f : {0, 1}s → {0, 1} induced by some random string r. Either f = fr with probability
at least ε′/(2ds+1) over the random strings r, or it does not. Let us call an f satisfying
the first case a “probable” f and an f satisfying the second case an “improbable” f .

If f is probable, the distribution Df on {0, 1}(1−δ′)t, which is uniform on all strings
r such that f = fr, has high min-entropy, and we can approximate the probability
(over the set of all its inputs) that f is 1 by extracting almost-random bits from
Df and evaluating f on the extracted bits. When f is improbable, we can make no
guarantees about approximating the probability that f is 1, but by the observation
in the previous paragraph, there are at most 2ds such functions f , and we can bound
the total error in this case. We now work out the argument in more detail.

Let p be the probability that M accepts on input x, and p′ the probability that
M ′ accepts on input x. We wish to bound the difference |p− p′|.

|p− p′| =
∣∣∣ER∈{0,1}t [M(x,R)] − ER∈{0,1}(1−δ′)t+c(log(t))3 [M ′(x,R)]

∣∣∣(1)

=
∣∣∣Er [Er′ [fr(r

′)]] − Er

[
El∈{0,1}c(log(t))3 [fr(Ext(r, l))]

]∣∣∣(2)

�
∑

f :{0,1}s→{0,1}
Pr
r

[f = fr] · |Er′ [f(r′)] − Er←Df ,l[f(Ext(r, l))]|(3)

=
∑

f probable

Pr
r

[f = fr] · |Er′ [f(r′)] − Er←Df ,l[f(Ext(r, l))]|

+
∑

f improbable

Pr
r

[f = fr] · |Er′ [f(r′)] − Er←Df ,l[f(Ext(r, l))]|(4)

�
∑

f probable

Pr
r

[f = fr] · ε′/2 +
∑

f improbable

Pr
r

[f = fr] · 1(5)

� ε′

2
+

2dsε′

(2ds+1)
(6)

= ε′.

Equation (2) follows from (1) by splitting up the computations of M and M ′ into the
first (1−δ′)t steps and the rest. Then (3) follows from (2) by grouping terms differently
and applying the triangle inequality. (4) follows from (3) just by considering sums for
probable and improbable f ’s separately.

The second summation term in (5) follows from the second summation term in
(4) because the difference in expectations of two (0,1)-random variables is bounded
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above by 1. We describe how to choose δ′ so that the first summation term in (4) is
bounded by the first summation term in (5). If f is probable, the probability over r
that r induces f is at least ε′/2dδ

′t+1, and since Df is uniform over all such r, Df has
min-entropy at least (1− δ′)t− (dδ′t+ log(1/ε′) + 1). If we set δ′ < 1/(d+ 2), Df has
min-entropy at least δ′t for large enough t, and by assumption on the extractor Ext,
the distribution Ext(r, l), where r is chosen from Df and l from Uc(log(t))3 , is ε′/2-
close to uniform. Hence, the distribution f(Ext(r, l)) is ε′/2-close to the distribution
f(r′), where r′ is chosen from the distribution Uδ′t, and the difference in expectations
is bounded above by ε′/2.

The first term in (6) follows from the first summation term in (5) because the
events fr = f1 and fr = f2 are disjoint for distinct functions f1, f2. To see that the
second term in (6) follows from the second summation term in (5), note that there
are at most 2ds bad f ’s, and for each of these the probability over r that r induces f
is less than ε′/2ds+1.

Thus M ′ accepts L with error bound ε+ε′. By using the error reduction technique
of [KPS85] (as in section 5), which does not use additional random bits, we obtain a
simulating machine M ′ with the same error bound as the simulated machine.

Theorem 4 follows from Theorem 67 by running over all random strings of length
(1 − δ)t. Using the efficient error reduction of [CW89], we obtain the following.

Corollary 68. For any integers k > 0 and β > 0, there is a constant γ > 0
such that for each language L accepted by a probabilistic k-tape Turing machine with
alphabet size β in time t with a constant error bound, L is accepted by a probabilistic
multitape Turing machine using t random bits and running in time poly(t) with error
bound 2−γt.

Theorem 67 works in rather restricted situations. For one, the argument does not
work for probabilistic classes defined by RAMs. The essential condition is that the
machines defining the complexity class have polynomial “vicinity”; i.e., the cardinal-
ity of the set of positions in any given configuration which can be accessed within s
time steps is bounded above by a polynomial in s. This is true, for instance, of multi-
dimensional Turing machines, but not for more general machines such as RAMs or
pointer machines. Secondly, the argument works only when the probabilistic algo-
rithm uses as much randomness as time. We can handle the situation where the
number of computation steps between two consecutive accesses to the random tape
is bounded, but not the general case in which the computation takes time linear in
the number of random bits used, with a constant factor larger than 1. A further step
would be deterministic simulations of randomized computations that run in time t
and use r random bits, where the simulation runs in time o(2r) · poly(t). However, as
explained in section 1.3, this would imply new lower bounds in case r = o(t).

Our approach works for randomized formulae and NC1 circuits but not for general
randomized circuits. Recall that a randomized circuit takes two inputs—a “random
input” corresponding to the random bits used by the circuit and the “actual input,”
such that for each setting of the actual input, the circuit either accepts with probability
at least 2/3 or rejects with probability at least 2/3 over the choices of the random
input.

The reason why our strategy fails for general circuits is that all but a logarithmic
number of random inputs may need to be set on a given actual input in order to
significantly reduce the size of the circuit. Formulae do not exhibit that problem.
If we set all but the rε least popular variables occurring in a formula of size t on r
variables, the resulting formula is of size no more than s = t/r1−ε. Since the number
of formulae of size s on rε inputs is bounded by 2O(εs log r), we have the kind of
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bound we need on the number of different future behaviors for our earlier argument,
provided s log r is sufficiently less than r, or equivalently, that t is sufficiently less
than r2−ε/ log r. Thus, we can simulate randomized formulae of less than quadratic
size by picking the r − rε most popular random input bits uniformly at random, and
extracting the rε remaining ones using the extractor from Theorem 26. Since that
extractor is computable by a formula of polynomial size, the overall simulation can
be implemented by a formula of polynomial size with rε fewer random input bits than
the original formula.

Moreover, finding the rε least popular variables in a formula can be done by
counting the number of occurrences of each variable, and sorting the variables using
that count as the key. Since all these operations run in logspace (even in TC0)
and logspace computations compose, the overall transformation preserves logspace
uniformity.

A similar argument works for randomized NC1 circuits of restricted depth because
of the standard conversion between NC1 circuits of depth d and formulae of size 2Θ(d).
We now provide more details for that case.

Theorem 69. For each constant ε > 0, for each LOGSPACE-uniform family of
randomized NC1 circuits using r random bits of depth (2− ε) log(r), there is an equiv-
alent LOGSPACE-uniform family of randomized NC1 circuits using r − rε/2 random
bits.

Proof. Let {Cn} be a family of randomized NC1 circuits taking a random input
of length r and having depth (2 − ε) log(r). We first describe how to construct an
equivalent circuit family {C ′

n} that uses less randomness, and then explain how the
uniformity of the circuit family can be preserved.

Fix an integer n. The idea of the simulation is to set all but rε/2 of the random
input variables of Cn to random bits, and then extract values for the remaining rε/2

random bits using the extractors from Theorem 26. To argue that this works, we
consider a representation of Cn which is semantically equivalent but easier to work
with, namely a formula. By standard techniques, Cn can be transformed into a
formula Fn of size 2(2−ε) log(r) = r2−ε. This formula contains variables for both the
random input bits and the actual input bits. Let m be the number of occurrences
of actual input variables in the formula. Now we need to choose values for some of
the random input variables of the formula so that the formula decreases in size by a
polynomial fraction when those variables are set. We do this by ranking the random
input variables in decreasing order of frequency of occurrence in the formula Fn and
choosing the rε/2 least frequently occurring variables to be left unset. Setting the
other random input variables and the actual input variables always reduces the size
of the formula to rε/2(r2−ε −m)/r � r1−ε/2 or less. Thus, as explained in the sketch
before the proof, the number of different residual formulae is small enough to carry
through an argument similar to the one in the proof of Theorem 67—the extractor
from Theorem 26 can be successfully applied to recycle the randomness of the set
random input variables and estimate the probability that the residual formula is 1.

Since the extractor of Theorem 26 can be evaluated in logarithmic depth, it is
clear that the new circuit C ′

n has logarithmic depth. C ′
n has a slightly larger error

bound than Cn, but this can be reduced by a constant factor by doing expander-based
amplification [BYGW99].

In order to argue the logspace uniformity of the resulting family {C ′
n}, the critical

step is determining the rε/2 least popular random input variables in Fn. Note that
the transformation from Cn into Fn can be performed in logspace. Once we have Fn,



88 DIETER VAN MELKEBEEK AND RAHUL SANTHANAM

we can follow the strategy outlined before: Count the number of occurrences of each
random input variable, rank the variables in increasing order of that count, and select
the first rε/2. The overall procedure runs in logspace since each of its components
does.

Finally, we wish to draw attention to the fact that the proof of Theorem 69
is a rare example of a “non–black-box” technique; i.e., the deterministic simulation
does not merely query the results of executing the probabilistic circuit on certain
random strings but also takes the structure of the circuit into consideration. More
sophisticated use of these techniques may even yield simulations that beat oracle
constructions. But the specific technique used here does not seem capable of reducing
the amount of randomness by more than a factor of 1/2. This is because the number
of future behaviors on the last s random bits is typically at least 2s, which implies
that we need to extract s bits of randomness from the first r − s random bits. The
latter is impossible if s > r/2. Iterated applications of the idea seem difficult because
the bound of 2O(s) on the number of future behaviors typically does not hold for the
next s steps but only for the last s.
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input in a structured way. We present an algorithm that estimates with high probability the weight
of a Euclidean minimum spanning tree of a set of points to within 1 + ε using only ˜O(
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queries for constant d. The algorithm assumes that the input is supported by a minimal bounding
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Key words. sublinear algorithms, minimum spanning tree

AMS subject classifications. 68W25, 68W20

DOI. 10.1137/S0097539703435297

1. Introduction. As the power and the connectivity of computers increase and
the cost of memory becomes cheaper, we have become inundated with large amounts of
data. Although traditionally linear time algorithms were sought to solve our problems,
it is no longer clear that a linear time algorithm is good enough in every setting. The
question then is whether we can solve anything of interest in sublinear time, when the
algorithm is not even given time to read all of the input data. The answer is yes; in
recent years, several sublinear time algorithms have been presented that solve a wide
range of property testing and approximation problems.

In this paper we consider the problem of estimating the weight of a minimum
spanning tree, where the input is a set of points in the Euclidean space R

d. Since
the location of a single point may dramatically influence the value of the weight of
the Euclidean minimum spanning tree (emst), we cannot hope to get a reasonable

∗Received by the editors September 26, 2003; accepted for publication (in revised form) December
1, 2004; published electronically September 8, 2005. A preliminary version of this paper appeared
in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD,
2003, ACM, New York, SIAM, Philadelphia, pp. 813–822.

http://www.siam.org/journals/sicomp/35-1/43529.html
†Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102

(czumaj@cis.njit.edu). This author’s research was supported in part by NSF grant CCR-0105701.
‡School of Computer Science, Simon Fraser University, Vancouver, BC V5A 1S6, Canada (funda@

cs.sfu.ca). Part of this work was done while the author was at NEC Research, Princeton, NJ 08540.
§Department of Computer Science, University of Chicago, Chicago, IL 60637 (fortnow@cs.

uchicago.edu). Part of this work was done while the author was at NEC Research, Princeton, NJ
08540.

¶Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
(avner@cs.toronto.edu). Part of this work was done while the author was at NEC Research, Prince-
ton, NJ 08540.

‖Department of Computer Science, University of Haifa, Haifa, Israel (ilan@cs.haifa.ac.il). Part of
this work was done while the author was at NEC Research, Princeton, NJ 08540.

#MIT CSAIL, Cambridge, MA 02139 (ronitt@theory.csail.mit.edu). Part of this work was done
while the author was at NEC Research, Princeton, NJ 08540.

††Heinz Nixdorf Institute and Faculty of Computer Science, Electrical Engineering and Mathe-
matics, University of Paderborn, D-33102 Paderborn, Germany (csohler@uni-paderborn.de). This
author’s research was partly supported by DFG grant Me 872/8-1 and by EU grant IST-1999-14186
(ALCOM-FT).

91



92 CZUMAJ ET AL.

approximation in sublinear time with access only to the locations of the points. This
is true even when we consider probabilistic algorithms. However, it is often the case
that massive databases, particularly in a geometric context, contain sophisticated data
structures on top of the raw data that support various forms of queries. Examples of
such queries are the nearest neighbor of a point, or the point with the highest value in
a coordinate. Consequently, in this paper, we assume that algorithms have access to
certain commonly used data structures which aid the algorithm in its computation.
This may be considered a motivation for maintaining such data structures, particularly
if they aid in other tasks as well.

1.1. Results. In this paper we describe three algorithms for estimating the
weight of an emst over n given points in a Euclidean space R

d, where the algorithms
are given access to basic geometric data structures supporting the input. Throughout
the paper we assume that d is a constant, though our analysis can be easily carried
over for arbitrary values of d. It should be noted that our algorithms do not supply
a low weight spanning tree (which takes linear space to represent) but only estimate
its weight.

We first consider the case when the algorithm is given, in addition to access
to the input point set, (1) a minimal bounding cube that contains all points in the
input set and (2) access to an orthogonal range query data structure which, given an
axis-parallel cube, answers whether there is an input point within the cube. In this
model, we give a deterministic O(n1/2)-time algorithm for the two-dimensional case
that outputs a value w such that 1

α emst(P )−Ln−c ≤ w ≤ α emst(P )+Ln−c, where

α = Θ(n1/8 log n), L is the side length of a minimal axis parallel bounding cube of
the point set, and c is an arbitrary constant. We also show that any deterministic
algorithm that uses o(n1/2) orthogonal range queries cannot significantly improve the
quality of approximation.

We next consider the case where, in addition to the above data structures, we are
also given (3) access to a cone nearest neighbor data structure, which, given a point
p and a cone C, returns a nearest point to p in the cone p+C. Our second algorithm
combines the extra power of the cone nearest neighbor data structures with ideas from
the recent randomized sublinear-time algorithm for estimating the minimum spanning
tree (mst) in general graphs [10]. The algorithm outputs a value which, with high
probability, is within a 1+ε factor of the emst, and it runs in O(Λ/ε3) time, where Λ
is the spread of P (the ratio of the maximum and minimum distances between points
in P ); observe that Λ can be arbitrarily large.

Our main contribution is the third algorithm that does not have any dependency
on Λ and requires only cone approximate nearest neighbor queries, which we define
in the next section. For a constant d, the algorithm runs in Õ(

√
n poly(1/ε)) time and

outputs an approximation of the emst weight to within a multiplicative factor of 1+ε
with high probability. The algorithm combines the ideas from our first two algorithms.
It partitions the input points into components and estimates the emst separately by
considering pairs of points that lie in the same component and pairs of points that
belong to different components. To estimate the emst within components, we use
an extension of our second algorithm. To estimate the weight required to connect
the components we use a variant of our first algorithm. The combination of these
two algorithms leads to a significant improvement in the quality of approximation
(compared to the first algorithm) and in the running time (compared to the second
algorithm).

We notice also that our algorithms lead to sublinear-time (2 + ε)-approximation
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algorithms for two other classical geometric problems: Euclidean TSP and the Eu-
clidean Steiner tree problem. These results follow from the well-known relationship
between the weight of emst and the weight of the Euclidean TSP and of the Euclidean
Steiner tree (see, e.g., [24]). Indeed, it is known that in metric spaces the weight of
the Euclidean TSP is between the weight of the emst and twice the emst weight.
Similarly, it is known that in metric spaces the emst weight is between the weight
of the Steiner tree and twice its weight. On the plane, one can improve this result
by using the fact that the emst weight is upper bounded by at most 2/

√
3 times the

weight of the Euclidean Steiner tree [13].

1.2. Relation to previous works. The emst problem is a classical problem in
computational geometry and has been extensively studied in the literature for more
than two decades. It is easy to see that to find the emst of n points, O(dn2) time
suffices, by reducing the problem to finding the mst in dense graphs. In the simplest
case where d = 2 (on the plane), Shamos and Hoey [22] show that the emst problem

can be solved in O(n log n) time. For d ≥ 3, no Õ(n)-time algorithm is known, and it
is a major open question whether an O(n log n)-time algorithm exists even for d = 3
[16]; in fact, it is even conjectured (see, e.g., [16]) that no o(n4/3)-time algorithm
does exist. Yao [26] was the first who broke the O(n2)-time barrier for d ≥ 3 and

designed an Õ(n1.8)-time algorithm for d = 3. This bound has since been improved,
and the fastest currently known (randomized) algorithm achieves the running time of

Õ(n4/3) [2] for d = 3 (and the running time tends to O(n2) as d grows). Significantly
better bounds can be achieved if one allows the output to be approximated. Callahan
and Kosaraju [7] give a O(n log n + n log(1/ε) ε−d/2)-time algorithm that finds an
approximate emst to within a multiplicative factor of 1 + ε .

Our algorithms rely on a recent randomized algorithm of [10] that, given a con-
nected graph in adjacency list representation with average degree d, edge weights in
the range [1, . . . ,W ], and a parameter 0 < ε < 1

2 , approximates, with high proba-

bility, the weight of an mst in time Õ(dW ε−3) within a factor of 1 + ε. The time
bound does not directly depend on the number of vertices or edges in the graph. We
emphasize, however, that our representation is quite different, and in general would
give a graph with average degree n. Therefore, a direct application of this result to
the emst problem does not lead to a sublinear-time algorithm.

We also note that very recently a similar approach which also partitions the input
points on a grid similar to that used in our paper has been used by Indyk [18] in the
problem of approximating the emst in the streaming model in one pass. He showed
that the emst of n points from {1, . . . ,Δ}d is approximated to within an O(d log Δ)
factor using O(d log2 Δ) bits of storage for dynamic data streams through hierarchi-
cally well-separated trees defined over a set of grids over the input points. In another
recent work, Czumaj and Sohler [12] designed a randomized (1 + ε)-approximation
algorithm for metric mst with the running time O(n polylog(n)/εO(1)), where the
input graph has n vertices and Θ(n2) edges.

1.3. Dynamic algorithms. Our model of computation is also interesting in the
context of dynamic algorithms. There exist fully dynamic algorithms that maintain
the emst subject to point insertions and deletions; [15] gives an algorithm with amor-

tized time Õ(
√
n) and O(n1−ε) per update operation for d ≤ 4 and d > 4, respectively.

A disadvantage of this algorithm (and of all typical dynamic algorithms) is that it

requires as much as Õ(
√
n) time per input update, making the algorithm very costly

in situations where the emst queries are very rare. The data structures we require
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in our setting are dynamically maintained by standard geometric databases anyway.
Thus, if the database supports all required data structures in polylogarithmic time,
the amortized time required by our algorithm is Õ(

√
n/U), where U is the typical

number of updates per one emst calculation. We note again that our algorithm does
not supply the mst but returns only its approximate weight.

1.4. Discussion on the model of computations. Our results assume that
the data is organized using certain types of commonly used data structures. This
idea has been frequently used in other areas such as databases, where one assumes
that a selected set of operations on the top of the data set is provided to the user. A
similar model of computations has been used recently in a related context of geometric
computations in [11] (see also [23]).

The data structures used in our paper are commonly used in algorithms in general,
and some (as in supporting approximate nearest neighbor queries) are used more in the
context of computational geometry. Our algorithm cannot be expected to construct
these data structures given its sublinear nature. Neither can it be assumed to have
collected the input set. The assumption that some other source has collected the data
is inherent in the model of sublinear algorithms, and in our paper we strengthen this
assumption to require that during this preprocessing, some well-known and natural
data structures have been built. In most of the cases, the construction time for these
data structures is not much in excess of the time needed to read and store the entire
data set. One can view this as having separate agents performing the data collection
and computation. Alternately, one can think of the data collection and organization
step as preprocessing, to be done only once. One would like to know the degree of
dependence on these underlying data structures and explore the tradeoff resulting from
them. We believe that this work is an important step in understanding the nature
of geometric problems and the time/resource tradeoffs (resources can include the
underlying data structures) involved in their solutions. We would like to learn what
inherent properties of a problem and its data set lead to better sublinear algorithms. In
the future we expect to solve more problems in this area and develop an understanding
of the inherent structure of geometric objects and their collections that allow different
time/resource tradeoffs.

Organization of the paper. We start by presenting an algorithm that needs access
to only a minimal bounding cube of the point set P and to an orthogonal range
query oracle in section 3. In section 5, we present a simple algorithm that uses
additionally the cone nearest neighbor oracle. Finally, in section 6, we discuss the
main contribution of this paper, a sublinear time algorithm that uses a minimal
bounding cube oracle, the orthogonal range query oracle, and the cone approximate
nearest neighbor oracle.

2. Preliminaries. For a given set P of points in a Euclidean space R
d, a (Eu-

clidean) graph on P can be modeled as a weighted undirected graph G = (P,E),
where P is a vertex set, E is a subset of the (unordered) pairs of points in P , and the
length/weight of edge {p, q} is equal to the Euclidean distance between points p and
q, denoted |p− q|. The weight of the graph is the sum of the weights of its edges.

Throughout the paper we denote by KP the complete (undirected) graph on P
where the edge weights are the Euclidean distances between the endpoints. A graph
G on a set of points P is called a Euclidean minimum spanning tree (emst) of P
if it is a minimum-weight spanning subgraph of KP . We denote by emst(P ) both
the emst of P and the weight of the emst of P . Similarly, for a given graph G we
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will denote by mst(G) the minimum spanning tree of G as well as the weight of the
minimum spanning tree of G.

For a given point set P , we denote by Λ the spread of P , that is, the ratio of the
maximum and the minimum distances between points in P . We let BC be a minimal
bounding cube of P (which is made available via the minimal bounding cube oracle)
and let L denote its side length.

2.1. Models of computation. In this paper we use some basic geometric data
structures supporting access to the input point set. Given a point set P in R

d, we
use data structures supporting the following types of queries:

(i) minimal bounding cube of P: returns the location of a minimum size axis-
parallel d-dimensional cube containing P ; that is, it returns the location of a cube
C = [a1, a1 + L] × [a2, a2 + L] × · · · × [ad, ad + L] that contains P such that no
axis-parallel cube of edge length smaller than L contains P ;

(ii) (orthogonal) range query oracle: for a given axis-parallel cube C, tests
whether C contains a point from P ;

(iii) cone (1 + δ)-approximate nearest neighbor oracle: δ is any nonnegative real
number, and it is assumed that a set of cones C with apexes at the origin is given
in advance. The cone (1 + δ)-approximate nearest neighbor oracle, for a given point
p ∈ P and a given cone C ∈ C, returns a (1 + δ)-approximate nearest neighbor1 of p
in (P \ {p}) ∩ (p + C). (We denote by p + C the translated cone {a + p : a ∈ C}.) If
(P \ {p}) ∩ (p + C) is empty, then a special value is returned.

In the special case where δ = 0, the oracle gives the true nearest neighbor and is
simply called the cone nearest neighbor oracle.

2.1.1. Implementing supporting data structures. To make our model of
computations viable, we discuss here how our supporting data structures (oracles)
can be implemented efficiently using standard geometric data structures.

Minimal bounding cube. The query about the minimal bounding cube of a set
of points P ∈ R

d can be supported by many standard geometric data structures.
Indeed, the only information required to find the minimal bounding cube is to know
the minimum and maximum d-dimensional coordinates of all input points. Therefore,
many standard geometric data structures can support this query in time O(d) or
O(d log n).

Orthogonal range query oracle. There are many efficient data structures support-
ing the orthogonal range query oracle, and actually, orthogonal range queries are
perhaps the most widely supported geometric queries (for survey expositions, see,
e.g., [1, 3, 6]). One of the first data structures for orthogonal range searching is the
quad-tree. Despite its bad worst-case behavior, the quad-tree is still used in many ap-
plications because it provides an easy-to-implement linear-space data structure that
often has a very good performance. Another standard data structure for orthogonal
range queries is the range tree. It can be used to report the k points in a query range
in O(logd n+k) time. Using the fractional cascading technique, the query time can be
improved to O(logd−1 n+ k) [20, 25]. The best known data structures for orthogonal
range searching based on compressed range trees and some other techniques such as
filtering search can be found in [8, 9]. For more details we refer to the survey [3].

Cone nearest neighbor oracle. In the seminal paper on Euclidean minimum span-
ning trees, Yao [26] examined algorithms for cone nearest neighbor in the cones with

1For a point p ∈ P and a set of points Q ⊆ R
d, a (1 + δ)-approximate nearest neighbor of p in

Q is any point q ∈ Q such that for every x ∈ Q it holds that |p− q| ≤ (1 + δ) · |p− x|.
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the angular diameter π/4. Cone nearest neighbor queries have also been studied
extensively in follow-up papers dealing with the emst problem (see, e.g., [2]).

Cone approximate nearest neighbor oracle. Cone approximate nearest neighbor
queries have been widely investigated. They play an important role in the context of
construction of Euclidean spanners (see, e.g., [4, 5, 14, 21]). And thus, among others,
Ruppert and Seidel [21] show how to answer a query in amortized time O(n logd−1 n)
per cone in C, simultaneously for all points in P ; a similar construction is presented in
[5]. Arya, Mount, and Smid [4] present a fully dynamic algorithm which, in polyloga-
rithmic time, supports cone approximate nearest neighbor queries. Notice also that a
single cone approximate nearest neighbor query can be answered using a logarithmic
number of simplex (triangular) range queries, which is another classical geometric
data structure (see, e.g., [1, 3, 6]).

3. Estimating the EMST with bounding cube and range queries. In
this section we describe a natural approach to the approximation of emst(P ) using
minimum bounding cube oracle and orthogonal range queries. This approach by itself
does not give a good enough multiplicative approximation but is used as a building
block in the sublinear algorithm we present later. For simplicity, we describe in detail
only the two-dimensional case (d = 2); the algorithm can be generalized to arbitrary
d in an obvious way. The algorithm we supply is deterministic and outputs a value
w such that 1

α emst(P ) − β ≤ w ≤ α emst(P ) + β, where α = O(n1/8 log n), and
β = Ln−c, where L is the side length of a minimal bounding cube of P and c is
a constant. The algorithm has a running time of O(n1/2). We also show that any
algorithm that uses the same running time (in fact, the same amount of queries
and arbitrarily large running time) cannot significantly improve the quality of the
approximation.

3.1. The quad-tree algorithm. We apply a standard quad-tree subdivision to
the bounding cube BC (see, e.g., [6, Chapter 14]). That is, we first partition BC into
four disjoint blocks (squares) of equal size. We can check which blocks contain points
from P via orthogonal range queries. We then further subdivide the nonempty blocks
and iterate this process as long as fewer than

√
n queries are made. This induces a

tree structure on the blocks, where a block at level i has side length L/2i. Let k be
the depth of this tree. We may assume that all nonempty blocks at level k − 1 were
subdivided into subblocks (of level k) and each subblock of level k was queried. Let
B be the set of nonempty blocks at level k and let b = |B|. Clearly b = O(

√
n).

We now run any mst algorithm (as we will see later, a (1 + ε)-approximation is
good enough) on the centers of the blocks in B. This would result in a value L.
We set U = L + s

√
b n, where s = L · 2−k, and output the value w =

√
LU as an

approximation for T ∗ = emst(P ).

Claim 1. For an arbitrary constant c, 1
α T ∗ − β ≤ w ≤ αT ∗ + β, where α =

O(n1/4 log n) and β = Ln−c.

Proof. First note that the mst of any n points in a d-dimensional cube with

side length h is O(hn
d−1
d ) and that this bound is tight (i.e., it is achievable for some

inputs); see, e.g., [19]. Now, we let L∗ be the weight of a minimum weight tree that
touches every block in B. It is easy to see that L∗ ≤ T ∗ ≤ U (the last inequality is
by the above upper bound and by using convexity).

Assume now that b ≥
√
n/(4(c + 1) log n); then it can be seen that L upper

bounds L∗ and approximates it within an additive term of O(s b), and hence within a
constant factor, say δ. Namely, a · b · s ≤ L∗ ≤ L ≤ δ ·L∗ for some constants a and δ.

Hence, as U is an upper bound on T ∗, the approximation factor turns out to be
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α = max{U/w, w/L∗}. By our choice of w and the fact that L approximates L∗ up

to a constant, we get α = O(Uw ) = O(
√

U
L∗ ) = O(( s

√
b n

L )1/2) = O((n/b)1/4) (where
the last inequality follows by plugging in the expression for U and L, and the previous
follows from the fact that L approximates L∗ within a constant factor). Now, by the
above bound on L and on b, we obtain that α ≤ Õ(n1/8). Note that if we used an
approximation L′ guaranteed to be within a constant factor of L, we would still get
the same result.

Assume now that b <
√
n/(4(c + 1) logn). Then it can be seen that the depth

of the quad-tree is at least (c+1) logn and hence s ≤ L·n−(c+1). Therefore, the addi-
tive term is upper bounded by U − L ≤ O(s ·

√
b n) = O(n−(c+1) · L · n) =

O(L · n−c).

A note on the running time is due here. We use O(
√
n) queries in the course of

constructing the quad-tree. Next, we have to find the mst (or any (1 + δ) approxi-

mation to it for any fixed δ). In the two-dimensional case this can be done in Õ(
√
n)

time [22], and this term dominates the total complexity.

Higher dimensions. In the case of dimension d > 2 the quad-tree has to be
replaced with a 2d-ary tree. The algorithm will be run similarly to the above until
O(2d

√
n) queries have been made and all rectangles at the bottom level have been

queried. Then, L is set similarly to the two-dimensional case, and U = L+s·n d−1
d ·b1/d.

The approximation w for T ∗ is taken to be the same. To have an efficient running
time, a constant approximation for L can be used, rather than the exact value. This
can be done in time O(n log n) by the result of Callahan and Kosaraju [7].

It is easy to see that the following replaces Claim 1 with an analogous proof.

Claim 2. For an arbitrary constant c, 1
α T ∗ − β ≤ w ≤ αT ∗ + β, where α =

O(2d/2 · n(d−1)/4d log n) and β = Ln−c.

As it turns out, the above quality of approximation is nearly optimal for the given
time bound as shown by the following claim (shown only for the two-dimensional case;
a similar result is true for the d-dimensional case as well).

Claim 3. Any deterministic algorithm for approximating emst(P ) in the two-
dimensional case that uses O(

√
n) orthogonal range queries has an approximation

factor of Ω(n1/4).

Proof. Consider any deterministic algorithm that uses at most
√
n range queries.

Consider the following adversary for supplying the answer to the queries: The ad-
versary will subdivide the unit square into a mesh of squares, each of side length

s = n−1/4

10 , namely, into 100
√
n squares, denoted blocks. The adversary commits

itself to locating
√
n/100 input points in each block. In what follows, the adversary

will mark some blocks in which it will commit to the internal location of points. The
invariant that is kept is that in unmarked blocks, any configuration of input points is
still consistent with the answers so far.

At the beginning no block is marked. Now, for each queried rectangle, if the
query intersects an unmarked block, then the adversary will answer “not-empty.” In
addition it will choose one unmarked block that intersects the given query, mark it,
and commit to having all points in that block, in an arbitrary single point in the
intersection. If the query intersects only previously marked blocks, then if it contains
any of the previous locations in which the adversary has already committed to having
input points, then a “non-empty” answer will be given (this is forced). If the query
does not include any of the previous locations in which the adversary has committed
to having input points, then the adversary will answer “empty.”
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Keeping up this way, it is easy to see that the adversary can supply consistent
answers to all

√
n queries.

At the end, since there are 100
√
n blocks while the adversary has marked at most√

n blocks, in 99
√
n blocks there is complete freedom as to where the input points

are located within such blocks. Now notice that if the adversary chooses to locate all
points within a block in one (arbitrary) point, then the mst is of cost O(n1/4), while,
if it chooses to locate the points in each unmarked block spread uniformly within the
block, then the cost of the tree is Ω(

√
n). Hence the lower bound follows.

Finally, we note that our choice of using O(
√
n) orthogonal range queries was

arbitrary; one can use a different number of queries and obtain a whole range of
tradeoffs between the running time and the quality of approximation. As another
example in this tradeoff, assume that αn queries are made. The adversary divides
the square into βn blocks and proceeds as below. In this situation, the algorithm
has no way of telling whether all cells have their points concentrated in one location,
resulting in an emst of at most

√
βn, or are distributed in the unmarked blocks as

above, resulting in an emst of at least (β−α)
√
n

β , giving an approximation ratio of at

least β−α
β
√
β
. To exploit the tradeoff here, we set β = 1/4. To obtain an approximation

ratio of ε, the number of queries must be at least n(1/4 − ε/8). One can exploit this
tradeoff in other ways also.

4. Two related previous results. We now describe two previous results that
we utilize in our emst algorithms: the concept of Yao graphs [26] and an algorithm
for approximating the mst in bounded degree graphs due to Chazelle, Rubinfeld, and
Trevisan [10].

4.1. Yao graphs. Yao graphs are Euclidean graphs that relate the emst to the
cone nearest neighbor oracle presented in section 2.1. Fix an integer d ≥ 2. Let C be a
collection of d-dimensional cones with its apex at the origin such that (a) each cone has
an angular diameter2 at most θ, where θ is some fixed angle, and (b)

⋃
C∈C C = R

d.

There is always such a collection C of O(d3/2 · sin−d(θ/2) · log(d sin−1(θ/2))) cones
(not necessarily disjoint); note that for constant d and θ this bound is O(1). Yao [26]
gives one possible construction for such a collection. For a point p ∈ R

d and a cone
C ∈ C, let Cp be p + C = {a + p : a ∈ C}, that is, a translation of C so that its
apex is at p. Let NP 〈p, C〉 be the nearest neighbor of the apex p of Cp in the set
(P \ {p}) ∩ Cp. Given a point set P and a collection of cones C, the Yao graph of P
(with respect to C) is the Euclidean graph G with vertex set P and (undirected) edge
set E = {(p, q) | ∃C ∈ C such that q = NP 〈p, C〉}. That is, each p ∈ P is connected
to its nearest neighbor in each cone that has p at its apex. The following result due
to Yao [26] motivates our use of these graphs.

Claim 4. [26] Let P be a point set in R
d. Let G be the undirected Yao graph for

P with θ < π/3. Then, the emst of P is a subgraph of the Yao graph G.

4.2. Chazelle, Rubinfeld, and Trevisan [10]: Approximate MST in low-
degree graphs. Our algorithms make use of a recent algorithm for estimating the
weight of mst in graphs due to Chazelle, Rubinfeld, and Trevisan [10]. This algorithm
assumes that the input graph (i) is represented by an adjacency list, (ii) has degree at
most ν (the full version of [10] allows ν to be the average degree), and (iii) has known
minimum and maximum edge weights, where the ratio of the maximum edge weight

2The angular diameter of a cone C in R
d having its apex at point p ∈ R

d is defined as the
maximum angle between any two vectors −→px and −→py, x, y ∈ C.
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to the minimum is Λ. Then, for 0 < ε < 1
2 , the algorithm estimates the weight of the

mst with a relative error of at most ε and with probability at least 3
4 , and it runs in

time O(ν · Λ · log(ν Λ/ε)/ε3). (The authors also give a nearly matching lower bound
of Ω(ν ·Λ/ε2) on the time complexity of any ε-approximation algorithm for the mst.)

Let H = (V,E) be an input graph having n vertices with maximum degree ν
and edge weights in the interval [1,Λ]. For any w ∈ R, let H(w) denote the maximal
subgraph of H containing edges of weight at most w, and let cw denote the number
of connected components in H(w). The main ingredient of the algorithm from [10] is
a procedure called “approx-number-connected-components,” which we call ACC from
this point on, run on H(w) for estimating cw for w = ( 1

2 + i) · ε with i = 1, 2, . . . ,Λ/ε.

For integer weights, the weight of the mst of H is equal to n − Λ +
∑Λ−1

j=1 cj . The
algorithm uses the above estimations to produce a value which, with probability at
least 3

4 , is a (1 ± ε)-approximation of the mst of H.
Procedure ACC works by sampling O(1/ε2) vertices in H. For each sampled

vertex u, a random estimator Xu is computed by traversing H(w) from u (for example,
using breadth-first search) with a stochastic stopping rule. Xu is a random variable
whose distribution is a function of only the size of the connected component containing
u (i.e., the number of vertices reached from u in the traversal) in H(w). The simple
relation between these sizes and cw together with the fact that the distribution of Xu

is concentrated around the expected value yields the connection between Xu and cw.
Procedure ACC runs in expected time O(ν ε−2 log(Λ/ε)). Therefore, the expected
running time of the algorithm in [10] is O(Λ ν ε−3 log(Λ/ε)).

5. A simple estimation for EMST using Yao graphs. The algorithm we
present in this section is conceptually an important component of the sublinear algo-
rithm we design later in section 6. It combines the two results described in section 4.
Our algorithm uses the cone nearest neighbor oracle and achieves a query complexity
of 2O(d) · Õ(Λ/ε2).

Since by Claim 4 the undirected Yao graph G for P contains all edges of the
emst of P , it is natural to try to apply the algorithm of Chazelle, Rubinfeld, and
Trevisan to G to estimate the weight of the emst of P . To do that efficiently, instead
of generating G at the beginning of the algorithm, we generate the edges of G (using
the cone nearest neighbor queries) only when the edges are needed in the algorithm.
That is, whenever the algorithm needs edges adjacent in G to a vertex p, we use
the cone nearest neighbor query to obtain the nearest neighbor of p in each cone in
{p+C}C∈C . Motivated by Claim 4, we set the angular diameter of the cones to π/4.
This creates parts of an implicit directed Yao graph G on P with edges (p, q) such
that there is a C ∈ C, where q = NP 〈p, C〉.

The above approach has a number of problems. First, the algorithm of Chazelle,
Rubinfeld, and Trevisan requires the input graph to be undirected and represented
by an adjacency list, whereas in our model, we have fast access to only the outgoing
edges at a vertex in G. Furthermore, the running time is linear in Λ, which can be
arbitrarily large. The following lemma helps in overcoming the first difficulty, while
the second is tackled in the main algorithm in section 6. The proof of Lemma 1, being
a special case of Claim 6, is omitted.

Lemma 1. Let n�
u be the number of vertices in KP that are reachable from u using

only edges of weight at most 	. Let m�
u be the number of vertices in a directed Yao

graph G reachable from u using only edges of weight at most 	. Then m�
u = n�

u.
Equipped with this lemma, we can modify the algorithm due to Chazelle, Ru-

binfeld, and Trevisan to obtain its efficient implementation in our model. The only
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difference is in procedure ACC. We still sample O(1/ε2) vertices and randomly tra-
verse H(w) from the sampled vertices. To implement the traversing algorithm we
explore the graph in a breadth-first search fashion by going to the outgoing neighbors
of the vertices that are closer than the current threshold weight w. Such a procedure
can be easily implemented in our model by using the cone nearest neighbor queries;
the running time is proportional to the number of the edges traversed. To estimate
the value of cw we use the same estimators as in [10]. Since for each vertex u in the
sample, the distribution of Xu depends only on mw

u , the number of the vertices reach-
able from u in H(w), by Lemma 1 we can conclude that Xu has the same distribution
as in the algorithm of Chazelle, Rubinfeld, and Trevisan [10]. Therefore, the quality
of this algorithm of the estimation of emst of P is the same as in the algorithm of
Chazelle, Rubinfeld, and Trevisan [10]. Since the maximum out-degree of the directed
Yao graph is 2O(d), the modified procedure ACC has complexity identical to that of
running the original algorithm of Chazelle, Rubinfeld, and Trevisan in an (undirected)
graph with maximum degree 2O(d). Thus, we obtain the following theorem.

Theorem 1. Let P be a set of points in R
d. Assume that the value Λ of the

spread of P is known and access to a cone nearest neighbor oracle for P is given.
Then, there is an algorithm that outputs a value Υ which, with probability at least 3

4 ,
approximates the values of emst(P ) to within a factor of 1± ε with query complexity

Õ
(
2O(d) · Λ/ε3

)
.

For constant d and ε, this complexity is Õ(Λ), which is sublinear for Λ = o(n).
However, on the plane, for example, Λ is known to be Ω(

√
n), and in general, Λ may

be arbitrarily large. In the next section, we discuss our main contribution, which is a
truly sublinear-time approximation algorithm whose complexity is independent of Λ.

6. Sublinear-time approximation algorithm. In this section we show how
the two algorithms from sections 3 and 4 can complement each other. In addition to
improving the running time, our algorithm requires a weaker computational model,
in which the cone nearest neighbor query is replaced by the cone (1 + δ)-approximate
nearest neighbor query.

6.1. Overview of the algorithm. In section 6.2, we begin by partitioning a
minimal bounding cube BC of P into blocks of equal size; we then consider only
blocks containing points from P . Next, we group blocks that are “close” to each
other, calling the resulting clusters connected block-components. The algorithm then
proceeds in two phases. First, in section 6.5, we show how to approximate the weight
of a minimum spanning forest (msf) of the connected block-components by using the
ideas of section 5. Then, in section 6.6, we approximate the optimal way to connect
different connected block-components. We prove in Lemma 2 that the msf of the
connected block-components combined with the optimal set of edges joining them
approximates the emst of P .

In our analysis, throughout the entire section we assume that 0 < ε < 1
15 .

6.2. Partitioning the bounding cube. After the translation and scaling of the
points in P we can assume that BC, the bounding cube of P , is [0, n/ε]d. In particular,
the side length is L = n/ε, and we have a trivial lower bound emst(P ) ≥ n/ε.

We follow the approach from section 3 with small modifications, by extending it
to higher dimensions and applying a different stopping procedure. We first partition
BC into 2d disjoint cubes of equal size, then partition each nonempty cube into 2d

disjoint subcubes, then partition each nonempty subcube further into 2d subcubes,
and so on. Call a block at level i an active block if it contains a point from P . Let bk
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Fig. 1. Block-partitioning and block-components.

be the number of active blocks at level k (the number of blocks that contain points
from P ), and let Δk = L/2k be the side length of blocks in the kth level of the
subdivision. Let b∗ = max{εd/2−3

√
n, 2d+1}. We stop our subdivision at the first

level k0 such that either bk0
≥ b∗ or Δk0

< 2 ε. Let b = bk0
and Δ = Δk0

. Notice that
b ≤ 2d b∗ and Δ ≥ ε. By our arguments from section 3, the active blocks at level k0

can be found by querying the range query oracle O(b 2d log(n/(εΔ))) times.

6.3. Spanners and connected block-components. For any t ≥ 1, a t-
spanner (see, e.g., [7, 14, 17]) for a set S of points in a Euclidean space is any
Euclidean graph G with the vertex set S such that for every pair of points x, y ∈ S
there is a path in G between x and y of total length at most t · |x− y|.

In our analysis, we will frequently use centers of blocks as the representatives
of the blocks. Let B be the set of centers of active blocks and let SPN be a (1 +
ε/4)-spanner of B with O(b (4/ε)d−1) edges. Such a spanner can be found in time

O(b log b + b log(1/ε) ε−d) = Õ(
√
n ε3−d/2) [7].

Call two blocks close if the distance between their centers in the graph SPN is at
most Γ ·Δ, where Γ = 14

√
d/ε. We use equivalence classes of the transitive closure of

the relation close to define the connected block-components. That is, two blocks are in
the same connected block-component if there is a sequence of active blocks between
them, where every consecutive pair of blocks in the sequence is close. We shall abuse
notation and refer also to the partition of P induced by the connected components
as connected block-components. Notice that all connected block-components can be
found in time proportional to the number of edges in SPN , which is O(b (4/ε)d−1).
See Figure 1 for an example of block-partitioning.

6.4. The EMST of P and connected block-components. We refer to the
spanning forest of a graph G as a union of spanning trees of the connected components
of G. A minimum spanning forest of G, denoted by msf(G), is a spanning forest of
G of minimum weight.

Let Ein be the set of edges of KP whose endpoints lie within the same connected
block-component. Let W = (Γ +

√
d) Δ. We now relate block-components to the

distances between points.
Observation 1. Let p and q be an arbitrary pair of points in P .

1. If |p − q| ≤ (Γ − 4
√
d) Δ, then p and q are in the same connected block-

component.
2. If p and q are in the same connected block-component, then there is a path be-

tween p and q consisting of edges in Ein that are all of length at most (Γ+
√
d) Δ = W .

3. If |p − q| > (Γ +
√
d) Δ = W and p and q are in the same connected block-

component, then emst(P ) does not contain the edge pq.
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Proof. For any point p ∈ P , we let cp denote the center of the block at level k0

that contains p.
To see the first assertion, note that if |p−q| ≤ (Γ−4

√
d) Δ, then |cp−cq| ≤ |p−q|+√

dΔ ≤ (Γ − 3
√
d) Δ. Therefore, the distance in SPN between cp and cq is at most

(1+ε/4) (Γ−3
√
d) Δ ≤ Γ Δ, which implies the first claim. Next, this also implies the

existence of a path cp = c(0), c(1), . . . , c(s) = cq in SPN such that |c(i)−c(i+1)| ≤ Γ ·Δ
for all i. Clearly, the corresponding path p = p(0), p(1), . . . , p(s) = q with c(i) = cp(i)

shows the second assertion, since |p(i) − p(i+1)| ≤ |c(i) − c(i+1)|+
√
dΔ ≤ ΓΔ +

√
dΔ.

The third assertion follows from the second and the fact that the (strictly) largest
edge in a cycle in a graph cannot be part of its mst.

In our algorithm we use the following graphs:
(i) Gblock is the graph containing all edges in Ein of weight at most W . By

Observation 1, the connected components of msf(Gblock) are identical to the connected
block-components, and the msf of these components is the same as msf(Gblock).

(ii) Gδ is the directed (1 + δ)-Yao graph that is obtained from KP using the
cone (1 + δ)-approximate nearest neighbor oracle. We use the same definitions as in

the definition of directed Yao graphs and formally define N
(1+δ)
P 〈p, C〉 to be the point

that is returned by the cone (1 + δ)-approximate nearest neighbor oracle for p and

C. If (P \ {p}) ∩ Cp = ∅, then N
(1+δ)
P 〈p, C〉 is undefined. Then, Gδ is a directed

Euclidean graph on P with the edge set containing an edge (p, q) if there is C ∈ C
such that q = N

(1+δ)
P 〈p, C〉.

(iii) M is the minimum weight subgraph of KP that, when added to Gblock,
forms a connected graph.

(iv) Gout is the same as KP except that the weights of edges in Ein are considered
to be zero. Observe that the weight of mst(Gout) is identical to the weight of M.

The following lemma displays the two-level nature of the algorithm that we will
present.

Lemma 2. The sum of the weights of msf(Gblock) and mst(Gout) is a (1 + ε/2)-
approximation of emst(P ).

Proof. We show that the union of msf(Gblock) and M is a spanning tree of KP

whose weight approximates the weight of emst(P ) to within a factor of 1+ε/2. From
that the lemma follows immediately.

Clearly, the union of msf(Gblock) and M forms a spanning tree of KP . To prove
the second part of the claim, let us consider an undirected graph G∗ obtained from
KP by decreasing to (Γ−4

√
d) Δ the weight of every edge in Ein having weight larger

than (Γ − 4
√
d) Δ and smaller than or equal to W . (Note that we change only the

weights of the edges in Gblock.) Since the weight of every edge decreases by a factor

of at most W
(Γ−4

√
d) Δ

= (Γ+
√
d) Δ

(Γ−4
√
d) Δ

≤ 1+ε/2, we have mst(G∗) ≥ emst(P )/(1+ε/2).

Note further that by Observation 1, each edge in G∗ that is not in Gblock has weight
larger than (Γ − 4

√
d) Δ. This means that mst(G∗) must contain an msf of Gblock,

and hence the weight of the union of msf(Gblock) and M is a (1+ε/2) approximation
of emst(P ).

6.5. First level—estimating the weight of MSF(Gblock). In this section we
show how to estimate the weight of the mst within a single block-component. This,
combined for all block-components, yields an estimate on the weight of msf(Gblock).
Since our model does not allow constant-time access to the edges of Gblock, we will
use the directed Yao graph Gδ to estimate the weight of msf(Gblock). Our analysis
will explore the relationship between Gδ and Gblock.
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Fig. 2. Illustration for the proof of Claim 6. The figure shows the reachability in Gδ. The

dashed line is the path showing the connectivity of x and y in Gδ
((1+δ) τ)

.

For a weighted graph H denote by β ·H the graph H with edge weights multiplied
by β. Recall that H(r) denotes the subgraph of H consisting of the edges of weight

at most r, and cr is the number of connected components in G
(r)
block. Let nr

u and mr
u

be the number of vertices in G
(r)
block and in Gδ

(r)
, respectively, that are reachable from

u. Note that cr =
∑

u∈P 1/nr
u. Analogously, define c∗r =

∑
u∈P 1/mr

u. Also, let ĉr be

the number of connected components in (1 + δ) ·G(r)
block.

The following is from [10].
Claim 5. Let G(l) denote the subgraph of a graph G consisting of all the edges

of weight at most l. Define c(l) to be the number of connected components in G(l).
Then, for integer w ≥ 2, M(G) = n− w +

∑w−1
i=1 c(i).

From the above (see also section 4) we have that

msf(G
(r)
block) ≤ n− rcr +

r−1∑
i=1

ci ≤ msf(G
(r)
block) + n.(1)

Since we have access only to Gδ, we can deal only with the c∗r ’s rather than the
cr’s. To bound the error due to this replacement, now we relate reachability in Gδ to
reachability in Gblock.

Claim 6. Let ε ≤ 1
5 and δ ≤ 1

10 . Then for every r and every u ∈ P , n
r/(1+δ)
u ≤

mr
u ≤ nr

u. In particular, cr/(1+δ) ≥ c∗r ≥ cr.
Proof. Let us first note that mr

u ≤ nr
u follows directly from the definition. To

show that n
r/(1+δ)
u ≤ mr

u, it suffices to show that for every τ , if a vertex y is reachable

in G
(τ)
block from a vertex x, then y is reachable from x in Gδ

((1+δ) τ)
. Assume that y

is reachable from x in G
(τ)
block; this implies that x and y are in the same connected

block-component. Assume further, without loss of generality, that τ ≤ W (indeed, if

τ > W , then G
(τ)
block = G

(W )
block).

Let z be the (1 + δ)-approximate nearest neighbor of x (returned by the cone
approximate nearest neighbor oracle) in the cone Cx containing y. Clearly, if z = y,
then the claim holds. So let us assume that z �= y. Let a = |x − z|, b = |x − y|,
c = |y − z|, and α = �(xyz), β = �(xzy), and γ = �(yxz); see Figure 2. Note that
since y and z are contained in the cone Cx with the angular diameter π/4, we have
γ ≤ π/4.

We first show the following three inequalities: (i) a ≤ (1 + δ) b, (ii) c < b, and
(iii) min{a, c} ≤ b/(1 + ε). Inequality (i) follows directly from the definition of the
cone approximate nearest neighbor oracle. To prove inequality (ii), let us suppose
that c ≥ b. Then β ≤ γ, and since γ ≤ π/4, we obtain that α ≥ π/2. This in
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turn implies that a ≥
√
b2 + c2 ≥

√
2 b, which contradicts the first inequality that

a ≤ (1 + δ) b ≤ 1.1 · b. For inequality (iii), we first use the law of cosines to get
c2 = a2+b2−2 a b cos γ ≤ a2+b2−

√
2 a b, since γ ≤ π/4. To show min{a, c} ≤ b/(1+ε)

we assume a > b/(1 + ε) and show c ≤ b/(1 + ε). Since a > b/(1 + ε) ≥
√

2
2 b, the

expression a2 + b2 −
√

2ab increases with a. Therefore, by inequality (i) we obtain

c2 ≤ a2 + b2 −
√

2ab ≤ ((1 + δ)b)2 + b2 −
√

2(1 + δ)b2

= b2((2 −
√

2)(1 + δ) + δ2) ≤ (b/(1 + ε))2,

where the last inequality holds for ε ≤ 1
5 and δ ≤ 1

10 .

Now, we prove the claim using inequalities (i)–(iii). Assume, without loss of
generality, that |x − y| ≤ τ ; otherwise apply the following arguments to all edges on

the path between x and y in G
(τ)
block (all the edges on this path are of length at most

τ). We define inductively the sequence x = x0, x1, x2, . . . , y such that for every i, if
xi �= y, then xi+1 is the (1 + δ)-approximate nearest neighbor of xi in the cone Cxi

containing y. By inequality (ii), the sequence |xi − y| is strictly decreasing. This
immediately implies that xi = y for some i, and so the sequence is finite.

Next, we show inductively that each xi is in the same connected block-component
as y. Suppose that xi is in the same connected block-component as y. Since the
sequence |xi − y| is decreasing and since |x− y| ≤ τ ≤ W = (Γ +

√
d) · Δ, we obtain

|xi − y|
1 + ε

≤ |x− y|
1 + ε

<
(Γ +

√
d) · Δ

1 + ε
≤ (Γ +

√
d) · Δ

1 + ε
.

Therefore, using inequality (iii) with x = xi and z = xi+1, we obtain

min{|xi − xi+1|, |xi+1 − y|)} ≤ |xi − y|
1 + ε

≤ (Γ −
√
d) · Δ.

Hence, by Observation 1, either xi and xi+1 are in the same connected block-
component or xi+1 and y are in the same connected block-component. In either case,
the transitivity ensures that xi+1 and y are in the same connected block-component.
We finally observe that inequality (i) implies that |xi − xi+1| ≤ (1 + δ) |xi − y|, and
since |xi − y| ≤ |x − y|, we obtain |xi − xi+1| ≤ (1 + δ) |x − y|. Hence, the sequence
x = x0, x1, x2, . . . , y corresponds to a path contained in a connected block-component
having all edges of length at most (1 + δ) τ . This implies that y is reachable from x

in Gδ
((1+δ) τ)

.

Let W ′ = �W (1+ δ). Motivated by inequality (1), let us introduce an estimator
A for the value of msf(Gblock):

A = n +
W ′−1∑
i=1

c∗i −W ′ · c∗W ′ .

We now analyze the quality of this estimator.

Lemma 3. msf(Gblock) ≤ A ≤ (1 + δ) · msf(Gblock) + n.

Proof. Let us first recall that ĉr = cr/(1+δ). Next, let us observe that if r ≥ W ,
then cr = cW . As a corollary, c∗W ′ = cW = cW ′ . With this, we have the following
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sequence of inequalities:

msf(Gblock) ≤ n +

W−1∑
i=1

ci −W · cW ≤ n +

W ′−1∑
i=1

ci −W ′ · cW ′

= n +

W ′−1∑
i=1

ci −W ′ · c∗W ′ ≤ n +

W ′−1∑
i=1

c∗i −W ′ · c∗W ′

= A ≤ n +

W ′−1∑
i=1

ci/(1+δ) −W ′ · cW = n +

W ′−1∑
i=1

ĉi −W ′ · ĉW ′

≤ msf((1 + δ) ·Gblock) + n = (1 + δ) · msf(Gblock) + n.

The first inequality is due to inequality (1). The second one follows from the obser-
vation mentioned at the beginning of this proof, as does the next one, combined with
Claim 6. The last inequality is implied by inequality (1).

We now modify the algorithm of Chazelle, Rubinfeld, and Trevisan [10] to obtain
a good approximation of A. Let us first note that as in section 5, we can easily

traverse the graph Gδ
(r)

: each time we want to access all edges incident to a point
p ∈ P , we first ask the cone approximate nearest neighbor queries to all cones Cp and
then for each nearest neighbor q of p in Cp, we verify whether |p− q| ≤ r and whether
the blocks to which p and q belong are in the same connected block-component. The
first test is a simple O(1)-time calculation, while the second requires the computation
of the connected block-components. Establishing this, we can apply the approach

from sections 4.2 and 5 to estimate the value c∗ =
∑W ′−1

r=1 c∗r , and hence to estimate
the value of A. For this, we run procedure ACC to get an estimator Xr to c∗r for all

r = 1, 2, . . . ,W ′, and we now show that X =
∑W ′−1

r=1 Xr is a good approximation to

c∗ =
∑W ′−1

r=1 c∗r .
We have from [10] that after using procedure ACC(G, ε,W ), where G denotes

the input graph, ε the approximation parameter, and W the stopping condition for
the breadth-first search, we have c∗ − n/W ≤ EX ≤ c∗ and varX ≤ 2n c∗/s, where
s is the number of initial random choices for vertices. Our algorithm yields similar
properties; thus, we have the following:

c∗ − n/2 ≤ EX ≤ c∗

and

varX ≤ 2n c∗/s,

where s is the number of random choices of initial vertices in ACC. Next, using the
bounds above, the fact that emst(P ) ≥ n/ε, and Chebyshev’s inequality, we have

Pr[|X − c∗| ≥ ε/2 · emst(P )] ≤ Pr[|X − EX| ≥ ε/4 · emst(P )]

≤ 16 varX

ε2 · (emst(P ))2
≤ 32 · n · c∗

ε2 · s · (emst(P ))2
.

We argue that 32n c∗/(ε2 s (emst(P ))2) = O
(

1
ε s

)
or, alternatively, that (emst(P ))2 =

Ω(n c∗/ε). Indeed, if c∗ ≤ 2n/ε, then (emst(P ))2 ≥ (n/ε)2 ≥ 2n c∗/ε by our assump-
tion in section 6.2. Otherwise, we have to use a stronger lower bound for emst(P ).
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By Lemma 2, we have

emst(P ) = Ω (msf(Gblock) + mst(Gout)) = Ω (msf(Gblock) + W ′ · (c′W − 1)) .

Next, by Lemma 3, we have

(1 + δ) · msf(Gblock) ≥ A− n = c∗ −W ′ · c∗W ′ .

emst(P ) = Ω(c∗ −W ′ · c∗W ′ + W ′ · (c′W − 1)) = Ω(c∗),

from which it follows that for c∗ > 2n/ε we have (emst(P ))2 = (Ω(c∗))2 = Ω(n c∗/ε),
as required.

Summarizing the discussion above, we always have (emst(P ))2 = Ω(n c∗/ε) and
hence

Pr[|X − c∗| ≥ ε/2 · emst(P )] ≤ O( 1
ε·s ).

Therefore, if we choose s = O(1/ε), then we obtain

Pr[|X − c∗| ≥ ε/2 · emst(P )] ≤ 1/4.

Next, observe that c∗W ′ is nothing but the number of connected block-components,
which is known to the algorithm that computes the connected block-components.
This leads to an efficient algorithm that calculates A′ = n + X −W ′ · c∗W ′ for which
Pr[|A′−A| > 1

2 ε ·emst(P )] ≤ 1/4. The complexity of this algorithm follows from the

analysis in section 5 and from [10] (result stated in section 4.2) and is Õ(W · 2O(d)/ε)
cone approximate nearest neighbor queries. The algorithm approximates c∗ to within
an additive error of n with probability at least 3

4 (see [10], presented here in section
4.2) and hence approximates emst(P ) to within an additive error of 1

2 ε · emst(P ) +
δ · emst(P ) + n = (δ + 1

2 ε) · emst(P ) + n.
We note that by scaling down all weights by a factor λ > 1, applying the algorithm

above, and then rescaling to the original weight, we decrease the running time by a
factor of λ and increase the additive error by the same factor. In this way we obtain
an algorithm that performs Õ(W · 2O(d)/(λ ε)) cone approximate nearest neighbor
queries and we achieve an additive error of (δ + 1

2 ε) · emst(P ) + λ · n.
Let us examine the term W/λ in the running time and the additive error term

(δ + 1
2 ε) · emst(P ) + λ · n. Recall that there are two possible termination states:

b ≥ b∗ or Δ < 2 ε.
Consider first the case b ≥ b∗. Since P has b active blocks of size Δ we have that

emst(P ) ≥ 1
2 Δ (�b/2d − 1). This bound is achieved by considering a subdivision

of the active block to 2d b subcubes of size Δ/2. Now color these subblocks with
2d different colors, using the same arrangement of colors for each of the original
active blocks. This induces a partition of the active blocks into 2d monochromatic
sets. There has to be a set of �b/2d points in P from different active blocks that are
colored the same. Clearly, the minimal distance between these points must be at least
Δ/2, and hence the bound. Once we established that emst(P ) ≥ 1

2 Δ (�b/2d − 1),

we use the inequalities b ≥ b∗ ≥ 2d+1 to get emst(P ) ≥ 1
4 ·Δ ·b/2d. Setting λ = Δ b ε

8·2d n
we upper bound the relative error by

δ + ε/2 +
λ · n

1
4 · Δ · b/2d

= 1 + δ + ε.
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The running time, using the fact that b ≥ b∗ ≥ εd/2−3
√
n, is bounded by

Õ(W ′/(λ ε)) = Õ(
√
d · 2d · n/(bε3)) ≤ Õ(

√
n · 2d ·

√
d/εd/2) = Õ(

√
n/εd/2).

On the other hand, when Δ < 2 ε, we use the trivial lower bound emst(P ) ≥ n/ε and
by setting λ = 1/2 we obtain a multiplicative error of 1+ δ+ ε. In this case note that
W ′ = �(1 + δ) · Δ ·

√
d · (1 + 14/ε) = O(1). And so we bound the running time by

W/(λ ε3) = Õ(ε−3) ≤ Õ(
√
n/ε2+d/2)

for d ≥ 2. Thus we have the following lemma.
Lemma 4. Given the graph Gblock, there is an algorithm that estimates with

probability at least 3
4 the weight of msf(Gblock) to within a multiplicative relative er-

ror of δ + ε. The algorithm requires Õ(
√
n/ε2+d/2) range queries and cone (1 + δ)-

approximate nearest neighbor queries (for δ ≤ ε/6).

6.6. Second level—estimating the weight of MST(Gout). Let Q be the
complete undirected graph with the vertex set B, the set of active blocks, and with
the edge weights equal to the Euclidean distances between the corresponding block-
centers if the blocks are in different connected block-components, and zero otherwise.
Arguments similar in spirit to those used in Observation 1 can be used to show the
following lemma.

Lemma 5. (1 − ε/2) · emst(Q) ≤ mst(Gout) ≤ (1 + ε/2) · emst(Q).

Proof. Given emst(Q), consider a subgraph Ĝ of Gout defined as follows. Include

in Ĝ the mst of the subgraph in each connected block-component of Gout; notice
that the total weight of the mst is 0. Then, for each nonzero weight edge e in
emst(Q) connecting two connected block-components, include in Ĝ the lowest weight
edge e′ in Gout that connects the two block-components joined by e. Due to the
construction of Q, the weight of e is at least Γ·Δ

1+ε/4 and the weight of e′ exceeds that

of e by at most
√
dΔ, which is less than an ε/2 fraction of the weight of e. Also

note that any two connected block-components in Q will be connected by at most
one edge in emst(Q); thus such an e′ will always be found. It is easy now to see

that Ĝ is a spanning tree of mst(Gout) of weight at most emst(Q)(1 + ε/2). Thus,
mst(Gout) ≤ (1 + ε/2) · emst(Q).

To see the lower bound, we follow similar arguments. We start with mst(Gout)
and construct a spanning tree of Q in a similar fashion—with the exception that
for an edge in mst(Gout) joining two block-components, we include an edge from Q
which joins these components by linking two block-centers—again with an increase in
weight of at most an ε/2 fraction. Using a similar argument as above, we can show
that (1 − ε/2) · emst(Q) ≤ mst(Gout), which concludes the proof.

In view of Lemma 5, to obtain a good estimation of the weight of mst(Gout) it is
sufficient to estimate the weight of an mst of Q.

We could find an mst of Q by calling any algorithm that finds an mst in graphs.
However, any such algorithm requires time significantly more than O(b) time (at
least for d ≥ 3), because Q contains Θ(b2) edges. To improve the running time to

Õ(b ε1−d) = Õ(
√
n/ε2+d/2) we use SPN , which is the (1+ ε/4)-spanner of B (having

O(b (1/ε)d−1) edges) defined in section 6.2. Let F be any spanning forest of the
subgraph of Q induced by the edges of weight 0. It is easy to see that the weight of
any mst of Q is identical to the weight of an mst of Q that uses the edges from F .

We create a new graph SG with the vertex set B and the edge set which is
the union of the edges in F and the spanner edges. Note that the number of edges



108 CZUMAJ ET AL.

in F is less than the number of spanner edges. Then we apply, for instance, the
classical Kruskal’s algorithm to find in time O(b ε1−d log(b/εd−1)) = Õ(

√
n/ε2+d/2)

a minimum weight spanning tree of SG. It is easy to see that the obtained spanning
tree of B is a spanning tree of B that uses edges from F , since those edges are of
weight 0 and do not form a cycle, and thus are bound to be picked by Kruskal’s
algorithm. Also, note that the resulting spanning tree’s weight is at most (1 + ε/4)
times the minimum, due to the properties of a spanner. This allows us to summarize
the discussion in this section in the following lemma.

Lemma 6. There is an algorithm which, given as input the graph Gblock, estimates
the weight of M to within a relative error of 3

4 ε with running time Õ(
√
n/ε2+d/2).

Our analysis in this section can be slightly improved in the case where d = 2. In
this case, one can simplify the arguments to achieve the running time of O(b log b) =
O(

√
n ε−2 log(

√
n/ε2)). The main difference is that for d = 2 we can find in O(b log b)

time an mst of Q using a modification of the classical algorithm due to Shamos and
Hoey [22] for finding an emst in R

2. We first construct (in O(b log b) time) the
Delaunay triangulation of B. Next, we observe that there is an mst of Q that uses
only edges of cost zero and edges from the Delaunay triangulation (for example, this
follows from the proof of Lemma 1 in [14] or from [22]). Therefore, an mst of Q can
be found by calling, for example, Kruskal’s algorithm on the subgraph of Q containing
only the edges from the Delaunay triangulation of B and the edges of the forest F as
defined above. Since the number of edges in the Delaunay triangulation and in F is
O(b), this algorithm finds mst(Q) in O(b log b) = Õ(

√
n/ε2) time.

6.7. Estimating the weight of MSF(Gblock) ∪ MST(Gout). We can now
summarize our algorithm for estimating the emst of any set of points in R

d. We use
the fact that L = Θ(n/ε) and apply Lemmas 2, 4, and 6 to estimate the weight of the
emst. Summing up the error terms in our estimation stated in each of those lemmas,
we get that the multiplicative relative error is at most δ + 2 1

4 ε with probability at
least 3

4 . Using ε′ = ε/3 as the input parameter for our algorithm, we can conclude
with the following main theorem of the paper.

Theorem 2. Let P be a set of n points in R
d for a constant d. Let ε be

any real number, 0 < ε < 1
15 , and let δ ≤ ε/4. There is an algorithm that with

probability at least 3
4 estimates the weight of a Euclidean minimum spanning tree of

P with a relative error of at most ε. This algorithm runs in Õ(
√
n/ε2+d/2) time

and requires Õ(
√
n/ε2+d/2) orthogonal range queries, Õ(

√
n/ε2+d/2) cone (1 + δ)-

approximate nearest neighbor queries, and a single minimal bounding cube of P .

Let us also mention that the remark at the end of section 6.6 can be incorporated
here to improve the complexity bounds in the most basic case when d = 2, that is, for
the emst problem on the Euclidean plane. Then, we obtain the following theorem.

Theorem 3. Let P be a set of n points in R
2. Let ε be any real number,

0 < ε < 1
15 , and let δ ≤ ε/4. There is an algorithm that, with probability at least

3
4 , estimates the weight of a Euclidean minimum spanning tree of P with a relative

error of at most ε. This algorithm runs in Õ(
√
n/ε2) time and requires Õ(

√
n/ε2)

orthogonal range queries, Õ(
√
n/ε2) cone (1+δ)-approximate nearest neighbor queries,

and a single minimal bounding cube of P .

Acknowledgments. We thank Bernard Chazelle and Sariel Har-Peled for help-
ful discussions on geometric data structures. We also thank the anonymous referees
for their helpful comments.



APPROXIMATING EUCLIDEAN MINIMUM SPANNING TREE 109

REFERENCES

[1] P. K. Agarwal, Range searching, in Handbook of Discrete and Computational Geometry, CRC
Press Ser. Discrete Math. Appl., CRC Press, Boca Raton, FL, 1997, pp. 575–598.

[2] P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl, Euclidean minimum
spanning trees and bichromatic closest pairs, Discrete Comput. Geom., 6 (1991), pp. 407–
422.

[3] P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in Advances in
Discrete and Computational Geometry, Contemp. Math. 223, AMS, Providence, RI, 1999,
pp. 1–56.

[4] S. Arya, D. M. Mount, and M. Smid, Dynamic algorithms for geometric spanners of small
diameter: Randomized solutions, Discrete Comput. Geom., 13 (1999), pp. 91–107.

[5] S. Arya and M. Smid, Efficient construction of a bounded-degree spanner with low weight,
Algorithmica, 17 (1997), pp. 33–54.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geom-
etry. Algorithms and Applications, Springer-Verlag, Berlin, 1997.

[7] P. B. Callahan and S. R. Kosaraju, Faster algorithms for some geometric graph problems in
higher dimensions, in Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 1993, pp. 291–300.

[8] B. Chazelle, Filtering search: A new approach to query-answering, SIAM J. Comput., 15
(1986), pp. 703–724.

[9] B. Chazelle, A functional approach to data structures and its use in multidimensional search-
ing, SIAM J. Comput., 17 (1988), pp. 427–462.

[10] B. Chazelle, R. Rubinfeld, and L. Trevisan, Approximating the minimum spanning tree
weight in sublinear time, Automata, Languages and Programming, Lecture Notes in Com-
put. Sci. 2076, Springer-Verlag, Berlin, 2001, pp. 190–200.

[11] A. Czumaj and C. Sohler, Property testing with geometric queries, in Algorithms—ESA—
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POLYNOMIAL TIME APPROXIMATION SCHEMES FOR
MAX-BISECTION ON PLANAR AND GEOMETRIC GRAPHS∗
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Abstract. The max-bisection and min-bisection problems are to find a partition of the vertices
of a graph into two equal size subsets that, respectively, maximizes or minimizes the number of edges
with endpoints in both subsets.

We design the first polynomial time approximation scheme for the max-bisection problem on
arbitrary planar graphs solving a long-standing open problem. The method of solution involves
designing exact polynomial time algorithms for computing optimal partitions of bounded treewidth
graphs, in particular max- and min-bisection, which could be of independent interest.

Using a similar method we design also the first polynomial time approximation scheme for max-
bisection on unit disk graphs (which could also be easily extended to other geometrically defined
graphs).

Key words. combinatorial optimization, NP-hardness, approximation algorithms, polynomial
time approximation schemes, graph bisection, planar graphs
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1. Introduction. The max-bisection and min-bisection problems, i.e., the prob-
lems of constructing a halving of the vertex set of a graph that, respectively, maximizes
or minimizes the number of edges across the partition, belong to the basic combina-
torial optimization problems.

The best-known approximation algorithm for max-bisection yields a solution
whose size is at least 0.701 times the optimum [16] (cf. [12, 14, 23]), whereas the
best-known approximation algorithm for min-bisection achieves “solely” a log-square
approximation factor [11]. The former factor for max-bisection is considerably im-
proved for regular graphs to 0.795 in [10], whereas the latter factor for min-bisection is
improved for graphs excluding any fixed minor (e.g., planar graphs) to a logarithmic
one in [11]. For dense graphs, Arora, Karger, and Karpinski give polynomial time
approximation schemes for max- and min-bisection in [2].

In this paper, we study the max-bisection and min-bisection problems on bounded
treewidth graphs and on planar graphs. Both graph families are known to admit exact
polynomial time algorithms for max-cut, i.e., for finding a bipartition that maximizes
the number of edges with endpoints in both sets in the partition [9, 15].

Our first main result are exact polynomial time algorithms for finding a partition
of a bounded treewidth graph into two sets of a priori given cardinalities, respectively
maximizing or minimizing the number of edges with endpoints in both sets. Thus, in
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particular, we obtain polynomial time algorithms for max-bisection and min-bisection
on bounded treewidth graphs.

The complexity and approximability status of max-bisection on planar graphs
have been long-standing open problems. Contrary to the status of planar max-cut,
planar max-bisection has been proven only recently to be NP-hard in exact setting by
Jerrum [18]. (For the sake of completeness of our paper, we provide this proof with
his agreement in section 3.) The technique used in his proof is similar to the method
used by Barahona [4] to prove NP-hardness of the planar spin glass problem within
a magnetic field. Karpinski, Kowaluk, and Lingas observed in [19] that the max-
bisection problem for planar graphs does not fall directly into the Khanna–Motwani
syntactic framework for planar optimization problems [20]. On the other hand, they
provided a polynomial time approximation scheme (PTAS) for max-bisection in planar
graphs of sublinear maximum degree. (In fact, their method implies that the size of
max-bisection is very close to that of max-cut in planar graphs of sublinear maximum
degree.)

Our second main result is the first PTAS for the max-bisection problem for arbi-
trary planar graphs. It is obtained by combining (via tree-typed dynamic program-
ming) the original Baker’s method of dividing the input planar graph into families of
k-outerplanar graphs [3] with our method of finding maximum partitions of bounded
treewidth graphs.

Note that the NP-hardness of exact planar max-bisection makes our PTAS result
best possible under usual assumptions.

Interestingly, our PTAS for planar max-bisection can be easily modified to a PTAS
for the problem of min-bisection on planar graphs in the very special case where the
min-bisection is relatively large, i.e., cuts Ω(n log log n/ log n) edges.

Unit disk graphs are another important class of graphs defined by the geometric
conditions on a plane. An undirected graph is a unit disk graph if its vertices can
be put in one-to-one correspondence with disks of equal radius in the plane in such
a way that two vertices are joined by an edge if and only if the corresponding disks
intersect. Tangent disks are considered to intersect.

Our third main result is the first PTAS for the max-bisection problem on unit disk
graphs. The scheme can be easily generalized to include other geometric intersection
graphs. It is obtained by combining (again via tree-typed dynamic programming) the
idea of Hunt et al. of dividing the input graph defined by plane conditions into fam-
ilies of subgraphs [17] with the aforementioned known methods of finding maximum
partitions of dense graphs [2].

The structure of our paper is as follows. The next section complements the in-
troduction with basic definitions and facts. In section 3, we provide the proof of
NP-hardness of planar max-bisection communicated by Jerrum [18]. In section 4, the
algorithms for optimal partitions of bounded treewidth graphs are given. Section 5
presents the PTAS for planar max-bisections. In section 6, we make several observa-
tions on the approximability of planar min-bisection. Finally, section 7 describes the
PTAS for max-bisection on unit disk graphs. In conclusion we notice that the same
technique can be applied also for other geometric intersection graphs.

2. Preliminaries. We start with formulating the underlying optimal graph par-
tition problems.

Definition 2.1. A partition of a set of vertices of an undirected graph G into two
sets X, Y is called an (|X|, |Y |)-partition of G. The edges of G with one endpoint in
X and the other in Y are said to be cut by the partition. The size of an (l, k)-partition
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is the number of edges which are cut by it. An (l, k)-partition of G is said to be a
maximum (l, k)-partition of G if it has the largest size among all (l, k)-partitions of G.
An (l, k)-partition of G is a bisection if l = k. A bisection of G is a max-bisection or a
min-bisection of G if it, respectively, maximizes or minimizes the number of cut edges.
An (l, k)-partition of G is a max-cut of G if it has the largest size among all (l′, k′)-
partitions of G. The max-cut problem is to find a max-cut of a graph. Analogously,
the max-bisection problem is to find a max-bisection of a graph. The min-cut problem
and the min-bisection problem are defined analogously.

The notion of treewidth of a graph was originally introduced by Robertson and
Seymour [22]. It has turned out to be equivalent to several other interesting graph
theoretic notions, e.g., the notion of partial k-trees [1, 5].

Definition 2.2. A tree-decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )), where {Xi | i ∈ I} is a collection of subsets of V , and T = (I, F ) is
a tree, such that the following conditions hold:

1.
⋃

i∈I Xi = V .
2. For all edges (v, w) ∈ E, there exists a node i ∈ I, with v, w ∈ Xi.
3. For every vertex v ∈ V , the subgraph of T , induced by the nodes {i ∈ I | v ∈

Xi}, is connected.
The treewidth of a tree-decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The
treewidth of a graph is the minimum treewidth over all possible tree-decompositions
of the graph. A graph which has a tree-decomposition of treewidth O(1) is called a
bounded treewidth graph.

Fact 1 (see [6]). For a bounded treewidth graph, a tree-decomposition of minimum
treewidth can be found in linear time.

To state our approximation results on max-bisection we need the following defi-
nition.

Definition 2.3. A real number α is said to be an approximation ratio for a
maximization problem, or equivalently the problem is said to be approximable within a
ratio α, if there is a polynomial time algorithm for the problem which always produces
a solution of size at least α times the optimum. If a problem is approximable for
arbitrary α < 1, then it is said to admit a polynomial time approximation scheme (a
PTAS for short).

An approximation ratio and a PTAS for a minimization problem are defined
analogously.

3. Planar max-bisection is NP-hard. It is not difficult to observe that the
known result of Garey, Johnson, and Stockmeyer asserting the NP-hardness of the
maximum independent in planar cubic graphs [13] can be restated as follows:

Given a planar cubic graph G and an integer k, is there a (k, n − k)-partition of G
cutting at least 3k edges?

The only difference from max-bisection is that we have a (k, n− k)-partition instead
of a bisection. Jerrum has recently combined this observation with the idea of shifting
the cut point in order to overcome the difference. The method of his proof follows
a similar construction from the proof of NP-hardness of the problem of planar spin
glass within a magnetic field (Problem P5) [4]. As a result, he obtained the following
fact [18].

Lemma 3.1. Let G be a planar cubic graph on n vertices, and let G′ be the disjoint
union of G with the complete bipartite graph K2,n−2k+2, where k ≤ n/2. G has an
independent set of size k if and only if G′ has a bisection of size at least 2n− k + 4.
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Proof. Suppose G has an independent set of size k. Form a (k, n−k)-partition of G,
where the set of cardinality k is an independent set in G, and the natural (2, n−2k+2)-
partition of K2,n−2k+2. These two partitions yield a (k+n−2k+2, n−k+2)-partition,
i.e., a bisection of G′, cutting 3k + 2(n− 2k + 2), i.e., 2n− k + 4 edges.

Suppose that G′ has a bisection cutting at least 2n− k + 4 edges. The bisection
yields an (j, n−2k+2+2− j)-partition of the K2,n−2k+2 subgraph and consequently
an (n− k− j +2, k+ j− 2)-partition of G. We may assume without loss of generality
(w.l.o.g.) j ≤ n− 2k + 2 + 2− j, which in turn implies n− k− j + 2 ≥ k + j − 2. How
many edges of K2,n−2k+2 are cut by the bisection?

Clearly, the maximum 2(n− 2k + 2) can be achieved when j = 2 and the (j, n−
2k+2+2−j)-partition of K2,n−2k+2 is that bipartite one. If j > 2, then at least j−2
vertices out of the j vertices have to be on the larger side of K2,n−2k+2, decreasing the
maximum by at least 2(j−2). We conclude that if j ≥ 2, at most 2(n−2k+2+2− j)
edges can be cut. If j = 0, 1, the number of edges that can be cut is clearly at most
j(n− 2k + 2).

Let U be the smaller set in the (n− k − j + 2, k + j − 2)-partition of G, i.e., the
one with k + j − 2 vertices.

Consider the general case j ≥ 2. By our assumptions, at least 2n − k + 4 −
2(n − 2k + 4 − j) = 3k + 2j − 4 edges leave U. Suppose U has i internal edges (i.e.,
having both endpoints in U). Then by counting degrees, 3|U | − 2i ≥ 3k + 2j − 4,
i.e., 3(k + j − 2) − 2i ≥ 3k + 2j − 4, which yields 2i ≤ j − 2. Thus, although U may
not be an independent set itself, it has very few internal edges and must therefore
contain a large independent set. Precisely, it must contain an independent set of size
|U | − 2i ≥ |U | − (j − 2) = k.

The cases j = 0, 1 are easily seen to be infeasible: |U | has size less than k but
defines a partition of size at least 2n−k+4−(n−2k+2) > 2n−k+4−2(n−2k+2) =
3k.

Lemma 3.1, combined with the NP-hardness of the maximum independent set for
planar cubic graphs, immediately yields the NP-hardness of planar max-bisection.

Theorem 3.2. Planar max-bisection is NP-hard.

4. Optimal partitions for graphs of bounded treewidth. Let G be a graph
admitting a tree-decomposition T = (I, F ) of treewidth at most k for some constant
k. By [9], one can easily modify T, without increasing its treewidth, such that one
can see T as a rooted tree, with root r ∈ I, fulfilling the following conditions:

1. T is a binary tree.
2. If a node i ∈ I has two children j1 and j2, then Xi = Xj1 = Xj2 .
3. If a node i ∈ I has one child j, then either Xj ⊂ Xi and |Xi \ Xj | = 1, or

Xi ⊂ Xj and |Xj \Xi| = 1.

We will assume in the remainder that such a modified tree-decomposition T of G
is given.

For each node i ∈ I, let Yi denote the set of all vertices in a set Xj with j = i
or j being a descendant of i in the rooted tree T . Our algorithm computes for each
i ∈ I an array maxpi with O(2k|Yi|) entries. For each l ∈ {0, 1, . . . , |Yi|} and each
subset S of Xi, the entry maxpi(l, S) is set to maxS′⊆Yi,|S′|=l,S′∩Xi=S |{(v, w) ∈ E|v ∈
S′ & w ∈ Yi \ S′}|. In other words, maxpi(l, S) is set to the maximum number of cut
edges in an (l, |Yi| − l)-partition of Yi, where S and Xi \ S are in the different sets
of the partition and the set including S is of cardinality l. For convention, if such a
partition is impossible, maxpi(l, S) will be set to −∞.
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The entries of the array are computed following the levels of the tree-
decomposition T in a bottom-up manner. The following lemma shows how the array
can be determined efficiently.

Lemma 4.1.

• Let i be a leaf in T. Then for all l ∈ {0, 1, . . . , |Xi|} and S ⊆ Xi, where
|S| = l, maxpi(l, S) = |{(v, w) ∈ E|v ∈ S,w ∈ Xi \ S}|. The remaining
entries of maxpi are set to −∞.

• Let i be a node with one child j in T. If Xi ⊆ Xj, then for all l ∈ {0, 1, . . . , |Yi|}
and S ⊆ Xi, maxpi(l, S) = maxS′⊆Xj ,S′∩Xi=S maxpj(l, S

′).
• Let i be a node with one child j in T. If Xj ∪ {v} = Xi, where v /∈ Xj, then

for all l ∈ {0, 1, . . . , |Yi|} and S ⊆ Xi, if v ∈ S, then maxpi(l, S) = maxpj(l−
1, S \{v})+ |{(v, s)|s ∈ Xi \S}|; else maxpi(l, S) = maxpj(l, S)+ |{(v, s)|s ∈
S}|.

• Let i be a node with two children j1, j2 in T, with Xi = Xj1 = Xj2 . For all
l ∈ {0, 1, . . . , |Yi|} and S ⊆ Xi, maxpi(l, S) = maxl1+l2−|S|=l&l1≥|S|&l2≥|S|
(maxpj1(l1, S) + maxpj2(l2, S) − |{(v, w) ∈ E|v ∈ S,w ∈ Xi \ S}|).

It follows that computing an array maxpi on the basis of the arrays computed
for the preceding level of T can be done in time O(2k|Yi|2). Consequently, one can
compute the array maxpr for the root r of T in cubic time.

Theorem 4.2. All maximum (l, n − l)-partitions of a graph on n nodes given
with a tree-decomposition of treewidth k can be computed in time O(2kn3).

By substituting min for max, we can analogously compute all minimum (l, n− l)-
partitions of a graph with constant treewidth.

Theorem 4.3. All minimum (l, n − l)-partitions of a graph on n nodes given
with a tree-decomposition of treewidth k can be computed in time O(2kn3).

By Fact 1 we obtain the following corollary.

Corollary 4.4. All maximum and minimum (l, n − l)-partitions of a bounded
treewidth graph on n vertices can be computed in time O(n3).

Since a tree-decomposition of a planar graph on n vertices with treewidth O(
√
n)

can be found in polynomial time by the planar separator theorem [7], we obtain also
the following corollary.

Corollary 4.5. All maximum and minimum (l, n − l)-partitions of a planar
graph on n vertices can be computed in time 2O(

√
n).

5. A PTAS for max-bisection of an arbitrary planar graph. The authors
of [19] observed that the requirements of the equal size of the vertex subsets in a two
partition yielding a max-bisection makes the max-bisection problem hardly expressible
as a maximum planar satisfiability formula. For this reason we cannot directly apply
Khanna and Motwani’s syntactic framework [20], yielding PTASs for several basic
graph problems on planar graphs (e.g., max-cut). Instead, we combine the original
Baker’s method [3] with our algorithm for optimal maximum partitions on graphs of
bounded treewidth via tree-type dynamic programming in order to derive the first
PTAS for max-bisection of an arbitrary planar graph.

Algorithm 1.

input: a planar graph G = (V,E) on n vertices and a positive integer k;

output: (1 − 1
k+1 )-approximations of all maximum (l, n− l)-partitions of G

1. Construct a plane embedding of G.
2. Set the level of a vertex in the embedding as follows: the vertices on the outer

boundary have level 1, and the vertices on the outer boundary of the subgraph
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obtained by deleting the vertices of level i − 1 have level i; for convention
extend the levels by k empty ones numbered −k + 1,−k + 2, . . . , 0.

3. For each level j in the embedding, construct the subgraph Hj of G induced
by the vertices on levels j, j + 1, . . . , j + k.

4. For each level j in the embedding, set nj to the number of vertices in Hj and
compute all maximum (l, nj − l)-partitions of Hj .

5. For each i, 0 ≤ i ≤ k, set Gi to the union of the subgraphs Hj , where j
(mod k + 1) = i.

6. For each i, 0 ≤ i ≤ k, compute all maximum (l, n − l)-partitions of Gi

by dynamic programming in a tree fashion; i.e., first compute all maximum
partitions for pairs of “consecutive” Hj , where j (mod k + 1) = i, then for
quadruples of such Hj , etc.

7. For each l, 1 ≤ l < n, output the largest among the maximum (l, n − l)-
partitions of Gi, 0 ≤ i ≤ k.

Lemma 5.1. For each l, 1 ≤ l < n, Algorithm 1 outputs an (l, n− l)-partition of
G within k/(k + 1) of the maximum.

Proof. Let P be a maximum (l, n− l)-partition of G.

We claim that for each edge e in P, there is at most one i, 0 ≤ i ≤ k, such that e
is not an edge of Gi. Let j be the maximum level of an endpoint of e. It follows that
the other endpoint of e has level j− 1 and the endpoints of e belong to the subgraphs
Hj−k−1 and Hj , respectively. These are the only H subgraphs containing a single
endpoint of e, and they both are part of the Gi subgraph where j (mod k + 1) = i.

By our claim, there is i′, 0 ≤ i′ ≤ k, such that Gi′ does not include at most
|P |/(k + 1) edges of P. It follows that a maximum (l, n − l)-partition of such a Gi′

cuts at least k|P |/(k + 1) edges. Algorithm 1 outputs an (l, n − l)-partition of G
cutting at least as many edges as a maximum (l, n− l)-partition of Gi′ .

Lemma 5.2. Algorithm 1 runs in O(k23k+2n3) time.

Proof. The time complexity of the algorithm is dominated by that of steps 4 and
6.

The subgraphs Hj of G are so-called (k+1)-outerplanar graphs and have bounded
treewidth 3k+2 [7]. Hence, for a given i, 0 ≤ i ≤ k, all maximum (l, nj− l)-partitions
of Hj , where j (mod k + 1) = i, can be computed in time O(23k+2n3) by Theorem
4.2, the pairwise disjointness of the subgraphs, and j ≤ n. It follows that the whole
step 4 can be implemented in time O(k23k+2n3).

In step 6, a maximum (l, n′ − l)-partition of the union of 2q+1 “consecutive”
Hj ’s satisfying j (mod k + 1) = i on n′ vertices can be determined on the basis of
appropriate maximum partitions of its two halves, each being the union of 2q of the
Hj ’s, in time O(n). Hence, since l ≤ n′ and the number of nodes in the dynamic
programming tree is O(n), the whole step 6 takes O(kn3) time.

Theorem 5.3. Algorithm 1 yields a PTAS for all maximum (l, n− l)-partitions
of a planar graph.

Corollary 5.4. The problem of max-bisection on planar graphs admits a PTAS.

6. Observations on min-bisection for planar graphs. We can easily obtain
an analogous PTAS for min-bisection of planar graphs in the very special case when
the size of min-bisection is Ω(n). Simply, at least one of the subgraphs Gi of G misses
at most |E|/(k+1) edges of G. Therefore, the number of edges cut by a min-bisection
of such a Gi can increase at most by |E|/(k + 1) in G. By picking k sufficiently large
we can guarantee an arbitrarily close approximation of min-bisection in G.
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In fact, we can obtain even a slightly stronger result on min-bisection for planar
graphs by observing that our method runs in polynomial time even for nonconstant
k (up to O(log n)), provided that a tree-decomposition of graphs with treewidth
equal to such a k can be determined in polynomial time. At present, the best
tree-decomposition algorithms have the leading term kk [8], so we can set k to
O(log n/ log log n), keeping the polynomial time performance of our method. In this
way, we obtain the following theorem.

Theorem 6.1. The min-bisection problem on planar graphs in which the size of
min-bisection is Ω(n log log n/ log n) admits a PTAS.

Observe that the presence of large degree vertices in a planar graph can cause the
large size of min-bisection, e.g., in a star graph. For bounded-degree planar graphs,
the size of min-bisection is O(

√
n) by the following argument.

The planar separator theorem yields a linear-time method of disconnecting a
planar graph into two subgraphs, each having at least one third of its vertices, by
removing O(

√
n) vertices [21]. For a planar graph of maximum degree d, construct

a separator tree by applying the planar separator theorem recursively. Next, find a
path in the tree from the root down to the median leaf. By deleting the edges incident
to the vertex separators along the path and additionally O(1) edges, we can easily
halve the set of vertices of the graph such that none of the remaining edges connects
a pair of vertices from the opposite halves. The number of deleted edges at the ith
level of the tree is O(d

√
n( 2

3 )i/2). Thus, the total number of deleted edges is O(d
√
n).

In fact, we do not have to construct the whole separator tree, but just the path, and
this can be easily done in time O(n log n) [21].

Theorem 6.2. For a planar graph on n vertices and maximum degree d, a
bisection of size O(d

√
n) can be found in time O(n log n).

Clearly, if a graph has an O(1)-size bisection, it can be found by exhaustive
search in polynomial time. We conclude that at present we have efficient methods
for at least O(1)-approximation of min-bisection in planar graphs if its size is either
Ω(n log log n/ log n) or O(1), or it is O(

√
n) and the maximum degree is constantly

bounded. These observations suggest that a substantial improvement of the logarith-
mic approximation factor for min-bisection on planar graphs given in [11] might be
possible.

7. PTAS for max-bisection of a unit disk graph. In this section we design a
PTAS for max-bisection of unit disk graphs, another important class of graphs defined
by the geometric conditions on a plane.

Recall that an undirected graph G is a unit disk graph if its vertices can be put
in one-to-one correspondence with disks of equal radius in the plane in such a way
that two vertices are joined by an edge if and only if the corresponding disks intersect.
Tangent disks are considered to intersect. We may assume w.l.o.g. that the radius of
each disk is one. Since the recognition problem for the unit disk graph is NP-hard,
we shall also assume that a geometric representation of the graph is given as input.

Our technique works in a similar way as in the case for planar graphs. The input
graph G is divided into families of subgraphs Hi,j using the ideas of Hunt et al. given
in [17]. Next, either an optimal or approximative solution to all (l, ni,j − l)-partitions
of every subgraph Hi,j , where ni,j denotes the number of vertices in Hi,j , can be
computed. If the number of vertices ni,j is smaller than a constant c, then we can
compute an optimal solution in constant time. If the number ni,j is larger than a
constant c, then we use the methods given in [2]. We show below that in such a case
the underlying graph is dense; i.e., it has at least an2

i,j edges for a constant a > 0. Via
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tree-type dynamic programming these solutions are used to obtain an overall solution
for G.

In order to divide the graph G, we impose a grid of horizontal and vertical lines
on the plane that are 2 apart of each other. The vth vertical line, −∞ < v < ∞, is
at x = 2v. The hth horizontal line, −∞ < h < ∞, is at y = 2h. We say that the
vth vertical line has index v and that the h horizontal line has index h. Further, we
denote the vertical strip between the vth and the (v + 1)th vertical line as the strip
with index v and as the analogue for the horizontal strip between the hth and the
(h + 1)th horizontal line.

Each vertical strip is left-closed and right-open, and each horizontal strip is closed
at the top and open at the bottom. A disk is said to lie in a given strip if its center
lies in that strip. Note that every disk lies in exactly one horizontal and vertical strip.

For a fixed k, consider the subgraph Hi,j of G, −∞ < i, j < ∞, induced by the
disks that lie in the intersection of the horizontal strips i, i+1, . . . , i+k and the vertical
strips j, j + 1, . . . , j + k. Let ni,j be the number of vertices of Hi,j . By a packing
argument it can be shown that for fixed k > 0, the size of a maximum independent
set of such a subgraph is at most 4(k + 3)2/π. The area of the square (given by the
intersection of the (k + 1) horizontal and (k + 1) vertical strips) is 4(k + 1)2. Since
a disk can lie close to or at the border of a horizontal strip i and i + k and at the
border of a vertical strip j and j + k, the total area that an independent set of disks
(of subgraph Hi,j) can cover is at most 4(k + 3)2. Since the area of each disk is π,
the size of an independent set is at most 4(k + 3)2/π.

Lemma 7.1. If ni,j > 8(k + 3)2/π, then the subgraph Hi,j of G is dense.

Proof. Partition the vertex set of Hi,j successively into maximal independent
sets by determining a maximal independent set I1, remove its vertices, and again
determine a maximal independent set I2, and so on. As described above, the number
of independent sets is at least πni,j/4(k + 3)2. Since each Ij is maximal, there is at
least one edge from a vertex of Ij to every Ij′ , j < j′. If we understand the set of
independent sets as a complete graph on πni,j/4(k + 3)2 vertices, it follows that Hi,j

has at least n2
i,jπ

2/64(k + 3)4 edges for ni,j ≥ 8(k + 3)2/π. This implies that Hi,j is
dense.

Corollary 7.2. If ni,j > 8(k + 3)2/π, then the size of a maximum bisection of
Hi,j is Ω(n2

i,j).

Proof. Partition the vertex set of Hi,j as before and use the maximum independent
sets to build up the sets of the bisection. Since all independent sets are maximal, there
are at least n2

i,jπ
2/162(k + 3)4 edges between the sets of bisection.

The main idea of our algorithm is that each subgraph Hi,j (corresponding to
the (k + 1) × (k + 1) square) either has at most a constant number of vertices (case
nij ≤ 8(k + 3)2/π) or is dense and has a large bisection (case nij > 8(k + 3)2/π; see
Lemma 7.1 and Corollary 7.2 above). In the former case, the problem can be solved
optimally, while in the later case, we use a PTAS of [2] to obtain an approximately
optimal solution. Let c = 8(k + 3)2/π.

Algorithm 2.

input: a unit disk graph G = (V,E) specified by a set V of disks in the plane and the
coordinates of their centers and a positive integer k;

output: (1 − 1
k+1 )2(1 − δ)-approximations of maximum bisection of G

1. Divide the plane by imposing a grid of width two.
2. Construct the subgraphs Hi,j of G as described above.
3. For each i and each j, set n′

i,j to the number of vertices in Hi,j and compute all
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(l, n′
i,j−l)-partitions of Hi,j either approximatively (for n′

i,j > c) or optimally
(for n′

i,j ≤ c).
4. For each r and s, 0 ≤ r, s ≤ k, set Gr,s to the union of the subgraphs Hi,j ,

where i (mod k + 1) = r and j (mod k + 1) = s.
5. For each r and s, 0 ≤ r, s ≤ k, set nr,s to the number of vertices in Gr,s and

compute a bisection of Gr,s within (1 − δ) of its maximum by dynamic pro-
gramming in a tree fashion. Therefore, enumerate the subgraphs in increasing
order of the sum i + j and compute all partitions of pairs of “consecutive”
Hi,j , respectively, to this ordering on the basis of the computed partitions,
then for quadruples of such Hi,j , etc.

6. Output the largest bisection of Gr,s, 0 ≤ r, s ≤ k.
If ni,j ≤ c = 8(k + 3)2/π, we can find all the maximum (l, ni,j − l)-partitions of

the subgraph Hi,j in constant time by enumerating all possibilities. Otherwise (for
ni,j > c = 8(k + 3)2/π) the problem is solvable approximatively in polynomial time
by solving the following polynomial integer program:

maximize
∑

{i,j}∈E(Hi,j)

xi(1 − xj) + xj(1 − xi)(7.1)

subject to
∑

xi = l,(7.2)

xi ∈ {0, 1}, i = (1, . . . , ni,j).(7.3)

This program can be solved by the use of Theorem 1.10 in [2] within an error of at
most εn2

i,j , which also satisfies the linear constraint (7.2) of the program within an

additive error of O(ε
√
ni,j log ni,j). In order to get a subset of size l, we move at most

ε
√
ni,j log ni,j in or out. This affects the number of edges included in the partition

by at most εni,j

√
ni,j log ni,j ≤ εn2

i,j . Hence we can compute a maximum (l, ni,j − l)-
partition of a subgraph Hi,j that has more than c vertices within an additive error of
2εn2

i,j of the maximum.

Lemma 7.3. Algorithm 2 outputs a bisection of G within (1− 1
k+1 )2(1− δ) of the

maximum.
Proof. Let P be a maximum bisection of G. For each edge e ∈ P and a fixed r,

0 ≤ r ≤ k, there is at most one s, 0 ≤ s ≤ k, such that e crosses a vertical line whose
index modulo k+1 is s. Analogously, there is for each e ∈ P and a fixed s, 0 ≤ s ≤ k,
at most one r, 0 ≤ r ≤ k, such that e crosses a horizontal line whose index modulo
k + 1 is r. Consequently, there is a pair (r, s), 0 ≤ r, s ≤ k, such that a maximum
(l, n− l)-partition of Gr,s cuts at least (1 − 1

k+1 )2|P | edges.
By Corollary 7.2, the size of maximum bisection of the subgraph G′

r,s of Gr,s that
consists of all Hi,j with more than c = 8(k + 3)2/π vertices is at least

∑
ni,j>c dn2

i,j ,

where d = π2/162(k + 3)4. Choosing ε = δd/2, the error 2εn2
i,j = δdn2

i,j caused by
the solutions of the polynomial integer programs for the subgraphs Hi,j of G′

r,s is at
most a δ fraction of an optimum solution of maximum bisection for G′

r,s. Since the
partitions for each Hi,j with at most c vertices are computed optimally, we obtain a
bisection of Gr,s within (1 − δ) of the maximum.

Thus Algorithm 2 outputs a bisection of G within (1 − 1
k+1 )2(1 − δ) of the

maximum.
Theorem 7.4. The problem of max-bisection on unit disk graphs admits a PTAS.
The same approach can be used to obtain a PTAS for the maximum bisection

problem in geometric intersection graphs, both of other regular polygons and also of
regular geometric objects in higher dimensions.
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MINIMUM-WEIGHT SPANNING TREE CONSTRUCTION IN
O(log log n) COMMUNICATION ROUNDS∗
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Abstract. We consider a simple model for overlay networks, where all n processes are connected
to all other processes, and each message contains at most O(logn) bits. For this model, we present a
distributed algorithm which constructs a minimum-weight spanning tree in O(log logn) communica-
tion rounds, where in each round any process can send a message to every other process. If message
size is Θ(nε) for some ε > 0, then the number of communication rounds is O(log 1

ε
).
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1. Introduction. A minimum-weight spanning tree (MST) is one of the most
useful distributed constructs, as it minimizes the cost associated with global opera-
tions such as broadcasts and convergecasts. This paper presents an MST construction
algorithm that works in O(log log n) communication rounds, where in each round each
process can send O(log n) bits to every other process (intuitively allowing each mes-
sage to contain the identity and weight of only a constant number of edges). Our result
shows that an MST can be constructed with little communication: throughout the
execution of the algorithm, each pair of processes exchanges at most O(log n log log n)
bits; the overall number of bits sent is Θ(n2 log n), which is optimal. The algorithm
extends to larger message sizes, in the sense that the number of communication rounds
is O(log 1

ε ) if each message can contain nε bits for some ε > 0. Note that if messages
are not restricted in size, then the MST can be trivially constructed in a single round
of communication: each process sends all its information to all its neighbors, allowing
each node to locally compute the MST.

The number of communication rounds dominates the time complexity in situa-
tions where latency is high and bandwidth is scarce. This may be the situation in
some overlay networks. Briefly, the idea in overlay networks is to think of the un-
derlying communication network (e.g., the Internet) as a “black box” that provides
reliable point-to-point communication. On top of that network run distributed ap-
plications. This approach (whose precursor is the Internet’s “end-to-end argument”
[13]) is different from classical distributed models, where processes reside in networks
nodes (i.e., switches or routers), and thus their implementation would require using
low-level communication. Rather, the pragmatic view now is that distributed applica-
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tions create their own overlay network by choosing which pairs of local processes will
communicate directly according to various criteria. The concept of overlay networks
is central to areas such as multicast or content distribution networks (see, e.g., [8] and
the references therein), peer-to-peer systems (for example, Chord [14]), and others.

1.1. Related work. Spanning tree construction is well studied as a sequential
optimization problem (see, e.g., [15, 9]). Distributed MST constructions are presented
in [6, 3] (and see the references in [11]). These classical distributed algorithms are
oriented towards minimizing the total number of messages in general networks, and
their time complexity is inherently Ω(logn), even when run on fully connected graphs.
The model we use in this paper is a special case of the model studied in [7, 12, 10]:
in these papers, each message has O(log n) bits, but the fully connected graph is
not directly considered. The best previously known upper bound for fully connected
graphs in this model is O(log n) communication rounds. This bound holds also for
graphs of diameter 2 [10]. (It is known that the number of rounds jumps at least to
Ω(n1/4) when the diameter of the network is 3 or more [10, 12].)

The parallel time complexity of MST construction depends on the particular
architecture considered, but we are not aware of any sublogarithmic time algorithm
that uses small messages. For the PRAM model, there are quite a few O(log n)
algorithms, including a deterministic one for the CRCW model [4] and a randomized
one for the EREW model [5]. Adler et al. [1] study the total number of bits that
must be communicated in the course of an MST construction problem under various
parallel architectures. For our model, their results imply that the worst-case number
of bits that need to be communicated throughout the execution of the algorithm is
Ω(n2 log n).

1.2. System model. In the underlying formal model, the system is represented
by a complete n-node weighted undirected graph G = (V,E, ω), where ω(e) denotes
the weight of edge e ∈ E. Each node has a distinct ID of O(log n) bits. Each node
knows all the edges incident to it (and hence, since the graph is a clique, each node
knows about all other nodes in the system). An execution of the system proceeds in
asynchronous steps: in a “receive” step, a node receives some of the messages sent to
it in previous steps. In a “send” step, a node makes a local computation and sends
messages to the other nodes in the system. Each message may be different, and we
require that each message contains at most O(log n) bits. (The results are extended
to larger message sizes in section 4.) We assume that messages may be delayed
arbitrarily but are never lost or corrupted. The time complexity of an algorithm
in the asynchronous model is measured by normalizing the scale so that the longest
message delivery time is one unit.

Simplification: The synchronous model. In the synchronous model, computation
advances in global rounds, where in each round processes send messages, receive
them, and do some local computation. This model is much more convenient as a
programming mode. Fortunately, since we assume that the system is reliable, we
may apply a synchronizer that allows us to present the algorithm in the synchronous
model. Specifically, we use the α synchronizer of Awerbuch [2]. Let us outline the
idea briefly. Assume that we have an algorithm SA for the synchronous model. The
execution in the asynchronous model is done as follows. A process starts the next
round only after receiving a special “proceed” message from a distinguished node v∗

(say, the node with the lowest ID in the system). It then sends messages according to
SA. For each SA message received, the receiver node sends an “ack” message back
to the sender; when a sender has received acknowledgements to all the messages it
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sent, the sender forwards a “safe” message to v∗; when v∗ receives “safe” messages
from all nodes in the system, it sends a “proceed” message to all other nodes, which
may then send their SA messages of the next round. Note that since we assume that
the graph is fully connected, this transformation incurs only a constant blowup in the
message complexity and in time complexity. We shall henceforth use the synchronous
model, but we emphasize that the algorithm works in the asynchronous model using
the simple synchronizer described above.

1.3. The MST construction problem. We assume that in the initial state,
the input to each node v ∈ V consists of the weights of all its incident edges ω(v, u)
for all u ∈ V \ {v}. Edge weights are assumed to be integers that can be represented
using O(log n) bits. Without loss of generality, we assume that all the edge weights
are distinct (otherwise we can break ties by node IDs), and hence the MST is unique.
When our algorithm halts, all nodes know the full list of all n− 1 edges in the MST
of G.

2. Algorithm description. In this section we describe the algorithm. In sec-
tion 2.1 we give an overview of the main ideas. In section 2.2 we specify the main
algorithm, and in sections 2.3 and 2.4 we specify local subroutines used by the main
algorithm.

2.1. Overview. The algorithm operates in phases: Each phase takes O(1)
rounds, and there are at most O(log log n) phases. At the end of each phase k ≥ 0,
the nodes of G are partitioned into disjoint clusters Fk = {F k

1 , . . . , F
k
mk

},
⋃

i F
k
i = V .

For each cluster F ∈ Fk, the algorithm selects also a spanning subtree T (F ). The
partition Fk and the corresponding subtree collection T k = {T (F ) | F ∈ Fk}, in-
cluding the weights of the edges in those subtrees, are known to every vertex in the
graph. (For notational consistency, we think of the initial situation at the beginning
of phase 1 as the end of an “imaginary” phase 0, with each node forming a singleton
cluster, i.e., F0 = {F 0

1 , . . . , F
0
n}, where F 0

i = {vi} for every 1 ≤ i ≤ n.)
Define a fragment to be a connected subtree of the MST. For a set of nodes F ⊆ V ,

denote by T (F ) the subgraph of the MST induced by F . With these notations, we
can state the following invariant, satisfied by the algorithm at the end of each phase
k ≥ 0:

T (F ) = T (F ) for every cluster F ; namely, the spanning subtree se-
lected for F is a fragment.

In our model, it is easy for the nodes of each cluster to learn, in constant time,
the lightest edge to every other cluster. Hence, intuitively, it is possible to “contract”
each cluster C into a vertex vC , thus creating a smaller logical graph Ĝ, and continue
working on this logical graph. (In practice, each real vertex belonging to some cluster
C knows the weight of the edge connecting its vertex vC to every other vertex in Ĝ.
The operations of each vertex vC of the logical graph Ĝ are carried out by the real
vertices belonging to the cluster C, or by a single representative called the leader of
C, denoted �(C).) This enables us to simulate the usual “fragment growing” MST
construction process for Ĝ, based on examining the edges one by one in increasing
order of weight and including in the MST each inspected edge that is the minimum-
weight outgoing edge (MWOE) of its fragment. This can be done in O(log n) time.

To reduce the time complexity to O(log log n), it is necessary to speed up the
process by making the cluster sizes grow quadratically in each phase. The main idea
used for achieving this growth rate is the following. Essentially, we would like to
provide every vertex vC in the logical graph Ĝ with information about additional
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edges in Ĝ, beyond its own. In particular, if we were somehow able to let every vertex
vC learn the entire topology of Ĝ, then we could finish the MST construction for
Ĝ in a single step by asking each vertex in the graph to compute the MST locally.
Unfortunately, such information exchange seems to require too much time. On the
positive side, denoting the minimum cluster size by N , it is possible for the (N or
more) members of each cluster to inform a distinguished vertex v∗ of the graph, in
constant time, of the N lightest edges connecting their cluster to other clusters, by
appropriately sharing the workload of this task among them. (For concreteness, we
assume that v∗ is the node with the smallest ID in the system.)

Subsequently, we now face a special subtask of the MST construction problem to
solve in v∗. This node now has a partial picture of the logical graph Ĝ, consisting
of all the vertices vC but only some of the edges connecting them, particularly the
N lightest edges emanating from each vertex of Ĝ (to N other vertices). It is now
necessary to perform (locally) as many legal “fragment merging” steps as possible on
the basis of this information. That is, we would like to sort the edges known to us
by increasing order of weight, examine them one by one, and add edges that are the
MWOE of one of the two fragments they connect, so long as we can be sure of that
fact. So the question becomes: When is it “dangerous” to continue the merging steps
in the absence of information about the weights of the edges unknown to us?

The answer to this question is that it is perfectly safe to continue merging a
fragment F (in the logical graph Ĝ), so long as for each vertex vC in F we have
still not inspected at least one of its N lightest edges (which is known to us by
assumption). However, once we have already inspected all the edges of some vertex
vC in the fragment F , it becomes dangerous to continue attempting to merge the
fragment over edges known to us, as it is possible that the true MWOE of F is the
(N + 1)st lightest edge emanating from vC , which is not known to us (yet is lighter
than any edge emanating from C that we do know of at this moment).

The crucial observation is that this “safety rule” still allows us to grow each of
the fragments to contain at least N + 1 vertices of Ĝ. This means that the clusters
of the next phase will be of minimum size Ω(N2).

An interesting observation is that even when we can no longer identify the MWOE
of some fragment F , we may still be able to safely merge F with some other fragment
F ′. This may still be legitimate if we can ascertain that the edge connecting F and
F ′ is the MWOE of F ′.

Finally, after constructing locally the new fragments, v∗ sends out the identity of
the edges added to the chosen set. This can be done in constant time by letting v∗

send each edge to a different intermediate node, which will broadcast that edge to all
other nodes.

2.2. The main algorithm. In the algorithm, whenever a node is instructed to
send a message containing the edge e = (u, v), this should be interpreted as a message
including the IDs of its two endpoints, ID(u) and ID(v), as well as the edge weight
ω(e).

We now describe the steps taken in phase k for all 1 ≤ k ≤ log log n. Let v∗

denote the node whose ID is minimal among all nodes in the graph.
Throughout, the algorithm is illustrated on the 16-vertex complete graph K16

with weights as depicted in Figure 1. Note that in this case there are only two phases.
The flow of the algorithm is illustrated in Figure 2. In the first column, the fragment
leaders are marked by horizontal stripes. Note that in the first phase all the nodes
are leaders, whereas in the second phase only half of the nodes are leaders. The
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Fig. 1. The example graph K16: (a) The edge weights (weight 1 is a solid line, 2 is a dashed
line, and 3 is a double-dashed line). Edges not shown in the figure have weight 4; hence they do not
participate in the MST. (b) The resulting MST.
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Fig. 2. An illustration of the execution of the algorithm on the example graph K16.

second column shows the selected edges. In the first phase each fragment chooses one
edge, while in the second phase each fragment chooses two edges, with the cheapest
edge of each fragment denoted by a single-dashed line and the second cheapest edge
denoted by a double-dashed line. The third column shows the guardian of each of
the selected edges: the horizontally striped nodes are the guardians of cheapest edges
and the vertically striped nodes are the guardians of the second cheapest edges. The
last column shows the new edges that node v∗ adds to the MST.
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Phase k: Code for node v in cluster F of size N = |F |

Input: A set of chosen edges. The set of connected components defined by this set
is the set of clusters Fk−1. For each cluster F ′ ∈ Fk−1, �(F ′) is the node with the
minimal ID in F ′.

1. (a) Compute the minimum-weight edge e(v, F ′) that connects v to (any node
of) F ′ for all clusters F ′ �= F .

(b) Send e(v, F ′) to �(F ′) for all clusters F ′ �= F .
2. If v = �(F ) then

(a) Using the messages received from step 1, compute the lightest edge be-
tween F ′ and F for every other cluster F ′.

(b) Perform (locally) Procedure Cheap Out (described below), which does
the following:
• It selects a set A(F ) containing the N cheapest MWOEs that go

out of F to N = |F | distinct clusters.
• It appoints for each such edge e a guardian node g(e) in F , ensuring

that each node in F is appointed as guardian to at most one edge.
3. Let e′ ∈ A(F ) be the edge for which v was appointed as guardian, i.e., such

that g(e′) = v. Send e′ to v∗, the node with the minimal ID in the graph.
(At the end of this step, v∗ knows all the edges in the set A =

⋃
F ′∈Fk−1 A(F ′).)

4. If v = v∗ then
(a) Perform (locally) Procedure Const Frags. This procedure (described be-

low) computes Ek, the new set of edges to add.
(b) For each edge e ∈ Ek, send a message to g(e).

5. If v receives a message from v∗ that e ∈ Ek, then v sends e to all nodes in
the graph.

6. Each node adds all edges in Ek and computes Fk.

2.3. Procedure Cheap Out. The local procedure Cheap Out is invoked by clus-
ter leaders in each phase, and it operates as follows at the leader of cluster F with
|F | = N at phase k.

Input: Cheapest edge e(F, F ′) for every F ′ ∈ Fk−1.

1. Sort the input edges in increasing order of weight.
2. Let μ = min{N, |Fk−1| − 1}.
3. Define A(F ) to be the first μ edges in the sorted list.
4. Sort the nodes of F by increasing order of ID.
5. Appoint the ith node of F as the guardian of the ith edge added to A(F ).
6. For each node u ∈ F : send the edge to which u is appointed.

2.4. Procedure Const Frags. The local procedure Const Frags is invoked only
by the distinguished node v∗, and it operates as follows. It receives as input the
initial partition Fk−1, the spanning subtree collection T k−1, and the set of edges for
inspection, A. Its output is a set of edges Ek, which defines a new partition Fk and
its spanning subtress T k: the edge set of T k is the union of the set of edges in T k−1

with the set Ek, and Fk is the set of connected components of T k.
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The procedure operates in two stages. In the first stage, it contracts the input
clusters into vertices, thus creating a logical graph Ĝ, partitions this logical graph
into “superclusters,” and constructs a spanning subtree for each such supercluster. In
the second stage, the procedure transforms the superclusters and spanning subtrees
constructed for Ĝ into clusters and spanning subtrees for the original graph G.

We now continue with a more detailed description of the two stages. The first
stage operates as follows. The procedure starts by creating the logical graph Ĝ =
(V̂ , Ê), where each input cluster is viewed as a vertex, namely, V̂ = Fk−1. The edge
set Ê consists of the logical edges corresponding to the edges of the set A. Set the
logical edge corresponding to e = (u,w) to be X(e) = (F, F ′), where u ∈ F and
w ∈ F ′. Then Ê = {X(e) | e ∈ A}. Each logical edge X(e) is assigned the same
weight as e.

Then the procedure constructs a collection F̂ of superclusters and a corresponding
collection T̂ of spanning subtrees on this logical graph. The construction operates as
follows. The procedure first initializes the output partition as F = {{F} | F ∈ Fk−1};
i.e., each vertex of V̂ = Fk−1 is a separate supercluster. The output collection of
spanning subtrees is initialized to T̂ = ∅. The procedure then inspects the edges
of Ê sequentially in increasing order of weight. An inspected logical edge X(e) is
added to T̂ if it does not close a cycle with edges already in T̂ . Whenever an edge
X(e) = (F1, F2) is added to T̂ , the superclusters F̂1 and F̂2 containing F1 and F2,
respectively, are merged into one supercluster F̂ , setting F̂ = F̂1 ∪ F̂2 and eliminating
F̂1 and F̂2, and the corresponding spanning subtrees are fused together into a spanning
subtree for the new supercluster F̂ , setting T̂ (F̂ ) = T̂ (F̂1) ∪ T̂ (F̂2) ∪ {X(e)}.

In each step during this process, whenever a logical edge X(e) = (F1, F2) between
two superclusters F̂1 and F̂2 such that F1 ∈ F̂1 and F2 ∈ F̂2 is inspected, the procedure
also considers declaring one or two superclusters finished as follows:

• If the step resulted in a merge operation creating a new supercluster F̂ =
F̂1 ∪ F̂2, then the newly constructed supercluster F̂ is declared finished if one
of the following conditions hold:

– e is the heaviest edge in A(F1) or in A(F2), or
– either F̂1 or F̂2 is finished.

• If the step did not result in a merge between F̂1 and F̂2, then
– the supercluster F̂1 is declared finished if e is the heaviest edge in A(F1);
– the supercluster F̂2 is declared finished if e is the heaviest edge in A(F2).

Also, after every edge inspection step, some of the remaining edges become “dan-
gerous” and are removed from the set A. A remaining logical edge X(e) = (F1, F2),
F1 ∈ F̂1, F2 ∈ F̂2, is still “safe” (i.e., not dangerous) if e ∈ A(F1) and the supercluster
F̂1 is still unfinished, or if e ∈ A(F2) and the supercluster F̂2 is still unfinished. Thus
after every edge inspection step, the procedure examines every edge and removes each
dangerous edge e from the set A. The procedure also removes the corresponding log-
ical edge X(e) from Ê. The process terminates once all superclusters are declared
finished (which, as can easily be verified, happens concurrently with the set A becom-
ing empty).

In the second stage, the procedure transforms the superclusters and spanning
subtrees constructed for Ĝ into ones for the original graph G. Specifically, for every
supercluster F̂ ∈ F̂ of the logical graph Ĝ, with spanning subtree T̂ (F̂ ), the procedure
merges the original clusters included in the supercluster F̂ into a cluster F ′ of G and
creates the corresponding spanning subtree T (F ′) for this cluster by merging T̂ (F̂ )
together with all the spanning subtrees from the collection T k−1 spanning the original
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Fig. 3. The operation of Procedure Const Frags during phase 2 on K16 and the logical graph
structure after various stages of its execution.

clusters included in the supercluster F̂ , i.e., setting

T (F ′) = {e | X(e) ∈ T̂ (F̂ )} ∪
⋃
F∈F̂

T (F ).

It then adds the cluster F ′ to the output cluster collection Fk and the spanning
subtree T (F ′) for it into T k.

The operation of Procedure Const Frags during the second phase of the algorithm’s
execution on our example graph K16 is illustrated in Figure 3.

3. Analysis. In this section we prove that the algorithm described in section 2 is
correct and analyze its complexity. It is more convenient to start with the complexity
analysis.

3.1. Complexity. The following lemma is the key to the complexity analysis.
It bounds from below the growth rate of fragments.

Consider phase k of the algorithm. Let Ĝ be the logical graph constructed by
Procedure Const Frags. Let F̂ be the collection of clusters constructed by Procedure
Const Frags for Ĝ. Define μ to be the minimum between the smallest cluster size and
number of clusters minus one (cf. line 2 in Procedure Cheap Out).

Lemma 3.1. Every supercluster in F̂ consists of at least μ + 1 logical vertices of
Ĝ.

Proof. To establish the lemma, we prove the following stronger claim: whenever
the procedure declares a supercluster F̂ finished, it contains at least μ + 1 logical
vertices of Ĝ. This claim is proved by structural induction on the superclusters.

There are three base cases. The first is when F̂ is declared finished following a
merge step F̂ = F̂1 ∪ F̂2 where the two merged superclusters were unfinished. This
merge step was based on the inspection of some logical edge X(e) = (F1, F2) such
that F1 ∈ F̂1 and F2 ∈ F̂2. By the specification of Procedure Const Frags, without
loss of generality we may assume that e is the heaviest edge in A(F1). As the edges
are inspected in increasing weight order, all other edges in A(F1) have already been
inspected. There are μ such edges, ei1 , . . . , eiμ , leading to distinct original clusters
Fj1 , . . . , Fjμ . Whenever an edge eil was inspected, either the superclusters containing
F1 and Fjl were merged, or eil was found to close a cycle, indicating that F1 and Fjl

already belonged to the same supercluster. Hence the finished supercluster F̂ contains
(at least) the μ + 1 original clusters F1, Fj1 , . . . , Fjμ .
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The second base case is when F̂ is declared finished following the inspection of
some logical edge X(e) = (F, F2) such that F ∈ F̂ and F2 ∈ F̂2, which did not result
in a merge. This happens since e is the heaviest edge in A(F ). Again, all μ− 1 other
edges in A(F ) have already been inspected, and by a similar reasoning as above, the
finished supercluster F̂ contains (at least) μ+1 original clusters. The third base case
is the dual case where F̂ is declared finished following the inspection of some logical
edge X(e) = (F1, F ) such that F1 ∈ F̂1 and F ∈ F̂ , which did not result in a merge.
Again this happens since e is the heaviest edge in A(F ), and the claim follows in the
same way.

The inductive claim concerns the case where F̂ is declared finished following a
merge step F̂ = F̂1 ∪ F̂2 where one or both of the two merged superclusters were
finished. In this case, the claim follows directly from the inductive hypothesis.

Lemma 3.2. For any cluster F ∈ Fk, |F | ≥ 22k−1

.
Proof. Denote by μk the minimum size of a cluster F ∈ Fk. First, note that for

all k ≥ 0,

μk+1 ≥ μk(μk + 1).(3.1)

Equation (3.1) is true by Lemma 3.1, which implies that clusters generated in phase
k+1 consist of the union of at least μk +1 clusters of phase k, each containing at least
μk nodes. Now, since μ0 = 1, we have μ1 ≥ 2. Since (3.1) implies that μk+1 > μ2

k, we

conclude that μk > μ2k−1

1 = 22k−1

.
Corollary 3.3. The algorithm terminates after at most log log n + 1 phases.
Proof. The proof follows from Lemma 3.2, since the algorithm terminates at

phase k in which |F | ≥ n for any F ∈ Fk.
The following statement is immediate from the code of the algorithm.
Lemma 3.4. Each phase requires O(1) rounds.
We now conclude with the following result.
Theorem 3.5. The time complexity of the algorithm is O(log log n) rounds, and

the overall number of bits communicated is O(n2 log n).
Proof. The time complexity bound follows directly from Corollary 3.3 and Lemma

3.4. For the total number of bits communicated, we account for each step separately
as follows. In step 1 of the main algorithm, each node in a cluster F sends messages
to all other clusters; i.e., each node sends |Fk−1| − 1 messages. Since each cluster is

of size at least 22k−1

by Lemma 3.2, it follows that |Fk−1| ≤ n/22k−1

. Therefore, the

number of messages sent by a node at step 1 of phase k is less than n/22k−1

. Since
each message contains at most c log n bits for some constant c, the number of bits
sent over all phases in step 1 is less than

log log n+1∑
k=0

n · c log n · n

22k−1 = n2c log n

log log n+1∑
k=0

2−2k−1

= O(n2 log n) .

No messages are sent in step 2. The number of messages sent in step 3 of the algorithm
in each phase is O(n) over all nodes (since each node receives at most one message),
for a total of O(n log n log log n) bits throughout the execution. To account for the
number of messages sent in steps 4 and 5, we bound the total number of messages
sent in that step over all nodes and over all phases: note that each edge added to the
MST contributes O(n log n) bits sent at steps 4 and 5, and since exactly n− 1 edges
are added to the MST overall, the total number of bits sent in these steps throughout
the execution of the algorithm is O(n2 log n). The result follows.
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We note that by the results of Adler et al. [1] applied to our model, the minimal
number of bits required to solve the MST problem is Ω(n2 log n) in the worst case.

3.2. Correctness. The correctness of the algorithm is proved by the following
invariant.

Lemma 3.6. In each phase k, for every cluster F ∈ Fk constructed by Procedure
Const Frags, the corresponding spanning tree is a fragment, namely, T (F ) = T (F ).

Proof. The proof is by induction on k. The initial partition, F0, trivially satisfies
the claim. Now suppose that the collection T k−1 consists of only MST edges, and
consider the collection T k constructed in phase k. The spanning subtrees in this
collection are composed of spanning subtrees from T k−1 fused together by new edges
added by Procedure Const Frags. It suffices to show that every edge added to the
trees of T k in phase k is indeed an MST edge. For this, we rely on the standard
MST construction rule which says that if e is the lightest outgoing edge incident
on a fragment, then it belongs to the MST. Consequently, we have to show that
whenever Procedure Const Frags selects a logical edge X(e) = (F1, F2), F1 ∈ F̂1,
F2 ∈ F̂2, and uses it to merge the two superclusters F̂1 and F̂2 in Ĝ, then e is the
lightest edge outgoing from one of the two corresponding clusters H1 =

⋃
F∈F̂1

F and
H2 =

⋃
F∈F̂2

F in G.

As the edge e has not been erased prior to this step, necessarily either e ∈ A(F1)
and F̂1 is unfinished, or e ∈ A(F2) and F̂2 is unfinished. Without loss of generality
suppose the former. We claim that in this case, e is the lightest outgoing edge incident
on H1.

Consider some other outgoing edge e′ incident on H1; i.e., e′ is incident on some
fragment F ′ ∈ F̂1. Suppose, towards contradiction, that ω(e′) < ω(e). If e′ ∈ A(F ′),
then e′ should have been considered by Const Frags before e, and subsequently either
added to the spanning subtree T̂ (F̂1) or discarded as an internal edge, in either case
contradicting our assumption that e′ is an outgoing edge of H1 (hence X(e′) is an
outgoing edge of F̂1). It follows that e′ �∈ A(F ′). Let X(e′) = (F ′, F ′′). There may
be two reasons why e′ was not added to A(F ′). The first is that some other edge
e′′ with X(e′′) = (F ′, F ′′) was already included in A(F ′) before e′. In that case,
ω(e′′) < ω(e′), and hence also ω(e′′) < ω(e). This implies that e′′ has already been
inspected by the procedure at some earlier step. But then the clusters F ′ and F ′′

must already belong to the supercluster F̂1; and hence in F̂1, the edge e′ is internal,
a contradiction. The other possible reason why e′ was not added to A(F ′) is that
there are μ lighter edges incident on F ′, which were added to A(F ′). Letting e′′

be the heaviest edge in A(F ′) in this case, it follows that ω(e′′) < ω(e′), and hence
ω(e′′) < ω(e). This means that e′′ has already been inspected by the procedure at
some earlier step. But then the supercluster F̂0 that contained F ′ at the end of that
step should have been declared finished upon inspection of its heaviest edge. This
would necessitate that F̂1 is finished now, a contradiction.

Theorem 3.7. The tree produced by the algorithm is an MST of the graph.

Proof. The proof follows from Lemma 3.6 and the fact that by Lemma 3.2, Fk

contains exactly one cluster for k > log log n.

4. Extension to larger messages. In this section we extend the algorithm
to a model in which each message can contain any number of bits (so long as it is
at least log n). Specifically, we assume that each meassage may contain � log n bits.
The extension of the algorithm to this case is straightforward. It turns out that the
asymptotic worst-case number of rounds drops to a constant when the message size
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is nε for ε > 0, but Θ(log logn) rounds are required by our algorithm for any polylog
message size.

First, we explain how to modify the algorithm to use messages that can contain
� edges. The idea is to change steps 2(b) (which is the invocation of Procedure
Cheap Out) and 3 in the main algorithm so that each node can be the guardian of �
edges. Specifically, the modified algorithm is identical to the algorithm of section 2,
except for the following steps.

2b*. Perform (locally) Procedure Cheap Out∗. This procedure (described below) does
the following:

• It selects a set A(F ) containing the � ·N cheapest edges that go out of
F to � ·N distinct clusters.

• It appoints for each such edge e a guardian node g(e) in F , ensuring that
each node in F is appointed as guardian to at most � edges.

3*. Let {e′1, . . . , e′�} ⊆ A(F ) be the edges for which v was appointed as guardian, i.e.,
all edges e′i such that g(e′i) = v. Send {e′1, . . . , e′�} to v∗, the node with the
minimal ID in the graph.
(At the end of this step, v∗ knows all the edges in the set A =

⋃
F ′∈Fk−1 A(F ′).)

The modified Cheap Out∗ procedure is identical to Procedure Cheap Out, except
for the following two steps:

2*. Let μ = min{� ·N, |Fk−1| − 1}.
5*. Appoint the ith node of F as the guardian of the jth edge added to A(F ) if

j mod (� ·N) = i.

The correctness of the modification is obvious, as Lemma 3.6 is stated in terms
of a general μ, and it relies only on the assumption that A(F ) contains the μ lightest
edges connecting F to μ distinct clusters.

The complexity analysis of the generalized algorithm requires a little work. First,
we observe that Lemma 3.1 holds without change: it is also stated in terms of a
general μ. Lemma 3.4 also holds by the assumption that each message can contain
� edges, and since each node is the guardian of at most � messages by the modified
procedure Cheap Out∗. However, Lemma 3.2 holds only for � = Θ(1). Below we
generalize Theorem 3.5 to different values of �.

Theorem 4.1. The extended algorithm terminates in O(log( logn
log � )) rounds, and

the total number of bits communicated is Θ(n2 log n).

Proof. Let μk be the smallest possible cluster size after the kth round. By
definition, μ0 = 1. If each guardian node sends � edges, then each cluster merges with
at least �μk other clusters in the kth phase. It follows that μk+1 ≥ (�μk +1)μk > �μ2

k.

Since μ0 = 1, we have μ1 > �, and therefore μk > �2
k−1

. The bound on the number
of rounds follows, since the algorithm terminates when μk ≥ n, and each phase takes
only O(1) rounds by Lemma 3.4. For the total number of bits communicated by
the algorithm, we observe that the only difference is the number of messages sent
in step 3*. Let B3 denote the total number of bits sent in step 3* throughout the
execution of the algorithm. We claim that B3 = O(n2 log n). To see this, note that
the total number of edge identifiers sent in step 3 in a single phase, over all nodes, is
O(n�). It follows that B3 = O(Tn� log n), where T is the number of phases. As shown
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above, T = O(log( logn
log � )). This means that B3 = O(n2 log n): If 1 < � < n/ log log n,

then T is bounded by O(log log n); and if � ≥ n/ log log n, then T = O(1).
Let us interpret the result of Theorem 4.1 in two typical cases. First, if � is

polynomial in n, i.e., � = nε for some ε > 0, then the total running time of the
algorithm is O(log(1/ε)). However, the number of rounds remains Θ(log logn) if �
is only polylogarithmic in n. (In fact, it remains O(log log n) even if � is as large as

(log n)(log n)1−ε

for some constant ε > 0.)

5. Conclusion. This paper shows that an MST can be constructed in subloga-
rithmic time, even if each message can contain only a constant number of edges. We
believe that the algorithm may be useful in some overlay networks. Theoretically,
important gaps remain. While there are nontrivial lower bounds on the running time
of MST construction in graphs of diameter 3 or more, currently no superconstant
lower bound is known even for graphs of diameter 2. We do not know whether there
exist lower bounds or better algorithms for graphs of diameter 1 and 2 (recall that
the fastest known algorithm for diameter 2 runs in O(log n) rounds).
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Abstract. We consider the problem of approximating the entropy of a discrete distribution
under several different models of oracle access to the distribution. In the evaluation oracle model,
the algorithm is given access to the explicit array of probabilities specifying the distribution. In this
model, linear time in the size of the domain is both necessary and sufficient for approximating the
entropy.

In the generation oracle model, the algorithm has access only to independent samples from the
distribution. In this case, we show that a γ-multiplicative approximation to the entropy can be

obtained in O(n(1+η)/γ2
logn) time for distributions with entropy Ω(γ/η), where n is the size of

the domain of the distribution and η is an arbitrarily small positive constant. We show that this
model does not permit a multiplicative approximation to the entropy in general. For the class of

distributions to which our upper bound applies, we obtain a lower bound of Ω(n1/(2γ2)).
We next consider a combined oracle model in which the algorithm has access to both the genera-

tion and the evaluation oracles of the distribution. In this model, significantly greater efficiency can
be achieved: we present an algorithm for γ-multiplicative approximation to the entropy that runs in
O((γ2 log2 n)/(h2(γ − 1)2)) time for distributions with entropy Ω(h); for such distributions, we also
show a lower bound of Ω((log n)/(h(γ2 − 1) + γ2)).

Finally, we consider two special families of distributions: those in which the probabilities of
the elements decrease monotonically with respect to a known ordering of the domain, and those
that are uniform over a subset of the domain. In each case, we give more efficient algorithms for
approximating the entropy.

Key words. entropy estimation, sublinear algorithms, properties of distributions, property
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1. Introduction. The Shannon entropy is a measure of the randomness of a dis-
tribution and plays a central role in statistics, information theory, and coding theory.
The entropy of a random source sheds light on the inherent compressibility of data
produced by such a source. In this paper we consider the complexity of approximating
the entropy under various assumptions on the way the input is presented.

Suppose the algorithm has access to an evaluation oracle1 in which the distribu-
tion p is given as an array whose ith location contains the probability pi assigned
to the ith element of the domain. It is clear that an algorithm that reads the entire
representation can calculate the exact entropy. However, it is also easy to see that in
this model, time linear in the size of the domain is required even to approximate the
entropy: consider two distributions, one with a singleton support set (zero entropy)
and the other with a two-element support set (positive entropy). Any algorithm that
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approximates the entropy to within a multiplicative factor must distinguish between
these two distributions, and a randomized algorithm for distinguishing two such dis-
tributions requires linear time in general.

Next suppose the distribution p = 〈p1, . . . , pn〉 is given as a generation oracle
that draws samples from it. This model has been considered in the statistics, physics,
and information theory communities (cf. [1, 4, 7, 8, 10, 11, 12, 14, 15, 16]). None of
these previous works, however, provides a rigorous analysis of computational efficiency
and sample complexity in terms of the approximation quality and the domain size.
To the best of our knowledge, the only previously known algorithms that do not
require superlinear (in the domain size) sample complexity are those presented in [10,
14, 12], which give good estimates in some cases, such as when the infinity norm of
the distribution is small. Some of these algorithms use an estimate of the collision
probability, ‖p‖2

, to give a lower bound estimate of the entropy: using Jensen’s
inequality, it is shown [14] that

log ‖p‖2
= log

∑
i

p2
i ≥

∑
i

pi log pi = −H(p).

In fact, when the infinity norm ‖p‖∞ of p is at most n−α (in other words, when
the min-entropy of p is large), the collision probability can be used to give an upper
bound on the entropy of the distribution: using the relationship between norms,

log ‖p‖2 ≤ log(‖p‖∞) ≤ log n−α = −α log n ≤ −α ·H(p).

It is, however, unclear how to use the collision probability to obtain an arbitrary
multiplicative approximation with a better sample complexity than our results (stated
below), since approximating the collision probability itself will require Ω(

√
n) samples.

However, the collision probability can be used to understand much more about certain
types of distributions; for instance, it exactly determines the entropy in the special
case of distributions that are known to be uniform over an unknown subset of arbitrary
size (see section 7).

1.1. Our results. In this section, we summarize the results in this paper. Table
1 also presents some of the upper and lower bounds proved in the paper.

(1) The generation oracle model. When the distribution is given as a gen-
eration oracle, we show that the entropy can be approximated well in sublinear time
for a large class of distributions. Informally, a γ-multiplicative approximation to the
entropy can be obtained in time O(n(1+η)/γ2

log n), where n is the size of the domain
of the distribution and η is an arbitrarily small positive constant, provided that the
distribution has Ω(γ/η) entropy. Our algorithm is simple—we partition the elements
in the domain into big or small elements based on their probability masses and ap-
proximate the entropy of the big and small elements separately by different methods.
On the other hand, we show that one cannot obtain a multiplicative approximation
to the entropy in general. Furthermore, even for the class of distributions to which
our upper bound applies, we obtain a lower bound of Ω(n1/(2γ2)). In the conference

version of this paper, we also claimed another lower bound of Ω(n2/(5γ2−2)) for this
problem. We retract this bound, as there was a gap in our proof.

It is interesting to consider what these bounds imply for the complexity of achiev-
ing a 2-approximation for distributions with nonconstant entropy. Our upper bound
yields an algorithm that runs in Õ(n(1+o(1))/4) time, while our lower bound demon-
strates that a running time of at least Ω(n1/8) is necessary.
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(2) The evaluation oracle model. When the distribution is given as an

evaluation oracle, we show a lower bound of Ω(n2−γ2(h+1)) on the number of ora-
cle accesses needed to γ-approximate the entropy for the class of distributions with
entropy at least h.

(3) The combined oracle model. We then consider a combined oracle model,
in which the algorithm has access to both the generation and the evaluation oracles of
the distribution. We assume that the two oracles are consistent, which is a natural as-
sumption for such a model. In the combined oracle model, we give a γ-approximation
algorithm that runs in time O((γ2 log2 n)/(h2(γ−1)2)) for distributions with entropy
Ω(h); we also show a lower bound of Ω((logn)/(h(γ2 − 1) + γ2)) for this class of dis-
tributions. For example, to achieve a constant approximation for distributions with
entropy Ω(h), our algorithm runs in time O((1/h2) log2 n), while our lower bound is
Ω((1/h) log n), that is, quadratically smaller than the upper bound.

(4) Special families of distributions. Finally, we consider two families of
distributions for which we show more efficient upper bounds. The first family is that of
monotone distributions, in which the probabilities decrease monotonically over some
known ordering of the elements (i.e., pi ≥ pi+1). We give an O((1 + log−1 γ) log n)-
time (resp., O((log n)6poly(γ))-time) algorithm for γ-approximating the entropy in
the evaluation oracle model (resp., generation oracle model). The second family is
that of subset-uniform distributions, in which the distribution is uniform over some
subset of the domain. In this case we give O(

√
k)-time algorithms for approximating

the entropy, where k is the size of the support set.

Table 1

Our results for γ-approximation, where γ > 1.

Model Lower bound Upper bound

Evaluation General Ω(n) O(n)

oracle: H(p) ≥ h Ω(n2−γ2(h+1)), Thm. 8 ?

Generation General ∞, Thm. 6 −

oracle: High enough Ω
(
n1/(2γ2)

)
, Thm. 7, Õ(n1/γ2

), Thm. 2,

entropy H(p) > Ω((logn)/γ2) H(p) > Ω(γ)

Combined General Ω(n(1−o(1))/γ2
), Thm. 12 ?

oracle: H(p) ≥ h Ω
(

log n
h(γ2−1)+γ2

)
, Thm. 13 O

(
γ2 log2 n
h2(γ−1)2

)
, Thm. 9

1.2. Related work. The work of Goldreich and Vadhan [6] considers the com-
plexity of approximating the entropy in a different model in which a distribution Y is
encoded as a circuit Y = C(X) whose input X is uniformly distributed; in this model,
they show that a version of the problem is complete for statistical zero-knowledge.
Their version of the problem could be viewed as an additive approximation to the
entropy.

The work of [3] and [2] considers algorithms for testing other properties of distri-
butions in the generation oracle model. The properties considered are whether two
input distributions are close or far, and whether a joint distribution is independent,
respectively. Both papers give algorithms whose sample complexity is sublinear in the
domain size, along with lower bounds showing the algorithms to be nearly optimal.
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1.3. Organization. In section 2, we introduce the basic definitions used in this
paper. In section 3, we give algorithms and lower bounds for the generation oracle
model. Section 4 describes a lower bound for the evaluation oracle model, and section
5 gives algorithms and lower bounds for the combined oracle case. Finally, in sections
6 and 7, we give more efficient algorithms for two families of distributions.

2. Preliminaries. We consider discrete distributions over a domain of size n,

which we denote by [n]
def
= {1, . . . , n}. Let p = 〈p1, . . . , pn〉 be such a distribution,

where pi ≥ 0,
∑n

i=1 pi = 1. An algorithm is said to have evaluation oracle access to
the distribution p if oracle query i is answered by pi. An algorithm is said to have
generation oracle access to p if it is given a source that draws samples independently
from p. An algorithm has combined oracle access to p if it has both evaluation and
generation oracle access to p. We say the algorithm is in model O if it has oracle
access of type O to the distribution.

The entropy of distribution p is defined as

H(p)
def
= −

n∑
i=1

pi log pi,

where all the logarithms are to the base 2. For a set S ⊆ [n], we define wp(S)
def
=∑

i∈S pi, and we define the contribution of S to the entropy as

HS(p)
def
= −

∑
i∈S

pi log pi.

Notice that HS(p) + H[n]\S(p) = H(p).

The L2-norm of distribution p is ‖p‖ def
=

√∑n
i=1 p

2
i and the L∞-norm of p is

‖p‖∞
def
= maxn

i=1 pi. We denote the L1-distance between two distributions p,q by

|p − q| def
=

∑n
i=1 |pi − qi|.

The following lemma summarizes some upper and lower bounds on entropy that
will turn out to be useful at many points in the paper.

Lemma 1. Pick any S ⊆ [n].

(a) The partial entropy HS(p) is maximized when wp(S) is spread uniformly over
the set |S| :

HS(p) ≤ wp(S) · log(|S|/wp(S)) ≤ wp(S) · log |S| + (log e)/e.

(b) Suppose there is some β ≤ 1/e such that pi ≤ β for all i ∈ S. Then HS(p) ≤
β|S| log(1/β).

(c) Suppose there is some β such β ≤ pi ≤ 1/e for all i ∈ S. Then HS(p) ≥
β|S| log(1/β).

(d) Suppose there is some β such that pi ≤ β for all i ∈ S. Then HS(p) ≥
wp(S) log(1/β).

Proof. Statement (a) follows from the concavity of the logarithm function. By
Jensen’s inequality,

1

wp(S)
·HS(p) =

∑
i∈S

pi
wp(S)

log
1

pi
≤ log

(∑
i∈S

pi
wp(S)

· 1

pi

)
= log

|S|
wp(S)

.
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Therefore,

HS(p) ≤ wp(S) · log
|S|

wp(S)
≤ wp(S) · log |S| + log e

e
.

The last inequality comes from observing that the function x log(1/x) is zero at x =
0, 1 and has a single local maximum in the interval [0, 1] at x = 1/e.

Statement (b) follows immediately from the previous observation about x log(1/x),
which implies that, under the given constraint, HS(p) is maximized by setting all the
pi to β.

The proof of statement (c) also follows from the concavity of x log(1/x); under
the given constraints, pi log(1/pi) is minimized when pi = β.

For statement (d), we notice that HS(p) is strictly concave; therefore, over any
closed domain, it is minimized at a boundary point. In particular, when the domain
is [0, β]|S|, the minimum point must have some coordinate with pi = 0 or pi = β.
We can now restrict our attention to the remaining coordinates and apply the same
argument again. In this way, we find that the minimum is realized when wp(S)/β of
the pi are β, and the rest are zero.

Let γ > 1 and let D be a family of distributions. We say that A is an algorithm
in model O for γ-approximating the entropy of a distribution in D if, for every p ∈ D,
given oracle access of type O to p, algorithm A outputs a value A(p) such that
H(p)/γ ≤ A(p) ≤ γ ·H(p) with probability at least 3/4. (This probability of success
can generically be increased to 1 − δ by running the algorithm log(1/δ) times and
returning the median of the values.) The time complexity of A is specified as a
function of γ and n. We will use the notation Dh to denote the family of distributions
with entropy at least h.

3. The generation oracle model.

3.1. Upper bounds. In this section we obtain an algorithm for estimating the
entropy of a large class of distributions in the generation oracle model. We prove the
following theorem.

Theorem 2. For every γ > 1 and every εo such that 0 < εo ≤ 1/2, there exists

an algorithm in the generation oracle model that runs in time O((n1/γ2

/ε2o) · log n)
and, with success probability at least 3/4, returns a (1 + 2εo)γ-approximation to the
entropy of any distribution on [n] in D4γ/(εo(1−2εo)).

Given any η > 0 and γ′ > 1, one can set γ = γ′/(1+2εo) above and choose εo small

enough to yield a γ′-approximation algorithm with running time O(n(1+η)/γ′2
log n)

for distributions of entropy Ω(γ/η). Note that choosing η to be small affects both the
running time and the family of distributions to which the algorithm can be applied.

The main idea behind the algorithm is the following. We classify elements in [n]
as either big or small, depending on their probability mass. For a fixed α > 0 and a
distribution p, the set of indices with high probabilities (the big elements) is defined
as

Bα(p)
def
= {i ∈ [n] | pi ≥ n−α}.

We then approximate the contributions of the big and small elements to the entropy
separately. Section 3.1.1 shows how to approximate the entropy of the big elements,
section 3.1.2 shows how to approximate the entropy of the small elements, and sec-
tion 3.1.3 combines these approximations to yield Theorem 2.
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3.1.1. Approximating the entropy of the big elements. To estimate the
amount by which the big elements contribute to the entropy, we approximate each of
their probabilities by drawing samples from the generation oracle.

Lemma 3. For every α such that 0 < α ≤ 1, every εo such that 0 < εo ≤ 1/2, and
sufficiently large n, there is an algorithm that uses O((nα/ε2o) · log n) samples from p
and outputs a distribution q over [n] such that with probability at least 1 − n−1, the
following hold for all i :

1. If pi ≥ 1−εo
1+εo

n−α (in particular, if i ∈ Bα(p)), then |pi − qi| ≤ εopi, and

2. if pi ≤ 1−εo
1+εo

n−α, then qi ≤ (1 − εo)n
−α.

Proof. Let m = (18nα/ε2o)·log 2n. Fix any i ∈ [n] and define Xj to be the indicator
variable that the jth sample is i. Let qi =

∑
Xj/m, the average of independent,

identically distributed Boolean random variables. If pi ≥ 1−εo
1+εo

n−α, then by Chernoff
bounds,

Pr [|pi − qi| > εopi] ≤ 2 exp

(
−ε2opim

3

)
≤ 1

2n2
.

Moving onto smaller elements, we again can use Chernoff bounds to show that if
pi <

1−εo
1+εo

n−α, then

Pr
[
qi > (1 − εo)n

−α
]

= Pr
[
qi − pi > (1 − εo)n

−α − pi
]

≤ Pr

[
qi − pi >

εo(1 − εo)

1 + εo
n−α

]

≤ exp

(
−
(
εo(1 − εo)n

−α

(1 + εo)pi

)2

· pim
3

)

≤ exp

(
−
(

1 − εo
1 + εo

)2

· 6n−α

pi
· log 2n

)

≤ exp(−2 log 2n) ≤ 1

2n2
.

Statements (1) and (2) of the lemma follow from a union bound over all i.
The following lemma shows that the contribution of the big elements Bα(p) to

the entropy can be approximated well using q instead of p.
Lemma 4. Pick any B ⊆ [n]. Let εo ∈ (0, 1) be chosen so that each i ∈ B satisfies

|pi − qi| ≤ εopi. Then,

|HB(q) −HB(p)| ≤ εo ·HB(p) + 2εo · wp(B).

Proof. For i ∈ B, write qi = (1 + εi)pi. We know that |εi| ≤ εo.

HB(q) −HB(p) = −
∑
i∈B

(1 + εi)pi log((1 + εi)pi) +
∑
i∈B

pi log pi

= −
∑
i∈B

(1 + εi)pi log pi −
∑
i∈B

(1 + εi)pi log(1 + εi) +
∑
i∈B

pi log pi

= −
∑
i∈B

εipi log pi −
∑
i∈B

(1 + εi)pi log(1 + εi).
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By the triangle inequality,

|HB(q) −HB(p)| ≤
∣∣∣∣∣−

∑
i∈B

εipi log pi

∣∣∣∣∣ +

∣∣∣∣∣
∑
i∈B

(1 + εi)pi log(1 + εi)

∣∣∣∣∣
≤

∑
i∈B

−|εi|pi log pi +
∑
i∈B

pi |(1 + εi) log(1 + εi)|

≤ εo ·HB(p) + 2εo · wp(B).

The last step above uses that for |ε| ≤ εo ≤ 1, |(1 + ε) log(1 + ε)| ≤ 2|ε| ≤ 2εo.

3.1.2. Approximating the entropy of the small elements. We now esti-
mate the entropy contribution of the small elements. Let S be any subset of small
elements, that is, S ⊆ [n] \Bα(p).

If wp(S) ≤ n−α, then the contribution of S to the entropy is below any constant
and can be ignored for approximation purposes. So, we may assume without loss of
generality that wp(S) ≥ n−α. Let ŵ(S) be the empirical estimate of the probability
mass of S, in other words, the number of samples from S divided by the total number
of samples. The following lemma bounds the accuracy of this estimate.

Lemma 5. If S ⊆ [n] satisfies wp(S) ≥ n−α and if m = O((nα/ε2o) log n) samples
are drawn from p, then with probability at least 1− n−1, the empirical estimate ŵ(S)
satisfies (1 − εo) · wp(S) ≤ ŵ(S) ≤ (1 + εo) · wp(S). Moreover, if wp(S) < n−α, then
ŵ(S) < (1 + εo)n

−α.
Proof. Let Xj be the indicator random variable that takes value 1 when the

jth sample lies in S, and let X =
∑

Xj . Then X is mŵ(S) and it has expected
value E [X] = m · wp(S). The lemma follows by Chernoff bounds and the fact that
wp(S) ≥ n−α. Similar to the proof of Lemma 3, we can show that if wp(S) < n−α,
then ŵ(S) < (1 + εo)n

−α.
Since pi < n−α for i ∈ S, by Lemma 1(a),(d), we have that

αwp(S) log n ≤ HS(p) ≤ wp(S) log n + (log e)/e.

Hence, using estimate ŵ(S) for wp(S), we get an approximation to HS(p).

3.1.3. Putting it together. In this section we describe our approximation al-
gorithm for H(p) and prove Theorem 2. The following is our algorithm for obtaining
a γ-approximation to the entropy:

Algorithm ApproximateEntropy (γ, εo).
1. Set α = 1/γ2.
2. Get m = O((nα/ε2o) · log n) samples from p.
3. Let q be the empirical probabilities of the n elements; that is, qi is the fre-

quency of i in the sample divided by m. Let B = {i | qi > (1 − εo)n
−α}.

4. Output HB(q) +
wq([n]\B) log n

γ .

Notice that the set B is an empirically determined substitute for Bα(p). We now
prove that this algorithm satisfies Theorem 2.

Proof of Theorem 2. First of all, Lemma 3 assures us that with probability at least
1 − 1/n, two conditions hold: (1) Bα(p) ⊆ B, and (2) every element i ∈ B satisfies
|pi − qi| ≤ εopi. For the rest of the proof, we will assume that these conditions hold.

Let S = [n] \ B. Assume for the moment that wp(S) ≥ n−α. In this case,
we know from Lemma 5 that, with high probability, |wq(S) − wp(S)| ≤ εowp(S).
Lemma 1(a),(d) tells us that

αwp(S) log n ≤ HS(p) ≤ wp(S) log n + (log e)/e.



APPROXIMATING THE ENTROPY 139

Then by Lemma 4,

HB(q) +
wq(S) log n

γ
≤ (1 + εo) ·HB(p) + 2εo +

1 + εo
γ

· wp(S) log n

≤ (1 + εo)(HB(p) + γ ·HS(p)) + 2εo

≤ (1 + εo)γ ·H(p) + 2εo

≤ (1 + 2εo)γ ·H(p)

if H(p) ≥ 2/γ. Similarly,

HB(q) +
wq(S) log n

γ
≥ (1 − εo) ·HB(p) − 2εo +

1 − εo
γ

· wp(S) log n

≥ (1 − εo)

(
HB(p) +

(HS(p) − e−1 log e)

γ

)
− 2εo

= (1 − εo)

(
HB(p) +

HS(p)

γ

)
− 1 − εo

γ
e−1 log e− 2εo

≥ H(p)

(1 + 2εo)γ

if H(p) ≥ 4γ
εo(1−2εo) ≥ 2/γ.

It remains to handle the case when wp(S) is less than n−α. Lemma 5 tells us
that wq(S) is with high probability at most (1 + εo)n

−α. Therefore, our estimate of
the entropy from small elements, (wq(S) log n)/γ, lies somewhere between zero and
((1 + εo)n

−α log n)/γ. For any γ bounded away from one, this is only a negligible
contribution to H(p), well within the approximation bound.

3.2. Lower bounds. In this section we prove lower bounds on the number of
samples needed to approximate the entropy of a distribution to within a multiplicative
factor of γ > 1. All of our lower bounds are shown by exhibiting pairs of distributions
that have very different entropies, with ratio at least γ2, and yet are hard to distinguish
given only a few samples.

3.2.1. Impossibility of approximating entropy in general. First we show
that there is no algorithm for computing entropy that can guarantee a bounded ap-
proximation factor for all input distributions. The basic problem is that no amount
of sampling can conclusively establish that a distribution has zero entropy.

Theorem 6. For every γ > 1, there is no algorithm that γ-approximates the
entropy of every distribution in the generation oracle model.

Proof. Let A be any algorithm for computing entropy, and let t(n) be an upper
bound on its running time on distributions over [n]. Consider the two distributions
p = 〈1, 0, . . . , 0〉 and q = 〈1 − 1/(100t(n)), 1/(100t(n)), 0, . . . , 0〉. Notice that p has
zero entropy while q has positive entropy.

Suppose we run A on either p or q. Since it uses at most t(n) samples, its oracle
calls will almost always (99% of the time) produce a succession of identical elements
regardless of whether the underlying distribution is p or q. In such cases, if A guesses
that the entropy is zero, its approximation factor on q will be unbounded, whereas if
it guesses a positive number, its approximation factor on p will be unbounded.

3.2.2. A lower bound on approximating the entropy of high-entropy
distributions. The following theorem shows a lower bound on the number of samples
required to approximate the entropy of distributions with high entropy.
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Theorem 7. For every γ > 1 and sufficiently large n, any algorithm in the
generation oracle model that γ-approximates the entropy of a distribution in D(log n)/γ2

requires Ω(n1/2γ2

) samples.
Proof. Consider two distributions p and q on n elements, where p is uniform on

the set [n] and q is uniform on a randomly chosen subset S ⊆ [n] of size n1/γ2

. It is
easy to see that H(p)/H(q) = γ2. By the birthday paradox, with probability 1/2, we

will not see any repetitions if we take n1/2γ2

samples from either distribution. In such
cases, the samples from p and q appear identical. Thus at least Ω(n1/2γ2

) samples
are needed to distinguish these distributions.

As we mentioned before, in the conference version of this paper, we claimed
another lower bound of Ω(n2/(5γ2−2)) for approximating the entropy, but retract this
bound as there is a gap in our proof. Recently, however, Ron [13] showed a lower bound

of Ω̃(n2/(6γ2−3)) for approximating the entropy. This is better than the lower bound

(in Theorem 7) of Ω(n1/2γ2

) when γ <
√

3/2. Her proof also exhibits two distributions
with entropy ratio γ2 and shows that the two distributions are indistinguishable unless
Ω̃(n2/(6γ2−3)) samples are taken.

4. The evaluation oracle model: A lower bound. In the introduction,
we mentioned that, for general distributions over [n], a linear number of queries is
necessary to approximate the entropy in the evaluation oracle model. Since there
are only n possible queries, the complexity of entropy approximation in this model
is settled. Next, we study the number of queries needed when a lower bound on the
entropy of the distribution can be assumed.

Theorem 8. Let γ > 1, h > 0, and n be sufficiently large. If an algorithm A that
operates in the evaluation oracle model achieves a γ-approximation to the entropy of
distributions over [n] in Dh, then it must make Ω(n2−γ2(h+1)) queries.

Proof. We will define two distributions p and q in Dh that have entropy ratio at
least γ2 and yet require Ω(n2−γ2(h+1)) queries to distinguish.

Let R be a subset of [n] of size 2γ
2(h+1), chosen uniformly at random. Distribution

p is defined to be uniform over R. Let S also be a uniform-random subset of [n], but

of smaller size β · 2γ2(h+1), where β = 1/(γ2(h + 1)/h). In addition, pick s randomly

from [n] \ S. Distribution q assigns probability 2−γ2(h+1) to each element in S and
assigns the rest of the probability mass, namely, 1 − β, to s.

Both these distributions belong to Dh: H(p) = γ2(h + 1), and H(q) is between
h and h + 1 (to see this, notice HS(q) = h). The ratio between their entropies is
H(p)/H(q) ≥ γ2.

In the evaluation oracle, any algorithm that distinguishes between p and q must
(on at least one of these two inputs) discover some location i ∈ [n] with nonzero
probability. The number of queries required is therefore at least the reciprocal of the
fraction of the elements with nonzero probabilities, which is Ω(n/2γ

2(h+1)).

5. The combined oracle model. In this section we consider the combined
oracle model in which an algorithm is given both evaluation and generation oracle
access to the same distribution.

5.1. Upper bound. The entropy of a distribution p can be viewed as the ex-
pected value of − log pi, where i is distributed according to p. This suggests an
algorithm as follows:

1. Draw m samples from the generation oracle (m to be defined later). Call
these i1, . . . , im.
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2. For each ij , ask the evaluation oracle for pij .
3. Return − 1

m

∑m
j=1 log pij .

As we will now see, if H(p) is not too small, this algorithm needs only a polylog-
arithmic number of queries in order to return a good approximation.

Theorem 9. Pick any γ > 1 and any h > 0. If the above algorithm is run

with m = O
(

γ2 log2 n
h2(γ−1)2

)
, then it returns a γ-approximation to the entropy of any

distribution over [n] in Dh, with success probability at least 3/4.

Proof. Let m
def
= 3γ2 log2 n

h2(γ−1)2 . Define the random variable Xj
def
= − log pij for j =

1, . . . ,m, and let X = (1/m)
∑

j Xj be the final answer returned. Clearly, E [X] =
E [Xj ] = H(p). All that needs to be shown is that the variance of X is not too large.
Since the Xj ’s are independent, it will suffice to bound the variance of an individual
Xj .

Lemma 10. Var [Xj ] ≤ log2 n.
Proof. For n = 2, maximizing Var [Xj ] = p log2 p+(1−p) log2(1−p)−(p log p+(1−

p) log(1− p))2 subject to 0 ≤ p ≤ 1 yields Var [Xj ] < 1 = log2 n. Therefore, let n ≥ 3.
Since Var [Xj ] ≤ E

[
X2

j

]
, it suffices to show an upper bound on E

[
X2

j

]
=

∑
i pi log2 pi.

Note that the function f(x) = x log2 x is concave for 0 < x < e−1. Hence,∑
i f(pi) is a symmetric concave function when its domain is limited to p ∈ (0, 1/e)n

and, as in Lemma 1, is maximized (on this domain) when p is uniform. This maximum
value is log2 n.

To finish the proof, we need to show that we cannot attain higher values of∑
i f(pi) by looking at p 
∈ (0, 1/e)n. To this end, suppose pj ≥ e−1 for some

j. Then there exists k such that pk ≤ (1 − pj)/(n − 1). Consider the derivative
f ′(x) = log2 x+ 2 log(e) log x at points pj and pk. Using simple calculus and the fact
that n ≥ 3, it is easy to check that f ′(pk) > f ′(pj). Hence, we can increase the sum
by simultaneously decreasing pj and increasing pk. By combining this result with the
argument above, we conclude that

∑
i f(pi) ≤ log2 n.

Since the Xj ’s are identical and independent, Var [X] = Var [Xj ] /m ≤ (log2 n)/m.
To bound the error probability of our algorithm, we now use Chebyshev’s inequality,
which states that, for any ρ > 0,

Pr [|X − E [X] | ≥ ρ] ≤ Var [X] /ρ2.

Hence, we get

Pr [A does not γ-approximate H(p)] = Pr

[
X ≤ H(p)

γ
or X ≥ γ ·H(p)

]

≤ Pr

[
|X −H(p)| ≥ (γ − 1) ·H(p)

γ

]

≤ γ2 log2 n

m ·H(p)2(γ − 1)2
≤ 1

3
,

where the last inequality follows from the choice of m.
Corollary 11. There exists an algorithm A in the combined oracle model that

γ-approximates H(p) in O(( γ
γ−1 )2) time for distributions with H(p) = Ω(log n).

5.2. Lower bounds. This next theorem gives a lower bound for the combined
oracle model when the entropy of the distribution is allowed to be very small—so
small that, for instance, the previous upper bound does not apply.
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Theorem 12. Pick any γ > 1 and any sufficiently large n. Then any algorithm
in the combined oracle model that γ-approximates the entropy of distributions over [n]

(with nonzero entropy) must make Ω(n1/γ2

) oracle calls.
Proof. Let α = 1

γ2 − log e
logn < 1. Consider distributions p and q defined as follows:

pi
def
=

⎧⎨
⎩

1 − n−α i = 1,
n−α i = 2,
0 otherwise,

qi
def
=

⎧⎨
⎩

1 − n−α i = 1,
n−1 2 ≤ i ≤ n1−α + 1,
0 otherwise.

Note that, by the concavity of f(x) = −x log x for 0 ≤ δ < 1, and that f ′(1) = − log e,
we have that −(1 − δ) log(1 − δ) ≤ δ log e. Hence, a quick calculation shows that
H(p) = −(1 − n−α) log(1 − n−α) + n−α log nα ≤ n−α(log e + α log n) and H(q) >
n−α log n. By the choice of α, H(q)/H(p) > γ2.

Let P be the family of distributions obtained from p by permuting the labels of
the elements. Define Q similarly for q. It is simple to verify that any algorithm taking
o(nα) samples and making o(nα) probes will fail to distinguish between a randomly
chosen member of P and a randomly chosen member of Q with high probability. To
finish, notice that nα = e−1n1/γ2

.
The next theorem gives a lower bound on the complexity of approximating the en-

tropy in the combined oracle model for distributions with entropy above some specific
threshold. The proof generalizes the counterexample in Theorem 12.

Theorem 13. Pick any γ > 1, any h > 0, and any sufficiently large n. Then
any algorithm in the combined oracle model that γ-approximates the entropy of dis-
tributions over [n] in Dh must make Ω(log n/(h(γ2 − 1) + 2γ2)) oracle calls.

Proof. Let w = (h(γ2 − 1) + 2γ2)/ log n and k
def
= �2h/(1−w)�. Consider the

following distributions p and q:

pi
def
=

⎧⎨
⎩

(1 − w)/k 1 ≤ i ≤ k,
w i = k + 1,
0 otherwise,

qi
def
=

⎧⎨
⎩

(1 − w)/k 1 ≤ i ≤ k,
n−1 k + 1 ≤ i ≤ k + wn,
0 otherwise.

Note that H(p) = (1−w) log k
1−w −w logw = (1−w) log k− (1−w) log(1−w)−

w logw. Hence, h ≤ H(p) ≤ h + 2. Similarly, H(q) > h + w log n.
Let P be the family of distributions obtained from p by permuting the labels of

the elements. Define Q similarly for q. It is simple to verify that any algorithm taking
o(1/w) samples and making o(1/w) probes will fail to distinguish between a randomly
chosen member of P and a randomly chosen member of Q with high probability.

Meanwhile, by the choice of w, the entropy ratio is

H(q)

H(p)
>

h + w log n

h + 2
=

hγ2 + 2γ2

h + 2
= γ2.

This concludes the proof.
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6. Monotone distributions. A monotone distribution p = 〈p1, . . . , pn〉 is one
for which pi ≥ pi+1 for all i. The structure of a monotone distribution makes it much
easier to approximate the entropy.

6.1. The evaluation oracle model. We show that given evaluation oracle
access to a monotone distribution, we can approximate the entropy in polylogarithmic
time.

Theorem 14. For any γ > 1, there is an algorithm in the evaluation oracle
model that γ-approximates the entropy of monotone distributions on [n] in the family
DΩ(γ2/(

√
γ−1)) and runs in O(�1/ log γ� log n) time.

Proof. Algorithm A partitions the domain [n] into intervals and only queries the
endpoints of each interval. The remaining probability values are interpolated from
these queries.

The partition of [n] is constructed recursively, starting with a single active interval
[1, n] as follows:

While there is some active interval [
, u]:
• Make it inactive.
• If p� > n−2 and p�/pu > γ, then split [
, u] into two equal-sized

active subintervals.
Any required probability values (i.e., p�, pu at each iteration) are obtained from

the oracle. At the end of the procedure, the algorithm has probabilities for a particular
sequence of elements 1 = io ≤ i1 ≤ · · · ≤ ik = n, such that for each j < k, either
pij ≤ n−2 or pij/pij+1

≤ γ. The splitting criteria ensure that the total number
of queries k + 1 is roughly logarithmic in the number of elements; more precisely,
k ≤ 1 + (1 + 4/ log γ) log n.

The algorithm then approximates p by a distribution q that is interpolated from
the handful of pi values that it queries as follows:

• For each ij , set qij = pij .
• For any i ∈ (ij , ij+1): if pij ≤ n−2, then set qi = 0; otherwise set qi =√

pijpij+1 .
Let B0 denote the elements whose probabilities get set to zero, and let B =

[n] \ B0 be the remaining elements. We know that for i ∈ B0, pi ≤ n−2. Thus,
wp(B0) ≤ n−1 and, by Lemma 1(b), B0 doesn’t contribute much to the entropy:
HB0

(p) ≤ 2n−1 log n. We therefore need to focus on B.

For each i ∈ B, define ci
def
= qi/pi. Since the endpoints of the interval containing

i have probabilities that are within a multiplicative factor γ of each other, it follows
that 1√

γ ≤ ci ≤
√
γ. This means that HB(q) is not too different from HB(p):

HB(q) = −
∑
i∈B

qi log qi = −
∑
i∈B

cipi log(cipi) = −
∑
i∈B

cipi log pi −
∑
i∈B

cipi log ci

≤ √
γ ·HB(p) +

wp(B) log e

e
≤ γ ·H(p)

when H(p) ≥ log e/(e(γ − √
γ)). The first inequality follows from the fact (see

Lemma 1) that −x log x ≤ (log e)/e for all x ∈ (0, 1). Similarly,

HB(q) = −
∑
i∈B

qi log qi = −
∑
i∈B

cipi log(cipi) = −
∑
i∈B

cipi log pi −
∑
i∈B

cipi log ci

≥ 1
√
γ
·HB(p) − wp(B)

√
γ log

√
γ ≥ 1

√
γ

(
H(p) − 2 log n

n

)
− wp(B)

√
γ log

√
γ

≥ H(p)/γ
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when H(p) ≥ (γ2 + (2n−1√γ log n))/(
√
γ − 1). The second-to-last inequality uses

HB0(p) ≤ 2n−1 log n.
The algorithm outputs H(q) = HB(q), which we’ve shown is a γ-approximation

to H(p).

6.2. The generation oracle model. We show that the entropy of a mono-
tone distribution can also be approximated in polylogarithmic time in the generation
oracle model. Our algorithm rests upon the following observation that is formally
stated in Lemma 15: if a monotone distribution p over [n] is such that wp([n/2])
and wp([n]\[n/2]) are very close, then the distribution must be close to uniform. In
such a case, we can approximate the entropy of the distribution by the entropy of the
uniform distribution.

The main idea behind our algorithm is to recursively partition the domain into
halves, stopping the recursion when either (1) the probability masses of two halves are
very close or (2) they are both too small to contribute much to the total entropy. Our
algorithm can be viewed as forming a tree based on the set of samples S, where the root
is labeled by the range [1, n], and if the node labeled by the range [i, j] is partitioned,
its children are labeled by the ranges [i, (i + j)/2] and [(i + j)/2 + 1, j], respectively.
Once the partition tree is determined, the algorithm estimates the entropy by summing
the contributions from each leaf, assuming that the conditional distribution within a
leaf (that is, the distribution restricted to the leaf’s range) is uniform. By the choice
of our splitting and stopping criteria, we show that the number of leaves in the tree
is at most polylogarithmic in n. This in turn allows us to bound both the running
time and the probability of error.

More specifically, the procedure BuildTree (S, β) takes as input a parameter
β > 1 and a multiset S of m samples from p and outputs a rooted binary tree TS

as follows: Let v be a node in the tree that is currently a leaf corresponding to the
interval [i, j] for some i < j. For an interval I, let SI denote the set of samples that
fall in I, and let |I| denote the length of the interval. We determine that v will remain
a leaf if either of the following two conditions is satisfied:

• |S[i,j]| < mβ/ log3 n (call v light), or
• |S[i,�(i+j)/2	]| ≤ β|S[�(i+j)/2	+1,j]| (call v balanced).

Otherwise, we split v’s interval by attaching two children to v, corresponding to the
intervals [i, (i + j)/2�] (the left child) and [(i + j)/2� + 1, j] (the right child). Let
I(TS) denote the set of intervals corresponding to the balanced leaves of TS .

For each balanced interval I ∈ I(TS), we estimate the contribution of the interval
to the total entropy of the distribution. Note that if the interval I had uniform
conditional distribution, then

HI(p) =
∑
i∈I

wp(I)

|I| log
|I|

wp(I)

= wp(I) (log |I| − logwp(I))

= wp(I)

(
log

(
|I|
2

)
− log

(
wp(I)

2

))
.

Motivated by this, we define a function α(I, β) that approximates the entropy in the
balanced interval I:

α(I, β)
def
=

|SI |
m

(
log

|I|
2

+ log
m

β|SI |

)
.

We now give the top level description of our algorithm.
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Algorithm MonotoneApproximateEntropy (γ).
1. β =

√
γ.

2. Get a multiset S of m = O((β5 log4 n)/(β − 1)2) samples from p.
3. TS = BuildTree(S, β).
4. Output

∑
I∈I(TS) α(I, β).

Overview of the proof. The main steps in the proof are the following. First, we
give a key lemma on which the whole algorithm is based; this lemma implies that
for an interval corresponding to a balanced leaf, the upper and lower bounds on the
possible entropy values are fairly close (Lemma 15). The rest of the proof is devoted
to showing that the domain can be split into intervals that are either balanced or small
enough that they do not contribute much (in total) to the entropy of the distribution.
In Lemma 16, we show that sampling can be reliably used to decide whether or not
to split an interval. We then quantify the relationship between α(I, β) and HI(p)
for each interval I corresponding to a balanced leaf, taking the sampling error into
account (Lemma 18). Note that if it were possible to partition the whole domain
into balanced intervals of large enough size, then it would be a simple matter to
bound the number of intervals and thus the error probability and running time of the
algorithm. The most challenging part of the proof is to deal with the light intervals,
in particular to show the following two properties: (1) the number of such intervals is
approximately logarithmic in the size of the domain (Lemma 19), and (2) their total
entropy contribution is negligible and thus can be ignored. To show these properties,
we prove an interesting and nontrivial property of the tree TS : at any level, it contains
at most O(log log n) nodes. Thereafter, (1) and (2) follow easily.

First, we show upper and lower bounds on the entropy contribution of an interval
in terms of the total weight and the weight distribution between two halves of the
interval.

Lemma 15. Let I be an interval of length 2k in [n], let I1 and I2 be the bisection
of I, and let p be a monotone distribution over [n]. Then,

HI(p) ≤ wp(I) log k − wp(I1) logwp(I1) − wp(I2) logwp(I2)

and

HI(p) ≥ 2wp(I2) log k − wp(I2)
(
logwp(I1) + logwp(I2)

)
.

Notice in particular that the ratio of the upper bound to the lower bound is at most
wp(I)/2wp(I2).

Proof. The upper bound follows from Lemma 1(a): the partial entropies HI1(p)
and HI2(p) are maximized when their weights are spread uniformly over their con-
stituent elements.

Let w1
def
= wp(I1) and w2

def
= wp(I2). We will prove the lower bound even for

functions that satisfy a relaxation of the monotonicity property: namely, the condition
that for i ≤ k, pi ≥ w2/k, and for i > k, pi ≤ w1/k. It is easy to verify that any
monotone distribution will satisfy this new constraint. A lower bound on HI1(p) is
given by Lemma 1(c) (plug in w2/k for as many elements as possible), and for HI2(p)
it follows immediately from pi ≤ w1/k for i ∈ I2. Combining, we get

HI(p) ≥ w2 log
k

w2
+ w2 log

k

w1
.

For a balanced leaf corresponding to an interval I with bisection I1, I2, the error
in the entropy estimate depends upon the ratio wp(I)/2wp(I2). This can be made
small by choosing the parameter β appropriately.
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The following lemma shows that the samples can be used to decide if an interval
should be split.

Lemma 16. Let I be an interval in [1, n] such that wp(I) ≥ log−3 n, and let I1, I2
be a bisection of I. Let S be a sample set of size m = O((β5 log4 n)/(β − 1)2) drawn
from p. For β > 1,

1. with probability at least 1 − n−2, (1/β) ·m · wp(I) ≤ |SI | ≤ β ·m · wp(I);
2. if wp(I1)/wp(I2) ≥ 2β − 1, then with probability at least 1 − 2n−2, |SI1 | ≥

β · |SI2 |;
3. if wp(I1)/wp(I2) ≤ (1+β)/2, then with probability at least 1− 2n−2, |SI1 | ≤

β · |SI2 |.
Proof. Part 1 follows from a straightforward application of multiplicative Chernoff

bounds. The random variable |SI | is the sum of m independent Bernoulli trials, each
with success probability wp(I). Therefore E [|SI |] = mwp(I), and by the choice of m
in the algorithm, the probability that |SI | deviates from its expectation by more than
a multiplicative factor of β is at most 1/n2.

From part 1, we know that with probability at least 1 − n−2, |SI | ≥ mwp(I)/β.
Fix any t ≥ mwp(I)/β. To prove part 2, consider the ratio of the number of samples
from I1 and I2 conditioned on the event that there are exactly t samples from I. Let
Yi, for i = 1, . . . , t, be an indicator random variable that takes the value 1 if the ith
of these t samples is in I2, and Y =

∑
i Yi. Therefore, we want to show that the

probability that (t− Y )/Y < β is at most 2/n2.
The rest of the proof is an application of Chernoff bounds. Note that (t−Y )/Y <

β implies Y > t/(β + 1). Since E [Y ] ≤ t/(2β), we get

Pr

[
Y >

t

β + 1

]
≤ Pr

[
Y > E [Y ] +

t(β − 1)

2β(β + 1)

]
≤ exp

(
−t(β − 1)2

β2(β + 1)2

)
.

Conditioned on the event that t ≥ mwp(I)/β, this probability is less than 1/n2.
Combining this with part 1, we can conclude that, with probability at least 1− 2n−2,
we have |SI1 | ≥ β · |SI2 |.

Similarly, the third part of the lemma can be proved.
There are various events that we would like to count on, for instance, that for

balanced intervals I the ratio of the weights of the two halves is at most 2β − 1, and
that intervals associated with two sibling nodes have weight ratio at least (1 + β)/2.
Lemma 16 tells us that these events hold with high probability. We now package all
of them into a single assumption.

Assumption 17. (1) For each interval I corresponding to a balanced node of the
tree, |SI | lies in the range [(1/β) ·m ·wp(I), β ·m ·wp(I)]; (2) for each interval I we
decide to split, wp(I1)/wp(I2) ≥ (1 + β)/2; (3) for each balanced interval I, we have
wp(I1)/wp(I2) ≤ 2β − 1; and (4) each light leaf has weight at most β2/ log3 n.

Now we can show that under the assumption above, the entropy contribution
of each balanced interval is approximated well. Recall that I(TS) is the set of all
balanced intervals in TS .

Lemma 18. Under Assumption 17, for every I ∈ I(TS), if wp(I) ≥ log−3 n, then

HI(p)

β
− 2β · wp(I) ≤ α(I, β) ≤ β2 ·HI(p).

Proof. Let I1, I2 be the bisection of I. Under Assumption 17, |SI |/(mβ) ≤
wp(I) ≤ |SI |β/m and wp(I1)/wp(I2) ≤ 2β − 1. These imply that the upper and
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lower bounds for HI(p) given in Lemma 15 are within a multiplicative factor β of
each other. Therefore our entropy estimate α(I, β) is not too far from HI(p):

α(I, β) =
|SI |
m

(
log

|I|
2

+ log
m

β|SI |

)

≤ βwp(I) log

(
|I|
2

)
− βwp(I) logwp(I)

≤ β ·
(
wp(I) log

(
|I|
2

)
− wp(I1) logwp(I1) − wp(I2) logwp(I2)

)
≤ β2 ·HI(p).

The second inequality above is a simple consequence of wp(I) = wp(I1) + wp(I2),
and the expression on that line is exactly (β times) the upper bound of Lemma 15.
Similarly, for the other direction,

α(I, β) =
|SI |
m

(
log

|I|
2

+ log
m

β|SI |

)

≥ wp(I)

β
log

|I|
2

− wp(I)

β
log

wp(I)

2
− wp(I)

β
log 2β2

≥ 1

β

(
wp(I) log

|I|
2

− wp(I1) logwp(I1) − wp(I2) logwp(I2)

)
− 2β · wp(I)

≥ HI(p)

β
− 2β · wp(I).

The second inequality follows from the concavity of log x.

Next, we show a bound on the number of nodes in the tree.

Lemma 19. Under Assumption 17, given β > 1, the number of nodes in TS is at
most

12 log n log log n

log(β + 1) − 1
.

Proof. For any given level of the tree, let v1, . . . , v2k denote the internal (that is,
nonleaf) nodes at that level, ordered by the intervals they define. There is an even
number of these nodes because each has a sibling at the same level. If vi, vi+1 are
siblings, we know from Assumption 17 that w(vi) ≥ w(vi+1) · (1 + β)/2. In general,
by monotonicity, w(vi) ≥ w(vi+1). Therefore, as one moves from v1 to v2k, the weight
w(vi) drops by a factor of at least (1 + β)/2 for every two nodes. Moreover, these
weights never drop below 1/ log3 n, by the split criterion and Assumption 17. It
follows that

k ≤ 3 log log n

log(1 + β) − 1
.

We now have a bound on the number of internal nodes at any level. To finish the
lemma, we observe that there are at most log n levels, that the total number of nodes
(internal and leaf) is twice the number of internal nodes plus one, and that we have
overcounted by at least one at the root level.

Now, we are ready to complete our proof.
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Theorem 20. For every γ > 1, there is an algorithm that approximates the
entropy of a monotone distribution on [n] in D(6γ3/2/(log(

√
γ+1)−1)(

√
γ−1)) to within a

multiplicative factor of γ with probability at least 3/4 in

O

(
γ5/2 log6 n

(
√
γ − 1)2(log(

√
γ + 1) − 1)

)
time.

Proof. Suppose Assumption 17 holds; we will come back and address this later.
Let’s start by handling the leaves. By Assumption 17, each light leaf has weight at
most β2/ log3 n, and so by Lemma 19, the total weight of the intervals associated with
light leaves is at most

6β2 log log n

(log(β + 1) − 1) log2 n
.

Therefore, their combined entropy contribution is at most logn times this,

6γ log log n

(log(
√
γ + 1) − 1) log n

(recall β2 = γ), which will turn out to be negligible for our purposes.
Now we move on to the internal nodes. By Lemma 18,

HI(p)

β
− 2β · wp(I) ≤ α(I, β) ≤ β2 ·HI(p)

for each interval I associated with a balanced leaf. Let B = ∪I∈I(TS)I. The algo-
rithm’s output is∑

I∈I(TS)

α(I, β) ≤
∑

I∈I(TS)

β2 ·HI(p) = γ ·HB(p) ≤ γ ·H(p).

We can show the other direction as follows:

∑
I∈I(TS)

α(I, β) ≥ HB(p)

β
− 2β ≥

H(p) − 6γ log log n
(log(

√
γ+1)−1) log n

β
− 2β ≥ H(p)

β2

when H(p) ≥ (6γ3/2/(log(
√
γ + 1) − 1)(

√
γ − 1)).

We now proceed to justify Assumption 17. Consider the 2n intervals that cor-
respond to the nodes of a complete tree T . By Lemma 16, Assumption 17 fails to
hold for a particular interval of T with probability O(1/n2). Hence, Assumption 17
fails to hold for TS with probability O(1/n) by the union bound over all the intervals.
Therefore, the error probability of the algorithm is o(1). The running time of the
algorithm is the sample size times the size of TS .

Note that the lower bound shown in Theorem 6 applies to monotone distributions.
Therefore, a restriction on the entropy such as the one in the statement of Theorem 20
is necessary.

7. Subset-uniform distributions. Consider the family of distributions Ek that
are uniform over some subset K ⊆ [n] with |K| = k. The entropy of this class of
distributions is log k. If we approximate k to within a multiplicative factor of γ,
then we get a very strong additive approximation to log k. Now, given a generation
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oracle access to a distribution that is promised to be from Ek for some k, the entropy
estimation problem reduces to approximating k.

Theorem 21. For every γ > 1, there exists an algorithm in the generation
oracle model that, for every k and for any distribution p ∈ Ek, outputs 
 such that
k/γ ≤ 
 ≤ γk with probability at least 3/4 in O(γ

√
k/(γ − 1)) time.

Proof. Our algorithm, inspired by [5], is as follows.

1. Let c = 16γ/(γ − 1)2.
2. Draw samples until at least c pairwise collisions are observed.
3. If M is the number of samples seen, output

(
M
2

)
/c.

Note that M is a random variable.

To analyze this algorithm, pick any integer m and suppose that m samples are
drawn from the distribution. For i < j, let Xij be an indicator random variable
denoting a collision between the ith and jth samples seen. Let Sm =

∑
i<j Xij be

the total number of collisions.

For any i < j, E [Xij ] = 1/k; therefore E [Sm] =
(
m
2

)
· 1/k. This motivates the

algorithm above. To bound the chance of failure, we also need the variance of Sm.
Notice that

E
[
S2
m

]
= E

⎡
⎣(∑

i<j

Xij

)(∑
a<b

Xab

)⎤
⎦ =

∑
i<j, a<b

E [XijXab] .

In the final summation, the various terms can be segregated according to the cardi-
nality of the set {i, j, a, b}. If this set has cardinality 3 or 4, then E [XijXab] = 1/k2.
If the set has cardinality 2, then E [XijXab] = 1/k. This last possibility occurs for

exactly
(
m
2

)
of the

(
m
2

)2
terms in the summation. Therefore

E
[
S2
m

]
=

((
m

2

)2

−
(
m

2

))
1

k2
+

(
m

2

)
1

k
,

whereupon Var [Sm] = E
[
S2
m

]
− E [Sm]

2
=

(
m
2

)
(1/k − 1/k2) ≤ E [Sm].

What is the chance that the algorithm outputs a number less than k/γ? Let m0

be the largest integer m such that
(
m
2

)
< ck/γ:

Pr [Output is < k/γ] = Pr [M ≤ m0] = Pr [Sm0 ≥ c]

≤ Pr [|Sm0 − E [Sm0 ] | ≥ (c− E [Sm0 ])] .

This last probability can be bounded by Chebyshev’s inequality, giving

Pr [Output is < k/γ] ≤ Var [Sm0 ]

(c− E [Sm0 ])
2

≤ E [Sm0 ]

(c− E [Sm0 ])
2

≤ γ

c(γ − 1)2
≤ 1

16
,

where the last two inequalities follow from E [Sm0
] < c/γ and from the particular

choice of c.

To bound that chance that the output is more than kγ, we proceed similarly,
letting m0 denote the smallest integer m for which

(
m+1

2

)
> cγk. Then,

Pr [Output is > kγ] = Pr [M > m0] = Pr [Sm0 < c]

≤ Pr [|Sm0 − E [Sm0 ] | ≥ (E [Sm0 ] − c)] .



150 BATU, DASGUPTA, KUMAR, AND RUBINFELD

Again using Chebyshev’s inequality, we get

Pr [Output is > kγ] ≤ Var [Sm0 ]

(E [Sm0
] − c)2

≤ E [Sm0 ]

(E [Sm0
] − c)2

≤ 3γ

c(γ − 1)2
≤ 3

16
.

The total probability of error is therefore at most 1/4. When the algorithm succeeds,(
M
2

)
/c ≤ kγ, and so the number of samples (and the running time) is O(

√
ckγ).
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WELL-SEPARATED PAIR DECOMPOSITION FOR THE UNIT-DISK
GRAPH METRIC AND ITS APPLICATIONS∗

JIE GAO† AND LI ZHANG‡

Abstract. We extend the classic notion of well-separated pair decomposition [P. B. Callahan
and S. R. Kosaraju, J. ACM, 42 (1975), pp. 67–90] to the unit-disk graph metric: the shortest path
distance metric induced by the intersection graph of unit disks. We show that for the unit-disk
graph metric of n points in the plane and for any constant c ≥ 1, there exists a c-well-separated pair
decomposition with O(n logn) pairs, and the decomposition can be computed in O(n logn) time.
We also show that for the unit-ball graph metric in k dimensions where k ≥ 3, there exists a c-well-
separated pair decomposition with O(n2−2/k) pairs, and the bound is tight in the worst case. We
present the application of the well-separated pair decomposition in obtaining efficient algorithms for
approximating the diameter, closest pair, nearest neighbor, center, median, and stretch factor, all
under the unit-disk graph metric.

Key words. well-separated pair decomposition, unit-disk graph, approximation algorithm
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1. Introduction. Well-separated pair decomposition, introduced by Callahan
and Kosaraju [10], has found numerous applications in solving proximity problems for
points in the Euclidean space [8, 10, 9, 5, 4, 29, 25, 19, 14]. A pair of point sets (A,B)
is c-well-separated if the distance between A,B is at least c times the diameters of
both A and B. A well-separated pair decomposition of a point set consists of a set
of well-separated pairs that cover all the pairs of distinct points, i.e., any two distinct
points belong to the different sets of some pair. In [10], Callahan and Kosaraju showed
that for any point set in an Euclidean space and for any constant c ≥ 1, there always
exists a c-well-separated pair decomposition with linearly many pairs. This fact has
been very useful in obtaining nearly linear time algorithms for many problems, such
as computing k-nearest neighbors, N -body potential fields, geometric spanners, and
approximate minimum spanning trees. Well-separated pair decomposition is also
shown to be very useful in obtaining efficient dynamic, parallel, and external memory
algorithms [8, 9, 10, 7, 18].

The definition of well-separated pair decomposition can be naturally extended
to any metric space. Curiously enough, however, there has been no work for such
an extension. A possible reason is that a general metric space may not admit a
well-separated pair decomposition with a subquadratic size. Indeed, even for the
metric induced by a star tree with unit weight on each edge,1 any well-separated pair
decomposition requires quadratically many pairs. This makes the well-separated pair
decomposition useless for such a metric. In this paper, we will show that for a certain
metric, there do exist well-separated pair decompositions with almost linear size, and
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therefore many proximity problems under that metric can be solved efficiently. The
metric we investigate is the so-called unit-disk graph metric. At the same time we
call the well-separated pair decomposition in the Euclidean space the geometric well-
separated pair decomposition, to be distinguished from the decomposition in graph
metrics.

For a point set S in the plane, its unit-disk graph [12] is formed by connecting two
points p, q in S if the Euclidean distance d(p, q) is at most 1. A unit-disk graph can
also be viewed as the intersection graph of a set of unit disks centered at the points
in S. We consider the weighted unit-disk graphs where each edge (p, q) receives the
weight d(p, q). Similarly, unit-ball graphs can be defined for points in high dimensions.
Such graphs have been used extensively to model the communication or influence
between objects [27, 21] and studied in many different contexts [12, 6, 22, 15]. For
example, wireless ad hoc networks can be modeled by unit-disk graphs [23, 30, 31], as
two wireless nodes can directly communicate with each other only if they are within
a certain distance. In unsupervised learning, for a dense sampling of points from
some unknown manifold, the length of the shortest path on the unit-ball graph is a
good approximation of the geodesic distance on the underlying (unknown) manifold
if the radius is chosen appropriately [34, 16]. In this paper, we show that the all-
pairs shortest path lengths of nodes in unit-disk graphs (or unit-ball graphs) can be
compactly encoded and efficiently estimated by a subquadratic size well-separated
pair decomposition.

2. Overview. In this paper, we show that for the metric induced by the unit-
disk graph on n points and for any constant c ≥ 1, there does exist a c-well-separated
pair decomposition with O(n log n) pairs, and such a decomposition can be computed
in O(n log n) time. We also show that the bounds can be extended to higher dimen-
sions: for k ≥ 3, there always exists a c-well-separated pair decomposition with size
O(n2−2/k) for the unit-ball graph metric on n points, and the bound is tight in the
worst case. The construction time is O(n4/3 polylogn) for k = 3 and O(n2−2/k) for
k ≥ 4.

The difficulty in obtaining a well-separated pair decomposition for unit-disk graph
metric is that two points that are close in the space are not necessarily close under
the graph metric. We first prove the bound for the point set with constant-bounded
density, i.e., a point set where any unit disk covers only a constant number of points
in the set, by using a packing argument similar to the one in [20]. For a point set
with unbounded density, we apply the clustering technique similar to the one used
in [17] to the point set and obtain a set of clusterheads with a bounded density. We
then apply the result for bounded density point set on those clusterheads. Then, by
combining the well-separated pair decomposition for the bounded density point sets
and for the Euclidean metric, we are able to show that the bound holds for any point
sets.

For a pair of well-separated sets, the distance between two points from different
sets can be approximated by the distance between the two sets or the distance between
any pair of points in different sets. In other words, a well-separated pair decomposition
can be thought of as a compressed representation to approximate the Θ(n2) pairwise
distances. Many problems that require checking of the pairwise distances can therefore
be approximately solved by examining those distances between the well-separated
pairs of sets. When the size of the well-separated pair decomposition is subquadratic,
it often gives us more efficient algorithms than examining all the pairwise distances.
Indeed, this is the intuition behind many applications of the geometric well-separated
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pair decomposition. By using the same intuition, we show the application of well-
separated pair decomposition in several proximity problems under the unit-disk graph
metric.

Specifically, we consider the following natural proximity problems. Assume that
S1 ⊆ S.

• Furthest neighbor, diameter, center. The furthest neighbor of p ∈ S1 is the
point in S1 that maximizes the distance to p. Related problems include
computing the diameter, the maximum pairwise shortest distance for points
in S1, and the center, the point that minimizes the maximum distance to all
the other points.

• Nearest neighbor, closest pair. The nearest neighbor of p ∈ S1 is the point
in S1 with the minimum distance to p. Related problems include computing
the closest pair, the pair with minimum shortest distance, and the bichro-
matic closest pair, the pair that minimizes distance between points from two
different sets.

• Median. The median of S is the point in S that minimizes the average (or
total) distance to all the other points.

• Stretch factor. For a graph G defined on S, its stretch factor with re-
spect to the unit-disk graph metric is defined to be the maximum ratio
πG(p, q)/π(p, q), where πG, π are the distances induced by G and by the unit-
disk graph, respectively.

All the above problems can be solved or approximated efficiently for points in
the Euclidean space. However, for the metric induced by a graph, even for pla-
nar graphs, very little is known other than solving the expensive all-pairs shortest
path problem. For computing diameter, there is a simple linear time method that
achieves a 2-approximation2 and a 4/3-approximate algorithm with running time
O(m

√
n log n + n2 log n) for a graph with n vertices and m edges [2]. By using the

powerful tool of the well-separated pair decomposition, we are able to obtain, for all
the above problems, nearly linear time algorithms for computing 2.42-approximation3

and O(n
√
n log n/ε3) time algorithms for computing (1 + ε)-approximation for any

ε > 0. In addition, the well-separated pair decomposition can be used to obtain an
O(n log n/ε4) space distance oracle so that any (1+ ε) distance query in the unit-disk
graph can be answered in O(1) time.

While the existence of almost linear size well-separated pair decomposition has re-
duced the number of pairs needed to examine when solving many proximity problems,
we still need good approximation of the distances between those pairs. Our construc-
tion algorithm only produces well-separated pair decompositions without knowing an
accurate approximation of the distances. For approximation algorithms, we need ac-
curate estimation of shortest distances between O(n log n) pairs of points in the unit-
disk graph. Indeed, the approximation ratio and the running time of our algorithms
are dominated by the efficiency of such algorithms. Once the distance estimation has
been made, the remaining computation only takes almost linear time.

For a general graph, it is unknown whether O(n log n)-pairs shortest path dis-

2Select an arbitrary node v and compute the shortest path tree rooted at v. Suppose that the
furthest node from v is of distance D away. Then the diameter of the graph is no longer than 2D,
by triangular inequality.

3For a minimization problem, a quantity �̂ is a c-approximation of � if � ≤ �̂ ≤ c�. An object
Ô is a c-approximation of O with respect to a cost function f if f(O) ≤ f(Ô) ≤ cf(O). For a

maximization problem, �̂ is a c-approximation of � if �/c ≤ �̂ ≤ �, and Ô is a c-approximation of O if

f(O)/c ≤ f(Ô) ≤ f(O).
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tances can be computed significantly faster than all-pairs shortest path distances.
For the planar graph, one can compute O(n log n)-pairs shortest path distance in
O(n

√
n log n) time by using separators with O(

√
n) size [3]. This method extends to

the unit-disk graph with constant bounded density since such graphs enjoy similar
separator property as the planar graphs [28, 32]. As for approximation, Thorup [35]

recently discovered an algorithm for planar graphs that can answer any (1+ε)-shortest
distance query in O(1/ε) time after almost linear time preprocessing. Unfortunately,
Thorup’s algorithm uses balanced shortest path separators in planar graphs which do
not obviously extend to the unit-disk graphs. On the other hand, it is known that
there does exist planar 2.42-spanner for a unit-disk graph [26]. By applying Thorup’s
algorithm to that planar spanner, we can compute 2.42-approximate shortest path
distance for O(n log n) pairs in almost linear time.

Another application of well-separated pair decomposition is that we are able to
obtain an almost linear size data structure to answer (1 + ε)-approximate shortest
path query in O(1) time. Approximate distance oracles have been studied where the
emphasis is often on the size of the oracles (for a survey, see [38]). For general graphs,
it has been shown that it is possible to construct a (2k − 1)-approximate distance
oracle with size O(kn1+1/k) [36]. It is also shown in [36] that this bound is tight
for some small k’s and is conjectured to be tight for all the k’s. For planar graphs,
Thorup [35] and Klein [24] have shown that there exists (1 + ε)-approximate distance
oracle by using almost linear space for any ε > 0. As mentioned, their results do
not extend to the unit-disk graph. In addition, the query time of their algorithm
is O(1/ε). Recently, Gudmundsson et al. showed that when a geometric graph is
a Euclidean spanner, there does exist an almost linear time (and therefore almost
linear space) method to construct (1 + ε)-approximate and O(1) query time distance
oracles [19]. Again, a unit-disk graph is not necessarily a Euclidean spanner with
bounded stretch factor, and their technique does not extend.

3. Definitions. Unit-disk graphs. Denote by d(·, ·) the Euclidean metric. For
a set of points S in the plane, the unit-disk graph I(S) = (S,E) is defined to be
the weighted graph where an edge e = (p, q) is in the graph if d(p, q) ≤ 1, and the
weight of e is d(p, q). Likewise, we can define the unit-ball graph for points in higher
dimensions.

Metric space. Suppose that (S, π) is a metric space where S is a set of ele-
ments and π the distance function defined on S × S. For any subset S1 ⊆ S, the
diameter Dπ(S1) (or D(S1) when π is clear from the context) of S is defined to be
maxs1,s2∈S1 π(s1, s2). The distance π(S1, S2) between two sets S1, S2 ⊆ S is defined
to be mins1∈S1,s2∈S2

π(s1, s2).

In this paper, we are interested in the unit-disk graph metric π = πI(S) induced
by the unit-disk graph of a set of points S in the plane, where the distance between
any two nodes is defined to be the length of the shortest path between them.

Well-separated pair decomposition. For a metric space (S, π), two nonempty sub-
sets S1, S2 ⊆ S are called c-well-separated if π(S1, S2) ≥ c · max(Dπ(S1), Dπ(S2)).

Following the definition in [10], for any two sets A and B, a set of pairs P =
{P1, P2, . . . , Pm}, where Pi = (Ai, Bi), is called a pair decomposition of (A,B) (or of
A if A = B) if

• for all the i’s, Ai ⊆ A and Bi ⊆ B;
• Ai ∩Bi = ∅;
• for any two elements a ∈ A and b ∈ B, there exists a unique i such that
a ∈ Ai and b ∈ Bi. We call (a, b) is covered by the pair (Ai, Bi).
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Fig. 4.1. An example of the decomposition tree.

If in addition, every pair in P is c-well-separated, P is called a c-well-separated pair
decomposition (c-WSPD). Clearly, any metric space admits a c-WSPD with quadratic
size by using the trivial family that contains all the pairwise elements.

4. Well-separated pair decomposition for unit-disk graph metric. We
start with the point set with constant bounded density. Then, by combining with
geometric well-separated pair decomposition, we show the extension of the result to
arbitrary point sets. We will focus our discussion on points in the plane, but most
results extend to higher dimensions, resulting in subquadratic size well-separated pair
decomposition. We also show that our bounds in R

k for k ≥ 3 are tight.

4.1. Point sets with constant bounded density. The density α of a point set
S is defined to be the maximum number of points in S covered by a unit disk. S has
constant bounded density if its density is O(1). We assume that the unit-disk graph
on S is connected; otherwise, we can consider each connected component separately.

To construct a well-separated pair decomposition, we first compute the unit-disk
graph I(S) of S and then a spanning tree T of I(S), where the maximum degree of
T is 6. This can be done by computing the relative neighborhood graph of S [37] and
keeping those edges with length at most 1. Let G be the resulting graph. It is well
known that G is connected, and the degree of G is at most 6. We then compute a
spanning tree of G. This step takes O(n log n) time [33]. It is also known that any
n-vertex tree with maximum degree β − 1 can be divided into two parts by removing
a single edge so that each subtree contain at least n/β vertices. We now recursively
apply the balanced partitioning to obtain a balanced hierarchical decomposition of T
(see Figure 4.1). The decomposition can be represented as a rooted binary tree T ′

where each node v ∈ T ′ corresponds to a (connected) subtree T (v) of T . The root of
T ′ corresponds to T , and for a node v ∈ T ′, v’s two children v1, v2 represent the two
connected subtrees T (v1) and T (v2) obtained by removing an edge from T (v). We
denote by S(v) the set of points in the subtree in T (v). For a node v ∈ T ′, denote by
P (v) the parent node of v in T ′. We also use P (S(u)) to denote S(P (u)). The height
of the tree T ′ is obviously O(log n).

Now, we describe a procedure to produce a c-WSPD of S.
For each node v ∈ T ′, we pick an arbitrary point from S(v) as a representative of

S(v) and denote it by σ(S(v)) (or σ(v)). We place in a queue the pair (S(r), S(r)),
where r is the root of T ′. We run the following process until the queue becomes
empty: repeatedly remove the first element (S(v1), S(v2)) from the queue. There are
two cases:
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• d(σ(v1), σ(v2)) ≥ (c+2) ·max(|S(v1)|−1, |S(v2)|−1). In this case, we include
the pair to P.

• d(σ(v1), σ(v2)) < (c+2)·max(|S(v1)|−1, |S(v2)|−1). If |S(v1)| = |S(v2)| = 1,
then it must be the case that S(v1) and S(v2) contain the same point. In
this case, we simply discard the pair. Otherwise, suppose that |S(v1)| ≥
|S(v2)| and that u1, u2 are two children of v1. We add to the queue two pairs
(S(u1), S(v2)) and (S(u2), S(v2)).

The above process is very similar to the collision detection algorithm in [20] except
that here a pair is produced when they are c-well-separated. We now make the
following claims.

Lemma 4.1. P is a c-WSPD of S. Furthermore, each ordered pair of distinct
points (p, q) is covered by exactly one pair in P.

Proof. By the construction, a pair (S(v1), S(v2)) is included in P if and only if
d(σ(v1), σ(v2)) ≥ (c + 2) · max(|S(v1)| − 1, |S(v2)| − 1). Since for any v ∈ T ′, S(v) is
connected, Dπ(S(v)) ≤ |S(v)| − 1. In addition, π(p, q) ≥ d(p, q). Thus, we have that

π(S(v1), S(v2))
≥ π(σ(v1), σ(v2)) − (Dπ(S(v1)) + Dπ(S(v2))
≥ d(σ(v1), σ(v2)) − 2 max(|S(v1)| − 1, |S(v2)| − 1)
≥ c · max(|S(v1)| − 1, |S(v2) − 1|)
≥ c · max(Dπ(S(v1)), Dπ(S(v2))) .

That is, every pair in P is a c-well-separated pair. The process clearly ends. To
argue that P covers all the pairs of distinct points, we observe that we begin with
the pair (S(r), S(r)) that covers all the pairs, and each time when we split a node,
the union of the pairs covered remain the same. The pairs we discard are of the form
({p}, {p}). Thus, all the ordered pairs of distinct points are covered by P. Since the
splitting produces two disjoint sets, each ordered pair is covered exactly once.

The following lemma shows that the sizes of two sets in the same pair do not
differ too much.

Lemma 4.2. Each pair (A,B) that ever appears in the queue satisfies 1/β ≤
|A|/|B| ≤ β.

Proof. The proof is done by induction. Clearly, it is true for the pair (S(r), S(r)).
Now, consider the splitting that generates the pair (A,B). Without loss of generality,
assume that we split P (B), the parent node of B. By the splitting rule, we have that
|A| ≤ |P (B)|. By induction hypothesis, |A| ≥ |P (B)|/β ≥ |B|/β. Since the splitting
is balanced, |B| ≥ |P (B)|/β ≥ |A|/β. Therefore 1/β ≤ |A|/|B| ≤ β.

Now, we bound the size of P.
Lemma 4.3. If (A,Bi) ∈ P, i = 1, . . . ,m(A), then Bi ∩ Bj = ∅, and m(A) =

O(c2|A|).
Proof. By Lemma 4.1, each pair of points can be covered only once; thus Bi∩Bj =

∅ if both (A,Bi) and (A,Bj) are in P.
If (A,Bi) ∈ P, then (P (A), P (Bi)) is not in P. So d(σ(P (A)), σ(P (Bi))) <

(c + 2) · max(|P (A)| − 1, |P (Bi)| − 1). Set R = β|P (A)| ≤ β2|A|. If we split P (Bi)
to get the pair (A,Bi), then (A,P (Bi)) appeared in the queue, by Lemma 4.2, we
have |P (Bi)| ≤ β|A| ≤ β|P (A)| = R. If we split P (A) to get the pair (A,Bi), then
|Bi| ≤ |P (A)|, so |P (Bi)| ≤ β|Bi| ≤ β|P (A)| = R. Then,

d(σ(P (A)), σ(P (Bi))) < (c + 2)R,Dπ(P (Bi)) ≤ R .

Then all the points in Bi must be inside a disk of radius (c + 3)R centered at

σ(P (A)). Therefore we have that | ∪m(A)
i=1 Bi| = O((c+3)2R2) because S has constant
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bounded density. By Lemma 4.2, we know that |Bi| ≥ |A|/β ≥ |P (A)|/β2. Thus,
|Bi| ≥ R/β3. Then, we have that m(A) = O((c + 3)2R2/(R/β3)) = O(c2R) =
O(c2|A|).

Lemma 4.4. |P| = O(c2n log n).
Proof. Define Vi = {v ∈ T ′ | |S(v)| ∈ [2i, 2i+1)} for 0 ≤ i ≤ log n. Clearly,

|Vi| = O(n/2i). Define Σi = {(S(v), B) ∈ P | v ∈ Vi}. Denote by m(S(v)) the total
number of pairs in which S(v) is involved. By Lemma 4.3, we have that

|Σi| =
∑
v∈Vi

m(S(v)) =
∑
v∈Vi

O(c2|S(v)|)

= O(c22i+1 · n/2i) = O(c2n) .

Thus, |P| =
∑logn

i=0 |Σi| = O(c2n log n).
Combining the above result, we now have the following theorem.
Theorem 4.5. For any n points with constant-bounded density in the plane and

any c ≥ 1, there exists a c-WSPD with O(c2n log n) pairs, which can be computed in
O(c2n log n) time.

Proof. Clearly, the time needed is proportional to the number of pairs that ever
appear in the queue. We can represent the construction as a tree: each pair corre-
sponds to a node in the tree, and when a pair is split, we treat those two resulting
pairs as the children of the pair. Clearly, the leaves of the tree correspond to those
pairs included in P and the pairs discarded. All the discarded pairs have the form
({p}, {p}), and there are O(n) such pairs. Thus, the total number of nodes in the
tree is bounded by O(|P|) = O(c2n log n). Each split costs O(1). Therefore, the total
computation cost is O(c2n log n).

The result can be easily extended to the point set with maximum density α.
Corollary 4.6. For a point set with maximum density α, for any c ≥ 1, a

c-WSPD with O(αc2n log n) pairs can be constructed in O(αc2n log n) time.
Proof. If the point set has maximum density α, Lemma 4.3 still holds if we

change m(A) to O(αc2|A|). Substituting the value in Lemma 4.4, we have that
|P| = O(αc2n log n). The claim then follows from Theorem 4.5.

By a similar argument, we can extend the result to higher dimensions.
Theorem 4.7. Given a point set in R

k, where k ≥ 3, with constant bounded
density and any constant c ≥ 1, there exist a c-WSPD with O(n2−2/k) pairs for the
unit-ball graph metric. This bound is tight in the worst case. And the decomposition
can be computed in O(n2−2/k) time.

Proof. We first compute a spanning tree of S with constant maximum degree βk, a
constant dependent on k only. This can be done by using the technique in [4]. We then
follow the same process as described above. The upper bound follows from the same
packing argument as in Lemma 4.4. Lemma 4.3 can be changed so that the number
of pairs associated with a node A is m(A) = O(|A|k−1). In addition, by Lemma 4.2,
for any pair (A,B) ∈ P , 1/βk ≤ |A|/|B| ≤ βk. Thus, m(A) = O(n/|A|). Define Vi

as in Lemma 4.4, |Vi| = O(n/2i). When 0 ≤ i ≤ 1
k log n, |Σi| =

∑
v∈Vi

m(S(v)) =

O(
∑

v∈Vi
|S(v)|k−1) = O(2i(k−1) · n/2i) = O(n2i(k−2)). When i > 1

k log n, |Σi| =∑
v∈Vi

m(S(v)) = O(
∑

v∈Vi
n/|S(v)|) = O((n/2i)2). Therefore,

|P| =
∑

0≤i≤ 1
k logn

n2i(k−2) +
∑

1
k logn<i≤logn

O(n2/22i)

= O(n2−2/k) .
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Fig. 4.2. A lower bound example of the well-separated pair decomposition for points in k = 3
dimensions. The shaded dots are tip points.

As for the lower bound, consider the points on the k-dimensional grid [0, n1/k)×
. . .×[0, n1/k). Define a graph G with edges between pairs of points (x1, . . . , xi, . . . , xk)
and (x1, . . . , xi+1, . . . , xk) for i = 1, or x1 = 0 and i ≥ 2. A point (n1/k−1, x2, . . . , xk)
for 0 ≤ xi < n1/k is called a tip point. Intuitively, G can be thought as a graph where
the tip points dangle down from a (k− 1)-dimensional mesh. See Figure 4.2. Clearly,
we can perturb the point set so that its unit-ball graph equals G. The metric defined
by G has the following property: (i) the diameter of G is kn1/k; (ii) the distance
between any two tip points is at least 2n1/k. Therefore, when c > k/2, a c-WSPD
cannot have two tip points in the same set of a pair. Since there are Θ(n1−1/k) tip
points, Ω(n2−2/k) pairs are needed, just to separate those tip points.

By the same argument as in Theorem 4.5, it is easily seen that the c-WSPD can
be computed in O(n2−2/k) time.

4.2. Arbitrary point sets. The packing argument fails for the unit-disk graph
of point sets with unbounded density. However, we can reduce the problem to the
constant density case by first clustering the points and then considering those crowded
points separately by using geometric well-separated pair decompositions.

For 0 ≤ δ ≤ 1, a point p is δ-covered (or simply covered) by a point s if d(s, p) ≤ δ.
Denote by U(s) the set of points δ-covered by s. A subset X ⊆ S is called a δ-cover
of S if any point in S is δ-covered by some point in X. We call the points in a δ-cover
X clusterheads. For each point in S, we assign it to the nearest clusterhead. Thus
X induces a partitioning of S into sets C(s) = S ∩ Vor(s), where Vor(s) denotes the
Voronoi cell of s in X. Clearly, for any p ∈ C(s), d(s, p) ≤ δ, i.e., C(s) ⊆ U(s). A
δ-cover is called minimal if no two points in X are within distance δ to each other.
For any set A ⊆ X, denote by Â the set Â = ∪s∈AC(s).

To deal with an arbitrary point set S, we first compute a minimal cover X of
S with an appropriately chosen δ. We then apply our results on constant-bounded
density point sets to X. Note that we cannot use the unit-disk graph on X because
it may not have the same connectivity as the unit-disk graph on S. Denote any two
points s1, s2 in X neighbors if d(s1, s2) > 1, and there exist two points p1 ∈ C(S1)
and p2 ∈ C(s2) such that d(p1, p2) ≤ 1. We call the pair (p1, p2) a bridge between s1

and s2. For each neighboring pair, we only pick one bridge arbitrarily. Let Y denote
the set of all bridge points. Consider the point set Z = X ∪ Y . Let π′ denote the
unit-disk graph metric on the set Z. Now, we make the claim in the next lemma.
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Lemma 4.8. X has O(1/δ2)-density. Z can be computed in O(n log n/δ2) time.
Proof. Any two points s1, s2 in a minimal cover X are of at least distance δ away

from each other. Therefore, there are O(1/δ2) points of X inside any unit disk. So
X has O(1/δ2) density.

To compute X, we can use a greedy algorithm with the assistance of a dynamic
point location data structure of unit disks [11]. The algorithm runs in O(n log n) time.
To compute all the neighboring pairs, we can enumerate all the pairs (s1, s2), where s2

is inside the square centered at s1 and with side-length 2(1 + 2δ). There are O(n/δ2)
such pairs according to Lemma 4.8, and they can be computed in O(n log n/δ2) time
by using a standard rectangular range searching data structure. Call such pairs can-
didate pairs. Clearly, only a candidate pair can possibly be a neighboring pair.
To find a bridge between two clusterheads s1, s2 of a candidate pair, we can com-
pute the bichromatic closest pair between two sets C(s1), C(s2). In the plane, this
can be done in O(|U(s1) ∪ U(s2)| log n) time. Since we need only to examine each
clusterhead against O(1/δ2) clusterheads, the total computation time is bounded by
O(n log n/δ2) [1].

Now we show that π′ approximates π well on the set X.
Lemma 4.9. For any two points p, q ∈ X,

π(p, q) ≤ π′(p, q) ≤ (1 + 12δ)π(p, q) + 12δ.

Proof. Since Z ⊆ S, π(p, q) ≤ π′(p, q). On the other hand, assume that
p0p1 · · · pm, where p0 = p and pm = q is a shortest path between p and q in the
unit-disk graph of S. For 0 ≤ i ≤ m, suppose that si is the clusterhead that covers
pi. Note that s0 = p and sm = q as p, q ∈ X.

Consider two consecutive points pi, pi+1. If si = si+1, then d(pi, pi+1) ≤ 2δ.
Otherwise, suppose that si �= si+1. If d(si, si+1) ≤ 1, then π′(si, si+1) = d(si, si+1) ≤
d(pi, pi+1) + 2δ. If d(si, si+1) > 1, then si, si+1 must be a neighboring pair since
d(pi, pi+1) ≤ 1. In this case, it is easy to verify that π′(si, si+1) ≤ d(pi, pi+1) + 6δ.
Thus,

π′(p, q) ≤
m−1∑
i=0

π′(si, si+1)

≤
m−1∑
i=0

d(pi, pi+1) + 6mδ ≤ π(p, q) + 6mδ .

Since p0p1 · · · pm is a shortest path, d(pi, pi+2) ≥ 1 for any 0 ≤ i ≤ m − 2
because otherwise the path could be shortened due to triangular inequality. That is,
π(p, q) ≥ �m/2 > m/2 − 1, i.e., m < 2(π(p, q) + 1). Thus we have that π′(p, q) ≤
(1 + 12δ)π(p, q) + 12δ.

Before we describe the construction of c-WSPD for S, we need a straightforward
extension of geometric well-separated pair decomposition in [10] to two separable point
sets.

Lemma 4.10. Suppose that A and B are two point sets that can be separated by
a line and have n points in total. For any constant c ≥ 1, there exists a geometric
c-well-separated pair decomposition of (A,B) with O(n) pairs.

Proof. This can be done by modifying the algorithm in [10] so that the first split
of the point set of A ∪B is by the line that separates A and B.

Now, we describe a process that produces a c-WSPD of S for any c ≥ 1. Set
δ = 1/(2c + 4) and c′ = 9(c + 14). We first construct a minimal δ-cover X and the
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set Z as described above. Next we compute a c′-well-separated pair decomposition of
the clusterheads X in the unit-disk graph metric of point set Z. Specifically, we give
weight 1 to points in X and 0 to bridge points. We find the spanning tree T of the unit-
disk graph I(Z). T has total weight |X|. We then recursively find balanced weighted
decomposition of T : by removing an edge, each subtree has weight at least 1/β
times the weight of the parent. Since X has a bounded density O(1/δ2), the packing
argument is still valid and we can compute a c′-well-separated pair decomposition for
X. Suppose the decomposition obtained is P = {P1, P2, . . . , Pm}, where Pi = (Ai, Bi),
Ai ⊆ X, Bi ⊆ X. We now create a set of pairs P ′ = P ′

1 ∪ P ′
2 ∪ P ′

3 as follows:

1. For each Pi ∈ P, if |Ai| > 1 or |Bi| > 1, we include in P ′
1 the pair P ′

i =

(Âi, B̂i). Recall that Â = ∪s∈AC(s).
2. If |Ai| = |Bi| = 1, suppose that Ai = {a} and Bi = {b}. If d(a, b) ≥ (2c+2)δ,

we then include in P ′
1 the pair P ′

i = (Âi, B̂i). Otherwise, any pair of points

in Âi

⋃
B̂i is within distance (2c + 2)δ + 2δ = 1. Since Âi ⊂ Vor(a), and

B̂i ⊂ Vor(b), Âi and B̂i are separable by a line. Per Lemma 4.10, we compute
a geometric c-WSPD of (Âi, B̂i) and include in P ′

2 all the pairs produced this
way.

3. For every s ∈ X, we compute a geometric c-WSPD of C(s) and include into
P ′

3 all the pairs produced.

Now, we make the next claim.

Lemma 4.11. P ′ is a c-WSPD of S.

Proof. We first argue that P ′ is a pair decomposition of S. For any pair of points
s1, s2 ∈ S, suppose that the clusterheads covering them are s′1 and s′2, respectively.
If s′1 �= s′2, then (s1, s2) is covered by a pair in P ′

1 ∪ P ′
2. Otherwise, it is covered by a

pair in P ′
3. It is also easily verified that each ordered pair is covered exactly once.

Now, we show that all the pairs in P ′ are c-well-separated with respect to the
unit-disk graph metric. Since δ = 1/(2c + 4), for all the pairs in P ′

2, the Euclidean
distance between any two points in Âi ∪ B̂i is at most (2c + 4)δ = 1. Therefore, the
unit-disk graph on the subset Âi ∪ B̂i is a complete graph, i.e., every pair in P ′

2 is
c-well-separated under the unit-disk graph metric. The same argument applies to P ′

3

as the distance between two points in C(s) is at most 2δ ≤ 1.

Now, consider a pair (Âi, B̂i) ∈ P ′
1. We distinguish two cases:

1. When |Ai| = |Bi| = 1. Then we must have π(Ai, Bi) ≥ (2c + 2)δ according to
the construction rule, and thus

π(Âi, B̂i) ≥ π(Ai, Bi) − 2δ ≥ 2cδ = c/(c + 2) .

On the other hand, D(Âi), D(B̂i) ≤ 2δ = 1/(c + 2). Therefore, (Âi, B̂i) is c-well-
separated.

2. When |Ai| > 1 or |Bi| > 1. In what follows, we use D and D′ to denote
Dπ, Dπ′ , respectively. Clearly,

π(Âi, B̂i) ≥ π(Ai, Bi) − 2δ , and D(Â) ≤ D(A) + 2δ .

Since either Ai or Bi contains at least two clusterheads, it must be true that
max(D(Ai), D(Bi)) ≥ δ, as the distance between two clusterheads is at least δ.
So, max(D(Âi), D(B̂i)) ≥ δ, and max(D(Âi), D(B̂i)) ≤ max(D(Ai), D(Bi)) + 2δ ≤
3 max(D(Ai), D(Bi)).

As Ai, Bi are c′-well-separated under π′, π′(Ai, Bi) ≥ c′ · max(D′(Ai), D
′(Bi)).
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Therefore,

π(Âi, B̂i) ≥ π(Ai, Bi) − 2δ
≥ (π′(Ai, Bi) − 12δ)/(1 + 12δ) − 2δ

by Lemma 4.9
≥ c′/(1 + 12δ) · max(D′(Ai), D

′(Bi)) − 14δ
≥ c′/(1 + 12δ) · max(D(Ai), D(Bi)) − 14δ

≥ (c′/(3(1 + 12δ)) − 14) · max(D̂(Ai), D̂(Bi))

≥ cmax(D(Âi), D(B̂i)) .
by c ≥ 1, δ = 1/(2c + 4), and c′ = 9(c + 14).

In both cases, Âi, B̂i are c-well-separated, i.e., all the pairs in P ′
1 are c-well-

separated.
Now, we make the claim in the next theorem.
Theorem 4.12. For any set S of n points in the plane and any c ≥ 1, there exists

a c-WSPD P of S under the unit-disk graph metric where P contains O(c4n log n)
pairs and can be computed in O(c4n log n) time.

Proof. By combining Corollary 4.6 and Lemma 4.8, we have that |P ′
1| ≤ |P| =

O(c2n log n/δ2) = O(c4n log n). If |Ai| = 1, then the number of pairs (Ai, Bi) ∈ P ′
2

where |Bi| = 1 is bounded by O(1/δ2) = O(c2). Since the size of the geometric
well-separated pair decomposition is linear in terms of the number of points [10],
|P ′

2| = O(c2n). Clearly, |P ′
3| = O(n). When we sum the sizes, we have that |P ′| =

O(c4n log n).
By Theorem 4.5 and Lemma 4.8, it is easy to see that the total time needed is

O(c4n log n).
Similarly, in higher dimensions, we have the next corollary.
Corollary 4.13. For any set S of n points in R

k, for k ≥ 3, and for any
constant c ≥ 1, there exists a c-WSPD P of S under the unit-ball graph metric where
P contains O(n2−2/k) pairs and can be constructed in O(n4/3 polylogn) time for k = 3
and in O(n2−2/k) time for k ≥ 4.

Proof. For simplicity of computation, we use boxes instead of balls to find clus-
terheads with constant bounded density. A point p is covered by a point s if p is
inside the box with size 2δ centered at s. Finding the minimal cover can be done
by using a dynamic rectilinear range search tree in k-dimensions [11]. The running
time is O(n polylogn). Notice that every point can be covered by at most a constant
number of clusterheads; thus we can find the nearest clusterhead for every point in
linear time in total. To find a bridge between two clusterheads s1, s2, we compute
the bichromatic closest pair between two sets C(s1), C(s2). Let m1 = |C(s1)| and
m2 = |C(s2)|. According to [1], when k = 3, it takes O((m1m2)

2/3 polylogn) time,
and when k = 4, it is

O((m1m2)
1−1/(�k/2�+1)+ε + m1 logm2 + m2 logm1)

= O((m1m2)
1−1/k + m1 logm2 + m2 logm1) .

Since each set is involved only in O(1) bichromatic closest pair computation, the total
time is O(n4/3 polylogn) when k = 3 and O(n2−2/k) for k ≥ 4. Computing the WSPD
on the clusterheads takes O(n2−2/k) time, according to Theorem 4.5.

4.3. Estimating distance between pairs. In the above, we showed how to
construct well-separated pair decomposition for unit-disk and unit-ball graphs. As
mentioned in the introduction, to apply WSPD in solving proximity problems in
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the unit-disk graphs, we first need to estimate the shortest path distances between
O(n log n) pairs of the WSPD. Note that in our construction for the point sets with
constant bounded density, we use Euclidean distance as a lower bound for the unit-
disk graph distance and the size of the point set as an upper bound for the diameter.
While these approximations are sufficient for bounding the size of WSPDs, they are
too coarse for obtaining good approximation. Recall that σ(A) is an (arbitrary) point
picked from a set A. For a c-well-separated pair (A,B), we can use the estimated
distance π̂(σ(A), σ(B)) to approximate all the pairwise distances between points in A
and points in B. In this section, we show several trade-offs for measuring the distance
between m pairs of points in the unit-disk graph.

Denote by τ(n, c,m) the time needed to compute m-pairs c-approximate distance

in a unit disk graph. In what follows, we set c0 = 2.42 > 4
√

3
9 π and c1 a number

slightly smaller than c0 but greater than 4
√

3
9 π.

Lemma 4.14.

1. τ(n, c1,m) = O(n log3 n + m).
2. τ(n, 1 + ε,m) = O(n2/(εr) + mr/ε), for any 1 ≤ r ≤ n.

Proof. 1. We first construct a planar 4
√

3
9 π-spanner of the unit disk graph. Such

spanner exists and can be computed in O(n log n) time [26]. Now, we apply Tho-
rup’s construction of (1 + ε)-approximate distance oracle [35] to that planar spanner,
for a sufficiently small constant ε > 0. The bound follows immediately from the
preprocessing and query time bounds of Thorup’s algorithm.

2. We again cluster the points and consider the set of clusterheads, X. Suppose
that we have constructed a (1 + ε/2)-approximate shortest distance oracle for X.
For two query points q1, q2, if d(q1, q2) ≤ 1, we return d(q1, q2). Otherwise, we
find the clusterheads s1, s2 that cover q1 and q2, respectively, and return π̂(q1, q2) =
π′(s1, s2) + 2δ as an approximation of π(q1, q2). It is easily verified that π̂(q1, q2) is
a (1 + ε)-approximation for δ = O(ε). The density of X is O(1/δ2) = O(1/ε2). The
graph formed by connecting neighboring pairs in X is an O(1/ε2)-overlap graph as
defined by Miller, Teng, and Vavasis [28] and therefore admits a balanced separator
with size O(

√
n/ε). Furthermore, it can be computed in deterministic linear time by

the method of Eppstein, Miller, and Teng [13].

Now, it is easy to extend the shortest distance algorithm for planar graphs by
Arikati et al. [3] to the above geometric graph on X. By using the same technique,
we can obtain a trade-off with O(n2/(εr)) preprocessing time and O(r/ε) query time
for any 1 ≤ r ≤

√
n.

5. Applications. In this section, we show the application of the well-separated
pair decomposition in obtaining efficient algorithms for approximating the furthest
neighbor (diameter, center), nearest neighbor (closest pair), median, and stretch fac-
tor, all under the unit-disk graph metric. Since the running time of the algorithms
for computing c0-approximate and (1 + ε)-approximate distance are different, we will
be describing the bounds for both approximations (recall that c0 = 2.42). Roughly
speaking, our algorithms for computing c0-approximation is about linear and for com-
puting (1+ε)-approximation is about O(n

√
n), dominated by the distance estimation.

We should note that for the problems of computing diameter and center, there is
a simple linear time method to achieve 2-approximation. It is therefore not interesting
to present algorithms to obtain c0-approximation for those problems, with c0 = 2.42.
For the other problems, it is still interesting, as we are not aware of any algorithms that
achieve comparable approximation ratio in subquadratic time, even for planar graphs.
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We need first to describe the well-separated pair decomposition we will be using.
In what follows, we also include the time for measuring the distances between pairs
into the construction time. For c0-approximation, c0 = 2.42, we construct a c-well-
separated pair decomposition P1 for sufficiently large constant c and, for each pair
(A,B) in the WSPD, compute c1-approximate distance π̂1(A,B) between σ(A) and
σ(B) according to Lemma 4.14.1. For (1 + ε)-approximation, we compute a c-well-
separated pair decomposition P2 for c = O(1/ε) and, for each pair (A,B), compute
the (1 + ε/2)-approximate distance π̂2(A,B) between (σ(A), σ(B)) by Lemma 4.14.2
and by setting r = ε2

√
n/ log n. The following is immediate.

Lemma 5.1. P1 contains O(n log n) pairs and can be computed in O(n log3 n)
time. P2 contains O(n log n/ε4) pairs and can be computed in O(n

√
n log n/ε3) time.

For any pair of points (p, q), suppose that its covering pair in P1(P2) is (A,B); then
π̂1(A,B) (π̂2(A,B)) is a c0-approximation ((1 + ε)-approximation) of π(p, q), c0 =
2.42.

In the process of producing a well-separated pair decomposition, we constructed
several trees, the balanced hierarchical decomposition tree for constant bounded den-
sity points and the fair split trees for geometric well-separated pair decomposition [10].
For simplicity of presentation, we treat them as a single tree T ′

1 and T ′
2, for P1 and

P2, respectively, by joining the trees created in the geometric well-separated pair de-
composition to the clusterheads appropriately. In what follows, P, T ′, π̂ mean that
they could be either case.

5.1. (1 + ε)-distance oracle. Although P2 takes time O(n
√
n log n/ε3), the

space needed is only O(n log n/ε4). We can use P2 to answer (1 + ε)-approximate
distance query between any two points (p1, p2) by first locating the pair (A,B) that
covers (p, q) and returning π̂(A,B). The query time is the time needed to discover a
pair in P2 that covers the query pair. We show that this can be done in O(1) time by
using the properties of WSPD.

Corollary 5.2. For a unit-disk graph on n points and for any ε > 0, we can
preprocess it into a data structure with O(n log n/ε4) size so that for any query pair,
a (1 + ε)-approximate distance can be answered in O(1) time.

Proof. It suffices to prove for constant-bounded density point sets. We store all
the pairs in P in a hash table indexed by the pairs. We will show that for each query
pair (p, q), we can find O(1) candidate pairs that are guaranteed to contain the pair
in P that covers (p, q). Then, we simply query the hash table using those candidate
pairs and discover the one that does cover (p, q).

We modify our construction in section 4.1 so that we are more careful on deciding
when to include a pair in P. We use a c1-approximate distance oracle as constructed
in Lemma 4.14.1. When producing P, we include a pair in P if π̂(A,B) > (cc1 +
2) max(|A| − 1, |B| − 1). Then there is a constant c2 > 0 such that for any c ≥ 2 and
any pair (A,B) ∈ P, cc1s ≤ π(A,B) ≤ cc2s, where s = max(|A| − 1, |B| − 1).

Now, to answer a query (p, q), we first use the c1-approximate distance oracle to
compute an approximation 	 of π(p, q), i.e., π(p, q) ≤ 	 ≤ c1π(p, q). Suppose that
(A,B) ∈ P is the pair that covers (p, q). Without loss of generality, let us assume
that |A| ≥ |B|, i.e., s = |A| − 1. Then we have

s ≤ π(A,B)/(cc1) ≤ π(p, q)/(cc1) ≤ 	/(cc1) .

On the other hand, s ≥ π(A,B)/(cc2) ≥ (π(p, q) − 2s)/(cc2). That is, s ≥
π(p, q)/(cc2 + 2) ≥ 	/(c1(cc2 + 2)).
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Set 	̂ = 	/(cc1). Then, for (A,B) to cover (p, q), A has to be an ancestor of p

in T ′, and the size of A is sandwiched by 	̂/(c2 + 1) and 	̂. Notice that c1, c2 are
constants independent of c. There are only O(1) such nodes in T ′. Similarly, there
are only O(1) such B’s. We now form O(1) candidate pairs by joining every pair.
Clearly, this can be done in O(1) time.

5.2. Furthest neighbor. Suppose that S1 ⊆ S. For any p, define the (relative)
furthest neighbor of p to be ξ(p) = arg maxq∈S1

π(p, q) in S1. Then the diameter of
S1 is D(S1) = maxp∈S1 π(p, ξ(p)). The center of S1 is the point that minimizes the
maximum distance to the other points, i.e., arg minp∈S1

π(p, ξ(p)). Therefore, once
we compute approximate furthest neighbors for all the p, we also obtain approximate
diameter and center.

Consider any WSPD. To compute the furthest neighbor of S1, we traverse the
balanced hierarchical decomposition tree T ′ and mark all the nodes v ∈ T ′, where
S(v)∩ S1 �= ∅. This can be done in O(n) time in a postorder visit of the tree. A pair
P = (S(u), S(v)) is called marked if both u and v are marked. Let

R1(u) = max{π̂(S(u), B)|(S(u), B) is marked}

and 0 if there is no such pair. With each node u, we also record 	(u), the node that
achieves R1(u).

For any p ∈ S1, consider the path P in T ′ from p to the root. Suppose that u is
the node that maximizes R1(u) among all the nodes on P . Now, we pick any point,
say, q, from S(	(u))∩S1 (since 	(u) is marked, S(	(u))∩S1 �= ∅) and claim that it is an
approximate furthest neighbor with the approximation ratio 2.42, if the above process
is applied to P1, or 1+ε, if applied to P2. For correctness, consider the (marked) pair
in P that covers (p, ξ(p)). Suppose it is (S(u), S(v)). Then R1(u) ≥ π̂(S(u), S(v)).
Since the pairs are well-separated, it is easy to see that q is an approximate furthest
neighbor of p with the approximation ratio determined by the WSPD we use. After
we have computed the approximate furthest neighbor, it is simple to compute the
diameter and the center. Therefore, we have the next corollary.

Corollary 5.3. For any set S of n points in the plane and any S1 ⊆ S, we can
compute

• c0-approximate furthest neighbor for all the points in S1 in O(n log3 n) time,
c0 = 2.42; and

• (1 + ε)-approximation, for any ε > 0, of the furthest neighbor, the diameter
of S1, and the center of S1 in O(n

√
n log n/ε3) time.

Remark. We did not list c0-approximation (c0 = 2.42) for the diameter and the
center because there is a simple linear time 2-approximate algorithm.

5.3. Nearest neighbor, closest pair. Computing the nearest neighbor or clos-
est pair in S under the unit-disk graph metric is trivial—it is the same as under the
Euclidean metric as long as the graph is connected. However, the problem becomes
harder if we restrict our attention to a subset S1 ⊆ S, i.e., computing the nearest
neighbor in S1 for each point in S1 or computing the closest pair between points in
S1. For any two sets S1, S2, we can also define the bichromatic closest pair to be
arg minp∈S1,q∈S2

π(S1, S2).
By using the same technique as in the previous section, we are able to show the

next corollary.
Corollary 5.4. For any set S of n points in the plane, and any S1, S2 ⊆ S, we

can compute
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• c0-approximation (c0 = 2.42) for the nearest neighbor for all the points in
S1, the closest pair in S1, the bichromatic closest pair of S1, S2, in time
O(n log3 n); and

• (1 + ε)-approximation for the same problems in time O(n
√
n log n/ε3).

Remark. We should note that by applying the technique in [10], we can actually
enumerate a set of O(n) pairs of points that is guaranteed to include the closest
pair. However, since our distance oracle is approximate, we can compute only the
approximate closest pair, unlike in the geometric case.

5.4. Median. Similar to the definition of center, median is defined to be the
point that minimizes the average (or total) distance to all the other points. Let
ρ(p) =

∑
q∈S1

π(p, q). Then the median of S1 is the point that minimizes ρ(p).
By using a similar technique, we can show the following.
Corollary 5.5. For any planar point set S with n points and S1 ⊆ S, a c0-

approximate median (c0 = 2.42) of S1 can be computed in O(n log3 n) time, and for
any ε > 0, a (1 + ε)-approximation can be computed in O(n

√
n log n/ε3) time.

Proof. Computing approximate median is similar to computing the furthest neigh-
bor. The only difference is that instead of computing R1(u), we compute

R2(u) =
∑

(S(u),B)∈P
π̂(S(u), B) · |B| ,

and then for each point p and the path P from p to the root, compute ρ̂(p) =∑
u∈P R2(u)/(n − 1), as an approximation of ρ(p). The correctness is guaranteed

by the property of pair decomposition that every pair of points is covered by a unique
pair in the decomposition. Again, we pick the point with the minimum ρ̂(p) to be
the approximate median. The approximation ratio and running time bounds follow
immediately.

5.5. Stretch factor. For a graph G defined on S, the stretch factor of G with
respect to π is defined as maxp,q∈S πG(p, q)/π(p, q). Narasimhan and Smid [29] gave
an algorithm to approximate the stretch factor of a geometric graph to the Euclidean
metric using the geometric well-separated pair decomposition. By following the same
argument we can approximate the stretch factor of an arbitrary graph G with respect
to the unit-disk graph metric. Again, we consider the well-separated pair decompo-
sition P. For each pair (A,B) ∈ P, we pick any pair of points (p, q), where p ∈ A
and q ∈ B, and compute the approximate shortest path π̂G(p, q) in G and π̂(p, q) in
I. The maximum ratio of π̂G(p, q)/π̂(p, q) over all pairs in P is an approximation to
the stretch factor by the same argument in [29].

Corollary 5.6. For any graph G on S, we can compute an O(1)-approximate
stretch factor of G in time O(τ ′1(n log n)), where τ ′1(m) is the time to compute m
O(1)-approximate shortest path queries in G. In particular, if G is a subgraph of I,
an O(1)-approximate can be computed in time O(n log3 n). Similarly, we can compute
for any ε > 0, a (1 + ε)-approximate stretch factor of G in time O(τ ′2(n log n/ε4) +
n
√
n log n/ε3), where τ ′2(m) is the time to compute m (1 + ε)-approximate shortest

path queries in G. When G is a subgraph of I, this can be done in O(n
√
n log n/ε3)

time.

6. Extensions. There are several direct extensions of our techniques. Here, we
outline the extension to the intersection graph of disks with bounded radii ratio and
to the unweighted unit-disk graph.
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6.1. Intersection graphs of disks with bounded radii ratio. When the
sizes of the disks are not uniform, it is generally not possible to obtain subquadratic
well-separated pair decomposition of the metric induced by the intersection graph.
This can be shown by the example where there is a big disk and n − 1 pairwise
disjoint small disks intersecting it. Indeed, the intersection graph of this example is
a tree with one internal node and n− 1 leaves.

However, if the ratio between the radii of any two disks (or balls) is upper bounded
by a constant, then the packing property (Lemma 4.3) still holds. We can obtain
similar results for the intersection graph of disks (or balls in high dimensions) with
bounded radii ratio.

6.2. Unweighted unit-disk graphs. In the previous part, we considered only
weighted unit-disk graphs. There are applications in which we need the unweighted
unit-disk graph. The results for point set with constant bounded density can be
directly extended to unweighted unit-disk graphs. If the density is unbounded, then it
is impossible to obtain a subquadratic size well-separated pair decomposition as shown
by the example of the unweighted complete graph. But again for the applications,
we can apply the clustering technique to reduce it to the problem for point sets
with constant unbounded density. The clustering increases the approximation ratio
by a multiplicative factor of 3 [17]. Thus in near linear time we can compute 3c0-
approximation (c0 = 2.42) for the following problems: the furthest neighbor, nearest
neighbor, closest pair, bichromatic closest pair, median, and stretch factor, all with
respect to the unweighted unit-disk graph metric. Again we didn’t list the problems
of computing diameter and center because there are trivial 2-approximate algorithms.

Furthermore, we can get a better multiplicative approximation factor by permit-
ting an additive error as shown in the following. For the unweighted unit-disk graph
I(S) on point set S, we cluster the points by finding a minimal 1-cover X of S; i.e.,
any two clusterheads c1, c2 ∈ X must be distance at least 1 away, and any point is
covered by at least one clusterhead. We also assign a unique clusterhead c(p) to every
node p in S, as before. For any two clusterheads in X within distance 3, if there
exists a path with no more than three hops to connect them, we select such two nodes
as a bridge. Define Z to be the union of centers X and bridge nodes Y . Again, the
shortest path metric in the unweighted unit-disk graph I(Z) is denoted by π′, to be
distinguished by the metric π in I(S). It is easy to see that Z has constant bounded
density. So we build the c-well-separated pair decomposition P ′ on Z. For each pair
(A′, B′) ∈ P ′, we build a pair (A,B), where A =

⋃
c(p)∈A′ p, B =

⋃
c(q)∈B′ q. The

collection of the pairs is denoted by P.

Lemma 6.1. For p, q ∈ S,

1. π(p, q) ≤ π′(p, q);
2. π′(p, q) ≤ 3π(p, q) + 2, if p, q are clusterheads, then π′(p, q) ≤ 3π(p, q).

Proof. The first claim is because I(Z) is a subgraph of I(S). The second one is
proved in [17].

Set c = 6/ε; we have the next lemma.

Lemma 6.2. For any two pairs of points (p1, q1), (p2, q2) ∈ (A,B), where (A,B) ∈
P, π(p1, q1) ≤ (1 + ε)π(p2, q2) + (4 + 2ε).

Proof. Take the centers of p2, q2, c(p2) ∈ A′, c(q2) ∈ B′. We can see that
π(p1, c(p2)) ≤ 1+π(c(p1), c(p2)) ≤ 1+π′(c(p1), c(p2)) ≤ 1+D′(A′), where D′ denote
the diameter in metric π′. Since (A′, B′) is c-well-separated, we have π′(A′, B′) ≥
c·max(D′(A′), D′(B′)). So π′(c(p2), c(q2)) ≥ c·max(D′(A′), D′(B′)). π(c(p2), c(q2)) ≤
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π(p2, q2) + 2. Combining Lemma 6.1 and all these, we have

π(p1, q1) ≤ π(p1, c(p2)) + π(c(p2), c(q2)) + π(c(q2), q1)
≤ 1 + D′(A′) + π(c(p2), c(q2)) + 1 + D′(B′)
≤ π(c(p2), c(q2)) + 2 + (2/c)π′(c(p2), c(q2))
≤ π(c(p2), c(q2)) + 2 + (2/c)(3π(c(p2), c(q2)))
≤ (1 + 6/c)π(c(p2), c(q2)) + 2
≤ (1 + 6/c)π(p2, q2) + (4 + 12/c)
= (1 + ε)π(p2, q2) + (4 + 2ε).

Theorem 6.3. For an unweighted unit-disk graph I(S) on a point set S and any
1 > ε > 0, we can find in time O(n

√
n log n/ε3) a data structure of size O(n log n/ε4)

such that for any pair of points p, q with distance π(p, q) > 2, we can return a value
x in O(1) time such that

1

1 + ε
(x− 4 − 2ε) ≤ π(p, q) ≤ (1 + ε)x + 4 + 2ε.

Proof. For each pair (A′, B′), we take an arbitrary pair of points a0, b0 from
A′, B′, respectively, and compute the distance π(a0, b0). By using the same idea as
in Lemma 4.14, we can show that the total amount of time is O(n

√
n log n/ε3). Note

that any pair of points p, q with distance π(p, q) > 2 must be in different clusters. We
find the pair (A′, B′) that includes the pair of points (c(p), c(q)) in O(1) time. (Notice
that there exists a constant-spanner for the unweighted unit-disk graph on point set
with constant density [17].) Therefore we take x = π(a0, b0), where (a0, b0) is the
representative pair of (A′, B′). The theorem then follows from Lemma 6.2.

Similarly, this gives us O(n
√
n log n/ε3)-time algorithms for finding approximate

solutions to the following problems: the furthest neighbor, nearest neighbor, closest
pair, bichromatic closest pair, median, diameter, center, and stretch factor, all with
respect to the unweighted unit-disk graph metric.

7. Conclusion. In this paper, we extend the well-separated pair decomposition,
originally developed in the Euclidean metric, to the unit-disk and unit-ball graph met-
rics. This allows us to obtain almost linear time 2.42-approximate and subquadratic
time (1+ε)-approximate algorithms for several proximity problems where no efficient
methods were previously known. The combinatorial bounds in R

k for k ≥ 3 are also
tight.

The most notable open problem is the gap between Ω(n) and O(n log n) on the
number of pairs needed in the plane. Also, the time bound for (1 + ε)-approximation

is still about Õ(n
√
n) because of the lack of efficient method for computing (1 + ε)-

approximate shortest distance between O(n) pairs of points. Any improvement to the
algorithm for that problem will immediately lead to improvement to all the (1 + ε)-
approximate algorithms presented in this paper.
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A SUBEXPONENTIAL-TIME QUANTUM ALGORITHM FOR THE
DIHEDRAL HIDDEN SUBGROUP PROBLEM∗

GREG KUPERBERG†

Abstract. We present a quantum algorithm for the dihedral hidden subgroup problem (DHSP)

with time and query complexity 2O(
√

log N). In this problem an oracle computes a function f on
the dihedral group DN which is invariant under a hidden reflection in DN . By contrast, the classical
query complexity of DHSP is O(

√
N). The algorithm also applies to the hidden shift problem for an

arbitrary finitely generated abelian group.

The algorithm begins as usual with a quantum character transform, which in the case of DN is
essentially the abelian quantum Fourier transform. This yields the name of a group representation
of DN , which is not by itself useful, and a state in the representation, which is a valuable but
indecipherable qubit. The algorithm proceeds by repeatedly pairing two unfavorable qubits to make
a new qubit in a more favorable representation of DN . Once the algorithm obtains certain target
representations, direct measurements reveal the hidden subgroup.

Key words. quantum algorithm, dihedral hidden subgroup
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1. Introduction. The hidden subgroup problem (HSP) in quantum computa-
tion takes as input a group G, a finite set S, and a black-box function (or oracle)
f : G → S. By promise there is a subgroup H ⊆ G such that f(a) = f(b) if and only
if a and b are in the same (right) coset of H. The problem is to identify the subgroup
H. We assume that G is given explicitly; black-box groups are a separate topic [13].

Shor’s algorithm [22] solves HSP when G = Z in polynomial time in the length
of the output. An important predecessor is Simon’s algorithm [23] for the case G =
(Z/2)n. Shor’s algorithm extends to the general abelian case [14], to the case when H
is normal [10], and to the case when H has few conjugates [9]. Since the main step in
the generalized algorithm is the quantum character transform on the group algebra
C[G], we will call it the character algorithm.

In the dihedral hidden subgroup problem (DHSP), G is the dihedral group DN

and H is generated by a reflection. (Other subgroups of DN are only easier to find;
see Proposition 2.1.) In this case H has many conjugates and the character algorithm
works poorly. This hidden subgroup problem was first considered by Ettinger and
Høyer [7]. They presented an algorithm that finds H with a linear number of queries
(in the length of the output) but an exponential amount of computation. Ettinger,
Høyer, and Knill generalized this result to the general finite hidden subgroup problem
[8].

In this paper we will describe a new quantum algorithm for the dihedral group
DN with a favorable compromise between query complexity and computation time
per query.
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Fig. 1. Some elements of D8.

Theorem 1.1. There is a quantum algorithm that finds a hidden reflection in the

dihedral group G = DN (of order 2N) with time and query complexity 2O(
√

log N).

The time complexity 2O(
√

log N) is not polynomial, but it is subexponential. By
contrast any classical algorithm requires at least 2N1/2 queries on average. Unfortu-

nately, our algorithm also requires 2O(
√

log N) quantum space.
We will prove Theorem 1.1 in a convenient case, N = 2n, in section 3. In section 5,

we will provide another algorithm that works for all N , and we will obtain the sharper

time and query complexity bound Õ(3
√

2 log3 N ) when N = rn for some fixed radix r.
The algorithm for this last case generalizes to many other smooth values of N .

2. Group conventions. The dihedral group DN with 2N elements has the
conventional presentation

DN = 〈x, y
∣∣ xN = y2 = yxyx = 1〉.

(See Artin [2, section 5.3].) An element of the form xs is a rotation and an element of
the form yxs is a reflection. The parameter s is the slope of the reflection yxs. This
terminology is motivated by realizing DN as the symmetry group of a regular N -gon
in the plane (Figure 1). In this model yxs is a reflection through a line which makes
an angle of πs

N with the reflection line of y.
In this paper we will describe algorithms for the hidden subgroup problem with

G = DN and H = 〈yxs〉. If we know that the hidden subgroup is a reflection, then
the hidden subgroup problem amounts to finding its slope s.

Proposition 2.1. Finding an arbitrary hidden subgroup H of DN reduces to
finding the slope of a hidden reflection.

Proof. If H is not a reflection, then either it is the trivial group or it has a non-
trivial intersection with the cyclic subgroup CN = 〈x〉. Finding the hidden subgroup
H ′ = H ∩ CN in CN is easy if we know the factors of N , and we can factor N using
Shor’s algorithm. Then the quotient group H/H ′ is either trivial or a reflection in
the quotient group G/H ′.

If H is trivial, then this will be revealed by the fact that an algorithm to find the
slope of a hidden reflection must fail.
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3. A basic algorithm. In this section we will describe an algorithm to find the
slope s of a hidden reflection in DN when the period N = 2n is a power of 2. The
main part of the algorithm actually finds only the parity of s. Once this parity is
known, the main part can be repeated with a subgroup of DN isomorphic to DN/2.
The group DN has two such subgroups:

F0 = 〈x2, y〉, F1 = 〈x2, yx〉.

The subgroup Fsmod2 contains H and the other does not, so we can pass to one of
these subgroups if and only if we know s mod 2.

For any finite set S, the notation C[S] denotes a Hilbert space with S as an
orthogonal basis. (This is the quantum analogue of a classical data type that takes
values in S.) Define the constant pure state |S〉 in C[S], or more generally in C[T ] for
any T ⊇ S, as the superposition

|S〉 =
1√
|S|

∑
s∈S

|s〉.

For the moment let us assume an arbitrary finite hidden subgroup problem f :
G → S with hidden subgroup H. Assuming that there is a classical circuit to compute
f , we can dilate it to a unitary embedding

Uf : C[G] → C[G] ⊗ C[S] = C[G× S]

which evaluates f in the standard basis:

Uf |g〉 = |g, f(g)〉.

All finite hidden subgroup algorithms, including ours, begin by computing

Uf |G〉

and then discarding the output register C[S], leaving the input register for further
computation. The result is the mixed state

ρG/H =
1

|G|
∑

|Ha〉〈Ha|

on the input register C[G].
Many works on hidden subgroup algorithms describe these steps differently [22,

18, 7, 8, 9, 10]. Instead of defining Uf as an embedding that creates f(g), they
define it as a unitary operator that adds f(g) to an ancilla. They describe its output
as measured rather than discarded, and they describe the mixed state ρG/H as a
randomly chosen coset state |Ha〉. We have presented an equivalent description in
the formalism of mixed states and quantum operations [18, Chapter 8].

Now let G = DN with N = 2n. The general element of DN is g = ytxs with
s ∈ Z/N and t ∈ Z/2. Thus the input register C[DN ] consists of n qubits to describe
s and 1 qubit to describe t. The second step of our algorithm is to apply a unitary
operator to ρDN/H which is almost the character transform (section 8.2). Explicitly,
we apply the quantum Fourier transform (QFT) to |s〉,

FN : |s〉 �→ 1√
N

∑
k

e2πiks/N |k〉,
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and then measure k ∈ Z/N . The measured value is uniformly random, while the state
on the remaining qubit is

|ψk〉 ∝ |0〉 + e2πiks/N |1〉.

(The symbol ∝ means “proportional to,” so that we can omit normalization and
global phase.) We will always create the same state ρDN/H and perform the same

measurement, so we can suppose that we have a supply of 2O(
√
n states |ψk〉, each

with its own known but random value of k.
Note that |ψ−k〉 and |ψk〉 carry equivalent information about s, because

|ψ−k〉 = X|ψk〉,(1)

where X is the bit flip operator. They will be equivalent in our algorithms as well.
We would like to create the state

|ψ2n−1〉 ∝ |0〉 + (−1)s|1〉

because its measurement in the |±〉 basis reveals the parity of s. To this end we
create a sieve which creates new |ψk〉’s from pairs of old ones. The sieve increases
the number of trailing zeroes α(k) in the binary expansion of k. Given |ψk〉 and |ψ�〉,
their joint state is

|ψk〉 ⊗ |ψ�〉 ∝ |0, 0〉 + e2πiks/N |1, 0〉 + e2πik�/N |0, 1〉 + e2πi(k+�)/N |1, 1〉.

We now apply a CNOT gate

|a, b〉 �→ |a, a + b〉

and measure the right qubit. The left qubit has the residual state

|ψk±�〉 ∝ |0〉 + e2πi(k±�)s/N |1〉

and the label k ± �, which is inferred from the measurement of a + b. Thus we have
a procedure to extract a new qubit |ψk±�〉 from the old qubits |ψk〉 and |ψ�〉. The
extraction makes an unbiased random choice between k + � and k − �. We may well
like the extracted qubit better than either of the old ones.

By iterating qubit extraction, we can eventually create the state that we like best,
|ψ2n−1〉. We will construct a sieve that begins with 2Θ(

√
n) qubits. Each stage of the

sieve will repeatedly find two qubits |ψk〉 and |ψ�〉 such that k and � agree in Θ(
√
n)

low bits in addition to their trailing zeroes. With probability 1
2 , the label k ± � of

the extracted qubit has
√
n more trailing zeroes than k or �. If the sieve has depth

Θ(
√
n), we can expect it to produce copies of |ψ2n−1〉.
In conclusion, here is a complete description of the algorithm to find a hidden

reflection in DN with N = 2n. Also let m = 
√
n− 1�.

Algorithm 3.1. Input: An oracle f : DN → S with a hidden subgroup H =
〈yxs〉 and N = 2n.
1. Make a list L0 of copies of the state ρDN/H by applying the dilation Df to the

constant pure state |DN 〉 and discarding the input. Extract |ψk〉 from each
ρDN/H with a QFT-based measurement.

2. For each 0 ≤ j < m, we assume a list Lj of qubit states |ψk〉 such that k has
at least mj trailing zeroes. Divide Lj into pairs of qubits |ψk〉 and |ψ�〉 that
share at least m low bits (in addition to trailing zeroes), or n − 1 −mj bits
if m = j − 1. Extract the state |ψk±�〉 from each pair. Let the new list Lj+1

consist of those qubit states of the form |ψk−�〉.
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3. The final list Lm consists of states |ψ0〉 and |ψ2n−1〉. Measure a state |ψ2n−1〉 in
the |±〉 basis to determine the parity of the slope s.

4. Repeat steps 1–3 with the subgroup of DN which is isomorphic to DN/2 and which
contains H.

3.1. Proof of the complexity.
Theorem 3.2. Algorithm 3.1 requires O(8

√
n) queries and Õ(8

√
n) computation

time.
Proof. In outline, if |Lj | � 2m, then we can pair almost all the elements of Lj so

that k and � share m low bits for each pair |ψk〉 and |ψ�〉. Then about half the pairs
will form Lj+1, so that

|Lj+1|
|Lj |

≈ 1

4
.

We can set |Lm| = Θ(2m). Working backward, we can set |L0| = Θ(8m). The
computation time consists of tasks with only logarithmic overhead.

In detail, we will assume that

|Lj | ≥ Cm−j2
3m−2j

for a certain constant 9 > Ck ≥ 3. We will bound the probability that this assumption
survives as j increases. The constants are defined by letting C0 = 3 and letting

Ck =
Ck−1

1 − 2−k−m
3

+ 2−2k

by induction on k. It is not hard to check that

Ck > Ck−1, lim
k→∞

Ck < 9.

(A calculator may help for the first few terms of the limit, the worst case being m = 1.)
Since we create L0 directly from oracle calls, we can set

|L0| = C02
3m.

Given Lj , let Pj be a maximal set of pairs |ψk〉 and |ψ�〉 with m low matching bits.
Then

|Pj | ≥
|Lj | − 2m

2
≥ 23m−2jCj(1 − 22j−2m)

2
,

because there are at most 2m unmatched pairs. The list Lj+1 is then formed from Pj

by summand extraction, so |Lj+1| can be understood as the sum of N independent,
unbiased Bernoulli random variables. In general, if BN is a sum of N unbiased
Bernoulli random variables, then

P [BN ≤ (1 − b)N

2
] ≤ (cosh b)Ne−Nb2 ≤ e−Nb2/2.

(The first inequality is the Chernoff bound on large deviations.) Setting

b = 2j−
4m
3 ,
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we learn that

|Lj+1| ≥
23m−2j(Cj − 22j−2m)(1 − 2j−

4m
3 )

4
= Cj+12

3m−2j−2

with probability at least

1 − e−2
m
3

−1

.

Finally by induction on j,

P [|Pj | ≥ Cm−j2
3m−2j ∀j] ≥ (1 − e−2

m
3

−1

)m → 1

as m → ∞.
Thus the final list Lm is very likely to be large. Since the highest bit of k in |ψk〉

was never used for any decisions in the algorithm, it is unbiased Bernoulli for each
entry of Lm. Therefore Lm is very likely to contain copies of |ψ2n−1〉.

4. Some motivation. Algorithm 3.1 can be motivated by related ideas in rep-
resentation theory and the theory of classical algorithms.

On the representation theory side, the input space C[DN ] has an orthogonal
decomposition into two-dimensional representations Vk of DN ,

C[DN ] ∼=
⊕

k∈Z/N

Vk.(2)

This means that each element of DN is represented by a unitary operator on C[DN ]
(given by left multiplication) and each Vk is an invariant subspace, so that each ele-
ment of DN is also represented by a unitary operator on each Vk [2, section 9.2]. Every
orthogonal decomposition of a Hilbert space corresponds to a projective measurement
[18, section 2.2.5]; this particular measurement can be computed using a QFT.

In the representation Vk, the generators x and y are represented as follows:

x �→
(
e2π/N 0

0 e−2π/N

)
, y �→

(
0 1
1 0

)
.

Since the state |Ha〉 is invariant under the represented action of H, the residual state
|ψk〉 is too. Thus abstract representation theory motivates the use of this state to
find H. Note also that Vk

∼= V−k as representations, as if reflected in the equivalence
between |ψk〉 and |ψ−k〉 in (1).

The representation Vk is irreducible except when k = 0 or k = N/2. Thus (2)
is not far from the Burnside decomposition of C[G] into irreducible representations
in the special case G = DN . When expressed as a unitary operator, the Burnside
decomposition is called the character transform or the noncommutative Fourier trans-
form. (Measuring the character name solves the hidden subgroup problem for normal
subgroups [10] and almost normal subgroups [9].) Use of VN/2 as the target of Al-
gorithm 3.1 is motivated by its reducibility; the measurement corresponding to its
irreducible decomposition is the one that reveals the slope of s.

On the algorithm side, the sieve in Algorithm 3.1 is similar to a sieve algorithm
for a learning problem due to Blum, Kalai, and Wasserman [5] and to a sieve to find
shortest vector in a lattice due to Ajtai, Kumar, and Sivakumar [1].
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Ettinger and Høyer [7] observed that if the state |ψk〉 for the hidden subgroup
H = 〈xsy〉 will be found in the state |ψ′

k〉 for a reference subgroup H ′ = 〈xty〉 with
probability

cos(πi(s− t)k/N)2.

Thus the state |ψk〉 can provide a coin flip with this bias. We call such a coin flip
a cosine observation of the slope s. Ettinger and Høyer showed that s is revealed
by a maximum likelihood test with respect to O(log N) cosine observations with
random values of k. They suggested a brute-force search to solve this maximum
likelihood problem. Our first version of Algorithm 3.1 was a slightly subexponential,
classical sieve on cosine observations that even more closely resembles the Blum–
Kalai–Wasserman algorithm. Replacing the cosine observations by the qubit states
|ψk〉 themselves significantly accelerates the algorithm.

5. Other algorithms. Algorithm 3.1 presents a simplified sieve which is close
to the author’s original thinking. But it is neither optimal nor fully general. In this
section we present several variations which are faster or more general.

The first task is to prove Theorem 1.1 when N is not a power of 2. Given any
qubit state |ψk〉, we can assume that 0 ≤ k ≤ N

2 , since |ψk〉 and |ψ−k〉 are equivalent.
The list Lj will consist of qubits |ψk〉 with

0 ≤ k < 2m
2−mj+1,

where

m =
⌈√

(log2 N) − 2
⌉
.

Another difference when N is not a power of 2 is that the quantum Fourier
transform on Z/N is more complicated. An efficient approximate algorithm was
given by Kitaev [14]; another algorithm which is exact (in a sense) is due to Mosca
and Zalka [17].

Algorithm 5.1. Input: An oracle f : DN → S with a hidden subgroup H =
〈yxs〉.
1. Make a list L0 of copies of ρDN/H . Extract a qubit state |ψk〉 from each ρDN/H

using a QFT on Z/N and a measurement.
2. For each 0 ≤ j < m, we assume a list Lj of qubit states |ψk〉 such that 0 ≤ k ≤

2m
2−mj+1. Randomly divide Lj into pairs of qubits |ψk〉 and |ψ�〉 that such

that

|k − �| ≤ 2m
2−m(j+1)+1.

Let the new list Lj+1 consist of those qubit states of the form |ψ|k−�|〉.
3. The final list Lm consists of states |ψ0〉 and |ψ1〉. Perform the Ettinger–Høyer

measurement on the copies of |ψ1〉 with different values of t to learn s ∈ Z/N
to within N/4.

4. Write N = 2aM with M odd. By the Chinese remainder theorem,

CN
∼= C2a × CM .

For each 1 ≤ j ≤ log2 N�, apply Algorithm 3.1 to produce many |ψk〉 with
2min(a,j)|k. Then repeat steps 1–4 after applying the group automorphism

x �→ x2−j

to the CM factor of DN . This produces copies of |ψ2j 〉, and hence
cosine observations cos(πi2j(s− t)/N)2. These observations determine s.
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Table 1

Average canceled bits in a simulation (100 trials).

Queries 3 32 33 34 35 36 37 38

Zeroed bits 3.62 6.75 12.53 19.07 27.14 36.44 47.51 59.76√
2 log3 2n 2.14 2.92 3.98 4.91 5.85 6.78 7.74 8.68

The proof of Theorem 3.2 carries-over to show that Algorithm 5.1 also requires

only O(8
√

log2 N ) queries and quasi-linear time in its data. The only new step is to
check that in the final list Lm, the qubit states |ψ0〉 and |ψ1〉 are almost equally
likely. This is a bit tricky but inevitable, given that the lowest bit of k can be almost
uncorrelated with the way that |ψk〉 is paired.

Remark 5.2. Høyer described a simplification of Algorithm 5.1 [11]. Given only
one copy each of

|ψ1〉, |ψ2〉, . . . , |ψ2k〉,

with 2k ≥ N , the slope s can be recovered directly by a quantum Fourier transform.
More precisely, the measured Fourier number t of these qubits reveals s by the relation

t

2k
∼ s

N
.

This simplification saves a factor of O(logN) computation time.
Now suppose that N = rn for some small radix r; Algorithm 3.1 generalizes to

this case with only slight changes. It is natural to accelerate it by recasting it as a
greedy algorithm. To this end, we define an objective function α(k) that expresses
how much we like a given state |ψk〉. Namely, let αk be the number of factors of r in
k with the exception that α(0) = 0. Within the list L of qubit states available at any
given time, we will greedily pick |ψk〉 and |ψ�〉 to maximize α(k± �). It is also natural
to restrict our greed to the qubits that minimize α, because there is no advantage to
postponing their use in the sieve.

Algorithm 5.3. Input: An oracle f : DN → S with a hidden subgroup H =
〈yxs〉 and N = rn.
1. Make a list L of qubit states |ψk〉 extracted from copies of ρDN/H .
2. Within the sublist L′ of L that minimizes α, repeatedly extract |ψ(〉k ± �) from a

pair of qubits |ψk〉 and |ψ�〉 that maximize α(k ± �).
3. After enough qubits |ψk〉 appear with N

r |k, measure s mod r using state tomogra-
phy. Then repeat the algorithm with a subgroup of DN isomorphic to DN/r.

The behavior of Algorithm 5.3 (but not its quantum state) can be simulated by
a classical randomized algorithm. We include the source code of a simulator written
in Python with this article [15] with r = 2. Our experiments with this simulator led
to a false conjecture for algorithm’s precise query complexity. Nonetheless we present
some of its results in Table 1. The last line of the table is roughly consistent with
Theorem 5.4. Note that the sieve is a bit more efficient when r = 2 because then k±�
increases by 1 in the unfavorable case and at least 2 in the favorable case.

Theorem 5.4. Algorithm 5.3 requires Õ(3
√

2 log3 N ) queries and quasi-linear time
in the number of queries.

Here is a heuristic justification of the query bound in Theorem 5.4. We assume,

as the proof will, that r = 3 and N = 3n. Then with 3
√

2n queries, we can expect
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qubit extraction to initially cancel about
√

2n ternary digits (trits) with probability
1
2 . If we believe the query estimate for n′ < n, then we can expect the new qubit to
be about 3 times as valuable as the old one, since

√
2n−

√
2n−

√
2n ≈ 1.

Such a qubit extraction trades 2 qubits for 1 qubit, which is half the time equivalent
to the original 2 and half the time 3 times as valuable. Thus each step of the sieve
breaks even; it is like a gamble with $2 that is equally likely to return $1 or $3.

Sketch of proof. We will show that the sieve produces states |ψaN/r〉 (which we will

call final states) with adequate probability when provided with at least Cn3
√

2 log3 N

queries. The work per query is quasi-linear in |L| (initially the number of queries)
if the list L is dynamically sorted. To simplify the formulas, we assume that r = 3,
although the proof works for all r.

We can think of a qubit state |ψk〉 as a monetary asset, valued by the function

V (k) = 3−
√

2(n−1−α(k)).

Thus the total value V (L) of the initial list L is at least

V (L) ≥ Cn.

We claim that over a period of the sieve that increases minα by 1, the expected
change in V (L) is at worst −C. Since minα can only increase n− 1 times, V (L) ≥ C
when minα = n − 1. Thus the sieve produces at least C final states on average.
Along the way, the changes to V (L) are independent (but not identically distributed)
Bernoulli trials. One can show using a version of the Chernoff bound (as in the proof
of Theorem 3.2) that the number of final states is not maldistributed. We will omit
this refinement of the estimates and spell out the expected behavior of V (L).

Given k, let

β = β(k) = n− 1 − α(k)

for short, so that β can be thought of as the number of uncancelled trits in the label
k of |ψk〉. Suppose that two labels k and � or −� share m trits in addition to α(k)
cancelled trits. Then

V (k) = V (�) = 3−
√

2β .(3)

The state |ψk±�〉 extracted from |ψk〉 and |ψ�〉 has the expected value

E[V (k ± �)] =
3−

√
2β + 3−

√
2(β−m)

2

> 2V (k)
1 + 3m/

√
2β

4
,(4)

using the elementary relation

√
2β −

√
2(β −m) =

2m
√

2β +
√

2(β −m)
>

m√
2β

.
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The most important feature of (4) is that if m >
√

2β, the expected change
in V (L) is positive. Thus in bounding the attrition of V (L), we can assume that
m ≤

√
2β for the best-matching qubits |ψk〉 and |ψ�〉 in the sublist L′ that minimizes

α. By the pigeonhole principle, this can happen only when

|L′| ≤ 3
√

2β .

(To apply the pigeonhole principle properly, use the equivalence between |ψk〉 and
|ψ−k〉 to assume that the first nonzero digit is 1. There are then 3m choices for the
next m digits.)

When qubit extraction decreases V (L), it decreases by at worst the value of one
parent, given by the right side of (3). Likewise, if |L′| = 1 and its unique element
|ψk〉 must be discarded, the loss to V (L) is again the right side of (3). Thus the total
expected loss as L′ is exhausted is at most

3−
√

2β3
√

2β < 1.

We can therefore take C = 1, although a larger C may be convenient to facilitate the
Chernoff bound.

Remark 5.5. A close examination of Algorithm 5.3 and Theorem 5.4 reveals that
the sieve works with the same complexity bound if N factors as

N = N1N2 . . . Nm

and Nk is within a bounded factor of 3k. In this case the sieve will determine s mod
N1. This is enough values of N to extend to an algorithm for all N by the method of
spliced approximation section 7.

6. Generalized dihedral groups and hidden shifts. In this section we con-
sider several other problems that are equivalent or closely related to the hidden dihe-
dral subgroup problem.

In general if A is an abelian group, let exp(A) denote the multiplicative form of
the same group. Let Cn = exp(Z/n) be the multiplicative cyclic group of order n.
If A is any abelian group, define the generalized dihedral group to be the semidirect
product

DA
∼= C2 � exp(A)

with the conjugation relation

x−1 = yxy

for all x ∈ exp(A) and for the nontrivial y ∈ C2. Any element of the form yx is a
reflection in DA.

Suppose that A is an abelian group and f, g : A → S are two injective functions
that differ by a shift:

f(a) = g(a + s).

Then the task of finding s from f and g is the abelian hidden shift problem. Another
problem is the hidden reflection problem in A (as opposed to in DA). In this problem,
f : A → S is a function which is injective except that

f(a) = f(s− a)
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Table 2

An oracle that hides 〈yx3〉 in D8 and its hidden shift.

a 1 x x2 x3 x4 x5 x6 x7

f(a) A B C D E F G H

a y yx yx2 yx3 yx4 yx5 yx6 yx7

f(a) F G H A B C D E

for some hidden s.
Proposition 6.1. If A is an abelian group, the hidden shift and hidden reflection

problems in A are equivalent to the hidden reflection problem in DA.
See Table 2 for an example.
Proof. If a ∈ A, let xa denote the corresponding element in exp(A). Given

f, g : A → S, define

h(xa) = f(a), h(yxa) = g(a).

Then evidently

h(xa) = h(yxs+a)

if and only if

f(a) = g(a + s).

We can also reduce the pair f and g to a function with a hidden reflection. Namely,
let S(2) be the set of unordered pairs of elements of S and define h : A → S(2) by

h(a) = {f(−a), g(a)}.

Then h is injective save for the relation

h(a) = h(s− a).

Conversely, suppose that h : A → S is injective save for the relation

h(a) = h(s− a).

If there is a v ∈ A such that 2v �= 0, define

f : A → S×2, g : A → S×2

by

f(a) = (h(−a), h(v − a)), g(a) = (h(a), h(a− v)).

(If A is cyclic, we can just take v = 1.) Then f and g are injective and

f(a) = g(a + s).

If all v ∈ A satisfy 2v = 0, then h hides a subgroup of A generated by s, so we can
find s by Simon’s algorithm.
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Note also that Proposition 2.1 generalizes readily to generalized dihedral sub-
groups: finding a hidden reflection in DA is as difficult as finding any hidden sub-
group.

A final variation of DHSP is the hidden substring problem. In the N ↪→ M hidden
substring problem,

f : {0, 1, 2, . . . , N − 1} → S,

g : {0, 1, 2, . . . ,M − 1} → S

are two injective functions such that f is a shifted restriction of g, i.e.,

f(x) = g(x + s)

for all 0 ≤ x < N and for some fixed 0 ≤ s < M −N .

7. More algorithms. In this section we will establish a generalization of The-
orem 1.1 and a corollary.

Theorem 7.1. The abelian hidden shift problem has an algorithm with time and
query complexity 2O(

√
n), where n is the length of the output, uniformly for all finitely

generated abelian groups.
Corollary 7.2. The N ↪→ 2N hidden substring problem has an algorithm with

time and query complexity 2O(
√

log N).
The proof of Corollary 7.2 serves as a warm-up to the proof of Theorem 7.1.

It introduces a technique for converting hidden shift algorithms that we call spliced
approximation.

Proof of Corollary 7.2. Identify the domain of f with Z/N (no matter that this
identification is artificial). Make a random estimate t for the value of s, and define
h : DN → S by

g′(n) = g(n + t).

If t is a good estimate for s, then f and g′ approximately hide the hidden shift s− t.
If we convert f and g to a function h : DN → S, then apply its dilation Uh with input
|DN 〉 and discard the output, the result is a state ρh = ρf,g′ which is close to the
state ρDN/H used in Algorithm 5.1.

We need to quantify how close. The relevant metric on states for us is the trace
distance [18, section 9.2]. In general if ρ and ρ′ are two states on a Hilbert space H,
the trace distance ||ρ−ρ′|| is the maximum probability that any measurement, indeed
any use in a quantum algorithm, will distinguish them. In our case,

||ρh − ρDN/H || =
|s− t|
N

.

If

|s− t|
N

= 2−O(
√

log N),

then with bounded probability, Algorithm 5.1 will never see the difference between

ρh and ρDN/H . Thus 2O(
√

log N) guesses for s suffice.
A second warm-up to the general case of Theorem 7.1 is the special case A = Z.

Recall that more computation is allowed for longer output. Suppose that the output
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has n bits, i.e., the shift s is at most 2n. In the language of deterministic hiding, we
restrict the domain of f, g : Z → S to the set {0, 1, 2, . . . , 2m}, where m = n+Θ(

√
n),

and interpret this set as Z/2m. Then f and g approximately differ by the shift s. If
we form the state ρf,g as in the proof of Corollary 7.2, then its trace distance from

the state ρDN/H , with N = 2m, is 2−O(
√
n). Thus Algorithm 5.1 will never see the

states differ.
Sketch of proof of Theorem 7.1. In the general case, the classification of finitely

generated abelian groups says that

A ∼= Z
b ⊕ Z/N1 ⊕ Z/N2 ⊕ · · · ⊕ Z/Na.

Assuming a bound on the length of the output, we can truncate each Z summand of
A, as in the case A = Z. (We suppose that we know how many bits of output are
allocated to each free summand of A.) Thus we can assume that

A = Z/N1 ⊕ Z/N2 ⊕ · · · ⊕ Z/Na,

and the problem is to find s in time 2O(
√

log |A|). In other words, the problem is to
solve HSP for a finite group DA.

The general element of DA can be written ytxa with t ∈ Z/2 and a ∈ A. Following
the usual first step, we can first prepare the state ρDA/H . Then we can perform a
quantum Fourier transform on each factor of A, then measure the answer, to obtain
a label

k = (k1, k2, . . . , ka) ∈ A

and a qubit state

|ψk〉 ∝ |0〉 + e
2πi

∑
j
sjkj/Nj |1〉.

(As in section 4, this state is H-invariant in a two-dimensional representation Vk of
DA.) We will outline a sieve algorithm to compute any one coordinate of the slope,
without loss of generality sa.

As in Algorithm 5.3, we will guide the behavior of the sieve by an objective
function α on A. Given k, let b(k) be the first j such that kj �= 0. If b < a, then let

α(k) =

b∑
j=1

1 + log2(Nj + 1)� − log2(kb + 1)�.

If b = a, then let

α(k) =

a∑
j=1

1 + log2(Nj + 1)�.

As in Algorithm 5.3, we produce a list L of 2O(
√

log |A|) qubits with states |ψk〉.
Within the minimum of α on L, we repeatedly find pairs |ψk〉 and |ψ�〉 that maximize
α(k + �) or α(k − �), then we extract |ψk+�〉 from each such pair. The end result is a
list of qubit states |ψk〉 with

k = (0, 0, . . . , 0, ka).
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The set of k of this form is closed under sums and differences, so we can switch to
Algorithm 5.1 to eventually determine the slope sa.

Note that many abelian groups A are not very different from cyclic groups, so
that the generalized dihedral group DA can be approximated for our purposes by a
standard dihedral group. For example, if A ∼= Z

a is free abelian with many bits of
output allocated to each coordinate, then we can pass to a truncation

Z/N1 ⊕ Z/N2 ⊕ · · · ⊕ Z/Na

with relatively prime Nj ’s. In this case the truncation is cyclic.

8. Hidden subgroup generalities. In this section we will make some general
observations about quantum algorithms for hidden subgroup problems. Our com-
ments are related to work by Hallgren, Russell, and Ta-Shma [10] and by Grigni et
al. [9].

8.1. Quantum oracles. The first step of all quantum algorithms for the hidden
subgroup problem is to form the state ρG/H , or an approximation when G is infinite,
except when the oracle f : G → S has special properties.

Suppose that a function f : G → S that hides the subgroup H. We can say that
f deterministically hides H because it is a deterministic function. Some problems in
quantum computation might reduce to a nondeterministic oracle f : G → H, where
H is a Hilbert space. We say that such an f orthogonally hides H if f is constant on
each right coset Ha of H and orthogonal on distinct cosets. If a quantum algorithm
invokes the dilation Df of f and then discards the output, then it solves the orthogonal
hidden subgroup problem as well as the deterministic one.

Computing Df and discarding its output can also be viewed as a quantum oracle.
A general quantum computation involving both unitary and nonunitary actions can
be expressed as a quantum operation [18, Chapter 8]. In this case the operation is a
map EG/H on M(C[G]), where in general M(H) denotes the algebra of operators on
a Hilbert space H. It is defined by

EG/H(|a〉〈b|) =

{
|a〉〈b| if Ha = Hb,

0 if Ha �= Hb.

We say that the quantum oracle EG/H projectively hides the subgroup H. Unlike
deterministic and orthogonal oracles, the projective oracle is uniquely determined by
H. Again, all quantum algorithms for hidden subgroup problems work with this more
difficult oracle.

Finally, if G is finite, the projective oracle EG/H can be applied to the constant
pure state |G〉 to produce the state

ρG/H =
|H|
|G|

∑
|Ha〉〈Ha|.

So an algorithm could use a no-input oracle that simply broadcasts copies of ρG/H .
Such an oracle coherently hides H. This oracle has been also been called the random
coset oracle [20] because the state ρG/H is equivalent to the constant pure state |Ha〉
on a uniformly randomly chosen coset. Almost all existing quantum algorithms for
finite hidden subgroup problems need only copies of the state ρG/H . Algorithms 3.1
and 5.3 are exceptions: They use ρDN/H to find the parity of the slope s and then
rely on EDN/H with other inputs (constant pure states on subgroups) for later stages.
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The possibly slower algorithm, Algorithm 5.1, works with the coherent oracle; it uses
only ρDN/H .

The distinctions between deterministic, orthogonal, and projective hiding apply to
any hidden partition problem. In one special case, called the hidden stabilizer problem
[14], a group G acts transitively on a set S and a function f : S → T is invariant
under a subgroup H ⊆ G. The hidden stabilizer problem has enough symmetry to
justify consideration of coherent hiding. It would be interesting to determine when
one kind of hiding is harder than another. For example, if f is injective save for a
single repeated value, then there is a sublinear algorithm for deterministic hiding [6].
But projective hiding requires at least linear time and we do not know an algorithm
for coherent hiding which is faster than quadratic time.

In a variant of coherent HSP, the oracle outputs nonuniform mixtures of coset
states |Ha〉. The mixtures may even be chosen adversarially. This can make the
subgroup H less hidden, for example, in the trivial extreme in which the state is
|H〉 with certainty. At the other extreme, we can always uniformize the state by
translating by a random group element. Thus uniform coherent HSP is the hardest
representative of this class of problems.

8.2. The character measurement. The second step of all quantum algorithms
for the generic hidden subgroup problem is to perform the character measurement.
(The measurement in our algorithms is only trivially different.) The result is the
name or character of an irreducible unitary representation (or irrep) V and a state in
V . Mathematically the character measurement is expressed by the Burnside decom-
position of the group algebra C[G] as a direct sum of matrix algebras [21]:

C[G] ∼=
⊕
V

M(V ).

Here M(V ) is the algebra of operators on the irrep V ; the direct sum runs over one
representative of each isomorphism type of unitary irreps. The group algebra C[G]
has two commuting actions of G, given by left and right multiplication, and with
respect to these two actions,

M(V ) ∼= V ⊗ V ∗,

so that the Burnside decomposition can also be written

C[G] ∼=
⊕
V

V ⊗ V ∗.(5)

In light of the identification with matrices, the factor of V ∗ is called the row space,
while the factor of V is the column space.

The Burnside decomposition is also an orthogonal decomposition of Hilbert spaces
and so corresponds to a projective measurement on C[G]. This is the character mea-
surement. A character transform is an orthonormal change of basis that refines equa-
tion (5). Its precise structure as a unitary operator depends on choosing a basis for
each V .

The state ρG/H has an interesting structure with respect to the Burnside de-
composition. In general if H is a finite-dimensional Hilbert space, let ρH denote the
uniform mixed state on H; if V is a representation of a group G, let V G denote its
invariant space. It is easy to check that

ρG/H = ρC[G]H ,



A QUANTUM ALGORITHM FOR DHSP 185

where G (and therefore H) acts on C[G] by left multiplication. In the Burnside
decomposition, the left multiplication action on each V ⊗ V ∗ is trivial on the right
factor V ∗ and is just the defining action of G on V . Since ρG/H is the uniform
state on all H-invariant vectors in C[G], this property descends through the Burnside
decomposition:

ρG/H =
⊕
V

ρV H ⊗ ρV ∗ .

This relation has two consequences. First, as has been noted previously [9], the state
on the row space V ∗ has no useful information. Second, since ρG/H decomposes as
a direct sum with respect to the Burnside decomposition, the character measure-
ment sacrifices no coherence to the environment; it only measures something that the
environment already knows. Our reasoning here establishes the following proposition.

Proposition 8.1. Let G be a finite group and assume an algorithm or oracle to
compute the character transform on C[G]. Then a process provides the state ρG/H is
equivalent to a process that provides the name of an irrep V and the state ρV H with
probability

P [V ] =
(dimV )(dimV H)|H|

|G| .

Proposition 8.1 sharpens the motivation to work with irreps in the hidden sub-
group problem. If you obtain the state ρG/H , and if you can efficiently perform the
character measurement on states, then you might as well apply it to ρG/H .

Proposition 8.1 and the definition of coherent HSP in section 8.1 suggest another
class of oracles related to the hidden subgroup problem. In general an oracle might
provide the name of a representation V and a state ρ which is some mixture of H-
invariant pure states in V . It is tempting to describe such a ρ as H-invariant, but
technically that is a weaker condition that also applies to other states. For example,
the uniform state on V is H-invariant. So we say that ρ is purely H-invariant if it
is supported on the H-invariant space V H . For example, the uniform state ρG/H is
purely H-invariant. More generally the purely H-invariant states on C[G] are exactly
the mixtures of constant pure states of right cosets |Ha〉.

Proposition 8.2. Let G be a finite group. Then any purely H-invariant state
ρ on C[G] can be converted to ρG/H . In the presence of an algorithm or oracle to
perform the character transform on C[G], any purely H-invariant state ρ on any
irrep V can be converted to ρG/H .

Proof. If we right-multiply ρ by a uniformly random element of G, it becomes
ρG/H . If we perform the reverse character transform to a purely H-invariant state ρ
on V , it becomes a purely H-invariant state on ρG/H itself.

The message of Proposition 8.2 is that the uniform mixture ρG/H reveals the least
information about H among all mixtures of coset states |Ha〉. The distribution on
irreps V described in Proposition 8.1, together with the uniform state on V H , also
reveals the least information about H among all such distributions.

9. A general algorithm. In this section we will discuss a general algorithm
for coherent HSP for an arbitrary finite group G and an arbitrary subgroup H. It
is an interesting abstract presentation of all the algorithms for dihedral groups in
this paper. Unfortunately, it might not be directly useful for any groups other than
dihedral groups.
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The algorithm uses the definitions and methods of section 8.2, together with a
generalized notion of summand extraction. In general if V and W are two unitary
representations of G, their tensor product decomposes as an orthogonal direct sum of
irreps with respect to the diagonal action of G:

V ⊗W ∼=
⊕
X

HW,V
X ⊗X.(6)

Here again the direct sum runs over one representative of each isomorphism class
of irreps. The Hilbert space HW,V

X is the multiplicity factor of the decomposition;
its dimension is the number of times that X arises as a summand of V ⊗ W . The
decomposition defines a partial measurement of the joint Hilbert space V ⊗W , which
extracts X (and HW,V

X ). If V and W carry purely H-invariant states, then the state
on X is also purely H-invariant.

Algorithm 9.1. Input: An oracle that produces ρG/H .
1. Make a list L of copies of ρG/H . Extract an irrep V with a purely H-invariant

state from each copy.
2. Choose an objective function α on Irrep(G), the set of irreps of G.
3. Find a pair of irreps V and W in L such that α(V ) and α(W ) are both low, but

such that α is significantly higher for at least one summand of V ⊗W . Extract
an irreducible summand X from V ⊗W and replace V and W in L with X.
Discard the multiplicity factor.

4. Repeat step 3 until α is maximized on some irrep V . Perform tomography on V to
reveal useful information about H.

5. Repeat steps 2–4 to fully identify H.
For any given group G, Algorithm 9.1 requires subalgorithms to compute the

character measurement (5) and the tensor decomposition measurement (6). Efficient
algorithms for character measurements and character transforms are a topic of active
research [4, 16] and are unknown for many groups. We observe that tensor decompo-
sition measurement at least reduces to the character measurement.

Proposition 9.2. Let V and W be irreducible representations of a finite group
G. If group operations in G and summand extraction from C[G] are both efficient,
then summand extraction from V ⊗W is also efficient.

Proof. Embed V and W into separate copies of C[G] in a G-equivariant way.
Then apply the unitary operator

U(|a〉 ⊗ |b〉) = |b−1a〉 ⊗ |b〉

to C[G]⊗C[G]. The operator U transports left multiplication by the diagonal subgroup
GΔ ⊂ G×G to left multiplication by G on the right factor. Then summand extraction
from the right factor of C[G]⊗C[G] is equivalent to summand extraction from V ⊗W ,
since, after U is applied, the group action on the right factor of C[G]⊗C[G] coincides
with the diagonal action on V ⊗W .

In light of Beals’s algorithm to compute a character transform on the symmetric
group [4] and Proposition 9.2, Algorithm 9.1 may look promising when G = Sn is the
symmetric group. But the algorithm seems to work poorly for this group, because
the typical irrep V of Sn is very large. Consequently the decomposition (6) typically
involves many irreps of Sn. This offers very little control for a sieve.

Note that if Algorithm 9.1 were useful for the symmetric group, its time com-

plexity would be 2O(
√

log |G|) at best. This is the same complexity class as a known
classical algorithm for the graph isomorphism or automorphism problem [3], which
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is the original motivation for the symmetric hidden subgroup problem (SHSP). We
believe that general SHSP is actually much harder than graph isomorphism. If graph
isomorphism does admit a special quantum algorithm, it could be analogous to a
quantum polynomial time algorithm found by van Dam, Hallgren, and Ip [24] for
certain special abelian hidden shift problems. (In particular their algorithm applies
to the Legendre symbol with a hidden shift.) All these problems have special oracles
f that allow faster algorithms.

One reason that SHSP looks hard is that symmetric groups have many different
kinds of large subgroups. For example, if p1, p2, . . . , pn is a set of distinct primes, then

Dp1p2...pn
↪→ Sp1+p2+···+pn

(exercise). Thus DHSP reduces to SHSP. Hidden shift in the symmetric group also
reduces to SHSP (exercise).

The sieve of Algorithm 9.1 looks the most promising when the group G is large but
V ⊗W always has few terms. This is similar to demanding that most or all irreps of G
are low-dimensional. So suppose that all irreps have dimension at most k and consider
the limit |G| → ∞ for fixed k. Isaacs and Passman [12] showed that there is a function
f(k) such that if all irreps have dimension at most k, then G has an abelian subgroup
exp(A) of index at most f(k). By the reasoning of Proposition 2.1, the hardest
hidden subgroup H for a such a G is one which is disjoint from exp(A) (except for
the identity). But by the reasoning of section 6, any such hidden subgroup problem
reduces to the hidden shift problem on A. The generalized sieve of Algorithm 9.1 is
not as fast as the dihedral sieve on DA.
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A BETTER-THAN-GREEDY APPROXIMATION ALGORITHM FOR
THE MINIMUM SET COVER PROBLEM∗

REFAEL HASSIN† AND ASAF LEVIN‡

Abstract. In the weighted set-cover problem we are given a set of elements E = {e1, e2, . . . , en}
and a collection F of subsets of E, where each S ∈ F has a positive cost cS . The problem is to
compute a subcollection SOL such that

⋃
S∈SOL

Sj = E and its cost
∑

S∈SOL
cS is minimized.

When |S| ≤ k ∀S ∈ F we obtain the weighted k-set cover problem. It is well known that the greedy

algorithm is an Hk-approximation algorithm for the weighted k set cover, where Hk =
∑k

i=1
1
i

is
the kth harmonic number, and that this bound is exact for the greedy algorithm for all constant
values of k. In this paper we give the first improvement on this approximation ratio for all constant
values of k. This result shows that the greedy algorithm is not the best possible for approximating
the weighted set cover problem. Our method is a modification of the greedy algorithm that allows
the algorithm to regret.

Key words. greedy algorithm, approximation algorithms, set cover problem
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1. Introduction. In the weighted set-cover problem we are given a set of ele-
ments E = {e1, e2, . . . , en} and a collection F of subsets of E, where ∪S∈FS = E and
each S ∈ F has a positive cost cS . The goal is to compute a subcollection SOL ⊆ F
such that

⋃
S∈SOL S = E and its cost

∑
S∈SOL cS is minimized. Such a subcollection

of subsets is called a cover. When we consider instances of the weighted set-cover such
that each Sj has at most k elements (|S| ≤ k ∀S ∈ F), we obtain the weighted k-set
cover problem. The unweighted set cover problem and the unweighted k-set cover
problem are the special cases of the weighted set cover and of weighted k-set cover,
respectively, where cS = 1 ∀S ∈ F .

It is well known (see [2]) that a greedy algorithm is an Hk-approximation algo-

rithm for the weighted k-set cover, where Hk =
∑k

i=1
1
i is the kth harmonic number,

and that this bound is tight even for the unweighted version of the problem (see
[10, 13]). For unbounded values of k, Slav́ik [17] showed that the approximation ratio
of the greedy algorithm for the unweighted set cover problem is lnn− ln lnn + Θ(1).
Feige [5] proved that unless NP ⊆ DTIME(npolylog n) the unweighted set cover
problem cannot be approximated within a factor (1 − ε) lnn for any ε > 0. Raz and
Safra [16] proved that if P �= NP , then for some constant c, the unweighted set cover
problem cannot be approximated within a factor c log n. This result shows that the
greedy algorithm is an asymptotically best possible approximation algorithm for the
weighted set cover problem (unless NP ⊆ DTIME(npolylog n)). The unweighted k-
set cover problem is known to be NP-complete [11] and MAX SNP-hard for all k ≥ 3
[3, 12, 14]. The hardness results obtained for the unweighted k-set cover problem
do not exclude the possibility of obtaining a cHk-approximation algorithm for some
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constant c < 1 for constant values of k; however, such positive results are unknown.
Another algorithm for the weighted set cover problem by Hochbaum [9] has an ap-
proximation ratio that depends on the maximum number of subsets that contain any
given item. (The local-ratio algorithm of Bar-Yehuda and Even [1] has the same
performance guarantee.) See Paschos [15] for a survey on these results.

Despite this bad news, which also holds for the unweighted set cover, Goldschmidt,
Hochbaum, and Yu [7] modified the greedy algorithm for the unweighted set cover
and showed that the resulting algorithm has a performance guarantee of Hk − 1

6 .
Halldórsson [8] presented an algorithm based on local search that has an approxima-
tion ratio of Hk − 1

3 for the unweighted k-set cover and a (1.4 + ε)-approximation
algorithm for the unweighted 3-set cover. Duh and Fürer [4] further improved this
result and presented an (Hk − 1

2 )-approximation algorithm for the unweighted k-set
cover.

This important progress in the approximability of the unweighted k-set cover does
not help to approximate the weighted k-set cover problem within a factor better than
Hk. The question whether there are similar results for the weighted problems was
left unanswered. A first answer was given by Fujito and Okumura [6], who presented
an Hk − 1

12 -approximation algorithm for the k-set cover problem where the cost of
each subset is either 1 or 2. Their method is based on extending the algorithm of
[7] for this case, but this approach does not extend further to the general case. In
this paper we give the first positive answer for a general cost function by developing
an approximation algorithm for the weighted k-set cover problem whose performance
guarantee is bounded by Hk− k−1

8k9 . This bound is not tight, but it is sufficient to show
that the greedy algorithm does not give the best possible performance guarantee for
approximating the weighted set cover problem. Our method is based on a modification
of the greedy algorithm that allows the algorithm to regret throughout its execution.

In section 2 we review the greedy algorithm for the weighted minimum k-set
cover problem and review its analysis. In section 3 we present the greedy algorithm
with withdrawals. We analyze its performance in section 4. We conclude the paper
in section 5 by a short discussion on possible extensions and improvements of our
results.

2. The greedy algorithm. In this section we review the greedy algorithm and
the proof of its performance guarantee for the weighted k-set cover problem.

The greedy algorithm starts with an empty collection of subsets in the solution
and no item is covered. Then, it iterates the following procedure until all items are
covered.

Let wS be the number of uncovered items in S, and the current ratio of S is
rS = cS

wS
. Let S∗ be a set such that rS∗ is minimized. The algorithm adds S∗ to

the collection of subsets of the solution, it defines the items of S∗ as covered, and it
assigns a price of rS∗ to all the items that are now covered but were uncovered before
this iteration (i.e., the items that were first covered by S∗).

Chvátal [2], extending previous results of Johnson [10] and Lovàsz [13] for the
unweighted set cover, showed that this is an Hk-approximation algorithm for the
weighted k-set cover.

Chvátal’s proof is the following. First, note that the cost of the greedy solution
equals the sum of prices assigned to the items. Second, consider a set S that belongs
to an optimal solution OPT . Then, OPT pays cS for S. When the ith item of S was
covered by the greedy algorithm, the algorithm could choose S as a feasible solution
with current ratio of cS

|S|−i+1 . (This is an upper bound on the current ratio because
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S has at least |S| − i + 1 uncovered elements at this point.) Therefore, the price
assigned to the this item is at most cS

|S|−i+1 . It follows that the total price assigned to

the items of S is at most cS
∑|S|

i=1
1

|S|−i+1 = cS
∑|S|

i′=1
1
i′ ≤ cSHk, and therefore, the

approximation ratio of the greedy algorithm is at most Hk.

3. The greedy algorithm with withdrawals. In this section we present our
modification of the greedy algorithm where in each iteration we are allowed to with-
draw a subset S from the solution. However, if we decide to do so, we must pick new
subsets that cover all the items that were covered by S (i.e., an item that is covered
in some iteration remains covered in any future iteration). Such a withdrawal step
allows the algorithm to overcome some choices that are essential in the known bad
examples for the greedy algorithm. Incorporating the withdrawal steps, we will prove
an improved performance guarantee. The first step of the algorithm adds to F all
the subsets of every given set S ∈ F . These subsets are given the same cost as S. If
S′ ⊆ S1, S2, where S1, S2 ∈F , then cS′ = min{cS1 , cS2}. It is clear that this addition
does not change the value of a minimum cover and optimal solutions remain optimal.
Moreover, given a solution to the new instance, it is easy to compute a feasible so-
lution to the original instance with the same cost (by mapping each new subset to
the original set that contains it). However, it will make the analysis of the algorithm
easier, as reflected by Lemma 2. Formally, the algorithm is defined as follows.

Algorithm GAWW.

Let αk = 1 − 1
k3 .

1. Initialization: SOL := ∅ [the solution collection of subsets], U := E [the
set of uncovered items].
For every subset S ∈ F and every S′ ⊆ S, add S′ to F with cost cS′ =
cS . If S′ ⊆ S1, S2, where S1, S2 ∈F , then cS′ = min{cS1 , cS2}. Let F :=
{S1, . . . , Sn} be the resulting extended collection, and denote by cj the cost
of Sj .

2. Iteration: While U �= ∅ do:
(a) For every j, let wj := |Sj ∩ U |. If wj �= 0, let rj :=

cj
wj

.

(b) For every Sj ∈ SOL and every subcollection C ⊆ F of at most k subsets
such that Sj ⊆

⋃
S∈C S, let w(C) := |

⋃
S∈C S ∩ U | be the number of

still uncovered items that belong to the subsets in C. If w(C) �= 0, let

r(Sj , C) :=

∑
i:Si∈C

ci−cj

w(C) .

(c) Let j∗ be an index such that rj∗ is minimized (in case of a tie we prefer a

minimal subset), and let j̃, C̃ be such that r(Sj̃ , C̃) is minimized (again,
in case of a tie we prefer minimal subsets).

(d) Greedy step: If rj∗ ≤ 1
αk

r(Sj̃ , C̃), then add Sj∗ to the solution and
define the price of the newly covered items as rj∗ . Formally, do the
following:

i. For every e ∈ Sj∗ ∩ U , let price(e) := rj∗ .
ii. U := U \ Sj∗ .
iii. SOL := SOL ∪ {Sj∗}.

(e) Withdrawal step: Otherwise (i.e., r(Sj̃ , C̃) < αkrj∗
1), replace Sj̃ by

the subsets in C̃ and define the price of the newly covered items as
r(Sj̃ , C̃). Formally, do the following:

1We note that in this case each C ∈ C̃ satisfies C ∩Sj̃ �= ∅; however, we do not use this property
and therefore do not prove it.
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i. For every e ∈
⋃

S∈C̃ S ∩ U , let price(e) := r(Sj̃ , C̃).
ii. U := U \

⋃
S∈C̃ S.

iii. SOL := (SOL \ {Sj̃}) ∪ C̃.
3. Return SOL.

In each iteration the size of U decreases until U = ∅, and therefore the number
of iterations throughout the algorithm is at most n. Since each iteration takes at
most |F| + |F|k and because k is a constant, each iteration takes polynomial time.
Therefore, the greedy algorithm with withdrawals is a polynomial time algorithm that
returns a feasible solution. Therefore, we establish the following lemma.

Lemma 1. The greedy algorithm with withdrawals is a polynomial time algorithm
for every constant value of k.

In the next section we analyze its performance.

4. The analysis of algorithm GAWW. In this section we prove the main
theorem of this paper, that for all constant values of k, GAWW guarantees a better
approximation ratio than the greedy algorithm.

Lemma 2. We can assume without loss of generality (w.l.o.g.) that the sets in
OPT are disjoint.

Proof. The claim follows from the initialization step of GAWW in which it adds
to F for each subset S ∈ F with cost cS all the subsets of S, with the same cost
cS .

Lemma 3. When analyzing the worst-case performance of GAWW, we can as-
sume w.l.o.g. that each set of OPT has exactly k elements.

Proof. Assume that OPT contains sets with less than k elements. We construct
a new instance by extending E with a set of dummy elements. We extend each subset
of OPT with less than k elements using some dummy elements to create a new subset
with the same cost. We also add to F the set {e} for any dummy element e. All
these new singleton subsets have zero cost. GAWW will first choose a full cover of
the dummy elements and then continue like it acts on the original instance. However,
the new instance has an optimal solution with disjoint k-sets.

Lemma 4. In each step of GAWW the sets in SOL are disjoint.
Proof. We prove the claim by induction. The claim clearly holds when SOL is

empty. It is sufficient to prove that in each step GAWW adds subsets that are disjoint
to the other subsets in SOL.

• Assume that the current step is a greedy step that adds a subset X. F contains
all the subsets of X with costs of at most cX . Let X ′ = X \

⋃
S∈SOL,S �=X S. If

X ′ �= X, then because X ′ has at most the ratio of X, and GAWW prefers to use a
minimal subset, we obtain a contradiction. Therefore, X is disjoint to all the prior
subsets in SOL.

• Assume that the current step is a withdrawal step that withdraws a subset X
and inserts C = {X1, X2, . . . , Xl}. Let SOL be the family of subsets in the solution
before the withdrawal step took place. Recall that for all i, F contains all the subsets
of Xi with a cost at most cXi . Let X ′

i =
(
Xi \

(⋃
S∈SOL,S �=X S

))
\
⋃

j �=i Xj . If there
exists i such that X ′

i �= Xi, then let C ′ be as C but with X ′
i replacing Xi. Because the

withdrawal step that withdraws X and inserts C ′ has at most the same ratio as the
withdrawal step that withdraws X and inserts C, and GAWW prefers to use minimal
subsets, we obtain a contradiction. Therefore, every Xi, i = 1, . . . , l, is disjoint to all
the other subsets in SOL and to Xj j �= i.

Lemma 5. When analyzing the performance of the greedy algorithm with with-
drawals, we can assume w.l.o.g. that every X that entered the solution in some step
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of the algorithm (X may be in the final solution or it might have been withdrawn by
a withdrawal step) and every O ∈ OPT , satisfy |X ∩O| ≤ 1.

Proof. Consider an instance of the problem, and assume that the claimed property
does not hold. Then we construct a new instance that satisfies the claimed property
and with the same approximation ratio as the original instance. The new instance
is composed of k copies of the original instance. We also add, for each O ∈ OPT , k
subsets, each having exactly one element of O from each copy, and the k subsets cover
the elements of the k copies of O. Then the new instance has an optimal solution
that contains all these added subsets (k subsets for each original subset in OPT ).
GAWW applies a series of k copies of steps for each step in the original instance.
Therefore, it never adds one of the new subsets but it adds only subsets that belong
to a single copy of the original instance. The cost of the obtained solution is k times
the cost of the resulting solution in the original instance. Therefore, the ratio in this
new instance is the same as the old instance. However, the claimed property holds in
the new instance.

Lemma 6. The cost of SOL is equal to
∑

e∈E price(e), the sum of prices assigned
to the elements.

Proof. The claim clearly holds during initialization phase. Throughout an itera-
tion we partition the increase in the cost of SOL among the new covered elements.
The claim follows because the price of each element is set exactly once.

Lemma 7. Assume that X ∈ SOL in some step of GAWW and that x1 ∈ X is
the last element of X that was covered by GAWW. Then price(x1) ≥ price(xi) for all
xi ∈ X.

Proof. We show a stronger claim: let xl, xl−1, . . . , x1 be the elements of X ac-
cording to the order that GAWW covers the elements, then price(x1) ≥ price(x2) ≥
· · · ≥ price(xl). Suppose that X entered SOL in a greedy step. Since GAWW prefers
to use a minimal subset, we conclude that all the elements of X were covered for the
first time by X and all of them have the same price.

Suppose that X entered SOL in a withdrawal step that withdraws Y and inserts
C = {X = X1, . . . , Xl}. If X ⊆ Y , then the claim can be assumed to hold by an
inductive argument. Therefore, w.l.o.g. we assume that X \ Y �= ∅. Note that the
elements of X \ Y were given a common price. Then using an inductive argument it
is sufficient to show that price(x1) ≥ price(x) for every x ∈ X ∩ Y .

We now argue that r(Y,C), the ratio associated with the withdrawal step that
withdraws Y and inserts C, is larger than the ratio at the step in which the algorithm
inserted Y .

• Suppose that Y entered in a greedy step. Using Lemma 4,

r(Y,C) =

∑l
i=1 cXi

− cY∑l
i=1 |Xi \ Y |

=

∑l
i=1

(
cXi

|Xi\Y |+|Xi∩Y |
|Xi| − cY

|Xi∩Y |
|Y |

)
∑l

i=1 |Xi \ Y |

≥
∑l

i=1
cXi

|Xi| |Xi \ Y |∑l
i=1 |Xi \ Y |

≥ min

{
cXi

|Xi|
: i = 1, . . . , l

}
≥ cY

|Y | .

The first and third inequalities follow from
cXi

|Xi| ≥
cY
|Y | , which holds since Y was chosen

instead of Xi and both Y and Xi were legal at the step in which GAWW inserts Y .
The second inequality follows because the average is at least the minimum value.

• Suppose that Y entered SOL in a withdrawal step that withdraws a subset Z
and inserts C ′ = {Y = Y1, . . . , Yl′}. We first prove that r(Y,C) ≥ r(Z,C ′). The proof
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will assume the opposite, that r(Y,C) < r(Z,C ′), and lead to a contradiction. Note
that both ratios r(Y,C) and r(Z,C ′) refer to the time of the withdrawal that replaced
Z by C ′.

Consider the step in which C ′ replaced Z, and consider the “withdrawal step”
that withdraws Z and inserts C ∪C ′ \ {Y }. (This step may be illegal because it may
insert more than k subsets.) By Lemma 4, the subsets in C ′ \{Y } and C are pairwise
disjoint. We use this last fact to show that the number of uncovered elements in
C ∪C ′ \ {Y } is

∑
S∈C∪C′ |S| − |Y | − |Z|. To see this, note that each element of Y ∩Z

is counted twice in
∑

S∈C∪C′ |S| (once in C and once in C ′) and therefore zero times
in total, each element of Z \ Y is counted once in C ′ in

∑
S∈C∪C′ |S| and therefore

zero times in total, and the other elements are counted exactly once. Therefore,

r(Z,C ∪ C ′ \ {Y }) =

∑
S∈C∪C′ cS − cY − cZ∑
S∈C∪C′ |S| − |Y | − |Z|

=

∑
S∈C

cS−cY∑
S∈C

|S|−|Y |

(∑
S∈C |S| − |Y |

)
+

∑
S∈C′ cS−cZ∑
S∈C′ |S|−|Z|

(∑
S∈C′ |S| − |Z|

)
∑

S∈C∪C′ |S| − |Y | − |Z|

=
r(Y,C)

(∑
S∈C |S| − |Y |

)
+ r(Z,C ′)

(∑
S∈C′ |S| − |Z|

)(∑
S∈C |S| − |Y |

)
+
(∑

S∈C′ |S| − |Z|
)

< r(Z,C ′).

The inequality follows by the assumption r(Y,C) < r(Z,C ′). We now argue that there
is a legal withdrawal step (that is, one that inserts at most k subsets) that withdraws
Z with a ratio of at most r(Z,C ∪ C ′ \ {Y }). By Lemma 4, because |Z| ≤ k, there
are at most k subsets in C ∪C ′ \ {Y } that intersect Z. Let A ∈ C ∪C ′ \ {Y } satisfy
A ∩ Z = ∅.2 Then

r(Z,C ∪ C ′ \ {Y }) =

∑
S∈C∪C′ cS − cY − cZ∑
S∈C∪C′ |S| − |Y | − |Z|

=

cA
|A| |A| +

∑
S∈C∪C′\{A}

cS−cY −cZ∑
S∈C∪C′\{A}

|S|−|Y |−|Z|

(∑
S∈C∪C′\{A} |S| − |Y | − |Z|

)
∑

S∈C∪C′ |S| − |Y | − |Z|

=
rA|A| + r(Z,C ∪ C ′ \ {Y,A})

(∑
S∈C∪C′\{A} |S| − |Y | − |Z|

)
|A| +

(∑
S∈C∪C′\{A} |S| − |Y | − |Z|

)
≥ min{rA, r(Z,C ∪ C ′ \ {Y,A})}.

Since GAWW could choose to add A greedily, rA > r(Z,C ′) > r(Z,C∪C ′ \{Y }),
and we conclude that r(Z,C ′ ∪ C \ {Y,A}) < r(Z,C ′). Repeating this argument we
reach a legal withdrawal step (that inserts at most k subsets) with ratio that is better
than r(Z,C ′), and this is a contradiction.

We have shown that r(Y,C) ≥ r(Z,C ′), where each of these ratios is defined for
the step that implemented the respective withdrawal. To complete the proof, we note
that after Y is added to SOL and the withdrawal step that withdraws Y and inserts C
becomes feasible, r(Y,C) may increase only because the number of uncovered elements

2It is possible to show that in this case A ∈ C. However, we do not use this property and
therefore we do not prove it.



BETTER APPROXIMATION FOR SET COVER 195

of Y is nonincreasing. Thus, for every x ∈ X ∩ Y , price(x1) = r′(Y,C) > r(Y,C) =
price(x), where r′ refers to the step that inserted X and r refers to the step that
inserted Y .

We picture OPT as a matrix, where each column contains a subset Sj ∈ OPT .
By Lemma 2 each element appears exactly once in this matrix, and by Lemma 3 each
column has exactly k elements. We sort the elements of Sj according to the order
they were covered by GAWW, so that the ith element of Sj that is covered by the
greedy algorithm with withdrawals is in the ith row of the matrix. We break ties
arbitrarily. By Lemmas 2 and 3, this representation is well defined.

For a set X ∈ SOL, denote by COL(X) the submatrix defined by the set of
columns where the elements of X appear.

Given X ∈ SOL, the elements of X might have been covered during different steps
of GAWW (if X entered SOL in a withdrawal step and X has previously uncovered
elements). Given X ∈ SOL such that X is not contained in the last row of the
matrix, we will show that the total price paid by the algorithm for all the elements in
COL(X) is at most

∑
i:Si∈COL(X) ci(Hk − 1

8k8 ). Our proof distinguishes between a
set X whose elements were covered in a single step and a set X whose elements were
covered in at least two steps.

Lemma 8. If the elements of X were covered in at least two steps, then the total
price paid by GAWW for the elements in COL(X) is at most (Hk− 1

k5+k )
∑

Si∈COL(X) ci.

Proof. Assume that the element x1 ∈ X was covered last among the elements of
X (other elements of X might have been covered during the same step). Assume that
the elements of X are in columns S1, S2, . . . , Sl, where X ∩ Si = {xi}, and xi is in
row k − ni of its column. (Recall that by Lemma 5, |X ∩ Si| ≤ 1.)

Since x1 was covered last among the elements of X, by Lemma 7 price(x1) ≥
price(xi) ∀i. Since GAWW prefers minimal subsets, the step in which X was inserted
to SOL is a withdrawal step. When applying the withdrawal step that inserts X
into SOL, GAWW could apply a greedy step that inserts S1 with a ratio of c1

n1+1 .

Therefore, price(x1) ≤ αk · c1
n1+1 = k3−1

k3 · c1
n1+1 . Thus, price(x1) + price(x1)

k3−1 ≤ c1
n1+1 ,

and

price(x1) ≤
c1

n1 + 1
− price(x1)

k3 − 1

≤ c1
n1 + 1

− 1

k3 − 1

1

l

l∑
i=1

price(xi),

where the second inequality holds because price(x1) ≥ price(xi) ∀i. Therefore,

l∑
i=1

price(xi) ≤
l∑

i=1

ci
ni + 1

− 1

k3 − 1

1

l

l∑
i=1

price(xi)

≤
l∑

i=1

ci
ni + 1

− 1

k4

l∑
i=1

price(xi).

It follows that

l∑
i=1

price(xi) ≤
(

1 − 1

k4 + 1

) l∑
i=1

ci
ni + 1

.
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For elements a ∈ Si\X in the k−na row, the price of a is bounded by price(a) ≤ ci
na+1 .

Therefore,

∑
e∈COL(X)

price(e) =
∑

e∈COL(X)\X
price(e) +

l∑
i=1

price(xi)

≤
l∑

i=1

(
Hk − 1

ni + 1

)
ci +

l∑
i=1

(
1 − 1

k4 + 1

)
ci

ni + 1

≤
l∑

i=1

(
Hk − 1

k5 + k

)
ci,

where the last inequality holds because ni + 1 ≤ k.
Lemma 9. Assume that X is not contained in the last row. If the elements of

X were covered in a single step, then the total price paid by the algorithm for all the
elements in COL(X) is at most (Hk − 1

8k8 )
∑

Si∈COL(X) ci.
Proof. Assume that the elements of X are in columns S1, S2, . . . , Sl, where X ∩

Si = {xi}, and xi is in row k − ni of its column. By assumption, price(xi) = cX
l ∀ i.

• Assume that price(x1) = cX
l ≤ c1

(
1

n1+1 − 1
4k5

)
. Partition {2, 3, . . . , l} into A

and B such that j ∈ A iff cj
(

1
nj+1 − 1

8k7

)
≥ cX

l . Since 1
nj+1 − 1

8k7 ≥ 1
k − 1

8k7 ≥ 1
2k , it

follows that
cj
2k ≤ cX

l for j ∈ B. Therefore,

∑
j∈B

cj
8k8

≤ 1

4k7

∑
j∈B

cX
l

≤ cX
4lk6

≤ c1
4k6

(
1

n1 + 1
− 1

4k5

)
≤ c1

4k6
,

where the second inequality follows since |B| ≤ |X| ≤ k, the third inequality follows
by the assumption on x1, and the last inequality follows because n1 + 1 ≥ 1. We
conclude that

∑
e∈COL(X)

price(e)

=
∑

e∈COL(X)\X

price(e) +

l∑
i=1

price(xi)

≤
l∑

i=1

(
Hk −

1

ni + 1

)
ci +

∑
i∈A

(
1

ni + 1
−

1

8k7

)
ci +

∑
i∈B

ci

ni + 1
+

(
1

n1 + 1
−

1

4k5

)
c1

≤
l∑

i=1

(
Hk −

1

ni + 1

)
ci +

∑
i∈A

(
1

ni + 1
−

1

8k7

)
ci +

∑
i∈B

(
1

ni + 1
−

1

8k8

)
ci +

(
1

n1 + 1
−

1

4k5
+

1

4k6

)
c1

≤
(
Hk −

1

8k8

) l∑
i=1

ci.

• Assume that for every i price(xi) = cX
l ≥ ci

(
1

ni+1 − 1
4k5

)
. Recall that the

elements of X were covered in a single step, and not all of them are in the last row.
Therefore, there exists an element y ∈ COL(X) that was covered after X. Let y be
the first element to be covered after X, and w.l.o.g. assume that y ∈ S1.

When GAWW inserted X, it could also choose S1 with a ratio of c1
n1+1 . Therefore,

cX
l ≤ c1

n1+1 . Hence, by assumption, ci
(

1
ni+1 − 1

4k5

)
≤ c1

n1+1 , i = 1 . . . , l, so that
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ci
(
1 − 1

4k4

)
≤ ci

(
1 − ni+1

4k5

)
≤ c1

ni+1
n1+1 . Therefore, for i = 1, . . . , l,

ci ≤ c1
ni + 1

n1 + 1

(
1 +

1

4k4 − 1

)

≤ c1

(
ni + 1

n1 + 1
+

k

4k4 − 1

)

≤ c1

(
ni + 1

n1 + 1
+

1

3k3

)
.

When GAWW covered y it could use a withdrawal step that withdraws X and
inserts S1, S2, . . . , Sl. Therefore,

price(y) ≤ 1

αk

∑l
i=1 ci − cX∑l

i=1 ni

≤ 1

αk

(
c1

∑l
i=1

ni+1
n1+1 − cX∑l
i=1 ni

+
c1
3k2

)

=
1

αk

(
c1

n1 + 1

(
1 +

l∑l
i=1 ni

)
− cX∑l

i=1 ni

+
c1
3k2

)

≤ c1
αk

(
1

n1 + 1
+

l

4k5
∑l

i=1 ni

+
1

3k2

)

≤ c1
αk

(
1

n1 + 1
+

1

2k2

)

=
c1

n1 + 1
+

c1
(k3 − 1)(n1 + 1)

+
c1k

3

2k2(k3 − 1)

≤ c1

(
1

n1 + 1
+

9

13k2

)

≤ c1

(
1

n1
− 1

4k2

)
,

where the first inequality follows because we could use the above withdrawal step
to cover y, the second inequality follows because ci ≤ c1

(
ni+1
n1+1 + 1

3k3

)
for all i and

l ≤ k (note that
∑l

i=1 ni can be as small as 1), the equation follows by simple
algebra, the third inequality follows because by assumption c1

n1+1 − c1
4k5 ≤ cX

l and

therefore c1
n1+1

l∑l

i=1
ni

− cX∑l

i=1
ni

≤ lc1

4k5
∑l

i=1
ni

, the fourth inequality follows because

1
4k4 + 1

3k2 ≤ 1
2k2 for k ≥ 3, the second equation follows by substituting αk = 1− 1

k3 , the

fifth inequality follows because n1+1 ≥ 2 and for all values of k ≥ 3 1
2(k3−1)+

k
2(k3−1) ≤

9
13k2 , and the last inequality follows because n1 ≤ k − 1. We conclude that

∑
e∈COL(X)

price(e)

=
∑

e∈COL(X)\(X∪{y})
price(e) +

l∑
i=1

price(xi) + price(y)
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≤
(
Hk − 1

n1 + 1
− 1

n1

)
c1 +

l∑
i=2

(
Hk − 1

ni + 1

)
ci +

l∑
i=1

price(xi) +

(
1

n1
− 1

4k2

)
c1

≤
l∑

i=1

(
Hk − 1

ni + 1

)
ci +

l∑
i=1

price(xi) −
1

4k2

c1
n1 + 1

≤
l∑

i=1

(
Hk − 1

ni + 1

)
ci +

l∑
i=1

price(xi) −
1

4k2

1

l

l∑
i=1

price(xi)

≤
l∑

i=1

(
Hk − 1

ni + 1

)
ci +

(
1 − 1

4k3

) l∑
i=1

price(xi)

≤
l∑

i=1

(
Hk − 1

4k4

)
ci,

where the first inequality follows because price(y) ≤ c1
(

1
n1

− 1
4k2

)
, the second in-

equality follows because n1 + 1 ≥ 1, the third inequality follows because price(xi) =
price(x1) ≤ c1

n1+1 ∀ i, the fourth inequality follows because l ≤ k, and the last inequal-

ity follows because price(xi) ≤ ci
ni+1 and therefore

(
1 − 1

4k3

)
price(xi) ≤

(
1 − 1

4k3

)
ci

ni+1

≤ ci
(

1
ni+1 − 1

4k4

)
.

The following lemma follows from the fact that when we cover an element we pay
a price that is at most the price paid for this element by the greedy algorithm.

Lemma 10. For every subset S ∈ OPT , the total price of the elements that belong
to S is at most HkcS.

Theorem 11. The approximation ratio of the greedy algorithm with withdrawals
is at most Hk − k−1

8k9 . The time complexity of the algorithm is polynomial for every
constant value of k.

Proof. The claim on the time complexity of GAWW follows by Lemma 1. It
remains to show the approximation ratio of GAWW. We consider the solution SOL
returned by GAWW. Denote by Y the elements of the last row, and consider the
following column multiset MS = {S ∈ COL(X) : X ∈ SOL, X �⊆ Y }. For a
copy of a column S that appears in MS as part of COL(X), we associate a cost of
cS(Hk − 1

8k8 ). By Lemmas 8 and 9, the total price of the elements in MS, where
each element is counted the number of times its column appears in MS, is at most
the total associated cost of the columns in MS. By Lemma 5, the number of copies
of each column in this collection is at least k − 1 and at most k. For each column
S that appears in MS k − 1 times, we add an additional copy of it associated with
a cost of HkcS . By Lemma 10, the total price of the elements in MS, where each
element is counted the number of times its column appears in MS, is at most the total
associated cost of the columns in MS. Since MS has exactly k copies of each column,
by Lemma 6, it suffices to show that the average associated cost of each column S is
at most (Hk − k−1

8k9 )cS . The average cost of the copies in the resulting multiset is at

most cS( 1
kHk + k−1

k (Hk − 1
8k8 )) = cS(Hk − k−1

8k9 ), and therefore Hk − k−1
8k9 is an upper

bound on the approximation ratio of GAWW.
Remark 12. The following is a bad instance for the greedy algorithm with with-

drawals: Assume that

OPT =

⎛
⎝ X X X

Y Y Y
a b c

⎞
⎠ ,
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where the costs of the sets in OPT (the columns of the matrix) are c1 = 936, c2 = 1161,
and c3 = 1543. Therefore OPT = 3640. Assume that cX = 936, cY = 1404, ca = 774,
cb = 1161, cc = 1543. GAWW could pick the sets X,Y, a, b, c in this order, with a total
cost of 5818. Therefore, the approximation ratio of GAWW is at least 5818

3640 ∼ 1.5984.
We note that the cost values in this example were chosen to gives the worst possible
ratio for any instance with the same OPT and sequence of operations chosen by the
algorithm.

5. Discussion. In this paper we addressed the weighted k-set cover problem
and introduced the first improvement over the greedy algorithm for any constant k.
Although we are able to prove only a small improvement over the greedy algorithm,
the worst example we found for k = 3 is with ratio of 5818

3640 , and the gap between these
numbers is relatively large. Tightening this gap is left for future research.

In this paper we were mainly interested in proving an improvement over the
greedy algorithm, and we did not try to optimize the constant and the exponent of
the term k−1

8k9 .

We defined the greedy algorithm with withdrawals requiring that in each with-
drawal step a single set in the current solution is withdrawn (and its elements must be
covered by the new added subsets). We can generalize this algorithm and consider in
each step the possibility of withdrawing at most l subsets from the current solution.
This version of the algorithm is clearly polynomial for any constant l. It is natural
to conjecture that the approximation ratio of the resulting algorithm is a decreasing
function of l. In this paper we proved that l = 1 strictly improves the bound of l = 0
which corresponds to the greedy algorithm of Chvátal [2].

We conclude this discussion by noting that the withdrawal operation was crucial
to obtain better approximation ratio. We mean that allowing the greedy algorithm
to insert p subsets at each step (where p is some constant) does not improve the
approximation ratio of the algorithm. To see this, note that we can take p copies of
an original instance, and the new algorithm will have the same performance guarantee
on the new instance as the greedy algorithm has on the original instance.
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A SUPERPOLYNOMIAL LOWER BOUND FOR A CIRCUIT
COMPUTING THE CLIQUE FUNCTION WITH AT MOST

(1/6) log log N NEGATION GATES∗

KAZUYUKI AMANO† AND AKIRA MARUOKA†

Abstract. In this paper, we investigate the lower bound on the number of gates in a Boolean
circuit that computes the clique function with a limited number of negation gates. To derive strong
lower bounds on the size of such a circuit we develop a new approach by combining three approaches:
the restriction applied to constant depth circuits due to H̊astad, the approximation method applied
to monotone circuits due to Razborov, and the boundary covering developed in the present paper.
We prove that if a circuit C with at most �(1/6) log logm� negation gates detects cliques of size

(logm)3(log m)1/2
in a graph with m vertices, then C contains at least 2(1/5)(log m)(log m)1/2

gates.
No nontrivial lower bounds on the size of such circuits were previously known, even if we restrict the
number of negation gates to be a constant. Moreover, it follows from a result of Fischer [Lect. Notes
Comput. Sci., 33 (1974), pp. 71–82] that if one can improve the number of negation gates from
�(1/6) log logm� to �2 logm� in the statement, then we have P �= NP. We also show that the problem
of lower bounding the negation-limited circuit complexity can be reduced to the one of lower bounding
the maximum of the monotone circuit complexity of the functions in a certain class of monotone
functions.

Key words. circuit complexity, monotone circuit, negation-limited circuit, approximation
method, lower bound, clique function
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1. Introduction. There has been substantial progress in obtaining strong lower
bounds on the size of restricted Boolean circuits, such as constant depth circuits or
monotone circuits that compute certain functions. For example, exponential lower
bounds were derived for the size of constant depth circuits computing the parity
function [7] and for the size of monotone circuits computing the clique function and
other functions (see [1, 2, 5, 8, 9, 10, 13]). It is natural to ask if we could use the
approaches developed so far to derive strong lower bounds for a more general model.
In such a generalized model, we consider circuits with a limited number of negation
gates. In fact, it so far remains open to derive nontrivial lower bounds on the size
of a circuit computing a certain monotone function with, say, a constant number of
negation gates [14]. Fischer [6] showed that for any function f on n variables, the size
of the smallest circuit computing f with an arbitrary number of NOT gates and the
one with, at most, �log(n + 1)� NOT gates are polynomially related (see also [4]). So
if one can prove superpolynomial lower bounds on the size of circuits with at most
�log(n + 1)� NOT gates computing an explicit function in NP, then we have P�=NP.

In this paper, we try to obtain superpolynomial lower bounds on the size of
circuits computing an explicit function in NP with O(log log n) NOT gates rather
than O(log n) NOT gates. More precisely we prove the following: If a circuit C
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with at most �(1/6) log logm� NOT gates detects cliques of size (logm)3(logm)1/2

in

a graph with m vertices, then C contains at least 2(1/5)(logm)(log m)1/2

gates (Theorem
5.1). Note that the problem of detecting a clique in a graph with m vertices will be
written as a Boolean function of n =

(
m
2

)
variables. We also show that the problem

of lower bounding the negation-limited circuit complexity can be reduced to the one
of lower bounding the maximum of the monotone circuit complexity of the functions
in a certain class of monotone functions. (Theorem 3.2).

To achieve the main results, we develop a new approach by combining three
approaches: the restriction applied to constant depth circuits [7], the approximation
method applied to monotone circuits [10, 11], and the boundary covering developed in
the present paper. A Boolean function f partitions the Boolean cube into two regions,
f−1(0) and f−1(1). We can think of the boundary between the two regions, defined
as the collection of pairs of vectors (w,w′) such that f(w) �= f(w′), and the Hamming
distance between w and w′ is 1. The idea of the proof of the main theorem is as follows.
First, we prove in section 3 a theorem showing that the problem of proving a lower
bound on the size of the negation-limited circuit computing a monotone function
f can be reduced to that of proving a lower bound on the maximum over sizes of
monotone circuits such that the union of boundaries of the functions computed by
the monotone circuits covers the boundary of the monotone function f (Theorem 3.2).
Second, we analyze carefully in section 4 the proof of Amano and Maruoka [2] that
gives an exponential lower bound on the monotone circuit size of the clique function,
and prove a statement saying that we still need a superpolynomial number of gates
in a monotone circuit that implements even a certain small fraction of the boundary
of the clique function (Theorem 4.1). Finally, we prove in section 5 a statement
(Theorem 5.1) that no matter what collection of monotone functions we take to cover
the boundary of the clique function, the largest fraction of the boundary covered by
a monotone function in the collection is more than what is needed to apply the result
(Theorem 4.1) in section 4. This is the most difficult part of the proof.

2. Preliminaries. For w in {0, 1}n, let wi denote the value of the ith bit of w.
Let w and w′ be in {0, 1}n. We denote w ≤ w′ if wi ≤ w′

i for all 1 ≤ i ≤ n, and w < w′

if w ≤ w′ and w �= w′. Let Ham(w,w′) denote the Hamming distance between w and
w′, i.e., Ham(w,w′) = |{i ∈ {1, . . . , n} | wi �= w′

i}|, where |S| denotes the number of
elements in a set S. For two Boolean functions f and g of n variables, we write f ≤ g
if f(w) ≤ g(w) for all w ∈ {0, 1}n.

A Boolean circuit is a directed acyclic graph with gate nodes (or, simply gates) and
input nodes. The operation AND or OR is associated with each gate whose indegree is
2, whereas NOT is associated with each gate whose indegree is 1. A Boolean variable
or a constant, namely, 0 or 1, is associated with each input node whose indegree is 0.
There is one designated node in a Boolean circuit with outdegree 0, which is called
the output gate. Each gate of the circuit computes a Boolean function in the obvious
way and the function computed by the circuit is the function computed by the output
gate. In particular, a circuit with no NOT gates is called a monotone circuit.

A Boolean function of n variables is monotone if f(w) ≤ f(w′) holds for any
w,w′ ∈ {0, 1}n such that w ≤ w′. Let Mn denote the set of all monotone functions
on n variables. It is well known that f is monotone if and only if f can be computed
by a monotone circuit. The size of a circuit C, denoted size(C), is the number of gates
in the circuit C. The circuit complexity (respectively, monotone circuit complexity)
of a function f , denoted size(f) (respectively, sizemon(f)), is the size of the smallest
circuit (respectively, the smallest monotone circuit) computing f . For a function f and
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a positive integer t, the circuit complexity with t limited negation (negation limited
complexity, for short) of a function f , denoted sizet(f), is the size of the smallest
circuit C that computes f and includes at most t NOT gates. If a function f cannot
be computed with only t NOT gates, then sizet(f) is undefined. For a circuit C and
a gate g in C, let Cg(w) denote the output of the gate g in the circuit C that has the
input w. We sometimes assume that a gate g of circuit C is specified as an output
gate of the circuit C. In such a case, we say the circuit computes the function Cg(w),
which will simply be denoted by C(w). We say a gate g in a circuit C separates a
pair of vectors (w,w′) (or simply, a gate g separates (w,w′) when no confusion arises)
if Cg(w) = 0, Cg(w

′) = 1 and Ham(w,w′) = 1. In particular, when g is taken to be
the output gate in C, we simply say that the circuit C separates such a pair (w,w′).
Similarly, when a circuit separates a pair we say the function computed by the circuit
separates the pair.

Throughout this paper, the function log x denotes the logarithm base 2 of x.

3. Relationship between negation-limited and monotone circuit com-
plexity. In this section, we explore a relationship between negation-limited circuit
complexity and monotone circuit complexity for a monotone Boolean function.

Definition 3.1. Let f be a Boolean function of n variables. A boundary graph
of f , denoted G(f), is defined as follows: G(f) = (V,E) is a directed graph with
V = {0, 1}n and E = {(w,w′) | Ham(w,w′) = 1, f(w) = 0 and f(w′) = 1}.

So a boundary graph of f is a graph whose edge set consists of pairs that are
separated by the function f . Let G1 = (V,E1) and G2 = (V,E2) be two graphs
on the same set V of vertices. Then the union G1 ∪ G2 is defined to be the graph
(V,E1 ∪ E2). Furthermore, we say G1 contains G2, denoted by G1 ⊇ G2, if E1 ⊇ E2

holds.

Theorem 3.2. Let f be a monotone function of n variables. For any positive
integer t,

sizet(f) ≥ min
F ′={f1,...,fα}⊆Mn

⎧⎨
⎩max

f ′∈F ′
{sizemon(f ′)}

∣∣∣ ⋃
f ′∈F ′

G(f ′) ⊇ G(f)

⎫⎬
⎭ ,

where α = 2t+1 − 1. Here the functions fi are not necessarily distinct, so F ′ could be
a multiset.

This theorem shows that the problem of deriving lower bounds on the negation-
limited circuit complexity of a monotone function can be reduced to the one of deriving
the maximum monotone circuit complexity over the monotone functions such that the
corresponding boundary graphs of the functions cover that of the original function.
Intuitively, this is because any pair of vectors (w,w′) separated by a function f , which
is supposed to be computed by a negation-limited circuit C, belongs to the boundary
of a monotone circuit obtained by restricting outputs of some NOT gates (possibly,
all of the NOT gates) in C, to constants 0 or 1 appropriately and throwing away
the remaining NOT gates in C. So lines where we place restriction to constants are
outputs of some NOT gates inside of the circuit rather than inputs to the entire circuit
as in the case of the lower bound proof for constant depth circuits.

It is worthwhile to note that the set of all variables F ′ = {x1, . . . , xn} satisfies the
condition ∪f ′∈F ′G(f ′) ⊇ G(f) for any monotone function f . Hence, if α ≥ n, that is,
t ≥ log(n+ 1)− 1, the right-hand side of the inequality in Theorem 3.2 does not give
a nontrivial lower bound.
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Proof of Theorem 3.2. Let f be a monotone function of n variables. Let C
be the smallest circuit that computes f using no more than t NOT gates, that is,
size(C) = sizet(f). Without loss of generality, we assume the number of NOT gates
in C is given by t. Furthermore, without loss of generality we assume that the output
gate of C is not a NOT gate. Let g1, . . . , gt be a list of NOT gates of C arranged
in the topological ordering and gt+1 be the output gate of the entire circuit C. For
0 ≤ i ≤ t and u = (u1, . . . , ui) ∈ {0, 1}i, let Cu denote the subcircuit of C obtained
by fixing the output of the NOT gates gj to constant uj for 1 ≤ j ≤ i and making the
input to gi+1 in C the output of the circuit Cu. In particular, for the empty sequence
λ, Cλ denotes the circuit obtained by making the input to g1 in C the output of entire
circuit Cλ.

Clearly, for any u of length at most t, the function computed by the circuit Cu

is monotone, and the size of the circuit Cu is not greater than the size of the circuit
C. Then it is easy to see that, for any (w,w′) ∈ {0, 1}n × {0, 1}n separated by the
circuit C, there exists 0 ≤ i ≤ t and u ∈ {0, 1}i such that the circuit Cu separates
the (w,w′). This is because as such an i we can simply take i such that gi+1 is
the first gate in the sequence (g1, . . . , gt+1) such that Cgi+1

(w) �= Cgi+1
(w′), and put

uj = gj(w)(= gj(w
′)) for 1 ≤ j ≤ i. The number of the circuits represented as

Cu for u ∈ {0, 1}∗ such that |u| ≤ t is given by
∑t

j=0 2j = 2t+1 − 1 = α. Hence,
denoting by fj ’s functions computed by circuit Cu’s, we have

⋃
f ′∈F ′ G(f ′) ⊇ G(f)

for F ′ = {f1, . . . , fα}. Thus, since sizet(f)(= size(C)) ≥ sizemon(f ′) for any f ′ ∈ F ′,
the proof is completed.

4. Hardness of approximating clique function. The clique function, de-
noted CLIQUE(m, s), of m(m − 1)/2 variables is defined to take the value 1 if and
only if the undirected graph on m vertices represented in the obvious way by the input
contains a clique of size s. For a positive integer s2, a graph on m vertices is called
good if it consists of a clique on some set of s2 vertices and contains no other edges.
Let I(m, s2) denote the set of such good graphs. For a positive integer s1, a graph
on m vertices is called bad if there is a partition of the vertices into m mod (s1 − 1)
sets of size �m/(s1 − 1)� and s1 − 1− (m mod (s1 − 1)) sets of size �m/(s1 − 1)� such
that any two vertices chosen from different sets have an edge between them, and no
other edges exist. Let O(m, s1) denote the set of such bad graphs.

For 1 ≤ s1 ≤ s2 ≤ m, let F (m, s1, s2) denote the set of all the monotone functions
f of

(
m
2

)
variables representing a graph G on m vertices such that the function f

outputs 0 if G contains no clique of size s1, outputs 1 if G contains a clique of
size s2, and outputs an arbitrary value otherwise. We remark that F (m, s, s) =
{CLIQUE(m, s)} and that if s1 < s2, then F (m, s1, s2) consists of more than one
function. For any function f in F (m, s1, s2), the value of f is 1 for any good graph,
and is 0 for any bad graph. Moreover, a good graph is minimal in the sense that
removing any edge from the graph destroys the clique of size s2. On the other hand,
a bad graph is maximal in the sense that adding any edge to the graph makes the
graph contain a clique of size s1.

In this section, we prove the following theorem, which will be needed in the next
section to prove the main theorem. This theorem says that, if 64 ≤ s1 ≤ s2 and

s
1/3
1 s2 ≤ m/200, then no function in F (m, s1, s2) can be approximated by a feasible

monotone circuit.
Theorem 4.1. Let s1 and s2 be positive integers such that 64 ≤ s1 ≤ s2 and

s
1/3
1 s2 ≤ m/200. Suppose that C is a monotone circuit and that the fraction of good

graphs in I(m, s2) such that C outputs 1 is at least h = h(s2). Then at least one of
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the following holds:

(i) The number of gates in C is at least (h/2)2s
1/3
1 /4.

(ii) The fraction of bad graphs in O(m, s1) such that C outputs 0 is at most 2/s
1/3
1 .

Let Prv∈I(m,s2)[E(v)] denote the probability of event E(v) provided that the uni-
form distribution over I(m, s2) is assumed, and similarly for Pru∈O(m,s1)[E(u)]. Theo-
rem 4.1 is restated as follows: Assume that the conditions on the parameters described
in the theorem are satisfied. If monotone circuit C is such that

Pr
v∈I(m,s2)

[C(v) = 1] ≥ h,

and

Pr
u∈O(m,s1)

[C(u) = 0] >
2

s
1/3
1

,

then

size(C) ≥
(
h

2

)
2s

1/3
1 /4.

The proof of Theorem 4.1 is done by employing the symmetric version of the
method of approximation [2, 5, 8, 9, 13]. In particular, we use arguments similar to
the proof of an exponential lower bound on the monotone circuit complexity of the
clique function (Theorem 3.1 in [2]). The key to the proof is to define the approxi-
mate operations ∨ (which approximates an OR gate) and ∧ (which approximates an
AND gate) in terms of disjunctive normal form (DNF) and conjunctive normal form
(CNF) formulas such that the size of terms and clauses in the formulas is limited
appropriately. For the purpose of the arguments of the current paper, we adopt the
same definition for the approximate operations as in [2] except for the values of the
parameters l and r in their definitions, and follow their arguments to obtain Theorem
4.1.

In what follows we present a rough sketch of a proof of Theorem 4.1. As in [2], a
monotone circuit is assumed to be converted to satisfy the following conditions: Any
input of an OR gate (respectively, an AND gate) is connected to either an output of
an AND gate (respectively, an OR gate) or an input node; and the output gate of the
circuit is an AND gate. It is easy to see that in order to convert a monotone circuit
to satisfy these conditions, we need to at most double the size of the circuit.

A DNF formula is a disjunction of conjunctions of input variables and each con-
junction of a DNF formula is called a term. A CNF formula is a conjunction of
disjunctions of input variables and each disjunction of a CNF formula is called a
clause. Let t be a term or a clause. The endpoint set of t is a set of all endpoints of
the edges corresponding to variables in t. The size of t is defined to be the cardinality
of the endpoint set of t. The approximate operations ∨ and ∧ are defined as follows:

∨: Let fD
1 and fD

2 be two functions, represented by monotone DNF formulas,
feeding into an ∨ gate. fD

1 ∨ fD
2 is the CNF formula obtained by transforming

the monotone DNF formula fD
1 ∨ fD

2 into the monotone CNF formula and
then taking away all the clauses whose size exceeds r.

∧: Let fC
1 and fC

2 be two functions, represented by monotone CNF formulas,
feeding into an ∧ gate. fC

1 ∧ fC
2 is the DNF formula obtained by transforming

the monotone CNF formula fC
1 ∧ fC

2 into the monotone DNF formula and
then taking away all the terms whose size exceeds l.
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In what follows, AND and OR gates are also written as ∧ and ∨ gates, respec-
tively. Given a monotone circuit C, the circuit obtained by replacing all ∨ and ∧
gates in C by ∨ and ∧ gates, respectively, is denoted by C, which will be called
the approximator circuit corresponding to C. The approximate operations and the
approximator circuits are introduced to derive good lower bounds on the size of cir-
cuits computing a certain function. Theorem 4.1 derives a lower bound on the size of
monotone circuits approximately computing the clique function. Its proof, based on
the approximation method, is as follows. First, we show that the number of good and
bad graphs that are classified incorrectly by an approximator circuit is large (Lemma
4.3). More precisely, for an approximator circuit C arbitrarily given, C outputs 0 for
a large number of good graphs or yields 1 for a large number of bad graphs. Second,
we show that the number of good and bad graphs for which a usual gate and the
corresponding approximate gate behave differently is small. More precisely, it is only
for a small number of bad graphs that ∨ gate outputs 0 and ∨ gate yields 1 (Lemma
4.4), whereas it is only for a small number of good graphs that ∧ gate outputs 1 and
∧ gate yields 0 (Lemma 4.5). Recall that, in general, the usual gates and the corre-
sponding approximate gates behave differently because long clauses or long terms are
taken away when defining the approximate operations based on the formulas. Finally,
since for each good or bad graph classified incorrectly by an approximator circuit
there exist an approximate gate in C that behaves differently from the corresponding
usual gate on that graph, the number of approximate gates that compensate for a
large number of good or bad graphs misclassified by the entire circuit must be large
(Theorem 4.1).

Choose l = �s1/3
1 /4� and r = �30s

1/3
1 �. Put w = m mod (s1 − 1). A simple

calculation shows the following.

Fact 4.2. |I(m, s2)| = (m!)/(s2!(m− s2)!) and

|O(m, s1)| =
m!

(�m/(s1 − 1)�!)w(�m/(s1 − 1)�!)s1−1−ww!(s1 − 1 − w)!
.

We proceed to the technical parts of the proof. Although the arguments are anal-
ogous to that presented in [2], we give proofs here to make this paper self-contained.

Lemma 4.3. Let C be a monotone circuit. An approximator circuit C outputs
identically 0 or the fraction of bad graphs in O(m, s1) such that C outputs 1 is at least

1 − s
−1/3
1 .

Proof. Let f be the output of an approximator circuit C. Because of the as-
sumption that the output gate of the approximator circuit is an AND gate, f can be
represented by a monotone DNF formula consisting of terms of size at most l. If f
is identically 0, then the first conclusion holds. If not, then there is a term t whose
size is at most l such that f ≥ t holds. In what follows, bad graphs are represented
as one-to-one mapping from the vertex set to {(1, 1), . . . , (1, �m/(s1 − 1)�), . . . , (s1 −
1, 1), . . . , (s1 − 1, �m/(s1 − 1)�)}, so there are many mappings corresponding to one
bad graph. Such a mapping specifies a bad graph in the obvious way: Two vertices in
the graph have an edge between them if and only if the mapping assigns pairs to the
vertices with different first components. The function in question will be estimated
in terms of the ratio of the corresponding mappings. It is easy to see that the ratio of
mappings that satisfy the condition that there is a variable x in the term t such that
the two vertices incident to x are assigned a pair with the same first component, i.e.,
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the term t outputs 0 on the bad graphs specified by such mappings, is at most

l(l − 1)

2

�m/(s1 − 1)�
m

<
s
2/3
1

32

2

s1
< s

−1/3
1 .

This completes the proof.
Lemma 4.4. Suppose ∨ gate and ∨ gate are given as inputs the same monotone

formulas such that the size of any term in the formulas is at most l. The number of
bad graphs in O(m, s1) for which the OR and ∨ gates produce different outputs (the
OR gate produces 0, whereas the ∨ gate produces 1) is at most

(m/s
1/6
1 )r+1(m− r − 1)!

(�m/(s1 − 1)�!)w(�m/(s1 − 1)�!)s1−1−ww!(s1 − 1 − w)!
,(4.1)

where w = m mod (s1 − 1).
Proof. Let fD

1 and fD
2 denote monotone formulas, such that the size of any term

in the formulas is at most l. Let fD
1 ∨ fD

2 and fD
1 ∨ fD

2 be denoted by fD and fC ,
respectively. Let t1, . . . , tq be the complete list of the terms in fD. We shall count
the number of bad graphs u such that both fD(u) = 0 and fC(u) = 1 hold. As in
the proof of Lemma 4.3, bad graphs are represented as the mappings described there.
Since each bad graph in O(m, s1) is represented exactly as (�m/(s1−1)�!)w(�m/(s1−
1)�!)s1−1−ww!(s1 − 1−w)! mappings as in the proof of Lemma 4.3, it suffices to show
that the number of mappings corresponding to the bad graphs described in the lemma

is at most (m/s
1/6
1 )r+1(m − r − 1)!. In order to count such mappings we will count

the number of ways of choosing one or two vertices in a certain manner repeatedly
from the variables in t1, . . . , tq so that the corresponding bad graph u satisfies the
conditions fD(u) = 0 and fC(u) = 1.

Suppose that we somehow already assigned distinct pairs of integers to endpoints
of variables from terms t1, . . . , ti−1 so as to make all these terms take the value 0 and
that we proceed to the term ti. We now typically choose one or two vertices from the
endpoints of variables from ti in the way described below and then proceed to the
next term ti+1.

We first consider two extreme cases. If there is a variable in ti already assigned
0 by the partial assignment, we skip to the next term ti+1. The other extreme case
occurs when all the variables in ti are, so far, assigned 1. In this case the term ti will
never take value 0, hence we do not need to consider the case.

If neither of these extreme cases happens, choose a variable from the term ti such
that at least one of the vertices associated with the variable is not assigned a pair
of integers. There are two cases to consider: If exactly one of the vertices has been
assigned, then assign a pair to the remaining vertex whose first component is identical
to the first component of the pair of integers associated with the variable so that the
variable takes the value 0. In this case, there are at most �m/(s1 − 1)� ≤ m/(s1 − 1)
ways of assigning the pairs of integers to the vertex. On the other hand, if both of the
vertices have not been chosen, assign to these vertices pairs of integers with their first
components being the same so that the variable associated with two vertices takes the
value 0. So, for the two vertices, there are at most (s1 − 1)(�m/(s1 − 1)�)(�m/(s1 −
1)� − 1) ≤ 2m2(s1 − 1) ways of assigning the pairs of integers.

Let k be the number of variables in term ti such that exactly one of the vertices
corresponding to the variables is assigned a pair of integers so far. Then there exist
at most l(l − 1)/2 − k variables in term ti such that none of the vertices associated
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with the variables has been assigned a pair of integers so far. So the number of ways
of choosing an unassigned vertex in the endpoints of variables in ti and assigning a
pair of integers to the chosen vertex is at most

max
0≤k≤l(l−1)/2

{k(m/(s1 − 1)) +
√

(l(l − 1)/2 − k)(2m2/(s1 − 1))}

≤ (l(l − 1)/2)(m/(s1 − 1)) +
√

(l(l − 1)/2)(2m2/(s1 − 1)).(4.2)

This is because doing something to two vertices in i ways can be regarded as doing
something to a vertex appropriately in

√
i ways twice successively. Recall that l =

�s1/3
1 /4�. We have that

(4.2) ≤ s
2/3
1

32

2m

s1
+

√
s
2/3
1

32

4m2

s1
<

m

32s
1/3
1

+
m

2s
1/6
1

<
m

s
1/6
1

.

By the definition of ∨ gate, a bad graph u corresponding to a mapping specified
in this way satisfies fD(u) = 0 and fC(u) = 1 only if there exist more than r vertices
assigned to pairs of integers in the above procedure. Thus the number of mappings
corresponding to such bad graphs is at most the number of the ways of assigning the
r + 1 vertices to the pairs of integers in the manner described above multiplied by
the number of ways of assigning the remaining m − r − 1 vertices arbitrarily to the

remaining distinct pairs of integers, which is given by (m/s
1/6
1 )r+1(m− r − 1)!. This

completes the proof.
Lemma 4.5. The number of good graphs in I(m, s2) for which the AND and ∧

gates produce different outputs (the AND gate produces 1, whereas the ∧ gate produces
0) is at most

(2rs2)
l+1(m− l − 1)!

s2!(m− s2)!
.

Proof. The proof is similar to that of Lemma 4.4. Suppose an AND gate and an
∧ gate are given as input for the same monotone CNF formulas, denoted fC

1 and fC
2 .

Let fC = fC
1 ∧ fC

2 and fD = fC
1 ∧ fC

2 . Let c1, . . . , cq be the complete list of clauses
in fC . Note that, for each clause ci, the size of ci is at most r and so the clause ci
contains at most r(r−1)/2 variables. The number in question is equal to the number
of good graphs v such that fC(v) = 1 and fD(v) = 0.

Instead of the mappings from vertices to pairs of integers in the case of Lemma 4.4,
we consider one-to-one mappings from the vertex set to the set of integers {1, . . . ,m}.
Such a mapping is thought to specify a good graph such that the set of vertices
assigned with integers from 1 to s2 forms a clique. Since each good graph in I(m, s2)
is represented as exactly s2!(m − s2)! mappings, it suffices to show that the number
of mappings corresponding to good graphs v such that fC(v) = 1 and fD(v) = 0 is
at most (2rs2)

l+1(m− l − 1)!.
As in the proof of Lemma 4.4 we proceed from c1 up to cq repeatedly by assigning

one or two vertices to integers from {1, . . . ,m} so that the resulting good graph
v satisfies the condition that fC(v) = 1 and fD(v) = 0. Suppose that we somehow
already assigned distinct integers to the endpoints of variables from clauses c1, . . . , ci−1

so as to make all these clauses take the value 1 and we proceed to clauses ci. We now
choose one or two vertices from the endpoints of variables from ci in a way similar
to that in the proof of Lemma 4.4 and then proceed to the next clause ci+1. As in
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the case of the proof of Lemma 4.4, we need only to consider the case where there
remain variables in ci such that assigning one or two endpoints, not chosen so far, of
these variables makes the clause ci take the value 1. Since the number of endpoints of
vertices in ci is at most r, the number of ways of choosing a vertex and assigning an
integer in the manner described above is at most r(s2−1), while the number of ways of
choosing two adjacent vertices and assigning integers is at most (r(r−1)/2)s2(s2−1).
Thus the number of ways per a vertex is at most

r(s2 − 1) +
√

(r(r − 1)/2)s2(s2 − 1) < 2rs2.

Thus, in a way similar to the proof of Lemma 4.4, it is easily seen that the number of
mappings corresponding to good graphs v such that fC(v) = 1 and fD(v) = 0 is at
most (2rs2)

l+1(m− l−1)! because clauses of length more than l are taken away when
CNF formula fC

1 ∧ fC
2 is transformed into DNF formulas fC

1 ∧ fC
2 . This completes

the proof of the lemma.
Proof of Theorem 4.1. Assume that a monotone circuit C is such that

Prv∈I(m,s2)[C(v) = 1] ≥ h(s2) and Pru∈O(m,s1)[C(u) = 0] > 2/s
1/3
1 hold. To prove

the theorem, it suffices to show size(C) ≥ (h/2)2s
1/3/4. From Lemma 4.3, the approx-

imator circuit C satisfies Prv∈I(m,s2)[C(v) �= C(v)] ≥ h(s2) or Pru∈O(m,s1)[C(u) �=
C(u)] > 1/s

1/3
1 . Thus, in view of Fact 4.2 and Lemmas 4.3, 4.4, and 4.5, the size of

C is at least

1

2
min

(
h(s2)m!

(2rs2)l+1(m− l − 1)!
,

m!

s
1/3
1 (m/s

1/6
1 )r+1(m− r − 1)!

)
.(4.3)

The coefficient 1
2 here is needed to take into account the fact that circuit C is assumed

to be modified so the AND and OR gates alternate along any path from an input to
the output in the circuit. An elementary calculation completes the proof.

5. Proof of the main theorem. The goal of this section is to prove Theorem
5.1, which says that �(1/6) log logm� NOT gates are not enough to compute the clique
function feasibly. We do not intend here to optimize the constant 1/6 in the number
of NOT gates.

Theorem 5.1. For any sufficiently large integer m,

size�(1/6) log logm	(CLIQUE(m, (logm)3(logm)1/2

)) > 2(1/5)(logm)(log m)1/2

.

Before proceeding to the proof, we describe the idea behind the proof.
Let f be CLIQUE(m, s). Suppose to the contrary that a small circuit C with t

NOT gates computes f . By Theorem 3.2, there are 2t+1−1(= α) monotone functions
f1, . . . , fα such that each of them can be computed by a monotone circuit and that
∪i∈{1,...,α}G(fi) ⊇ G(f).

All proofs of lower bounds on the size of a monotone circuit computing a certain
function are based on the observation that the circuit separates the minterms and
maxterms of the target function [2, 5, 8, 9, 10, 13] (see Figure 5.1). Instead of focusing
on the separation of the minterms and maxterms of the target function f , we consider
separating pairs of vectors (w,w′) in G(f), that is, pairs (w,w′) such that f(w) = 0,
f(w′) = 1 and Ham(w,w′) = 1. Theorem 3.2 says that, if f can be computed by
a small circuit C with t NOT gates, then it follows that there exists a collection of
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Fig. 5.1. A figure showing the minterms and maxterms of CLIQUE in the Boolean cube.

monotone functions f1, . . . , fα such that they separate G(f) (i.e., ∪i∈{1,...,α}G(fi) ⊇
G(f)) and that each of functions f1, . . . , fα can be computed by a small monotone
circuit, where α = 2t+1 − 1. In what follows we shall show that the circuit C is not
small by showing that it is not the case that all of the function fi’s satisfying the
above condition can be computed by small monotone circuits. In fact we only pay
attention to a subset of G(f) which contains pairs that seem to be hard to separate.
As the following example shows, it is crucial to decide which subset of G(f) we pay
attention to. As an example of a bad choice for a subset, take the subset G′(f) defined
as

G′(f) = {(u, u+) | u ∈ O(m, s) and (u, u+) ∈ G(f)}
∪{(v−, v) | v ∈ I(m, s) and (v−, v) ∈ G(f)}.

Clearly, the number of 1’s in u is the same for all u ∈ O(m, s), and similarly for
v ∈ I(m, s). So if we set f1 and f2 to be the two threshold functions whose threshold
values are the number of 1’s in v and that in u+, then we have G(f1)∪G(f2) ⊇ G′(f).
On the other hand, it is known that a monotone circuit of size O(n log n) can compute
a threshold function on n variables for any given threshold value. So we cannot derive
a contradiction by the usual approximation method argument. We will give a subset
which we use as the subset of G(f) consisting of edges illustrated in Figure 5.2.

Let l0 < l1 < · · · < lα be a monotone increasing sequence of integers, where
l0 = s, lα = m, and others are chosen appropriately later. For 1 ≤ i ≤ α, a graph
v is called good in the ith layer if v consists of a clique of size li−1, and contains no
other edges. For 1 ≤ i ≤ α, a graph u is called bad in the ith layer if there exist li
vertices and a partition of these li vertices into s − 1 blocks with nearly equal size
such that u has an edge between any two vertices chosen from different blocks and no
other edges. In other words, a bad graph in the ith layer is a (s− 1)-partite complete
graph on some subset of vertices of size li. Note that, for any good graph v in the first
layer, there is an edge in G(f) whose head is v because deleting an edge from v breaks
the clique in v. (Recall that each vertex of the boundary graph G(f) corresponds to
an input graph of the clique function.) Similarly, for any bad graph u in any layer,
there is an edge in G(f) whose tail is u because adding an appropriate edge (between
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Fig. 5.2. Layered structure of the good and bad graphs: The good graphs and bad graphs are
described as solid circles and open circles, respectively. A small monotone circuit cannot separate
its good graphs and bad graphs in any one layer. When a bad graph u in the ith layer is connected
by an arrow to a good graph v in the (i + 1)th layer, they satisfy the condition v ≥ u.

vertices in a block) to u ends up with having a clique of size s. In what follows we
will prove that if monotone functions f1, . . . , fα separate G(f) and each f1, . . . , fα
can be computed by a small monotone circuit, then a contradiction follows. In order
to prove it, because we must consider α functions which are supposed to separate
G(f), we must fully exploit the computational complexity of the function CLIQUE,
considering α layers and focusing on the separation between good and bad graphs in
each layer.

Since ∪i∈{1,...,α}G(fi) ⊇ G(f), there exists a function, say f1, in {f1, . . . , fα} such
that G(f1) contains at least 1/α fraction of edges of G(f) ending at good graphs in
the first layer, and hence f1 outputs 1 on at least 1/α fraction of good graphs in
the first layer. Since we can use Theorem 4.1 to show that every small monotone
circuit that outputs 1 for a certain fraction of good graphs in the first layer must
output 1 for a large number of bad graphs in the same layer, the function f1 takes
the value 1 for a large number of bad graphs u in the first layer. By adding an edge
appropriately to such a u we get a graph u+ which contains a clique of size s. Hence
there are many edges, denoted (u, u+), which are not included in the edges in G(f1).
Since ∪i∈{1,...,α}G(fi) ⊇ G(f), there exists a function, say f2, in {f2, . . . , fα} such
that G(f2) contains at least 1/α fraction of such edges (u, u+). On the other hand,
because f2 is monotone and f2(u

+) = 1, f2 takes the value 1 on the good graph v
in the second layer such that u+ ≤ v. Applying Theorem 4.1 again, we can conclude
that f2 outputs 1 for a large number of bad graphs in the second layer. It can be
shown that f1 also outputs 1 for such bad graphs.

By continuing the above argument, we can conclude that every function f1, . . .,
fα outputs 1 on some bad graph u in the last layer, contradicting the fact that
∪i∈{1,...,α}G(fi) ⊇ G(f). This is the outline of the proof.

Proof of Theorem 5.1. Let m be a sufficiently large integer. Put t = �(1/6) log logm�,
s = (logm)3(logm)1/2

, M = 2(1/5)(logm)(log m)1/2

, and α = 2t+1 − 1. We suppose to the
contrary that a circuit C with at most t NOT gates computes CLIQUE(m, s) and that
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size(C) ≤ M . From Theorem 3.2, there are monotone functions f1, . . . , fα ∈ Mn such
that sizemon(fi) ≤ M for any 1 ≤ i ≤ α, and

⋃
i∈{1,...,α} G(fi) ⊇ G(CLIQUE(m, s)).

Let l0 = s, lα = m, and for every j = 1, . . . , α−1, let lj = m1/10+(1/3)(j−1)/(logm)1/6

.

Since lα−1 ≤ m1/10+(1/3)(2(1/6) log log m+1)/(logm)1/6

= m1/10+2/3 < m9/10, we have
l0 < l1 < · · · < lα. Let V be the set of m vertices of the graph associated with
CLIQUE. For j ∈ {0, . . . , α}, let Lj denote {L ⊆ V | |L| = lj} and let Lj(L) denote
{L′ ⊆ L | L′ ∈ Lj}. For i ∈ {1, . . . , α} and Li ∈ Li, a graph v is called good on the set
Li in the ith layer if it consists of a clique of size li−1 on some Li−1 ∈ Li−1(Li) (i.e.,
|Li−1| = li−1 and Li−1 ⊆ Li), and contains no other edges. For i ∈ {1, . . . , α} and
Li ∈ Li, a graph u is called bad on the set Li in the ith layer if there is a partition of
Li into V1, . . . , Vs−1 such that

(i) |Vi| ∈ {�|Li|/(s− 1)�, �|Li|/(s− 1)�} for i = 1, . . . , s− 1,
(ii) u has an edge (w,w′) if and only if w ∈ Vi and w′ ∈ Vj such that i �= j, i.e.,

u is a complete (s− 1)-partite complete graph on the vertex set Li.

Let ILi (respectively, OLi) denote the set of all good (respectively, bad) graphs on the
set Li in the ith layer. Note that a good graph in the first layer (respectively, a bad
graph in the last layer) is a minterm (respectively, a maxterm) of CLIQUE(m, s). We
also note that there is a one-to-one correspondence between ILi

and I(li, li−1), and
between OLi and O(li, s), where I(li, li−1) and O(li, s) are defined in section 4. Hence
a function in F (li, s, li−1) can be viewed as separating the graphs into two groups,
ILi

and OLi
. Since s1/3li−1 ≤ li/200 holds, the following corollary is straightforward

from Theorem 4.1. This corollary says that a small monotone circuit cannot separate
OLi and ILi for any i and for any vertex set Li ∈ Li.

Corollary 5.2. Let i ∈ {1, . . . , α} and Li ∈ Li. Suppose that C is a monotone
circuit and the fraction of good graphs in ILi (i.e., the set of good graphs on Li in the
ith layer) such that C outputs 1 is at least h. Then at least one of the following holds:

(i) The number of gates in C is at least (h/2)2s
1/3/4.

(ii) The fraction of bad graphs in OLi (i.e., the set of bad graphs on Li in the ith
layer) such that C outputs 0 is at most 2/s1/3.

Proof of Theorem 5.1 (continued). For L ⊆ V , let vL denote a graph corresponding
to a clique on the set L and having no other edges. Recall that L0 = {L ⊆ V | |L| =
s}. Thus for any L0 ∈ L0, there exists u < vL0 such that the edge (u, vL0

) is
in G(CLIQUE(m, s)). Hence there exists i1 in {1, . . . , α} such that PrL0∈L0

[∃u <
vL0 (u, vL0) ∈ G(fi1)] ≥ 1/α > 1/2t+1 holds, and this implies

Pr
L0∈L0

[fi1(vL0) = 1] ≥ 1

2t+1
.(5.1)

Then we can obtain

Pr
L1∈L1

[
Pr

v∈IL1

[fi1(v) = 1] ≥ 1

2t+2

]
≥ 1

2t+2
.(5.2)

This is because from (5.1), we have

∑
L1∈L1

|{v ∈ IL1 | fi1(v) = 1}| ≥ 1

2t+1

(
m

l0

)(
m− l0
l1 − l0

)

=
1

2t+1

(
m

l1

)(
l1
l0

)
.(5.3)
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But if (5.2) does not hold, then

∑
L1∈L1

|{v ∈ IL1 | fi1(v) = 1}| <
(
m

l1

)
1

2t+2

(
l1
l0

)
+

(
m

l1

)(
1 − 1

2t+2

)(
l1
l0

)
1

2t+2

<
2

2t+2

(
m

l1

)(
l1
l0

)
=

1

2t+1

(
m

l1

)(
l1
l0

)
,

contradicting (5.3).

Now we call L1 ∈ L1 dense if Prv∈IL1
[fi1(v) = 1] ≥ 1/2t+2 holds. Put h = 1/2t+2.

An easy calculation shows that h ≥ 1/m. Thus by applying Claim 5.2 to every dense

L1, we have sizemon(fi1) ≥ (1/2m)2s
1/3/4 = 2(1/4)(logm)(log m)1/2

−logm−1 > M or
Pru∈OL1

[fi1(u) = 1] ≥ 1−2/s1/3 ≥ 1/2 for any dense L1. Since the former contradicts
the assumption that sizemon(fi1) ≤ M , we have Pru∈OL1

[fi1(u) = 1] ≥ 1/2 for any
dense L1. By (5.2), we have

Pr
L1∈L1

[
Pr

u∈OL1

[fi1(u) = 1] ≥ 1

2

]
≥ 1

2t+2
.(5.4)

The proof will be by induction on a level of the layers. We use (5.4) as the basis
of the induction, and the induction steps are as follows.

Claim 5.3. Suppose c1 > 1 and c2 > 1. Put c3 = α. Let f1, . . . , fc3 be the mono-
tone functions such that ∪i∈{1,...,c3}G(fi) ⊇ G(CLIQUE(m, s)) and sizemon(fi) ≤ M
for any 1 ≤ i ≤ c3. Suppose that, for distinct indices i1, . . . , ik ∈ {1, . . . , c3},

Pr
Lk∈Lk

[
Pr

u∈OLk

[fi1(u) = · · · = fik(u) = 1] ≥ 1/c1

]
≥ 1/c2

holds. If c1c2c3 ≤ s1/3/8, then there exists ik+1 ∈ {1, . . . , c3}\{i1, . . . , ik} such that

Pr
Lk+1∈Lk+1

[
Pr

u∈OLk+1

[
fi1(u) = · · · = fik(u) = fik+1

(u) = 1
]
≥ 1

4c1c2c3

]
≥ 1

2c2c3
.

For a proof of this claim, see the appendix.

Proof of Theorem 5.1 (continued). First we claim that for any k ∈ {1, . . . , α},
there are k distinct indices i1, . . . , ik ∈ {1, . . . , α} such that

Pr
Lk∈Lk

[
Pr

u∈OLk

[fi1(u) = · · · = fik(u) = 1] ≥ 1

2k2(t+2)

]
≥ 1

2k(t+2)
(5.5)

holds. The claim is proved by induction on k. The basis, k = 1, is trivial from (5.4).
Now we suppose the claim holds for any k ≤ l and let k = l + 1. By the induction
hypothesis, we have

Pr
Ll∈Ll

[
Pr

u∈OLl

[fi1(u) = · · · = fil(u) = 1] ≥ 1

2l2(t+2)

]
≥ 1

2l(t+2)
.

Putting c1 = 2l
2(t+2), c2 = 2l(t+2), and c3 = α, we have 4c1c2c3 ≤

22+l2(t+2)+l(t+2)+(t+1) ≤ 2(l+1)2(t+2), 2c2c3 ≤ 21+l(t+2)+t+1 = 2(l+1)(t+2), and c1c2c3 ≤
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2(l+1)2(t+2)/4 ≤ 2(2t+1)2(t+2)/4 ≤ 223t

/8 ≤ 22(1/2) log log m

/8 = 2
√

logm/8

< (logm)
√

logm/8 = s1/3/8. Thus by Claim 5.3,

Pr
Ll+1∈Ll+1

[
Pr

u∈OLl+1

[
fi1(u) = · · · = fil+1

(u) = 1
]
≥ 1

4c1c2c3

]
≥ 1

2c2c3

holds. Therefore

Pr
Ll+1∈Ll+1

[
Pr

u∈OLl+1

[
fi1(u) = · · · = fil+1

(u) = 1
]
≥ 1

2(l+1)2(t+2)

]
≥ 1

2c2c3

≥ 1

2(l+1)(t+2)
.

This completes the induction step and hence the proof of the claim.
Recalling Lα = {V } and setting k in (5.5) to α, we have Pru∈OV

[∀i ∈ {1, . . . , α}
fi(u) = 1] > 0. Thus there exist u ∈ OV and u+ ∈ CLIQUE(m, s)−1(1) such that
(u, u+) ∈ G(CLIQUE(m, s)) and (u, u+) �∈ G(fi) for any i ∈ {1, . . . , α}. This implies
that

⋃
i∈{1,...,α} G(fi) �⊇ G(CLIQUE(m, s)), completing the proof.

6. Concluding remarks. There are still many interesting questions yet to be
answered in the line of research pursued in the present paper. An obvious challenge is
to improve the number of negation gates in the main theorem to ω(log log n). Another
interesting problem is to show a tradeoff between the circuit size and the number of
negation gates in a circuit to compute a certain monotone function. Analyzing the size
complexity more carefully along the line suggested in this paper might help to explore
such a tradeoff. Note that we have recently proved that such a tradeoff exists for
the merging function MERGE(n, n), which is a collection of monotone functions that
merges two presorted binary sequence each of length n into a sorted sequence of length
2n, by showing sizet(MERGE(n, n)) = Θ(n log n/2t) for every t = 0, . . . , log log n [3].

Finally, it should be noted that there is a large obstacle in generalizing our tech-
niques to obtain a good lower bound for a circuit without restricting the number
of negation gates. This comes from the notion of “natural proofs” introduced by
Razborov and Rudich [12]. They proved that almost all known combinatorial lower
bound proof techniques are “natural,” and such proofs cannot yield a good lower
bound for general circuit complexity under some commonly believed cryptographic
assumption. Our techniques seem to fall under the category of natural proofs although
we have not tried to give a formal proof. Some radically different techniques would be
needed to improve the number of negation gates in our main theorem to, say, logn.

Appendix. Proof of Claim 5.3. Let Lbad
k denote the collection of sets Lk ∈ Lk

with Pru∈OLk
[fi1(u) = · · · = fik(u) = 1] ≥ 1/c1. By the assumption of Claim 5.3, we

have

Pr
Lk∈Lk

[Lk ∈ Lbad
k ] ≥ 1

c2
.(A.1)

Let u ∈ OLk
be such that fi1(u) = · · · = fik(u) = 1. By the definition of boundary

graphs, none of G(fi1), . . . , G(fik) contains an edge from u. Note that
CLIQUE(m, s)(u) = 0. Let u+ be a graph obtained from u by adding an arbitrary
edge whose both endpoints are in Lk. Clearly, Ham(u, u+) = 1, CLIQUE(m, s)(u+) =
1 and (u, u+) ∈ G(CLIQUE(m, s)). Since u+ ≤ vLk

, we have

∀Lk ∈ Lbad
k ∃u ∈ OLk

∃u+ ≤ vLk
(u, u+) ∈

⋃
j∈{1,...,c3}\{i1,...,ik}

G(fj).
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Therefore there exists l ∈ {1, . . . , c3}\{i1, . . . , ik} such that

Pr
Lk∈Lbad

k

[∃u ∈ OLk
∃u+ ≤ vLk

(u, u+) ∈ G(fl)] ≥
1

c3

holds. If (u, u+) ∈ G(fl) for u ∈ OLk
, then fl(u

+) = 1, which together with
u+ ≤ vLk

implies fl(vLk
) = 1 by the monotonicity of fl. Thus we can conclude

that PrLk∈Lk
[fl(vLk

) = 1 | Lk ∈ Lbad
k ] ≥ 1/c3. From this and (A.1), there exists

l ∈ {1, . . . , c3}/{i1, . . . , ik} such that

Pr
Lk∈Lk

[Lk ∈ Lbad
k and fl(vLk

) = 1] ≥ 1

c2c3
.(A.2)

Now we choose an index l arbitrarily that satisfies the above inequality and let ik+1 =
l. Letting Ltarget

k denote a collection of sets Lk ∈ Lk such that Lk ∈ Lbad
k and

fik+1
(vLk

) = 1, we have PrLk∈Lk
[Lk ∈ Ltarget

k ] ≥ 1/(c2c3). By a similar argument to
the derivation of (5.2), we have

Pr
Lk+1∈Lk+1

[
Pr

Lk∈Lk(Lk+1)
[Lk ∈ Ltarget

k ] ≥ 1

2c2c3

]
≥ 1

2c2c3
.(A.3)

Now we call a Lk+1 ∈ Lk+1 dense if

Pr
Lk∈Lk(Lk+1)

[Lk ∈ Ltarget
k ] ≥ 1

2c2c3
(A.4)

holds, and let Ldense
k+1 denote a collection of all dense sets in Lk+1. Note that

Pr
v∈ILk+1

[fik+1
(v) = 1] ≥ 1/(2c2c3)

for any dense Lk+1 ∈ Ldense
k+1 . Put h = 1/(2c2c3) > 1/m. Thus by applying

Claim 5.2 to every dense Lk+1, we have sizemon(fik+1
) > (1/2m)2s

1/3/4 > M or

Pru∈OLk+1
[fik+1

(u) = 0] ≤ 2/s1/3 ≤ 1/(4c1c2c3) for any dense Lk+1. (We use the

assumption c1c2c3 ≤ s1/3/8 in Claim 5.3 here.) Since the former contradicts the
assumption sizemon(fik+1

) ≤ M , we have

Pr
u∈OLk+1

[fik+1
(u) = 0] ≤ 1

4c1c2c3
,(A.5)

for any Lk+1 ∈ Ldense
k+1 . By (A.4), for any dense Lk+1, we have

Pr
Lk∈Lk(Lk+1)

[
Pr

u∈OLk

[fi1(u) = · · · = fik(u) = 1] ≥ 1

c1

]
≥ 1

2c2c3
.(A.6)

From the above inequality, we can get

Pr
u∈OLk+1

[fi1(u) = · · · = fik(u) = 1] ≥ 1

2c1c2c3
.(A.7)

To derive this, we consider the bipartite graph G = (U1, U2, E) with vertex sets
U1 = OLk+1

and U2 = ∪Lk∈Lk(Lk+1)OLk
and the edge set

E = {(u1, u2) ∈ U1 × U2 | u1 ≥ u2}.
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Let Umark
2 be the set of u2 ∈ U2 such that fi1(u2) = · · · = fik(u2) = 1 and let

N(Umark
2 ) ⊆ U1 be the set of vertices adjacent to vertices in Umark

2 . By the mono-
tonicity of fi’s, for every u1 ∈ N(Umark

2 ), fi1(u1) = · · · = fik(u1) = 1 holds. From
(A.6), we have |Umark

2 | ≥ |U2|/(2c1c2c3). Clearly every vertex in U1 has the same
degree, and similarly for U2. Hence we can prove that |N(Umark

2 )| ≥ |U1|/(2c1c2c3),
which implies (A.7).

By (A.5) and (A.7), we have

Pr
u∈OLk+1

[
fi1(u) = · · · = fik+1

(u) = 1
]
≥ 1

2c1c2c3
− 1

4c1c2c3
=

1

4c1c2c3

for any Lk+1 ∈ Ldense
k+1 . Claim 5.3 is straightforward from this and (A.3).
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BOUNDS ON THE EFFICIENCY OF GENERIC CRYPTOGRAPHIC
CONSTRUCTIONS∗
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Abstract. A central focus of modern cryptography is the construction of efficient, high-level
cryptographic tools (e.g., encryption schemes) from weaker, low-level cryptographic primitives (e.g.,
one-way functions). Of interest are both the existence of such constructions and their efficiency.

Here, we show essentially tight lower bounds on the best possible efficiency of any black-box
construction of some fundamental cryptographic tools from the most basic and widely used crypto-
graphic primitives. Our results hold in an extension of the model introduced by Impagliazzo and
Rudich and improve and extend earlier results of Kim, Simon, and Tetali. We focus on constructions
of pseudorandom generators, universal one-way hash functions, and digital signatures based on one-
way permutations, as well as constructions of public- and private-key encryption schemes based on
trapdoor permutations. In each case, we show that any black-box construction beating our efficiency
bound would yield the unconditional existence of a one-way function and thus, in particular, prove
P �= NP .

Key words. lower bounds, pseudorandom generators, hash functions, digital signatures, en-
cryption
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1. Introduction. A central focus of modern cryptography is the construction
of high-level cryptographic protocols and tools that are both provably secure and
efficient. Generally speaking, work proceeds along two lines: (1) demonstrating the
feasibility of a particular construction, based on the weakest possible primitive; and
(2) improving the efficiency of such constructions, either based on the weakest prim-
itive for which a construction is known or perhaps by assuming the existence of a
stronger primitive. The first of these approaches has been immensely successful; for
example, the existence of one-way functions is known to be sufficient for construct-
ing pseudorandom generators [8, 22, 27, 42], pseudorandom functions [21], universal
one-way hash functions and digital signature schemes [36, 38], private-key encryption
schemes and message-authentication codes [20], and commitment schemes [35]. In
each of these cases one-way functions are also known to be necessary [30, 38], thus
exactly characterizing the feasibility of these constructs.
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Unfortunately, progress on the second approach—i.e., improving the efficiency of
these constructions—has been much less successful. Indeed, while the constructions
referred to above are all important from a theoretical point of view, their practical
impact has been limited by their inefficiency. In practice, more efficient constructions
based on stronger assumptions (or, even worse, heuristic solutions with no proofs of
security) tend to be used. Furthermore, relying on stronger assumptions (or resorting
to heuristic solutions) seems necessary to obtain improved efficiency; for each of the
examples listed above, no provably secure constructions based on general assumptions
are known that improve on the efficiency of the initial solutions.

This trade-off between the efficiency of a cryptographic construction and the
strength of the complexity assumption on which it relies motivates the question, How
efficient can cryptographic constructions be when based on general assumptions? We
show in this paper that, in fact, the efficiency of many of the known constructions
based on general assumptions cannot be improved without using non-black-box tech-
niques or without finding an unconditional proof that one-way functions exist (and
hence proving P �= NP ).

Our results hold in a generalization of the Impagliazzo–Rudich model [31], intro-
duced by those authors in the context of proving impossibility results for the existence
of certain black-box cryptographic constructions. (See section 1.3 for further discus-
sion.) Following their work, a number of additional black-box impossibility results
have appeared [13, 16, 17, 32, 40, 41]. Kim, Simon, and Tetali [33] initiated work
focused on bounding the efficiency of black-box cryptographic constructions (rather
than their existence), and their work provided the original inspiration for our research.
We compare our results with those of Kim et al. in the following section.

1.1. Our results. Informally, we say a permutation π : {0, 1}n → {0, 1}n is
one-way with security S if any circuit of size1 at most S inverts π with probability
less than 1/S (one can think of S as a slightly superpolynomial function of n but our
results hold for any choice of S). In this work, we consider two types of black-box
constructions, described informally now and discussed in more detail in section 1.3.
Following the terminology introduced in [37], a semi-black-box construction (based
on a one-way permutation) is an oracle procedure P (·) such that, for any one-way
permutation f given as an oracle, (1) P f has the desired functionality and (2) P f is
“secure” (in some appropriate sense) against every efficient (oracle) adversary Af even
when considering adversaries given oracle access to f . In contrast, a weak black-box
construction is an oracle procedure P (·) satisfying (1) as before but for which, for any
one-way permutation f given as an oracle, the only guarantee is that (2) P f is secure
against efficient adversaries A that are not given oracle access to f . Both notions
preclude using the code (or circuit) of the one-way permutation f in the construction;
roughly speaking (see [37] for further elaboration), semi-black-box constructions also
rule out the use of the adversary’s code in the security reduction (whereas weak black-
box constructions do not). Clearly, any semi-black-box construction is also a weak
black-box construction and so impossibility results for the latter are stronger than
impossibility results for the former.

Given these definitions, our results may be summarized informally as follows.

Pseudorandom generators (PRGs). Let U� denote the uniform distribution
over �-bit strings. A PRG is a deterministic, length-increasing function G : {0, 1}� →
{0, 1}�+k such that G(U�) is computationally indistinguishable (by poly-time algo-

1We let the size of a circuit refer to the number of gates the circuit has.
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rithms) from U�+k. The notion of a PRG was introduced by Blum and Micali [8] and
Yao [42], who showed that PRGs can be constructed from any one-way permutation.
This was subsequently improved by H̊astad et al. [27], who show that a PRG can be
constructed from any one-way function. The Blum–Micali–Yao construction, using a
later improvement of Goldreich and Levin [22] (see also [18, section 2.5.3]), requires
Θ(k/ logS) invocations of a one-way permutation with security S to construct a PRG
stretching its input by k bits. This is the best-known efficiency for constructions based
on arbitrary one-way permutations.

We show that this is essentially the best efficiency that can be obtained using
black-box constructions. More formally, we show that any weak black-box construc-
tion of a PRG that stretches its input by k bits while making o(k/ logS) invocations
of a one-way permutation with security S implies the unconditional existence of a
PRG (i.e., without any invocations of the one-way permutation). Put another way,
the only way to design a more efficient construction of a PRG is to design a PRG
from scratch! This would in particular imply the unconditional existence of a one-way
function, as well as a proof that P �= NP .

(Families of) universal one-way hash functions (UOWHFs). A UOWHF
H = {hs} is a family of length-decreasing functions (all defined over the same domain
and range) such that for any input x and random choice of hi ∈ H it is hard to find a
collision (i.e., an x′ �= x such that hi(x

′) = hi(x)). UOWHFs were introduced by Naor
and Yung [36], who show that UOWHFs suffice to construct secure signature schemes
and furthermore show how to construct the former from any one-way permutation.
Rompel [38] later gave a construction of UOWHFs, and hence signature schemes,
based on any one-way function. The Naor–Yung construction requires one invocation
of the one-way permutation per bit of compression; that is, if hi : {0, 1}�+k → {0, 1}�
(for all hi ∈ H), then evaluating hi requires k invocations of the one-way permutation.
This can be improved easily to obtain a construction making Θ(k/ logS) invocations
to compress by k bits.

We show that this, too, is essentially optimal. In particular, any semi -black-
box construction of a UOWHF whose hash functions compress their input by k bits
yet can be evaluated using o(k/ logS) invocations of a one-way permutation (with
security S) implies the unconditional existence of a UOWHF. Since the existence of
UOWHFs implies the existence of one-way functions, this consequence would again
imply a proof of P �= NP . This improves on the work of Kim, Simon, and Tetali [33],
who show a similar result but only for the case of constructions making o(

√
k/ logS)

invocations of a one-way permutation.

Encryption schemes. PRGs and UOWHFs may be viewed as one-party, or
stand-alone, cryptographic primitives for which there is no inherent notion of inter-
action. We also explore the efficiency of two-party protocols, including those used in
a public-key setting.

A public-key encryption scheme for m-bit messages is semantically secure [25] if
for any two messages M0,M1 ∈ {0, 1}m the distribution over encryptions of M0 is
computationally indistinguishable from the distribution over encryptions of M1, even
when given the public key as input. A similar definition (but with no public key) holds
for the case of private-key encryption. Public-key encryption schemes constructed
using the hard-core bit paradigm [8, 7, 22, 42] require Θ(m/ logS) invocations of a
trapdoor permutation to encrypt an m-bit message. Similarly, private-key encryption
schemes constructed using this paradigm require Θ(m−k

log S ) invocations of a one-way
permutation, where k is the length of the shared key. The same bound holds in the
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private-key case even if one is willing to use the stronger assumption of a trapdoor
permutation.

We show that the above constructions are essentially the best possible (at least,
for the notions of security considered above). For the case of public-key encryption,
we show that any weak black-box construction supporting encryption of m-bit mes-
sages requires Ω(m/ logS) invocations of the trapdoor permutation for the encryption
algorithm alone (i.e., in addition to any invocations made during the key-generation
phase). Using related techniques, we also show that any weak black-box construction
of a private-key encryption scheme—even when based on trapdoor permutations—
which securely encrypts m-bit messages using a k-bit key must query its permutation
oracle Ω(m−k

log S ) times. In each case, we show that any weak black-box construction
beating our bound would imply the unconditional existence of a one-way function
(from which a secure private-key encryption scheme, with no reliance on an oracle,
can be derived) and hence a proof that P �= NP .

Signature schemes. We say a one-time signature scheme is secure if no efficient
adversary can forge a valid signature on a new message after seeing a signature on
a single, random message. (We remark that it is easy to covert any such scheme to
one that is secure when an adversary sees a signature on a single, chosen message:
run two of the basic schemes in parallel to obtain keys (PK1, SK1), (PK2, SK2) and
set PK = (PK1, PK2); to sign a message M ∈ {0, 1}m choose random r ∈ {0, 1}m,
sign r using SK1, sign r ⊕ M using SK2, and output both signatures.) Of course,
lower bounds on one-time schemes immediately extend to schemes satisfying stronger
definitions of security [26]. We show that in any semi -black-box construction of a one-
time signature scheme for messages of length m based on a one-way permutation, the
verification algorithm must evaluate the one-way permutation Ω(m/ logS) times. As
before, any semi-black-box construction beating our bound implies the unconditional
existence of a one-way function (from which a secure signature scheme requiring no
oracle access can be constructed).

We observe that there exist one-time signature schemes essentially meeting our
lower bound; see section 4.5 for further discussion.

1.2. Overview of our techniques. We prove our results in an extension of
the model of Impagliazzo and Rudich [31, 39]. Among other things, Impagliazzo and
Rudich prove that a semi-black-box construction of a secure key-exchange protocol
based on a one-way permutation would inherently yield a proof that P �= NP , and
hence it is presumably hard to come up with such a construction. (This was later
strengthened by Reingold, Trevisan, and Vadhan [37], who proved unconditionally
that there exists no semi-black-box construction of a key-exchange protocol based on
one-way permutations.) Our results are in the same vein but are in many respects
even stronger. First, some of our impossibility results concern the larger class of
weak black-box constructions. Furthermore, in all cases we show that constructions
beating our bounds would imply the unconditional existence of a one-way function;
this is stronger than the results of Impagliazzo–Rudich both because the existence of
a one-way function is not known to be implied by P �= NP and because (in all but one
case) a one-way function suffices to give an unconditional construction of the object
under consideration. Finally, we stress that Impagliazzo and Rudich were concerned
with the question of feasibility, while we are concerned with questions of efficiency.

Each of our proofs hinges on a technical result that has not been stated or proved
previously: a random permutation on t-bit strings is, with high probability, one-
way with security 2Ω(t) even against nonuniform adversaries. For the related case of
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random functions, a similar result has been proved by Impagliazzo and Rudich [31]
in the (much simpler) uniform case and by Impagliazzo [29] in the nonuniform case.2

We also show a similar result for the case of trapdoor permutations.
Using this result, we now describe the intuition behind our lower bound using the

case of PRGs as an example. Given a secure construction G of a PRG having oracle
access to a one-way permutation over n-bit strings, we run G with a permutation oracle
that randomly permutes its first t = Θ(logS) bits while leaving the remaining n − t
bits unchanged. It follows from the technical result above that with high probability
such a permutation is one-way with security S, and hence G is secure when run with
a permutation chosen from this distribution. Let q be the number of queries made
by G to its oracle. The key point of our proof is to notice that the answers to these
q oracle queries can be simulated by a deterministic function G′ itself (i.e., without
access to any oracle) if q · t random bits, representing the t-prefixes of the q answers
to G’s oracles queries, are included as part of the seed of G′. The distribution on
the output of G′ (over random choice of seed) is essentially identical to that of the
output of G (over random seed, and random choice of oracle as above) and is thus
indistinguishable from uniform. Finally, if q is small, then the seed-length does not
grow too much and the input of G′ remains shorter than its output. But this means
that G′ is an unconditional PRG which does not require any oracle access (a corollary
of which is a proof that P �= NP ).

Additional technical work is needed to prove our bounds on UOWHFs, public-
key encryption schemes, and digital signature schemes. In the latter two cases in
particular, which are in a public-key setting, there is no seed as part of which to include
the necessary randomness for answering oracle queries, and thus no immediate way
to apply the above technique. The proofs of our lower bounds in these cases follow a
slightly different approach. In the case of public-key encryption, for example, we show
that a scheme making fewer than the prescribed number of queries can be used to
construct (unconditionally) a secure private-key encryption scheme in which the key
is shorter than the message. Moving from the public-key to the private-key setting
circumvents the issues above and enables the necessary randomness to be included
as part of the shared key without compromising the functionality or the security of
the scheme. Unfortunately, our result in this case is somewhat weaker than what we
obtain in all other cases; namely, we show that a public-key encryption scheme making
few black-box oracle queries exists only if a secure private-key encryption scheme (or,
equivalently, a one-way function) exists unconditionally. This is, of course, weaker
than showing the unconditional existence of a secure public-key encryption scheme.
We stress that for the case of PRGs, UOWHFs, private-key encryption schemes,
and signature schemes, constructions beating our bounds imply the existence of an
unconditional construction for each of these tasks.

1.3. Black-box lower bounds and impossibility results. We provide here
a brief discussion regarding the notion of black-box constructions. Our presentation
adapts the recent definitional work of Reingold, Trevisan, and Vadhan [37], simplifying
their definitions when appropriate for the present context. The discussion here is
relatively informal, and we have chosen to provide definitions specific to each primitive
in the relevant subsections of section 4 rather than providing a single, generic definition
as in [37].

2Although one could derive our result from Impagliazzo’s result and the fact that a random
function is indistinguishable from a random permutation, our proof is quite different and a bit
simpler.
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At a high level, a construction P of a primitive based on, say, a one-way permuta-
tion is a procedure which takes as input a permutation f and outputs a (description
of a) circuit3 having some desired functionality. Informally, a construction P uses
f as a black-box if P relies only on the input/output characteristics of the provided
function f and not on any internal structure of the circuit computing f ; formally, this
means the construction can be described as an oracle procedure P (·) such that P f

itself realizes the desired functionality.
In addition to correctness (i.e., the requirement that P f has the desired function-

ality for any permutation f), a construction also provides some guarantee with regard
to the security of the resulting implementation P f . We say P is a semi-black-box
construction if the following holds:

For any hard-to-invert permutation f , the implementation P f is se-
cure (in some sense appropriate for the primitive being constructed)
against all efficient adversaries, even those given oracle access to f .

In contrast, P is a weak black-box construction if the following relaxed definition holds:
For any hard-to-invert permutation f , the implementation P f is se-
cure against all efficient adversaries (who are not given oracle access
to f).

The distinction between whether an adversary is given oracle access to f is important
since the above are required to hold even when f is not efficiently computable (and
so the only way for an efficient adversary to evaluate f , in general, may be via oracle
access to f). We hasten to point out, however, that even weak black-box constructions
suffice to give implementations with meaningful security guarantees in the real world:
in this case, f will be efficiently computable, and furthermore an explicit circuit for
f will be known; hence, it is irrelevant whether an adversary is given oracle access to
f .

Clearly, any semi-black-box construction is also a weak black-box construction,
and hence impossibility results for the latter are stronger. Indeed, Reingold, Tre-
visan, and Vadhan [37] show that (1) a semi-black-box construction of key exchange
from one-way functions is unconditionally impossible, yet (2) (informally) if the state-
ment “one-way functions imply key exchange” is true, then there does exist a weak
black-box construction of key exchange (for a single-bit key) from one-way functions.
Roughly speaking, a difference between semi-black-box and weak black-box construc-
tions is with regard to whether the circuits of adversaries attacking P f can be used
in the security reduction (i.e., the proof that P is secure). In more detail, typical
security proofs for a construction P proceed by showing via reduction how any effi-
cient adversary AP breaking the security of P f can be used to construct an efficient
adversary Af inverting f . Since the latter is impossible by assumption on f , this
implies that no AP with the claimed properties exists. If the reduction relies only
on the input/output characteristics of AP , we refer to this as a reduction which uses
the adversary as a black-box. In contrast, a reduction which relies on knowledge of
the circuit for AP is said to make non-black-box use of the adversary. A security
reduction for a weak black-box construction may potentially make non-black-box use
of the adversary. As argued in [37], however, security reductions for semi -black-box
constructions are essentially restricted to using the adversary as a black-box (see [37]
for further discussion).

Non-black-box constructions. Black-box constructions form an important

3For simplicity, the present discussion is phrased in terms of circuits rather than Turing machines,
although similar definitions could be made in the latter case as well.
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subclass, since most cryptographic constructions are black-box (indeed, most known
constructions are fully black-box [37], a notion which is even more restrictive than
semi-black-box). We stress, however, that a number of non-black-box cryptographic
constructions are known.4 The examples of which we are aware occur in two ways:
due to the use of generic zero-knowledge proofs (of knowledge) [23, 12, 4] or due to the
use of generic protocols for secure computation [43, 24]. As an illustrative example,

let Lf denote the image of a function f ; i.e., Lf
def
= {y|y = f(x)}. A cryptographic

protocol which utilizes a zero-knowledge proof that y ∈ Lf (for f a one-way function,
say) requires the parties to agree on a circuit computing f and is thus inherently non-
black-box.5 Examples of non-black-box constructions where zero-knowledge proofs
of this sort are used include a construction of an identification protocol based on
one-way functions [12], a signature scheme based on noninteractive zero-knowledge
[5], and all known constructions of chosen-ciphertext-secure encryption schemes from
trapdoor permutations (e.g., [11]). Furthermore, protocols for distributed compu-
tation (without honest majority) tolerating computationally bounded, malicious ad-
versaries [24, 43] are themselves non-black-box.6 (This is in contrast to the case of
zero-knowledge proofs; cf. footnote 5.)

Knowledge of the circuit computing f is also necessary if one wants to evaluate
f in a secure, distributed fashion (e.g., if two parties with respective inputs x1, x2

want to evaluate y = f(x1 ⊕ x2) without revealing any more information about their
inputs than what is revealed by y itself). Thus, a generic construction of a threshold
cryptosystem [10] based on a family F of trapdoor permutations (in which the parties
share the trapdoor for inverting a single member of this family) would inherently make
non-black-box use of the underlying circuit(s) for F . Another example is a result of
Beaver [3], which makes non-black-box use of a one-way function f to extend “few”
oblivious transfers into “many.”

Given the above, a black-box impossibility result cannot be said to rule out the
feasibility of a particular construction. Yet, it is unclear how non-black-box techniques
can help outside the domains mentioned above (i.e., generic use of zero-knowledge
proofs or secure computation). Furthermore, a black-box impossibility result is useful
insofar as it indicates the type of techniques that will be necessary to achieve a desired
result or, conversely, the type of techniques that are ruled out. Finally, it is fair to say
that non-black-box constructions are much less efficient than black-box ones (this is
certainly the case for all the examples given above, and we are aware of no exceptions),
and thus a black-box impossibility result does seem to rule out constructions likely to
be practical.

1.4. Future work and open problems. This work suggests a number of in-
triguing research directions. The results given here suggest that assuming only the
existence of one-way permutations (or, in some cases, even trapdoor permutations)
may be too weak of a computational hypothesis to obtain efficient cryptographic con-

4We focus here on constructions making non-black-box use of an underlying function f , rather
than on constructions whose security analysis makes non-black-box use of the adversary (as in [1, 2]).

5Note that constructions of zero-knowledge proofs for NP (e.g., [23]) are themselves black-box
in their usage of primitives such as one-way functions. The issue is that a proof for the language of
interest—e.g., Lf in the example in the text—cannot be given unless a (poly-size) circuit computing
f is available.

6For example, although the well-known protocol for oblivious transfer secure against semi-honest
adversaries [19, section 7.3.2] makes black-box use of trapdoor permutations, adapting the protocol
(using zero-knowledge proofs) to ensure security against malicious adversaries involves non-black-box
use of the circuit for the trapdoor permutation.
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structions. Thus, stronger assumptions may be needed to build practical schemes. It
is important to explore the minimal such assumptions necessary to achieve greater
efficiency, as well as to bound the maximum achievable efficiency even when such
stronger assumptions are made. For example, what additional efficiency is possible
if homomorphic one-way permutations (i.e., permutations over a group G satisfying
f(ab) = f(a)f(b) for all a, b ∈ G) are assumed?

In a related vein, it will be interesting to explore more efficient constructions
based on specific number-theoretic assumptions. As will be evident from our proof
techniques, the efficiency limitations of constructions based on arbitrary (trapdoor)
one-way permutations stem from the fact that a one-way permutation may have se-
curity S even if it has only Θ(logS) hard-core bits. (Actually, we use pathological
functions of this form to prove our lower bounds.) But specific one-way permuta-
tions and trapdoor permutations with Θ(n) hard-core bits are known under suitable
number-theoretic assumptions (e.g., [28, 9]). Given such functions, we know how to
construct PRGs and semantically secure private- and public-key encryption schemes
with improved efficiency. It remains open, however, whether such functions can also
be used to improve the efficiency of digital signature schemes or (say) public-key
encryption schemes achieving chosen-ciphertext security.

The present work also leaves some more concrete open questions. First, can
bounds on the efficiency of other cryptographic constructions (e.g., commitment
schemes) also be given? Additionally, our lower bounds essentially match known
upper bounds only for schemes achieving relatively weak notions of security, namely,
semantic security for encryption of a single message in the case of encryption and
one-time security for the case of signatures. What can be said about schemes achiev-
ing stronger notions of security? Examples of interest include private-key encryption
schemes secure when polynomially many messages are encrypted (this seems related
to the efficiency of pseudorandom functions, for which a gap remains between known
upper and lower bounds), public-key encryption schemes satisfying various flavors
of nonmalleability/security against chosen-ciphertext attacks, and signature schemes
secure when polynomially many messages are signed.

Finally, our bound for signatures pertains to the efficiency of signature verifi-
cation. It would be nice to have corresponding bounds for the efficiency of key-
generation/signing.

2. Definitions and preliminaries. In this section, we review some notation
and definitions for the various standard cryptographic primitives considered in this
work. Appropriate definitions of black-box constructions are deferred to the relevant
sections containing our lower bounds.

In what follows, we consider a number of definitions of (S, ε)-security having the
form “no circuit of size S can have advantage better than ε,” where advantage is
defined in some appropriate way. In each of the cases considered here, the existence
of an (S, ε)-secure scheme for any ε < 1 implies the existence of an (S′, ε′)-secure
scheme for an arbitrarily small ε′ > 0. For this reason, in all our lower bounds we
content ourselves with showing the existence of an (S, ε)-secure construction for an
arbitrary ε < 1.

All our results are stated and proved in the nonuniform setting for simplicity
only; we stress that they extend immediately to the uniform setting as well. Indeed,
it is for this reason that we claim that constructions beating our efficiency bounds
imply the existence of one-way functions and P �= NP . For example, Theorem 4.2
states only that the existence of a certain PRG construction G(·) : {0, 1}� → {0, 1}�+k
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based on a permutation π : {0, 1}n → {0, 1}n implies the unconditional existence of
a PRG G′ : {0, 1}�′ → {0, 1}�+k. Essentially the same proof, however, also shows

that a certain construction of a PRG family {G(·)
i : {0, 1}�(i) → {0, 1}�(i)+k(i)} based

on a one-way permutation family {πi : {0, 1}n(i) → {0, 1}n(i)}, where G
(·)
i can be

evaluated by a uniform algorithm in polynomial time (in i), implies the unconditional
existence of a PRG family {G′

i : {0, 1}�′(i) → {0, 1}�(i)+k(i)}, where again each G′
i can

be evaluated by a uniform algorithm in polynomial time.

2.1. One-way permutations and trapdoor permutations. We say that a
function π : {0, 1}n → {0, 1}n is (S, ε)-one way if for every circuit A of size ≤ S we
have Prx[A(f(x)) ∈ f−1(f(x))] ≤ ε. When f is given as an oracle, we provide A with
access to f and write this as Af . To reduce the number of parameters, we will call a
function S-hard if it is (S, 1/S)-one way.

Let Πt denote the set of all permutations over {0, 1}t. In section 3.1 we prove the
following theorem.

Theorem 2.1. For all sufficiently large t, a random π ∈ Πt is 2t/5-hard with

probability at least 1 − 2−2t/2

.
For t ≤ n, let Πt,n denote the subset of Πn such that π ∈ Πt,n iff π(a, b) = (π̂(a), b)

for some π̂ ∈ Πt (that is, π permutes the first t bits of its input, while leaving the
remaining n − t bits fixed). An immediate corollary of the above theorem is that if
t = 5 logS, then for any n ≥ t a random π ∈ Πt,n is S-hard with very high probability.

Corollary 2.2. For all sufficiently large t and any n ≥ t, a random π ∈ Πt,n

is 2t/5-hard with probability greater than 1 − 2−2t/2

.
Our model for (one-way) trapdoor permutations is somewhat more involved. We
represent a family of trapdoor permutations as a tripartite oracle τ = (G,F, F−1).
Informally, G corresponds to the key generation oracle which when queried on a string
td (intended as a trapdoor) produces the corresponding public key k. The oracle F
is the actual trapdoor permutation, which will be queried on key k and an input
x. The oracle F−1 allows inversion of F ; i.e., if G(td) = k and F (k, x) = y, then
F−1(td, y) = x.

More formally, consider the class Tn = {τ | τ = (G,F, F−1)} where
• G ∈ Πn is a permutation over {0, 1}n (having G map trapdoors to keys rather

than having G map seeds to a (trapdoor, key) pair does not affect our results);
• F : {0, 1}n × {0, 1}n → {0, 1}n is an oracle such that, for each k ∈ {0, 1}n,
F (k, ·) is a permutation on {0, 1}n;

• F−1 : {0, 1}n × {0, 1}n → {0, 1}n is an oracle defined as follows: F−1(td, y)
returns the unique x such that G(td) = k and F (k, x) = y.

A uniformly random τ = (G,F, F−1) ∈ Tn is chosen in the natural way: G is chosen
at random from Πn and, for each k ∈ {0, 1}n, the permutation F (k, ·) is chosen
independently at random from Πn. We say that trapdoor permutation family τ =
(G,F, F−1) is (S, ε)-trapdoor one way if for every circuit A of size ≤ S we have

Pr
x,td

[k := G(td) : Aτ (k, F (k, x)) = x] ≤ ε.

We say that τ is S-trapdoor one way if it is (S, 1/S)-trapdoor one way. When clear
from the context, we will also say that τ is S-hard. Although technically one must
always speak of families of trapdoor permutations, we will often abuse terminology
and simply refer to a τ ∈ Tn as a trapdoor permutation.

In section 3.2, we prove the following analogue of Theorem 2.1 for trapdoor per-
mutations.
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Theorem 2.3. For all sufficiently large t, a random τ ∈ Tt is 2t/5-hard with

probability greater than 1 − 2−2t/2

.
For t ≤ n, we let Tt,n ⊆ Tn be defined as follows: τ = (G,F, F−1) ∈ Tt,n iff the

following hold:
• G ∈ Πt,n, and thus G(tda, tdb) = (Ĝ(tda), tdb) for some Ĝ ∈ Πt.

• F ((ka, kb), (xa, xb)) = (F̂ (ka, xa), xb), where F̂ (ka, ·) ∈ Πt. Equivalently,
F (k, ·) ∈ Πt,n and furthermore this permutation is determined by the first t
bits of k.

• As before, F−1(td, y) returns the unique x s.t. G(td) = k and F (k, x) = y.
An immediate corollary of Theorem 2.3 is that if t = 5 logS, then for any n ≥ t

a random τ ∈ Tt,n is S-hard with very high probability.
Corollary 2.4. For all sufficiently large t and any n ≥ t, a random τ ∈ Tt,n is

2t/5-hard with probability greater than 1 − 2−2t/2

.

2.2. Pseudorandom generators. We say that two distributions X,Y are (S, ε)-
indistinguishable if for every distinguishing circuit Dist of size at most S we have∣∣∣∣ Pr

x∈X
[Dist(x) = 1] − Pr

y∈Y
[Dist(y) = 1]

∣∣∣∣ ≤ ε.

We also write this as X
(S,ε)
≈ Y . We say that a function G : {0, 1}� → {0, 1}�+k is an

(Sg, ε)-secure PRG if G(U�) is (Sg, ε)-indistinguishable from U�+k, where Un denotes
the uniform distribution over {0, 1}n.

2.3. Universal one-way hash functions. As discussed in the introduction,
a family of UOWHFs is a family H of length-decreasing functions such that, for a
random function h ∈ H and a random point x in the domain, it is hard (given h, x)
to find x′ �= x such that h(x′) = h(x). More formally, a family H = {hs : {0, 1}�+k →
{0, 1}�}s∈{0,1}r of functions is an (S, ε)-UOWHF if for every circuit A of size at most
S we have

Pr
s,x

[A(s, x, hs(x)) = x′ : x′ �= x
∧

hs(x
′) = hs(x)] ≤ ε.

We will represent such a family as a single function H : {0, 1}r × {0, 1}�+k → {0, 1}�,
where H(s, x) = hs(x).

2.4. Public- and private-key encryption.

2.4.1. Public-key encryption. A public-key encryption scheme for m-bit mes-
sages is a tuple of algorithms PKE = (Gen,Enc,Dec) having the following functional-
ity:

• The key generation algorithm Gen is a probabilistic algorithm which generates
a key pair (pk, sk). We say pk is the public key and sk is the secret key.

• The encryption algorithm Enc is a probabilistic algorithm which, on input a
public key pk and a message M ∈ {0, 1}m, outputs a ciphertext C.

• The decryption algorithm Dec is a deterministic algorithm which, on input a
secret key sk and a ciphertext C, outputs a message M ∈ {0, 1}m or ⊥.

We also require perfect correctness; that is, for all (pk, sk) output by Gen, all M ∈
{0, 1}m, and all C output by Enc(pk,M), we have Dec(sk, C) = M . (Our results
can be modified appropriately for the case of decryption schemes with error; see the
remark following Lemma 4.6.)
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For M ∈ {0, 1}m, let PKE(M) denote the distribution on the view of an adversary
eavesdropping on the encryption of message M ; i.e.,

PKE(M)
def
= {(pk, sk) ← Gen;C ← Enc(pk,M) : (pk, C)} .

We say that PKE is (Se, ε)-secure if for all M0,M1 ∈ {0, 1}m we have

PKE(M0)
(Se,ε)≈ PKE(M1).

This corresponds to a definition of indistinguishability, or semantic security [25].
The above can be extended in the natural way to allow for interactive encryp-

tion schemes. However, since we do not explicitly consider interactive public-key
encryption in this work and since a formal definition of interactive encryption in the
private-key setting is given below, we omit the details.

2.4.2. Private-key encryption. The model for private-key encryption is an
appropriate modification of the above. A private-key encryption scheme for m-bit
messages using k-bit keys is a pair of algorithms SKE = (Enc,Dec), where

• the encryption algorithm Enc is a probabilistic algorithm which, on input a
key sk ∈ {0, 1}k and a message M ∈ {0, 1}m, outputs a ciphertext C;

• the decryption algorithm Dec is a deterministic algorithm which, on input a
key sk ∈ {0, 1}k and a ciphertext C, outputs either a message M ∈ {0, 1}m
or ⊥.

As in the public-key case, we require perfect correctness: i.e., for all sk ∈ {0, 1}k, all
M ∈ {0, 1}m, and all C output by Enc(sk,M), we have Dec(sk, C) = M . (Our results
can be modified appropriately for the case of decryption schemes with error; see the
remark following Lemma 4.6.)

For M ∈ {0, 1}m, denote by SKE(M) the probability distribution over the view
of an adversary eavesdropping on the encryption of message M (where the shared key
sk is chosen uniformly at random); i.e.,

SKE(M)
def
=

{
sk ← {0, 1}k;C ← Enc(sk,M) : C

}
.

We say that SKE is (Se, ε)-secure if for all M0,M1 ∈ {0, 1}m we have

SKE(M0)
(Se,ε)≈ SKE(M1).

The above can be extended to allow for interactive encryption in the natural
way. In this case, Enc and Dec represent interactive Turing machines operating in a

sequence of rounds. For notational convenience, we let T ← Ênc(sk,M) denote the
experiment in which random coins ω1, ω2 are chosen for Enc and Dec, respectively, and
T is the transcript resulting from the interaction of Enc(sk,M ;ω1) with Dec(sk;ω2).

We also let M ′ ← D̂ec(sk,M) denote the final output of Dec at the conclusion of the

above experiment. Perfect correctness requires that D̂ec(sk,M) = M with probability
1. In the interactive setting, SKE(M) denotes the distribution

SKE(M)
def
=

{
sk ← {0, 1}k;T ← Ênc(sk,M) : T

}
;

definitions for (Se, ε)-security follow in the obvious way.
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2.5. Signature schemes. A signature scheme for m-bit messages is a tuple of
algorithms SIG = (Gen,Sign,Vrfy) having the following functionality:

• The key generation algorithm Gen is a probabilistic algorithm which generates
a key pair (PK,SK), where PK is the public key and SK is the secret key.

• The signing algorithm Sign is a probabilistic algorithm which, on input SK
and a message M ∈ {0, 1}m, outputs a signature σ.

• The verification algorithm Vrfy is a deterministic algorithm which, on input
PK, a message M , and a signature σ, outputs a single bit.

We also require that for all (PK,SK) output by Gen, all M ∈ {0, 1}m, and all σ
output by Sign(SK,M) we have Vrfy(PK,M, σ) = 1.

Our definition of security for signature schemes is extremely weak: we require
security against existential forgery only for an adversary who gets a signature on a
single, random message (i.e., we consider a one-time signature scheme secure under
random-message attack). Our lower bounds apply even to weakly secure schemes of
this type. Since any signature scheme secure against adaptive chosen-message attack
(cf. [26]) trivially achieves this “weak” level of security, our results immediately imply
a bound for the more general case. Formally, signature scheme SIG is (SΣ, ε)-secure
if for all circuits A of size at most SΣ we have

Pr

⎡
⎣ (PK,SK) ← Gen;M ← {0, 1}m;

σ ← Sign(SK,M); (M ′, σ′) := A(PK,M, σ) :
Vrfy(PK,M ′, σ′) = 1

∧
M ′ �= M

⎤
⎦ ≤ ε.

3. Hardness of random (trapdoor) permutations. In this section, we state
and prove two key technical theorems which show that a random permutation π ∈ Πt

and a random trapdoor permutation τ ∈ Tt are exponentially hard with all but
negligible probability for t large enough. Before doing so, we first state the following
bound on the number of oracle circuits of a given size S.

Lemma 3.1. The number of circuits of size S having input/output length n and
oracle access to a function f : {0, 1}n → {0, 1}n is at most 22S+(S+1)n(log(Sn+n)+1).

Proof. A circuit of the form considered here consists of three types of gates: and
gates, or gates, and oracle gates; the first two have in-degree 2 and out-degree 1, while
oracle gates have in-degree and out-degree n. A circuit may be specified by listing
for each gate its type and, for each of this gate’s at most n input wires, the source of
the wire (which may be the output wire of another gate or one of the input wires of
the circuit) and whether its value is complemented. Finally, for each of the n output
wires of the circuit one must also specify the source of this wire and whether its value
is complemented. The information associated with each gate can be specified using
at most 2 + n(log(Sn+ n) + 1) bits (per gate), while the information associated with
each output wire can be specified using at most an additional log(Sn + n) + 1 bits.
The lemma follows.

3.1. Hardness of random permutations. We now prove Theorem 2.1, re-
stated for convenience.

Theorem 3.2. For all sufficiently large t, a random π ∈ Πt is 2t/5-hard with

probability at least 1 − 2−2t/2

.

Proof. We begin by showing that given any (π,A) such that A inverts π with
high probability, the permutation π has a short description (given A).

Claim. Let A be a circuit that makes q queries to a permutation π : {0, 1}t →
{0, 1}t and for which Pry[A

π(y) = π−1(y)] ≥ ε. Then π can be described using at
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most

2 log

(
2t

a

)
+ log

(
(2t − a)!

)
bits (given A), where a = ε2t/(q + 1).

Proof of claim. Let N = 2t. Consider the set I of at least εN points on which
A is able to invert π, after making q queries to π. We argue that there exists a set
Y ⊆ I such that |Y | ≥ a and such that the value of π−1 is completely determined

by the circuit A, the sets Y and X
def
= π−1(Y ), and the value of π−1 on all points in

{0, 1}t \ Y .
Define Y via the following process. Initially Y is empty, and all elements in I

are candidates for inclusion in Y . Take the lexicographically first element y from I,
and place it in Y . Next, simulate the computation of Aπ(y) and let x1, . . . , xq be the
queries made by A to π (we assume without loss of generality that they are different),
and let y1, . . . , yq be the corresponding answers (i.e., yi = π(xi)). If y �∈ {yi}qi=1,
then remove y1, . . . , yq from I. If y = yi for some i, then remove y1, . . . , yi−1 from I.
Then take the lexicographically smallest of the remaining elements of I, put it into
Y , etc. At any step of the construction, one element is added to Y and at most q are
removed from I. Since I initially contains at least εN elements, in the end we have
|Y | ≥ �εN/q > εN/(q + 1).

We claim that given descriptions of the sets Y and X = π−1(Y ), the values of π
on {0, 1}t \ X, and the circuit A, it is possible to invert (or, equivalently, compute)
π everywhere. For y �∈ Y , the value of π−1(y) is explicitly given. The values of π−1

on Y can be reconstructed sequentially for all y ∈ Y , taken in lexicographic order,
as follows. Simulate the computation of Aπ(y). By construction of Y , during its
computation Aπ(y) will query π either on points not in X, on points x ∈ X for which
π(x) <lex y, or on the point x ∈ X for which π(x) = y. In the first two cases, we
have enough information to continue the simulation. In the last case, the query itself
gives the desired answer π−1(y). In all possible cases, we have enough information to
reconstruct π−1(y).

Describing Y , X, and the values of π on {0, 1}t \X requires

2 log

(
N

|Y |

)
+ log ((N − |Y |)!)

bits, which is at most the number of bits claimed.
Given the above claim, we may now easily prove the theorem. Let A be an oracle

circuit of size at most S = 2t/5. Note that A will make at most q = 2t/5 queries to
π. Let N = 2t. From the claim, we see that the fraction of permutations π ∈ Πt such
that

Pr
x

[Aπ(π(x)) = x] ≥ 2−t/5(1)

is at most (
N
a

)2
(N − a)!

N !
=

(
N
a

)
a!

,

where a = 2−t/52t/(2t/5 + 1) ≥ N3/5/2. Using the inequalities a! ≥ (a/e)a and(
N
a

)
≤ (eN/a)a, we may derive the following upper bound on the above expression:(

N
a

)
a!

≤
(
e2N

a2

)a

<

(
4e2

N1/5

)a

< 2−a < 2−N3/5/2
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for all sufficiently large N .

By Lemma 3.1 there are at most 22S+(S+1)t(log(St+t)+1) = 2Õ(N1/5) circuits of size
S (where the Õ-notation suppresses polylogarithmic factors). A union bound thus
shows that the probability over a random choice of π ∈ Πt that there exists a circuit
of size S for which (1) holds is at most

2Õ(N1/5) · 2−N3/5/2 < 2−N1/2

for all sufficiently large N .

3.2. Hardness of random trapdoor permutations. We now prove an ana-
logue of the above theorem for trapdoor permutations. (This is Theorem 2.3, restated
for convenience.)

Theorem 3.3. For all sufficiently large t, a random τ ∈ Tt is 2t/5-hard with

probability greater than 1 − 2−2t/2

.
Proof. The proof is substantially similar to the proof of Theorem 2.1. We first

prove the following claim.
Claim. Let A be a circuit making q queries to a trapdoor permutation τ ∈ Tt and

for which Prk,y[A
τ (k, y) = x ∧ F (k, x) = y] ≥ ε. Then τ can be described using at

most

1 + 2t log(2t!) + t + 2 log

(
2t

a

)
+ log

(
(2t − a)!

)
bits (given A), where a = ε2t/(2q + 1).

Proof of claim. Let N = 2t, and let Q(k, y) denote the event that Aτ (k, y) queries
either G(td) or F−1(td, y′), where y′ is arbitrary and G(td) = k. Also, we say Aτ

inverts (k, y) if Aτ (k, y) = x such that F (k, x) = y. There are two possibilities: either

Pr
k,y

[Aτ inverts (k, y) ∧Q(k, y)] ≥ ε/2(2)

or

Pr
k,y

[Aτ inverts (k, y) ∧Q(k, y)] ≥ ε/2.(3)

Consider the first case. Here, there certainly exists a ŷ for which it is the case that
Prk[A

τ inverts (k, ŷ) ∧ Q(k, ŷ)] ≥ ε/2. Proceeding as in the proof of Theorem 2.1,
we will specify G using a small number of bits. Let I be the set of at least εN/2
points (k, ŷ) on which Aτ inverts (k, ŷ) and Q(k, ŷ) occurs. Define a set K ⊆ I via
the following process. Initially K is empty, and all elements in I are candidates for
inclusion in K. Take the lexicographically first element (k, ŷ) from I and place it in
K. Next, simulate the computation of Aτ (k, ŷ). Since Q(k, ŷ) occurs, we know that
there is a query i of the form G(td) or F−1(td, y′), where G(td) = k. Looking at each
of the preceding i−1 queries, for each query of the form G(td′) with answer k′ remove
(k′, ŷ) from I. For each query of the form F−1(td′, y′) let G(td′) = k′ and remove
(k′, ŷ) from I. Then take the lexicographically smallest of the remaining elements of
I, put it into K, etc. At any step of the construction, one element is added to K and
at most q are removed from I. Since I initially contains at least εN/2 elements, in
the end we have |K| ≥ �εN/2q > εN/(2q + 1).

Exactly as in the proof of Theorem 2.1 (and so we omit the details), the per-
mutation G is completely specified given A, ŷ, descriptions of K and G−1(K), the
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values of G−1 on {0, 1}t \ K, and the values of F on all points. This requires
2 log

(
N
|K|

)
+log ((N − |K|)!) bits plus an additional 2t log(2t!) bits to specify F . Using

an additional bit to specify that we are in the first case, we can completely specify τ
in at most the number of bits claimed.

Consider next the second case (i.e., when (3) holds). Here, there must exist a

k̂ for which Pry[A
τ inverts (k̂, y) ∧ Q(k̂, y)] ≥ ε/2. Now, we specify F (k̂, ·) using

a small number of bits. Let I be the set of at least εN/2 points (k̂, y) on which

Aτ inverts (k̂, y) and Q(k̂, y) does not occur. Define a set Y ⊆ I via the following
process. Initially Y is empty, and all elements in I are candidates for inclusion in
Y . Take the lexicographically first element (k̂, y) from I and place it in Y . Next,

simulate the computation of Aτ (k̂, y). Consider the � ≤ q queries made by A of

the form {F (k̂, xi)} with corresponding answers {yi}. If y �∈ {yi}�i=1, then remove

{(k̂, yi)}�i=1 from Y . If y = yj for some j, then remove {(k̂, yi)}j−1
i=1 from Y . Then

take the lexicographically smallest of the remaining elements of I, put it into Y ,
etc. At any step of the construction, one element is added to Y and at most q are
removed from I. Since I initially contains at least εN/2 elements, in the end we have
|Y | ≥ �εN/2q > εN/(2q + 1).

Following the proof of Theorem 2.1, the permutation F (k̂, ·) is completely specified

given A, descriptions of Y and the set X such that F (k̂, X) = Y , the value of F (k̂, ·)
on {0, 1}t \X, the values of G at all points, and the values of F (k, ·) at all points for

all k �= k̂. (We omit the details, but remark that we crucially use the fact that in the

computation of Aτ (k̂, y) with y ∈ Y we are guaranteed that Q(k̂, y) does not occur

and, in particular, A does not make a query of the form F−1(td, y′) with G(td) = k̂.)
This requires 2 log

(
N
|Y |

)
+ log ((N − |Y |)!) bits plus log(2t!) bits to specify G and

(2t − 1) log(2t!) bits to specify F (k, ·) for k �= k̂. Using an additional t bits to specify

k̂, as well as a bit to specify that we are in the second case, we have that τ is specified
in at most the number of bits claimed.

Proceeding as in Theorem 2.1, let A be an oracle circuit of size at most S = 2t/5

and note that A makes at most q = 2t/5 queries to τ . Let N = 2t. From the claim,
we see that the fraction of τ ∈ Tt such that Prk,y[A

τ inverts (k, y)] ≥ 2−t/5 is at most

2t+1
(
N
a

)
a!

≤ 2−N3/5/4

for sufficiently large N , where a = 2−t/52t/(2t/5+1 + 1) and using the fact that a ≥
N3/5/4.

Applying Lemma 3.1 (and taking into account that A here has input length 2t,
output length t, and access to three oracles some of which are functions from {0, 1}2t

to {0, 1}t), there are at most 2Õ(N1/5) circuits of size S. A union bound thus shows
that the probability over a random choice of π ∈ Πt that there exists a circuit of size
S for which (1) holds is at most

2Õ(N1/5) · 2−N3/5/4 < 2−N1/2

for all sufficiently large N .
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4. Lower bounds. In this section we prove our lower bounds.

4.1. Pseudorandom generators. We first show a lower bound for PRG con-
structions, defined formally as follows.

Definition 4.1. A PRG construction from a one-way permutation is an oracle
procedure G(·) : {0, 1}� → {0, 1}�+k that expects as an oracle a permutation π ∈ Πn.
We refer to k as the stretch of G.

We say G(·) is an (Sp, Sg, ε)-OWP-to-PRG weak black-box construction if for
every permutation π that is Sp-hard, G

π is an (Sg, ε)-secure PRG.
For any (Sp, Sg, ε)-OWP-to-PRG weak black-box construction with stretch k, we

prove that unless G queries π on at least Ω(k/ logSp) points, it is possible to derive
an unconditional construction of a pseudorandom generator. Before giving the proof,
we provide some intuition.

The basic idea of the proof is as follows. Let t = Θ(logSp). First, note that if G
uses as an oracle π ∈ Πt,n chosen uniformly at random, then G is an (Sg, ε)-secure
PRG with all but negligible probability (since a random permutation from Πt,n is
Sp-hard with all but negligible probability). Now, if G queries the oracle at only a
few (say, q) points, we can encode the answers to these queries in the seed of the PRG
itself. Furthermore, this encoding is short since only t bits are needed to answer a
query to π ∈ Πt,n. We thus obtain a PRG G′ : {0, 1}�′ → {0, 1}�+k which uses no
oracle at all, but which is able to simulate the computation of G when using a random
permutation oracle. The desired bound comes from the fact that G′ still stretches
its input provided that �′ is smaller than � + k. But �′ = � + qt since qt bounds the
number of bits needed to encode the t-bit answers to G’s q queries.

Theorem 4.2. Let G(·) : {0, 1}� → {0, 1}�+k be an (Sp, Sg, ε)-OWP-to-PRG weak
black-box construction that makes q queries to an oracle π ∈ Πn. If q < k/(5 logSp),

then there exists an (Sg, ε+ 2−S2
p + q2/S5

p)-secure PRG G′ : {0, 1}�′ → {0, 1}�+k with
�′ < � + k.

Proof. Since G(·) is an (Sp, Sg, ε)-OWP-to-PRG construction, this means that if
π : {0, 1}n → {0, 1}n is Sp-hard, then for any distinguisher T of size at most Sg we
have ∣∣∣∣ Pr

x∈U�+k

[T (x) = 1] − Pr
s∈U�

[T (Gπ(s)) = 1]

∣∣∣∣ ≤ ε.

Let t = 5 logSp. From Corollary 2.2 we know that a random permutation π ∈ Πt,n is

Sp-hard with probability greater than 1− 2−2t/2

. An averaging argument thus shows
that for any circuit T of size at most Sg we have∣∣∣∣∣∣ Pr

x∈U�+k

[T (x) = 1] − Pr
π∈Πt,n

s∈U�

[T (Gπ(s)) = 1]

∣∣∣∣∣∣ < ε + 2−2t/2

.(4)

Recall that any π ∈ Πt,n operates only on its first t input bits; i.e., any such
π satisfies π(a, b) = (π̂(a), b), where π̂ is a permutation over {0, 1}t. Without loss
of generality, we now assume that G always queries π with strings having distinct
t-prefixes. Indeed, for any G asking arbitrary queries, one can construct a Ĝ with
essentially the same running time, such that if G asks (a, b) with a equal to the t-prefix

of a previous query, Ĝ simulates the answer without querying π using the previously
obtained value of π̂(a). In general the behavior of Ĝ is different from that of G, but
when we restrict to π ∈ Πt,n they are equivalent.
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By assumption, G queries π at most q < k/t times. We now construct G′, which

takes as input a seed s′ of length �′
def
= � + qt < � + k. Let s denote the first � bits of

s′, and let y1, . . . , yq ∈ {0, 1}t denote the remaining qt bits. We then define

G′(s′) = G′(s, y1, . . . , yq)
def
= Gy1,...,yq (s),

where the notation Gy1,...,yq (s) denotes the computation of G(·)(s) when its ith oracle
query xi = (ai, bi) (with |ai| = t) is answered with (yi, b). (Here we use the fact that
the t-prefixes of G’s queries are distinct.)

G′ stretches its input by at least one bit and requires no oracle access. Further-
more, ∣∣∣∣∣∣ Pr

π∈Πt,n

s∈U�

[T (Gπ(s)) = 1] − Pr
s′∈U�′

[T (G′(s′)) = 1]

∣∣∣∣∣∣ ≤ 2 · Pr�y∈{0,1}qt [Coll],

where we let �y = y1, . . . , yq and Coll denotes the event that these q values are not
distinct. An easy birthday problem calculation shows that Pr�y∈{0,1}qt [Coll] ≤ q2/2t+1,
which together with (4) implies the statement of the theorem.

4.2. Universal one-way hash functions. In this section we prove lower bounds
for constructions of universal one-way hash functions based on one-way permutations.
The formal definition of such constructions follows.

Definition 4.3. A construction of a UOWHF from a one-way permutation is
an oracle procedure H(·)(·, ·) that expects as an oracle a permutation π ∈ Πn and is
given inputs s ∈ {0, 1}r and x ∈ {0, 1}�+k. The output is Hπ(s, x) ∈ {0, 1}�. We
refer to k as the compression of H.

We say H is an (Sp, Sh, ε)-OWP-to-UOWHF semi-black-box construction if for
every π that is Sp-hard, H

π is an (Sh, ε)-UOWHF even for circuits given oracle access
to π.

We show that if there exists an (Sp, Sh, ε)-OWP-to-UOWHF semi-black-box con-
struction with compression k making q < k/(5 logSp) queries to its oracle π, then it is
possible to derive an unconditionally secure construction of a UOWHF (i.e., without
any access to π).

As in the case of PRGs, we first observe that Hπ is secure when π is chosen
uniformly at random from Πt,n, for t = 5 logS. We then show that the computation
of Hπ for random π ∈ Πt,n can be simulated by an H ′ (without any oracle access)
by including as part of the key for H ′ the t-prefixes of the answers for the q queries
H makes to π. Furthermore, we include in the output of H ′ the t-prefixes of the q
queries themselves. The crux of the proof is to show that H ′ is a UOWHF. As some
intuition toward this, note that since the t-prefixes of the queries (resp., answers) are
included with the output (resp., key), an adversary finding a collision in H ′ is bound
to these particular values. Hence, any collision in H ′ is also a collision in Hπ. Since
� + qt < � + k (and hence H ′ is length-decreasing) whenever q < k/(5 logSp), this
yields the desired bound.

Theorem 4.4. Let H(·) : {0, 1}r × {0, 1}�+k → {0, 1}� be an (Sp, Sh, ε)-OWP-
to-UOWHF semi-black-box construction that makes q queries to an oracle π ∈ Πn. If

q < k/(5 logSp), then there exists an (Sh − SH , ε + 2−S2
p + q2/2S5

p)-secure UOWHF

H ′ : {0, 1}r′ × {0, 1}�+k → {0, 1}�′ with �′ < �+ k, where SH is the size of the circuit
computing H.
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Proof. Since H(·) is an (Sp, Sh, ε)-OWP-to-UOWHF construction, this means that
if π ∈ Πn is Sp-hard, then any circuit A of size ≤ Sh finds a collision with probability
at most ε; that is,

Pr
s∈Ur

z∈U�+k

[
Aπ(s, z,Hπ(s, z)) = z′ : z′ �= z

∧
Hπ(s, z′) = Hπ(s, z)

]
≤ ε.

We say that z′ as above is a collision exactly when z′ �= z but Hπ(s, z′) = Hπ(s, z).
We now restrict the class of adversaries A under consideration. We consider

adversaries that do not access π arbitrarily but are instead simply given the t-prefixes
of the queries and answers made during the computation of Hπ(s, z). Since such
restricted adversaries can be simulated by general adversaries with overhead SH (recall
that this is the size of the circuit computing H), we have that if π is Sp-hard and A
is a circuit of size ≤ Sh − SH , then

Pr
s∈Ur

z∈U�+k

[A(s, y1, . . . , yq, z,H
π(s, z), x1, . . . , xq) = z′ : z′ is a collision] ≤ ε,

where x1, . . . , xq are the t-prefixes of the q queries made to π during computation of
Hπ(s, z), and y1, . . . , yq are the t-prefixes of the corresponding answers.

Let t = 5 logSp. From Corollary 2.2 we know that a random permutation π ∈ Πt,n

is Sp-hard with probability greater than 1−2−2t/2

. An averaging argument thus shows
that for any circuit A of size ≤ Sh − SH we have

Pr
π∈Πt,n

s∈Ur, z∈U�+k

[A(s, y1, . . . , yq, z,H
π(s, z), x1, . . . , xq) = z′ : z′ is a collision] < ε + 2−2t/2

.(5)

As in the proof of Theorem 4.2, we may assume without loss of generality that
H queries π on points with distinct t-prefixes. Consider the function H ′ : {0, 1}r′ ×
{0, 1}�+k → {0, 1}�′ defined as follows, where r′ = r + qt and �′ = � + qt:

H ′(s′, z) = H ′ ((s, y1, . . . , yq), z)
def
= Hy1,...,yq (s, z), x1, . . . , xq,

where by Hy1,...,yq (s, z) we mean the computation of H(·)(s, z) when its ith oracle
query (ai, bi) (with |ai| = t) is answered with (yi, bi), and where xi, . . . , xq denote
the t-prefixes of the q oracle queries made (i.e., xi = ai). Note that if q < k/t, then
�′ < � + k, so H ′(s′, ·) is a length-decreasing function.

By definition of H ′, if H ′ ((s, y1, . . . , yq), z) = H ′ ((s, y1, . . . , yq), z
′), then Hπ(s, z) =

Hπ(s, z′) for any π satisfying π(x1) = y1, . . . , π(xq) = yq. Thus,

Pr
s′∈U

r′
z∈U�+k

[
A(s′, z,H ′(s′, z)) = z′ : z′ �= z

∧
H ′(s′, z′) = H ′(s′, z)

]

≤ Pr
π∈Πt,n

s∈Ur, z∈U�+k

[A(s, y1, . . . , yq, z,H
π(s, z), x1, . . . , xq) = z′ : z′ is a collision]

+ Pr�y∈{0,1}qt [Coll],

where Coll denotes the event that the q values y1, . . . , yq are not distinct.7 Equation (5)
and a simple birthday problem calculation give the result stated in the theorem.

7In fact—in contrast to the seemingly similar situation arising in the proof of Theorem 4.2—there
is no need to conserve random bits here since the values y1, . . . , yq are included as part of the key
and not the output (and the length of the key is irrelevant for our purposes). A tighter security
reduction is possible by lowering Pr[Coll], for example, by including random values y1, . . . , y2q in the
key and using the first q distinct values (when they exist) to answer the queries of H.
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4.3. Public-key encryption. We begin with a definition of constructions of
public-key encryption schemes.

Definition 4.5. A construction of a public-key encryption scheme based on
trapdoor permutations is a tuple of oracle procedures PKE(·) = (Gen(·),Enc(·),Dec(·))
such that, for all τ ∈ Tn, the resulting PKEτ satisfies the functional definition of a
public-key encryption scheme. (The construction may be for either an interactive or
a noninteractive encryption scheme, as it does not affect our results.)

We say PKE(·) is an (Sp, Se, ε)-TDP-to-PKE weak black-box construction if for
every oracle τ ∈ Tn that is Sp-trapdoor one way, PKEτ is (Se, ε)-secure.

We prove that for any such construction which encrypts messages of length m,
unless Encτ queries τ at least Ω(m/ logSp) times, there exists a one-way function
which does not require any oracle access. Our proof proceeds by showing that unless
Encτ makes at least Ω(m/ logSp) queries to τ , we can explicitly construct an inter-
active, private-key encryption scheme (Enc′,Dec′) requiring no access to the oracle
and in which the encrypted message is longer than the shared key. Using a previous
result of Impagliazzo and Luby [30] (see also Lemma 4.6), this implies the existence
of a one-way function.

As in the previous proofs, we first observe that a random τ ∈ Tt,n is Sp-hard
with all but negligible probability when t = 5 logSp (cf. Corollary 2.4). To construct
an interactive, private-key encryption scheme without access to an oracle, we have
the parties simulate a random τ by appropriately choosing random t-prefixes for the
answers to their queries, as needed. The bits to simulate τ cannot be included in the
private key, since the encryption and decryption algorithms may make their queries
in different order and, indeed, may make different queries altogether. However, we
must somehow ensure consistency between the oracle answers of the sender and the
receiver. A possibility that comes to mind is to have each party include, along with
each protocol message it sends to the other party, a list of t-prefixes for the queries and
answers generated thus far in accessing τ . In this case, however, privacy is no longer
guaranteed as the queries may reveal information about the plaintext message. But
this is easily remedied in the private-key setting: the parties simply share a sufficiently
long one-time pad in advance and then encrypt their queries and answers using this
pad.

Let qg be the number of queries made to τ by Gen, and let qe be the number of
queries made by Enc. The private-key encryption scheme outlined above requires a
shared key of size roughly O(t) · (qg + qe) to encrypt an m-bit message. Recalling
the result of Impagliazzo and Luby [30], if O(t) · (qg + qe) < m, then the key is
shorter than the message and a one-way function exists. This already gives a weak
lower bound. To obtain the better lower bound qe < m/O(t) (so that we bound the
efficiency of encryption alone), additional work is needed; details are given in the
proof of Theorem 4.7.

We begin by showing that the existence of a private-key encryption scheme
(Enc,Dec) which securely encrypts messages longer than the shared key implies the
existence of a one-way function. Although this result is already known [30] (without
the concrete bounds given below), we give a much simpler and more direct proof. We
stress that the result applies even in the case of interactive encryption.

Lemma 4.6. Let (Enc,Dec) be an (S, ε)-secure private-key encryption scheme
for messages of length m using a shared key of length k < m. Let SEnc be the size
of the circuit needed to run the encryption protocol (i.e., the size of the circuit for
Enc in the noninteractive case, or the combined sizes of the circuits for Enc and Dec
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in the interactive setting). Then for any � ∈ N there exists a function f which is
(S − �SEnc, �ε + 2−�(m−k))-one way.

Proof. We prove the lemma for the case of interactive encryption, which implies
the same result for the degenerate, noninteractive case as well. First note that via
standard hybrid argument, running � parallel copies of (Enc,Dec) using � independent
keys yields an (S, �ε)-secure private-key encryption scheme for messages of length �m
in which the shared key has length �k. Let SKE� = (Enc�,Dec�) denote this modified
scheme.

Define f by f(sk,M, ω1, ω2) = Ênc�(sk,M ;ω1, ω1)‖M , where ω1, ω2 represent
the random coins used by Enc� and Dec�, respectively. We claim that this function is
(S′, ε′)-one way, where S′ = S − �SEnc and ε′ = �ε + 2−�(m−k). If not, then there is
an algorithm B of size at most S′ for which SuccB,f > ε′, where

SuccB,f
def
=

Pr
[
sk ← {0, 1}�k;M ← {0, 1}�m;T ← Ênc�(sk,M) : B(T‖M) ∈ f−1(T‖M)

]
.

We show how such a B can be used to construct an algorithm A of size at most S for
which SuccA,SKE�

> �ε, where

SuccA,SKE�

def
=

∣∣∣∣∣∣∣ Pr
M0,M1∈{0,1}�m

T∈SKE�(M0)

[A(M0,M1, T ) = 1] − Pr
M0,M1∈{0,1}�m

T∈SKE�(M1)

[A(M0,M1, T ) = 1]

∣∣∣∣∣∣∣ .
This implies that there exist two messages M0,M1 for which A can distinguish en-
cryptions of M0 from encryptions of M1 with probability better than �ε, contradicting
the assumed security of (Enc�,Dec�). Thus, we are done once we have demonstrated
such an A.

Define A as follows. On input (M0,M1, T ), algorithm A runs B(T‖M0) to obtain

the result sk′‖M ′‖ω′
1‖ω′

2. It then checks whether f(sk′,M ′, ω′
1, ω

′
2)

?
= T‖M0. If so

(i.e., B has succeeded in inverting f), then A outputs 0. Otherwise, A outputs 1.
Note that |A| = |B| + �SEnc ≤ S, as required.

First, note that

Pr
M0,M1∈{0,1}�m

T∈SKE�(M0)

[A(M0,M1, T ) = 0] = SuccB,f > ε′.

For a transcript T , we say (sk,M) is consistent with T if there exist ω1, ω2 such that

T = Ênc�(sk,M ;ω1, ω2). We have

Pr
M0,M1∈{0,1}�m

T∈SKE�(M1)

[A(M0,M1, T ) = 1]

≤ Pr[sk ← {0, 1}�k;M0,M1 ← {0, 1}�m;

T ← Ênc�(sk,M1) : ∃sk′ s.t. (sk′,M0) is consistent with T ]

≤
∑

sk′∈{0,1}�k

Pr[sk ← {0, 1}�k;M0,M1 ← {0, 1}�m;

T ← Ênc�(sk,M1) : (sk′,M0) is consistent with T ].
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Perfect correctness of the encryption scheme implies that for any sk, T there is at
most one value of M ∈ {0, 1}�m such that (sk,M) is consistent with T . Using this
and the fact that M0 is chosen at random independent of anything else gives

Pr
M0,M1∈{0,1}�m

T∈SKE�(M1)

[A(M0,M1, T ) = 1] ≤
∑

sk′∈{0,1}�k

2−�m

= 2�(k−m).

Putting everything together shows that SuccA,SKE�
> ε′−2�(k−m) ≥ �ε, giving the

desired contradiction.

We remark that an analogue of the above lemma is known to hold also for the case
of (interactive) private-key encryption schemes with error [30]. This, in turn, implies
results analogous to those of Theorems 4.7 and 4.9 for black-box constructions of
encryption schemes with error. However, as we were unable to simplify the proof of
[30] in this setting (and as the concrete bounds on the resulting one-way function are
rather unwieldy), we do not explicitly focus on the case of encryption schemes with
error here.

Our main result of this section follows. The theorem is stated for the case of
noninteractive public-key encryption, but the proof immediately extends to the case
of interactive public-key encryption as well (where qe will in this case refer to the
total number of queries made by sender and receiver during the encryption protocol,
and SEnc will refer to the sizes of Enc and Dec jointly).

Theorem 4.7. Let PKE(·) = (Gen(·),Enc(·),Dec(·)) be an (Sp, Se, ε)-TDP-to-
PKE weak black-box construction for messages of length m, and let t = 5 logSp.
Assume Gen makes qg queries to an oracle τ ∈ Tn and Enc makes qe queries to τ ; set

� = 2 · �5tqg/ (m− 5tqe). Assume further that ε < (1/4 − 2−S2
p)/�. If qe < m/5t,

then there exists an (Se−3�SEnc, 3/4)-one-way function (without access to any oracle),
where SEnc is the size of the circuit for Enc.

Proof. Note that we did not try to optimize the constants in the proof or the
required bound on ε. In applications of cryptographic interest, Sp and Se are typically
superpolynomial, SEnc, qg, qe, and m are (small) polynomials, and ε is negligible; thus,

ε � (1/4 − 2−S2
p)/� and Se � 3�SEnc anyway.

Let PKE(·) = (Gen(·),Enc(·),Dec(·)). As in the proof of Lemma 4.6, for any � ∈ N

we may construct a public-key encryption scheme PKE(·)
� = (Gen

(·)
� ,Enc

(·)
� ,Dec

(·)
� ) for

�m-bit messages in the natural way; furthermore, we may set Gen� = Gen since we
are now in the public-key setting and so key generation need be done only once. It is

easy to see (via hybrid argument) that PKE(·)
� is an (Sp, Se − �SEnc, �ε)-TDP-to-PKE

construction, where the number of queries made by Gen� is qg and the number of
queries made by Enc� is at most �qe.

Set � = 2 · �5t qg/(m− 5t qe) as in the statement of the theorem, and let S′ =

Se−�SEnc and ε′ = �ε+2−S2
p . We use PKE(·)

� to construct an (S′, ε′)-secure interactive,
private-key encryption scheme SKE = (Enc′,Dec′) for �m-bit messages in which the
shared key will have length 5t · (qg + �qe). Furthermore, SKE will require no access
to the trapdoor permutation oracle. Finally, we have 5t · (qg + �qe) < �m (in fact,
�m − 5t · (qg + �qe) ≥ 1) and ε′ < 1/4; thus, application of Lemma 4.6 (with � = 1
there) yields the desired result.

Security of PKE(·)
� implies that if τ is Sp-hard, then for any circuit B of size ≤ S′
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and for any messages M0,M1 ∈ {0, 1}�m we have∣∣∣∣ Pr
v∈PKEτ

�
(M0)

[B(v) = 1] − Pr
v∈PKEτ

�
(M1)

[B(v) = 1]

∣∣∣∣ ≤ �ε.

Corollary 2.4 shows that a random τ ∈ Tt,n is Sp-hard except with probability less

than 2−S2
p . A straightforward averaging argument thus shows that for any circuit B

of size ≤ S′ and for any messages M0,M1 ∈ {0, 1}�m we have∣∣∣∣∣∣∣ Pr
τ∈Tt,n

v∈PKEτ
�
(M0)

[B(v) = 1] − Pr
τ∈Tt,n

v∈PKEτ
�
(M1)

[B(v) = 1]

∣∣∣∣∣∣∣ < �ε + 2−S2
p = ε′.(6)

As mentioned in the discussion at the beginning of this section, our private-key
encryption scheme SKE will simulate a random τ ∈ Tt,n for algorithms Gen,Enc�, and
Dec�. We achieve this simulation using a simulation procedure SIM which ensures
consistency of the answers to all oracle queries. This procedure takes as input a list L
of (appropriate prefixes of) previous oracle queries and answers; before answering any
query, SIM examines L and ensures that the answer it gives will not generate any
inconsistencies. After answering a query, L is updated accordingly. As an example,
if query td‖b to G was answered by k‖b (where |td| = |k| = t), then subsequent query
td′‖b′ to G must be answered by k′‖b′ where k′ = k iff td′ = td. A more involved
procedure is needed to answer queries to F and F−1. We now describe the details of
this simulation.

SIM(L).
• On query G(td‖b) (where |td| = t): if ∃k s.t. (td, k) ∈ L, return k‖b. Oth-

erwise pick random k ∈ {0, 1}t such that ∀td′ : (td′, k) �∈ L, return k‖b, and
store (td, k) in L.

• On query F (k‖b, x‖b′) (where |k| = |x| = t):
1. if ∃y s.t. (k, x, y) ∈ L, return y‖b′.
2. Otherwise, if ∃td s.t. (td, k) ∈ L, choose random y ∈ {0, 1}t such that

∀x′ : (k, x′, y) �∈ L, return y‖b′, and store (k, x, y) in L.
3. Otherwise, choose random td ∈ {0, 1}t such that ∀k′ : (td, k′) �∈ L,

choose random y ∈ {0, 1}t, return y‖b′, and store (k, td), (k, x, y) in L.
• On query F−1(td‖b, y‖b′) (where |tk| = |y| = t):

1. if ∃k, x s.t. (td, k), (k, x, y) ∈ L, return x‖b′
2. Otherwise, if ∃k s.t. (td, k) ∈ L, choose random x ∈ {0, 1}t such that

∀y′ : (k, x, y′) �∈ L, return x‖b′, and store (k, x, y) in L
3. Otherwise, choose random k ∈ {0, 1}t such that ∀td′ : (td′, k) �∈ L,

choose random x ∈ {0, 1}t, return x‖b′, and store (td, k), (k, x, y) in L
Note that each time a query is answered, at most 5t bits are stored in L.

Construct SKE as follows. Parse the shared key s as (s1, s2), where |s1| = 5tqg
and |s2| = 5t�qe. To encrypt message M , the receiver Dec′ begins by initializing

list L := ∅. The receiver then computes (pk, sk) ← GenSIM(L) (updating L in the
process) and sends pk, s1 ⊕ L to the sender. The receiver stores sk, L for later use.
On receiving the first message pk, ŝ1, the sender computes L1 := s1 ⊕ ŝ1 and sets

L := L1. The sender then computes C ← Enc
SIM(L)
� (pk,M) and sets L2 := L\L1.

Finally, Enc′ sends C, s2⊕L2 to the receiver. On receiving message C, ŝ2, the receiver
decrypts by setting L2 := s2 ⊕ ŝ2 and L := L0 ∪L2 (here, L0 is the list stored by the

receiver from the first stage). The receiver can then compute M := Dec
SIM(L)
� (sk, C).
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It is clear that SKE has correct decryption. We now show that the scheme is
(S′, ε′)-secure. Assume toward a contradiction that there exists a circuit A of size
≤ S′ and messages M0,M1 ∈ {0, 1}�m such that∣∣∣∣ Pr

v∈SKE(M0)
[A(v) = 1] − Pr

v∈SKE(M1)
[A(v) = 1]

∣∣∣∣ > ε′.

We construct circuit B attacking PKE� as follows. On input pk, C, circuit B picks ran-
dom strings ŝ1, ŝ2, where |ŝ1| = 5tqg and |ŝ2| = 5t�qe. Then, B outputs A(pk, ŝ1, C, ŝ2).
Because the keys s1, s2 of SKE are used as a one-time pad, it is easy to see that, for
b ∈ {0, 1},

Pr
τ∈Tt,n

(pk,C)∈PKEτ
�
(Mb)

[B(pk, C) = 1] = Pr
v∈SKE(Mb)

[A(v) = 1].

Thus, the advantage of B is equal to the advantage of A (which is greater than ε′),
contradicting (6).

4.4. Private-key encryption. The techniques of the previous section can be
adapted to show a similar lower bound for private-key encryption schemes based on
trapdoor permutations; note that trapdoor permutations generalize one-way permuta-
tions (which are sufficient for private-key encryption), and therefore our result shows
that improved efficiency cannot be obtained in this case even by assuming a stronger
primitive.

Definition 4.8. A construction of a private-key encryption scheme based on
trapdoor permutations is a pair of oracle procedures SKE(·) = (Enc(·),Dec(·)) such
that for all τ ∈ Tn, the resulting SKEτ satisfies the functional definition of a private-
key encryption scheme given earlier. (Again, the construction may yield either an
interactive or a noninteractive scheme.)

We say SKE(·) is an (Sp, Se, ε)-TDP-to-SKE weak black-box construction if for
every τ ∈ Tn that is Sp-hard, SKEτ is (Se, ε)-secure.

Suppose a construction of the above type exists which encrypts m-bit messages
using a shared key of length k. We show that unless Encτ queries τ at least q =
Ω( m−k

log Sp
) times, then an unconditional one-way function exists. This matches the

known upper bound, even for schemes constructed using one-way permutations.
The proof is similar to that of Theorem 4.7 in that we convert SKE(·) to a private-

key encryption scheme SKE ′ that does not access an oracle at all. The only difference
between the proof here and the proof of Theorem 4.7 is that here the parties need
to share a k-bit key in addition to the one-time pad used to encrypt their simulated
queries and answers to the oracle. Set t = 5 logSp. The resulting SKE ′ requires
a shared key of length k + 5tq and encrypts an m-bit message. As before, then, if
k+ 5tq < m we obtain a private-key encryption scheme (making no oracle queries) in
which the message is longer than the key. By Lemma 4.6, this implies the existence
of a one-way function.

The following theorem is stated for the case of noninteractive private-key en-
cryption, but the proof immediately extends to the case of interactive private-key
encryption as well.

Theorem 4.9. Let SKE(·) = (Enc(·),Dec(·)) be an (Sp, Se, ε)-TDP-to-SKE weak
black-box construction for messages of length m using a key of length k in which Enc
makes q queries to an oracle τ ∈ Tn. Let t = 5 logSp. If q < m−k

5t , then there exists
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an (Se, ε+2−S2
p)-secure private-key encryption scheme in which the message is longer

than the key, without access to any oracle.
Proof. The proof is substantially similar to the proof of Theorem 4.7, so the

discussion here will be somewhat terse. Let t = 5 logSp. As in the previous proof,
security of the given construction and a straightforward averaging argument imply
that for any circuit B of size ≤ Se and for any messages M0,M1 ∈ {0, 1}m we have∣∣∣∣∣∣∣ Pr

τ∈Tt,n

v∈SKEτ (M0)

[B(v) = 1] − Pr
τ∈Tt,n

v∈SKEτ (M1)

[B(v) = 1]

∣∣∣∣∣∣∣ < ε + 2−S2
p .

We now construct an (Se, ε+2−S2
p)-secure private-key encryption scheme SKE ′ =

(Enc′,Dec′) for m-bit messages in which the shared key has length k′
def
= k + 5t · q.

Furthermore, SKE ′ requires no oracle access. If q < (m− k)/5t, then k′ < m and we
obtain the desired result.

The approach for constructing SKE ′ is exactly as in Theorem 4.7 (and as discussed
earlier in this section), and in particular we use the same simulation procedure SIM
as there. SKE ′ is constructed as follows. The shared key s of length k′ is parsed as
(s1, s2), where |s1| = k and |s2| = 5t · q. To encrypt message M , the sender initializes

L := ∅, computes C ← EncSIM(L)(s1,M) (updating L in the process), and then sends
C, s2 ⊕ L to the receiver. The receiver obtains ciphertext C, L̂, recovers L = L̂ ⊕ s2,
and then computes M = DecSIM(L)(s1, C).

It is not hard to see that SKE ′ has correct decryption. Arguing exactly as in

Theorem 4.7 we see that SKE ′ is (Se, ε + 2−S2
p)-secure, completing the proof of the

theorem.

4.5. Signature schemes. We now demonstrate a lower bound on the efficiency
of signature verification for any signature scheme based on one-way permutations.

Definition 4.10. A construction of a digital signature scheme based on one-
way permutations is a tuple of procedures SIG(·) = (Gen(·),Sign(·),Vrfy(·)) such that
for all π ∈ Πn, the resulting SIGπ satisfies the functional definition of a signature
scheme given earlier. We say SIG(·) is an (Sp, SΣ, ε)-OWP-to-signature semi-black-
box construction if for every oracle π ∈ Πn that is Sp-hard, SIGπ is (SΣ, ε)-secure,
where this must hold even for circuits given access to π.

Given a construction of this sort, we prove that unless Vrfy queries π at least
Ω(m/ logSp) times, then it is possible to construct from SIG a one-way function
which does not access any oracle. Note that this one-way function could then be used
to construct a secure signature scheme (which requires no oracle access) [38].

We start with an informal overview of our proof technique. As a first attempt to
construct a one-way function from the verification algorithm, one might define

F1(PK,M, σ) = PK‖Vrfy(·)(PK,M, σ).

Intuitively, this function is difficult to invert on elements of the form PK‖1 if PK is
a valid and randomly generated public key, since inverting the function on points of
this form is equivalent to signature forgery. As presently defined, however, evaluating
F1 requires calls to π; however, our goal is to construct a function which does not
require access to any oracle. As in the previous section, however, one may observe
that π is Sp-hard (and thus SIG is secure) when π is uniformly chosen from Πt,n for
t = 5 logSp (cf. Corollary 2.2). So, if Vrfy makes q queries to π, then specifying qt
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bits as the answers to these queries removes any need to query the oracle. Based on
this, one might consider the function

F2(PK, y1, . . . , yq,M, σ) = PK‖y1‖ · · · ‖yq‖x1‖ · · · ‖xq‖Vrfyy1,...,yq (PK,M, σ),(7)

where |y1| = · · · = |yq| = |x1| = · · · = |xq| = t and the ith query xi‖bi of Vrfy is
answered with yi‖bi. (We assume without loss of generality that Vrfy queries π with
strings having distinct t-prefixes.) The intuition, as before, is that F2 is difficult to
invert on elements of the form PK‖�y‖�x‖1 if PK, �y, and �x are chosen appropriately.

Now, however, another problem arises. For F2 to qualify as a one-way func-
tion, it must be hard to invert F2(PK, �y,M, σ) when PK, �y,M, σ are sampled from
an efficiently sampleable distribution (cf. Lemma 4.12). More specifically, a proof
of one-wayness will need to show how to efficiently sample PK, �y,M, σ such that
inverting the value F2(PK, �y,M, σ) results in a signature forgery and hence a con-
tradiction. A necessary condition for inversion to result in signature forgery is that
Vrfy�y(PK,M, σ) = 1. Generating PK, �y,M, σ such that this holds is easy if we have
the secret key SK, but then inverting F2 and forging a signature does not yield the
desired contradiction!

Instead, in the proof we will obtain M,σ from the signer. In this case, however,
inverting F2(PK, �y,M, σ) does not result in a forgery if it results in the same mes-
sage/signature pair M,σ. We come now to the crux of our proof. If the number
of queries is small, we show that inversion of F2 yields a different message M ′ (and
thus a successful forgery) with noticeable probability. More precisely, for randomly
generated PK, �y, �x, σ, let

Y = PK‖�y‖�x‖1 = F2(PK, �y,M, σ).

If |�x| =
∑q

i=1 |xi| < |M |, then (on average) there exists an element PK‖�y‖M ′‖σ′ ∈
F−1

2 (Y ) with M ′ �= M ; hence inverting Y results in a forgery with noticeable proba-
bility. This idea is formalized in the proof of the following theorem.

Theorem 4.11. Let SIG(·) be an (Sp, SΣ, ε)-OWP-to-signature semi-black-box
construction for messages of length m in which Vrfy makes q queries to an oracle π ∈
Πn, algorithms Gen, Sign, and Vrfy jointly make q̂ queries to π, and ε < 1/4 − 2−S2

p .
If q < m/(5 logSp), then there exists an (SΣ−SGen−SSign−2SVrfy, 3/4+ q̂2/2S5

p)-one-
way function (without access to a permutation oracle), where SGen, SSign,and SVrfy are
the sizes of the circuits for Gen, Sign, and Vrfy, respectively.

Proof. As in Theorem 4.7, we did not try to optimize the constants in the proof
or the required bound on ε. In applications of cryptographic interest, one will anyway

have SΣ � SGen + SSign + 2SVrfy and ε � 1/4 − 2−S2
p .

We first present a technical lemma showing that the existence of a function which
is one-way over an efficiently sampleable domain implies the existence of a function
which is one-way under the definition of section 2.1.

Lemma 4.12. Let D be a distribution sampleable by a circuit of size SD and let
f be a function such that for every circuit A of size ≤ S we have

Pr[x ← D : A(f(x)) ∈ f−1(f(x))] ≤ δ.

Then there exists a function f̂ that is (S − SD, δ)-one way.
Proof of Lemma 4.12. We equate the distribution D with the circuit of size SD

which samples it; i.e., {D(r)} ≡ D (where r is a string of the appropriate length chosen

uniformly at random). Define f̂(r)
def
= f(D(r)). We claim that f̂ is (S − SD, δ)-one
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way. Assume the contrary. Then there exists a circuit Â of size at most S − SD for
which

Prr[Â(f̂(r)) ∈ f̂−1(f̂(r))] > δ.

Toward a contradiction, define a circuit A as follows: A(y)
def
= D(Â(y)). Notice that

|A| ≤ S. Furthermore,

Pr[x ← D : A(f(x)) ∈ f−1(f(x))]

= Prr[x := D(r) : f(A(f(x))) = f(x)]

= Prr[f(A(f̂(r))) = f̂(r)]

= Prr[f̂(Â(f̂(r))) = f̂(r)]

= Prr[Â(f̂(r)) ∈ f̂−1(f̂(r))] > δ.

The proof of the theorem proceeds by using SIG to construct a function F along
with a distribution D such that for every circuit A of size ≤ SΣ − SVrfy we have

Pr[X ← D : A(F (X)) ∈ F−1(F (X))] ≤ ε + 2−Sp + 1/2 + q̂2/2S5
p

< 3/4 + q̂2/2S5
p .(8)

Furthermore, D will be computable by a circuit of size SGen + SSign + SVrfy. Applying
Lemma 4.12 then yields the desired result.

Since SIG(·) is an (Sp, SΣ, ε)-OWP-to-signature construction, if π is Sp-hard,
then for any circuit B of size ≤ SΣ we have Succπ,B ≤ ε where

Succπ,B
def
=

Pr [(PK,SK) ← Genπ;M ← {0, 1}m; σ ← Signπ(SK,M); (M ′, σ′) := Bπ(PK,M, σ) :

Vrfyπ(PK,M ′, σ′) = 1 ∧M ′ �= M ] .

Let t = 5 logSp. Corollary 2.2 shows that a random π ∈ Πt,n is Sp-hard except with

probability less than 2−S2
p . An averaging argument then implies that for any circuit

B of size ≤ SΣ we have Succ∗B < ε + 2−S2
p where Succ∗B is defined analogously to

Succπ,B except that the probability is now taken over random choice of π ∈ Πt,n as
well.

Define a function F as in (7), repeated here for convenience:

F (PK, �y,M, σ) = PK‖�y‖�x‖Vrfy�y(PK,M, σ),

where �y = (y1, . . . , yq), �x = (x1, . . . , xq), |y1| = · · · = |yq| = |x1| = · · · = |xq| = t, and
the ith query xi‖bi of Vrfy is answered with yi‖bi. (As in the proof of Theorem 4.2,
we assume Vrfy queries its oracle on points having distinct t-prefixes.) We also define
distribution D by the following experiment, which depends on uniformly distributed
coins rg, rs (of some appropriate length), ry ∈ {0, 1}q̂t (parsed as a sequence of t-bit
strings ŷ1, . . . , ŷq̂ ∈ {0, 1}t), and M ∈ {0, 1}m:

{
(PK,SK) := Gen(rg);

σ := Sign(SK,M ; rs); Vrfy(PK,M, σ)
: PK‖�y‖M‖σ

}
.
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In the above experiment, the coins ry = ŷ1, . . . , ŷq̂ are used to give a simulation8 of
a random π ∈ Πt,n which is consistent across the executions of Gen, Sign, and Vrfy.
The component yi of �y is the t-prefix of the answer given in response to the ith query
of Vrfy. Note that D is computable by a circuit of size essentially SGen +SSign +SVrfy.

We claim that F satisfies the requirement expressed in (8). Assume toward a
contradiction that there exists a circuit A of size ≤ SΣ − SVrfy for which (8) does not
hold. We use A to construct an algorithm B which—given PK, a random message
M , and a signature σ on M—forges a valid signature on a new message M ′ with high
probability. Bπ(PK,M, σ) first runs Vrfy(PK,M, σ), answering the queries of Vrfy
by forwarding them to π. Let �x be the t-prefixes of the queries made by Vrfy, and let
�y be the t-prefixes of the corresponding answers. Define X = PK‖�y‖M‖σ and Y =
PK‖�y‖�x‖1; note that Y = F (X). Finally, algorithm B computes PK ′‖�y ′‖M ′‖σ′ =
A(Y ) and outputs (M ′, σ′). We clearly have |B| ≤ SΣ.

B outputs a successful forgery if both F (PK ′‖�y ′‖M ′‖σ′) = Y and M ′ �= M hold.

To see this, note that the first condition implies �y = �y ′, and hence Vrfy�y(PK,M ′, σ′) =
1, and furthermore Vrfy makes queries with t-prefixes �x. Thus, Vrfyπ(PK,M ′, σ′) = 1.
If furthermore M ′ �= M , then (M ′, σ′) is a successful forgery. Finally, the distribution
on X—over random choice of π ∈ Πt,n—is statistically close to distribution D, where
the difference is due to the fact that the ŷ1, . . . , ŷq̂ used in the experiment defining
D may not be distinct. This accounts for the term q̂2/2S2

p in the analysis below
(obtained using a simple birthday problem calculation), but see footnote 7.

Let Eq be the event that M ′ = M . Then

Succ∗B ≥ Pr
X←D

[Y = F (X);X ′ = A(Y ) : X ′ ∈ F−1(Y ) ∧ Eq] − q̂2/2S5
p

= Pr
X←D

[Y = F (X);X ′ = A(Y ) : X ′ ∈ F−1(Y )]

− Pr
X←D

[Y = F (X);X ′ = A(Y ) : X ′ ∈ F−1(Y ) ∧ Eq] − q̂2/2S5
p

> ε + 2−Sp + 1/2

− Pr[X ← D; PK‖�y‖�x‖1 = F (X);

PK ′‖�y ′‖M ′‖σ′ = A(PK‖�y‖�x‖1) : M ′ = M ]

= ε + 2−Sp + 1/2

−
∑
�z

Pr[X ← D; PK‖�y‖�x‖1 = F (X);

PK ′‖�y ′‖M ′‖σ′ = A(PK‖�y‖�x‖1) : M ′ = M ∧ �x = �z ],

where the sum is over �z consisting of q distinct t-bit strings. Substituting �z for �x in
part of the final equation above gives

Succ∗B ≥ ε + 2−Sp + 1/2

−
∑
�z

Pr[X ← D; PK‖�y‖�x‖1 = F (X);

PK ′‖�y ′‖M ′‖σ′ = A(PK‖�y‖�z‖1) : M ′ = M ∧ �x = �z ]

≥ ε + 2−Sp + 1/2

8Simulating a random π ∈ Πt,n is done as expected: the oracle query xj‖b with the jth distinct
t-prefix across the executions of Gen, Sign, and Vrfy is answered with ŷj‖b, and an oracle query x‖b
with a previously used t-prefix is answered in a consistent manner in the obvious way.
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−
∑
�z

Pr[X ← D; PK‖�y‖�x‖1 = F (X);

PK ′‖�y′‖M ′‖σ′ = A(PK‖�y‖�z‖1) : M ′ = M ].

In this last equation we may note that A has no information about M , which is chosen
at random from {0, 1}m independently of PK, �y, and �z. Therefore,

Succ∗B ≥ ε + 2−Sp + 1/2 −
∑
�z

2−m.(9)

Noting that there are
(
2t

q

)
< 2qt ≤ 2m−1 terms in the sum of (9), we derive the

contradiction Succ∗B > ε + 2−Sp .
Upper bounds on the efficiency of signature schemes. As mentioned in

the introduction, our lower bounds focus on the efficiency of signature verification.
We briefly observe some upper bounds on the efficiency of verification for one-time
signatures (satisfying the notion of security considered here) on m-bit messages. The
Lamport scheme [34] requires m invocations of a one-way permutation to verify a
signature. Instead of signing bit by bit, the scheme can be modified to sign block
by block. When basing the construction on an S-hard one-way permutation, it is
possible to obtain provable security using blocks of length Θ(log(S/m)); this gives a
signature scheme requiring only Θ(m/ log(S/m)) invocations for verification. When
S is polynomial, this is essentially optimal as far as verification is concerned (although
the key-generation time and public-key size are prohibitive); however, the resulting
scheme does not even run in polynomial time when S is super-polynomial. An alter-
nate approach is to include a universal one-way hash function hs as part of the public
key and to use the (basic) Lamport scheme to sign hs(M). Verification now requires
evaluation of hs followed by a verification in the underlying Lamport scheme. Since
hs can be used to compress an arbitrary-length message to an n-bit string (when
using an S-hard permutation on n bits) [36], we obtain a verification complexity of
Θ(n + (m− n)/ logS) when m ≥ n.

Acknowledgments. We thank the anonymous referee and Oded Goldreich for
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APPROXIMATING k-NODE CONNECTED SUBGRAPHS VIA
CRITICAL GRAPHS∗

GUY KORTSARZ† AND ZEEV NUTOV‡

Abstract. We present two new approximation algorithms for the problem of finding a k-
node connected spanning subgraph (directed or undirected) of minimum cost. The best known
approximation guarantees for this problem were O(min{k, n√

n−k
}) for both directed and undirected

graphs, and O(ln k) for undirected graphs with n ≥ 6k2, where n is the number of nodes in the
input graph. Our first algorithm has approximation ratio O( n

n−k
ln2 k), which is O(ln2 k) except

for very large values of k, namely, k = n − o(n). This algorithm is based on a new result on �-
connected p-critical graphs, which is of independent interest in the context of graph theory. Our
second algorithm uses the primal-dual method and has approximation ratio O(

√
n ln k) for all values

of n, k. Combining these two gives an algorithm with approximation ratio O(ln k·min{
√
k, n

n−k
ln k}),

which asymptotically improves the best known approximation guarantee for directed graphs for all
values of n, k, and for undirected graphs for k >

√
n/6. Moreover, this is the first algorithm that has

an approximation guarantee better than Θ(k) for all values of n, k. Our approximation ratio also
provides an upper bound on the integrality gap of the standard LP-relaxation.

Key words. connectivity, approximation, graphs, network design

AMS subject classification. 68W25
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1. Introduction and preliminaries. A basic problem in network design is,
given a graph, to find its minimum cost k-connected spanning subgraph; a graph is
k(-node) connected if it is simple and there are at least k internally disjoint paths
from every node to any other node. This problem is NP-hard for undirected graphs
with k = 2 and for directed graphs with k = 1. The best known approximation
guarantees for this problem were O(min{k, n√

n−k
}) for both directed and undirected

graphs [16, 4], and O(ln k) for undirected graphs with n ≥ 6k2 [4], where n is the
number of nodes in the input graph.1 Better approximation guarantees are known
for restricted edge costs, as follows. For metric costs, they are 2 + 2(k − 1)/n for
undirected graphs [17] (for a slight improvement to 2 + (k − 1)/n; see [16]) and
2+k/n for directed graphs [16]. For uniform costs there is a (1+1/k)-approximation
algorithm for both directed and undirected graphs [3]. The case when the input graph
is complete and the cost of every edge is in {0, 1} (the so-called “vertex-connectivity
augmentation problem”) is polynomially solvable for directed graphs [7]; polynomial
algorithms that compute a near optimal solution for undirected graphs are given in
[11, 13]. But in this paper we consider only the case of general costs.

The main result of this paper is the following theorem.
Theorem 1.1. There exists an algorithm for the minimum cost k-connected

subgraph problem with approximation ratio O(ln k · min{
√
k, n

n−k ln k}) and running

time O(k2nm2).
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1For undirected graphs, Ravi and Williamson [28] claimed an O(ln k)-approximation algorithm,

but the proof was found to contain an error; see [29].
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This gives the first algorithm that has an approximation guarantee better than
Θ(k) for all values of n, k and that improves the previously best known approximation
guarantees for directed graphs for all values of n, k and for undirected graphs for
k >

√
n/6. Note that our approximation ratio is O(ln2 k) except for very large values

of k (namely, k = n − o(n)). In particular, for instances with n > kc, where c > 1
is a fixed constant, the approximation ratio is O(ln2 k). For example, the previously
best known approximation ratios for k =

√
n and k = n/2 were O(k) and O(

√
k),

respectively; our approximation ratio for both these cases is O(ln2 k). For k = n−o(n)
the improvement is from O(k) to O(

√
k ln k). Our algorithm is combinatorial and runs

significantly faster than the O( n√
n−k

)-approximation algorithm of [4], which solves

linear programs.
Remark. A generalization of the minimum cost k-connected subgraph problem is

the survivable network design problem (SNDP), which is to find a cheapest spanning
subgraph such that, for every pair (u, v) of nodes, there are at least kuv pairwise
internally disjoint paths from u to v. It is interesting to compare Theorem 1.1 with
results in [15, 27], which show that the SNDP with kuv ∈ {0, k}, k = Θ(n), and costs
in 0, 1, is unlikely to have a polylogarithmic approximation guarantee. On the other
hand, Jain [14] showed that the version of the SNDP in which the paths are only
required to be pairwise edge disjoint admits a 2-approximation algorithm.

Our O( n
n−k ln2 k)-approximation algorithm is based on a new result on �-connected

p-critical graphs, which is of independent interest in graph theory. Namely, we will
prove that any �-connected graph (directed or not) on n nodes has a subset U of
nodes with |U | = O( n

n−� ln �) such that no node-cut of cardinality � contains U ; we
call such a U an �-cover (since U covers the complements of node-cuts of cardinality
�) and denote by τ�(G) the minimum cardinality of an �-cover in G. An �-connected
graph G is p-critical if p < τ�(G) (this definition is shown to be equivalent to the one
used in the papers on the topic; see section 1.2). For undirected graphs, our result
partly bridges the gap between two main bounds: the obvious fact that τ�(G) ≤ �+1
and a result of Mader [21], which states that τ�(G) ≤ 3 for n ≥ 6�2. Other previous
bounds were for undirected graphs only, and of the type τ�(G) = Θ(�) (see, e.g., [18]),
or of the type τ�(G) = Θ(1) for n = Ω(�2) (see, e.g., [22]). Our result gives the first
nontrivial bound in the intermediate range for undirected graphs and, overall, the
first nontrivial bound for directed graphs. Moreover, our proof provides a polynomial
algorithm that computes an �-cover within the stated bound.

Throughout the paper, let G = (V, E) denote the input graph with nonnegative
costs on the edges; n denotes the number of nodes in G, and m denotes the number
of edges in G. Unless stated otherwise, “graph” stands for both a directed and an
undirected graph.

This paper is organized as follows. In the rest of this section, we introduce
a standard LP-relaxation to the minimum cost k-connected subgraph problem and
state some simple facts about �-outconnected graphs and p-critical graphs. In sections
2 and 3 we give our algorithm for the minimum cost k-connected subgraph problem:
in section 2 we establish existence of an �-cover of size O( n

n−� ln �) and show how to

compute it, which implies an O( n
n−k ln2 k)-approximation algorithm, and in section 3

we present our primal-dual O(
√
n ln k)-approximation algorithm.

1.1. LP-relaxation and �-outconnected graphs. For an edge set or a graph
J on a node set V and S, T ⊆ V let δJ(S, T ) denote the set of edges in J going from
S to T . By Menger’s theorem, there are k internally disjoint paths from a node s to a
node t in a graph G = (V,E) if and only if |δE(S, T )| ≥ k−(n−|S∪T |) for all disjoint
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S, T ⊂ V with s ∈ S and t ∈ T . We will compare the cost of our solutions to the
optima optk of the following LP-relaxation for the minimum cost k-node connected
spanning subgraph introduced in [7] and used in [4]:

optk = min
∑
e∈E

cexe

s.t.
∑

e∈δE(S,T )

xe ≥ k − (n− |S ∪ T |) ∀ ∅ �= S, T ⊂ V, S ∩ T = ∅,

0 ≤ xe ≤ 1 ∀e ∈ E .

A graph is �-outconnected from a node r if it contains � internally disjoint paths
from r to any other node; a graph is �-inconnected to r if its reverse graph is �-
outconnected from r (for undirected graphs these two concepts have the same mean-
ing). Frank and Tardos [8] showed that for directed graphs, the problem of finding an
�-outconnected spanning subgraph of minimum cost is solvable in polynomial time;
a faster algorithm with time complexity O(�2n2m) = O(m3) is due to Gabow [9]
(observe that n� = O(m) in an �-outconnected graph).

Let G = (V,E) be an �-connected spanning subgraph of cost zero of a directed
graph G, and suppose that G has a subset U of nodes such that no node-cut of
cardinality � contains all of them. Then using the algorithm of [8] it is easy to get a
2|U |-approximation algorithm for the problem of augmenting G to be (�+1)-connected
by adding an edge set of minimum cost as follows: for each node r ∈ U we compute an
(� + 1)-outconnected spanning subgraph from r and an (� + 1)-inconnected spanning
subgraph to r and take the union of these 2|U | subgraphs. In fact, the following
lemma, which can be easily deduced from [5, Theorem 7] (see, e.g., [4]) implies that

the augmenting edge set produced has cost at most 2|U |
k−� optk.

Lemma 1.2. Let G be an �-outconnected from r subgraph of cost zero of a directed
graph G, and for an integer p let αp be the minimum cost of an (� + p)-outconnected
spanning subgraph of G. Then α1 ≤ αp/p. In particular, for � < k the minimum cost
of an (� + 1)-outconnected spanning subgraph of G is at most 1

k−�optk.
Khuller and Raghavachari [17] observed that the algorithm of [8] implies a 2-

approximation algorithm for the problem of finding an optimal �-outconnected sub-
graph of an undirected graph, as follows. First, replace every undirected edge e of
G with the two antiparallel directed edges having the same ends and being of the
same cost as e. Then compute an optimal �-outconnected subdigraph from r and
output its underlying (undirected) simple graph. Several papers used this observa-
tion for designing approximation algorithms for node connectivity problems; see, e.g.,
[1, 2, 4, 16].

1.2. p-critical graphs and k-connected subgraphs. Let κ(G) denote the
connectivity of G, that is, the maximum integer � for which G is �-connected. A
(directed or undirected) graph G = (V,E) is p-critical if κ(G − U) = κ(G) − |U |
for any U ⊂ V with |U | ≤ p. One can characterize p-critical graphs in terms of
covers of set families, as follows. Let G = (V,E) be an �-connected graph. Let
X∗ = X∗

G = {v ∈ V −X : δG(X, v) = ∅} denote the “node complement” of X in G.
We say that X ⊂ V is an �-fragment if X∗ �= ∅ and |V − (X ∪ X∗)| = �. It is well
known that if G is �-connected, then |V | ≥ � + 1, and if |V | = � + 1, then G must
be a complete graph. Note that Menger’s theorem implies the following well-known
statement.
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Proposition 1.3. An �-connected graph G (on at least � + 2 nodes) is (� + 1)-
connected if and only if G has no �-fragments.

Given a family F of subsets of a groundset V we say that U ⊆ V covers F if U
intersects every set in F . Let F�(G) be the family of all �-fragments of G. We say
that U ⊆ V is an �-cover of G if U covers {X∪X∗ : X ∈ F�(G)}; let τ�(G) denote the
minimum cardinality of an �-cover of G. From Proposition 1.3 we have the following.

Proposition 1.4. Let G = (V,E) be a graph with κ(G) = � and |V | ≥ � + 2.
Then

(i) G is p-critical if and only if for any U ⊆ V with |U | ≤ p there exists an
�-fragment X with U ∩ (X ∪ X∗) = ∅. Thus if G is p-critical, then G is
p′-critical for any p′ ≤ p, and τ�(G) − 1 is the maximum p for which G is
p-critical.

(ii) U is an �-cover of G if and only if there exists an edge set F incident to U
(that is, every edge in F has at least one endpoint in U) such that G + F is
(� + 1)-connected.

Combining Proposition 1.4(ii) with Lemma 1.2 and the discussion before it, we
get the following statement, which was implicitly proved in [4] for undirected graphs.

Proposition 1.5 (see [4]). Suppose there is a polynomial algorithm that finds in
any �-connected graph G on n nodes an �-cover of G of size at most t(�, n). Then there
exists a polynomial algorithm that, for instances of the minimum k-connected subgraph

problem on n nodes, finds a feasible solution of cost at most optk · 2
∑k−1

�=0
t(�,n)
k−� =

optk ·O(ln k · max0≤�≤k−1 t(�, n)).
For undirected graphs with n ≥ 6k2, Cheriyan, Vempala, and Vetta [4] gave a

6H(k)-approximation algorithm for the undirected minimum cost k-connected sub-
graph problem combining Proposition 1.5 with the following theorem due to Mader.

Theorem 1.6 (see [21]). Any undirected 3-critical graph G has less than 6κ(G)
2

nodes.
In a recent paper, Mader [22] improved his bound for 3-critical graphs to n ≤

κ(G)(2κ(G)−1); hence via Proposition 1.5 the 6H(k)-approximation algorithm of [4]
is valid for n ≥ k(2k − 1) as well.

On the other hand, it is easy to see that there are no κ(G)-critical noncomplete
graphs. But for undirected graphs, a stronger result was conjectured in [26] and
answered by Su as follows.

Theorem 1.7 (see [30]). If a noncomplete graph G is p-critical, then p ≤
κ(G)/2�.

For a survey on p-critical graphs see [24, 25]; for some recent results see [22, 23]
and [18].

2. Computing logarithmic covers. Note that in terms of covers of set families
Theorem 1.6 states that τ�(G) ≤ 3 for any undirected graph G with κ(G) = � and
n ≥ 6�2, and Theorem 1.7 states that τ�(G) ≤ �/2�+ 1 (if n ≥ �+ 2). Our result on
p-critical graphs partly bridges the gap between these two bounds, and also gives the
first nontrivial bound on τ�(G) for directed graphs. Let θ = θ(�, n) = 2n

n+� .
Theorem 2.1. There exists a polynomial algorithm that, given an �-connected

graph G on n ≥ � + 2 nodes, finds an �-cover of G of size at most

t(�, n) = 2 +
3n

n− �
+

1

ln θ
ln

1

2

(
�− 1 − �2

n

)
= O

(
n

n− �
ln �

)

if G is undirected and of size at most 2t(�, n) if G is directed.
Combining with Proposition 1.5 we get the following.
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Theorem 2.2. For the minimum cost k-connected subgraph problem there exists a
polynomial algorithm that finds a feasible solution of cost at most optk ·O( n

n−k ln2 k).
Remark. Note that τ�(G) is the minimum cardinality of a cover (transversal) of

the (n − �)-uniform hypergraph {X ∪ X∗ : X ∈ F�(G)}. Several general bounds on
covers of uniform hypergraphs are known; see, e.g., [10]. But, as far as we can see,
none of them implies the bound given in Theorem 2.1.

We need several definitions and simple facts to prove Theorem 2.1. In the rest
of this section, let � be a fixed integer, and let G be a graph with κ(G) ≥ �. An
�-fragment X of G is small if |X| ≤ |X∗|, that is, if |X| ≤ (n− �)/2�. Note that by
Proposition 1.3, G is (� + 1)-connected if and only if G (and the reverse graph of G,
if G is directed) has no small �-fragments. Let S�(G) denote the family of all small
�-fragments of G. The following lemma is well known; see, e.g., [11, Lemma 1.2],
where it was stated for undirected graphs.

Lemma 2.3. Let X,Y be two intersecting �-fragments in an �-connected (directed
or undirected) graph G on n nodes. If n− |X ∪ Y | ≥ �, then X ∩ Y is an �-fragment,
and if a strict inequality holds, then X ∪ Y also is an �-fragment. In particular, the
intersection of two intersecting small �-fragments is also a small �-fragment.

A core of G is an inclusion minimal small �-fragment. By Lemma 2.3 the cores of
G are pairwise disjoint and ν(G) = ν�(G) denote their number; note that if κ(G) > �,
then ν�(G) = 0. For a core Ci of G, let Ai be the union of all small �-fragments that
contain a unique core, which is Ci. Let A�(G) = {A1, . . . , Aν(G)}. The properties of
the sets in A�(G) that we use are summarized in the following statement.

Corollary 2.4. The sets in A�(G) are pairwise disjoint. Moreover, for every
A ∈ A�(G) it holds that either A is an �-fragment or |A| ≥ n− � (and A∗ = ∅); thus
|A ∪A∗| ≥ n− �.

Proof. Suppose to the contrary that Ai and Aj intersect for some 1 ≤ i �= j ≤
ν(G). Then, by the definition of Ai, Aj , there are two small �-fragments Di, Dj such
that Di contains a unique core which is Ci, Dj contains a unique core which is Cj , and
Di, Dj intersect. By Lemma 2.3 Di∩Dj is a small �-fragment, and thus contains a core
C. This implies that Di contains the two cores Ci and C, which gives a contradiction.

To prove the second statement, let us fix some set A ∈ A�(G). Since the sets in
A�(G) are disjoint, A contains a unique core, say C. Consider the family D of all
small �-fragments that contain a unique core, which is C, so A is the union of the
sets in D. If n − |A| ≤ �, then clearly |A ∪ A∗| ≥ |A| ≥ n − � (in fact, in this case
A∗ = ∅, and thus |A ∪ A∗| = |A|). Otherwise, n − |A| ≥ � + 1; then by Lemma 2.3,
the union of the sets in D is an �-fragment, and thus |A∪A∗| = n− �. In both cases,
the statement is valid.

Note that Corollary 2.4 does not imply that the sets in A�(G) are small or that
they are �-fragments; it might be that A is large and that A∗ = ∅ for some A ∈ A�(G),
but in any case, |A ∪A∗| ≥ n− � holds.

Lemma 2.5. Let A be a family of sets on a groundset V such that |A| ≥ n − �
holds for every A ∈ A, where n = |V | and � is an integer. Then there exists an
element r ∈ V that covers (that is, intersects) at least

(
1 − �

n

)
|A| sets in A.

Proof. For r ∈ V , let Ar = {A ∈ A : r ∈ A} be the sets in A covered by r. The
claim follows since we have∑

r∈V

|Ar| =
∑
A∈A

|A| ≥ |A|(n− �).

For r ∈ V let Fr = {vr : v ∈ V − r}, and let G + Fr be the graph obtained by
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adding an edge from every node v ∈ V to r if such does not exist in G. We say that
r ∈ V outercovers A ∈ A�(G) if r ∈ A∗.

Lemma 2.6. Let Ci be a core of an �-connected graph G. If r outercovers Ai,
then any small �-fragment X of G + Fr that contains Ci must contain a core of G
distinct from Ci.

Proof. Let X be a small �-fragment of G + Fr that contains Ci. Assume by
contradiction that this is the unique core of G that X contains. Note that X is a
small �-fragment of G. Since Ai is defined as the union of all small �-fragments of G
containing Ci as their unique core, we obtain that X ⊆ Ai. This gives a contradiction,
since then r ∈ A∗

i ⊆ X∗, which implies that X cannot be an �-fragment of G+Fr.
Lemma 2.7. Let r be a node that outercovers q sets in A�(G). Then ν�(G+Fr) ≤

ν�(G) − q/2.
Proof. If κ(G + Fr) > �, then ν�(G + Fr) = 0 and the statement is obvious, so

assume that κ(G+Fr) = �. By Lemma 2.3, the cores of G+Fr are pairwise disjoint.
Clearly, every core of G+Fr is a small �-fragment of G, and thus contains at least one
core of G. Let t be the number of cores of G+Fr containing exactly one core of G. By
Lemma 2.6, any core C of G + Fr that contains some core Ci of G with r ∈ A∗

i must
contain another core of G distinct from Ci, so such C contains at least two cores of G.
Thus t ≤ ν�(G)−q. From this we get that ν�(G+Fr) ≤ t+(ν�(G)−t)/2 ≤ ν�(G)−q/2,
as required.

Since the sets in A�(G) are pairwise disjoint, a node can belong to at most one
of them. Thus, if A′ ⊆ A�(G) and r covers {A ∪ A∗ : A ∈ A′}, then there is at most
one set A′ ∈ A′ such that r ∈ A′; for any other A ∈ A − A′ we must have r ∈ A∗;
hence r outercovers at least |A′| − 1 sets in A′. Combining this with Corollary 2.4
and Lemmas 2.5 and 2.7 we get the following.

Corollary 2.8. Any �-connected graph G has a node r that outercovers at least
ν�(G)(1 − �/n) − 1 sets in A�(G), and ν�(G + Fr) ≤ n+�

2n ν�(G) + 1/2.
Let us apply the following algorithm on an �-connected graph G starting with

U = ∅.

While ν�(G) > 0 do:
1. Find a node r for which ν�(G + Fr) is minimal;
2. U ← U + r, G ← G + Fr;
End While
Output U .

By Proposition 1.4(ii), at the end of the algorithm U is an �-cover; let us estimate
its size. Let tj be the number of cores in G after j iterations of the main loop, and
set θ = 2n

n+� and α = 1/θ. Corollary 2.8 gives the recursive bound

tj+1 ≤ αtj + 1/2.

We will prove later that t1 ≤ � (see Corollary 2.11 below) which implies

tj ≤ αj−1� +
1

2
(1 + α + · · · + αj−2) = αj−1� +

1 − αj−1

2(1 − α)

= αj−1

(
�− 1

2(1 − α)

)
+

1

2(1 − α)
=

1

θj−1

(
�− n

n− �

)
+

n

n− �
.

The inequality can be easily proved by induction on j. Let β = 3n/(n− �).
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Claim 2.9.

tj ≤ β for j ≥ j(β) ≡ 1

ln θ
ln

1

2

(
�− 1 − �2

n

)
+ 1.

Proof. We solve for j the inequality

1

θj−1

(
�− n

n− �

)
+

n

n− �
≤ 3n

n− �
= β.

That is,

θj−1 ≥ �(n− �) − n

2n
=

1

2

(
�− 1 − �2

n

)
.

The claim follows by taking logarithm base θ from both sides and then changing the
logarithm base as follows:

j − 1 ≥ logθ
1

2

(
�− 1 − �2

n

)
=

1

ln θ
ln

1

2

(
�− 1 − �2

n

)
.

On the other hand, if tj > 0, then tj+1 ≤ tj − 1 since ν�(G+ Fr) ≤ ν�(G)− 1 for any
node r belonging to a core Ci of G (indeed, every core of G + Fr must contain some
core of G, but cannot contain Ci). Thus the number of iterations in the algorithm
(which is equal to the size of the cover found) is bounded by �j(β)� + β� ≤ t(�, n).
This proves Theorem 2.1 for undirected graphs. In the case of a directed graph G,
at the end of the algorithm, G has no small �-fragments, but G may not be (� + 1)-
connected since the reverse graph of G might have small �-fragments. Thus we apply
the above procedure twice, that is, on G and on the reverse graph of G, and take the
union of the resulting two node sets.

Let us now show that t1 ≤ � and discuss some consequences of our approach. The
following statement is obvious.

Lemma 2.10. Let r be a node of a (directed or undirected) noncomplete graph
G = (V,E) with κ(G) = �, and let Nr = {v ∈ V : vr ∈ E} be the nodes in G having r
as their neighbor. Then Nr covers all �-fragments of G + Fr.

An �-connected graph J is minimally �-connected if J − e is not �-connected for
every edge e of J . Mader [19, 20] showed that any minimally �-connected graph J

on n nodes has at least (�−1)n+2
2�−1 nodes of degree (indegree, if J is directed) �. Since

F�(G) ⊆ F�(J) for any �-connected spanning subgraph J of an �-connected graph G,
Lemma 2.10 implies the following corollary, which also proves that t1 ≤ �.

Corollary 2.11. Let G = (V,E) be an �-connected graph. Then there is R ⊆ V

with |R| ≥ (�−1)n+2
2�−1 such that for any r ∈ R the following holds: r and at most

� nodes having r as their neighbor cover all �-fragments of G and, in particular,
ν�(G + Fr) ≤ �.

We note that for a directed graph G, Corollary 2.11 implies only the trivial bound
τ�(G) ≤ �+1; however, for undirected G the following theorem provides an easy proof
of Theorem 1.7 and is similar to the proof given by Jordán in [12]; recall that in terms
of covers, Theorem 1.7 states that τ�(G) ≤ �/2� + 1.

Theorem 2.12. Let G be an undirected �-connected graph and let W be a cover
of F�(G). Then there exists an �-cover U ⊆ W of size at most |W |/2�.

Proof. In [19], Mader implicitly proved (see, e.g., [11] and [16, Corollary 2.2])
that if W covers all the �-fragments of an undirected �-connected graph G, then there
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exists a forest F on W such that G+F is (�+1)-connected. Since F is a forest, there
exists U ⊆ W such that |U | ≤ |W |/2� and every edge in F is incident to a node in
U . Thus, by Proposition 1.4(ii), U is a cover of F�(G) as required.

Let us now analyze the time complexity of our approximation algorithm for k-
connected spanning subgraphs. Using max-flow techniques, we find that an �-cover
as in Theorem 2.1 can be found in O(�m2) time, as follows. For the first iteration,
we find a minimally �-connected spanning subgraph J of G and choose a node s of
degree (indegree, if G is directed) � in J ; such J can be found in O(�m2) time by
repeatedly checking every edge for deletion. By Lemma 2.10 the set N = Ns of nodes
having s as their neighbor in J covers all �-fragments of J + Fs, and thus also of
G + Fs. Now we set G ← G + Fs. We compute for every u ∈ Ns and v ∈ V a set
of � internally disjoint paths. This can be done in O(�m) time per pair, and thus
in O(�2nm) total time, using the Ford–Fulkerson algorithm (the node-capacitated
version) and flow decomposition. For each pair uv we check whether v is reachable
from u in the corresponding residual network. If so, then the pair uv is discarded;
otherwise, a minimal �-fragment containing v is found, and if its size is ≤ (n− l)/2, it
is the minimal core containing v. At each iteration, for every r ∈ V , we can recompute
the cores of G+Fr in O(lm) time. Thus each iteration can be implemented in O(�nm)
time, and since the number of iterations is at most �, an �-cover as in Theorem 2.1
can be found in O(�2nm) = O(�m2) time, as claimed.

We also need to find a minimum cost edge set to increase the outconnectivity from
� to � + 1 from each node in the cover found. Frank [6] showed that a generalization
of this problem can be solved in O(n2m) time, but with some care Frank’s algorithm
can be implemented in O(m2) time. As the size of the cover found is O(�), we get
that the overall time complexity for increasing connectivity from � to �+1 is O(�m2),
where m ≥ n� is the number of edges in G. Consequently, the overall running time of
the algorithm is O(k2m2).

3. A primal-dual algorithm. In this section we prove the following theorem.

Theorem 3.1. For the problem of making a k0-connected graph (directed or
undirected) k-connected by adding a minimum cost edge set, there exists an approxi-
mation algorithm with approximation ratio O(

√
nH(k − k0)) = O(

√
n ln k) and time

complexity O(km(k2n2 +
√
nm)) = O(n5m), where H(j) denotes the jth Harmonic

number.

We start by giving an algorithm for increasing the connectivity of a directed graph
by one. We use as a subroutine the primal-dual algorithm of Ravi and Williamson
[28], which we adapt to directed graphs. Given an �-connected graph G, the algorithm
of [28] uses the primal-dual method to find an edge set F so that G + F is (� + 1)-
connected. We use the same approach, but unlike the algorithm in [28], the primal-
dual procedure terminates when we find an edge set F+ so that ν�(G + F+) =

√
2n;

we will show that c(F+) = O(
√
n

k−� )optk. We then find in G + F+ a node set U of

size O(
√
n) by picking one node from every core; for every r ∈ U we find an (� + 1)-

inconnected subgraph to r subgraph. The cost of each subgraph found is O( 1
k−� )optk

and its number is |U | = O(
√
n). Thus the cost of the edge set found during this step

is also O(
√
n

k−� )optk. We apply this procedure twice, that is, on G and on the reversed

graph of G. Consequently, the total cost of the edge set found is O(
√
n

k−� )optk.

Let G = (V,E) be an �-connected spanning subgraph of a directed graph G =
(V, E) such that all the edges in E have cost zero, and let I = E − E. Let S = S�(G)
denote the set of small �-fragments of G. For an edge set F and S ∈ S, let dF (S) =
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|δF (S, S∗)| be the number of edges in F going from S to S∗. Recall that G + F is
(� + 1)-connected if and only if the graph G + F and its reverse graph have no small
�-fragments. Note that for F ⊆ I = E − E, G + F has no small �-fragments if and
only if dF (S, S∗) ≥ 1 for any S ∈ S. Consider the following linear program (P) and
its dual program (D), where (P) is a linear relaxation for the problem of finding a
minimum cost augmenting edge set F such that G+F contains no small �-fragments:

min
∑
e∈I

cexe

(P) s.t.
∑

e∈δI(S,S∗)

xe ≥ 1 ∀S ∈ S,

xe ≥ 0 ∀e ∈ I.

max
∑
S∈S

yS

(D) s.t.
∑

S∈S:e∈δI(S,S∗)

yS ≤ ce ∀e ∈ I,

yS ≥ 0 ∀S ∈ S.

Lemma 3.2. Let x be an optimal solution to (P). Then
∑

e∈I cexe ≤ 1
k−�optk.

Proof. Let x be an optimal solution to the LP-relaxation for the minimum cost
k-connected spanning subgraph problem (given in section 1.1). Define x′

e = 1 if e ∈ E
and x′

e = 1
k−lxe otherwise. Then x′ is a feasible solution to (P). Since all the edges

in E have zero cost, the claim follows.
Given a feasible solution y to (D), an edge e ∈ I is tight if the corresponding

inequality in the dual program (D) holds with equality. If F+ ⊆ I is a set of tight
edges, then

c(F+) =
∑
e∈F+

ce =
∑
e∈F

∑
S∈S:e∈δ(S,S∗)

yS =
∑
S∈S

dF (S)yS .(1)

Recall that by Lemma 2.3 the cores of G are disjoint. Let us fix the threshold
β =

√
2n and apply the following procedure.

Procedure 1. While ν�(G) ≥ β, raise dual variables corresponding to cores of
G uniformly until some edge e ∈ I becomes tight, and add this edge to G.

Let F̃+ be the set of edges added to the input graph G by Procedure 1.
Lemma 3.3. Let F+ ⊆ F̃+. Then

c(F+) ≤ |F+|
β

optk
k − �

.

Proof. Let y be the dual solution produced by Procedure 1. Since the edges in
F+ are tight, we have c(F+) =

∑
S∈S dF+(S)yS by (1). Let Ci be the family of cores

of G at iteration i, and let εi be the amount at which they were raised at iteration
i, i = 1, . . . , q. Note that yS =

∑
{i:S∈Ci} εi for any set S ∈ S. Using this, together

with the fact that the sets in Ci are disjoint and that |Ci| ≥ β, we get

∑
S∈S

dF+(S)yS =

q∑
i=1

εi
∑
S∈Ci

dF+(S) ≤
q∑

i=1

εi|F+| |Ci|
β

=
|F+|
β

q∑
i=1

εi|Ci|

=
|F+|
β

∑
S∈S

yS ≤ |F+|
β

optk
k − �

.
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The first inequality follows by upper bounding 1 by |Ci|/β and noting that in∑
S∈Ci

dF+(S) every edge is counted exactly once (since the graphs we consider
are directed). The last inequality follows from Lemma 3.2 and the weak duality
theorem.

After executing Procedure 1, let C1, . . . , Cν+ be the cores of G + F̃+.
Procedure 2. For j = 1, . . . , ν+, choose rj ∈ Cj , and compute an optimal edge

set F̃+
j such that G + F̃+

j is (� + 1)-outconnected from rj .

Note that by Lemma 1.2, c(F̃+
j ) ≤ 1

k−�optk, j = 1, . . . , ν+.
We then apply Procedures 1 and 2 on the reverse graph of G+I to find appropriate

edge sets F̃− and F̃−
1 , . . . , F̃−

ν− . Let F̃ be the union of all the edge sets found. Then

G + F̃ is (� + 1)-connected. The last step in our algorithm is finding an inclusion
minimal edge set F ⊆ F̃ such that G + F is (� + 1)-connected. Note that |F̃ | might
be large, but the following statement shows that |F | = O(n).

Theorem 3.4 (see [20]). Let G be an �-connected directed graph, and let F be
an inclusion minimal augmenting edge set such that G+F is (�+1)-connected. Then
|F | ≤ 2n− 1.

Lemma 3.5. The algorithm produces a feasible solution of cost at most 4
√

2n
k−� optk.

Proof. By Theorem 3.4, |F | ≤ 2n. Set F+ = F̃+∩F , F− = F̃−∩F , F+
j = F̃+

j ∩F
for j = 1, . . . , ν+, and F−

j = F̃−
j ∩ F for j = 1, . . . , ν−. Applying Lemmas 3.3 and

1.2, Theorem 3.4, and recalling that ν+, ν− ≤ β ≤
√

2n, we get

c(F ) ≤ c(F+)+c(F−)+

ν+∑
j=1

c(F+
j )+

ν−∑
j=1

c(F−
j ) ≤ 2optk

k − l

(
2n

β
+ β

)
≤ 4

√
2n

k − �
optk.

Suppose now that the input graph G contains a k0-connected spanning subgraph
of cost zero. We can repeatedly apply the above algorithm starting with � = k0 until
� = k − 1 to compute a k-connected spanning subgraph of G; the overall cost of the
subgraph found will be at most 4

√
2nH(k − k0)optk = O(

√
n ln k)optk.

For undirected graphs, an 8
√

2nH(k−k0)-approximation algorithm easily follows
using the reduction due to Khuller and Raghavachari [17] described at the end of
section 1.1.

To finish the proof of Theorem 3.1, let us discuss the implementation and the
time complexity of the algorithm. As was mentioned, Procedure 1 in our algorithm
is similar to the procedure used in [28], and we can adapt the implementation of [28]
as well. We omit the details but note that for implementing all Procedures 1 in the
algorithm, as well as finding minimal edge sets F ⊆ F̃ such that G + F is (� + 1)-
connected, � = 0, . . . , k − 1, can be done in O(k3mn2) = O(k2nm2) total time; see
section 5 in [28]. Using the algorithm of [9], the overall time required for Procedure 2
implementations is O(k3mn2

√
n). Note however, that Procedure 2 requires finding

a minimum cost edge set to increase the outconnectivity from � to � + 1. As was
mentioned, this problem can be solved in O(m2) time using Frank’s algorithm [6].
Thus the total time required for Procedure 2 executions is O(k

√
nm2).

Acknowledgments. The authors thank Joseph Cheriyan and an anonymous
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A PARAMETRIZED ALGORITHM FOR MATROID
BRANCH-WIDTH∗

PETR HLINĚNÝ†

Abstract. Branch-width is a structural parameter very closely related to tree-width, but branch-
width has an immediate generalization from graphs to matroids. We present an algorithm that, for
a given matroid M of bounded branch-width t which is represented over a finite field, finds a branch
decomposition of M of width at most 3t in cubic time. Then we show that the branch-width of M
is a uniformly fixed-parameter tractable problem. Other applications include recognition of matroid
properties definable in the monadic second-order logic for bounded branch-width, and [S.-I. Oum,
Approximating rank-width and clique-width quickly, in Proceedings of the 31st International Work-
shop on Graph-Theoretic Concepts in Computer Science, Springer-Verlag, Heidelberg, to appear] a
cubic time approximation algorithm for graph rank-width and clique-width.
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1. Introduction. We assume that the reader is familiar with basic concepts of
graph theory; see, for example, [8]. In the past decade, the notion of a tree-width of
graphs [22] attracted plenty of attention from both graph-theoretical and computa-
tional points of view. This attention followed the pioneering work of Robertson and
Seymour on the graph minor project [21], and results of various researchers using
tree-width in dynamic programming and parametrized complexity; see [3] for a brief
introduction. We postpone formal definitions until later sections.

The theory of parametrized complexity provides a background for analysis of dif-
ficult algorithmic problems and is finer than classical complexity theory. For an
overview, we suggest [9]. Briefly, a problem is called “fixed-parameter tractable”
if there is an algorithm having running time with the (possible) super-polynomial
part separated in terms of some natural “parameter,” which is supposed to be small
even for large inputs in practice. Successful practical applications of this concept are
known, for example, in computational biology and database theory: Imagine a query
of a small size k to a large database of size n >> k; then an O(2k ·n) parametrized al-
gorithm may be better in practice than, say, an O(nk) algorithm, or even an O((kn)c)
polynomial algorithm.

Generally speaking, we are interested in algorithmic problems that are parame-
trized by a tree-like structure of the input objects or the tree-width parameter. How-
ever, for matroid theorists, it is the (very similar, but less known) parameter called
branch-width [22] that has proved to be the more useful tool. This is because, unlike
tree-width, branch-width does not refer to vertices, and thus extends directly from
graphs to matroids, and hence also to matrices and vector configurations. We refer
to [16] for a more detailed discussion on matroid tree-width.
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The tree-width of a graph is hard to compute in general. It has been shown
by Bodlaender [4] that graph tree-width is a uniformly fixed-parameter tractable
property, and, moreover, an optimal tree-decomposition of a graph can be found in
parametrized linear time. That algorithm is used in [5] to find an optimal branch-
decomposition of a graph in parametrized linear time. However, these algorithms are
so closely tied to graphs that it seems impossible to generalize them to matroids.
Recent advances concerning matroid connectivity, on the other hand, lead to a simple
and practical polynomial algorithm [12] for deciding whether a given matroid has
branch-width at most 3. Unfortunately, there seems to be no generalization of that
algorithm to higher values of branch-width.

In this paper we show (Algorithm 4.1, Theorem 4.14) how to construct a near-
optimal branch-decomposition of a matroid represented over any finite field in parame-
trized (with respect to branch-width) cubic time. We also prove (Theorem 5.5) that
matroid branch-width and tree-width are fixed-parameter tractable properties for ma-
troids represented over finite fields.

These algorithms and their consequences are formulated in the language of ma-
troid theory since it is natural and convenient, and since it shows the close relations of
this research to well-known graph structural and computational concepts. Our work
could be, as well, viewed in terms of matrices, point configurations, or linear codes
over a finite field F. The key to the subject is the notion of parse trees for bounded-
width F-represented matroids, defined in section 3 as an analogue of parse trees for
graphs of bounded tree-width.

In [14] we prove a result analogous to the so-called “MS2-theorem” of Courcelle [6,
7] for matroids represented by matrices over a finite field F: If M is a family of matroids
described by a sentence in the monadic second-order logic of matroids, then the “parse
trees” of bounded-branch-width F-represented members of M are recognizable by a
finite tree automaton. So by relating [14] to Algorithm 4.1, we prove that all matroid
properties expressible in the monadic second-order logic are uniformly fixed-parameter
tractable for F-represented matroids of bounded branch-width. Another application
[13] gives an efficient algorithm for computing the Tutte polynomial of a matroid, the
critical index, and the Hamming weight or the weight enumerator of a linear code,
when the branch-width is bounded. Moreover, a recent algorithm of Oum [19] uses
Algorithm 4.1 to approximate the clique-width of a graph in parametrized cubic time
via a new parameter related to matroid branch-width called the rank-width [18].

In order to make the paper accessible to a wide audience of computer scientists, we
provide sufficient introductory definitions for relevant concepts of structural matroid
theory.

2. Basics of matroids. We refer to Oxley [20] for our matroid terminology. A
matroid is a pair M = (E,B), where E = E(M) is the ground set of M (elements of
M), and B ⊆ 2E is a nonempty collection of bases of M , no two of which are in an
inclusion. Moreover, matroid bases satisfy the “exchange axiom”; if B1, B2 ∈ B and
x ∈ B1 − B2, then there is y ∈ B2 − B1 such that (B1 − {x}) ∪ {y} ∈ B. Subsets
of bases are called independent sets, and the remaining sets are dependent. Minimal
dependent sets are called circuits. The rank function rM (X) in M is the maximal
cardinality of an independent subset of a set X ⊆ E(M).

If G is a graph, then its cycle matroid on the ground set E(G) is denoted by M(G).
The independent sets of M(G) are the forests of G, and the circuits of M(G) are the
cycles of G. In fact, much of matroid terminology is inherited from graphs. Another
typical example of a matroid is a finite set of vectors with usual linear dependency.
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Both examples are illustrated in Figure 1.

K4
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ef
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a bc
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1
0
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1
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1
1
1
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[
0
0
1

]

[
1
0
1

]

Fig. 1. An example of a vector representation of the cycle matroid M(K4). The matroid
elements are depicted by dots, and their (linear) dependency is shown using lines.

The dual matroid M∗ of M is defined on the same ground set E, and the bases
of M∗ are the set-complements of the bases of M . An element e of M is called a loop
(a coloop) if {e} is dependent in M (in M∗). The matroid M \ e obtained by deleting
a noncoloop element e is defined as (E − {e},B−), where B− = {B : B ∈ B, e �∈ B}.
The matroid M/e obtained by contracting a nonloop element e is defined using duality
M/e = (M∗ \ e)∗. (This corresponds to contracting an edge in a graph.) A minor of
a matroid is obtained by a sequence of deletions and contractions of elements.

The connectivity function λM of a matroid M is defined for all A ⊆ E by

λM (A) = rM (A) + rM (E −A) − r(M) + 1 .

Here r(M) = rM (E). Notice that λM (A) = λM (E − A). A subset A ⊆ E is
k-separating if λM (A) ≤ k. When equality holds here, A is said to be exactly
k-separating. An arbitrary partition (A,E −A) of M is called a separation in M . A
partition (A,E−A) is called a k-separation if A is k-separating and both |A|, |E−A| ≥
k. Geometrically, the affine closures of the two sides of an exact k-separation intersect
in a subspace of rank k − 1 (such as in a line if k = 3).

2.1. Branch-decomposition. A subcubic tree is a tree in which all nodes have
degree at most 3. (We do not use the word ternary because such trees are actually
subbinary in the sense of the next section.) Let �(T ) denote the set of leaves of a tree
T . The next definition of branch-width for matroids directly extends branch-width of
graphs.

Let M be a matroid on the ground set E = E(M). A branch-decomposition of
M is a pair (T, τ), where T is a subcubic tree, and τ is an injection of E into �(T ),
called labeling. Let e be an edge of T , and let T1, T2 be the connected components
of T − e. We say the e displays the partition (A,B) of E, where A = τ−1(�(T1)),
B = τ−1(�(T2)). The width of an edge e in T is ωT (e) = λM (A) = λM (B). The width
of the branch-decomposition (T, τ) is the maximum of the widths of all edges of T ,
and the branch-width of M is the minimal width over all branch-decompositions of
M . If T has no edge, then we take its width as 0.

Examples of branch-decompositions are presented in Figure 2. We remark that
the branch-width of a graph is defined analogously, using the connectivity function
λG, where λG(F ) is the number of vertices incident with both F and E(G) − F .
Clearly, the branch-width of a graph G is never smaller than the branch-width of its
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Fig. 2. Two examples of width-3 branch decompositions of the Pappus matroid (top left, in
rank 3) and of the binary affine cube (bottom left, in rank 4). The lines in the matroids show
dependencies among elements.

cycle matroid M(G). It is still an open conjecture whether these numbers are actually
equal. On the other hand, branch-width is within a constant factor of tree-width on
graphs [22] and also on matroids [16].

2.2. Represented matroids. We now turn our attention to matroids repre-
sented over a fixed finite field F. This is a crucial part of our introductory definitions.
A representation of a matroid M is a matrix A whose column vectors correspond to
the elements of M , and maximal linearly independent subsets of columns form the
bases of M . We denote by M(A) the matroid represented by a matrix A.

We denote by PG(n,F) the projective geometry (space) obtained from the vec-
tor space F

n+1. See [20, sections 6.1, 6.3] for an overview of projective spaces and
of (in)equivalence of matroid representations. For a set X ⊆ PG(n,F), we denote
by 〈X〉 the span (affine closure) of X in the space. The (projective) rank r(X) of
X is the maximal cardinality of a linearly independent subset of X. A projective
transformation is a mapping between two projective spaces over F that is induced by
a linear transformation between the underlying vector spaces. Clearly, the matroid
M(A) represented by a matrix A is unchanged when column vectors are scaled by
nonzero elements of F. Hence we may view a loopless matroid representation M(A)
as a multiset of points in the finite projective space PG(n,F), where n is the rank of
M(A).

Definition 2.1. We call a finite multiset of points in a projective space over F

a point configuration, and we represent a loop in a point configuration by the empty
subspace ∅. Two point configurations P1, P2 in projective spaces over F are equivalent
if there is a nonsingular projective transformation between the projective spaces that
maps P1 onto P2 bijectively. (Loops are mapped only to loops.) We define an F-
represented matroid to be such an equivalence class of point configurations over F.

One may think that we do not have to include the word “bijectively” in the
previous definition since nonsingular projective transformations are always injective
on the points, but, in fact, we have to do this to handle multiple elements in multisets.
Two labeled point configurations over F are equivalent in our sense if and only if, in
the language of [20, Chapter 6], the matrix representations are equivalent without use
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of F-automorphisms, otherwise called strongly equivalent in matroid theory. However,
notice that our represented matroids are unlabeled in general.

Standard matroidal terms are inherited from matroids to represented matroids.
Obviously, all point configurations in one equivalence class belong to the same iso-
morphism class of matroids, but the converse is not true in general since matroids
often have inequivalent representations. When we want to deal with an F-represented
matroid, we actually pick an arbitrary point configuration from the equivalence class.

3. Parse trees for matroids. In this section we introduce our basic formal
tool—the parse trees for represented matroids of bounded branch-width. Loosely
speaking, a parse tree shows how to “build up” a matroid along the tree using only a
fixed amount of information at each tree node, and so it forms a suitable background
for dynamic programming.

We are inspired by analogous boundaried graphs and parse trees known for han-
dling graphs of bounded tree-width (see for example [1] or [9, section 6.4]): A bound-
aried graph is a graph with a distinguished subset of labeled vertices. (The purpose
of distinguishing the boundary is that only the boundary vertices can be “accessed
from outside”). Then, simply speaking, a graph has tree-width at most t − 1 if and
only if it can be composed from small pieces by gluing them onto boundaries of size at
most t. We similarly define boundaried represented matroids, in which the boundary
is a distinguished subspace of the representation, and composition operators that are
used to glue representations together. (The role of composition operators, however,
differs between tree-width and branch-width.)

A rooted ordered subbinary tree is such that each of its nodes has at most two
sons that are ordered as “left” and “right.” (If there is one son, then it may be either
left or right.) A rooted subtree T0 of a rooted tree T is a subgraph of T such that T0

is the connected component of T − e not containing the root for some e ∈ E(T ). Let
Σ be a finite alphabet. We denote by Σ∗∗ the class of rooted ordered subbinary trees
with nodes labeled by symbols from Σ.

3.1. Boundaried matroids. All matroids throughout this section are F-
represented for some fixed finite field F. Hence, for simplicity, if we say “(repre-
sented) matroid,” then we mean an F-represented matroid. If we speak about a
projective space, we mean a projective geometry over the field F. Let [s, t] denote the
set {s, s + 1, . . . , t}.

The following definition presents a possible way of formalizing the notion of a
“matroid with a boundary.” (Since matroids have no vertices, unlike graphs, we have
to introduce some special elements that define the matroid boundary.)

Definition 3.1. A pair N̄ = (N, δ) is a t-boundaried (represented) matroid if
the following holds: t ≥ 0 is an integer, N is a represented matroid, and δ : [1, t] →
E(N) is an injective mapping such that δ([1, t]) is an independent set in N .

We call J(N̄) = E(N) − δ([1, t]) the internal elements of N̄ , elements of δ([1, t])
the boundary points of N̄ , and t the boundary rank of N̄ . The represented matroid
N \δ([1, t]), which is the restriction of N to J(N̄), is called the internal matroid of N̄ .
We denote by ∂(N̄) the boundary subspace spanned by δ([1, t]). In particular, the
boundary points are not loops. The basic operation we use is the boundary sum ⊕̄ of
the next definition, illustrated in Figure 3.

Definition 3.2. Let N̄1 = (N1, δ1), N̄2 = (N2, δ2) be two t-boundaried rep-
resented matroids. We denote by N̄1 ⊕̄ N̄2 = N the represented matroid defined as
follows: Let Ψ1,Ψ2 be projective spaces such that the intersection Ψ1 ∩ Ψ2 has rank
exactly t. Suppose that, for i = 1, 2, Pi ⊂ Ψi is a point configuration representing Ni
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⊕̄ →

Fig. 3. An example of a boundary sum of two 2-boundaried matroids. The internal matroid
elements are drawn as solid dots; the boundary points and the boundary subspace of rank 2 are drawn
in gray. Solid lines show matroid dependencies. The resulting sum is a matroid represented on two
intersecting planes in rank 4 (three-dimensional picture on the right).

such that P1 ∩ P2 = δ1([1, t]) = δ2([1, t]), and δ2(j) = δ1(j) for j ∈ [1, t]. Then N is
the matroid represented by (P1 ∪ P2) − δ1([1, t]).

Informally, the boundary sum N̄1 ⊕̄ N̄2 = N on the ground set E(N) = J(N̄1)∪̇
J(N̄2) is obtained by gluing the representations of N1 and N2 onto a common subspace
(the boundary) of rank t so that the boundary points of both are identified in order
and then deleted. Keep in mind that a point configuration is a multiset. It is a
matter of elementary linear algebra to verify that the boundary sum is well defined
with respect to equivalence of point configurations.

We write “≤t-boundaried” to mean t′-boundaried for some 0 ≤ t′ ≤ t. We now
define a composition operator (over the field F) which will be used to generate large
boundaried matroids from smaller pieces (Figure 4).

Definition 3.3. A ≤t-boundaried composition operator is defined as a quadruple
� = (R, γ1, γ2, γ3), where R is a represented matroid, γi : [1, ti] → E(R) is an injective
mapping for i = 1, 2, 3 and some fixed 0 ≤ ti ≤ t, each γi([1, ti]) is an independent set
in R, and

(
γi([1, ti]) : i = 1, 2, 3

)
is a partition of E(R).

The ≤t-boundaried composition operator � is a binary operator applied to a t1-
boundaried represented matroid N̄1 = (N1, δ1) and to a t2-boundaried represented
matroid N̄2 = (N2, δ2). The result of the composition is a t3-boundaried represented
matroid N̄ = (N, γ3), written as N̄ = N̄1 � N̄2, where a matroid N is defined using
boundaried sums: N ′ = N̄1 ⊕̄(R, γ1), N = (N ′, γ2) ⊕̄ N̄2.

Speaking informally, a boundaried composition operator is a bounded-rank con-
figuration with three boundaries distinguished by γ1, γ2, γ3 and with no other internal
points. For reference we denote ti(�) = ti, R(�) = R, and γi(�) = γi. The mean-
ing of a composition N̄ = N̄1 � N̄2 is that, for i = 1, 2, we glue the represented
matroid Ni onto R, matching δi([1, ti]) with γi([1, ti]) in order. The result is a t3-
boundaried matroid N̄ with boundary γ3([1, t3]). One may abbreviate the composition
as N̄ =

((
N̄1 ⊕̄(R, γ1), γ2

)
⊕̄ N̄2, γ3

)
.

3.2. Parse trees. The main purpose of introducing parse trees is in that they
allow us to formally define how to construct a represented matroid of branch-width
at most t + 1 using ≤t-boundaried composition operators.

Let Ω̄t denote the empty t-boundaried matroid (Ω, δ0), where t ≥ 0 and δ0([1, t]) =
E(Ω) (t will often be implicit in the context). If N̄ = (N, δ) is an arbitrary t-
boundaried matroid, then N̄ ⊕̄ Ω̄t is actually the internal matroid of N̄ . Let Ῡ denote
the single-element 1-boundaried matroid (Υ, δ1), where E(Υ) = {x, x′} are two par-
allel elements and δ1(1) = x′. Let Ῡ0 denote the loop 0-boundaried matroid (Υ0, δ0),
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Fig. 4. An example of a boundaried parse tree. The ovals represent composition operators, with
shaded parts for the boundaries and edge-numbers for the boundary ranks (e.g., �4 = (R4, γ4

1 , γ
4
2 , γ

4
3),

where γ4
1 , γ

4
2 : [1, 2] → E(R4), γ4

3 : [1, 3] → E(R4)).

where E(Υ0) = {z} is a loop and δ0 is an empty mapping. Let RF
t denote the finite set

of all ≤t-boundaried composition operators over the field F. We set Πt = RF
t ∪{Ῡ, Ῡ0}.

Let T ∈ Π∗∗
t be a rooted ordered subbinary tree with nodes labeled by the alpha-

bet Πt. Considering a node v of T , we set 	(v) = 1 if v is labeled by Ῡ, 	(v) = 0 if
v is labeled by Ῡ0, and 	(v) = t3(�) if v is labeled by �. We call T a ≤t-boundaried
parse tree if the following are true:

• Only leaves of T are labeled by Ῡ or Ῡ0.
• If a node v of T labeled by a composition operator � has no left (no right)

son, then t1(�) = 0 (t2(�) = 0).
• If a node v of T labeled by � has left son u1 (right son u2), then t1(�) = 	(u1)

( t2(�) = 	(u2) ).
Informally, the boundary ranks of composition operators and/or single-element ter-
minals must “agree” across each edge. Notice that Ῡ or Ῡ0 are the only labels from
Πt that “create” elements of the resulting represented matroid P (T ) in the next def-
inition. See an illustrative example in Figure 4.

Definition 3.4. Let T be a ≤t-boundaried parse tree. The ≤t-boundaried repre-
sented matroid P̄ (T ) parsed by T is recursively defined as follows:

• If T is an empty tree, then P̄ (T ) = Ω̄0.
• If T has one node labeled by Ῡ (by Ῡ0), then P̄ (T ) = Ῡ ( = Ῡ0).
• If the root r of T is labeled �r, and r has a left rooted subtree T1 and a right

rooted subtree T2 (possibly empty), then P̄ (T ) = P̄ (T1)�r P̄ (T2).
The composition is well defined according to the parse-tree description in the previous
paragraph. The represented matroid parsed by T is P (T ) = P̄ (T ) ⊕̄ Ω̄.

We say that a t-boundaried represented matroid M̄ is spanning if the boundary
subspace ∂(M̄) is contained in the span 〈J(M̄)〉 of the internal points of M̄ . We say
that a ≤t-boundaried parse tree T is spanning if, for each nonempty rooted subtree
T1 of T , the boundaried matroid P̄ (T1) is spanning and nonempty. The following
natural result about parse trees of matroids is proved in [14].

Theorem 3.5 (Hliněný [14]). An F-represented matroid M has branch-width at
most t + 1 if and only if M is parsed by some spanning ≤t-boundaried parse tree.

It is easy to turn a boundaried parse tree into a branch-decomposition. Con-
versely, the proof of Theorem 3.5 shows how to construct a boundaried parse tree
from a given branch-decomposition. It is, however, more efficient to construct a
boundaried parse tree directly from scratch and that is what we are going to do in
this paper.
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4. Constructing a parse tree. We start with an overview of our algorithm for
construction of a matroid parse tree. We assume that a matroid M is given by a matrix
A ∈ F

r×n of rank r over a finite field F. The size of M is expressed in terms of the
number n of elements, i.e., the number of columns of A. Clearly, r ≤ n. Additionally,
there are two parameters—a finite field F and an integer t > 0. These parameters
form a separate part of the input in our algorithm, but they are considered constants
for the purpose of complexity analysis of the algorithm. A more formal description in
the scope of parametrized complexity can be found in section 5.2.

We call a labeled tree T a partial ≤t-boundaried parse-tree if T satisfies all prop-
erties of the parse-tree definition (section 3.2) except that some leaves of T may be
labeled by arbitrary t′-boundaried represented matroids for t′ ≤ t. The matroid P̄ (T )
parsed by T is defined analogously to ordinary parse trees.

Notice that a 0-boundaried represented matroid is essentially an ordinary repre-
sented matroid, and that the boundary sum of 0-boundaried represented matroids is
the ordinary direct sum of matroids. Let M � X denote the restriction of a repre-
sented matroid M to a subset of elements X ⊆ E(M). Let Ir denote the r×r identity
submatrix.

Algorithm 4.1. Computing a spanning boundaried parse tree of a matroid:
Parameters: A given finite field F, and an integer t ≥ 1.
Input: A matrix A = [Ir |A′] ∈ F

r×n given in the standard form over F, such that
the matroid M(A) represented by A has branch-width at most t + 1.

1. Let M = M(A), and let E(M) = B ∪ F, where a basis B marks the columns
of Ir and F the columns of A′. We initially set X = B, and set T to be an
arbitrary 0-boundaried parse tree for the independent matroid M �B.

2. For an arbitrary element f ∈ F −X, we set X = X ∪{f}, and we add a new
single-element leaf representing f in M �X to the parse tree T .

3. If the width of the parse tree T exceeds, say, 10t, or if X ⊇ F , then we
compute a new spanning ≤3t-boundaried parse tree T ′ for M �X using T :

(a) We start with T ′ equal to the trivial 0-boundaried partial parse tree
having one node labeled by M �X.

(b) Let � be a leaf of T ′ labeled by a boundaried matroid N̄ with more
than one internal element. If the boundary rank of N̄ is less than 3t, then
we choose an arbitrary internal element e in N̄ . We add to T ′ a new leaf �1
representing a single-element e, another new leaf �2 labeled by N̄ \ e, and we
relabel � with the corresponding composition operator.

(c) If the boundary rank of N̄ equals 3t, then there are two ≤3t-boundaried
matroids N̄1, N̄2 such that N̄ = N̄1 � N̄2 for some ≤3t-boundaried composition
operator �. Using the decomposition T , we can find N̄1, N̄2 and � efficiently.
Then we add two new leaves �1, �2 to T ′ labeled by N̄1, N̄2, respectively, and
we relabel � with �.

(d) We repeat steps 3(b)–(c) until T ′ is an ordinary parse tree.
Finally, we set T = T ′.

4. We repeat steps 2–3 until X ⊇ F .
Output: A spanning ≤3t-boundaried parse tree T ∈ Π∗∗

3t such that the represented
matroid P (T ) parsed by T is equal to M(A).

Remark 4.2. If the above promise that the matroid M(A) has branch-width
at most t + 1 is false, then step 3(c) may fail to find N̄1 and N̄2. In such a case,
Algorithm 4.1 ends up with an error. The algorithm may be formulated so that it
always finds a spanning ≤3t-boundaried parse tree T for M(A) if branch-width of
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M(A) is at most t + 1, but the output is (possibly) empty if branch-width of M(A)
exceeds t + 1.

Remark 4.3. Another point concerns the given finite field F: A finite field is
uniquely determined by the number of its elements q = |F|. Moreover, it is easy to
construct addition and multiplication tables for F algorithmically from given q.

We claim that Algorithm 4.1 finds the ≤3t-boundaried parse tree T for M(A) in
time O(n3), where n is the number of columns of A. If the matrix A is not in the
standard form, we can easily get the standard form in time O(n3). Step (4.1) can be
implemented in time O(nr) ≤ O(n2). Each iteration of the cycle in step (4.1) can be
implemented in time O(n), and there are at most n − 1 iterations. Altogether, the
main cycle in the algorithm is repeated n− r times.

We also note that the running time O(n3) of our algorithm refers to the number n
of columns of A, not to the real size of the input. The real input size of the matrix A
is O(n · r), which is typically of order up to n2. We do not attempt to determine how
the running time of Algorithm 4.1 depends on the parameters F and t (which is at
least an exponential function). However, we do care that the algorithm is recursive in
F and t—there is one algorithm, not a sequence of algorithms, running for all values
of the parameters (cf. section 5.2).

4.1. Step 4.1: Adding an element to a parse tree. Step 4.1 in Algorithm 4.1
is easy to implement. We are going to describe the implementation of step 4.1 of
Algorithm 4.1. This is a surprisingly nontrivial task despite our adding the element
f to the parse tree T arbitrarily. The main complication comes from the necessity
of recomputing all boundary subspaces of the separations in T—a straightforward
implementation of which would require us to solve systems of linear equations. All
of our succeeding algorithms are parametrized by a finite field F and integers t and
t′ ≤ 10t, where F, t are as in Algorithm 4.1.

Let M = M(D) be a matroid represented by a matrix D ∈ F
r×n, and consider

a separation (E1, E2) in M (i.e., a partition of E(M) ). The projective subspace
〈E1〉∩〈E2〉 spanned by both sides of the separation is called the guts of the separation
(E1, E2). The rank of the guts equals λM (E1)− 1 by modularity. Naturally, one may
compute a spanning set of generator vectors (with respect to D) for the guts of
(E1, E2) from the vectors in D. If the rank of the guts is less than t′, which is a
constant, then the combined size of its independent generator vectors is O(r).

Algorithm 4.4 (adding a vector to separation guts in a represented matroid).

Input: A matrix D = [Ir |D′] ∈ F
r×n representing the matroid M = M(D); a separa-

tion (F1, F2) of the matroid M \ f , where f is the element represented by the
last column of D and where λM\f (F1) ≤ t′ + 1; and independent generator
vectors for the guts of the separation (F1, F2) with respect to D \ f .

Output: Independent generator vectors for the guts of the separation (F1 ∪{f}, F2) of
M with respect to D, computed in time O(r).

Proof. Notice that we cannot even read the whole matrix D in time O(r). This
is, however, not a big problem since we are going to use only the unit vectors of Ir
and the generator vectors of the guts in the algorithm. Let Ψ = 〈F1〉 ∩ 〈F2〉 be the
given guts, and let Ψ′ = 〈F1 ∪ {f}〉 ∩ 〈F2〉 be the guts we have to generate. Let f
denote the last column of D representing the element f , and let f 1 denote the vector
obtained from f by setting to 0 the coordinates corresponding to the unit vectors of
Ir appearing in F1. Then f 1 belongs to the span 〈F2〉 by definition.

We may easily compute f 1 in time O(r). Moreover, we may decide whether
f 1 ∈ Ψ in time O(r) since there is a bounded number of generator vectors for Ψ. If
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f 1 ∈ Ψ, then f belongs to the span 〈F1〉 and so Ψ′ = Ψ. Otherwise, since f 1 belongs
to the span 〈F1 ∪ {f}〉, we get Ψ′ = 〈Ψ ∪ f 1〉.

Let M = M(D) be a matroid represented by a matrix D ∈ F
r×n, and let T be a

spanning ≤t′-boundaried parse tree for M . A coordinatization (with respect to D) of
the parse tree T is the assignment of the appropriate vectors to the boundary points
of the matroids P̄ (T1) for all rooted subtrees T1 of T , as computed from the vectors of
D. Similarly as above, the combined size of the vectors for each boundary subspace
is O(r).

Algorithm 4.5 (computing the coordinatization of a spanning ≤t′-boundaried
parse tree T for the represented matroid M(D) over F).

Input: A matrix D ∈ F
r×n, and a spanning ≤t′-boundaried parse tree T for the rep-

resented matroid M(D).
Output: The coordinatization of T with respect to D, computed in time O(nr).

Proof. If T0 is a rooted subtree of T with one node, then the coordinatization
of T0 is trivial. So assume that the root r0 of T0 has the left and right rooted
subtrees T1 and T2, and that r0 is labeled by a composition operator �. (Hence
P̄ (T0) = P̄ (T1)� P̄ (T2). One of the subtrees may be empty.) Since T is a spanning
parse tree, the boundary of P̄ (T0) is spanned by the boundaries of P̄ (T1) and P̄ (T2).
Thus the vectors assigned to the boundary points of P̄ (T0) with respect to D are linear
combinations of the vectors of the boundary points of P̄ (T1) and P̄ (T2). There are
finitely many ≤t′-boundaried composition operators for a fixed t′, and so the scalars of
these linear combinations can be precomputed for the parameter t′ and each �. Then,
at each node of T , we have to compute a bounded number of linear combinations from
a bounded number of vectors of length r, which can be accomplished in time O(r).
There are O(n) nodes in T .

Consider three sequences U1, U2, U3 ⊂ F
s of vectors, where each Ui, i = 1, 2, 3,

is formed by independent vectors. Then these sequences represent the composition
operator (U, γ1, γ2, γ3), where U = U1∪U2∪U3 is the point configuration, and γi maps
the elements of the sequence in order Ui = {γi(1), γi(2), . . . , γi(ti)} for i = 1, 2, 3.

Algorithm 4.6 (computing the composition operator from given vectors).
Input: Three independent sequences U1, U2, U3 ⊂ F

s of vectors where each sequence
has at most t′ members.

Output: The ≤t′-boundaried composition operator represented by the vectors of U1, U2,
U3, computed in time O(s).

Proof. There is a bounded number of ≤t′-boundaried composition operators for
each t′, and since each one is nothing else than a labeled point configuration, it
may be identified by a bounded number of homogeneous linear vector equations and
inequations. (The equations are invariant under nonsingular linear transformations.)
Hence we find the composition operator represented by (U1, U2, U3) in parametrized
time O(s) even by brute force.

Lemma 4.7. Step 4.1 in Algorithm 4.1 is implemented in time O(n · r) for fixed
parameters t′ and F.

Proof. Let N = M �X in step 4.1 of Algorithm 4.1 (before adding f to X). We
first compute the coordinatization of the parse tree T for N using Algorithm 4.5. Let
T1 be a rooted subtree of T , and let F1 = J

(
P̄ (T1)

)
, F2 = E(N) − F1. Then, since

the parse tree T is spanning, the boundary subspace of P̄ (T1) make up the guts of
the separation (F1, F2). We denote by T ′ the rooted subbinary tree obtained from T
by arbitrarily adding a new leaf � representing the element f . To turn T ′ into a parse
tree for N ′ = M �X ∪ {f}, we have to recompute all composition operators in T ′.
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Let T ′
1 be the rooted subtree of T ′ corresponding to T1 above, and let F ′

1 =
J
(
P̄ (T ′

1)
)
, F ′

2 = E(N ′) − F ′
1. Then F ′

1 = F1 ∪ {f} and F ′
2 = F2 for � ∈ V (T ′

1), or
F ′

2 = F2∪{f} and F ′
1 = F1 otherwise. We denote by D = [Ir |D′] the submatrix of the

matrix A from Algorithm 4.1 representing the matroid N ′. We apply Algorithm 4.4 to
D, the separation (F1, F2) and f , and to the generator vectors of the boundary points
of P̄ (T1) computed above, obtaining generator vectors of the boundary of P̄ (T ′

1).
We repeat the same procedure for all O(n) rooted subtrees of T ′. Finally, we use
Algorithm 4.6 to determine the new composition operators to label all internal nodes
of T ′.

4.2. Step 4.1: Getting a better parse tree. The heart of the implementation
of step 4.1 in Algorithm 4.1 is the next claim. (We remark that the proof of this claim
implicitly uses a so-called “tangle” [22]—a notion dual to a branch-decomposition.)

Lemma 4.8. Let t ≥ 1 and N̄ be a spanning 3t-boundaried represented matroid
such that the branch-width of the internal matroid N̄ ⊕̄ Ω̄ is at most t + 1. Then
there are two ≤3t-boundaried matroids N̄1, N̄2 such that N̄ = N̄1 � N̄2 for some ≤3t-
boundaried composition operator �.

Proof. Recall that the internal matroid N ′ = N̄ ⊕̄ Ω̄ is the restriction of N̄ to the
internal elements J(N̄) = E(N ′). We define a function g : 2E(N ′) → Z, for a subset
F ⊆ E(N ′), as g(F ) = r

(
∂(N̄) ∩ 〈F 〉

)
, i.e., as the projective rank of the intersection

of the span of F with the boundary of N̄ . Clearly, g(E(N ′)) = 3t since N̄ is spanning.
Let (U, τ) be a width-(t+ 1) branch-decomposition of N ′. For an edge e ∈ E(U),

we define Fi(e) = τ−1
(
V (Ui)

)
for i = 1, 2, where U1 and U2 are the connected

components of U − e. Note that g
(
F1(e)

)
+ g

(
F2(e)

)
≥ g

(
E(N ′)

)
= 3t.

Claim. There is an edge e ∈ E(U) such that both g
(
F1(e)

)
, g
(
F2(e)

)
≥ t.

For a contradiction, we assume that no such edge e exists in U . Let (arbitrary)
e = w1w2, where wi ∈ Ui, i = 1, 2, as above, and a = min

{
g(F1(e)), g(F2(e))

}
.

If a < t, then, say, a = g
(
F1(e)

)
< g

(
F2(e)

)
. In such a case we direct the edge

e from w1 to w2. Since U is a cubic tree, there is a node w0 of U such that all
three edges incident with w0 are directed toward it. Then, denoting by U ′

1, U
′
2, U

′
3

the connected components of U − w0 and denoting by F ′
i = τ−1

(
V (U ′

i)
)
, we get

g
(
F ′

1

)
+ g

(
F ′

2

)
+ g

(
F ′

3

)
< t + t + t, which is a contradiction to g

(
E(N ′)

)
= 3t.

We consider further the edge e from the claim. The rank of 〈F1(e)〉 ∩ 〈F2(e)〉 is
at most t since (U, τ) is a width-(t + 1) branch-decomposition. Together for i = 1, 2
we get, by modularity of the rank in projective spaces,

r [
〈
Fi(e)

〉
∩
〈
F3−i(e) ∪ ∂(N̄)

〉]
= r

[〈
Fi(e)

〉
∩
〈
F3−i(e)

〉]
+ r

[〈
Fi(e)

〉
∩ ∂(N̄)

]
− r

[〈
Fi(e)

〉
∩
〈
F3−i(e)

〉
∩ ∂(N̄)

]
≤ t + 2t− 0 = 3t .

Hence the partition
(
F1(e), F2(e)

)
decomposes the internal elements into two ≤3t-

boundaried matroids N̄1, N̄2, which are glued together by a suitable ≤3t-boundaried
composition operator �.

The task now is to find the partition (F1, F2) of J(N̄) inducing the boundaried
matroids N̄1, N̄2 and to find the composition operator � from Lemma 4.8 efficiently.
We use the ≤t′-boundaried parse tree T previously constructed in Algorithm 4.1.
Unlike in the implementation of step 4.1, we do not work with the vectors representing
M(A)—instead, we obtain all necessary information from the parse tree T . This
results in a more complicated but faster implementation. Again, all algorithms in
this section are parametrized by a finite field F and integers t and t′ ≤ 10t. We first
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present the following two simple algorithms.
Algorithm 4.9 (computing the connectivity function of a separation).

Input: A ≤t′-boundaried parse tree T parsing the matroid N = P (T ), and a partition
(F1, F2) of E(N).

Output: The connectivity value λN (F1) − 1 of the separation (F1, F2), computed in
time O

(
|V (T )|

)
.

Proof. In other words, we are computing the projective rank of the guts of sepa-
ration (F1, F2) in N . This is a straightforward application of dynamic programming
over T . Let x be a node of T , and let Tx be the rooted subtree of T with the root x.
Denote by M̄x = P̄ (Tx) and by T ′

x, T
′′
x the left and right rooted subtrees of x in T .

For M̄x as above, and for Ei = Fi ∩ J(M̄x), we call boundary data the triple
(Σ1,Σ2, g), where Σi = ∂(M̄x) ∩ 〈Ei〉 for i = 1, 2 is the intersection of the span 〈Ei〉
with the boundary of M̄x, and where g is the projective rank of the guts 〈E1〉∩〈E2〉 of
the subseparation (E1, E2). Clearly, one may compute boundary data of M̄x = P̄ (Tx)
from boundary data of P̄ (T ′

x) and P̄ (T ′′
x ), and from the composition operator labeling

x in (parametrized) constant time. Hence the whole algorithm is implemented in
linear time.

Algorithm 4.10 (computing a good partition (F1, F2) for Lemma 4.8).
Input: A ≤t′-boundaried parse tree T parsing the represented matroid N = P (T ), and

a subset F0 ⊆ E(N) such that λN (F0) = 3t.
Output: A partition (F1, F2) of the set E(N)−F0 such that λN (F1), λN (F2) ≤ 3t (or

an answer NO if no such partition exists) computed in time O
(
|V (T )|

)
.

Proof. This is a straightforward extension of the dynamic program implemented
in Algorithm 4.9. Moreover, for each instance of boundary data in this case, we record
one representative of the partition we compute. Since the ground set of N can be
easily implemented so that the operation of a set union (of the representatives) takes
constant time, the overall computing time is still linear in T . We leave details to the
reader.

Now we come to the hard part—computing a valid composition operator for the
new node of the parse tree T ′ in step 3(b) or 3(c). We (implicitly) know the three
boundaries of the composition operator from a defining tripartition of the matroid
elements. However, we have to choose independent spanning sets of generator points
for the boundaries in such a way that the two matching boundaries of adjacent com-
position operators in the parse tree T ′ get the same generator points. For a parse
tree U , we call a virtual point of U any point which is contained in the span of some
composition operator in the tree U . The concept of virtual points of the parse tree U
allows us to determine relative positions of certain points with respect to the elements
of the matroid P (U), without the necessity of using absolute vectors in a particular
matroid representation.

If (F1, F2) is a separation in the represented matroid P (U) parsed by U , then
we express spanning generator points for the guts of (F1, F2) as a sequence of virtual
points of the parse tree U . We naturally say that a set Z of virtual points in U
is independent if Z is linearly independent in the point configuration parsed by U .
Next follows the corresponding extension of Algorithm 4.9: The fact that the guts are
always spanned by some virtual points of U is implicitly proved in the algorithm.

Algorithm 4.11 (computing virtual points spanning the guts of a given sepa-
ration over a parse tree).
Input: An ≤t′-boundaried parse tree T parsing the matroid N = P (T ), and a partition

(F1, F2) of E(N) such that λN (F1) ≤ 3t. (The partition is symmetric, i.e.,
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(F1, F2) is considered the same as (F2, F1).)
Output: A uniquely determined sequence {x1, x2, . . . , xk}, k = λN (F1) − 1, of inde-

pendent virtual points of the parse tree T which span the guts of the separation
(F1, F2). This is computed in time O

(
|V (T )|

)
.

Proof. Let x be a node of T labeled by �, and let Tx be the rooted subtree of
T with the root x. Denote by M̄x = P̄ (Tx) and by T ′

x, T
′′
x the left and right rooted

subtrees of x in T . Analogously to Algorithm 4.9, we call boundary data of M̄x the
quadruple (Σ1,Σ2, g, Z), where Ei = Fi ∩ J(M̄x) and Σi = ∂(M̄x) ∩ 〈Ei〉 for i = 1, 2,
where g = r

(
〈E1〉 ∩ 〈E2〉

)
, and where Z = {z1, . . . , zg} is a sequence of independent

virtual points of T which span the guts of (E1, E2) in M̄x. Moreover, we require that
the points of Z ∩ ∂(M̄x) contained in the boundary span the set Σ1 ∩ Σ2 (boundary-
span condition).

We denote M̄ ′
x = P̄ (T ′

x), M̄ ′′
x = P̄ (T ′′

x ) and E′
i = Fi ∩ J(M̄ ′

x), E′′
i = Fi ∩ J(M̄ ′′

x ).
The guts 〈E1〉 ∩ 〈E2〉 are clearly spanned by the four sets 〈E′

1〉 ∩ 〈E′
2〉, 〈E′′

1 〉 ∩ 〈E′′
2 〉,

〈E′′
1 〉∩〈E′

2〉, 〈E′
1〉∩〈E′′

2 〉. The latter two sets 〈E′′
1 〉∩〈E′

2〉 and 〈E′
1〉∩〈E′′

2 〉 are contained
in the span of the composition operator � labeling x in the parse tree T by definition.
Hence, using the boundary-span condition above, we can compute boundary data
M̄x from boundary data of M̄ ′

x and M̄ ′′
x , and from the composition operator � in a

canonical way.
Since the guts of (E1, E2) have bounded rank g ≤ 3t in M̄x, boundary data carry

only a limited amount of information. One node x of the parse tree T is processed
in time depending on F and t, but not depending on the size of T . So the whole
algorithm is implemented in (parametrized) linear time.

Lastly, we present an analogue of Algorithm 4.6 computing the composition op-
erator from sequences of virtual points. Consider three sequences Z1, Z2, Z3 of vir-
tual points in a common parse tree T , each Zi, i = 1, 2, 3, formed by gi independent
points. Then these sequences represent the composition operator (Z, γ1, γ2, γ3), where
Z = Z1 ∪ Z2 ∪ Z3 is the ground point configuration as parsed by T , and γi maps the
elements of the sequence in order Zi = {γi(1), γi(2), . . . , γi(gi)} for i = 1, 2, 3.

Algorithm 4.12 (computing the composition operator from the given virtual
points in a parse tree).
Input: Three independent sequences Z1, Z2, Z3 of virtual points in a common ≤t′-

boundaried parse tree T , where each sequence has at most 3t members.
Output: The ≤3t-boundaried composition operator represented by the virtual points of

Z1, Z2, Z3, computed in time O
(
|V (T )|

)
.

Proof. We argue similarly as in Algorithm 4.6. There is a bounded number of
≤t′-boundaried composition operators, and each one of them may be identified by a
bounded number of linear vector equations and inequations. Moreover, these equa-
tions are homogeneous, and thus invariant under nonsingular vector transformations
by the definition of a composition operator. Thus we can decide their validity for the
input from information given in the parse tree T .

Let x be a node of T labeled by �x, and let Tx be the rooted subtree of T with the
root x. Denote by T ′

x, T
′′
x the left and right rooted subtrees of x in T by M̄x = P̄ (Tx)

and by Zx ⊆ Z1 ∪ Z2 ∪ Z3 those of given virtual points of T which are contained in
the composition operators in the subtree Tx. We use the following dynamic program:
We call boundary-combination data of M̄x the list of all linear combinations of the
virtual points Zx which result in a point in the boundary ∂(M̄x). This is a well-defined
notion according to the definition of a parse tree and to elementary linear algebra,
and one can determine boundary-combination data of M̄x = P̄ (Tx) from boundary-
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combination data of P̄ (T ′
x) and of P̄ (T ′′

x ), and from the composition operator �x

labeling x. Since boundary-combination data carry a limited amount of information
at each tree node, the whole parse tree T can be processed in linear parametrized
time.

Consider a homogeneous linear (in)equation EQ over the points Z1 ∪ Z2 ∪ Z3.
Then, obviously, we can decide validity of EQ from boundary-combination data at
the node y of T in which the last point involved in EQ is encountered in the set Zy.
This takes constant time. Therefore, for any ≤3t-boundaried composition operator
�, we can decide whether the virtual points of Z1, Z2, Z3 represent �. In this way
we find the ≤3t-boundaried composition operator represented by Z1, Z2, Z3 in total
linear (parametrized) time O

(
|V (T )|

)
.

Lemma 4.13. Step 4.1 in Algorithm 4.1 is correctly implemented in time O(n2)
for fixed parameters t, t′ ≤ 10t, and F.

Proof. Let M = M(A) be the given matroid on n elements, and let the set X and
the ≤t′-boundaried parse tree T be as in Algorithm 4.1. (So P (T ) = M �X.) Notice
that the size of the partial parse trees considered in the algorithm is at most linear in
|X| ≤ n. The important point of the implementation of step 4.1 in Algorithm 4.1 is
that the boundaried matroids labeling the partial spanning tree T ′ are not explicitly
described: Instead of a boundaried matroid N̄ , we record only the set J(N̄) of its
internal elements. The boundary subspace of N̄ is then implicitly given by the guts
of the separation

(
J(N̄), X − J(N̄)

)
, and the boundary points are handled as virtual

points in the parse tree T .
Part 3(a) of Algorithm 4.1 is trivial to implement. Let us look at part 3(b): The

boundary rank of the boundaried matroid N̄ labeling a chosen leaf � of T ′ is computed
in time O(n) by Algorithm 4.9. Suppose that the computed rank is less than 3t. Let
e ∈ J(N̄) be an arbitrary element. Then the new composition operator being added
to the parse tree T ′ corresponds to a tripartition X1 = J(N̄) − {e}, X2 = {e}, and
X3 = X − J(N̄). Rest is described below.

Suppose that the above computed boundary rank of N̄ equals 3t. Then we are
in part 3(c): We call Algorithm 4.10 for F0 = X3 = X − J(N̄) over the parse tree
T . The result is a partition (X1, X2) of the set X − X3 = J(N̄), which does exist
by Lemma 4.8 if branch-width of M is at most t + 1. The whole tripartition of X
to X1, X2, X3 then determines the new composition operator and the new leaf labels
which will be added to T ′. On the other hand, if branch-width of M exceeds t + 1,
then this part may possibly fail, and then Algorithm 4.1 ends without a parse tree
and with an error message. Computing time is O(n) here.

So far, we have constructed a tripartition (X1, X2, X3) of the set X such that
λM�X(Xi) ≤ 3t for i = 1, 2, 3, and we are going to find the composition operator
that would “glue” these three parts together in an enlarged parse tree T ′

1: We call
Algorithm 4.11 for the separation (Xi, X − Xi) over the parse tree T , for each i =
1, 2, 3. Then we call Algorithm 4.12 for the resulting three sequences Zi, i = 1, 2, 3,
of virtual points over the parse tree T to construct a composition operator �′. We
construct the new tree T ′

1 from T ′ by adding two new leaves �1, �2 as sons of �. We
label �i, i = 1, 2, by the boundaried matroid N̄i induced on the elements Xi and the
boundary Zi, and we relabel � with �′. (Rest of T ′

1 is unchanged.) This is all done in
time O(n) again.

It remains to prove correctness of the above construction by induction on |V (T ′)|.
At the beginning, when T ′ has one node, the matroid N̄ has boundary rank 0, and
X3 = ∅, so Z3 is an empty sequence. Otherwise, the sequence Z3 coincides with the set
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of boundary points of N̄ since they were both determined uniquely by Algorithm 4.11
for the same separation

(
X3, J(N̄)

)
. Therefore, N̄1 �′ N̄2 = N̄ , and so P̄ (T ′

1) = P̄ (T ′)
and P (T ′

1) = P (T ) = M �X.
Since each iteration of step 4.1 adds a new leaf to the constructed parse tree

T ′, there are at most |X| − 1 = O(n) iterations. Thus step 4.1 is finished in time
O(n2). We remark that our implementation works for an arbitrary finite field F and
an integer t ≥ 1 given as parameters.

4.3. Conclusion: Implementation of Algorithm 4.1. Using Lemmas 4.7
and 4.13, and the preceding description, we immediately conclude as follows.

Theorem 4.14. Let us fix an integer t ≥ 1 and a finite field F, and consider a
given n-element F-represented matroid M = M(A).

(a) If branch-width of M is at most t+1, then Algorithm 4.1 computes a spanning
≤3t-boundaried parse tree T for M in time O(n3).

(b) If branch-width of M exceeds t + 1, then Algorithm 4.1 (possibly) ends with
no output parse tree, but the computation is also finished in time O(n3).

5. Parametrized complexity of branch-width. There are many connections
between tree-width of graphs and parametrized complexity of hard graph problems [9,
Chapter 6]. A large class of natural graph problems, including the notoriously hard
like Hamiltonicity or 3-coloring problems, can be expressed in monadic second-order
logic. By the results of Courcelle [6, 7], and Arnborg, Lagergren, and Seese[2], all
such monadic second-order (MSO)-definable problems can be solved quickly for (in-
cidence) graphs with a tree-decomposition of bounded width. A similar phenomenon
occurs for represented matroids, and we can use that to determine the exact value
of branch-width of a represented matroid, in addition to an approximation following
from Algorithm 4.1.

5.1. MSO logic of matroids. The monadic second-order logic (MSOL) of ma-
troids is defined as follows: The syntax includes variables for matroid elements and
element sets, the quantifiers ∀,∃ applicable to these variables, the logical connectives
∧,∨,¬, and the following predicates:

1. =, the equality for elements and their sets;
2. e ∈ F , where e is an element and F is an element set variable;
3. indep(F ), where F is an element set variable, and the predicate tells whether

F is independent in the matroid.
In our paper, we follow a tree-automata formalization of Courcelle’s result, as

in [1].
Theorem 5.1 (Hliněný [14]). Let t ≥ 1, and let F be a finite field. Assume M is

a set of represented matroids over F described by a sentence in the MSOL of matroids.
Then there is a finite tree automaton accepting exactly the ≤(t− 1)-boundaried parse
trees of members of M (of branch-width bounded by t).

We remark that the proof [14] of Theorem 5.1 is constructive—there is an algo-
rithm that computes the accepting tree automaton for the given field F, the formula
φ describing M, and t.

5.2. Parametrized complexity. When speaking about parametrized complex-
ity, we closely follow [9]. Here we present only the basic definition of parametrized
tractability. For simplicity, we restrict the definition to decision problems, although
an extension to computation problems is straightforward. Let Σ be the input alpha-
bet. A parametrized problem is an arbitrary subset Ap ⊆ Σ∗ × N. For an instance
(x, k) ∈ Ap, we call k the parameter and x the input for the problem. (The parameter
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is sometimes implicit in the context.)
Definition 5.2. We say that a parametrized problem Ap is (nonuniformly)

fixed-parameter tractable if there is a sequence of algorithms {Ai : i ∈ N}, and a
constant c, such that (x, k) ∈ Ap if and only if the algorithm Ak accepts (x, k), and if
the running time of Ak on (x, k) is O(|x|c) for each k.

We say that a parametrized problem Ap is uniformly fixed-parameter tractable if
there is an algorithm A, a constant c, and an arbitrary function f : N → N such that
(x, k) ∈ Ap if and only if the algorithm A accepts (x, k), and if the running time of
A on (x, k) is O(f(k) · |x|c).

In our context, the input X is an F-represented matroid, and the parameter k is
an upper bound on the branch-width of X. (Notice that correctness of the assumed
branch-width bound is implicitly checked in Algorithm 4.1.) In a more general setting,
we may even consider the parameter as a pair (F, k) encoded as an integer.

5.3. Computing branch-width exactly. We use Theorem 5.1 to determine
branch-width in the following way. We remark that, unlike for graph minors, it is not
known how to test for a fixed matroid minor in polynomial time.

Lemma 5.3. For every matroid N there is an MSOL formula ψN such that
ψN |= M (i.e., ψN is true on a matroid M) if and only if N is a minor of M .

Proof. We include a short proof here; more details can be found in [15]. Matroid
N is a minor of M if there are two sets C,D such that N = M \D/C. Suppose that
N = M \D/C holds. Then a set X ⊆ E(N) is dependent in N if and only if there is
a dependent set Y ⊆ E(M) in M such that Y −X ⊆ C.

Since N is fixed, we may identify the elements of an N -minor in M by variables
x1, . . . , xn in order, where n = |E(N)|. For each J ⊆ [1, n], we write

mdep(xj : j ∈ J ;C) ≡ ∃Y
[
¬ indep(Y ) ∧ ∀y

(
y �∈ Y ∨ y ∈ C ∨

∨
j∈J

y = xj

)]
.

Now, M \D/C is isomorphic to N if and only if the dependent subsets of {x1, . . . , xn}
exactly match the dependent sets of N . Hence we express ψN as

ψN ≡ ∃C ∃x1, . . . , xn

[∧
1≤i<j≤n

xi �= xj ∧∧
J∈J+

¬mdep(xj : j ∈ J ;C) ∧
∧

J∈J−
mdep(xj : j ∈ J ;C)

]
,

where J+ is the set of all J ⊆ [1, n] such that {xj : j ∈ J} actually is independent in
N , and where J− is the complement of J+.

The class Bk of matroids of branch-width at most k is closed under taking minors,
and so membership in Bk can be tested by looking for the excluded (or forbidden)
minors for Bk. By the result of [11], the excluded minors for the class Bk have size
at most (6k+1 − 1)/5, and hence their number is finite and they can all be found by
a brute force algorithmic search.

Corollary 5.4. For every k ≥ 1, there is a computable MSOL formula φk such
that φk |= M if and only if M has branch-width at most k (i.e., shortly φk(M) ≡
M ∈ Bk).

Theorem 5.5. Let F be a finite field, and let t ≥ 1 be a constant. There is an
algorithm that, given a rank r matrix A ∈ F

r×n such that the branch-width of the
matroid M(A) is at most t+ 1, finds the exact branch-width of M(A) in time O(n3).

Proof. For k = 2, 3, . . . , t + 1, the algorithm first precomputes all the excluded
minors for the class Bk, and the formulas φk from Corollary 5.4. Then the algorithm
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computes the finite tree automaton Ak from Theorem 5.1, which accepts the parse
trees for represented matroids described by φk. (This precomputation is done in time
not depending on M .)

Given an n-element matroid M(A) represented over F, the algorithm calls Algo-
rithm 4.1 to produce an ≤3t-boundaried parse tree T of M(A) in time O(n3). Then
it finds the smallest k0 ≤ t + 1 such that the parse tree T is accepted by Ak0

, where
each automaton Ak is emulated in time O(n). The branch-width of M(A) is k0.

Corollary 5.6. For a finite field F, the branch-width of an F-represented ma-
troid is a uniformly fixed-parameter tractable problem.

Remark 5.7. We may analogously argue in the case of matroid tree-width,
which has been defined in [16]: The tree-width of a matroid represented over a finite
field is nonuniformly fixed-parameter tractable. However, we do not have a size-bound
analogous to [11] at hand, and so we have to use a nonconstructive well–quasi-ordering
argument of [10] to establish existence of a finite list of excluded minors for represented
matroids of tree-width at most k. Since the definition of matroid tree-width is not
easy, we include no formal statements here.

6. Concluding remarks. Using Theorem 4.14, one may easily derive the fol-
lowing corollary of Theorem 5.1.

Corollary 6.1. Let t ≥ 1, let F be a finite field, and let φ be a sentence in the
MSOL of matroids. Consider a given n-element F-represented matroid M = M(A)
of branch-width at most t. The question of whether φ is true for the matroid M(A) is
uniformly fixed-parameter tractable with respect to the combined parameter (F, t, φ).
If F, t, and φ are fixed, then the answer can be computed from the matrix A in time
O(n3).

More similar algorithmic applications, including recognition of any minor-closed
matroid family, can be found in [15]. Besides applications based directly on Theo-
rem 5.1, we may use the machinery of matroid parse trees from sections 3 and 4 for
solving other problems. For example, we provide a straightforward recursive formula
and an algorithm for computing the Tutte polynomial of a represented matroid in [13].

Theorem 6.2 (Hliněný [13]). Let t ≥ 1, and let F be a finite field. Consider a
given n-element F-represented matroid M = M(A) of branch-width at most t. Then
the Tutte polynomial T

(
M(A); x, y

)
of M(A) can be computed in time O(n6 log n log

log n).
Moreover, a recent research of Oum shows that our matroid results are of interest

also in graph theory—he uses Algorithm 4.1 to approximate the clique-width of a
graph in parametrized cubic time [19]. That application uses important notion of
rank-width [18], defined by the matrix rank function on adjacency matrices of graphs.
(No efficient approximation algorithms for graph clique-width were known before the
introduction of rank-width.) In particular, the clique-width of a graph of rank-width
r is between r and 2r+1 − 1, and the rank-width of a bipartite graph G equals the
branch-width minus one of the matroids represented over GF (2) by the bipartite
adjacency matrix of G. Oum’s result is briefly stated as follows.

Theorem 6.3 (Oum [19]). For every fixed r > 0, there is an algorithm checking
whether the rank-width of a given graph G is at most r in time O(n3). Moreover, the
algorithm outputs a rank-decomposition of width at most 24r in the “yes” case.

It is interesting to watch the radical structural change when we move from rep-
resented matroids over finite fields to general abstract matroids, or even to matroids
over infinite fields. For example, Theorem 5.1 [14] is provably false even for ma-
troids that are represented over the integers by matrices with entries from {−1, 1, 3}.
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Also, the problems of Corollary 6.1 and Theorem 6.2 become NP-hard for matroids
of branch-width 3 over the integers. The computational borderline is even more clear
when considering decidability of matroid theories [17]: While MSO theories of the
matroids of bounded branch-width are decidable over finite fields (and, conversely,
decidability of such a theory implies a bound on branch-width), the MSO theory of
all matroids of branch-width 3 is undecidable.

The situation seems to be slightly different for the problem of branch-width it-
self, at least when branch-width is 3. We present in [12] an easy algorithm that
decides whether a matroid has branch-width at most 3 in polynomial time. (The
algorithm also has a fast practical implementation.) This algorithm is not restricted
to represented matroids—it works for all matroids for which the rank function can be
efficiently determined. Unfortunately, there seems to be no straightforward way to
extend the algorithm to higher values of branch-width.

Problem 6.4. What is the parametrized complexity of the problem to determine
the branch-width of a matroid M?

(a) If M = M(A) is given by a matrix representation over an infinite field?
(b) If M is given by a rank oracle?
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CORRECTIONS TO “A PARAMETRIZED ALGORITHM FOR
MATROID BRANCH-WIDTH”

Due to a TeX error, the steps of Algorithm 4.1 are cited incorrectly on pages 267,
268, 269, 272, and 273 of “A Parametrized Algorithm for Matroid Branch-Width,”
SIAM Journal on Computing, 35 (2005), pp. 259–276, by Petr Hliněný. They should
read as follows:

Page 267, line 8: Step 2.
Page 267, line 9: Step 3.
Page 267, line 19: Step 2; Step 1.
Page 267, line 20: Step 2.

Page 268, line 41: Step 2.
Page 268, line 43: Step 2.

Page 269, line 10: Step 3.
Page 269, line 11: Step 3.
Page 269, line 44: Step 2.

Page 272, line 12: Step 3.
Page 272, line 17: Step 3.

Page 273, line 4: Step 3.

SIAM regrets this error.
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ON THE PERFORMANCE OF GREEDY ALGORITHMS IN PACKET
BUFFERING∗
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Abstract. We study a basic buffer management problem that arises in network switches. Con-
sider m input ports, each of which is equipped with a buffer (queue) of limited capacity. Data packets
arrive online and can be stored in the buffers if space permits; otherwise packet loss occurs. In each
time step the switch can transmit one packet from one of the buffers to the output port. The goal is
to maximize the number of transmitted packets. Simple arguments show that any work-conserving
algorithm, which serves any nonempty buffer, is 2-competitive. Azar and Richter recently presented
a randomized online algorithm and gave lower bounds for deterministic and randomized strategies.

In practice, greedy algorithms are very important because they are fast, use little extra memory,
and reduce packet loss by always serving a longest queue. In this paper we first settle the competitive
performance of the entire family of greedy strategies. We prove that greedy algorithms are not better
than 2-competitive no matter how ties are broken. Our lower bound proof uses a new recursive
construction for building adversarial buffer configurations that may be of independent interest. We
also give improved lower bounds for deterministic and randomized online algorithms.

In this paper we present the first deterministic online algorithm that is better than 2-competitive.
We develop a modified greedy algorithm, called semigreedy, and prove that it achieves a competitive
ratio of 17/9 ≈ 1.89. The new algorithm is simple, fast, and uses little extra memory. Only when the
risk of packet loss is low does it not serve the longest queue. Additionally we study scenarios when
an online algorithm is granted additional resources. We consider resource augmentation with respect
to memory and speed; i.e., an online algorithm may be given larger buffers or higher transmission
rates. We analyze greedy and other online strategies.

Key words. buffer, competitive, greedy, network switch, online, packet, throughput
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1. Introduction. The performance of high-speed networks critically depends on
switches that route data packets arriving at the input ports to the appropriate output
ports so that the packets can reach their correct destinations in the network. To
reduce packet loss when the traffic is bursty, ports are equipped with buffers in which
packets can be stored temporarily. However, the buffers are of limited capacity so that
effective buffer management strategies are important for maximizing the throughput
at a switch. As a result there has recently been considerable research interest in the
design and analysis of various buffer management policies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16].

We study a very basic problem in this context. Consider m input ports which
serve a given output port. Each input port has a buffer that can simultaneously store
up to B packets and is organized as a queue. In any time step new packets may arrive
at the input ports and can be appended to the corresponding buffers if space permits.
More specifically, suppose that the buffer at port i currently stores bi packets and
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that ai new packets arrive there. If bi +ai ≤ B, then all new packets can be accepted;
otherwise ai + bi − B packets must be dropped. In any time step the switch can
select one nonempty buffer and transmit the packet at the head through the output
port. We assume w.l.o.g. that the packet arrival step precedes the transmission step.
The goal is to maximize the throughput , i.e., the total number of transmitted packets.
The scenario we study here arises, for instance, in input-queued (IQ) switches, which
represent the dominant switch architecture today. In an IQ switch with m input and
m output ports, packets that arrive at input i and have to be routed to output j
are buffered in a virtual output queue Qij . In each time step, for any output j, one
data packet from queues Qij , 1 ≤ i ≤ m, can be sent to that output. The buffer size
B is large—typically several hundreds or thousands. We emphasize that we consider
all packets to be equally important, i.e., they all have the same value. Most current
networks, in particular IP networks, treat packets from different data streams equally
in intermediate switches.

Information on future packet arrivals usually is very limited or not available at all.
We make no probabilistic assumptions about the input and investigate an online set-
ting, where at any time future packet arrivals are unknown. We are interested in online
buffer management strategies that have a provably good performance. Following [17]
we call a deterministic online algorithm ALG c-competitive if c ·TALG(σ) ≥ TOPT (σ)
for all packet arrival sequences σ. Here TALG(σ) and TOPT (σ) denote the through-
puts achieved by ALG and by an optimal offline algorithm OPT that knows the
entire input σ in advance. If ALG is a randomized algorithm, then TALG(σ) has to
be replaced by the expected throughput E[TALG(σ)].

In practice, greedy algorithms are most important. At any time, a greedy algo-
rithm serves a queue that currently buffers the largest number of packets. Serving
the longest queue is a very reasonable strategy to avoid packet loss if future arrival
patterns are unknown. Moreover, greedy strategies are interesting because they are
fast and use little extra memory. A switch cannot afford complex computations to
decide which queue to serve, nor has it sufficient memory to maintain detailed infor-
mation on past or current configurations. In this paper we present a thorough study
of greedy algorithms and their variants.

Previous work. The following simple observation shows that any work-conserving
algorithm ALG, which serves any nonempty queue, is 2-competitive: Partition σ into
subsequences σl such that ALG ’s buffers are empty at the end of each σl. W.l.o.g.
we postpone the beginning of σl+1 until OPT has emptied its buffers, too. If OPT
buffers bi packets in queue i at the end of subsequence σl, then at least bi packets must
have arrived there in σl. ALG has transmitted at least

∑m
i=1 bi packets because it has

accepted at least
∑m

i=1 bi packets and all its buffers are empty again. Since both ALG
and OPT transmit exactly one packet during each time step and OPT still buffers∑m

i=1 bi packets when ALG ’s buffers become empty, OPT delivers
∑m

i=1 bi more than
ALG does.

Prior to our work, no deterministic online algorithm with a competitive ratio
smaller than 2 was known. Azar and Richter [4] showed that if B = 1, no determin-
istic strategy can be better than (2 − 1

m )-competitive. For arbitrary B, they gave a
lower bound of 1.366. Azar and Richter also considered randomized algorithms and
presented a strategy that achieves a competitiveness of e/(e− 1) ≈ 1.58. For B = 1,
they showed a lower bound of 1.46 on the performance of any randomized online
algorithm.

Bar-Noy et al. [9] and Fleischer and Koga [10] studied buffer management policies
when buffers have unlimited capacity and one wishes to minimize the maximum queue
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length. They presented Θ(logm)-competitive online algorithms. Additional results
are known when packets have values and the goal is to maximize the total value of
the transmitted packets. Almost all of the previous work has focused on the single
queue problem; i.e., we have to maintain only one buffer. Kesselman et al. [12] gave
2-competitive algorithms for various models where preemption is allowed; i.e., packets
admitted to the queue may be discarded in the event of buffer overflow. Recently,
Kesselman, Mansour, and van Stee [14] developed a 1.983-competitive algorithm when
packets must be transmitted in the order they arrive. The bound was improved to
1.75 by Bansal et al. [8]. Aiello et al. [1] investigated single queue problems assuming
that preemption is not allowed. For this scenario Andelman, Mansour, and Zhu [2]
showed tight bounds of Θ(logα), where α is the ratio of the maximum to the minimum
packet value.

Azar and Richter [4] presented a technique that transforms any c-competitive
algorithm for a single queue into a 2c-competitive algorithm for m queues. Using
results from [2, 12] they derived 4-competitive preemptive and 2e�lnα�-competitive
nonpreemptive algorithms. An improved 3-competitive preemptive algorithm was
given in [5].

Our contribution. In the first part of the paper we settle the competitive
performance of the entire family of greedy algorithms. We prove that a greedy algo-
rithm cannot be better than 2-competitive, no matter how ties are broken. Since any
work-conserving algorithm is 2-competitive, the competitiveness of any greedy policy
is indeed 2. Our lower bound construction is involved and relies on a new recursive
construction for building dynamic adversarial buffer configurations. We believe that
our technique may be useful for proving lower bounds in other multiqueue buffering
problems. In fact, we use a variant of our technique to develop a lower bound for any
deterministic online algorithm. We show that, for any buffer size B, no deterministic
online strategy ALG can achieve a competitiveness smaller than e/(e − 1) ≈ 1.58.
Interestingly, we establish this bound by comparing the throughput of ALG to that
of any greedy algorithm. Using an approach different from [4], we show that for any
B, a randomized online algorithm cannot be better than 1.46-competitive, which is
exactly the same bound as the one shown in [4] for B = 1. Since the techniques used
in [4] cannot be generalized to B > 1, our method is independent of previous work.

Although in terms of competitiveness greedy algorithms are not better than ar-
bitrary work-conserving algorithms, greedy strategies are important from a practical
point of view. Therefore it is interesting to consider variants of greedy policies and
to analyze greedy approaches in extended problem settings. In the second part of the
paper we develop a slightly modified deterministic greedy strategy, called semigreedy
(SGR), and prove that it achieves a competitive ratio of 17/9 ≈ 1.89. We conjec-
ture that SGR is actually an optimal deterministic algorithm because, for B = 2,
we give a proof that it achieves an optimal competitiveness of 13/7 ≈ 1.86. These
results show, in particular, that deterministic algorithms can beat the factor of 2 and
perform better than arbitrary work-conserving strategies.

The new SGR algorithm is simple. If there is a queue buffering more than �B/2�
packets, SGR serves a longest queue. If all queues store at most �B/2� packets,
SGR serves a longest queue that has never buffered B packets, provided there is
one; otherwise SGR serves a longest queue. The idea of this rule is to establish some
fairness among the queues. SGR is essentially as fast as greedy. It can be implemented
such that at most one extra comparison is needed in each time step. The extra
memory requirements are also low. For each queue, we have only to maintain one
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bit indicating whether or not the queue has ever buffered B packets. SGR does not
follow the standard greedy strategy only if each queue buffers at most �B/2� packets
and, hence, the risk of packet loss is low. Thus we consider SGR to be a very practical
algorithm. We analyze SGR by defining a new potential function that measures the
number of packets that SGR has already lost or could lose if an adversary replenishes
corresponding queues. In contrast to standard amortized analysis, we do not bound
the potential change in each time step. Rather, we show that if the potential increased
at T1 time steps and T1 > C1 for some constant C1, then the potential must have
decreased at T2 steps with T2 > C2.

In the second part of the paper we also study the case when an online algorithm
is granted more resources than an optimal offline algorithm and show that we can
beat the competitiveness of 2. We consider resource augmentation with respect to
memory and speed ; i.e., we study settings in which an online algorithm has (a) larger
buffers in each queue or (b) a higher transmission rate. For scenario (a) we prove
that any work-conserving algorithm, and in particular any greedy algorithm, achieves
a competitive ratio of (c + 2)/(c + 1) if it has an additional buffer of A = cB in each
queue. We show that this bound is tight for greedy strategies. Hence, by doubling
the buffer capacities we obtain a performance ratio of 1.5. For scenario (b) we show
an upper bound of 1 + 1/k if in each time step an online algorithm can transmit k
times as many packets as an adversary. Again, by doubling the transmission rate we
obtain a competitiveness of 1.5. Finally, we give a linear time offline algorithm for
computing an optimal service schedule maximizing the throughput.

This paper is organized as follows. In section 2 we develop our lower bounds. In
section 3 we present the new SGR algorithm and investigate scenarios with resource
augmentation. The optimal offline algorithm is given in section 4.

2. Lower bounds. We first analyze greedy algorithms and then develop lower
bounds for arbitrary deterministic and randomized online strategies.

2.1. Greedy algorithms. Formally, we call an online algorithm GR greedy if
GR always serves a longest queue. Greedy algorithms may differ in the way ties are
broken in case several queues currently store a maximum number of packets. The
tie-breaking rule may also be randomized.

Theorem 1. For any B, the competitive ratio of any randomized greedy algorithm
GR is not smaller than 2 − 1/B if m 	 B.

Proof. Fix a buffer size B > 0. We show that there exist infinitely many m and
associated packet arrival sequences for m queues such that the throughput achieved

by an adversary ADV is at least 2 − 1/B − Θ(m−1/2B−2

) times that achieved by
GR. This proves the theorem. We use arrival sequences, where whenever there are
several queues of maximum lengths, all these queues are served once before the next
packets arrive. Thus, the tie-breaking criteria need not be considered.

Let μ ≥ 2 be an integer and b = 2B−2. Set m = μb. We construct a recursive par-
titioning of the m queues. For any i with 1 ≤ i ≤ B−2, let mi = m1/2i

. The m queues
are divided into m1 blocks, each consisting of m1 subsequent queues. These blocks are
labeled 1, . . . ,m1 in ascending order. Block n1 with 1 ≤ n1 ≤ m1 is subdivided into
m2 blocks, each consisting of m2 subsequent queues labeled (n1, 1), . . . , (n1,m2). This
partitioning is repeated up to level B− 2. In general, any block (n1, . . . , ni) at level i
consisting of mi queues is subdivided into mi+1 blocks each, containing mi+1 queues.
These blocks are labeled (n1, . . . , ni, 1), . . . , (n1, . . . , ni,mi+1). Note that a block
(n1, . . . , nB−2) at level B − 2 consists of exactly μ queues. We define a lexicographic
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ordering on the (B − 2)-tuples (n1, . . . , nB−2) in the standard way. Given (n1, . . . ,
nB−2) and (n′

1, . . . , n
′
B−2) we have (n1, . . . , nB−2) < (n′

1, . . . , n
′
B−2) if ni < n′

i, for
some i and nj = n′

j for all 1 ≤ j < i. Furthermore, (n1, . . . , nB−2) ≤ (n′
1, . . . , n

′
B−2)

if (n1, . . . , nB−2) < (n′
1, . . . , n

′
B−2) or ni = n′

i for all 1 ≤ i ≤ B − 2.
The basic idea of the lower bound construction is to maintain a staircase of

packets in GR’s queues, where we call a buffer configuration a staircase centered at
block (n1, . . . , nB−2) if GR’s queues in any block (n′

1, . . . , n
′
B−2) buffer i packets if

nj = n′
j , for 1 ≤ j ≤ i, but ni+1 
= n′

i+1. During our construction, the staircase center
moves through the blocks in increasing lexicographic order. Note that at each such
center move from (n1, . . . , nB−2) to its successor (n′

1, . . . , n
′
B−2), where (n1, . . . , ni) =

(n′
1, . . . , n

′
i) is the greatest common label prefix of the two blocks, only the queues in

blocks whose labels also have this prefix are affected.
When the center is located at (n1, . . . , nB−2) we force a packet loss of B at each

of GR’s queues in that block. ADV will be able to accept all packets and essentially
has full queues in all blocks (n′

1, . . . , n
′
B−2) that are lexicographically smaller than

(n1, . . . , nB−2). When the construction ends, almost all of ADV ’s queues are fully
populated while GR’s queues are empty. Since a total of nearly mB packets are
transmitted by ADV and GR during the construction, this gives the desired lower
bound.

Formally, we process blocks (n1, . . . , nB−2) with ni ≥ 2 for all i in increasing
lexicographic order. Blocks (n1, . . . , nB−2) with ni = 1 for some i are special in that
less than B packets will arrive there. When we start processing a block (n1, . . . , nB−2)
with ni ≥ 2 for all i, certain invariants, given below, hold. We show how to process
it such that the invariants are also true when we start processing the next block.

(G1) Let (n′
1, . . . , n

′
B−2) be a block with (n′

1, . . . , n
′
B−2) < (n1, . . . , nB−2) and n′

i ≥
2 for all i. GR buffers exactly j + 1 packets in each of the queues if j is the
largest index with n′

1 = n1, . . . , n
′
j = nj .

(G2) Let (n′
1, . . . , n

′
B−2) be a block with (n′

1, . . . , n
′
B−2) < (n1, . . . , nB−2) such that

n′
i = 1 and n′

j ≥ 2 for all j ≤ i − 1. GR has j + 1 packets in each of the
queues if n′

j = nj for all 1 ≤ j ≤ i− 1.
(G3) Let (n′

1, . . . , n
′
B−2) be a block with (n′

1, . . . , n
′
B−2) ≥ (n1, . . . , nB−2). GR

buffers exactly j packets in each of the queues if j is the largest index with
n′

1 = n1, . . . , n
′
j = nj .

(A1) Let (n′
1, . . . , n

′
B−2) be a block with (n′

1, . . . , n
′
B−2) < (n1, . . . , nB−2) and n′

i ≥
2 for all i. ADV has B packets in each of the first mB−2 − 1 = μ− 1 queues
and B − 1 packets in the last queue of this block.

(A2) Let (n′
1, . . . , n

′
B−2) be a block with (n′

1, . . . , n
′
B−2) < (n1, . . . , nB−2) such that

n′
i = 1 and n′

j ≥ 2 for all 1 ≤ j ≤ i − 1. ADV has two packets in each of
the queues if n′

j = nj for all 1 ≤ j ≤ i − 1 and one packet in those queues
otherwise.

(A3) Let (n′
1, . . . , n

′
B−2) be a block with (n′

1, . . . , n
′
B−2) ≥ (n1, . . . , nB−2). ADV

has 0 packets in each of those queues.
Initialization. We show how to establish the six invariants for the block (2, . . . , 2),

for which we illustrate in Figure 1 the initial configurations to be described next.
Initially there arrive 2m1 packets in the queues of block (1) at level 1, with two
packets in each queue, and m1 packets in the queues of block (2) at level 1, with
one packet in each queue. GR starts transmission from block 1 while ADV does so
from block 2. After both GR and ADV have transmitted m1 packets, we jump to
level 2, where the arrival pattern is adopted in gauge: there arrive 2m2 packets in
block (2, 1), with two in each queue, and m2 packets in block (2, 2), with one in each
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B

(1)

(2)

(2, 1)

(2, 3)

(2, 2, 1)
(2, 2, 2)
(2, 2, 3)

. . .

GR

B

(1)

(2, 1)

(2, 2, 1)

. . .

ADV

Fig. 1. Queue configurations when we start processing block (2, 2, 2).

queue. We continue to copy and scale down this pattern until blocks (2, . . . , 2, 1) and
(2, . . . , 2, 2) at level B − 2 are reached. At level i, GR always clears mi packets in
block (2, . . . , 2, 1) while ADV does so in (2, . . . , 2, 2).

Invariants (A1) and (G1) trivially hold because there is no block N ′ < (2, . . . , 2)
with n′

i ≥ 2 for all 1 ≤ i ≤ B − 2. If N ′ < (2, . . . , 2) and i is the smallest index with
n′
i = 1, then n′

1 = · · · = n′
i−1 = 2. Queues in N ′ received i+ 1 packets, i− 1 of which

have been transmitted by ADV, while only one of them has been transmitted by GR.
Hence, invariants (A2) and (G2) hold. If N ′ ≥ (2, . . . , 2) and j is the largest index
with n′

1 = n1, . . . , n
′
j = nj , then queues in N ′ received j packets, all of which have

been transmitted by ADV, while none of them have been transmitted by GR, giving
that invariants (A3) and (G3) hold.

Processing of a block. We next describe how to process block N = (n1, . . . , nB−2).
Figure 2 shows the buffer configurations when the processing starts. Let q1, . . . , qmB−2

be the mB−2 queues in that block. By (G3), GR has B − 2 packets in each of these
queues. By (A3), ADV stores no packets there. We subsequently apply the following
arrival pattern to all but the last of the qj ’s: There arrive B packets at queue qj and
one packet at queue qj+1. First, GR accepts two packets in q1 and one packet in q2.
Then q1 is completely populated while q2 still has one free buffer cell left. Afterward,
GR transmits a packet from q1. At the arrival of B packets at q2, GR must reject all
but one of them and can accept the additional packet at q3 as well. This behavior
is repeated until the last queue in N is reached. In contrast, ADV always processes
the single packet in qj+1 to be able to accept B packets in the next step. When B
packets arrive at qmB−2

, we omit the additional packet because we would cross the
boundary to the next block of level B − 2. We assume that both ADV and GR then
transmit one packet from qmB−2

. Hence GR stores B − 1 packets in each queue of
N , whereas ADV buffers B packets in all but the last queue and B − 1 packets in
the last one. Next, we show how to establish the six invariants for the next block
N = (n1, . . . , nB−2) in lexicographic order satisfying ni ≥ 2 for all i. We distinguish
cases depending on whether or not nB−2 = nB−2 + 1.
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. . .

. . .

(n1 − 1)

(n1)

(n1, 1)

(n1, n2 + 1)

(n1, n2, 1)
(n1, n2, n3)
(n1, n2, n3 + 1)

GR

. . .

. . .

(n1 − 1)

(n1, 1)

(n1, n2, 1)

(n1 − 1, 1)

(n1 − 1, n2, 1)
(n1 − 1, n2, n3)
(n1 − 1, n2, n3 + 1)

ADV

Fig. 2. Queue configurations when we start processing block (n1, n2, n3).

Case 1. If nB−2 = nB−2 + 1, then N and N belong to the same block of level
B − 3. By (G3), GR buffers B − 3 packets in each queue of N . Now there arrive
mB−2 packets at N , one at each of the queues. Thus, each queue in N buffers B − 1
packets, and each queue in N buffers B−2 packets. In the following mB−2 time steps,
GR transmits one packet from each queue in N while ADV serves the queues in N ,
which are then empty again in ADV ’s configuration. Since only N and N have been
affected, the invariants (G1), (G2), and (G3) hold for N as well. The same is true for
(A1) because the statement holds for block N , as argued in the previous paragraph.
(A2) was not affected during the processing of N because ni ≥ 2 for all 1 ≤ i ≤ B−2.
Since no new packets arrived at blocks that are lexicographically larger than N , (A3)
is also satisfied.

Case 2. If nB−2 
= nB−2 + 1, then N and N do not belong to the same block at
level B − 3. Let i be the largest index such that ni < mi; i.e., there is another block
at level i. Hence N = (n1, . . . , ni−1, ni +1, 2, . . . , 2). In the following

∑B−2
j=i+1 mj time

steps, no new packets arrive, and since (G1) and (G2) hold, GR transmits mj packets
from the queues of block (n1, . . . , ni,mi+1, . . . ,mj), for j = B − 2, . . . , i + 1. During
each iteration, one packet is transmitted from each of these queues. In these time
steps, for j = B − 2, . . . , i + 1, ADV transmits one packet from each of the queues
in (n1, . . . , ni,mi+1, . . . ,mj−1, 1). By invariant (A2), these queues hold exactly two
packets in ADV ’s configuration and store precisely one packet after the transmission.
In the next time step mi packets arrive at the queues of (n1, . . . , ni+1), one packet at
each of these queues. At that time in GR’s configuration, the queues in (n1, . . . , ni)
buffer exactly i + 1 packets while all other queues buffer less. GR then transmits
one packet from each of the queues in (n1, . . . , ni) while ADV serves the queues

in (n1, . . . , ni + 1) so that they are empty again. In the following
∑B−2

j=i+1 mj time
steps, we restore in GR’s configuration the full staircase on top of the i packets in
the queues of (n1, . . . , ni + 1). More precisely, there arrive 2mi+1 packets at the
queues of (n1, . . . , ni + 1, 1), two at each of these queues, and mi+1 packets at the
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queues of (n1, . . . , ni + 1, 2), one packet at each of these queues. GR transmits one
packet from each queue in (n1, . . . , ni + 1, 1) while ADV clears block (n1, . . . , ni +
1, 2). Then there arrive 2mi+2 packets in (n1, . . . , ni + 1, 2, 1) and mi+2 packets in
(n1, . . . , ni + 1, 2, 2). Again GR serves the queues in the first of these blocks while
ADV clears the second. This process continues up to blocks (n1, . . . , ni+1, 2, . . . , 2, 1)
and (n1, . . . , ni + 1, 2, . . . , 2) at level B − 2.

Lemma 1. Invariants (G1–3) and (A1–3) hold when we start processing N =
(n1, . . . , ni + 1, 2, . . . , 2).

Proof. Consider block N = (n1, . . . , ni + 1, 2, . . . , 2) =: (n1, . . . , nB−2). Let
N ′ = (n′

1, . . . , n
′
B−2) be an arbitrary block. We first study (G1). Let N ′ < N , n′

j ≥ 2
for all j, and let k be the largest index such that n′

1 = n1, . . . , n
′
k = nk. If k < i,

then there is nothing to show because the queues in N ′ have not been touched by GR
since the processing of N started. If k ≥ i, we have N ′ = (n1, . . . , ni,mi+1, . . . ,mk,
n′
k+1, . . . , n

′
B−2). Thus N ′ is affected at the iteration steps for j = k, . . . , i, and hence

k − i + 1 times, where iteration i corresponds to the subsequent transmission of one
packet from each queue in (n1, . . . , ni). Since N ′ buffered k + 1 packets before the
processing of N started, there are k + 1 − (k − i + 1) = i packets after the iteration
steps. On the other hand, i − 1 = max{j : n′

1 = n1, . . . , n
′
j = nj}. For N ′ = N the

statement of (G1) also holds because exactly i packets are buffered at these queues.
If N ′ < N , statement (G2) holds because of the same arguments, starting with k
packets before the processing and eventually getting i packets.

If N < N ′ < N , then let j be the largest index with n′
1 = n1, . . . , n

′
j = nj . We

have i ≤ j < B − 2 and n′
j+1 = 1. Since n′

i+1 = · · · = n′
j = 2, GR buffers exactly

j + 1 packets in the queues of N ′. Hence (G2) holds here as well. Moreover, since
GR has B − 2 packets in the queues of N , (G3) holds for N ′ = N . If N ′ > N , then
we distinguish two cases. If n′

l > nl for some 1 ≤ l ≤ i, there is nothing to show
because GR’s configuration in these queues has not changed and the largest index j
with n1 = n′

1, . . . , nj = n′
j is equal to the largest index j with n1 = n′

1, . . . , nj = n′
j . If

n′
1 = n1, . . . , n

′
i = ni = ni + 1, then let j be the largest index with n′

1 = n1, . . . , n
′
j =

nj . We have n′
i+1 = 2, . . . , n′

j = 2 and n′
j+1 > 2. Hence the queues in N ′ store exactly

j packets and (G3) holds.
Invariant (A1) obviously holds because it held when we started processing N

and the desired property was established for block N . There exist no blocks N ′

with N < N ′ < N and n′
i ≥ 2 for all i. Invariant (A2) is satisfied for blocks

N ′ with N ′ ≤ N because, during the processing of N , ADV served the queues
in(n1, . . . , ni,mi+1, . . . ,mj−1, 1) for j = B − 1, . . . , i + 1 exactly once, thus reduc-
ing the number of packets stored there from 2 to 1. If N ′ > N , then the queues store
exactly two packets, as desired. Finally, (A3) holds because ADV has transmitted all
packets that have arrived at blocks N ′ ≥ N .

After processing the last block (m1, . . . ,mB−2), no further packets arrive, but
the iteration steps are executed as if there were another block. Then, we have the
following configurations: From invariants (G1), (G2), and (G3), we derive that GR
buffers one packet in each queue. Due to (A1), (A2), and (A3), ADV buffers B − 1
or B packets in the queues in blocks (n1, . . . , nB−2) with ni ≥ 2 for all i while the
others buffer exactly one packet like GR does.

Let TG be the throughput achieved by GR and TA be the throughput achieved
by ADV. For any block (n1, . . . , nB−2) with ni ≥ 2 for all i, GR transmits B packets
from each of the associated queues. For any block (n1, . . . , ni−1, 1) with nj ≥ 2, for

j = 1, . . . , i−1, GR transmits i+1 packets from each queue. There are
∏i−1

j=1(mj −1)
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such blocks, each containing mi queues. Thus TG = (m− m̆)B + δ1, where

m̆ =

B−2∑
i=1

i−1∏
j=1

(mj − 1)mi δ1 =

B−2∑
i=1

i−1∏
j=1

(mj − 1)mi(i + 1).

The throughput of ADV is equal to that of GR plus the number of packets that are
in ADV ’s final configuration when the processing of blocks ends minus the number
of packets that are in GR’s final configuration when the processing of blocks ends.
In this final configuration, queues in blocks (n1, . . . , nB−2) with ni ≥ 2 for all i store
B packets, except for the last of these queues, which buffers only B − 1 packets.
All other queues are empty. Hence, TA = TG + (m − m̆)B − δ2 − (m − m̆), where
δ2 = (m − m̆)/μ. Hence TA ≥ TG + (m − m̆)(B − 1) − mμ−1. Moreover, m̆ ∈
Θ(

∏B−2
j=1 mj) = Θ(

∏B−2
j=1 m

1
2j ) = Θ(m1− 1

2B−2 ), mμ−1 ∈ Θ(m1− 1
2B−2 ), and δ1 ∈

Θ(B
∏B−2

j=1 mj) = Θ(Bm1− 1
2B−2 ). This implies

TA

TG
≥ (m− m̆)B + δ1 + (m− m̆)(B − 1) −mμ−1

(m− m̆)B + δ1
= 2 − (m− m̆) + δ1 + mμ−1

(m− m̆)B + δ1

≥ 2 − 1

B
− δ1 + mμ−1

(m− m̆)B + δ1
= 2 − 1

B
− Θ

(
Bm1− 1

2B−2

mB

)

= 2 − 1

B
− Θ

(
m− 1

2B−2

)
.

2.2. Arbitrary algorithms. We first study deterministic online algorithms and
then address randomized strategies.

Theorem 2. The competitive ratio of any deterministic online algorithm ALG
is at least e/(e− 1) if m 	 B.

Proof. Let B be a positive integer representing the buffer size. For any positive
integer N , let m = (B + 1)N be the number of queues. Let the B buffer columns be
indexed 1, . . . , B, where column B is the one at the head of the queues and column 1 is
the one at the tails. At the beginning there arrive B packets at each of the m queues
such that all buffers are fully populated. We present a scheme S for constructing
request sequences σ. Our scheme has the property that the throughput achieved
by an adversary is at least e/(e − 1) times the throughput obtained by any greedy
algorithm and that the throughput of any greedy strategy is at least as large as the
throughput of any deterministic online algorithm ALG. This establishes the theorem.
It will be sufficient to consider the standard greedy algorithm, denoted by GR, which
serves the smallest indexed queue in case there is more than one queue of maximum
length.

A request sequence σ consists of superphases P1, . . . , PB . Superphase Pi consists
of phases (i,N), . . . , (i, 1). In a phase (i, s) essentially �(B + 1)s(B+1

B )i−2� packets
arrive at the qs = (B + 1)s−1 most populated queues in the online configuration. We
first present an informal description of the superphases and phases, explaining how
GR would serve them. Then we give a formal definition with respect to any online
strategy. When superphase Pi is finished, the last i columns in GR’s buffers are empty
while the other columns are fully populated. In particular, when σ ends, all buffers are
empty. Superphase Pi is meant to empty column i. After phase (i, s) the first m− qs
queues contain B−i packets while the remaining queues buffer B−i+1 packets. This
load difference of one packet in the last qs queues compared to the others is sufficient
for GR to serve each of these qs queues exactly once during the next qs time steps.
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Since GR is a deterministic algorithm, the adversary knows, for each 1 ≤ k ≤ qs,
which of the qs queues are served by GR during the first k time steps of the next
phase if no new packets arrive, and uses this knowledge to serve other queues and
make new packets arrive there to cause as large as possible a packet loss for GR.

We first describe superphase P1 and start with phase (1, N). Initially, all qN+1 =
m queues are fully populated. During the first qNB time steps no packets arrive and
GR transmits a packet from each of the first qNB queues. Then B packets arrive at
each of the remaining qN queues, all of which must be dropped by GR because the
last qN queues already buffer B packets each. An adversary, on the other hand, could
transmit all packets from the last qN queues during the first qNB time steps so that no
packet loss occurs. At the end of phase (1, N) the last qN queues are fully populated
in GR’s buffer configuration. The arrival pattern now repeats for the other phases
in P1. At the beginning of (1, s) the last qs+1 queues in GR’s configuration store B
packets each. During the first qsB time steps no packets arrive and GR transmits one
packet from each of the first qsB of these qs+1 queues. Then B packets are sent to
each of the last qs queues, all of which are lost by GR. Again, an adversary can accept
all packets by transmitting from the last qs queues in the previous time steps. At the
end of (1, 1) the last queue in GR’s configuration contains B packets while all other
queues buffer B − 1 packets. Now there is one time step without packet arrivals such
that GR can transmit one packet from the last queue and has exactly B − 1 packets
in each of its buffers.

Superphase P2 is similar. In (2, N) there are no packet arrivals during the first
qNB time units. Then there arrive B packets at each of the last qN queues. This time
GR loses B − 1 packets at each of the last queues, which are then fully populated
again. To these last qN queues we recursively apply the packet arrival pattern used
to empty column 1 in P1. In phase (2, s) there are no packet arrivals during the first
qsB time units. Then B packets are sent to the last qs queues, causing a packet loss
of (B − 1) at each of these buffers. To empty the last column of these queues, we
recursively apply the pattern of P1. In general, in any phase (i, s) of Pi there are qsB
time units without packet arrivals, followed by the arrival of B packets at each of the
last qs queues. GR loses B − i + 1 packets at each of these buffers, which are then
fully populated again. To empty the last i− 1 columns of these buffers we recursively
apply the pattern used in Pi−1.

Formally, for any deterministic online algorithm ALG, σ = P1, . . . , PB , where
Pi = (i,N), . . . , (i, 1). We call the BN phases in P1, . . . , PB main phases. A main
phase triggers auxiliary phases. Auxiliary phases are identified by their complete
triggering path. If ϕ1 is a main phase and ϕi triggers ϕi+1, then the auxiliary phase
ϕn is denoted by [ϕ1ϕ2, . . . , ϕn]. Let Φ be the set of phases. To identify sets of queues
on which phases work, we define a predecessor mapping π : Φ → Φ. For a main phase
ϕ = (i, s), let i be the level of ϕ. If ϕ is a main phase, then π(ϕ) is the immediately
preceding phase in σ of the same level if such exists; otherwise we define π(ϕ) = (0, 0).
If ϕ is an auxiliary phase, then π(ϕ) is the triggering phase:

• π((i,N)) = (0, 0) and π((i, s)) = (i, s + 1) if s < N ,
• π([(i1, s1), . . . , (in, sn)]) = [(i1, s1), . . . , (in−1, sn−1)] if sn = sn−1 − 1,
• π([(i1, s1), . . . , (in, sn)]) = [(is, s1), . . . , (in, sn + 1)] if sn < sn−1 − 1.

Furthermore, we need a recursive mapping Q : Φ → P({1, . . . ,m}) that associates
phases with sets of queues. Let Q(0, 0) be the set of all m queues.

Each phase ϕ with suffix (i, s) consists of the following steps.
1. qsB time steps without packet arrival, i.e., only packet transmission.
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2. Arrival of B packets at each of the qs most populated queues in Q(π(ϕ));
these queues form Q(ϕ).

3. If i > 1 and s > 1, triggering of the phases [ϕ, (1, s − 1)], . . . , [ϕ, (1, 1)], . . . ,
[ϕ, (i− 1, s− 1)], . . . , [ϕ, (i− 1, 1)] on Q(ϕ).

4. If s = 1, then i time steps without packet arrival.
Lemma 2. If a sequence of phases (1, s), . . . , (1, 1), . . . , (i, s), . . . , (i, 1) is served

by GR on a set QG,s consisting of qs+1 = (B + 1)s consecutive queues, then after
phase (j, r) the buffer configuration in QG,s is as follows. If r > 1, then the last qr
queues buffer B − j + 1 packets while the other queues buffer B − j packets. If r = 1,
then all queues buffer B − j packets.

Proof. We first prove the statement of the lemma under the condition that queues
not contained in QG,s buffer less than B− i packets. Then we show that the condition
is always satisfied.

The proof is by induction on i. First consider i = 1. At the beginning all buffers
in QG,s are full because the sequence is either a sequence of main phases started with
fully populated buffers or a sequence of triggered phases, which are also initiated on
full buffers only. In (1, s) during the first qsB time steps, GR transmits a packet from
the first qsB queues in QG,s because queues outside QG,s contain less than B packets.
In the next time step the packets arriving at the last qs queues in QG,s are rejected
because the queues already buffer B packets. No further phases are triggered in (1, s).
Thus the last qs queues buffer B packets while the other queues store B − 1 packets.
If s = 1, then qs = 1 and in the last time step in (1, 1) a packet is transmitted from
the last queue so that all queues buffer exactly B− 1 packets. The desired statement
on the buffer population holds after phase (1, s). Suppose inductively that it holds
after (1, r+1). Then the last qr+1 queues in QG,s store B packets while the remaining
queues each have B−1 packets. During the next qrB time steps in (1, r) one packet is
transmitted from the first qrB queues among the last qr+1 buffers in QG,s. Thus the
last qr queues in QG,s still have B packets while the remaining queues buffer B − 1
packets. Again, if r = 1, one packet is transmitted from the last queue in the final
time steps in (1, r) so that all queues have exactly B − 1 packets. Thus the stated
buffer population is maintained after phase (1, r) and the desired statement holds for
i = 1.

Suppose that the statement holds for every integer smaller than i; we prove that
it is also satisfied for i. As above, we can show that after phase (1, s) the buffer
population is as desired. Assume that the statement on the buffer population holds
up to but excluding phase (j, r). At the beginning of (j, r) the last qr+1 buffers in
QG,s store B − j + 1 packets while the remaining queues contain B − j packets.
During the next time steps, GR transmits one packet from each of the first qrB
buffers among the qr+1 last ones in QG,s because buffers outside QG,s store less than
B − i < B − j + 1 packets. Thus the last qr queues in QG,s store B − j + 1 packets
while the remaining queues each contain B − j packets. Then B packets arrive at
the last qr queues so that they are fully populated again. If r = 1, then no phases
are triggered and, since q1 = 1, only the last queue is fully populated. During the
next j time steps j packets are transmitted from this last queue and all queues in
QG,s then buffer B − j packets. The queues are populated as desired. If r > 1, then
phases (1, r − 1), . . . , (1, 1), . . . , (j − 1, r − 1), . . . , (j − 1, 1) are triggered on the last
qr fully populated queues. The other queues buffer less than B − (j − 1) packets.
By an induction hypothesis, when the triggered phases end, the last qr queues again
buffer B − j + 1 packets. Thus the buffers are populated as desired and the desired
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statement holds for every integer i.
It remains to show that the condition mentioned at the beginning of the proof

holds; i.e., if a sequence of phases (1, s), . . . , (1, 1), . . . , (i, s), . . . , (i, 1) is served on
a set QG,s of queues, then all queues not contained in QG,s store less than B − i
packets. The condition holds when the initial sequence σ of main phases is started.
Suppose that the condition holds for all sequences triggered after the beginning of
σ but before the start of (1, s), . . . , (1, 1), . . . , (i, s), . . . , (i, 1). Assume that the latter
sequence is triggered by phase [ϕ1, . . . , ϕn] such that ϕj = (ij , sj) and phase ϕj is
executed on queues in Qϕj . We have Qϕj+1 ⊂ Qϕj for j = 1, . . . , n − 1, and queues
outside Qϕj contain less than B− ij packets. Thus all queues outside Qϕn buffer less
than B − in packets. The sequence is triggered on the last qsn buffers in Qϕn . Since
the first qsnB buffers in Qϕn

store B − in packets and i1 > i2 > · · · > in > i, the
sequence is triggered on a set of buffers storing less than B − i packets. The proof is
complete.

Lemma 3. The packet loss of any deterministic online algorithm ALG is not
smaller than the one of GR.

Proof. Before presenting the details of the proof, we outline the basic idea. We
construct a request sequence σ that is similar in structure to the sequence used for
GR in the previous lemma. While GR gives us a hierarchical structure for the distinct
phases, ALG might serve the queues in such a way that the set of the most populated
queues varies over time. Therefore, we generalize the request sequence such that, upon
each packet arrival, the new packets arrive at the currently most populated queues.
In the sequence to be constructed, there are packet arrivals at exactly the same time
steps as for GR. Moreover, the arrival pattern is not changed either; i.e., for each time
step there is a match between GR’s queues and ALG ’s queues such that the same
number of packets arrives at each pair of matched queues. We shall show that the
number of packets transmitted by ALG is at most the number of packets transmitted
by GR.

To establish the claim, we use Lemma 2. We consider sequences σ(i, s) =
(1, s), . . . , (1, 1), . . . , (i, s), . . . , (i, 1) processed by ALG and GR on sets QA and QG of
qs buffers each. For any given time since the beginning of σ(i, s), let NG be the total
number of packets in GR’s queues of QG and let LG be the total packet loss of GR
accumulated since the start of σ(i, s). For algorithm ALG, NA and LA are defined
similarly. Furthermore, let SA be the number of time steps in σ(i, s) where neither do
packets arrive nor does ALG transmit a packet from queues in QA. We are interested
in the following invariants:

(I1) NA − SA + LA = NG + LG, (I2) NA − SA ≤ NG.

We prove the following statement. If a sequence σ(i, s) is processed by ALG and
GR on sets QA and QG, respectively, then after each phase, invariants (I1) and (I2)
hold. The lemma then follows by considering a sequence σ = σ(B,N). At the end of
the sequence, by (I1), LA = NG + LG − (NA − SA). By (I2) we conclude LA ≥ LG.

We prove the desired statement by induction on i. First consider i = 1. At the
beginning of σ(1, s) all queues in QA and QG are fully populated because sequence
σ as well as triggered phases are initiated on full buffers only. Therefore NA = NG.
Since initially LA = LG = 0 and SA = 0, both invariants hold at the beginning of
σ(1, s). While serving σ(1, s), in each time step GR transmits a packet from queues
in QG. Moreover, GR always serves a fully populated queue. Therefore, at any time,
GR always has the smallest number of fully populated queues. By Lemma 2, at the
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beginning of phase (1, r) the last qr+1 queues in QG buffer B packets while all other
queues store B−1 packets. After the next qrB time steps, the last qr queues still buffer
B packets such that all packets arriving in step 2 of σ(1, r) are lost. Since ALG has
at least qr fully populated queues, ALG also loses all incoming packets. Therefore,
at any time the packet loss of ALG and GR is the same. Since GR transmits a
maximum number of packets and no incoming packets can be accepted by ALG and
GR, NA ≥ NG. If NA − NG = δ > 0, then there must have been δ time units,
where ALG did not transmit a packet. Therefore (I1) and (I2) hold throughout the
execution of σ(1, s).

Assume that the statement to be proven holds for integers smaller than i. We
consider a sequence σ(i, s). Again (I1) and (I2) hold initially, when σ(i, s) is started.
We show that if the invariants (I1) and (I2) hold before any phase (j, r), then they
also hold after the phase. At the beginning of (j, r), GR buffers B − j + 1 packets
in the last qr+1 queues of QG and B − j packets in the remaining queues. During
the first qrB time steps, GR always transmits one packet. Consider any time step. If
ALG also transmits a packet from queues in QA, then both NA and NG decrease by 1.
If ALG does not serve a queue in QA, then only NG decreases by 1 but SA increases
by 1. The invariants are maintained. Immediately before step 2 of phase (j, r) let Q1

A

be the set of the qr most populated buffers in QA to which packets are sent in step 2.
Set Q2

A = QA \ Q1
A and let N i

A be the number of packets in Qi
A, i = 1, 2. Similarly,

let Q1
G be the set of the qr most populated queues in QG, Q2

G = QG \ Q1
G and N i

G

be the packet number in Qi
G, i = 1, 2. Each queue in Q2

G has exactly B − j packets
while each queue in Q1

G buffers exactly B − j + 1 packets. We have N2
A − SA ≤ N2

G.
Otherwise, if N2

A − SA > N2
G, then the most populated queues in Q2

A would store at
least B − j + 1 packets. Hence N1

A ≥ N1
G and (I1) would be violated.

Now consider the effect of step 2 of phase (j, r) in which the queues of Q1
A and

Q1
G are refilled. If LA − LG changes by δ, then NG − NA changes by δ so that (I1)

is maintained. Since N1
A = N1

G after the step and N2
A − SA ≤ N2

G, invariant (I2) also
holds. If r = 1, then no phases are triggered and there are j more time steps with
packet transmission in which the invariants are maintained. If r > 1, then phases
(1, r − 1), . . . , (1, 1), . . . , (j − 1, r − 1), . . . , (j − 1, 1) are triggered in step 3 of (j, r).
The triggered phases are executed on Q1

A and Q1
G. Since N1

A = N1
G initially, the

desired invariants hold at the beginning of the triggered sequence. By an induction
hypothesis we have N1

A−S1
A +L1

A = N1
G +L1

G and N1
A−S1

A ≤ N1
G when the sequence

is finished. Here L1
A and L1

G denote the loss incurred during the sequence and S1
A is

the number of time steps, ALG does not transmit packets from Q1
A. Let S1,1

A be the
number of time steps in the triggered sequence where ALG works on neither Q1

A nor

Q2
A, and let S1,2

A be the number of time steps where ALG does not work on Q1
A but

does transmit packets from Q2
A. Then S1

A = S1,1
A + S1,2

A . Before step 3 of the phase,
(I1) held and N1

A = N1
G. Therefore N2

A − SA +LA = N2
G +LG and, as argued above,

N2
A − SA ≤ N2

G. Using the invariants for the triggered sequence, we obtain

(N1
A + N2

A − S1,2
A ) − (SA + S1,1

A ) + (LA + L1
A) = (N1

G + N2
G) + (LG + L1

G)

and

(N1
A + N2

A − S1,2
A ) − (SA + S1,1

A ) ≤ (N1
G + N2

G).

The invariants thus hold at the end of phase (j, r) because N1
A + N2

A − S1,2
A is

the total number of packets in queues from QA;SA +S1,1
A is the total number of time
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steps ALG does not transmit packets from QA; and N1
G+N2

G is the number of packets
in QG. Finally, LA + L1

A is the total loss accumulated by ALG and LG + L1
G is the

corresponding value of GR. The inductive proof is complete.
Lemma 4. The throughput of the adversary ADV is at least e/(e− 1) times that

of GR.
Proof. We analyze the competitive ratio of the GR algorithm. To this end we

analyze the throughput TADV achieved by an adversary ADV and the throughput
TG of GR. At the beginning of σ, all queues are fully populated. When σ ends, by
Lemma 2, all of GR’s buffers are empty. We describe how ADV serves σ. In phase
(i, s) during the first qsB time steps ADV transmits all packets from the qs queues at
which packets arrive in step 2 of the phase. If s = 1, then in step 4 of the phase ADV
is idle and does not transmit packets. Thus in each phase ADV can always accept
all incoming packets and at the end of the phase all buffers are full. Let SADV be
the total number of time steps where ADV is idle in σ. Since GR transmits a packet
in each time step and ADV ’s queues contain mB packets at the end of σ, we have
TG = TADV −mB + SADV .

We estimate SADV . The adversary is idle in a phase ϕ = [ϕ1, . . . , ϕn] with
ϕj = (ij , sj) if sn = 1. Since i1 > · · · > in and ij > 1 for j < n, there are∑B

n=1

(
B
n

)
(N − 1)n−1 ≤ NB such phases, in each of which ADV is idle for at most B

time units. Thus SADV ≤ BNB and the competitive ratio of GR is at least

c ≥ TADV /TG ≥ 1

/(
1 − mB

TADV
+

NBB

TADV

)
≥ 1

/(
1 − mB

TADV
+

NB

m

)

because TADV ≥ mB. To lower bound the last expression we have to upper bound
TADV . The throughput of ADV is equal to the mB packets initially buffered in the
queues plus the packets accepted by ADV during the service of σ. As argued above,
ADV can always accept all packets. Let ai,s be the number of packets accepted by
ADV in a phase (i, s). We show by induction on i that ai,s ≤ (B + 1)s(B+1

B )i−2.
The inequality holds for i = 1 because a1,s = qsB = (B + 1)s−1B. Suppose that the

inequality holds for i. We have ai+1,s = qsB +
∑i

j=1

∑s−1
r=1 aj,r = ai,s + ai,s−1 + · · ·+

ai,1 ≤ (B+1
B )i−2

∑s
r=1(B + 1)r ≤ (B+1

B )i−1(B + 1)s. The total number of accepted
packets in σ is at most

B∑
i=1

N∑
s=1

ai,s ≤
B∑
i=1

(
B + 1

B

)i−2
(B + 1)N+1 − 1

B
≤ (B + 1)N

B∑
i=1

(
B + 1

B

)i−1

= (B + 1)NB

((
1 +

1

B

)B

− 1

)
= mB

((
1 +

1

B

)B

− 1

)
.

Since the initial buffer configuration stores mB packets, we have TADV ≤ mB(1+
1
B )B and we conclude c ≥ 1/(1 − (1 + 1/B)−B + NB/m) and for large B and N this
expression can be arbitrarily close to e/(e− 1).

Lemmas 3 and 4 establish the theorem.
Azar and Richter [4] proved a lower bound of 2 for all deterministic online al-

gorithms if B = 1. In the previous theorem we presented a construction of a lower
bound that converges to e/(e − 1) if B → ∞. This raises the question of whether
the competitive ratio can be bounded away from both e/(e− 1) and 2 if B > 1, but
small. For B = 2 we can show such a stronger bound, which we prove to be optimal
in section 3 by presenting a matching upper bound.
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Theorem 3. For B = 2, no deterministic online algorithm can achieve a com-
petitive ratio smaller than 13/7.

Proof. We enhance the request sequence σ presented in the proof of Theorem 2.
Let there be m additional queues for both ADV and ALG. At the beginning, there
arrives one packet in each of the 2m queues. During the first m time steps, ADV
serves those queues not served by ALG during this period. Then, σ is applied to
those queues already served by ADV. Let TADV and TALG denote the throughputs
of ADV and ALG, respectively, for σ, again, and let T ′

ADV and T ′
ALG denote the

respective throughputs for the composed request sequence. Since T ′
ADV = TADV +2m

and T ′
ALG = TALG+m, the throughput difference for any online algorithm is the same

as for GR. Hence, we can apply Lemma 3 again and adopt the proof of Lemma 4.
Let TG and T ′

G denote the respective throughputs for GR. Since T ′
G = T ′

ADV − (m +
1)B +SADV and mB ≤ T ′

ADV ≤ m(B(1 + 1
B )B + 2), we get for the competitive ratio

that

c ≥ T ′
ADV /T

′
G ≥ 1

/(
1 − m(B + 1)

TADV
+

NB

m

)

≥ 1

/⎛
⎝1 − (B + 1)

(
B

(
1 +

1

B

)B

+ 2

)−1

+
NB

m

⎞
⎠ ,

taking values arbitrarily close to 1/(1−(B+1)(B(1+ 1
B )B+2)−1) for large N . Putting

B = 2 yields c ≥ 1/(1−3(2(1+ 1
2 )2+2)−1) = 1/(1−3( 13

2 )−1) = 1/(1− 6
13 ) = 13

7 .
We next consider randomized algorithms. The advantage of randomization con-

sists of the online algorithm’s being more powerful against the adversary than in the
deterministic case because the former can use its probability distribution to fool the
latter. For packet buffering, Azar and Richter [4] showed that if B = 1, no random-
ized online algorithm can achieve a competitive ratio smaller than 1.4659. We prove
the same lower bound for any buffer size B. This reveals a significant difference from
deterministic algorithms, where the lower bound of 2 shown for B = 1 does not hold
for any other B.

Theorem 4. If ALG is a randomized online algorithm, its competitive ratio
cannot be smaller than 1.4659 for any buffer size B.

Proof. Let each queue be populated by B packets at the beginning. We call B
subsequent time steps a round. At the end of each round, B packets arrive in the
queue currently having the maximum expected load. Since the adversary ADV knows
where the next packets will arrive, it serves this queue during the preceding B time
steps. Hence, ADV can accept all packets, whereas ALG has an expected loss of
li packets in round i. First, we show that

n∑
i=1

li ≥
n∑

i=1

(
m− 1

m

)i

B.(1)

Then, we will derive three lemmas from which we eventually conclude our claim.
We show (1) by induction on i. Let i = 1. After B time steps, ALG has a

population of mB−B = (m−1)B packets. Hence, the average queue length is m−1
m B.

So, the maximum expected queue length is at least m−1
m B, yielding an expected loss

l1 ≥ m−1
m B. Now assume

∑j
i=1 li ≥

∑j
i=1(

m−1
m )iB. Until the end of round j + 1,

ALG has transmitted (j+1)B packets while its expected number of accepted packets
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is jB −
∑j

i=1 li. Hence, its expected buffer population is

mB − (j + 1)B + jB −
j∑

i=1

li = (m− 1)B −
j∑

i=1

li.

So, the expected average queue length is

1

m

(
(m− 1)B −

j∑
i=1

li

)
=

m− 1

m
B − 1

m

j∑
i=1

li.

We derive that the maximum expected queue length after round j + 1 is at least
m−1
m B − 1

m

∑j
i=1 li, yielding an expected loss lj+1 ≥ m−1

m B − 1
m

∑j
i=1 li. Hence

j+1∑
i=1

li ≥
j∑

i=1

li +
m− 1

m
B − 1

m

j∑
i=1

li =
m− 1

m

(
B +

j∑
i=1

li

)

≥ m− 1

m

(
B +

j∑
i=1

(
m− 1

m

)i

B

)
=

j+1∑
i=1

(
m− 1

m

)i

B.

If there are n rounds, then the throughputs of ADV and ALG are TADV =
(m + n)B and E[TALG] = TADV −

∑n
i=1 li ≤ (m + n)B −

∑n
i=1(

m−1
m )iB, giving the

ratio

r =
TADV

E[TALG]
≥ (m + n)B

(m + n)B −
∑n

i=1(
m−1
m )iB

=
m + n

m + n−
∑n

i=1(
m−1
m )i

.

The number of rounds n is to be chosen such that r is maximized, which is
equivalent to the minimization of its reciprocal

m + n−
∑n

i=1(
m−1
m )i

m + n
= 1 − 1

m + n

n∑
i=1

(
m− 1

m

)i

.

Hence we want to maximize 1
m+n

∑n
i=1(

m−1
m )i. In order to analyze this ratio we

consider a more general term an = 1
m+n

∑n
i=1 q

i, where 0 < q < 1. In the following
two lemmas, we show that the sequence (an) first increases and then decreases from
where we deduce a useful property for the sequence item where the maximum is
achieved.

Lemma 5. If an+1 < an, then an+2 < an+1.
Proof. Let an+1 < an. Algebraic manipulations give (m+n)

∑n+1
i=1 qi < (m+n+

1)
∑n

i=1 q
i and (m + n)qn+1 <

∑n
i=1 q

i. Using the latter inequality, we obtain

(m + n + 1)qn+2 < (m + n)qn+1 + qn+2 <

n∑
i=1

qi + qn+2 <

n+1∑
i=1

qi.

This implies

(m+n+1)
n+1∑
i=1

qi +(m+n+1)qn+2 < (m+n+1)

n+1∑
i=1

qi +

n+1∑
i=1

qi = (m+n+2)

n+1∑
i=1

qi.



294 SUSANNE ALBERS AND MARKUS SCHMIDT

We conclude

(m + n + 1)

n+2∑
i=1

qi < (m + n + 2)

n+1∑
i=1

qi

and finally, as desired,

1

m + n + 2

n+2∑
i=1

qi <
1

m + n + 1

n+1∑
i=1

qi.

Corollary 1. There exists a unique n ∈ N such that an−1 ≤ an and an > an+1.
For this n, there holds an = maxr∈N ar.

Lemma 6. There is a unique n ∈ N such that q < an

qn ≤ 1.
Proof. By Corollary 1, there exists a unique n ∈ N such that an−1 ≤ an and

an > an+1. These two inequalities are equivalent to
∑n−1

i=1 qi ≤ (m + n − 1)qn and∑n
i=1 q

i > (m + n)qn+1. This is equivalent to (m + n)qn+1 <
∑n

i=1 q
i ≤ (m + n)qn.

Dividing by qn and m + n, we obtain the inequality to be proven.
Corollary 2. an = maxr∈N ar if and only if q < an

qn ≤ 1.

Lemma 7. If q = (m−1)/m and an(m) = maxr∈N ar, then limm→∞ n(m)/m = x,
where x is the unique positive solution of the equation ex = x + 2.

Proof. We fix m and look for n such that an/q
n = 1. Then, by Corollary 2,

n(m) = �n�. Define q̃ by qq̃ = 1. We have q̃ − 1 = m/(m − 1) − 1 = 1/(m − 1) and
m = q̃/(q̃ − 1). The equation an/q

n = 1 is equivalent to
∑n

i=1 q
i = (m + n)qn, which

in turn is equivalent to
∑n

i=1 q̃
−i = (m + n)q̃−n. We obtain

∑n−1
i=0 q̃i = m + n, and

hence q̃n−1 = (m+n)/(m−1). Thus q̃n = (2m+n−1)/(m−1). Since m = q̃/(q̃−1),
we have

q̃n =

(
2

q̃

q̃ − 1
+ n− 1

)/(
q̃

q̃ − 1
− 1

)
= 2q̃ + (n− 1)(q̃ − 1) = (q̃ − 1)n + (q̃ + 1).

Define α by n = αm. We conclude that the inequality an/q
n = 1 is equivalent to

q̃n = (q̃ − 1)n + (q̃ + 1), which in turn is equivalent to((
m

m− 1

)m)α

=

(
m

m− 1
− 1

)
αm +

(
m

m− 1
+ 1

)
=

m

m− 1
α +

2m− 1

m− 1
.

For m → ∞, this equation takes the form eα = α + 2.
It remains to determine the competitive ratio r. We have

an(m) =

∑�αmm	
i=1 (m−1

m )i

m + �αmm� ≥ m− 1

m

1 − (m−1
m )mαm−1

1 − m−1
m

1

m + �αmm�
−→

m→∞

1 − e−α

1 + α
=: p.

For the ratio r, there holds

r ≥ 1/(1 − p) = 1

/(
1 − 1 − e−α

1 + α

)
=

1 + α

1 + α− 1 + e−α
=

1 + α

1 + αeα
eα.

Since eα = α + 2, we get

r =
(1 + α)(α + 2)

1 + α(α + 2)
=

(1 + α)(α + 2)

α2 + 2α + 1
=

(α + 1)(α + 2)

(α + 1)2
=

α + 2

α + 1
= 1 +

1

α + 1
.

Numerically solving equation eα = α + 2 yields α ≈ 1.1462 and r ≈ 1.4659.
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3. Upper bounds. We first present our new algorithm SGR and then study
the influence of resource augmentation.

3.1. A new semigreedy algorithm. We have seen in section 2.1 that any
greedy algorithm is not better than 2-competitive. Nevertheless, it is the most rea-
sonable decision to serve a queue that is (nearly) completely populated because, oth-
erwise, the adversary sends packets to such a queue and the online algorithm loses
almost all of them. In the request sequence from which we derive the lower bound of
2 for greedy algorithms, it is a crucial point that GR always serves the queue with the
maximum load and ignores all other queues no matter how small the load difference
is and causes the packet loss at the latter queues. Thus, the number of queues in
which packets are lost increases. We shall now present a new algorithm SGR which
embodies the greedy criterion but simultaneously tries to keep small the number of
queues in which packet loss occurs. At queues that have already been fully populated,
the greedy rule is relaxed and queues with less load are preferred. The risk of losing
packets at the ignored queues that the adversary does not lose is low because the
high load indicates that a lot of packets have already arrived there and, hence, the
adversary presumably has a high load there as well. We now give a precise description
of our algorithm.

Algorithm SGR. In each time step the algorithm executes the first rule that
applies to the current buffer configuration.

1. If there is a queue buffering more than �B/2� packets, serve the queue cur-
rently having the maximum load.

2. If there is a queue, the hitherto maximum load of which is less than B, serve
among these queues the one currently having the maximum load.

3. Serve the queue currently having the maximum load.
Ties are broken by choosing the queue with the smallest index. The hitherto maxi-
mum load is reset to 0 for all queues whenever all queues are unpopulated in SGR’s
configuration.

In the remainder of this subsection we analyze SGR. Let σ be any packet arrival
sequence. We divide σ into several phases, where phase P1 starts at time t = 0.
Phase Pi ends when SGR has completely cleared its buffers for the ith time, and
phase Pi+1 starts when the first packet arrives after the end of phase Pi. W.l.o.g.
we can assume that at the beginning of each phase ADV ’s buffers are empty as well
because we can always postpone the start of the subsequent phase until this state is
reached, thus only enlarging ADV ’s throughput and hence the throughput ratio. So,
the total throughput is given by the sum of the throughputs in the distinct phases
if these were served separately. We derive that the ratio of the total throughputs
cannot be worse than the throughput ratio in a single phase. Hence we can restrict
ourselves to arrival sequences that terminate when SGR has completely cleared its
buffers. Furthermore it suffices to consider sequences where, at any time step, if there
is packet loss at queue i, either SGR or ADV loses packets. If both lose packets, then
we can reduce the number of packets arriving at i by the minimum loss of any of the
two algorithms.

For the analysis of SGR we introduce a new potential function. Let lit,A and lit,S
be the load of queue i at time t in the configurations of ADV and SGR, respectively.
We define the potential of the queue as Φit = (lit,A − lit,S)+, where x+ = (x+ |x|)/2.
The total potential at time t is given by Φt =

∑m
i=1 Φit. Let T be the time when SGR

has completely emptied its buffers. Since both ADV and SGR transmit one packet
in each time step until T , the potential ΦT describes their throughput difference. By
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ΔΦ we denote the potential change Φt − Φt−1. We assume that during each time
step, the arrival step precedes the transmission step.

Lemma 8. The potential Φ does not increase during the arrival step, but Φ
decreases by the number of packets lost by ADV.

Proof. Let p packets arrive at queue i at time step t. If neither ADV nor SGR
loses any packet, there holds lit,A = li,t−1,A + p, lit,S = li,t−1,S + p, where we measure
the load at t−1 after the transmission step. Hence Φit = (lit,A− lit,S)+ = ((li,t−1,A +
p)− (li,t−1,S +p))+ = (li,t−1,A− li,t−1,S)+ = Φi,t−1 and the potential does not change
due to the packet arrival at queue i. As mentioned above we can restrict ourselves
to arrival sequences, where either ADV or SGR loses packets whenever packet loss
occurs. First we assume that SGR loses some packets. We derive li,t−1,A < li,t−1,S

and, hence, Φi,t−1 = 0. After the arrival of the p packets, there holds lit,S = B
yielding lit,A ≤ lit,S and, hence, Φit = 0 = Φi,t−1. Since the single potentials do not
change, neither does the total potential. Now we assume that ADV loses p0 of the
arriving p packets. Then Φi,t−1 = (li,t−1,A − li,t−1,S)+ ≥ p0. After the arrival of the
p packets, there hold lit,A = B = li,t−1,A + (p − p0) and lit,S = li,t−1,S + p yielding
(lit,A − lit,S)+ = (li,t−1,A + (p − p0) − li,t−1,S − p)+ = (li,t−1,A − li,t−1,S − p0)+ =
(li,t−1,A − li,t−1,S)+ − p0 and, hence, Φit = Φi,t−1 − p0.

Lemma 9. During each transmission step the potential can change by at most 1.
Proof. If ADV and SGR serve the same queue, the potential does not change at

all. Let ADV serve queue i while SGR serves queue j 
= i. Let ta and t be the moments
after the arrival and the transmission steps, respectively. Φit = (lit,A − lit,S)+ =
(lita,A−1−lita,S)+ = (lita,A−lita,S−1)+ and Φjt = (ljt,A−ljt,S)+ = (ljta,A−(ljta,S−
1))+ = (ljta,A−ljta,S+1)+. Since 0 ≤ (x+1)+−x+ ≤ 1, we derive −1 ≤ Φit−Φita ≤ 0
and 0 ≤ Φjt − Φjta ≤ 1. Hence there holds −1 ≤ Φt − Φta ≤ 1.

Lemma 10. During transmission step t the potential increases if and only if ADV
serves a queue currently having potential 0 while SGR serves a queue having positive
potential afterward.

Proof. Let the potential increase by 1. Let ADV serve queue i while SGR serves
queue j 
= i. As shown in Lemma 9, −1 ≤ ΔΦit ≤ 0 and 0 ≤ ΔΦjt ≤ 1. Hence the
potential increases by 1 if and only if ΔΦit = 0 and ΔΦjt = 1. On the one hand, if
Φi,t−1 > 0, there holds Φit = Φi,t−1 − 1 and, hence, ΔΦit = −1. On the other hand,
if Φjt = 0, there holds Φj,t−1 = 0 and, hence, ΔΦjt = 0. So, the potential increases
if and only if Φi,t−1 = 0 and Φjt > 0.

Before stating the next lemma, in the following three paragraphs, we define some
new terms and introduce some further notation that will be used throughout the
remainder of this section. If the potential increases, the queue served by SGR is called
the causal queue, whereas the one served by ADV is termed counter queue. Whenever
the potential increases, the situation of ADV worsens in such a way that ADV buffers
more packets in queue j than SGR does. But, the same is true, interchanging their
roles, for SGR and queue i. The difference in the number of packets held by ADV and
SGR in queue i increases whenever Φ increases and ADV serves i. Hence, Φ measures
the number of packets that SGR has already lost or could lose if ADV replenishes
the corresponding queues. These replenishments are necessary to generate a larger
throughput for ADV.

If t is a time step where the potential does not increase during packet transmission,
we call t an additional time step and denote their number by T0. Hence, Φ increases
T − T0 times. Let T−1 be the number of time steps in which the potential decreases
during packet transmission. Obviously, T−1 ≤ T0. Furthermore, we derive from
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Lemma 8 that Φ decreases by L0 during the arrival steps, where L0 is the total
number of packets lost by ADV. We have ΦT = T − T0 − T−1 − L0. Let TA and TS

denote the throughputs of ADV and SGR, respectively. From TA = TS + ΦT and
TS = T , we derive

TA

TS
=

T + ΦT

T
≤ T + T − T0 − T−1 − L0

T
= 2 − T0 + T−1 + L0

T
.(2)

In the following, we shall present buffer configurations, where the potential does not
increase, and hence derive that T0+T−1+L0

T ≥ 1
9 , establishing the (2− 1

9 )-competitive-
ness of SGR.

The queues are divided into B+1 sets Q0, . . . , QB , where queue q is a member of
Qk if and only if k is the maximum load of q in SGR’s configuration while processing
σ. In the following analysis we can ignore Q0, as no packets arrive there. Furthermore,
depending on SGR’s configuration at q, we call q a Q2-queue if SGR currently buffers
at least

⌊
B
2

⌋
+1 packets in q. In case of SGR’s buffering at most

⌊
B
2

⌋
packets in q, we

call q a Q12-queue if q has already had a total load of B packets, i.e., all buffers have
been populated; otherwise we call it a Q11-queue. By s11, s12, and s2 we denote the
number of time steps in which the potential increases while SGR serves a Q11-, Q12-,
and Q2-queue, respectively. We partition s11 into s111 and s112, where we assign an
s11 time step to s111 if the counter queue is a Q11-queue in SGR’s configuration, and
to s112, otherwise. Finally, let b =

⌊
B
2

⌋
, L = {1, . . . , b}, R = {b + 1, . . . , B}, and

R∗ = R \ {B}.
Lemma 11. The following inequality holds:

L0 + T0 ≥
(
s2 − (B − b)

∑
k∈R

|Qk|
)

+

.

Proof. Let k ∈ R and j ∈ Qk be a queue that SGR’s serving of which has already
increased s2 at least B− b times. We conclude that at least B packets have arrived at
j because, at each of these time steps, j buffers more than b packets and one packet is
transmitted at each such time step. For each further increase of s2, a buffer in queue j
must have been repopulated due to a further packet arrival. If ADV can accept the
arriving packet, ADV must have served j, too. In these time steps, ADV serves a
queue having positive potential. Hence, they are additional. If ADV cannot accept
the arriving packet, ADV has a further packet loss. Thus, s2 can increase at most
B− b times at SGR’s serving j without additional time steps or packet loss for ADV,
and each further such increase induces either an additional time step or another packet
loss for ADV and, thus, increases by 1 either T0 or L0. Since we have this result for all
queues j ∈ Qk, k ∈ R, there can be at most (B − b)|

⋃
k∈R Qk| = (B − b)

∑
k∈R |Qk|

time steps at which s2 increases without an increase of L0 + T0. We derive that
if s2 exceeds (B − b)

∑
k∈R |Qk|, the amount of exceedence is a lower bound for

L0 +T0. Since L0 +T0 is nonnegative, we can strengthen our result by adding the (·)+
operator.

Lemma 12. The following inequality holds:

T0 ≥ (s111 − b|QB |)+ + s112 + s12 + (B − 2b)|QB | − T−1.

Proof. We investigate s11 and s12 increases and focus on steps in which queue i is
counter queue. We first study the case when i is a Q11-queue and then consider the
setting when i is a Q12-queue.
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We first observe that if i is a Q11-queue, then by the definition of SGR the
potential increase cannot be one assigned to s12. Suppose that i is used ni times as a
counter queue for an s11 increase while i is a Q11 queue itself. We denote these time
steps by t1 < · · · < tni . First, we assume that i ∈ Qk, k < B. In this case, SGR has
no packet loss in i. Due to Lemma 10, ADV buffers at most as many packets in i
as SGR before the transmission steps at t1, . . . , tni

. Since each packet is transmitted
only once, there exist time steps t′1 < · · · < t′ni

, with t′j > tj , 1 ≤ j ≤ ni, where SGR
serves i while ADV does not and SGR buffers more packets than ADV in i. These
time steps are additional. Now, assume that i ∈ QB and that SGR buffers B packets
in i for the first time at time t. Since i cannot be a Q11-queue after t, we derive
that tni < t. At each tj , 1 ≤ j ≤ ni, SGR buffers at most b packets in i. We claim
that there exist time steps t′1 < · · · < t′ni−b < t, with t′j > tj , 1 ≤ j ≤ ni − b, where
SGR serves queue i while ADV does not and SGR buffers more packets than ADV
in queue i. These time steps are additional. To see the claim, take the time steps tj
in increasing order and match each one with the next unmatched time step t′j > tj
at which SGR serves i. Clearly, the unmatched tj form a consecutive subsequence of
t1, . . . , tni that includes tni . Each unmatched time step corresponds to an increase
of 1 in the buffer population difference between SGR and ADV. If more than b time
steps were unmatched, then SGR would buffer more than b packets in i at time tni ,
contradicting the fact that i is a Q12-queue at that time. Hence, at most the b time
steps tj , ni−b < j ≤ ni, are not matched. Combining the arguments of this paragraph,
we derive that T0 ≥

(
s111 − b|QB |

)
+
.

Now, we assume that at time t′, queue i is a Q12-queue and used as a counter
queue for an s11 or s12 increase. Then, there holds i ∈ QB and t′ ≥ t. By Lemma 10,
in both ADV ’s and SGR’s configurations, only the L-part is populated in queue i. If
i is used as a counter queue during n′

i > b increases of s11 or s12 and it is a Q12-queue
at all the respective time steps, then, as above, we can prove that there are at least
n′
i − b time steps in which SGR serves queue i while ADV does not and SGR buffers

more packets than ADV in queue i. These time steps are additional. Moreover, these
time steps are different from those identified in the last paragraph because they occur
after t.

Next, we consider the first use of i as a counter queue for an s11 or s12 increase
when i is a Q12-queue. Consider the first B − b time steps after t satisfying one of
the following properties: (a) both SGR and ADV serve i; (b) only the algorithm
currently having the larger buffer population in i serves i. These time steps exist
and all occur before the first use of i being a Q12-queue because SGR serves i at
least B − b times during that time window. The B − b time steps are additional.
However, they need not be distinct for the various queues i and i′ and need not be
distinct from the additional time steps identified so far. If a time step is counted
twice, ADV serves i having a larger population than SGR in that queue, while SGR
serves i′ having a larger population in there. Note that the potential drops during
packet transmission in this case. In order not to count one time step twice when
summing up over all queues, we diminish this amount of time steps by T−1. Since
n′
i − b+B − b = n′

i + (B − 2b), combining the arguments of the three paragraphs, we
obtain the lemma.

While the two lemmas above cover the case that there are many time steps in
which the potential increases, the following one considers the opposite situation.

Lemma 13. The following inequality holds:

T0 ≥ T0,11 + T0,12 + T0,2,
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where

T0,11 =

(∑
k∈L

k|Qk| +
∑
k∈R∗

b|Qk| − s11

)
+

,

T0,12 = (b|QB | − s12)+,

T0,2 =

(∑
k∈R

(k − b)|Qk| − s2

)
+

.

Proof. SGR must serve each buffer cell that is populated at least once. If k ∈ L
and i ∈ Qk, in SGR’s configuration, the populated part consists only of the k first cells
and i is always a Q11-queue and, hence, can only cause s11 increases. If k ∈ R∗ and
i ∈ Qk, in SGR’s configuration, i is always a Q11-queue when the jth cell, 1 ≤ j ≤ b,
becomes unpopulated and, hence, can only cause s11 increases at these time steps. If
i ∈ QB , in SGR’s configuration, i is always a Q12-queue when the jth cell, 1 ≤ j ≤ b,
becomes unpopulated after the buffer has once been populated by B packets and can
only cause s12 increases afterward. If k ∈ R and i ∈ Qk, in SGR’s configuration, the
populated R-part consists of k − b cells. There must be additional time steps if the
potential increases less often than the number of populated buffer cells.

Lemma 14. If B ≥ 2, the following inequalities hold:

T0 + T−1 ≥ s12,

2T0 + T−1 ≥ s11 + (B − 2b)|QB |,
L0 + 5T0 + 2T−1 ≥ s2 − (B − 2b)

∑
k∈R∗

|Qk|.

Proof. The first inequality is an immediate result of Lemma 12. Summing up the
inequalities of Lemmas 12 and 13 yields

2T0 + T−1 ≥ (s111 − b|QB |)+ + s112 + s12 + (B − 2b)|QB | + (b|QB | − s12)+

≥ s111 + s112 + (−b + (B − 2b) + b)|QB |
= s11 + (B − 2b)|QB |,

establishing the second inequality. By the summation of the inequalities of Lem-
mas 11, 12, and 13, we get

L0 + 3T0 + T−1 ≥
(
s2 − (B − b)

∑
k∈R

|Qk|
)

+

+ s112 + s12

+(B − 2b)|QB | + (b|QB | − s12)+

+

(∑
k∈L

k|Qk| +
∑
k∈R∗

b|Qk| − s11

)
+

≥ s2 − s111 − (B − 2b)
∑
k∈R∗

|Qk|.

The addition of the second inequality of the lemma yields L0 + 5T0 + 2T−1 ≥ s2 −
(B − 2b)

∑
k∈R∗ |Qk|.

Theorem 5. SGR achieves a competitive ratio of 17/9.
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Proof. Let β denote (B − 2b)
∑

k∈R∗ |Qk|. If i ∈ Qk and k ∈ R∗, at least b + 1

packets arrive at i. Hence T ≥ (b + 1)β, and, thus, β
T ≤ 1

b+1 . The summation of the
three inequalities in Lemma 14 yields L0 +8T0 +4T−1 ≥ s11 +s12 +s2−β. We derive

L0 + 9T0 + 4T−1 ≥ s11 + s12 + s2 + T0 − β = T − β

and, hence, L0 + T0 + T−1 ≥ 1
9L0 + T0 + 4

9T−1 ≥ T−β
9 , yielding

(L0 + T0 + T−1)/(T − β) ≥ 1/9.

If B is even, then β = 0 and (L0 + T0 + T−1)/T ≥ 1/9, and by (2) the theorem

follows. If B is odd, L0+T0+T−1

T = L0+T0+T−1

T−β (1− β
T ) ≥ 1

9 (1− 1
b+1 ) = 1

9 (1− 2
B+1 ). Let

δB = 2
B+1 . Then limB→∞ δB = 0 and we derive by (2) that

TA/TS ≤ 2 − (1 − δB)/9 = 17/9 + δB/9 → 17/9 as B → ∞.

We can strengthen our analysis and show that, for B = 2, SGR is optimal.
Theorem 6. For B = 2, SGR achieves a competitive ratio of 13/7.
Proof. If we put B = 2 into the inequalities of Lemmas 11, 12, and 13, they take

the following forms: L0 + T0 ≥ (s2 − |Q2|)+ , T0 ≥ (s111 − |Q2|)+ + s112 + s12 − T−1,
and T0 ≥ (|Q1| − s11)+ + (|Q2| − s12)+ + (|Q2| − s2)+, from which we deduce the
corresponding inequalities of Lemma 14 for B = 2: T0+T−1 ≥ s12 and 2T0+T−1 ≥ s11.
Summing up the three inequalities in Lemmas 11, 12, and 13, we can strengthen the
third inequality of Lemma 14: L0 + 3T0 + T−1 ≥ (s2 − |Q2|)+ + s12 + (|Q2| − s12)+ ≥
s2 − |Q2| + s12 + |Q2| − s12 = s2. Since 5T0 is replaced by 3T0 in the left-hand side,
we get a competitive factor of 13

7 instead of 17
9 in Theorem 5.

3.2. Resource augmentation. We first study the case that an online algorithm
is granted additional buffer space. Then we consider different transmission rates.

3.2.1. Additional buffer space. Let ADV and ALG have buffers of size B
and B + A for each queue, respectively. We denote the ratio of the additional buffer
space A and the standard buffer space B by c. Recall that an algorithm is called
work-conserving if in any time step it serves some nonempty queue, provided such
nonempty queues exist.

Theorem 7. Every work-conserving online algorithm ALG having additional
buffer space A = cB per queue is ( c+2

c+1 )-competitive.
Proof. Let σ be any arrival sequence. As in the analysis of SGR, we can restrict

ourselves to arrival sequences that terminate when ALG has completely cleared its
buffer. Furthermore, we assume that in the case of packet loss at a queue either
ADV or ALG loses packets. If there is no packet loss at all or if only ADV loses
packets, then the throughput of ALG is at least as large as that of ADV and our
claim holds. Hence we may assume that ALG loses packets. We partition the queues
into two disjoint sets Q� and Qo, where Q� comprises exactly those in which ALG
loses packets when serving σ. The difference in the total packet losses corresponds to
ADV ’s buffer population at the time when ALG ’s buffers become empty. Let TADV

and TALG denote the throughputs of ADV and ALG, respectively. By LADV and
LALG we denote the losses of ADV and ALG, respectively. We derive

TADV − TALG = LALG − LADV ≤ |Q�|B.

Furthermore, the total throughput is given by the throughputs in Qo and Q�, denoted
by T o

ADV , T
�
ADV , T o

ALG, and T �
ALG, respectively. So TADV = T o

ADV + T �
ADV and
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TALG = T o
ALG + T �

ALG. Since there occurred packet loss in the queues in Q�, at least
A+B = (1 + c)B packets must have arrived there, all of which could be accepted by
ALG. Hence there holds

T �
ALG ≥ (1 + c)|Q�|B

yielding

TADV

TALG
=

TALG + LALG − LADV

TALG
= 1 +

LALG − LADV

TALG
= 1 +

LALG − LADV

T o
ALG + T �

ALG

≤ 1 +
LALG − LADV

T �
ALG

≤ 1 +
|Q�|B

(1 + c)|Q�|B = 1 +
1

1 + c
=

c + 2

c + 1
.

Theorem 8. For any greedy algorithm GR, the upper bound of c+2
c+1 is tight for

all B and all A = cB.
Proof. For all values of A and B we construct an instance with a throughput ratio

arbitrarily close to c+2
c+1 . First, we assume that both ADV and GR have buffers of size

B+A. From the previous section we know that we can construct a staircase sequence
such that ADV has a throughput of about 2m(B+A), whereas GR has a throughput
of only m(B +A) packets. While the staircase is built up in GR, ADV always serves
the corresponding queues such that they are empty in ADV ’s configuration. This
results in the fact that ADV can accept additional B + A packets in these queues.
Although—now—the buffer of ADV is smaller than the one of GR, ADV can build
up a staircase of level B + A in GR’s configuration. The difference consists only of
ADV ’s not being able to accept B + A, but only B additional packets per queue,
while GR cannot accept any of them. Hence, GR accepts B + A packets per queue,
whereas ADV accepts B + A + B = 2B + A packets per queue. This results in the
following throughput ratio:

TADV

TGR
=

2B + A

B + A
=

2B + cB

B + cB
=

c + 2

c + 1
.

3.2.2. Increased transmission rate. Now we assume that ADV and ALG
have the same buffer sizes, but ALG can transmit k packets per time step while ADV
is still able to transmit only one packet per time step.

Theorem 9. Every work-conserving online algorithm ALG is (1+ 1
k )-competitive

if its transmission rate is the k-fold of the adversary’s one.
Proof. As usual, we restrict ourselves to sequences which terminate when ALG

has completely emptied its buffers and assume that in the case of packet loss at
a queue either ADV or ALG loses packets. Let lit,ADV and lit,ALG be the loads
(i.e., the numbers of packets) in queue i at time t in the configurations of ADV
and ALG, respectively. By Lit,ADV and Lit,ALG we denote the numbers of packets
ADV and ALG lose at queue i at time t, respectively. Let TADV , LADV , TALG, and
LALG denote the throughputs and losses of ADV and ALG, respectively. For each
queue i we define a potential function Φit = (lit,ALG − lit,ADV )+ which sums up to
Φt =

∑m
i=1 Φit. At time t, ALG can lose packets in queue i only if Φit > 0. Then

ΔΦit = −Lit,ALG. During each transmission step, Φit can increase only if ADV serves
a queue not served by ALG. But if so, ALG transmits k packets from other queues,
hence 1

kΔTt,ALG ≥ ΔΦit. So we derive

ΔΦt ≤
1

k
ΔTt,ALG − Lt,ALG.
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Let τ denote the time step when ALG ’s buffers become empty. Since Φ0 = 0 = Φτ ,
it is the case that 0 ≤ TALG

k − LALG, hence LALG ≤ TALG

k , giving us the following
throughput ratio:

TADV

TGR
=

TALG + (LALG − LADV )

TALG
≤ TALG + LALG

TALG
≤ 1 +

1

k
.

Theorem 10. If B = 1, every work-conserving online algorithm ALG with
transmission rate greater than that of the adversary by a factor of k has a competitive
ratio of at least 1 + 1/k.

Proof. Let there be m queues, each of them populated at the beginning. While
ALG serves k� m

k+1� queues, ADV serves other � m
k+1� ones. At time � m

k+1�, one
packet arrives at each of the latter queues. ADV accepts all new packets, whereas
ALG must reject of all of them. This pattern is repeated on the queues still pop-
ulated by ALG, resulting in �( 1

k+1 )2m� new packets. We iterate this procedure on

�( 1
k+1 )3m�, �( 1

k+1 )4m�, . . . queues not served yet by ALG until the block size reaches
1. Since ALG accepts only the m initial packets and ADV can accept all the other
packets as well, we get

TADV

TALG
=

∑i
j=0

⌊
( 1
k+1 )jm

⌋
m

and this expression tends to∑∞
j=0(

1
k+1 )jm

m
= 1

/(
1 − 1

k + 1

)
= 1 +

1

k

as m goes to infinity.

4. An optimal offline algorithm. We present an optimal offline algorithm for
our problem.

Algorithm SFOD (Shortest Forward Overflow Distance). If there can
no longer be any buffer overflow, serve the queues in an arbitrary order. Otherwise
select in each transmission step t a queue in which the next overflow would occur if
none of the queues were served. More precisely, let li,t and σi,t denote the length of
queue i at time t and the number of packets arriving at queue i at time t, respectively.
At time t, determine the earliest time step t0 > t such that li,t +

∑t0−1
τ=t+1 σi,τ ≤ B for

all i and li,t+
∑t0

τ=t+1 σi,τ > B for some queue i. If t0 exists, select queue i; otherwise
serve any queue.

The algorithm can be implemented so that it runs in linear time.
Theorem 11. SFOD is an optimal offline algorithm.
Proof. We prove the following two statements, which imply the theorem.
1. For each arrival sequence σ there exists an optimal schedule satisfying the

SFOD rule.
2. Each schedule satisfying the SFOD rule is optimal.

We first prove statement 1. Let σ be any arrival sequence and let S be an optimal
schedule for σ. We show that we can convert S into an SFOD schedule S′ without
decreasing the throughput. If S satisfies the SFOD property, then there is nothing
to show. Now assume that there exists a time step t in which S does not satisfy
SFOD. Let S serve queue i at time t and let queue j be a queue in which the next
buffer overflow would occur after t. S′ is a copy of S, but at time t, S′ serves queue j
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instead of i. Let t0 denote the time step in which the next overflow in queue j would
occur if it were no longer served. Due to the SFOD rule, the next overflow in queue
j would occur before the next overflow in queue i. If S serves queue j at time t′ with
t < t′ < t0, S

′ serves queue i at time t′. Then at time t′ both S and S′ are again in the
same configuration and their throughputs are the same. If S does not serve queue j
until t0, the buffer will overflow, and S will lose one packet more than S′ will. If there
is an overflow at queue i later on, S′ will lose one packet more than S will. Then,
the configurations of S and S′ are the same, again, and yield the same throughputs.
Hence, in either case, we get TS′ ≥ TS . We can repeatedly apply this procedure until
we obtain a schedule S′ satisfying the SFOD rule. The procedure terminates because
σ is finite.

We next prove statement 2. We derive from statement 1 that there is an optimal
schedule Ŝ satisfying the SFOD rule. Let S be any SFOD schedule. If there is a
packet loss in S at time t, Ŝ must lose the same number of packets because in both
schedules queues have been served, where the next overflow was nearest in the future.
Hence there can be a difference between S and Ŝ only if there are several queues
whose next overflows occur at the same time. If packet loss is inevitable at t, S and
Ŝ lose the same number of packets at t because they served the queues concerned as
often as possible.

5. Conclusions and open problems. In this paper we have studied the prob-
lem of maximizing the throughput of unit-value packets at a switch with m input
buffers. We have developed improved upper and lower bounds on the competitive
performance of online algorithms. In particular, we have devised a strategy, called
semigreedy , that achieves a competitiveness of 17

9 and is the first deterministic algo-
rithm that beats the trivial upper bound of 2. We remark here that after the pub-
lication of our preliminary work, improved deterministic and randomized algorithms
were developed in [3, 16].

An important problem is to determine tight upper and lower bounds on the
performance of deterministic and randomized algorithms. Furthermore, it is interest-
ing to study scenarios in which data packets have values and we wish to maximize
the total value of transmitted packets. As mentioned in the introduction, Azar and
Richter [4] gave a general technique that transforms any c-competitive algorithm for a
single queue into a 2c-competitive algorithm for multiqueue systems. As a result, they
derived competitive algorithms for various settings such as preemptive and nonpre-
emptive models with both 2 values and an arbitrary number of values. It is conceivable
that improved solutions are possible by investigating the respective settings directly.

Acknowledgments. We thank two anonymous referees for their helpful com-
ments which improved the presentation of the paper.
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ANALYSIS OF LINK REVERSAL ROUTING ALGORITHMS∗

COSTAS BUSCH† AND SRIKANTA TIRTHAPURA‡

Abstract. Link reversal algorithms provide a simple mechanism for routing in communication
networks whose topology is frequently changing, such as in mobile ad hoc networks. A link reversal
algorithm routes by imposing a direction on each network link such that the resulting graph is a
destination oriented DAG. Whenever a node loses routes to the destination, it reacts by reversing
some (or all) of its incident links. Link reversal algorithms have been studied experimentally and
have been used in practical routing algorithms, including TORA [V. D. Park and M. S. Corson,
A highly adaptive distributed routing algorithm for mobile wireless networks, in Proc. INFOCOM,
IEEE, Los Alamitos, CA, 1997, pp. 1405–1413].

This paper presents the first formal performance analysis of link reversal algorithms. We study
these algorithms in terms of work (number of node reversals) and the time needed until the network
stabilizes to a state in which all the routes are reestablished. We focus on the full reversal algorithm
and the partial reversal algorithm, both due to Gafni and Bertsekas [IEEE Trans. Comm., 29 (1981),
pp. 11–18]; the first algorithm is simpler, while the latter has been found to be more efficient for
typical cases. Our results are as follows:

• The full reversal algorithm requires O(n2) work and time, where n is the number of nodes
that have lost routes to the destination. This bound is tight in the worst case.

• The partial reversal algorithm requires O(n ·a∗ +n2) work and time, where a∗ is a nonneg-
ative integral function of the initial state of the network. Further, for every nonnegative
integer α, there exists a network and an initial state with a∗ = α, and with n nodes that
have lost their paths to the destination, such that the partial reversal algorithm requires
Ω(n · a∗ + n2) work and time.

• There is an inherent lower bound on the worst-case performance of link reversal algorithms.
There exist networks such that for every deterministic link reversal algorithm, there are
initial states that require Ω(n2) work and time to stabilize. Therefore, surprisingly, the full
reversal algorithm is asymptotically optimal in the worst case, while the partial reversal
algorithm is not, since a∗ can be arbitrarily larger than n.

Key words. link reversal routing, wireless networks, ad hoc networks, fault tolerance, self
stabilization
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DOI. 10.1137/S0097539704443598

1. Introduction. A mobile ad hoc network is a temporary interconnection net-
work of mobile wireless nodes without a fixed infrastructure. The attractive feature of
such a network is the ease with which one can construct it: there is no physical setup
needed at all. If mobile nodes come within the wireless range of each other, then they
will be able to communicate. More significant, even if two mobile nodes aren’t within
the wireless range of each other, they might still be able to communicate through a
multihop path. However, the lack of a fixed infrastructure makes routing between
nodes a hard problem. Since nodes are moving, the underlying communication graph
is changing, and the nodes have to adapt quickly to such changes and reestablish their
routes.
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1.1. Link reversal. Link reversal routing algorithms [12, Chapter 8] are adap-
tive, self-stabilizing, distributed algorithms used for routing in mobile ad hoc networks.
The first link reversal algorithms are due to Gafni and Bertsekas [7]. Link reversal is
the basis of the temporally ordered routing algorithm TORA [10], and has also been
used in the design of leader election algorithms for mobile ad hoc networks [9]. Link
reversal routing is best suited for networks in which the rate of topological changes
is high enough to rule out algorithms based on shortest paths, but not so high as to
make flooding the only alternative.

Consider the graph representing the network, where the vertices are the wireless
nodes, and each node has a link with each other node within its transmission radius.
We assume that this underlying graph is undirected; i.e., the communication links are
all bidirectional. Link reversal algorithms route on this graph by assigning directions
to different links, hence converting it to a directed graph. A directed graph G is said
to be connected if the underlying undirected graph of G (formed upon erasing the
directions on the edges of G) is connected.

Definition 1.1. A connected directed acyclic graph with a single destination
node is said to be destination oriented iff every directed path in the graph leads to the
destination.

For a given destination node, the link reversal algorithms assign directions to the
links of this graph such that the resulting directed graph is a destination oriented
directed acyclic graph (see Figure 1). Routing on a destination oriented network is
easy: when a node receives a packet, it forwards the packet on any outgoing link, and
the packet will eventually reach the destination.1

The task of the link reversal algorithm is to create and maintain the routes to the
destination. When two nodes move out of each other’s range, the link between them
is destroyed, and some nodes might lose their routes to the destination. The routing
algorithm reacts by performing link reversals (i.e., reorienting some of the edges) so
that the resulting directed graph is again destination oriented. In particular, when
a node finds that it has become a sink (has lost all of its outgoing links), then the
node reacts by reversing the directions of some or all of its incoming links. The link
reversals due to one node may cause adjacent nodes to perform reversals, and in this
way, the reversals propagate in the network until the routes to the destination are
reestablished.

Gafni and Bertsekas [7] describe a general family of link reversal algorithms and
present two particular algorithms: the full reversal algorithm and the partial reversal
algorithm (referred to as the GB algorithms in the rest of this paper). In the full
reversal algorithm, when a node becomes a sink, it reverses the directions of all of its
incident links. In the partial reversal algorithm, the sink reverses the directions of only
those incident links that have not been recently reversed by adjacent nodes (a detailed
description appears in the following section). The full reversal algorithm is simpler
to implement, but the partial reversal algorithm may need fewer link reversals in
some cases. Gafni and Bertsekas show that when link failures occur, these algorithms
eventually converge to a destination oriented graph. However, it was not known how
many reversals the nodes performed, or how much time it would take till convergence.

1.2. Performance of link reversal. We present the first formal performance
analysis of link reversal routing algorithms. We give tight upper and lower bounds

1If there are multiple destinations in the network, then there is a separate directed graph for
each destination; here, we will assume for simplicity that there is only one destination.



ANALYSIS OF LINK REVERSAL ROUTING 307

a,d

(5,4) (1,6)

(0,DEST)

(3,2)(4,1)

(2,5)

(2,3)

(5,4) (3,6)

(0,DEST)

(3,2)(4,1)

(2,5)

(4,3)

(5,4) (3,6)

(0,DEST)

(3,2)(4,1)

(6,5)

(2,3)
a

a

d

b

c

a

b,c

Full Reversal

(4,3)

(5,4) (7,6)

(0,DEST)

(7,2)(4,1)

(6,5)

(8,3)

(5,4) (7,6)

(0,DEST)

(7,2)(8,1)

(6,5)

ce

c,e

not destination oriented

destination oriented

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(1,0,5)

(0,2,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(0,2,5)

(0,2,3)

(0,5,4) (0,1,6)

(0,0,DEST)

(0,3,2)(0,4,1)

(0,2,5)

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(1,−1,2)(0,4,1)

(1,0,5)

a

a

b

c

b,c

dnot destination oriented

(1,0,3)

(0,5,4) (1,1,6)

(0,0,DEST)

(1,−1,2)(1,−2,1)

(1,0,5)

d

e

e

destination oriented

Partial Reversal

Fig. 1. Sample executions of the GB full and partial reversal algorithms. Each transition is
labeled with the nodes that reverse.

on the performance of the full and partial reversal algorithms. We also show a lower
bound on the performance of any deterministic link reversal algorithm. Surprisingly,
from the perspective of worst-case performance, the full reversal algorithm is asymp-
totically optimal while the partial reversal algorithm is not.

Our setting for analysis is as follows. Suppose topological changes occur in the
network, driving the system to a state in which some nodes have lost their paths to
the destination. This is called the initial state of the network. If there are no further
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topological changes, the network is said to have stabilized when it again becomes
destination oriented. We analyze two metrics:
Work: The number of node reversals until stabilization; a node reversal is the action

of a sink reversing some or all of its adjacent links. This is a measure of the
power and computational resources consumed by the algorithm in reacting to
topological changes.

Time: The number of parallel steps until stabilization, which is a measure of the
speed in reacting to topological changes. We model reversals so that each re-
versal requires one time step, and reversals may occur simultaneously when-
ever possible.

Reversals are implemented using heights. A reversal algorithm assigns a height to
every node in the network. The link between adjacent nodes is directed from the node
of greater height to the node of lesser height. A sink performs a reversal by increasing
its height by a suitable amount. This will reverse the direction of some or all of its
incident links. We consider deterministic link reversal algorithms, in which a sink
increases its height according to some deterministic function of its own height and the
heights of the adjacent nodes. The GB link reversal algorithms are deterministic.

In the analysis, we separate the nodes into bad and good. A node is bad if there is
no route from the node to the destination. Any other node, including the destination,
is good. Note that a bad node is not necessarily a sink. We present results for the
following algorithms.

Full reversal algorithm. For the full reversal algorithm, we show that when started
from an initial state with n bad nodes, the work and time needed to stabilize is O(n2).
This bound is tight. We show that there are networks with initial states which require
Ω(n2) time for stabilization.

Our result for full reversal is actually stronger. For any network, we present a
decomposition of the bad nodes in the initial state into layers, which allows us to
predict exactly the work performed by each node in any distributed execution. A
node in layer j will reverse exactly j times before stabilization. Our lower and upper
bounds follow easily from the exact analysis.

Partial reversal algorithm. For the partial reversal algorithm, we show that when
started from an initial state with n bad nodes, the work and time needed to stabilize
is O(n · a∗ + n2), where a∗ corresponds to the difference between the maximum and
minimum heights of the nodes in the initial state. This bound is tight. We show that
there are networks with initial states which require Ω(n·a∗+n2) time for stabilization.

The a∗ value can grow unbounded as topological changes occur in the network.
Consequently, in the worst case, the full reversal algorithm outperforms the partial
reversal algorithm.

Deterministic algorithms. We show a lower bound on the worst-case work and
time until stabilization for any deterministic reversal algorithm. We show that for
any deterministic reversal algorithm on a given graph, there exists an initial state
such that if a bad node d hops away from its closest good node, then it has to reverse
d times before stabilization. Using this, we further show that there exist networks
and initial states with n bad nodes such that the algorithm needs Ω(n2) work and
time until stabilization. As a consequence, from the worst-case perspective, the full
reversal algorithm is work and time optimal, while the partial reversal algorithm is
not.

Equivalence of executions. We show that for any deterministic reversal algorithm,
all distributed executions of the algorithm starting from the same initial state are
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equivalent: (1) the resulting final state of the network upon stabilization is the same,
and (2) each node performs the same number of reversals until stabilization in all
executions. As a result, the work of the algorithm is independent of the execution
schedule.

1.3. Related work. Link reversal algorithms were introduced by Gafni and
Bertsekas in [7], where they provide a proof that shows that a general class of link
reversal algorithms, including the partial and full reversal algorithms, eventually sta-
bilize when started from any initial state. However, they do not give work and time
bounds.

The TORA [10] builds on a variation of the GB partial reversal algorithm and adds
a mechanism for detecting and dealing with partitions (disconnected components) in
the network. The practical performance of the TORA has been studied in [11]. A
variant of a link reversal routing algorithm is the lightweight mobile routing (LMR)
algorithm [5, 6]. An overview of link reversal routing algorithms can be found in [12,
Chapter 8]. A performance comparison of various ad hoc routing algorithms, including
TORA, is presented in [1]. Further surveys can be found in [13, 14].

Malpani, Welch, and Vaida [9] build a mobility aware leader election algorithm
on top of TORA and present partial correctness proofs (TORA does not have any)
showing the stability of the algorithm. Although all the above work use link reversal,
none of them have any formal performance analysis.

In the context of distributed sensor networks, coordination algorithms which are
based on the paradigm of directed diffusion [8] are closely related to link reversal
algorithms. For example, Intanagonwiwat et al. [8] state that their algorithm is closest
to the TORA algorithm [10] in its attempt to localize the repairs due to node failures.
Hence, our analysis also might lead to a better understanding of the performance of
directed diffusion.

Link reversal algorithms attempt to always maintain routes to destinations in ad
hoc networks. In cases when the network is sparsely populated with nodes, or when
the rate of topology changes is too high, it may be infeasible to maintain such paths
to the destination. In such cases, other strategies are needed for data delivery, such as
those in [3, 4] which do not maintain paths to destination at all, but instead transmit
data through strategies based on gossiping.

Outline of the paper. The rest of the paper is organized as follows. Section 2
contains a description of the GB partial and full reversal algorithms as well as a defi-
nition of deterministic algorithms. In section 3 we show the equivalence of executions
of a given deterministic algorithm. Sections 4 and 5 contain the analyses of the full
and partial reversal algorithms, respectively. In section 6, we show the general lower
bound for deterministic link reversal algorithms, and we conclude with a discussion
and open problems in section 7.

2. Link reversal algorithms. We assume that each node has a unique integer
id and denote the node with id i by vi. The nodes have heights which are guaranteed
to be unique (ties broken by node ids) and are chosen from a totally ordered set. A
link is always directed from the node of greater height to the node of the smaller
height. The destination has the smallest height, and it is a special kind of sink
which never reverses. Since any directed path in such a graph always proceeds in the
direction of decreasing height, the directed graph will always be a directed acyclic graph
(DAG). This is a significant feature, since the algorithms need not make further effort
to maintain acyclicity in routing, and the graph remains acyclic even if topological
changes occur.
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If the underlying graph is connected, the link reversal algorithms bring the di-
rected graph from its initial state to a state in which it is destination oriented. In
our analysis, we consider only connected graphs. Note that there could possibly be
multiple paths from any node to the destination. We now describe the two GB algo-
rithms, adapting the discussion from [7], and then we define the class of deterministic
algorithms.

Full reversal algorithm. In the full reversal algorithm, when a node becomes a
sink it simply reverses the directions of all its incoming links (see top part of Figure 1,
which is adapted from [7]). The algorithm can be implemented with heights as follows.
The height hi of node vi is the pair (ai, i) (the second field is used to break ties). The
height of the destination (say vd) is (0, d). Heights are ordered lexicographically. If vi
is a sink, then its height upon reversal is updated to be larger than the heights of all
its neighbors. Let N(vi) denote the set of adjacent nodes to vi. Formally, the height
of vi after its reversal is (max{aj | vj ∈ N(vi)} + 1, i).

Partial reversal algorithm. In the partial reversal algorithm, the height of each
node vi is a triple (ai, bi, i). As in full reversal, node vi reverses only when it becomes
a sink. The height of vi after reversal is greater than the height of at least one
neighbor, but may not be greater than the height of every neighbor. The height of
the destination vd is (0, 0, d). Heights are ordered lexicographically. The second field bi
helps the sink avoid reversing links toward adjacent nodes, which have caused the node
to become a sink in the first place. Thus, reversals are not immediately propagated
to parts of the network which have already reversed. Formally, let h̄i = (āi, b̄i, i)
denote the height of vi after its reversal. See the bottom part of Figure 1 (adapted
from [7]) for an example execution of the partial reversal algorithm. The partial
reversal algorithm updates heights as follows:

• āi = min{aj | vj ∈ N(vi)} + 1.
• b̄i = min{bj | vj ∈ N(vi) and āi = aj} − 1 if there exists a neighbor vj with

āi = aj ; otherwise, b̄i = bi.
The basic idea behind these functions is as follows. In a network state I, where

vi is a sink, we can divide the neighbors of vi into two categories: (i) {vj |aj = ai}
and (ii) {vj |aj > ai}. Node vi must have reversed after the last reversal of every
node in category (i) since, otherwise, those nodes would have aj ≥ ai + 1. On the
other hand, nodes of category (ii) must have reversed after the last reversal of node vi
since, otherwise, the heights of those nodes would not be higher than ai. Therefore,
node vi is a sink in state I due only to nodes of category (ii). Thus, when vi reverses
after state I, its new height should be set so that the links point only toward nodes
of category (i). This is achieved by setting āi = ai + 1. In order to make the nodes of
category (ii) to point to vi, we need only take care of nodes with aj = āi, for which
we adjust b̄i to be lower than all the corresponding bj ’s.

2

Deterministic algorithms. A deterministic reversal algorithm is defined by a “height
increase” function g. We assume that the heights are chosen from some totally or-
dered universe and that the heights of different nodes are unique. If node v is a sink
of degree k, whose current height is hv, and adjacent nodes v1, v2, . . . , vk have heights
h1, h2, . . . , hk, respectively, then v’s height after reversal is g(h1, h2, . . . , hk, hv). Func-
tion g is such that the sink reverses at least one of its incoming links. The GB full
and partial reversal algorithms are deterministic.

2The function for the update of āi is expressed in terms of the minimum value of the neighbors,
since topological changes might generate a state in which no neighbor has aj = ai.
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3. Equivalence of executions. In this section, we prove some properties about
deterministic link reversal algorithms. The main result of this section is that for any
deterministic reversal algorithm, all executions that start from the same initial state
are essentially equivalent: the resulting final state of the network upon stabilization
is the same. We actually show the stronger result that each node performs the same
number of reversals, with the same heights, until stabilization in all executions. We
first give some basic definitions for states and executions; then we define the depen-
dency graph, which will help to show that all executions are equivalent, and finally,
we give the main result.

3.1. States, executions, and dependency graphs. Here we give basic defi-
nitions for states and executions. At any configuration of the network, the node state
of a node v is defined as the current height of v. The network state is defined as
the collection of the individual states of all the nodes in the network. Note that the
network state uniquely determines the directions of all the links in the network.

A node reversal r is defined as a tuple r = (v, h,H), where v is the sink executing
the reversal, h is v’s height before reversal, and H is the set of the heights of all of v’s
neighbors before the reversal. Given an initial state containing bad nodes, an execution
E is defined as a sequence of reversals E = r1, r2, . . . , rk, where ri = (vi, hi, Hi), and
1 ≤ i ≤ k. A complete execution is defined as an execution that ends in a destination
oriented graph; unless otherwise stated, we will refer to complete executions from here
on.

Clearly, there are many possible executions starting from the same initial state.
We give the following definition for equivalent executions.

Definition 3.1. Starting from the same initial state, two executions are equiva-
lent if they give the same final state.

In order to show that two executions are equivalent, we will use the dependency
graphs of the executions which we define next. Any execution imposes a partial order
on the reversals. The partial order induced by execution E = r1, r2, . . . , rk is defined
as a directed graph whose nodes are the reversals ri, i = 1, . . . , k. There is a directed
edge from ri = (vi, hi, Hi) to rj = (vj , hj , Hj) if

• vj is a neighbor of vi, and
• rj is the first reversal of vj after ri in execution E.

We will refer to this graph as the dependency graph of execution E. Intuitively, if
there is a directed path between reversals ri and rj in the dependency graph, then
the order of these two reversals cannot be interchanged. Moreover, if there is no
directed path from ri to rj , then these two reversals are independent and can be
performed in parallel (in the same time step).

We define the depth of a reversal in the dependency graph as follows. A reversal
that does not have any incoming edges has depth 1 (these are the reversals of the nodes
which are sinks in the initial state). The depth of any other reversal r is one more than
the maximum depth of a reversal which points to r. The depth of the dependency
graph is the maximum depth d of any reversal in the graph. The dependency graph
is important for the following reason.

Fact 1. The dependency graph of an execution uniquely determines
• the final state of the network,
• the number of reversals performed by each node, and
• the stabilization time when all sinks reverse simultaneously, which is the depth

of the dependency graph d.
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3.2. Proof of equivalence. We show that all executions of a link reversal algo-
rithm give the same dependency graph, which implies that the executions are equiv-
alent. Fact 1 implies that this result is actually stronger than simply showing that
executions are equivalent. We first show two lemmas that will be of use in further
proofs.

Lemma 3.2. For any reversal algorithm starting from any initial state, a good
node never reverses until stabilization. Further, a good node always remains good until
stabilization.

Proof. If v is a good node, then by definition there exists a path v = vk, vk−1, . . . , v1,
v0 = s, where s is the destination, and there is an edge directed from vi to vi−1 for
each i = 1, . . . , k.

For each i = 0, . . . , k, we prove that node vi never reverses, using induction on
i. The base case (i = 0) is obvious since the destination never reverses. Suppose the
hypothesis is true for i = l < k. Then vl never reverses, so that the edge between vl+1

and vl is always directed from vl+1 to vl. Thus, there is always an outgoing edge from
vl+1, which implies that vl+1 never reverses, and completes the proof by induction.

This also implies that the directed path v = vk, vk−1, . . . , v1, v0 = s always exists
in the network, showing that node v remains good.

Lemma 3.3. If a node v is a sink, then v remains a sink until it reverses. Further,
v eventually reverses.

Proof. If a node v is a sink, then clearly none of its neighbors can be sinks at
the same time, and hence they cannot reverse. Thus, the only node that can change
the direction of the incoming links to v is v itself. Reversals by other nodes in the
network do not affect this. Thus, v remains a sink until it reverses.

Further, the reversal of v is enabled continuously until v actually reverses. Since
we assume that the distributed system eventually makes progress (an action that is
continuously enabled will eventually take place), v eventually reverses.

Theorem 3.4 (identical dependency graphs). All executions of a determinis-
tic reversal algorithm starting from the same initial state give identical dependency
graphs.

Proof. Consider two executions of the algorithm starting from the same initial
state, say, execution R = r1, r2, . . . and execution S = s1, s2, . . . . Let pR and pS be
the dependency graphs induced by R and S, respectively. We will show that pR and
pS are identical.

We will show by induction that, for every k = 1, 2, . . . , the induced subgraph
of pR consisting of vertices at depths k or less is identical to the similarly induced
subgraph of pS consisting of vertices at depths of k or less.

Base case k = 1. Consider any reversal r = (v, h,H) in pR at depth 1. Since r
does not have any incoming edges in pR, node v must be a sink in the initial state
of the network. From Lemma 3.3, v must also reverse in S. Since h and H are the
heights of v and its neighbors, respectively, in the initial state, and they do not change
until v reverses at least once, the first reversal of v in S is also (v, h,H), and is at
depth 1. Similarly, any other reversal at depth 1 in pS is also a reversal at depth 1 in
pR, and this proves the base case.

Inductive case. Suppose the hypothesis is true for all k < l. We show that it is
also true for k = l. Consider any reversal r = (v, h,H) at depth l in pR. We show that
this reversal is also present in pS with the same set of incoming edges. Let U be the
set of reversals that are pointing into r in pR. Once all reversals in U are executed,
node v becomes a sink in execution R. From the inductive step, all reversals in U are
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also present in pS , and hence in S. We examine two cases.
Case 1. Reversal r is the first reversal of v in R. Then, the execution of all

reversals in U will also cause v to be a sink in S. Thus v also will reverse in S. Its
height before reversal in S is h, since the height has not changed from the initial state.
Consider the heights of v’s neighbors before v’s reversal in S. These are equal to H.
The reason is as follows. The neighbors of v who haven’t reversed so far in S have the
same height as in the initial state. The other neighbors are present in U , and hence
their heights are the same as in H. Thus, there is a reversal (v, h,H) at depth l in pS
whose incoming edges are the same as in pR.

Case 2. Reversal r is not the first reversal of v in R. Let r′ denote the previous
reversal of v in R. Since r′ is at a lower depth in pR than r, by the induction
hypothesis, r′ is also present in pS . After reversal r′, node v will be in the same state
in both R and S. After the reversals in U , v’s neighbors will be in the same state in
S as in R. Thus, the reversal (v, h,H) is also present in S at depth l with the same
incoming edges as in pR.

Thus, we have shown that every node at depth l in pR is present at depth l of
pS , with the same incoming edges. The same argument goes the other way too: every
node in pS is present in pR. This proves the inductive case for k = l, and concludes
the proof.

The following corollary follows from Fact 1 and Theorem 3.4.
Corollary 3.5 (equivalence of executions). All executions of a deterministic

reversal algorithm starting from the same initial state are equivalent. Moreover,
• the number of reversals of each node in every execution is the same, and
• when all sinks reverse simultaneously, the stabilization time of every execution

is d, the depth of the (unique) dependency graph.

4. Full reversal algorithm. In this section, we present the analysis of the full
reversal algorithm. We present a decomposition of the bad nodes in the initial network
state into layers, which allows us to predict exactly the work performed by each node
in any distributed execution until stabilization: a node at layer i will reverse exactly
i times. From the exact analysis, we obtain worst-case bounds for the work and time
needed for stabilization.

4.1. State sequence for full reversal. In order to obtain the exact analysis,
we first show that, starting from any initial state, there exists an execution which
consists of consecutive execution segments such that at each execution segment, each
remaining bad node reverses exactly once. We will then use this result to determine
the exact number of reversals of each bad node in the layer decomposition.

In particular, consider some initial state I1 of the graph which contains bad nodes.
We will show that there is an execution E = E1, E2, E3, . . . , and states I1, I2, I3, . . . ,
such that execution segment Ei, i ≥ 1, brings the network from a state Ii to a state
Ii+1, and in Ei each bad node of Ii reverses exactly one time. In order to show that
E exists, we need to prove the following two lemmas.

Lemma 4.1. Consider a state I in which a node v is bad. Then, node v will
reverse at least one time before it becomes a good node.

Proof. If v is a sink, then clearly node v has to reverse at least one time. Now
consider the case when v is not a sink in state I. Suppose, for contradiction, that
node v becomes good without performing any reversals after state I. Consider an
execution which brings the graph from state I to a state Ig in which node v is good.
A nonreversed node is any node w such that in state I node w is bad, while in state
Ig node w is good, and w does not reverse between I and Ig. Since in state Ig node
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v is good, there must exist in Ig a directed path v, v1, . . . , vk−1, vk, k ≥ 1, in which
vk is good in Ig and I.

We will show that nodes v1, . . . , vk−1 are nonreversed. Consider node v1. Assume
for contradiction that node v1 has reversed between states I and Ig. Since in Ig there
is a link directed from node v to node v1, and v1 has reversed between states I and Ig,
it must be that node v has reversed at least one time, a contradiction. Thus, node v1

is nonreversed. Similarly, using induction, we can easily show that nodes v2, . . . , vk−1

are also nonreversed. Since nodes v1, . . . , vk−1 are nonreversed, it has to be that in
state I there is a directed path v, v1, . . . , vk−1, vk. Thus, in state I node v is a good
node. This contradiction completes the proof.

Lemma 4.2. Consider some state I which contains bad nodes. There exists an
execution which brings the network from state I to a state I ′ (not necessarily a final
state) such that every bad node of state I reverses exactly one time.

Proof. Suppose for contradiction that there is no such execution. Then, there
exists an execution Ef which brings the system from state I to a state If such that
the following conditions hold:

1. There is at least one bad node in I which hasn’t reversed in Ef . Let A denote
the set of such bad nodes of I.

2. Any other bad node v of I, with v �∈ A, has reversed exactly one time. Let
B denote the set of such bad nodes of I.

3. The number of nodes in set B is maximal.
First we show that all the nodes that are sinks in state If have to be members

of set B. Suppose that a sink in state If is a member of set A. Then the sink hasn’t
reversed since state I. If the sink reverses then it could be an additional member of
set B. Thus, B is not maximal as required by the third condition. Therefore, the
sink has to be a member of B.

Next we show that at least one node in A is a sink in state If , which proves that
execution Ef does not exist. Assume for contradiction that no node of A is a sink
in If . Then, each node in A has an outgoing edge in If . These outgoing edges from
A cannot point toward nodes in B, since the nodes in B have reversed their edges,
while the nodes in A haven’t. Moreover, these outgoing edges cannot point toward
good nodes of state I, since this would imply that nodes in A are good in state If ,
while Lemma 4.1 implies that each node of set A remains bad in state If . Thus,
these outgoing edges must point toward nodes in set A. Since each node in set A has
an outgoing edge in set A, it must be, from the pigeonhole principle, that there is a
walk in which a node in A is repeated. Thus, there is a cycle in the graph, violating
the fact that the graph is acyclic. Thus, it must be that a node in A is a sink, a
contradiction.

Lemma 4.2 implies that the execution segments Ei and the states Ii exist. The
link-state of a node v is the vector of directions of its incident links. We show that each
execution segment leaves the link-state of bad nodes unchanged for the bad nodes,
which are not adjacent to good nodes.

Lemma 4.3. If in state Ii, i ≥ 1, node v is bad and v is not adjacent to a good
node, then v will remain in the same link-state in Ii+1.

Proof. Let A(v) denote the set of nodes adjacent to v in state Ii. Since all nodes
in A(v) are bad in state Ii, each of them reverses in execution Ei. Moreover, v also
reverses in Ei. These reversals leave the directions of the links between v and A(v)
in state Ii+1 the same as in state Ii.
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4.2. Layers for full reversal. Here, we show that given some initial state I
with bad nodes, it is possible to decompose the bad nodes into layers and determine
the exact number of reversals for the nodes of each layer until stabilization: a node
in layer i reverses exactly i times.

In particular, we decompose the bad nodes into layers LI
1, L

I
2, . . . , L

I
m, defined

inductively as follows (see Figure 2). A bad node v is in layer LI
1 if the following

conditions hold:
• There is an incoming link to node v from a good node, or
• there is an outgoing link from node v to a node in layer LI

1.
A node v is in layer LI

k, k > 1, if k is the smallest integer for which one of the
following hold:

• There is an incoming link to node v from a node in layer LI
k−1, or

• there is an outgoing link from node v to a node in layer LI
k.

From the above definition, it easy to see that any node of layer LI
k, where k > 1,

can be connected only with nodes in layers LI
k−1, L

I
k, and LI

k+1. The nodes of layer

LI
1 are the only ones that can be connected with good nodes. The links connecting

two consecutive layers LI
k−1 and LI

k can be directed only from LI
k−1 to LI

k. Note that
the number of layers m is not greater than the number of bad nodes in the network
n.

LI
j

A Layer

Destination

Good Nodes

LI
1 LI

2 LI
3 LI

m

Layers of Bad Nodes

Fig. 2. Decomposition of the bad nodes into layers.

Consider now the states I1, I2, . . . and execution segments E1, E2, . . . , as de-
scribed in section 4.1. For each of these states we can divide the bad nodes into
layers, as described above. In the following sequence of lemmas we will show that
the layers of state I1 become good one by one at the end of each execution segment
Ei, i ≥ 1. We show now that the first layer of state Ii becomes good at the end of
execution Ei.



316 COSTAS BUSCH AND SRIKANTA TIRTHAPURA

Lemma 4.4. At the end of execution Ei, i ≥ 1, all the bad nodes of layer LIi
1

become good, while all the bad nodes in layers LIi
j , j > 1, remain bad.

Proof. First we show that the bad nodes of layer LIi
1 become good. There are

two kinds of bad nodes in layer LIi
1 at state Ii: type α, nodes which are connected

with an incoming link to a good node; and type β, nodes which are connected with
an outgoing link to another node in layer LIi

1 .
It is easy to see that there is a direct path from any β node to some α node,

consisting of nodes of layer LIi
1 . Since all bad nodes reverse exactly once in execution

Ei, all α nodes become good in state Ii+1. Moreover, from Lemma 4.3, the paths from
β nodes to α remain the same in state Ii+1. Thus, the β nodes also become good in
state Ii+1. Therefore, all the bad nodes of layer LIi

1 become good in state Ii+1.
Now we show that the bad nodes in layers LIi

j , j > 1, remain bad in state Ii+1.

From Lemma 4.3, in state Ii+1, the links connecting layers LIi
1 and LIi

2 are directed
from LIi

1 to LIi
2 . Thus, in state Ii+1, there is no path connecting nodes of layer LIi

2

to good nodes. Similarly, there is no path from the nodes of layer LIi
j , for any j > 2,

to good nodes. Thus all nodes in layers LIi
j , j > 1, remain bad.

We now show that the basic structure of layers of the bad nodes remains the same
from state Ii to state Ii+1, with the only difference being that the first layer of Ii+1

is now the second layer of Ii.

Lemma 4.5. L
Ii+1

j = LIi
j+1, i, j ≥ 1.

Proof. From Lemma 4.4, at the end of execution Ei, all the bad nodes of layer
LIi

1 become good, while all the bad nodes in layers LIi
j , j > 1, remain bad. From

Lemma 4.3 all bad nodes in layers LIi
j , j > 1, remain in the same link-state in Ii+1

as in Ii. Therefore, L
Ii+1

j = LIi
j+1, j ≥ 1.

From Lemmas 4.4 and 4.5, we have that the number of layers is reduced by one
from state Ii to state Ii+1. If we consider the layers of the initial state I1, we have
that all the bad nodes in the layers become good one by one at the end of executions
E1, E2, E3, . . . in the order LI1

1 , LI1
2 , LI1

3 , . . . . Since in each execution Ei all the bad
nodes reverse exactly one time, we obtain the following.

Lemma 4.6. Each node in layer LI1
j , j ≥ 1, reverses exactly j times before it

becomes a good node.
From Corollary 3.5, we know that all possible executions when started from the

same initial state require the same number of reversals. Thus, the result of Lemma
4.6, which is specific to the particular execution E, applies to all possible executions.
Therefore, we obtain the following theorem.

Theorem 4.7 (exact number of reversals for full reversal). For any initial state
I, and any execution of the full reversal algorithm, LI

1, L
I
2, . . . is a division of the bad

nodes in I into layers such that each node in layer LI
j , j ≥ 1, reverses exactly j times

before it becomes a good node.

4.3. Worst-case bounds for full reversal. We now give worst-case upper
and lower bounds for the work and time needed for stabilization by the full reversal
algorithm. Both bounds are obtained with the use of Theorem 4.7.

From Theorem 4.7, we have that for any initial state I, each node in layer LI
j

reverses exactly j times until it becomes good. Thus, the total number of reversals of
the nodes of layer j is j · |LI

j |. If there are m layers of bad nodes, the total number

of reversals is
∑m

j=1 j · |LI
j |. If I has n bad nodes, there are at most n layers in the

worst case (each layer contains one bad node). Thus, each node reverses at most n
times. Since there are n bad nodes, the total number of reversals in the worst case
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is O(n2). Moreover, since a node reversal takes one time step and in the worst case
all reversals are executed sequentially, the total number of reversals gives an upper
bound on the stabilization time. Thus, we have the following.

Corollary 4.8 (work and time upper bounds for full reversal). For any graph
with an initial state with n bad nodes, the full reversal algorithm requires at most
O(n2) work and time until stabilization.

destination
LI

1 LI
2 LI

3 LI
4 LI

5 LI
6

Fig. 3. Worst-case work for full reversal: graph G1 with n = 6 bad nodes.

Actually, the upper bound of Corollary 4.8 is tight in both work and time in the
worst case. First we show that the work bound is tight. Consider a graph G1 which is
an initial state with n layers of bad nodes such that each layer has exactly one node
(see Figure 3 with n = 6). From Theorem 4.7, each node in the ith layer will reverse
exactly i times. Thus, the sum of all the reversals performed by all the bad nodes is
n(n + 1)/2, leading to the following corollary.

Corollary 4.9 (work lower bound for full reversal). There is a graph with an
initial state containing n bad nodes such that the full reversal algorithm requires Ω(n2)
work until stabilization.

LI
2 LI

3 LI
4 LI

5LI
1

v1 v2 v3 v4destination

Fig. 4. Worst-case stabilization time for full reversal: graph G2 with n = 8 bad nodes, m1 = 5
layers, and m2 = 4 nodes in layer m1.

We will now show that the time bound of Corollary 4.8 is tight (within constant
factors) in the worst case. Consider a graph G2 (see Figure 4) with an initial state
in which there are n bad nodes, such that it consists of m1 = �n/2� + 1 layers. The
first m1 − 1 layers contain one node each, while the last layer contains m2 = �n/2	
nodes. The last layer m1 is as follows: there are m2 nodes v1, v2, . . . , vm2 . Node vi
has outgoing links to all nodes vj such that j < i. The node of layer m1 − 1 has an
outgoing link to node v1 (see Figure 4).

From Theorem 4.7, we know that each node in layer m1 requires exactly m1

reversals before it becomes good. Since there are m2 nodes in layer m1, m1 · m2 =
Ω(n2), reversals are required before these nodes become good. The key point is that
any two nodes in layer m1 are adjacent, so that all the reversals in that layer have
to be performed sequentially. Thus, the reversals in layer m1 alone take Ω(n2) time,
providing the following corollary.

Corollary 4.10 (time lower bound for full reversal). There is a graph with
an initial state containing n bad nodes such that the full reversal algorithm requires
Ω(n2) time until stabilization.

Note that Corollary 4.10 subsumes Corollary 4.9, since a lower bound on time is
also a lower bound on work.
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5. Partial reversal algorithm. In this section, we present the analysis of the
partial reversal algorithm. We first give an upper bound for work and stabilization
time. We then present lower bounds for a class of worst-case graphs which is used to
show that the upper bound is tight.

5.1. Upper bounds for partial reversal. Given an arbitrary initial state I,
we give an upper bound on the work and stabilization time needed for the partial
reversal algorithm. In order to obtain the bound, we decompose the bad nodes into
levels and give an upper bound for the number of reversals of the nodes in each level;
this then gives us an upper bound on work and time.

In particular, suppose that initial state I of the network contains n bad nodes.
We say that a bad node v of state I is in level i if the shortest undirected path from
v to a good node has length i. Note that the number of levels is no more than n.

The upper bound depends on the minimum and maximum heights of the nodes
in state I. According to the partial reversal algorithm, each node vi has a height
(ai, bi, i). We will refer to ai as the alpha value of node vi. Let amax and amin denote
the respective maximum and minimum alpha values of any node in the network in
state I. Let a∗ = amax − amin. We first give an upper bound on the alpha value of
any node upon stabilization.

Lemma 5.1. After a node in level i becomes good its alpha value never exceeds
amax + i.

Proof. We prove the claim by induction on the number of levels. For the induction
basis, consider a node v in level 1. If the alpha value of v becomes at least amax + 1,
then v must have become a good node, since its height is more than the height of
at least one adjacent node v′ which is good in state I (from Lemma 3.2 v′ does not
reverse, and thus its alpha value remains at most amax). We need only show that
during its final reversal, the alpha value of v will not exceed amax + 1. According to
the partial reversal algorithm, the alpha value of v is equal to the smallest alpha value
of its neighbors plus one. Moreover, the smallest alpha value of the neighbors cannot
be greater than amax, since in I node v is adjacent to good nodes which don’t reverse
in future states (a consequence of Lemma 3.2). Thus, the alpha value of v will not
exceed amax + 1 when v becomes a good node. Further, from Lemma 3.2, the alpha
value of node v will not change thereafter.

For the induction hypothesis, let’s assume that the alpha value of any node in
level i, where 1 ≤ i < k, does not exceed amax + i, after that node becomes good. For
the induction step, consider layer Lk. Let v be a node in level k. Clearly, node v is
adjacent to some node in level k− 1. From the induction hypothesis, the alpha value
of every node in level k−1 cannot exceed amax +(k−1) in any future state from I. If
the alpha value of v becomes at least amax +k, then v must have become a good node,
since its height is more than that of the adjacent nodes in level k−1 when these nodes
become good. We need only show that during its final reversal, the alpha value of v
will not exceed amax +k. According to the partial reversal algorithm, the alpha value
of v is not more than the smallest alpha value of its neighbors plus one. Moreover,
the smallest alpha value of the neighbors cannot exceed amax + (k − 1), which is the
maximum alpha value of the nodes in level k − 1 when these nodes become good.
Thus, the alpha value of v will not exceed amax + k when v becomes a good node.
Further, from Lemma 3.2, the alpha value of node v will not change thereafter.

At each reversal, the alpha value of a node increases by at least 1. Since the
alpha value of a node can be as low as amin, Lemma 5.1 implies that a node in level i
reverses at most amax − amin + i times. Furthermore, since there are at most n levels,
we obtain the following corollary.
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Corollary 5.2. A bad node will reverse at most a∗ + n times before it becomes
a good node.

Considering now all the n bad nodes together, Corollary 5.2 implies that the work
needed until the network stabilizes is at most n · a∗ + n2. Since in the worst case the
reversal of the nodes may be sequential, the upper bound for work is also an upper
bound for the time needed to stabilize. Thus we have the following.

Theorem 5.3 (work and time upper bounds for partial reversal). For any initial
state with n bad nodes, the partial reversal algorithm requires at most O(n · a∗ + n2)
work and time until the network stabilizes.

5.2. Lower bounds for number of reversals. We will show that the upper
bounds on work and time given in Theorem 5.3 are tight. We construct a class of
worst-case graphs with initial states which require as much work and time as the
upper bounds. In order to prove the lower bounds, we first determine how many
reversals each node performs in the network.

In particular, consider a graph with an initial state I containing n bad nodes
which can be decomposed into an even number m of layers L1, L2, . . . , Lm−1, Lm in
the following way. A node is a source if all the links incident to the node are outgoing.
The odd layers L1, L3, . . . , Lm−1 contain only nodes which are nonsources, while the
even layers L2, L4, . . . , Lm contain only nodes which are sources. The nodes in layer
L1 are the only bad nodes adjacent to good nodes. Let G denote the set of good nodes
adjacent to layer L1. Nodes in layer Li may be adjacent only to nodes of the same
layer and layers Li−1 and Li+1.

3 We actually require that each node of Li is adjacent
to at least one node of Li−1 and at least one node of Li+1. In addition, state I is
taken so that all good nodes in the network have alpha value amax, while all the bad
nodes have alpha value amin, where amax > amin. Let a∗ = amax − amin. Instances
of such an initial state are shown in Figures 5 and 6; at the end of this section we
describe how to obtain such configurations with arbitrary large amax in a mobile ad
hoc network.

Given such an initial state I, we will give a lower bound on the number of reversals
performed by each node at each layer until the network stabilizes. In order to obtain
this result, we first show some necessary lemmas. A full reversal is a reversal in
which a node reverses all of its links. Note that after a full reversal, a node becomes
a source. We show that bad nodes which are sources always perform full reversals
whenever they become sinks.

Lemma 5.4. Consider any state I1 of the network in which a bad node v is a
source with alpha value a. In a subsequent state I2, in which node v becomes a sink
for the first time after state I1, the following occur: (1) v performs a full reversal,
and (2) after the reversal of v, the alpha value of v becomes a + 2.

Proof. In state I1, since v is a source, all the adjacent nodes of v have alpha value
at most a. Between states I1 and I2, each adjacent node of v has reversed at least
once. We will show that in state I2, the alpha value of each adjacent node of v is
a + 1.

Let w be any adjacent node of v. First, we show that the alpha value of w in I2
is at least a + 1. If in I2 the alpha value of w is less than a, then v must have an
outgoing link toward w, and thus v cannot possibly be a sink in I2, a contradiction.
Therefore, in I2 the alpha value of w has to be at least a. Next, we show that this
alpha value cannot be equal to a. If the alpha value of w in I2 is a, then it must

3If i = 1, substitute G for Li−1. If i = m, don’t consider Li+1.
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be that the alpha value of w in I1 was less than a (since w reversed between I1 and
I2 and points toward v). When w was a sink the last time before I2, w must have
been adjacent to another node u with height a− 1. When w reversed, its alpha value
became a, but its incoming link from v didn’t change direction since u had a smaller
alpha value. Thus v cannot possibly be a sink in I2, a contradiction. Therefore, the
alpha value of w in I2 cannot be equal to a, and it has to be at least a + 1.

Next, we show that the alpha value of w cannot be greater than a + 1. When
w reverses, its alpha value is at most the minimum alpha value of its neighbors plus
one. Therefore, since v is a neighbor of w with alpha value a, when w reverses, its
alpha value cannot exceed a + 1.

Therefore, the alpha value of w in state I2 is exactly a + 1. This implies that in
I2 all the neighbors of v have alpha value a+ 1. Thus, when v reverses, it performs a
full reversal and its alpha value becomes a + 2.

Given state I described above, we give a lower bound for the alpha values of the
nodes in each layer when the network stabilizes.

Lemma 5.5. When the network stabilizes from state I, the alpha values of all the
nodes in layers L2i−1 and L2i, 1 ≤ i ≤ m/2, are at least amax + i.

Proof. Let I ′ denote the state of the network when it stabilizes. We prove the
claim by induction on i. For the basis case, where i = 1, we consider layers L1 and
L2. In state I, all the nodes of layer L1 have only incoming links from G. In state I ′,
there must exist a set S, consisting of nodes from L1, such that the nodes in S have
outgoing links pointing toward G.

Let v be a node in S. In state I ′, the alpha value of v is at least amax, since the
nodes in G have alpha value amax. Actually, we will show that the alpha value of v
in I ′ is larger than amax. Assume for contradiction that this value is amax. When
node v reversed and obtained the alpha value amax, it cannot possibly have reversed
its links toward G since, for these links, v adjusted only its second field on its height.
Thus, in state I ′ node v is still bad, a contradiction. Therefore, in state I ′, node v
has alpha value at least amax +1; thus, in state I ′, all nodes in set S have alpha value
at least amax + 1.

Now, consider the rest of the nodes in layers Lj , j ≥ 1. Let w be any such node.
In state I ′, w is good, and thus there exists a directed path from w to a good node in
G. This path has to go through the nodes of S; thus each node in the path must have
alpha value at least amax + 1, which implies that w has alpha value at least amax + 1.
Therefore, in state I ′, all nodes in L1 and L2 (including S) have alpha value at least
amax + 1.

Now, let’s assume that the claim holds for all 1 ≤ i < k. We will show that the
claim is true for i = k. We consider layers L2k−1 and L2k. In state I all the nodes of
layer L2k−1 have only incoming links from L2k−2. In state I ′, there must exist a set
S, consisting of nodes of L2k−1, such that the nodes in S have outgoing links pointing
toward L2k−2. The rest of the proof is similar to the induction basis, where now we
show that the nodes in S in state I ′, have alpha values at least amax+k, which implies
that all nodes in L2k−1 and L2k have alpha value at least amax + k.

We are now ready to show a central theorem for the lower bound analysis, which
is a lower bound on the number of reversals for the nodes of each layer. This result
will help us to obtain lower bounds for work and time needed for stabilization.

Theorem 5.6 (lower bound on reversals for partial reversal). Until the network
stabilizes, each node in layers L2i−1 and L2i, 1 ≤ i ≤ m/2, will reverse at least
�(a∗ + i)/2� times.
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Proof. Consider a bad node v of L2i. Node v is a source in state I. Lemma 5.4
implies that whenever v reverses in the future, it reverses all of its incident links, and
therefore it remains a source. Moreover, Lemma 5.4 implies that every time that v
reverses, its alpha value increases by 2. Lemma 5.5 implies that when the network
stabilizes, the alpha value of v is at least amax + i. Since in state I the alpha value
of v is amin, node v reverses at least �(a∗ + i)/2� times after state I. Similarly, any
other node in L2i reverses at least �(a∗ + i)/2� times.

Consider now a bad node w of L2i−1. Node w is adjacent to at least one node u
in layer L2i. In state I, node u is a source, and it remains a source every time that
u reverses (Lemma 5.4). Since u and w are adjacent, the reversals of u and w should
alternate. This implies that node w reverses at least �(a∗ + i)/2� times, since node
u reverses at least �(a∗ + i)/2� times. Similarly, any other node in L2i−1 reverses at
least �(a∗ + i)/2� times.

L1 L2 L3 L4 L5 L6

destination

Fig. 5. Worst-case work for partial reversal: graph G3 with n = 6 bad nodes.

Using Theorem 5.6 we now give worst-case graphs for work and stabilization time,
which show that the upper bounds of Theorem 5.3 are tight. First, we give the lower
bound on work. Consider a graph G3 which is in state I, as described above, in which
there are n bad nodes, where n is even, and there is exactly one bad node in each
layer (see Figure 5). From Theorem 5.6, each node in the ith layer will reverse at
least �(a∗ + �i/2	)/2� times before the network stabilizes. Thus, the sum of all the
reversals performed by all the bad nodes is at least

∑n
i=1�(a∗ + �i/2	)/2�, which is

Ω(n · a∗ + n2). Thus, we have the following corollary.
Corollary 5.7 (work lower bound for partial reversal). There is a graph with

an initial state containing n bad nodes such that the partial reversal algorithm requires
Ω(n · a∗ + n2) work until stabilization.

L1 L2 L3 L4 L5 L6

v1

v3

v2
destination

Fig. 6. Worst-case stabilization time for partial reversal: graph G4 with n = 8 bad nodes,
m1 = 6 layers, and m2 = 3 nodes in layer m1 − 1.

Now we give the lower bound on time. Consider a graph G4 in a state I as
described above, in which there are n bad nodes, where n/2 is even. The graph
consists of m1 = n/2 + 2 layers. The first m1 − 2 layers contain one node each, while
layer m1 − 1 contains m2 = n/2 − 1 nodes, and layer m1 contains 1 node. The layer
m1 − 1 is as follows: there are m2 nodes v1, v2, . . . , vm2

. Node vi has outgoing links
to all nodes vj such that j < i (see Figure 6). Note that each node in layer vi is
connected to the nodes in the adjacent layers from the specification of state I.

From Theorem 5.6, we know that each node in layer m1 − 1 requires at least
k1 = �(a∗ + �(m1 − 1)/2	)/2� reversals before it becomes a good node. Since layer
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m1 − 1 contains m2 nodes, at least k1 · m2 = Ω(n · a∗ + n2) reversals are required
before these bad nodes become good nodes. All these reversals have to be performed
sequentially, since the nodes of layer m1 − 1 are adjacent, and any two of these nodes
cannot be sinks simultaneously. Thus, we have the following corollary.

Corollary 5.8 (time lower bound for partial reversal). There is a graph with
an initial state containing n bad nodes such that the partial reversal algorithm requires
Ω(n · a∗ + n2) time until stabilization.

Note that Corollary 5.8 subsumes Corollary 5.7, since a lower bound on time is
also a lower bound on work.

We now describe scenarios in mobile ad hoc networks which could result in the
state I of graph G4 and with arbitrary a∗ value and number of nodes n. We first
describe how to obtain an arbitrary amax value in a small graph. Consider a graph
consisting of the destination node and two nodes w1 and w2. Initially node w1 points
only to w2, which points to the destination; further, the alpha values of the nodes are
all zero. Next, w1 moves and gets also connected to the destination, without changing
its height. Now w2 moves and gets disconnected from the destination, but it still is
connected to w1. However, w2 is now a sink, and thus it performs a reversal, where
its alpha value increases by one, since it has one neighbor (w1). This scenario can
be repeated an arbitrary number of times with the roles of w1 and w2 interchanged.
This results in a state with an arbitrary value of amax.

Next, we describe how to obtain arbitrary a∗ = d in a state I of graph G4. Let
a∗(I) denote a∗ in state I. Consider a graph H in an initial state I ′ in which all the
nodes are good and all have alpha value equal to zero (thus, a∗(I ′) = 0). The nodes,
except the destination, are divided into three components H1, H2, and H3. Graph H1

consists of n nodes and is in a state isomorphic to the bad nodes in graph G4. Graph
H2 is a set of good nodes such that each node of H1 is connected with an outgoing
link to a good node in H2; essentially, the nodes of H1 are good because they are
connected to the nodes of H2. Graph H3 is a network consisting only of nodes w1

and w2 as described in the previous paragraph. From state I ′ we obtain a state I ′′

as follows. We let the nodes in H3 oscillate (as described in the previous paragraph)
until the alpha value of w1 or w2 is equal to d. Suppose that w1 is the node that
gets height d first and we stop the oscillation immediately when w1 gets connected
directly to the destination. Note that the nodes in H1 and H2 haven’t changed their
heights since I ′, and therefore their alpha values remain zero in I ′′ (thus, a∗(I ′′) = d).
Now, from state I ′′ we will obtain a state I as follows. The nodes in H2 and the node
w2 disappear from the network; also, the node in the first layer of H1 gets connected
to w1. The resulting network configuration and state I are the same as in graph G4.
Since the nodes in H1 haven’t changed their original alpha value (zero) and the node
w1 has the largest alpha value d, we obtain a∗(I) = d, as needed.4

6. Deterministic algorithms. In this section, we give worst-case lower bounds
for the work and time needed for stabilization for any deterministic link reversal
algorithm. Given an arbitrary deterministic function g, we will establish the existence
of a family of graphs with initial states containing any number of n > 2 bad nodes
which require at least Ω(n2) work and time until stabilization. The lower bounds
follow from a lower bound on the number of reversals performed by each node, which
we describe next.

4A similar scenario could give a state I with arbitrary a∗, where amin is larger than zero. However,
the state we gave with amin = 0 suffices for our lower bounds.
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6.1. Lower bound on number of reversals. Given a graph G, we construct
a state I in which we determine a lower bound on the number of reversals required
by each bad node until stabilization. In particular, we decompose the bad nodes into
levels and show that the node at level i reverses at least i−1 times until stabilization.
We then use this result to obtain lower bounds for work and time.

The construction of state I depends on a level decomposition of the network. Let
s be the destination node. A node v (bad or not) is defined to be in level i if the
(undirected graph) distance between v and s is i. Thus s is in level 0, and a node in
level i is connected only with nodes in levels i − 1, i, and i + 1. Let m denote the
maximum level of any node.

We now construct recursively states Im+1, Im, Im−1, . . . , I2 such that state I = I2.
The basis of the recursion is state Im+1. The construction is as follows.

• In state Im+1 every node is good. Further, the heights of nodes in levels
1, 2, 3, . . . ,m are in increasing order with the levels, i.e., given two vertices
u, v at respective levels lu, lv with lu < lv, u’s height is less than v’s. An
example assignment of heights in state Im+1 is to set a node’s height to be
equal to its level.

• Suppose we have constructed state Ii, where m + 1 ≥ i > 2. We construct
state Ii−1 as follows:

– For every node in levels i− 1, i, . . . ,m, the height of the node in Ii−1 is
the same as its height in Ii.

– Let maxi denote the maximum height of a node in the destination ori-
ented graph that is reached by an execution starting from Ii. (We note
that from Corollary 3.5, maxi does not depend on the actual execution
sequence, but only on the initial state Ii.) For every node v in levels
1, 2, . . . , i − 2, v’s height in Ii−1 is assigned to be v’s height in Ii plus
maxi.

In the above construction, we assumed that the function g converges at a finite amount
of time to a stable state starting from any initial state Ii. This assumption doesn’t
hurt the generality of our analysis, since if g didn’t stabilize it would trivially require
at least Ω(n2) work and time, for n bad nodes, and thus our main result still holds.
So, without loss of generality, we will assume that g stabilizes.

Next, we show that each state Ii, m+1 ≥ i ≥ 2, satisfies the following properties:
P1i : The heights of nodes in levels 1, 2, 3, . . . , i− 1 are in increasing order with the

levels; i.e., given two vertices u, v at respective levels lu, lv with lu < lv, u’s
height is less than v’s. Thus, every node in levels 1, 2, . . . , i − 1 is a good
node.

P2i : The heights of nodes in levels i− 1, i, i + 1, . . . ,m are in decreasing order with
the levels, i.e., given two vertices u, v at respective levels lu, lv with lu < lv,
u’s height is greater than v’s. Thus, every node in levels i, i+1, . . . ,m is bad.
In the case when i = m + 1, no node is bad.

P3i : Starting from initial state Ii, every node in level j, j = i, i+ 1, . . . ,m, reverses
at least j − i + 1 times until stabilization. In the case when i = m + 1, no
node reverses.

For i = m + 1, . . . , 2, we will now argue about the number of reversals starting
from state Ii until stabilization. From Corollary 3.5, we know that all executions of a
deterministic algorithm starting from the same initial state are essentially identical.
In particular, the number of reversals of each node in every execution is the same.

For convenience, we consider a specific execution Ei which starts from initial
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state Ii and reverses nodes in the following order: next reverse the bad node which
has the smallest height in the current state. Clearly, such a node is a sink, and hence
a candidate for reversal. The number of reversals of a node in any execution starting
from Ii is equal to the number of reversals of the node in Ei.

Lemma 6.1. State Ii, m + 1 ≥ i ≥ 2, satisfies properties P1i, P2i, and P3i.
Proof. The proof is by induction on i. For the induction basis, state Im+1

clearly satisfies all the properties P1m+1, P2m+1, P3m+1 from the construction of
this state. Suppose now that state Ii, where m + 1 ≥ i > 2, satisfies the respective
three properties. We will show that state Ii−1 satisfies the respective properties too.
It can be easily checked that properties P1i−1 and P2i−1 are satisfied in Ii−1. We
focus on property P3i−1.

An execution is a sequence of reversals. We say that two reversals (v, h,H) and
(v, h′, H ′) of the same node in different network states are equal if the heights of the
node and its neighbors are the same in both states, namely, h = h and H = H ′. If
two reversals are equal, then the heights of the node after the reversals are the same,
since we are using a deterministic height increase function g. An execution E is said
to be a prefix of an execution E′ if the reversal sequence constituting E is elementwise
equal to a prefix of the reversal sequence constituting E′. In Lemma 6.2, we show
that Ei is a prefix of Ei−1.

Consider the state of the system which started in Ii−1, but after executing the
reversals in Ei. In this state, the height of each node in levels 1, 2, . . . , i− 2 is greater
than maxi by construction (it was greater than maxi in Ii−1, and heights can never
decrease). Let v be a node in level lv > i − 2. After the execution segment Ei, v’s
height is the same as the final height in the destination oriented graph reached from
Ii, and by the definition of maxi, this is no more than maxi.

Thus, in the current state, the height of every node in levels i − 1, i, . . . ,m is
less than the height of every node in levels 1, 2, . . . , i − 2. Consider any node u in
level lu ≥ i− 1. In the final destination oriented graph, there is a path of decreasing
height from u to the destination s, and this path contains at least one node from
levels 1, . . . , i − 2. Thus, in the final state, u’s height is greater than the height of
some node in levels 1, . . . , i − 2, while it was less to begin with. This implies that u
must have reversed at least once until stabilization.

In Ei, each node in level j, j = i, i+1, . . . ,m has reversed at least j− i+1 times.
If we add an extra reversal to all nodes in levels i − 1, i, . . . ,m, then in Ei−1, each
node in levels j = i−1, i, . . . ,m reverses at least j− i+2 times, thus proving property
P3i−1.

Lemma 6.2. Execution Ei is a prefix of execution Ei−1.
Proof. Executions Ei and Ei−1 start from states Ii and Ii−1, respectively. Let

Ei = ri1, r
i
2, . . . , r

i
f and Ei−1 = ri−1

1 , ri−1
2 , . . . . We prove by induction that rij = ri−1

j

for j = 1, . . . , f .
Base case. The nodes with the lowest height in Ii and Ii−1 are the same node v,

and v lies in layer m. The heights of all nodes in layer m− 1 are the same in Ii and
Ii−1 by construction. Thus, all of v’s neighbors have the same height in Ii and Ii−1,
so that ri1 = ri−1

1 .
Inductive case. Suppose that ri1, r

i
2, . . . , r

i
l is identical to ri−1

1 , ri−1
2 , . . . , ri−1

l for
some l < f . Let Iil and Ii−1

l , respectively, denote the state of the system starting
from Ii after reversals ri1, r

i
2, . . . , r

i
l , and the state of the system starting from Ii−1

after reversals ri−1
1 , ri−1

2 , . . . , ri−1
l .

Let v be the bad node with the lowest height in Iil so that ril+1 reverses v. We
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claim that this is also the bad node with the lowest height in Ii−1
l . The reason is as

follows.
Node v must be at a level lv ≥ i, since Ei does not reverse any nodes at a lower

level than i. All nodes in levels i − 1 or greater have the same heights in Iil and
Ii−1
l , due to the induction hypothesis, and these are all less than maxi. All nodes

in levels i − 2 or less in Ii−1
l have heights greater than maxi by construction. Thus,

the bad node with the minimum height in Ii−1
l is also v, and its neighbors also have

the same heights as in Iil , implying that ril+1 is the same as ri−1
l+1 . This completes the

proof.
We are now ready to show the main result of this section.
Theorem 6.3 (lower bound on reversals for deterministic algorithms). Given

any graph G and any height increase function g, there exists an initial state I (an
assignment of heights to the nodes of G) which causes each node in level i > 0 to
reverse at least i− 1 times until stabilization.

Proof. Let m denote the maximum node level. We first construct a sequence of
initial states Im+1, Im, . . . , I2 as described above. Lemma 6.1 implies that starting
from initial state Ii, each node in level j, j ≥ i reverses at least j − i + 1 times until
stabilization (property P3i). We take I = I2.

6.2. Worst-case graphs. Here we give lower bounds on the work and time for
any deterministic algorithm. Theorem 6.3 applies to any graph. Consider the list
graph G1 with n + 2 nodes, shown in Figure 3 and described in section 4.3. We
construct a state I with n bad nodes as described in section 6.1. From Theorem 6.3,
the lower bound for the worst-case number of reversals of any reversal algorithm on
state I is the sum of the reversals of each bad node: 1 + 2 + · · · + n = Ω(n2). Thus
we have the following corollary.

Corollary 6.4 (work lower bound for deterministic algorithms). There is a
graph with an initial state containing n bad nodes such that any deterministic reversal
algorithm requires Ω(n2) work until stabilization.

We can derive a similar lower bound on the time needed for stabilization. We
use the graph G4 with n + 2 nodes, shown in Figure 4. The structure of the graph,
and the parameters m1 and m2, are defined as in section 5.2 with respect to n + 1.
We construct a state I with n bad nodes as described in section 6.1. From Theorem
6.3, we know that each node in level m1 − 1 of G4 requires at least (m1 − 2) reversals
before it becomes a good node. Level m1 − 1 contains m2 nodes. Therefore, at least
(m1 − 2) ·m2 = Ω(n2) reversals are required before these nodes become good nodes.
All these reversals have to be performed sequentially, since the nodes of layer m1 − 1
are adjacent, and no two of these nodes can be sinks simultaneously. Thus, we have
the following corollary.

Corollary 6.5 (time lower bound for deterministic algorithms). There is a
graph with an initial state containing n bad nodes such that any deterministic reversal
algorithm requires Ω(n2) time until stabilization.

7. Conclusions and discussion. We presented a worst-case analysis of link
reversal routing algorithms in terms of work and time. We showed that for n bad
nodes, the GB full reversal algorithm requires O(n2) work and time, while the partial
reversal algorithm requires O(n ·a∗ +n2) work and time. The above bounds are tight
in the worst case. Our analysis for the full reversal is exact. For any network, we
present a decomposition of the bad nodes in the initial state into layers, which allows
us to predict exactly the work performed by each node in any distributed execution.

Furthermore, we show that for any deterministic reversal algorithm on a given
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graph, there exists an assignment of heights to all the bad nodes in the graph such
that if a bad node d hops away from its closest good node, then it has to reverse d
times before stabilization. Using this, we show that there exist networks and initial
states with n bad nodes such that the algorithm needs Ω(n2) work and time until
stabilization. As a consequence, from the worst-case perspective, the full reversal al-
gorithm is work and time optimal, while the partial reversal algorithm is not. Since a∗

can grow arbitrarily large, the full reversal algorithm outperforms the partial reversal
algorithm in the worst case.

Since it is known that partial reversal performs better than full reversal in some
cases, it would be interesting to find a variation of the partial reversal algorithm, which
is as good as full reversal in the worst case. Another research problem is to analyze
the average performance of link reversal algorithms. It would be also interesting to
extend our analysis to nondeterministic algorithms, such as randomized algorithms, in
which the new height of a sink is some randomized function of the neighbors’ heights.
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Abstract. We present an algorithm for hashing �αn � elements into a table with n separate
chains that requires O(1) deterministic worst-case insert time and O(1) expected worst-case search
time for constant α. We exploit the connection between two-way chaining and random graph theory
in our techniques.
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1. Introduction. In classical uniform hashing with chaining, a set of s keys is
inserted into a hash table with n separate chains (or linked lists) via a uniform hash
function. The insertion time is constant, and the average search time is proportional
to the load factor of the hash table α := s/n. However, even for a constant load
factor, the worst-case search time (the length of the longest chain) is asymptotic to
log n / log log n in probability [18, 27].

Azar et al. [3] suggested a novel approach called the greedy two-way chaining
paradigm. It uses two independent uniform hash functions to insert the keys, where
each key is inserted on-line into the shorter chain, with ties broken randomly. The
insertion time is still constant, while the average search time cannot be more than
twice the average search time of classical uniform hashing. However, the expected
maximum search time is only 2 log2 log n+2α+O(1) [3, 4, 24]. The two-way chaining
paradigm has been effectively used to derive many efficient algorithms [5, 6, 7]. A
further variant of on-line two-way chaining [28] improves the maximum search time
by a constant factor.

On the other hand, one can show that the off-line version of two-way chaining,
where all the hashing values of the keys are known in advance, yields better worst-case
performance [3, 8, 25]. Czumaj and Stemann [8] proved that if s ≤ 1.67545943 . . .×n,
one can find an assignment for the keys such that the maximum chain length is at
most 2 w.h.p. (with high probability, i.e., with probability tending to one as n → ∞).
In general, for any integer k ≥ 2, it is known [23] that there is a threshold ck ∼ k
such that if s ≤ ckn, one can assign the keys such that the maximum chain length is
at most k w.h.p. The insertion time, however, is proportional to s. This shows that
there is a large gap between the worst-case performances of the on-line and off-line
versions of two-way chaining. One wonders if it is possible to design an efficient on-
line two-way chaining algorithm whose worst-case search time is close enough to its
off-line one, while preserving constant insertion time and O(α) average search time.
Our goal here is to obtain constant expected maximum search and deterministic O(1)
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insertion times when the load factor of the hash table is constant.

Many hashing schemes that achieve constant worst-case search time have been de-
veloped [11, 12, 13, 16]. However, these schemes use a large number of hash functions,
sometimes employ rehashing techniques, and have insertion times that are constant
only in an expected amortized sense. Closest to our work is a new hashing scheme
called cuckoo hashing [26, 10], which utilizes the two-choice paradigm to improve the
worst-case performance but also relies on the idea of reallocation of the inserted keys.
It inserts n keys into a hash table that is partitioned into two parts, each of size
� (1 + ε)n �, for some constant ε > 0. It uses two independent hash functions chosen
from an O(log n)-universal class—one function only for each subtable. Each key is
hashed initially by the first function to a cell in the first subtable. If the cell is full,
then the new key is inserted there anyway, and the old key is kicked out to the second
subtable to be hashed by the second function. The same rule is applied in the second
subtable. Keys are moved back and forth until a key moves to an empty location or a
limit of O(log n) moves is reached. When the limit is reached, new independent hash
functions are chosen, and the whole table is rehashed. The worst-case search time is
at most two, but the insertion time is constant only in an amortized expected sense.
An off-line and static version of this algorithm previously appeared in [25].

In this paper, we present a two-way chaining algorithm that is close to cuckoo
hashing but achieves constant worst-case insertion time, deterministically, and con-
stant worst-case search time asymptotically almost surely, when the load factor is
constant. The space consumption is also linear. The idea is based on the structure of
a random multigraph, a key reassignment technique, and a deamortization method.
The algorithm is divided into stages where, at each stage, the hash table is modeled
by a random graph with n vertices representing the chains and m edges denoting the
keys inserted during the stage. Inserting keys into chains corresponds to orienting
edges toward vertices. Our goal then is to minimize the maximum out-degree. This
model has been used earlier to analyze the off-line version of two-way chaining [8].
When the graph is a forest, it is easy to orient the edges such that the maximum
out-degree is one. In order to keep the maximum out-degree as low as possible, some
edges need to be reoriented when two trees are joined during the hashing process,
and this means that the corresponding keys also need to be reassigned. Furthermore,
cycles could occur in the random graph. Since the hashing process is on-line, we use a
queue to control the orientation process, thereby ensuring that every insertion opera-
tion takes only a constant time of work. This leads us to the elegant deamortization
method introduced by Gajewska and Tarjan [17]. In the next section we describe
the algorithm precisely and ensure that an insert takes O(1) deterministic worst-case
time. We analyze the worst-case search time in section 3.

2. The algorithm. We start by presenting a simplified algorithm that requires
ω(1) insertion time in the worst case and then use a standard deamortization trick to
reduce the insertion time to O(1).

Our algorithm inserts s = 	αn 
 keys into a hash table T with n separate chains
(implemented as doubly linked lists) denoted by T [1], . . . , T [n] by using two inde-
pendent uniform hash functions f and g. We assume throughout that f and g map
the space of the keys to {1, . . . , n} such that if x1, . . . , xs are different keys, then
f(x1), g(x1), . . . , f(xs), g(xs) are independent and uniformly distributed on {1, . . . , n}.
So, a key x is inserted into one of the chains T [f(x)] or T [g(x)]. To search for any key,
we examine only the two possible hashing chains available to it. Thus, the worst-case
search time is at most twice the length of the longest chain plus the time needed to
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compute the hashing values. For simplicity, we ignore the time for evaluating the
hash functions.

The hashing process is described as follows (see Figure 2.1). In addition to the
hash table, the algorithm maintains a directed graph G(V,A), where V is a set of
n vertices and A is a set of arcs. Each vertex of G corresponds to a chain of T . An arc
〈u, v〉 ∈ A implies that there exists some key x whose hash values are u and v. The
direction of this arc indicates that x is located in the chain corresponding to u, i.e.,
T [u]. (With some abuse of notation, we will refer to an edge (u, v) of G to indicate
either 〈u, v〉 or 〈v, u〉.) In addition, let X be a pointer to the linked-list node that
contains x, and let ∗X be the node itself. An important property of the arcs is that
they correspond to a subset of the keys contained in T ; i.e., some keys are dropped.

y

T

g(x)

x

x

Q

G

G

f(y) g(y)

g(y)f(y)

f(x)

x

Fig. 2.1. Upon arrival of key x, it is inserted into T [f(x)], and then a request for adding a
corresponding arc is appended to the queue Q. Next, κ extra units of work are performed to process
the requests at the front of the queue. The figure also illustrates the ReverseRoot operation and the
insertion of 〈f(y), g(y)〉.

To insert a key x into T , see Pseudocode 1. Notice that initially any key x is
always inserted into the chain T [f(x)]. However, during the hashing process the key x
may be reassigned back and forth between the two chains T [f(x)] and T [g(x)]. This
could happen by edge reversals as is shown, e.g., in Pseudocode 5.

Pseudocode 1 Insert(x)

1: u ← f(x)
2: v ← g(x)
3: Create new linked-list node, ∗X containing key x

4: Insert ∗X into T [u].
5: UpdateGraph(u, v, X).

The UpdateGraph operation enforces that G is acyclic and that every vertex has
out-degree at most one. This means that the graph is simply a forest of parent-pointer
trees. We represent the graph in an array, where the array element corresponding to
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a vertex u contains a parent-pointer P [u] and a pointer X[u] to the linked-list node.
Thus the array element for vertex u represents the arc, 〈u, P [u]〉. The UpdateGraph

operation is described in Pseudocode 2. Note that in some cases, no edge is inserted
into G at all.

Pseudocode 2 UpdateGraph(u, v, X)

1: r1 ← FindRoot(u)

2: r2 ← FindRoot(v)

3: if r1 �= r2 then
4: ReverseRoot(u)

5: Link(u, v, X).
6: end if

The FindRoot(u) operation starts at u and takes parent pointers until the root
is found. See Pseudocode 3.

Pseudocode 3 FindRoot(u)
1: r1 ← u

2: while P[r1] �= nil do
3: r1 ← P[r1]
4: end while
5: return r1

The Link(u, v, X) operation creates the arc 〈u, v〉 and updates T accordingly.
Recall that the chains of T are implemented as doubly linked lists. Thus, the updates
to T can be performed in O(1) time. Additionally, Link(u, v, X) requires that u
be a root. See Pseudocode 4.

Pseudocode 4 Link(u, v, X)

1: P[u] ← v

2: X[u] ← X

3: Move ∗X to T [u]

The ReverseRoot(u) function reverses the sequence of pointers from u to the
root of u’s component. See Pseudocode 5. At the end of this operation, u is the new
root of u’s component. Note that each reversal will update T as part of the Link

operation.
The following two facts are easy to see.
Lemma 1. At any point in time, the graph G is a forest of parent-pointer trees

with no self-loops or multiple edges.
Lemma 2. The Insert operation requires worst-case time not exceeding 4M +

O(1), where M is the maximum size of any tree in G.
We use two simple techniques to reduce the cost of the insertions. First, to

reduce the size of the trees, after each m = 	βn 
 inserts, where β < 1/2 is some
constant to be picked later, we destroy G, which amounts to simply zeroing the array
representation of G.

Next, following [17], we use a queue Q (implemented as a linked list) to defer
some work to reduce the cost per insert. We define κ to be a (constant) parameter of
the algorithm that indicates the maximum number of operations that may take place
as part of each insert to process work items in Q. (The dependence of κ on β will
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Pseudocode 5 ReverseRoot(u)

Ensure: P[u] = nil

1: if P[u] �= nil then
2: ReverseRoot(P[u])

3: Temp ← P[u]

4: P[u] ← nil

5: Link(Temp, u, X[u])

6: end if

be made clear later on.) The algorithm is modified as follows. After every hash table
insert, where a new list node is created for key x and inserted into the chain T [f(x)],
we append a graph-insert request to the end of the queue, Q. This is a request for
adding the edge (f(x), g(x)) to the graph G and orienting that edge appropriately.
Additionally, κ extra units of work will be performed on the request at the front of the
queue, where one unit of work can be used to traverse or reverse an edge in the graph.
Once the request is completed, it is deleted from the queue, and the remaining time
is spent on the next element of the queue until either Q is empty or the κ available
time steps are depleted.

To combine both techniques, we keep an extra graph structure G′ that is zeroed
incrementally as elements are inserted into G. After 	βn 
 inserts, we will simply
swap G and G′. This allows us to reduce the cost of zeroing the graph structure every
	βn 
 inserts. There are some minor technicalities in implementing this approach
and the complete pseudocode for ConstantInsert is given in Pseudocode 6 in the
appendix. Essentially, the approach is to break down the operation of UpdateGraph
into constant time pieces.

We will write Hash(n, s,m, κ) to refer to this modified process of hashing s keys
into a hash table of size n, where m keys are inserted at each stage and κ is the
constant parameter mentioned above. We omit the details for initializing the data
structures and keeping track of an edge counter.

Lemma 3. Using the queue, the ConstantInsert operation requires time propor-
tional to κ.

The deferral described above creates a potential inconsistency between the state of
the hash table and the state of the graph. Specifically, at the completion of a particular
insertion request, the graph represents the state of the hash table at an earlier point
in time, i.e., prior to the requests that are still pending in the queue. Only when
the queue is empty will the graph represent the state of the hash table. Additionally,
because some requests are dropped and, on occasion, the graph is destroyed, the graph
may contain only a subset of the state of the hash table.

3. The worst-case search time. We shall prove the following theorem.

Theorem 1. There is a constant κ > 0 such that at any point in time during the
hashing process Hash(n, s,m, κ), where n, s,m ∈ N, and m = 	βn 
 ≤ s = O(n log n),
for some constant β < 1/2, the maximum search time is at most 2 � s/m �+6 w.h.p.

The theorem confirms that if the load factor of the hash table s/n = O(1), then
asymptotically almost surely the maximum search time is constant. Since there is a
trivial lower bound of 2s/n, we see that we are roughly within 1/β of the best possible,
recalling that β can be picked arbitrarily close to 1/2. Before we proceed with the
proof, we need some facts. We write Bin(n, p) to denote a binomial random variable
with parameters n ∈ N and p ∈ [0, 1]. We recall the following binomial tail inequalities.
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Lemma 4 (Angluin and Valiant [2]). For n ∈ N, p ∈ [0, 1], and constant ε ∈ (0, 1),
we have

P {Bin(n, p) ≥ (1 + ε)np} ≤ e−npε2/3

and

P {Bin(n, p) ≤ (1 − ε)np} ≤ e−npε2/2.

Let G(n,m) denote a random graph with n vertices and m multiedges that may
include loops, where each edge connects two vertices chosen—one after another—
independently and uniformly at random, with replacement, from the set of all n ver-
tices. This means that any loop is realized with probability 1/n2 and any undirected
nonloop edge is realized with probability 2/n2. Recall that the classical model G(n, p)
of Erdös [14] and Erdös and Rényi [15] has no loops or multiedges, and each edge is
realized with a fixed probability p ∈ (0, 1). Throughout, we write [n] to denote the
set {1, . . . , n}.

Lemma 5. Let C(u) be the number of vertices in the connected component contain-
ing a fixed vertex u from the random graph G(n,m), where n ∈ N, and m = 	βn 
, for
some constant β < 1/2. Then for any t ∈ [n], we have P {C(u) > t} ≤ 2e−γ t, where
γ = (1/2 − β)2/(2 + 4β). Thus, if M is the size of the largest connected component,
then P {M > (1 + ε)γ−1 log n} ≤ 2n−ε for any fixed ε > 0.

Proof. We first need to distinguish between the components of the classical G(n, p)
and those of G(n,m). Let Rp(u) denote the number of vertices in the component
containing vertex u in G(n, p) and use Ck(u) for our model G(n, k). Next let |G(n, p)|
be the number of edges in G(n, p). Notice that

P {Rp(u) > t | |G(n, p)| = k} ≥ P {Ck(u) > t}

because, conditional on having k edges, components in G(n, p) are stochastically larger
than those in G(n, k) since the latter includes multiedges and loops. This leads to the
following relationship between Rp(u) and Cm(t):

P {Rp(u) > t} =
∑
k

P {Rp(u) > t | |G(n, p)| = k}P {|G(n, p)| = k}

≥
∑
k

P {Ck(u) > t}P {|G(n, p)| = k}

≥
∑
k≥m

P {Ck(u) > t}P {|G(n, p)| = k}

≥
∑
k≥m

P {Cm(u) > t}P {|G(n, p)| = k}

= P {Cm(u) > t}P {|G(n, p)| ≥ m}
≥ P {Cm(u) > t} − P {|G(n, p)| < m} .

Thus,

P {Cm(u) > t} ≤ P {Rp(u) > t} + P {|G(n, p)| < m} .

Bounding P {Rp(u) > t} in the classical model is done in the usual manner; see, for
example, Janson [21]. Imagine that u’s component grows out from vertex u, picking
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up neighbors according to a binomial distribution. This certainly overestimates the
number of vertices in u’s component. Now suppose that the component containing
vertex u contains more than t vertices. This implies that the sum of t binomial random
variables is at least t. Denote these random variables by Xi for i = 1, . . . , t, and for
an upper bound on |Rp(u)| assume that each Xi is distributed as Bin(n, p) and that
they are independent. The sum of t independent Bin(n, p) is itself a Bin(nt, p) random
variable. So we have that

P {|Rp(u)| > t} ≤ P {Bin(nt, p) ≥ t} .

Using Lemma 4, with p = β+1/2
n and ε = 1/2−β

1/2+β ∈ (0, 1), we get

P

{
Bin

(
nt,

β + 1/2

n

)
≥ t

}
≤ exp

(
−t(1/2 − β)2

3(1/2 + β)

)
.

Now it only remains to bound P {|G(n, p)| < m}. Notice that |G(n, p)| is dis-
tributed as Bin(N, p), where N =

(
n
2

)
, and

m− 1 ≤ βn− 1 = (n− 1)(β/2 + 1/4) − (n/4 − βn/2 + 1 − β/2 − 1/4)

≤ Np− x,

where x = (1/4 − β/2)n. Using the lower tail bound of Lemma 4, we get

P {|G(n, p)| < m} = P {Bin(N, p) ≤ m− 1}
≤ P {Bin(N, p) ≤ Np− x}

≤ exp

(
−x2

2Np

)
= exp

(
−n2(1/2 − β)2

4(n− 1)(1/2 + β)

)
≤ exp

(
−n(1/2 − β)2

4(1/2 + β)

)
.

Putting everything together, we see that the resulting bound for the component size
in our model is

P {C(u) > t} ≤ exp

(
−n(1/2 − β)2

4(1/2 + β)

)
+ exp

(
−t(1/2 − β)2

3(1/2 + β)

)
.

Since the component size t ≤ n,

P {C(u) > t} ≤ 2 exp

(
−t(1/2 − β)2

4(1/2 + β)

)
= 2e−γt,

where γ = (1/2 − β)2/(2 + 4β).
The next lemma, which is included to make the paper self-contained, ensures that

the asymptotic structure of G(n,m) is not complex when m < n/2. Further details
can be found in [20]. An edge is said to complete a cycle if both of its vertices are
chosen from the same connected component before its insertion.

Lemma 6. Let n ∈ N, and m = 	βn 
, for some constant β < 1/2. In the
random graph G(n,m), the expected number of edges that complete cycles is O(log n).
Furthermore, the probability that G(n,m) contains a connected component with more
than one cycle is o(1 / log n).

Proof. Let Yi be the number of edges that complete cycles in G(n,m) after (i−1)
edges have been inserted. Let Di be the event that the ith edge completes a cycle. Let
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Mi be the random variable corresponding to the size of the largest component after
(i− 1) edges have been inserted. Using the fact that the sequence {Mi} is increasing,

E [Ym+1 ] =

m∑
i=1

P {Di}

= E

[
m∑
i=1

I[Di ]

]
= E

[
E
[∑

I[Di ]

∣∣∣ Mi

] ]

≤
m∑
i=1

E [Mi/n ] ≤ E [Mm+1 ]

≤ 2

γ
log n + mP

{
Mm+1 >

2

γ
log n

}
= O(log n),

which follows from Lemma 5. Next, we show that it is unlikely for a component to
contain more than one cycle.

Let Ai be the event that Mi ≤ a log n, where a is chosen such that P {Ac
m+1} =

O(1/n). Let Bi be the event that Yi ≤ log3 n. Using E [Ym+1 ] = O(log n) and
Markov’s inequality, we have P {Bc

m+1} = O(1 / log2 n). Let Ci be the event that
the ith edge causes the creation of a component that contains two cycles. Equiva-
lently, Ci is the event that the ith edge connects two (not necessarily distinct) cyclic
components. Treating these events as sets, we obtain

Ci = (Ci ∩Ai ∩Bi) ∪ (Ci ∩Bc
i ∩Ai) ∪ (Ci ∩Ac

i )

⊆ (Ci ∩Ai ∩Bi) ∪Bc
i ∪Ac

i .

Since Ac
i and Bc

i are increasing events, then
⋃m+1

i=1 Ac
i = Ac

m+1, and similarly,⋃m+1
i=1 Bc

i = Bc
m+1. Consequently,

P

{⋃
i

Ci

}
≤

(
m∑
i=1

P {Ci, Ai, Bi}
)

+ P
{
Bc

m+1

}
+ P

{
Ac

m+1

}

≤
(

m∑
i=1

P {Ci | Ai, Bi}
)

+ O

(
1

log2 n

)
+ O

(
1

n

)

≤ m

(
(a log n)(log3 n)

n

)2

+ O

(
1

log2 n

)
= O

(
1

log2 n

)
,

as the maximum number of “bad” vertices that the ith edge can choose from is at
most Yi times Mi, which is not more than a log4 n.

Recall that the hashing process Hash(n, s,m, κ) is divided into N := � s/m �
different stages, where at each stage m 	βn 
 keys are inserted into the hash table.
Consider only the first stage. Recall that the graph G does not fully represent the
hash table because, first, the keys are inserted into the hash table without any delay,
while the edges are queued in Q for what might be a long time before they are actually
inserted into the graph G, and, second, any edge that completes a cycle is not added
to the graph. For convenience, we will write G(m) to denote the graph G at the end of
the first stage, i.e., after having fully processed m edges, and write G(m)+ to denote
the complete graph of G(m) plus all dropped edges that complete cycles. Observe
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that the undirected version of the graph G(m)+ is stochastically equivalent to the
random graph G(n,m). The following lemma shows that the dropped edges of the
whole hashing process are disjoint. For any multiset of edges E , and for any vertex u
in the graph, let V(u, E) be the multiset of all vertices v such that (u, v) ∈ E . Let
deg(u, E) = |V(u, E)| be the degree of u in E .

Lemma 7. Let D be the multiset of dropped edges during all stages of the hashing
process Hash(n, s,m, κ), where n, s, and m are as defined in Theorem 1. Then
maxu deg(u,D) = 1 w.h.p.

Proof. Recall that the number of stages is N := � s/m � = O(log n). For i =
1, . . . , N , let Di be the multiset of all dropped edges in stage i. Since the dropped edges
are the ones that complete cycles, then Lemma 6 implies that E [ |D1| ] = O(log n),
and

P

{
max
u

deg(u,D1) > 1
}

= o(1 / log n),

because deg(u,D1) > 1 implies that the component containing u has more than one
cycle. Clearly,

∑
u deg(u,D1) ≤ 2 |D1|. Since we have n vertices in the graph, then

E [ deg(u,D1) ] = E [E [ deg(u,D1) | |D1| ] ] ≤ 2E [ |D1| ] / n.

For i �= j, let Ai,j be the event that there is a vertex u appearing in two dropped edges
in Di and Dj ; i.e., there are vertices v and w such that (u, v) ∈ Di and (u,w) ∈ Dj .
Since D1, . . . ,DN are independent and identically distributed, we have

P

{
max
u

deg(u,D) > 1
}
≤ N P

{
max
u

deg(u,D1) > 1
}

+

(
N

2

)
P {A1,2}

≤ o(1) + N2n (P {deg(u,D1) ≥ 1})2

≤ o(1) + N2n (E [ deg(u,D1) ])
2

≤ o(1) + N2n

(
2E [ |D1| ]

n

)2

= o(1) + O

(
(log n)4

n

)
= o(1).

Finally, we recall the following inequality.
Lemma 8 (Hoeffding [19]). Let S be a set of m balls, where ball i has a value xi.

Let X1, . . . , Xν be the values of ν balls chosen from S independently and uniformly
at random without replacement. Let Y1, . . . , Yν be the values of ν balls chosen from S
independently and uniformly at random with replacement. Then for any continuous
convex function f , we have

E

[
f

(
ν∑

i=1

Xi

)]
≤ E

[
f

(
ν∑

i=1

Yi

)]
.

Proof of Theorem 1. Recall that G(m) denotes the graph G at the end of the
first stage, and G(m)+ denotes the complete graph of G(m) plus all dropped edges
that complete cycles. First of all, Lemma 7 says that the vertices of all dropped
edges of the whole hashing process Hash(n, s,m, κ) are distinct w.h.p. That is, the
corresponding keys of these edges are inserted into distinct chains, or in other words,
any chain harbors at most one key that corresponds to a dropped edge. Therefore,
upon termination of the hashing process, the dropped edges may contribute at most
one to the maximum chain length.
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We shall prove that w.h.p. during any interval of time (measured with respect to
the number of keys inserted) of length ν := 	n1/4 
 (at any stage), the queue Q must
be empty at least once, and no connected component is chosen more than twice. This
means that w.h.p. any set of requests that exist in the queue at some point in time
could have at most two requests for inserting edges in the same connected component;
that is, we could insert at most two keys into the same chain before the final positions
of the related keys are corrected. Assume this is true for the time being. Then clearly
the length of any chain in the hash table during the first stage is not more than the
out-degree of the corresponding vertex in G plus three: one for any possible dropped
edge contribution, and two for the two requests in the queue that have chosen the
same component. However, the maximum out-degree of G is ensured to be one all
the time. Hence, the maximum chain length at any point in time during the first
stage is at most four w.h.p. Since we follow the same strategy at each stage, it is not
difficult to see that the chain length increases by at most one per stage. Note that
over all stages, each chain has at most one dropped edge contribution, and a single
component is present at most twice in the queue. Consequently, the maximum chain
length at any point in time during the hashing process is at most � s/m � + 3 w.h.p.,
and hence the worst-case search time is at most 2 � s/m � + 6 w.h.p., as we have to
search two chains for each key.

Now we prove our assumption. We say “at time i” to mean at the insertion time
of the ith key. Thus, an interval of time of length ν means a period of time into which
exactly ν keys are inserted. Let M be the size of the largest connected component in
G(m). Since β < 1/2, then by Lemma 5, P {M > 2γ−1 log n} = O(1/n).

Let Aij be the event that the jth component is hit by the ith request and is hit
at least twice more in the subsequent ν − 1 requests. Note that when the insertion
request at the front of the queue is being processed, the jth component is fixed. Let
A =

⋃
i,j Aij . Let Mij be the number of vertices in the jth component just before

the ith insertion. Thus P {∃ i, j, Mij > 2γ−1 log n} ≤ P {M > 2γ−1 log n} = O(1/n).
Since we have fewer than m time intervals of length ν during the first stage, and at
most n connected components in G, then the binomial tail inequality yields that

P {A} ≤ P
{
A ∩

[
M ≤ 2γ−1 log n

]}
+ P

{
M > 2γ−1 log n

}
≤ mnmax

i,j
P
{
Aij ∩

[
M ≤ 2γ−1 log n

]}
+ O(1/n)

≤ mnmax
i,j

P
{
Aij ∩

[
Mij ≤ 2γ−1 log n

]}
+ O(1/n)

≤ mnmax
i,j

P
{
Aij

∣∣ [Mij ≤ 2γ−1 log n
]}

+ O(1/n).

The probability that the ith request hits the jth component is at most 2Mij/n,
since there are two vertices involved in the request. The number of times that the jth
component is hit in the subsequent ν−1 requests is distributed as Bin(2ν−2,Mij/n).
Thus, using P {Bin(n, p) ≥ 2} ≤ (np)2/2, we have

P {A} ≤ mn

(
4 log n

γn

)
P

{
Bin

(
2ν,

4γ−1 log n

n

)
≥ 2

}
+ O

(
1

n

)

≤ mn

(
4 log n

γn

)(
8ν log n

γn

)2

+ O

(
1

n

)

= O

(
log3 n

n1/2

)
.
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The event A refers to the first stage only. Multiplying the bound by the number
of stages N = O(log n), we can see that the probability that during some stage there
is a connected component which is chosen more than twice in some interval of time
of length ν goes to zero as n → ∞.

Next, let [a, b] = {a, a + 1, . . . , b}, where |b − a + 1| = ν is a time interval of
length ν, and let B be the event that [a, b] is the first interval of time of length ν
in which the queue Q is never empty. Observe that if B is true, then the queue
was empty at time a − 1. Let ea, . . . , eb be the edges associated with the ν requests
appended to Q during [a, b]. For i ∈ [a, b], let Ti be the computational time needed
for the algorithm to fully process the edge ei, that is, the number of edges traversed
or reversed during the whole process of serving the request, plus one if the edge is
inserted. Let Ri be the number of vertices in the connected component to which the
edge ei belongs. Thus, Ti ≤ 4Ri for all i ∈ [a, b]. Using Chernoff’s bounding method
(see e.g., [19]), we see that for parameter λ > 0,

P {B} ≤ P {Ta > κ, Ta + Ta+1 > 2κ, . . . , Ta + · · · + Tb > κν}
≤ P {Ta + · · · + Tb > κν}
≤ P {Ra + · · · + Rb > κν/4}

≤ e−λκ ν/4 E

[
exp

(
b∑

i=a

λRi

)]
.

Recall that G(m)+ denotes the union of G(m) and the edges that completed cycles.
Suppose that we choose ν edges from the set of all m edges in the graph G(m)+

independently and uniformly without replacement. Let V1, . . . , Vν be the sizes of the
components containing these edges. Notice that V1, . . . , Vν stochastically dominate
Ra, . . . , Rb. On the other hand, suppose that we repeat the experiment of choosing
ν edges from the set of all m edges in the graphs G(m)+ independently and uniformly
but with replacement. Let V ∗

1 , . . . , V
∗
ν be the values of these edges which are plainly

independent and identically distributed. Hence, by Lemma 8, we see that

P {B} ≤ e−λκ ν/4 E

[
exp

(
ν∑

i=1

λVi

)]

≤ e−λκ ν/4 E

[
exp

(
ν∑

i=1

λV ∗
i

)]

= e−λκ ν/4
(
E
[
eλV

∗
1

])ν

.

By definition, V ∗
1 is distributed as the size of the component containing a uni-

formly chosen edge of G(n,m). In distribution, this is the same as the size of the
component containing the last edge inserted into G(n,m), which is in turn stochasti-
cally dominated by C(u)+C(v), where u and v are uniformly chosen vertices and C(u)
is the size of the component containing u in G(n,m− 1). Using Lemma 5 for t ∈ [m],

P {V ∗
1 ≥ t} ≤ P {C(u) + C(v) ≥ t} ≤ 2 P {C(u) ≥ t/2} ≤ 2

(
2 e−γ(t/2−1)

)
,

where γ = (1/2−β)2

2+4β > 0. Therefore,

E
[
eλV

∗
1

]
≤ 4

m∑
t=1

eλte−γ(t/2−1) ≤ 4 eλ+γ/2
∞∑
t=0

e(λ−γ/2)t ≤ 4 eλ+γ/2

1 − eλ−γ/2
,
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provided that λ < γ/2. Finally, we get

P {B} ≤ e−λκ ν/4
(
E
[
eλV

∗
1

])ν

≤ e−pν ,

where p := λκ/4 − λ − γ/2 + log (1 − eλ−γ/2) − log 4, which is positive if we choose
κ > 4 + 4 (−γ/2 − log(1 − eλ−γ/2) + log 4) / λ. For example, if we put λ = γ/4,
then κ = �−40 log(1 − e−γ) / γ � will suffice. With this choice, and since there are
N = � s/m � stages, and in each stage there are at most m intervals of time of length ν,
we see that the probability that at some stage there is an interval of time of length ν
in which the queue is never empty is at most Nme−pν = o(1). Indeed, this is true
even if the interval is as short as 2 logp s = O(log n). The proof now is complete.

Remarks.

1. The last step of the proof reveals that asymptotically almost surely the space
consumed by the queue is indeed O(log n) because the queue is always empty
at least once during any interval of O(log n) insertions.

2. Notice that as β approaches 1/2, γ goes to zero, and hence, the constant κ
increases to infinity.

3. As β increases to 1/2, the worst-case search time of our algorithm is close
to 4α + 6 w.h.p., where α := s/n is the load factor of the hash table.
This performance can be beaten by other hashing algorithms when α is
large enough. For example, when α ≥ log n / log log n, the classical hash-
ing with chaining, where only a single uniform hash function is utilized,
achieves better performance than our algorithm: the maximum search time is
known [27] to be at most α+Θ(

√
α log n) w.h.p. Also, when log2 log n ≤ α ≤

(1/3) log n / log log n, the worst-case search time of greedy two-way chaining,
which is 2 log2 log n + 2α + O(1) w.h.p., is the best known [4]. However,
for α < log2 log n, our algorithm has the best worst-case search time among
all known hashing with chaining algorithms that have constant worst-case
insertion time.

4. We did not try to optimize the constant insertion time κ or the total space
consumed by the algorithm. We believe that some aspects of the algorithm
can be modified to improve its performance by a constant factor. For exam-
ple, the use of the graph G is probably unnecessary, and one can implement
the operations on the graph directly on the hash table. It is also neces-
sary to generalize the algorithm for the dynamic case, where deletions are
allowed.

Appendix. In this appendix, we give the detailed pseudocode for the procedure
ConstantInsert. Each element of the queue is the 5-tuple [ X, Root1, Root2,

IndexFrom, IndexTo ] defined as follows:

X The pointer to the linked-list node that is currently in some chain of T .
Root1 Current computation of the root of vertex f(x)’s tree.
Root2 Current computation of the root of vertex g(x)’s tree.

IndexFrom If Root1 and Root2 are roots, then the new arc should point from
IndexFrom.

IndexTo If Root1 and Root2 are roots, then the new arc should point to IndexTo.

The last two fields are computable from each other, so only four elements are actually
needed. Additionally, recall that X points to a structure that contains the key, which
we will refer to as X.key.



TWO-WAY CHAINING WITH REASSIGNMENT 339

Pseudocode 6 ConstantInsert(x, G, T )

1: Create new linked-list node, ∗X containing key x

2: Insert ∗X into T [f(x)]
3: Create new request, Rnew = [X, f(x), g(x), f(x), g(x)]
4: Append Rnew to Q
5: Zero � 1

β � more elements of G′

6: i ← 1
7: repeat
8: i ← i + 1, R ← Q.Peek()
9: if P[R.Root1] �= nil then

10: R.Root1 = P[R.Root1]
11: else if P[R.Root2] �= nil then
12: R.Root2 = P[R.Root2]
13: else if R.Root1 = R.Root2 then
14: Q.Pop()
15: else
16: Y ← X[R.IndexFrom]
17: Link(R.IndexFrom, R.IndexTo, R.X)
18: if Y = nil then
19: Q.Pop() {This will happen once for every new arc in G.}
20: if |G| = 	βn 
 then swap(G,G′)
21: else if f(Y.key) = R.IndexFrom then
22: R ← [Y, R.Root1, R.Root2, g(Y.key), f(Y.key)]
23: else
24: R ← [Y, R.Root1, R.Root2, f(Y.key), g(Y.key)]
25: end if
26: end if
27: until i = κ OR Q = ∅
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CACHE-OBLIVIOUS B-TREES∗
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Abstract. This paper presents two dynamic search trees attaining near-optimal performance
on any hierarchical memory. The data structures are independent of the parameters of the memory
hierarchy, e.g., the number of memory levels, the block-transfer size at each level, and the relative
speeds of memory levels. The performance is analyzed in terms of the number of memory transfers
between two memory levels with an arbitrary block-transfer size of B; this analysis can then be ap-
plied to every adjacent pair of levels in a multilevel memory hierarchy. Both search trees match the
optimal search bound of Θ(1+logB+1 N) memory transfers. This bound is also achieved by the clas-
sic B-tree data structure on a two-level memory hierarchy with a known block-transfer size B. The
first search tree supports insertions and deletions in Θ(1 + logB+1 N) amortized memory transfers,
which matches the B-tree’s worst-case bounds. The second search tree supports scanning S consec-
utive elements optimally in Θ(1 + S/B) memory transfers and supports insertions and deletions in

Θ(1 + logB+1 N + log2 N
B

) amortized memory transfers, matching the performance of the B-tree for

B = Ω(logN log logN).
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1. Introduction. The memory hierarchies of modern computers are becoming
increasingly steep. Typically, an L1 cache access is two orders of magnitude faster
than a main memory access and six orders of magnitude faster than a disk access [27].
Thus, it is dangerously inaccurate to design algorithms assuming a flat memory with
uniform access times.

Many computational models attempt to capture the effects of the memory hier-
archy on the running times of algorithms. There is a tradeoff between the accuracy of
the model and its ease of use. One body of work explores multilevel memory hierar-
chies [2, 3, 5, 7, 43, 44, 49, 51], though the proliferation of parameters in these models
makes them cumbersome for algorithm design. A second body of work concentrates
on two-level memory hierarchies, either main memory and disk [4, 12, 32, 49, 50] or
cache and main memory [36, 45]. With these models the programmer must anticipate
which level of the memory hierarchy is the bottleneck. For example, a B-tree that has
been tuned to run on disk has poor performance in memory.

1.1. Cache-oblivious algorithms. The cache-oblivious model enables us to
reason about a simple two-level memory but prove results about an unknown mul-
tilevel memory. This model was introduced by Frigo et al. [31] and Prokop [40].
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They show that several basic problems—namely, matrix multiplication, matrix trans-
pose, the fast Fourier transform (FFT), and sorting—have optimal algorithms that
are cache oblivious. Optimal cache-oblivious algorithms have also been found for LU
decomposition [21, 46] and static binary search [40]. These algorithms perform an
asymptotically optimal number of memory transfers for any memory hierarchy and
at all levels of the hierarchy. More precisely, the number of memory transfers be-
tween any two levels is within a constant factor of optimal. In particular, any linear
combination of the transfer counts is optimized.

The theory of cache-oblivious algorithms is based on the ideal-cache model of
Frigo et al. [31] and Prokop [40]. In the ideal-cache model there are two levels in
the memory hierarchy, called cache and main memory, although they could represent
any pair of levels. Main memory is partitioned into memory blocks, each consisting
of a fixed number B of consecutive cells. The cache has size M , and consequently
has capacity to store M/B memory blocks.1 In this paper, we require that M/B be
greater than a sufficiently large constant. The cache is fully associative, that is, it can
contain an arbitrary set of M/B memory blocks at any time.

The parameters B and M are unknown to the cache-oblivious algorithm or data
structure. As a result, the algorithm cannot explicitly manage memory, and this
burden is taken on by the system. When the algorithm accesses a location in memory
that is not stored in cache, the system fetches the relevant memory block from main
memory in what is called a memory transfer. If the cache is full, a memory block
is elected for replacement based on an optimal offline analysis of the future memory
accesses of the algorithm.

Although this model may superficially seem unrealistic, Frigo et al. show that it
can be simulated by essentially any memory system with a small constant-factor over-
head. Thus, if we run a cache-oblivious algorithm on a multilevel memory hierarchy,
we can use the ideal-cache model to analyze the number of memory transfers between
each pair of adjacent levels. See [31, 40] for details.

The concept of algorithms that are uniformly optimal across multiple memory
models was considered previously by Aggarwal et al. [2]. These authors introduce the
hierarchical memory model (HMM) model, in which the cost to access memory loca-
tion x is �f(x)�, where f(x) is monotone nondecreasing and polynomially bounded.
They give algorithms for matrix multiplication and the FFT that are optimal for any
cost function f(x). One distinction between the HMM model and the cache-oblivious
model is that, in the HMM model, memory is managed by the algorithm designer,
whereas in the cache-oblivious model, memory is managed by the existing caching and
paging mechanisms. Also, the HMM model does not include block transfers, though
Aggarwal, Chandra, and Snir [3] later extended the HMM to the block transfer (BT)
model to take into account block transfers. In the BT model the algorithm can choose
and vary the block size, whereas in the cache-oblivious model the block size is fixed
and unknown.

1.2. B-trees. In this paper, we initiate the study of dynamic cache-oblivious
data structures by developing cache-oblivious search trees.

The classic I/O-efficient search tree is the B-tree [13]. The basic idea is to maintain
a balanced tree of N elements with node fanout proportional to the memory block
size B. Thus, one block read determines the next node out of Θ(B) nodes, so a search

1Note that B and M are parameters, not constants. Consequently, they must be preserved in
asymptotic notation in order to obtain accurate running-time estimates.
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Table 1

Related work in cache-oblivious data structures. These results, except the static search tree
of [40], appeared after the conference version [18] of this paper.

B-tree • Simplification via packed-memory
structure/low-height trees

[20, 25]

• Simplification and persistence
via exponential structures

[42, 17]

• Implicit [29, 30]

Static search trees • Basic layout [40]
• Experiments [35]
• Optimal constant factor [14]

Linked lists supporting scans [15]

Priority queues [8, 23, 26]

Trie layout [6, 19]

Computational geometry • Distribution sweeping [22]
• Voronoi diagrams [34]
• Orthogonal range searching [1, 9]
• Rectangle stabbing [10]

Lower bounds [24]

completes in Θ(1 + logB+1 N) memory transfers.2 A simple information-theoretic
argument shows that this bound is optimal.

The B-tree is designed for a two-level hierarchy, and the situation becomes more
complex with more than two levels. We need a multilevel structure, with one level
per transfer block size. Suppose B1 > B2 > · · · > BL are the block sizes between the
L+ 1 levels of memory. At the top level we have a B1-tree; each node of this B1-tree
is a B2-tree; etc. Even when it is possible to determine all these parameters, such a
data structure is cumbersome. Also, each level of recursion incurs a constant-factor
wastage in storage, in order to amortize dynamic changes, leading to suboptimal
memory-transfer performance for L = ω(1).

1.3. Results. We develop two cache-oblivious search trees. These results are the
first demonstration that even irregular and dynamic problems, such as data structures,
can be solved efficiently in the cache-oblivious model. Since the conference version [18]
of this paper appeared, many other data-structural problems have been addressed in
the cache-oblivious model; see Table 1. Our results achieve the memory-transfer
bounds listed below. The parameter N denotes the number of elements stored in the
tree. Updates refer to both key insertions and deletions.

1. The first cache-oblivious search tree attains the following memory-transfer
bounds:

Search: O(1+ logB+1 N), which is optimal and matches the search bound
of B-trees.

Update: O(1 + logB+1 N) amortized, which matches the update bound of
B-trees, though the B-tree bound is worst case.

2. The second cache-oblivious search tree adds the scan operation (also called
the range search operation). Given a key x and a positive integer S, the scan
operation accesses S elements in key order, starting after x. The memory-
transfer bounds are as follows:

Search: O(1 + logB+1 N).

2We use B + 1 as the base of the logarithm to correctly capture that the special case of B = 1
corresponds to the RAM.
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Scan: O(1 + S/B), which is optimal.

Update: O(1 + logB+1 N + log2 N
B ) amortized, which matches the B-tree

update bound of O(1 + logB+1 N) when B = Ω(logN log logN).
This last relation between B and N usually holds in external memory but
often does not hold in internal memory.

In the development of these data structures, we build and identify tools for cache-
oblivious manipulation of data. These tools have since been used in many of the
cache-oblivious data structures listed in Table 1. In section 2.1, we show how to
linearize a tree according to what we call the van Emde Boas layout, along the lines
of Prokop’s static search tree [40]. In section 2.2, we describe a type of strongly
weight-balanced search tree [11] useful for maintaining locality of reference. Following
the work of Itai, Konheim, and Rodeh [33] and Willard [52, 53, 54], we develop a
packed-memory array for maintaining an ordered collection of N items in an array

of size O(N) subject to insertions and deletions in O(1 + log2 N
B ) amortized memory

transfers; see section 2.3. This structure can be thought of as a cache-oblivious linked
list that supports scanning S consecutive elements in O(1 + S/B) memory transfers

(instead of the näıve O(S)) and updates in O(1+ log2 N
B ) amortized memory transfers.

1.4. Notation. We define the hyperfloor of x, denoted ��x��, to be 2�log x�, i.e.,
the largest power of 2 smaller than x.3 Thus, x/2 < ��x�� ≤ x. Similarly, the
hyperceiling ��x�� is defined to be 2�log x�. Analogously, we define hyperhyperfloor and
hyperhyperceiling by ���x��� = 2��log x�� and ���x��� = 2��log x��. These operators satisfy√
x < ���x��� ≤ x and x ≤ ���x��� < x2.

2. Tools for cache-oblivious data structures.

2.1. Static layout and searches. We first present a cache-oblivious static
search-tree structure, which is the starting point for the dynamic structures. Consider
a O(logN)-height search tree in which every node has at least two and at most a con-
stant number of children and in which all leaves are on the same level. We describe
a mapping from the nodes of the tree to positions in memory. The cost of any search
in this layout is Θ(1 + logB+1 N) memory transfers, which is optimal up to constant
factors. Our layout is a modified version of Prokop’s layout for a complete binary tree
whose height is a power of 2 [40, pp. 61–62]. We call the layout the van Emde Boas
layout because it resembles the van Emde Boas data structure [47, 48].4

The van Emde Boas layout proceeds recursively. Let h be the height of the tree, or
more precisely, the number of levels of nodes in the tree. Suppose first that h is a power
of 2. Conceptually split the tree at the middle level of edges, between nodes of height
h/2 and h/2 + 1. This breaks the tree into the top recursive subtree A of height h/2
and several bottom recursive subtrees B1, B2, . . . , B�, each of height h/2. If all nonleaf
nodes have the same number of children, then the recursive subtrees all have size
roughly

√
N , and � is roughly

√
N . The layout of the tree is obtained by recursively

laying out each subtree and combining these layouts in the order A,B1, B2, . . . , B�;
see Figure 1.

If h is not a power of 2, we assign a number of levels that is a power of 2 to
the bottom recursive subtrees and assign the remaining levels to the top recursive
subtree. More precisely, the bottom subtrees have height ��h/2�� (= ��h − 1��) and

3All logarithms are base 2 if not otherwise specified.
4We do not use a van Emde Boas tree—we use a normal tree with pointers from each node to its

parent and children—but the order of the nodes in memory is reminiscent of van Emde Boas trees.
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Fig. 1. The van Emde Boas layout. Left: in general; right: of a tree of height 5.

the top subtree has height h − ��h/2��. This rounding scheme is important for later
dynamic structures because the heights of the cut lines in the lower trees do not vary
with N . In contrast, this property is not shared by the simple rounding scheme of
assigning �h/2� levels to the top recursive subtree and �h/2� levels to the bottom
recursive subtrees.

The memory-transfer analysis views the van Emde Boas layout at a particular
level of detail. Each level of detail is a partition of the tree into disjoint recursive
subtrees. In the finest level of detail, 0, each node forms its own recursive subtree. In
the coarsest level of detail, �log2 h�, the entire tree forms the unique recursive subtree.
Level of detail k is derived by starting with the entire tree, recursively partitioning it
as described above, and exiting a branch of the recursion upon reaching a recursive
subtree of height ≤ 2k. The key property of the van Emde Boas layout is that, at any
level of detail, each recursive subtree is stored in a contiguous block of memory.

One useful consequence of our rounding scheme is the following.
Lemma 1. At level of detail k all recursive subtrees except the one containing the

root have the same height of 2k. The recursive subtree containing the root has height
between 1 and 2k inclusive.

Proof. The proof follows from a simple induction on the level of detail. Consider
a tree T of height h. At the coarsest level of detail, �log2 h�, there is a single recursive
subtree, which includes the root. In this case the lemma is trivial. Suppose by
induction that the lemma holds for level of detail k. In this level of detail the recursive
subtree containing the root of T has height h′, where 1 ≤ h′ ≤ 2k, and all other
recursive subtrees have height 2k. To progress to the next finer level of detail, k − 1,
all recursive subtrees that do not contain the root are recursively split once more
so that they have height 2k−1. If the height h′ of the top recursive subtree is at
most 2k−1, then it is not split in level of detail k − 1. Otherwise, the root is split
into bottom recursive subtrees of height 2k−1 and a top recursive subtree of height
h′′ ≤ 2k−1. The inductive step follows.

Lemma 2. Consider an N -node search tree T that is stored in a van Emde Boas
layout. Suppose that each node in T has between δ ≥ 2 and Δ = O(1) children. Let h
be the height of T . Then a search in T uses at most 4 �logδ Δ logB+1 N+logB+1 Δ� =
O(1 + logB+1 N) memory transfers.

Proof. Let k be the coarsest level of detail such that every recursive subtree
contains at most B nodes; see Figure 2. Thus, every recursive subtree is stored in at
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h mod 2k

2k

2k

2k

2k

h > logδ N

≤ B

≤ B

≤ B

≤ B

≤ B

Fig. 2. The recursive subtrees visited by a root-to-leaf search path in level of detail k.

most two memory blocks. Because tree T has height h, �h/2k� recursive subtrees are
traversed in each search, and thus at most 2�h/2k� memory blocks are transferred.
Because the tree has height h, δh−1 < N < Δh, that is, logΔ N < h < logδ N + 1.

Because a tree of height 2k+1 has more than B nodes, Δ2k+1

> B, so Δ2k+1 ≥ B + 1.
Thus, 2k ≥ 1

2 logΔ(B + 1). Therefore, the maximum number of memory transfers is

2

⌈
h

2k

⌉
≤ 4

⌈
1 + logδ N

logΔ(B + 1)

⌉
= 4

⌈(
1 +

logN

log δ

)(
log Δ

log(B + 1)

)⌉
= 4

⌈
logδ Δ logB+1 N + logB+1 Δ

⌉
.

Because δ and Δ are constants, this bound is O(1 + logB+1 N).

2.2. Strongly weight-balanced search trees. To convert the static layout
into a dynamic layout, we use a dynamic balanced search tree. We require the follow-
ing two properties of the balanced search tree.

Property 1 (descendant amortization). Suppose that whenever we rebalance a
node v (i.e., modify it to keep balance) we also touch all of v’s descendants. Then the
amortized number of elements touched per insertion is O(logN).

Property 2 (strong weight balance). For some constant d, every node v at
height h has Θ(dh) descendants.

Property 1 is normally implied by Property 2 as well as by a weaker property
called weight balance. A tree is weight balanced if, for every node v, its left subtree
(including v) and its right subtree (including v) have sizes that differ by at most a
constant factor. Weight balancedness guarantees a relative bound between subtrees
with a common root, so the size difference between subtrees of the same height may be
large. In contrast, strong weight balance requires an absolute constraint that relates
the sizes of all subtrees at the same level. For example, BB[α] trees [38] are weight-
balanced binary search trees based on rotations, but they are not strongly weight
balanced.

Search trees that satisfy Properties 1 and 2 include weight-balanced B-trees [11],
deterministic skip lists [37], and skip lists [41] in the expected sense. We choose to
use weight-balanced B-trees defined as follows.

Definition 3 (weight-balanced B-tree [11]). A rooted tree T is a weight-balanced
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B-tree with branching parameter d, where d > 4, if the following conditions hold:5

1. All leaves of T have the same depth.
2. The root of T has more than one child.
3. Balance: Consider a nonroot node u at height h in the tree. (Leaves have

height 1.) The weight w(u) of u is the number of nodes in the subtree rooted
at u. This weight is bounded by

dh−1

2
≤ w(u) ≤ 2dh−1.

4. Amortization: If a nonroot node u at height h is rebalanced, then Ω(dh)
updates are necessary before u is rebalanced again. That is, w(u)− dh−1/2 =
Θ(dh) and 2dh−1 − w(u) = Θ(dh).6

Conditions 1–4 have the following consequence:
5. The root has between 2 and 4d children. All internal nodes have between d/4

and 4d children. The height of the tree is O(1 + logd N).
From the strong weight balancedness of the subtree rooted at a node, we can

conclude strong weight balancedness of the top a levels in such a subtree, as follows.
Lemma 4. Consider the subtree A of a weight-balanced B-tree containing a node v,

its children, its grandchildren, etc., for exactly a levels. Then |A| < 4da.
Proof. Let T denote the subtree rooted at a node of height h. Consider the

descendants of v down precisely a levels, and let B1, B2, . . . , Bk be the subtrees rooted
at those nodes. In other words, the Bi’s are the children subtrees of A. Let b = h− a
denote the height of each Bi. Because T and the Bi’s are strongly weight balanced,
|T | ≤ 2dh−1 and |Bi| ≥ 1

2d
b−1 for all i. Now |B1| + · · · + |Bk| < |T | ≤ 2dh−1, so

k ≤ 4dh−b = 4da. But the number of nodes in A is less than the number of children
subtrees B1, B2, . . . , Bk, so the result follows.

Next we show how to perform updates, making a small modification to the pre-
sentation in [11]. Specifically, [11] performs deletions using the global rebalancing
technique of [39], where deleted nodes are treated as “ghost” nodes to be removed
when the tree is periodically reassembled. In the cache-oblivious model, we need to
service deletions immediately to avoid large holes in the structure.

Insertions. We search down the tree to find where to insert a new leaf w. After
inserting w, some ancestors of w may become unbalanced. That is, some ancestor
node u at height h may have weight greater than 2dh−1. We bring the ancestors of w
into balance starting from the ancestors closest to the leaves. If a node u at height h
is out of balance, then we split u into two nodes u1 and u2, which share the node u’s
children, v1, . . . , vk. We can divide the children fairly evenly as follows. Find the
longest sequence of v1, . . . , vk′ such that their total weight is at most �w(u)/2�, that

is,
∑k′

i=1 w(vi) ≤ �w(u)/2�. Thus, �w(u)/2� − 2dh−2 + 1 ≤ w(u1) ≤ �w(u)/2� and
�w(u)/2� ≤ w(u2) ≤ �w(u)/2� + 2dh−2 − 1. Because d > 4, we continue to satisfy
the properties of Definition 3. In particular, at least Θ(dh) insertions or deletions are
needed before either u1 or u2 is split.

Deletions. Deletions are similar to insertions. As before, we search down the tree
to find which leaf w to delete. After deleting w, some ancestors of w may become
unbalanced. That is, some ancestor node u at height h may have weight lower than
1
2d

h−1. We merge u with one of its neighbors. After merging u, it might now have

5In [11] there is also a leaf parameter k > 0, but we simply fix k = 1.
6This property is not included in the definition in [11], but it is an important invariant satisfied

by the structure.
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a weight larger than its upper bound, so we immediately split it into two nodes as
described in the insertion algorithm. A slightly more subtle problem is that the
newly merged node may be just below the upper threshold and may need splitting
soon thereafter. We can handle this problem in several ways. Here, we split a merged
node v if it has weight greater than 7

4d
h−1, thus producing two nodes of weight at

least 7
8d

h−1 − dh−2 ≥ 5
8d

h−1 and at most 9
8d

h−1. Thus, condition 4 is guaranteed. As
with insertions, we handle such out-of-bound nodes u in order of increasing height.

2.3. Packed-memory array. A packed-memory array maintains N elements
in order in an array of size P = cN subject to element deletion and element insertion
between two existing elements. The remaining fraction 1 − c of the array is blank.
The packed-memory array must achieve two seemingly contradictory goals. On the
one hand, we should pack the nodes densely so that scanning is fast: S consecutive
elements must occupy O(S) cells in the array so that scanning those elements uses
O(1 + S/B) memory transfers. On the other hand, we should leave enough blank
space between the nodes to permit future insertions to be handled quickly. Meeting
these two goals makes packed-memory arrays useful for storing dynamic linear data
cache obliviously. We achieve the following balance.

Theorem 5. For any desired c > 1, the packed-memory array maintains N ele-

ments in an array of size cN and supports insertions and deletions in O(1 + log2 N
B )

amortized memory transfers and scanning S consecutive elements in O(1 + S/B)
memory transfers.

Our data structure and analysis closely follow Itai, Konheim, and Rodeh [33].
They consider the same problem of maintaining elements in order in an array of
linear size, but in a different cost model and without the scanning requirement. Their
structure moves O(log2 N) amortized elements per insertion, but has no guarantee on
the number of memory transfers for inserting, deleting, or scanning. This structure
has been deamortized by Willard [52, 53, 54] and subsequently simplified by Bender
et al. [16].7

At a high level, the packed-memory array keeps every interval of the array of size
Ω(1) a constant fraction full, where the constant fraction depends on the interval size.
When an interval of the array becomes too full or too empty, we evenly spread out
(rebalance) the elements within a larger interval. It remains to specify the size of the
interval to rebalance and the thresholds determining when an interval is too full or
too empty.

Tree structure and thresholds. We divide the array into segments, each of size
Θ(lgP ), so that the number of segments is a power of 2. We then implicitly build a
perfect binary tree on top of these Θ(P / lgP ) segments, making each segment a leaf.
Each node in the tree represents the subarray containing the segments in the subtree
rooted at this node. In particular, the root node represents the entire array, and each
leaf node represents a single segment.

To define the thresholds controlling rebalance, we need additional terminology.
The capacity of a node u in the tree, denoted capacity(u), is the size of its subarray.
The density of a node u in the tree, denoted density(u), is the number of elements
stored in u’s subarray divided by capacity(u). Define the root node to have depth 0
and the leaf nodes to have depth d = lg Θ(P / lgP ).

For each node, we define two density thresholds specifying the desired range on

7This problem is closely related to, but distinct from, the problem of answering linked-list order
queries [28, 16].
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the node’s density. Let 0 < ρd < ρ0 < τ0 < τd = 1 be arbitrary constants. For
a node u at depth k, the upper-bound density threshold τk is τ0 + τd−τ0

d k and the

lower-bound density threshold ρk is ρ0 − ρ0−ρd

d k. Thus,

0 < ρd < ρd−1 < · · · < ρ0 < τ0 < τ1 < · · · < τd = 1.

A node u at depth k is within threshold if ρk ≤ density(u) ≤ τk.
The main difference between our packed-memory array and the data structure

of [33] is that we add lower-bound thresholds.
Insertion and deletion. To insert an element x, we proceed as follows. First we

find the leaf node w where x belongs. If leaf w has free space, then we rebalance w
by evenly distributing x and the Θ(lgP ) elements in the leaf. Otherwise, we proceed
up the tree until we find the first ancestor u of w that is within threshold. Then we
rebalance node u by evenly distributing all elements in u’s subarray throughout that
subarray. Leaf w is now within threshold and we can insert x as before.

Deleting an element is similar. To delete an element x, we remove x from the leaf
node w containing x. If w is still within threshold, we are done. Otherwise, we find
the lowest ancestor u of w that is within threshold and we rebalance u. Leaf w is now
within threshold.

Although we describe these algorithms conceptually as visiting nodes in a tree,
the tree is not actually stored. The operations are implemented by two parallel scans,
one moving left and one moving right, that visit the subarrays specified implicitly by
the tree nodes along a leaf-to-root path. During these scans we count the number of
elements found and the capacity traversed, stopping when the density of a subarray
is within threshold. The memory-transfer cost of the scans is O(1 + K/B), where
K is the capacity of the subarray traversed. We then rebalance this subarray using
O(1) additional scans, so the total cost is O(1 + K/B); K is also the capacity of the
subarray rebalanced.

Whenever N changes by a constant factor, we rebuild the structure by copying
the data into another array with newly computed densities.

Analysis. Next we bound the amortized size of a rebalance during an insertion or
deletion. Suppose that we rebalance a node u at depth k. The rebalance was triggered
by an insertion or deletion in the subarray of some child v of u. Before rebalancing,
u is within threshold, i.e., ρk ≤ density(u) ≤ τk, and v is not within threshold, i.e.,
density(v) > τk+1 or density(v) < ρk+1. After rebalancing, the density of v (and of
v’s sibling) is not only within threshold, but also within the density thresholds of its
parent u, i.e., ρk ≤ density(v) ≤ τk. Before the density of node v (or its sibling)
next exceeds its upper-bound threshold, we must have at least (τk+1− τk) capacity(v)
additional insertions within its subarray. Similarly, before the density of node v
(or its sibling) next falls below its lower-bound threshold, we must have at least
(ρk − ρk+1) capacity(v) additional deletions within its subarray.

We charge the size capacity(u) of the rebalance at u to its child v. Therefore the
amortized size of a rebalance per insertion into v’s subarray is

capacity(u)

capacity(v) (τk+1 − τk)
=

2

τk+1 − τk
=

2d

τd − τ0
= O(lgP ),

and the amortized size of a rebalance per deletion in v’s subarray is

capacity(u)

capacity(v) (ρk − ρk+1)
=

2

ρk − ρk+1
=

2d

ρ0 − ρd
= O(lgP ).
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When we insert or delete an element x, we insert or delete within d = O(lgP )
different subintervals containing x. Therefore the total amortized size of a rebalance
per insertion or deletion is O(lg2 P ) = O(lg2 N).

Because the amortized size of a rebalance per insertion or deletion is O(lg2 N),

the amortized number of memory transfers per insertion or deletion is O(1 + lg2 N
B ).

This concludes the proof of Theorem 5.

3. Main structure. We begin by describing a simple approach to cache-obliv-
ious B-trees that is not efficient by itself and then describe the modifications and
improvements necessary to obtain our structure.

The simple approach uses the principle of indirection to support fast updates. We
partition the N elements into consecutive groups of Θ(logN) elements each, and store
each group in a separate array of size Θ(logN). We maintain a standard balanced
binary search tree, such as an AVL tree, on the minimum element from each group.
This top tree thus stores Θ(N / lgN) elements. Each element in the top tree stores a
pointer to the corresponding group array, and vice versa. Most insertions and deletions
can simply rewrite one of the group arrays, which costs O(1+ lgN

B ) memory transfers.
Whenever a group grows by a constant factor (e.g., to 2 lgN) or shrinks by a constant
factor (e.g., to 1

2 lgN), we merge and/or split groups at a cost of O(1+ lgN
B ) memory

transfers and then perform the corresponding deletion and/or insertion in the top
tree at a cost of O(logN) memory transfers. The latter cost can be charged to the
Ω(logN) updates that caused the overflow or underflow, for an amortized O(1) cost.
Therefore the total amortized update cost is O(1 + lgN

B ) = O(logB+1 N) memory
transfers.

The problem with this structure is that searching in the balanced binary search
tree costs O(logN) memory transfers. The moral is that we can afford to have rel-
atively slow insertions and deletions in the upper tree, but we need to have fast
searches.

The next layer of complexity is to keep the top tree in an (approximate) van
Emde Boas layout, which brings the total search time down to O(logB+1 N) memory

transfers. (The cost to scan a group array is O(1 + logN
B ), which is negligible.) How-

ever, it is not clear how to preserve this van Emde Boas layout of a search tree under
insertions and deletions. First we show that, if we use a weight-balanced B-tree from
section 2.2 for the top tree, there are few changes to the relative order of elements
in the van Emde Boas layout, at least in the amortized sense. Nonetheless, when we
insert into the middle of the tree, we need to have extra space for newly created nodes.
If we keep the tree layout in an array, each insertion may require shifting most of the
tree, even though the relative order of elements changes very little. Instead we use a
packed-memory array from section 2.3 to store the van Emde Boas layout, allowing
us to make room for changes in the tree.

An additional technical complication arises in maintaining pointers to nodes that
move during an update. We search in the top tree by following pointers from nodes
to their children, represented by indices into the packed-memory array. When we
insert or delete an element in the packed-memory array, amortized O(log2 N) ele-
ments move. Any element that is moved must let its parent know where it has gone.
Thus, each node must have a pointer to its parent, and so each node must also let
its children know where it has moved. The O(log2 N) nodes that move can have
O(log2 N) children scattered throughout the packed-memory array, each in separate
memory blocks. Thus an insertion or deletion can potentially induce O(log2 N) mem-
ory transfers to update these disparately located pointers. We can afford this large
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cost in an amortized sense by adding another level of Θ(logN) indirection.

The overall structure of our cache-oblivious B-tree therefore has three levels. The
top level is a weight-balanced B-tree on Θ(N / log2 N) elements stored according to
a van Emde Boas layout in a packed-memory array. The middle level is a collection
of Θ(N / log2 N) groups of Θ(logN) elements each. The bottom level is a collection
of Θ(N / logN) groups of Θ(logN) elements each.

In the next section, we turn to the details of the top tree. In section 3.2, we
specify exactly how we store the collections of group arrays in the middle and bottom
levels, which depends on exactly which bounds we desire. In section 3.3, we put the
pieces together to obtain the final algorithms and analysis.

3.1. Splits and merges. At a high level, our algorithms for searching, inserting,
and deleting in the top tree follow the corresponding algorithms for a weight-balanced
B-tree from section 2.2. The search algorithm is identical, and costs O(logB+1 N)
memory transfers because of Lemma 2 bounding the cost in a van Emde Boas layout,
and because replacing an array with a packed-memory array does not increase the
number of memory transfers by more than a constant factor. The insertion and
deletion algorithms must pay careful attention to maintain the van Emde Boas order,
which sometimes changes drastically as the result of a split or merge.

An insertion or deletion in a weight-balanced B-tree consists of splits and merges
along a leaf-to-root path, starting at a leaf and ending at a node at some height. We
show how to split or merge a node at height h in the top tree using O(1+dh/B) mem-
ory transfers (which we call the split-merge cost), plus the memory transfers incurred
by a single packed-memory insertion or deletion (including updating pointers). By
the amortization property of weight-balanced B-trees (condition 4 of Definition 3), it
follows that the amortized split-merge cost of rebalancing a node v is O(1/B) memory
transfers per insertion or deletion into the subtree rooted at v. When we insert or
delete an element, this element is added or removed in O(logN) such subtrees. Hence,
the split-merge cost of an update is O(1 + logN

B ) amortized memory transfers.

Next we describe the algorithm to split a node v. First, we insert a new node v′

into the packed-memory array immediately after v. Then we redistribute the chil-
dren pointers among v and v′ according to the split algorithm of weight-balanced
B-trees, using O(1) memory transfers. If v is the root of the tree, we also insert a
new root node at the beginning of the packed-memory array and add parent-child
pointers connecting this node to v and v′. Because of the rounding scheme in the
van Emde Boas layout, this change in the height of the tree does not change the
layout. However, adding v′ and redistributing v’s children change the van Emde Boas
layout significantly.

To see how to repair the van Emde Boas layout, consider the coarsest level of
detail in which v is the root of a recursive subtree S. Suppose S has height h′, which
can be only smaller than the height h of node v. Let S be composed of a top recursive
subtree A of height h′ − ��h′/2�� and bottom recursive subtrees B1, B2, . . . , Bk each
of height ��h′/2��; refer to Figure 3. The split algorithm recursively splits A into
A′ and A′′. (In the base case, A is the singleton tree {v}, which we have already split
into {v} and {v′}.)

At this point, A′ and A′′ are next to each other. Now we must move them to
the appropriate locations in the van Emde Boas layout. Let B1, B2, . . . , Bi be the
children recursive subtrees of A′, and let Bi+1, Bi+2, . . . , Bk be the children recursive
subtrees of A′′. We need to move B1, B2, . . . , Bi in between A′ and A′′. This move
is accomplished by three linear scans. Specifically, we scan to copy A′′ to some tem-
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v
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v′ v′′

v′′v′

BkBiB1

B1 Bi BkBkBiB1

B1 Bi BkBi+1

Bi+1

Bi+1

Bi+1

Fig. 3. Splitting a node. The top shows the modification in the recursive subtree S, and the
bottom shows the modification in the van Emde Boas layout.

porary space, then scan to copy B1, B2, . . . , Bi immediately after A′, overwriting A′′,
and then scan to copy the temporary space containing A′′ to immediately after Bi.

Now that A′′ and B1, B2, . . . , Bi have been moved, we need to update the pointers
to the nodes in these blocks. First, we scan through the nodes in A′ and update the
children pointers of the leaves to point to the new locations of B1, B2, . . . , Bi. That
is, we increase the pointers by ‖A′′‖, the amount of space occupied in the packed-
memory array by A′′, including unused nodes. Second, we update the parent pointers
of Bi+1, Bi+2, . . . , Bk to A′′, decreasing them by ‖B1‖ + ‖B2‖ + · · · + ‖Bk‖. Finally,
we scan the recursive subtrees of height h′ that are children of B1, B2, . . . , Bi and
update the parent pointers of the roots, decreasing them by ‖A′′‖. This update can
be done in a single scan because the children recursive subtrees of B1, B2, . . . , Bi are
stored contiguously.

Finally, we analyze the number of memory transfers made by moving blocks at
all levels of detail. At each level h′ of the recursion, we perform a scan of all the nodes
at most six times (three for the move, and three for the pointer updates). By strong
weight balance (Property 2 and condition 3 of Definition 3), these scans cost at most
O(1 + dh

′
/B) memory transfers. The total split-merge cost is given by the cost of

recursing on the top recursive subtree of at most half the height and by the cost of
the six scans. This recurrence is dominated by the top level:

T (h′) ≤ T
(

h′

2

)
+ c

(
1 + dh′

B

)
≤ c

(
1 + dh′

B

)
+ O

(
dh′/2

B

)
.

Hence, the split cost is O(1 + dh
′
/B) ≤ O(1 + dh/B) memory transfers (not counting

the cost of a packed-memory insertion).
A merge can be performed within the same memory-transfer bound by using the

same overall algorithm. To begin, we merge two nodes v and v′ and apply a packed-
memory deletion. In each step of the recursion, we perform the above algorithm in
reverse, i.e., the opposite transformation from Figure 3. Therefore, the split-merge
cost in either case is O(1 + dh/B) worst-case memory transfers per split or merge,
which amortizes to O(1 + logN

B ) memory transfers per insertion or deletion.
The remaining cost per insertion and deletion is the cost to insert or delete an

element from the packed-memory array, including the cost of updating pointers. By

Theorem 5, the cost to rearrange the array itself is O(1 + log2 N
B ) amortized memory

transfers. Unfortunately, as mentioned above, the cost to update the pointers to the
amortized O(log2 N) elements moved can cost O(log2 N) memory transfers. Therefore
the total cost per insertion or deletion is O(log2 N) amortized memory transfers,
proving the following intermediate result.

Lemma 6. The top tree maintains an ordered set subject to searches in O(1 +
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logB+1 N) memory transfers and to insertions and deletions in O(log2 N) amortized
memory transfers.

3.2. Using indirection. We use two levels of indirection to reduce the cost of
updating pointers in the top tree of the previous section. The resulting data structure
has three layers.

The bottom layer stores all N elements, clustered into Θ(N / logN) groups of
Θ(logN) consecutive elements each. Associated with each of these bottom groups is
a representative element, the minimum element in the group. A representative element
may in fact be a ghost element which has been deleted but cannot be removed from
the structure because it is used in higher layers.

The middle layer stores the Θ(N / logN) representative elements from the bottom
layer (some of which may be ghost elements). The middle layer may also store ghost
elements which have been deleted from the bottom layer but are still representatives
in the middle layer. The middle elements are clustered into Θ(N / log2 N) groups of
Θ(logN) consecutive elements each. Again, we elect the minimum element of each
middle group as a representative element.

The top layer stores the Θ(N / log2 N) representative elements from the middle
layer (some of which may be ghost elements).

The layers are stored according to the following data structures. The top layer
is implemented by the top tree from the previous section. The middle layer is imple-
mented by a single packed-memory structure, where the representative elements serve
as markers between groups. The bottom layer is implemented by a packed-memory ar-
ray if we require optimal scan operations. Otherwise, the bottom layer is implemented
by an unordered collection of groups, where the elements in each group are stored in
an arbitrary order within a contiguous region of memory. These memory regions are
all of the same size and are allowed to be a constant fraction empty. Elements are
inserted into or deleted from a group simply by rewriting the entire group.

Elements appearing on multiple layers have “down” pointers from each instanti-
ation to the instantiation at the next lower layer. Elements appearing on both the
top and middle layers have “up” pointers from the middle instantiation to the top
instantiation. However, elements appearing on both the middle and bottom layers do
not have up pointers from the bottom layer to the middle layer.

To search for an element in this data structure, we search in the top layer for
the query element or, failing that, its predecessor. Then we follow the pointer to the
corresponding group in the middle layer and scan through this middle group to find
the query element or its predecessor. If the found element is a ghost element of the
middle layer that has been deleted from the bottom layer, we move to the previous
element in the middle layer. Finally, we follow the pointer to the corresponding
group in the bottom layer and scan through this bottom group in search of the query
element.

When an element is inserted, it is added to a bottom group according to order;
if the inserted element could fit in two bottom groups, we favor the smaller of the
two groups. Thus, a freshly inserted element never becomes the new representative
element of its group. A group in the bottom or middle layer may become too full,
in which case we split the group evenly into two groups, create a new representative
element for the second group, and insert this representative element into the next
level up. Similarly, a group in the bottom or middle layer may become too empty
(by a fixed constant fraction less than 1

2 ), in which case we merge the group with an
adjacent group and delete the larger representative element from the next level up.
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A merge may cause an immediate split.

3.3. Analysis. We detail the search, insert, and delete algorithms and analyze
their performance in two versions of the data structure. The ordered B-tree stores the
bottom layer as a packed-memory structure, and therefore supports scans optimally.
The unordered B-tree stores the bottom layer as an unordered collection of groups.

Lemma 7. In both B-tree structures, a search uses O(1 + logB+1 N) memory
transfers.

Proof. A search examines each layer once from the top down. Searching through
the tree in the top layer costs O(1 + logB+1 N) memory transfers by Lemma 6. Scan-

ning through a group in the middle or bottom layer costs O(1+ logN
B ) memory transfers

because each group contains O(logN) elements and is stored in a contiguous array of
O(logN) elements. The cost at the top layer dominates.

Lemma 8. In the ordered B-tree, an update uses O(1+logB+1 N+ log2 N
B ) memory

transfers.

Proof. An update (insertion or deletion) examines each layer once from the bottom

up. At the bottom layer, we pay O(1+ log2 N
B ) amortized memory transfers according

to Theorem 5 to rebalance the packed-memory array and preserve constant-size gaps.
Of the O(log2 N) amortized nodes that move during this rebalance on the bottom
layer, O(logN) amortized nodes are also present on the middle layer, and we must
update the down pointers from these nodes on the middle layer to the moved nodes
on the bottom layer. To update these pointers, we scan the bottom and middle layers
in parallel, with the middle-layer scan advancing at a relative speed of Θ(1 / logN).

These pointer updates cost O(1 + log2 N
B ) amortized memory transfers.

A bottom group causes a split or merge after Ω(logN) updates to that group

since the last split or merge. When such a split or merge occurs, we pay O(1+ log2 N
B )

amortized memory transfers to rebalance the packed-memory array on the middle
layer. This split-merge cost can be charged to the Ω(logN) updates that caused it,
reducing the amortized cost by a factor of Ω(logN). Thus, we pay only O(1 + logN

B )

amortized memory transfers per update. Of the O(log2 N) amortized nodes that move
during this rebalance on the middle layer, O(logN) amortized nodes are also present
on the top layer, and we must update the down pointers from these nodes on the top
layer to the moved nodes on the middle layer. To update these pointers, we scan the
moved nodes on the middle layer, follow each node’s up pointer if it is present, and
update the down pointer of each node reached. These pointer updates cost at most

O(logN + log2 N
B ) amortized memory transfers per split or merge, or O(1 + logN

B ) per
update. (At this point we could also afford to update up pointers from the bottom

layer to the middle layer at an amortized cost of Θ(1 + log3 N
B ) per split or merge, or

Θ(1 + log2 N
B ) per update, but we do not need these pointers and, furthermore, the

unordered B-tree cannot afford to maintain them.)

A middle group causes a split or merge after Ω(logN) updates to that group,
which correspond to Ω(log2 N) updates to the data structure. When such a split or
merge occurs, we pay O(log2 N) amortized memory transfers to update the top layer,
which is only O(1) amortized memory transfers per update to the data structure.
Furthermore, the number of nodes moved in the top layer is also O(log2 N) amortized,
so O(log2 N) amortized up pointers from the middle layer to the top layer need to be
updated. Thus the pointer-update cost is O(log2 N) amortized memory transfers per
split or merge, or O(1) per update to the data structure.
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Summing all costs, an update costs O(1 + log2 N
B ) amortized memory transfers

plus the cost of searching.
Lemma 9. In the unordered B-tree, an update uses O(1 + logB+1 N) amortized

memory transfers.
Proof. The analysis is nearly identical. The only difference is that we no longer

rebalance a packed-memory array on the bottom layer, but instead maintain an un-

ordered collection of contiguous groups. As a result, we do not pay O(1 + log2 N
B )

amortized memory transfers per update, neither for the packed-memory update nor
for updating down pointers from the middle layer to the bottom layer. The additional
cost of rewriting a bottom group during each update is O(1 + logN

B ) memory trans-
fers. The cost of splitting and/or merging a bottom group is the same. Therefore,
the total cost of an update is O(1 + logN

B ) amortized memory transfers plus the cost
of searching.

Combining Lemmas 7–9, we obtain the following main results.
Theorem 10. The ordered B-tree maintains an ordered set subject to searches

in O(1 + logB+1 N) memory transfers, insertions and deletions in O(1 + logB+1 N +
log2 N

B ) amortized memory transfers, and scanning S consecutive elements in O(1 +
S/B) memory transfers.

Theorem 11. The unordered B-tree maintains an ordered set subject to searches
in O(1 + logB+1 N) memory transfers and to insertions and deletions in O(1 +
logB+1 N) amortized memory transfers.

4. Extensions and alternative approaches. A previous version [18] of this
paper presents a different cache-oblivious B-tree based on buffer nodes. One distin-
guishing aspect of this approach is that it uses no indirection, storing the tree in one
packed-memory array. This B-tree achieves an update bound of O(1 + logB+1 N +
logB√

B
log2 N) amortized memory transfers. With one level of indirection, the B-tree’s

update bound reduces to O(1+ logB+1 N + log2 N
B ) amortized memory transfers while

supporting optimal scans, or O(1 + logB+1 N) amortized memory transfers without
optimal scans. Thus, we ultimately obtain the same bounds as the simpler B-trees
presented above, though with one fewer level of indirection.

The basic idea of buffer nodes is to enable storing data of different “fluidity” in
a single packed array, ranging from rapidly changing data that is cheap to update
to slowly changing data that is expensive to update. In the context of trees, leaves
are frequently updated but their pointers are to relatively nearby nodes, so updating
these pointers is usually cheap, whereas nodes in, e.g., the middle level, are updated
infrequently but their pointers are to disparate regions of memory. The buffer-node
solution is to add a large number of extra (dataless) nodes in between data of different
fluidity to “protect” the low-fluidity data from the frequent updates of high-fluidity
data. In the context of trees, we add O(N / logN) buffer nodes in between the
top recursive subtree A and bottom recursive subtrees B1, B2, . . . , B�. These buffers
prevent the rebalance intervals in the packed-memory array from touching the nodes
in A for a long time, leading to an O( logB√

B
log2 N) term in the update bound.

For any of the cache-oblivious B-tree structures, a natural question is whether

the O( log2 N
B ) term in the update bound can be removed while still supporting scans

optimally. Effectively, in addition to a search-tree structure, we need a linked-list data
structure for supporting fast scans. Recently, Bender et al. [15] developed a cache-
oblivious linked list that supports insertions and deletions in O(1) memory transfers
and scans of S consecutive elements in O(1+S/B) amortized memory transfers. Using
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this linked list, they obtain the following optimal bounds for cache-oblivious B-trees.

Theorem 12 (Bender et al. [15, Corollary 1]). There is a cache-oblivious data
structure that maintains an ordered set subject to searches in O(logB+1 N) memory
transfers, insertions and deletions in O(logB+1 N) amortized memory transfers, and
scanning S consecutive elements in O(1 + S/B) amortized memory transfers.

It remains open whether these bounds can be achieved in the worst case. See
[15, 17] for cache-oblivious B-trees achieving some worst-case bounds.

5. Conclusion. We have presented cache-oblivious B-tree data structures that
perform searches optimally. The first data structure maintains the data in sorted order
in an array with gaps, and it stores an auxiliary structure for searching within this
array. The second data structure attains the O(logB+1 N) update bounds of B-trees
but breaks the sorted order of elements, thus slowing sequential scans of consecutive
elements. These cache-oblivious B-trees represent the first dynamic cache-oblivious
data structures. The cache-oblivious tools presented in this paper play an important
role in the dynamic cache-oblivious data structures that have followed.
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Abstract. k-transformable grammars have been conjectured to be the uppermost class of LL(k)
covering transformable grammars. PLR(k) grammars have been known as a well characterized sub-
class of k-transformable grammars. Being contrary to those claims, this paper shows that some
PLR(k) grammars are not k-transformable, and so k-transformable grammars are not the true up-
permost.

A powerful LL(k) covering transformation is suggested in this paper. It is a generalization of
the transformations of k-transformable grammars and PLR(k) grammars. A remarkable aspect of
the new transforming process is the deterministic property, where “deterministic” means that the
transformation is obtained in a single process without requiring any heuristic, unlike k-transformable
grammars’ transformation for which a heuristic is required. The transformable grammar class is
shown to be larger than k-transformable grammars and PLR(k) grammars.
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1. Introduction. LR grammars and LL grammars are two of the most rep-
resentative context-free grammars for programming languages. When we compare
the parsers of those grammars, we see that LL parsers are easier and simpler to
implement, understand, and error recover and have a greater flexibility in comput-
ing semantic attributes during parsing, but LL grammars are a small subclass of
LR grammars. Some researchers thus suggested generalized LL parsing techniques
[5, 8, 11], which are more applicable to the larger grammar class than the class of
LL grammars. On the other hand, the restricted LR(k) grammars, k-transformable
grammars [3, 4], and PLR(k) grammars [10] were suggested by Hammer and Soisalon-
Soininen, respectively, as the grammars able to be transformed into LL(k) covering
grammars. Specially, k-transformable grammars have been conjectured as the upper-
most class of such LR(k) grammars [3], and PLR(k) grammars have been known as
a well-characterized subclass of k-transformable grammars [10].

In this paper we are interested in the covering transformation of LR grammars
into LL grammars. The main idea in the transformation starts from the prediction
of reduction goals during LR parsing. In LR parsing, a nonterminal, to which some
prefix of the remaining input is reduced, is known at the reduction time, but we can
often find a reduction goal before that time. A nonterminal B and a suffix γ of α
are predicted, when the stack string is α, if it is certain that γ and some prefix of
the remaining input will be reduced to B. (That is, the left side of Figure 1.1 is
expected to be the right side.) In Hammer’s method, γ is restricted to be ε, and in
Soisalon-Soininen’s method, γ has to be the left corner symbol of the right side of a
production. Soisalon-Soininen’s γ gives more information about B than Hammer’s
γ and, as a result, some predictable goals by Soisalon-Soininen’s method cannot be
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predicted when Hammer’s method is applied. We found that the lack of predictability
causes the class of k-transformable grammars not to completely include the class of
PLR(k) grammars.
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Fig. 1.1. Prediction in LR parsing (α = βγ).

This paper generalizes the previous prediction technique into two viewpoints. The
first key idea is to predict a reduction goal after enough information for the goal is
known. The delay in predicting time obviously enlarges the range of predictable goals.
In this paper, we allow γ in the right side of Figure 1.1 to be an arbitrary string. On
the other hand, in both Hammer and Soisalon-Soininen’s methods, the prediction of
goal B at a parsing time implies that whenever a generatable string from B appears
as the k-length prefix of the remaining input, a reduction to B will certainly occur.
The second key idea is to allow the prediction to be performed not only over the
total string but also over some partial string generatable from a predicted goal. That
is, B can be a predicted goal as long as any predictive string exists, although some
generatable strings from B do not guarantee a reduction to B.

This paper suggests a powerful covering transformation into LL(k) form based
on the generalized prediction. The applicable grammar class is defined as extended
PLR(k) grammars. They are larger than k-transformable grammars and PLR(k)
grammars. Hammer informally described an extension [3, pp. 289–293] of k-transform-
able grammars. After his argument, there has been no more research on the extension.
The main reason is considered to be intricateness of the construction of multiple
stack machine [3], which is required to obtain an LL(k) transformation. (Actually,
Hammer was worried that the extension needs numerous complications in his original
machine model [3, p. 292, lines 1–3].) On the other hand, recently we suggested a
grammatical characterization of k-transformable grammars in [7]. This paper develops
an extension of k-transformable grammars using grammatical derivation. We believe
that our extension completely includes the informal extension of Hammer.

Another contribution of this paper is the deterministic selection of the new trans-
formation compared with the nondeterministic one of Hammer’s method, where “de-
terministic” means that an LL covering grammar can be obtained in a single process,
whereas in Hammer’s method a transformer has to choose a set of predictable goals
using a heuristic. As a result, whether a grammar is transformable or not can be
decided in a single process. The grammatical characterization of the transformable
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grammars is also given.

Section 2 contains basic notation and definitions that are used in the subsequent
sections. The counterexample showing that a PLR(k) grammar is not k-transformable
is presented in section 3. Section 4 defines two relations, which are used to describe
the generalized prediction. The idea for the deterministic transforming is developed
in section 5. Section 6 suggests a new LL(k) covering transformation and relates
the transformable grammars with k-transformable grammars and PLR(k) grammars.
Finally, section 7 summarizes this paper.

2. Basic notation and definitions. We use notation and definitions based on
[9], and the reader is assumed to be familiar with them.

Throughout this paper, the symbol G denotes an arbitrary context-free grammar
G = (N,Σ, P, S) (let V = N ∪ Σ). The symbol k represents an arbitrary positive
integer. Without being explicitly stated, G is assumed to be LR(k). Let S′ ∈/ N and
a terminal symbol $ ∈/ Σ. Then G′ = (N ∪ {S′},Σ ∪ {$}, P ∪ {S′ → S$k}, S′) is the
augmented grammar of G. In this paper, G is assumed to be augmented and reduced
[9].

Lowercase Greek letters, such as α, β, and γ, denote strings in V ∗; lowercase
Roman letters near the beginning of the alphabet, such as a, b, and c, are in Σ, and
those near the end, such as w, x, y, and z, are in Σ∗; uppercase Roman letters near
the end of the alphabet, such as W,X, and Y , are in V . The empty string is denoted
by ε. The reverse of a string α is represented by αR.

Let w be a terminal string. Then k:w is equal to w if |w| ≤ k, or the first k
symbols of w otherwise. For any G and any α ∈ (V ∪ {$})∗, LG(α) = {x|α ⇒∗ x
in G, x ∈ Σ∗}, FIRSTG

k (α) = {k:x|α ⇒∗ x in G, x ∈ Σ∗}, and FOLLOWG
k (α) =

{k:x|S′ ⇒∗ βαx in G, x ∈ Σ∗}. If G is obvious, then it is omitted.

A string α ∈ V ∗ is said to be a viable prefix of G if there exists a derivation S′ ⇒∗
rm

βBz ⇒rm βγδz ⇒∗
rm βγyz in G, where βγ = α and rm stands for the rightmost

derivation. For a viable prefix α of G, k-right context is defined as: RCG
k (α) = {k:yz|

there exists S′ ⇒∗
rm βBz ⇒rm βγδz ⇒∗

rm βγyz in G where βγ = α}.
A restricted relation ⇒A,R of ⇒rm, where A ∈ N and R ⊆ FOLLOWk(A), is

defined. Let p = B → Xδ. Suppose that there exists Ar ⇒∗
rm γBzr ⇒p

rm γXδzr,
where r ∈ R and z ∈ Σ∗. Then

γBzr ⇒p
A,R γXδzr

{
holds when FIRSTk(δzr) ∩R = ∅ if γ = ε and X = A,
always holds otherwise.

Every derivation using ⇒A,R starts from A and must not derive a string containing A
at the leftmost position such that the string of the A immediately following belongs
to R. That is, the derivation Ar ⇒+

A,R Axr, where r ∈ R and k:xr ∈ R is not allowed.
The difference between ⇒A,R and ⇒rm is clear when A is left recursive.

The k-right context function RCG
k is localized over derivation ⇒A,R as follows.

Let α ∈ V ∗. Then RCA,R
k (α) = {k:yzr| there exists Ar ⇒∗

A,R βBzr ⇒A,R βγδzr ⇒∗
A,R

βγyzr in G where r ∈ R and βγ = α}.
The equivalence of grammars can be considered in terms of languages or syntactic

structures. That is, for G1 and G2, the former means L(G1) = L(G2), and the latter
means that the grammars satisfy a covering property. We present the definition of
left-to-right cover.

Definition 2.1. Let G1 = (N1, Σ, P1, S1) and G2 = (N2, Σ, P2, S2) be
grammars such that L(G1) = L(G2), and let h be a homomorphism from P2 to P1.
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Then we say that G2 left-to-right covers G1 with respect to h if the following conditions
are satisfied:

1. If there exists S2 ⇒π
lm w in G2, then there exists S1 ⇒h(π)

rm w in G1, and

2. if there exists S1 ⇒π′

rm w in G1, then there exists S2 ⇒π
lm w in G2, where

h(π) = π′.
Let G2 be LL(k) and G1 be LR(k). Then G2 LL-to-LR(k) covers G1 if G2 left-

to-right covers G1 with respect to h for some h. At this time, G2 is said to be an
LL-to-LR(k) covering (or simply, LL(k) covering) grammar of G1.

We next present the definition of PLR(k) grammars.
Definition 2.2. (see [10]). A grammar G = (N,Σ, P, S) is said to be PLR(k) if

in G′, for each production A → Xδ, where Xδ 
= ε, the conditions

S′ ⇒∗
rm βAz1 ⇒rm βXδz1 ⇒∗

rm βXy1z1,

S′ ⇒∗
rm β′Bz2 ⇒rm β′β′′Xζz2 ⇒∗

rm β′β′′Xy2z2, and

β′β′′ = β and k:y1z1 = k:y2z2

always imply that βA = β′B.
Instead of the original definition [3] of k-transformable grammars, we use the fol-

lowing theorem to characterize k-transformable grammars because it does not require
any understanding of the intricate multiple stack machine.

Theorem 2.3. (see [7]). G is k-transformable iff there exists a constant n,
depending on G, such that if α(
= ε) is a viable prefix of G and v is a string in RCG

k (α),

then there exist B, W , and γ(
= ε), where α = βγ, |γ| ≤ n, and v ∈ RCB,W
k (γ) such

that whenever there exists S′ ⇒∗
rm βγz ⇒∗

rm βyz in G, where k:yz ∈ RCB,W
k (ε), there

exist S′ ⇒∗
rm βBz′′ and Bw ⇒∗

B,W γz′w ⇒∗
B,W yz′w in G, where w = k:z′′(w ∈ W )

and z′z′′ = z. (We call the n the characteristic of k-transformableness for G.)

3. A counterexample. The following example shows a PLR(1) grammar that
is not k-transformable for all k ≥ 0.

Example 3.1. Let G1 = ({S,C,D,X, Y }, {c, d, b, a}, {S → C,C → DXc,C →
DY d,D → bD,D → a,X → DC,X → DD,Y → Dd}, S). Then we can decide that
G1 is LR(1) and PLR(1), but is not k-transformable for all k(k ≥ 1). Suppose that G1
is k-transformable for some fixed k and n is the characteristic of k-transformableness
for G1. Let us set α and v to be DD(DD)j for some j > n and b, respectively. Then we
cannot find the B,W , and γ in Theorem 2.3. Hence, G1 cannot be k-transformable.

Thus, PLR(k) grammars are not a subclass of k-transformable grammars. Con-
versely, k-transformable grammars are not a subclass of PLR(k) grammars. For ex-
ample, a grammar with the production set {S → aAa,A → Bb,B → Aa,A → b}
is LR(1) and 1-transformable. The grammar, however, is not PLR(1) because there
exist two contradictory derivations S′ ⇒rm S$ ⇒rm aAa$ and S′ ⇒rm S$ ⇒rm

aAa$ ⇒rm aBba$ ⇒rm aAaba$. Thus, there is no inclusion relationship between k-
transformable grammars and PLR(k) grammars. A generalized grammar class, which
contains both grammars, is hence motivated, and the subsequent sections treat this
subject.

4. Two relations. This section defines two relations in order to formally de-
scribe the generalized prediction.

4.1. d relation. A rightmost derivation in a grammar can be analyzed through
the dependency relation of Knuth [6]. The relation, called d relation, is here refined
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by attributing some terminal strings in order to represent context information in
sentential forms.

Let A∈N , r ∈ Σk, α ∈ V ∗, X∈V ∪ {ε}, and v ∈ Σk ∪ Σk−1. Then

(A, r) dα (X, v) iff A → αXβ∈P, r ∈ FOLLOWk(A),(4.1)

v ∈ FIRSTk(βr) when X ∈ N ∪ {ε}, and v ∈ FIRSTk−1(βr) when X ∈ Σ.

Let (A, r) d
0ε

(A, r) be (A, r) dε (A, r), and (A, r) dn
α

(X, v), n>0, be the composition

of (A, r) dn−1β

(B,w) and (B,w) dγ (X, v), where βγ = α. The reflexive transitive
closure of d relation, denoted by d∗, is defined by

⋃
n≥0 d

n.
The directed graph associated with the d relation is called the d-graph. It is

constructed by representing each instance (4.1) as a pair of vertices connected by a
directed edge:

α
A,r X,v

A path is represented by h = (A0, r0) dα1 (A1, r1) · · · (An−1, rn−1) dαn (An, rn). If
An ∈ Σ or An = ε, then h is a terminal path. If the intercomponents (A1, r1), . . .,
(An−1, rn−1) are not important, then h is represented by (A0, r0) d∗

α1···αn
(An, rn).

Given a path in the d-graph, we can infer a corresponding rightmost derivation,
and vice versa.

Property 4.1. Let Ai ∈ N and ri ∈ Σk, i = 0, 1, . . . , n. Then there ex-
ists a path h = (A0, r0) dα1 (A1, r1) dα2 (A2, r2) · · · (An−1, rn−1) dαn (An, rn) in
the d-graph iff there exists a derivation in G such that A0r0 ⇒rm α1A1β1r0 ⇒∗

rm

α1A1z1r0 ⇒rm α1α2A2β2z1r0 ⇒∗
rm α1α2 · · · αn−1An−1zn−1 · · · z1r0 ⇒rm α1α2 · · ·

αn−1αnAnβnzn−1 · · · z1r0 ⇒∗
rm α1α2 · · · αn−1 αnAnznzn−1 · · · z1r0 for some zi ∈ Σ∗

where k:zi · · · z1r0 = ri (i = 1, . . . , n).
Proof. The only if part can be proved by simple induction on n, and the if part

can be proved by directly applying the definition of the d relation.
A sequence of dε-related vertices in a path is defined as a segment. Let h =

(A0, r0)d
α1 (A1, r1) · · · (An−1, rn−1)d

αn(An, rn) be a path in the d-graph. If β =
α1 · · ·αi and αi+1 · · ·αj = ε, then the |β|-segment of h is (Ai, ri)d

αi+1(Ai+1, ri+1) · · ·
(Aj−1, rj−1) dαj (Aj , rj), where

αi 
= ε when i 
= 0 and αj+1 
= ε when j 
= n.(4.2)

Condition (4.2) says that the immediate predecessor and the immediate successor of
a segment, if they exist, are not dε-related.

Property 4.2. Let A ∈ N and r ∈ Σk. There exists (Al, rl) = (A, r) for some
l (i ≤ l ≤ j) in the |β|-segment (Ai, ri) dε (Ai+1, ri+1) · · · (Aj−1, rj−1)d

ε (Aj , rj) of
the path (A0, r0)d

∗α

(An, rn) iff there exists A0r0 ⇒∗
rm βAzr0 in G, where k:zr0 = r.

We next define a specialized path in the d-graph that is related to a derivation
over ⇒A,R.

Definition 4.1. Let A ∈ N, r ∈ Σk, α ∈ V ∗, and u ∈ Σk. Suppose that
h = (A0, r0) dα1 (A1, r1) · · · (An−1, rn−1) dαn (An, rn) is a terminal path in the d-
graph, where A0 = A, r0 = r, α1 · · ·αn = α, and Anrn = u. Assume that there is
no i(1 ≤ i ≤ m) in the 0-segment (A0, r0)d

ε (A1, r1) · · · dε (Am, rm) of h such that
Ai = A and ri = r. Then h is said to be an 〈A, r, α, u〉-path.
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The following property can be obtained similarly to Property 4.1.
Property 4.3. Let r ∈ R. If there exists an 〈A, r, α, u〉-path in the d-graph,

then there exists a derivation Ar ⇒∗
A,R βBzr ⇒A,R βγδzr ⇒∗

A,R βγyzr in G, where
βγ = α and k:yzr = u, and vice versa.

On the other hand, RCA,R
k can be obtained by examining some related paths in

the d-graph as follows.
Property 4.4. RCA,R

k (α) = {u | there exists an 〈A, r, α, u〉-path in the d-graph
where r ∈ R}.

Proof. (⊇) Assume that there exists an 〈A, r, α, u〉-path in the d-graph, h = (A, r)
d∗

α

(a, v), r ∈ R, where av = u. Then by Property 4.3, there exists a derivation
Ar ⇒∗

A,R βBzr ⇒A,R βγδzr ⇒∗
A,R βγyzr in G, where βγ = α and k:yzr = u. Hence,

u ∈ RCA,R
k (α).

(⊆) Let u ∈ RCA,R
k (α). Then there exists a derivation Ar ⇒∗

A,R βBzr ⇒A,R

βγδzr ⇒∗
A,R βγyzr in G, where βγ = α and k:yzr = u for some r ∈ R. By Prop-

erty 4.3, there exists an 〈A, r, α, u〉-path in the d-graph.

4.2. ΠΠ relation. We define a predictive relation, written by ΠΠ, which represents
predictable symbols based on the generalized idea.

Definition 4.2. Let A,B ∈ N,R ⊆ FOLLOWk(A),W ⊆ FOLLOWk(B), β, γ ∈
V ∗, where (A,R, βγ) 
= (B,W, γ) and u ∈ RCB,W

k (γ). Then (A,R, βγ)ΠΠu(B,W, γ)
iff, for each 〈A, r, βγ, u〉-path, r ∈ R, we let (A0, r0)d

ε(A1, r1) · · · (An−1, rn−1)d
ε(An, rn)

be the |β|-segment of the path, then
(i) there exists m (0 ≤ m ≤ n) such that

Am = B(4.3)

and ⋃
h

{ri|Ai = B, 0 ≤ i ≤ m} ∩
⋃
h

{ri|Ai = B,m + 1 ≤ i ≤ n} = ∅,(4.4)

where h in (4.4) ranges over all 〈A, r, βγ, u〉-paths, and
(ii) if ms is the smallest m (m > 0 when β = ε) satisfying both (4.3) and (4.4),

then

W =
⋃
h

{rms},(4.5)

where h in (4.5) ranges over all 〈A, r, βγ, u〉-paths.
(A,R, βγ) ΠΠu (B,W, γ) means that when the suffix βγ of the current stack string

is already predicted to be reduced to (A,R),1 it is now predicted that whenever the
k-length prefix of the remaining input is u, it is certain that the suffix γ of βγ will
be reduced to (B,W ). Figure 4.1 depicts this prediction; the left tree is expected
to be the right one. This relation expresses the generalized prediction; compared to
Hammer and Soisalon-Soininen’s methods, γ is not restricted, and the prediction is
performed over a predictive string u rather than over predictive language [3].

The smallest condition in Definition 4.2(ii) is meaningful only when B is left
recursive. If B is not left recursive, then the m in Definition 4.2(i) is unique, and so
the smallest condition becomes meaningless.

1(A,R) represents a refinement of A with the context information R such that (A,R)’s following
string belongs to R and the generated language from (A,R) is L(A,R) = {x|Ar ⇒∗

A,R xr, r ∈ R}.



A POWERFUL LL(k) COVERING TRANSFORMATION 365

predict (B,W,   )γ
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u=k:zw, k:w is in R  xy=z, k:yw is in W

Fig. 4.1. Predictive property.

The following two lemmas delineate the meaning of (A,R, βγ)ΠΠu(B,W, γ) in terms
of grammatical derivation forms.

Lemma 4.3. Let (A,R, βγ)ΠΠu(B,W, γ). Then whenever there exists Ar ⇒∗
A,R

βγzr, where r ∈ R and k:zr=u, there exist Ar ⇒∗
A,R βByr and Bw ⇒∗

B,W γxw,
where w = k:yr(w ∈ W ) and xy = z.

Proof. Consider the derivation

B0r ⇒A,R β1B1δ1r ⇒∗
A,R β1B1z1r ⇒A,R β1β2B2δ2z1r

(4.6)

⇒∗
A,R · · · ⇒∗

A,R β1β2 · · ·βnBnzn · · · z1r,

where B0 = A, β1 · · ·βn = βγ, and k:zr = u with Bnzn · · · z1 = z. Then there exists a
corresponding path h = (B0, r0) d

β1 (B1, r1) d
β2 (B2, r2) · · · (Bn−1, rn−1) d

βn (Bn, rn),
where r0 = r, ri = k:zi · · · z1r (i = 1, . . . , n − 1), and Bnrn = u. Here, h is an
〈A, r, βγ, u〉-path. Let (A0, r0)d

ε(A1, r1) · · · dε (An, rn) be the |β|-segment of path h.
By Definition 4.2 and (4.3), there exists Am for some m(0 ≤ m ≤ n) such that
Am = B, and by Definition 4.2 and (4.4), there is no rj ∈ W,m < j ≤ n. Thus,
the derivation (4.6) can be divided into Ar ⇒∗

A,R βByr, where β = β1 · · ·βm and
y = zm · · · z1 and Bw ⇒∗

B,W γxw, where γ = βm+1 · · ·βn, x = Bnzn · · · zm+1, and
w = k:yr = rm (w ∈ W ).

Similar to the proof of Lemma 4.3, we can prove the following lemma; the details
are omitted.

Lemma 4.4. Let A,B ∈ N,R ⊆ FOLLOWk(A), W ⊆ FOLLOWk(B), β, γ ∈
V ∗, and u ∈ RCB,W

k (γ). If, whenever there exists Ar ⇒∗
A,R βγzr where r ∈ R and

k:zr=u, there exist Ar ⇒∗
A,R βByr and Bw ⇒∗

B,W γxw where w = k:yr(w ∈ W ) and
xy = z, then (A,R, βγ)ΠΠu(B,W ′, γ) for some W ′.

Let (A,R, βγ)ΠΠu(B,W, γ) and (A,R, βγ)ΠΠu(B,W ′, γ). Then W is equal to W ′

because of the smallest property in Definition 4.2 (ii).

The following example shows the computing process of ΠΠ relations.

Example 4.1. Let G2 = ({S,A,C,B,X, Y }, {a, b, c}, P2, S), where P2 = {S→A,
S→C, A→BX, A→BY , C→Ba, B→b, X → BA, X→c, Y→BC}. Note that G2 is
LR(1). See 〈A, $, BBB, b〉-paths and 〈A, $, BBB, c〉-paths in Figure 4.2.



366 GYUNG-OK LEE AND KWANG-MOO CHOE

(i) We can find two 〈A, $, BBB, b〉-paths, p1 = (A, $) dB(X, $) dB (A, $) dB

(X, $)dε(B, b)dε(b, ε) and p2 = (A, $) dB(X, $) dB (A, $)dB (Y, $)dε(B, b)dε(b, ε). Then
p1 and p2 have the same 2-segment (A, $). Hence, we have (A, {$}, BBB) ΠΠb (A, {$}, B).
On the other hand, p1 and p2 have the 3-segments (X, $) dε (B, b) dε (b, ε) and (Y, $)
dε (B, b) dε(b, ε), respectively. Hence, we have (A, {$}, BBB) ΠΠb (B, {b}, ε).

(ii) We next find one 〈A, $, BBB, c〉-path, p3 = (A, $) dB(X, $) dB (A, $) dB

(X, $) dε (c, ε). By examining this path, we have (A, {$}, BBB) ΠΠc (A, {$}, B) and
(A, {$}, BBB) ΠΠc (X, {$}, ε).

A,$

b,

B

B

ε

ε

B,b

X,$
c, ε

ε

ε
ε

ε B,c

Y,$

ε
ε

B

a,

B,a

εC,$

ε

ε

BB

Fig. 4.2. A part of the d-graph.

In the computation of the ΠΠ relation, visiting vertices in the d-graph a bounded
number of times is enough even when cycles are present in the d-graph.

5. Deterministic prediction. This section develops a deterministic procedure
for choosing only one relation when there exist more than one ΠΠu relation with a fixed
left side. In Hammer’s method, a heuristic is used for the selection. In this paper, the
choice problem is resolved by choosing the nearer one in the derivation tree between
the corresponding positions of (B,W, γ) and (C,X, ζ) to that of (A,R, α). Let α = βγ
and γ = δζ. The roots (A,R), (B,W ), and (C,X) of the subtrees constructed from
(A,R, α), (B,W, γ), and (C,X, ζ) are shown in Figure 5.1. In this situation, (B,W, γ)
is selected since (A,R) is nearer to (B,W ) than it is to (C,X).
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Fig. 5.1. Derivation tree.



A POWERFUL LL(k) COVERING TRANSFORMATION 367

In the remaining part of the paper, if (A,R, βγ)ΠΠu(B,W, γ), then we assume
u ∈ {k:x|Bw ⇒∗

B,W γxw,w ∈ W} for some technical simplification.

The following lemma is used to show the orderable property of ΠΠ in the nearest
sequence.

Lemma 5.1.

(i) Let (A,R, βδζ)ΠΠu(B,W, δζ) and (A,R, βδζ)ΠΠu(C,X, ζ). Then for each w ∈
W , there exists x ∈ X such that (B,w)d∗

δ

(C, x).
(ii) Let (A,R, βδζ) ΠΠu (B,W, δζ) and (B,W, δζ) ΠΠu (C,X, ζ). Then (A,R, βδζ)

ΠΠu (C,X, ζ).
(iii) Let (A,R, βδζ)ΠΠu(B,W, δζ) and (A,R, βδζ)ΠΠu(C,X, ζ), where (B,W, δζ) 
=

(C,X, ζ). Then when δ 
= ε, (B,W, δζ)ΠΠu(C,X, ζ); when δ = ε, (B,W, ζ)ΠΠu(C,X, ζ)
or (C,X, ζ)ΠΠu(B,W, ζ).

(iv) There are no A,R, α, u,B,W, γ such that (A,R, α)ΠΠu(B,W, γ) and (B,W, γ)
ΠΠu (A,R, α), where (A,R, α) 
= (B,W, γ).

Proof.

(i) Let w ∈ W . Then there exists an 〈A, r, βδζ, u〉-path h, where r ∈ R which
contains (B,w) on the |β|-segment. The path h also contains (C, x) for some x ∈ X

on the |βδ|-segment. Hence, (B,w)d∗
δ

(C, x) holds, and Lemma 5.1(i) is true.
(ii) Let r ∈ R. Take an arbitrary 〈A, r, βδζ, u〉-path h. Since (A,R, βδζ)ΠΠu(B,

W, δζ) holds, h contains (B,w) for some w ∈ W on the |β|-segment. Take an arbi-
trary 〈B,w, δζ, u〉-path h2 that is a suffix of h. Since (B,W, δζ)ΠΠu(C,X, ζ) holds, h2
contains (C, x) for some x ∈ X on the |δ|-segment. Hence, (A,R, βδζ)ΠΠu(C,X ′, ζ)
holds. The next goal is to show X ′ = X. When δ 
= ε, it is obvious that X ′ = X.
We next consider the case of δ = ε. Figure 5.2(a)–(c) shows the possible forms of an
〈A, r, βδζ, u〉-path containing (B,w) and (C, x) on the |β|-segment. By investigating
the figure, we know that there are some paths in (a) and (c) that do not contain
(B,w) or (C, x), and so (b) is the only correct form. Hence, we can conclude that
every (C, x), x ∈ X on the |β|-segment of h follows (B,w) for some w ∈ W on the
same segment. As a consequence, X ′ has to be equal to X.

(iii) We first think about the case of δ 
= ε. Let w ∈ W . Take an arbitrary
〈B,w, δζ, u〉-path h. Then according to Lemma 5.1(i), h has a 〈C, x, ζ, u〉-path for
some x ∈ X as a suffix. Hence, (B,W, δζ)ΠΠu(C,X, ζ) holds. Let us consider the
other case of δ = ε. Then either one of (B,W, ζ)ΠΠu(C,X ′, ζ) or (C,X, ζ)ΠΠu(B,W ′, ζ)
holds. Without loss of generality, we assume (B,W, ζ)ΠΠu(C,X ′, ζ). At this point,
by Lemma 5.1(ii), (A,R, βδζ)ΠΠu(C,X ′, ζ) holds. On the other hand, X ′ is uniquely
determined, and thus X ′ = X. In all, (B,W, ζ)ΠΠu(C,X, ζ) holds.

(iv) Assume that (A,R, α)ΠΠu(B,W, γ) and (B,W, γ)ΠΠu(A,R, α), where (A,R, α)

= (B,W, γ). Then α = γ, and (A,R) 
= (B,W ) because of (A,R, α) 
= (B,W, γ). Take
an arbitrary 〈B,w, γ, u〉-path h, w ∈ W . Then h is a suffix of an 〈A, r, α, u〉-path for
some r ∈ R because of (A,R, α)ΠΠu(B,W, γ). Next, take an arbitrary 〈A, r, α, u〉-
path h2; then, h2 is a suffix of a 〈B,w, γ, u〉-path for some w ∈ W because of
(B,W, γ)ΠΠu(A,R, α). However, the 0-segment of an 〈A, r, α, u〉-path cannot contain
(A, r) in any other position but the first. As a result, both (A,R, α)ΠΠu(B,W, γ) and
(B,W, γ)ΠΠu(A,R, α) cannot be true.

Let (A,R, α)ΠΠu(B,W, γ) and (A,R, α)ΠΠu(C,X, ζ). Then by Lemma 5.1(iii), we
can assume (B,W, γ)ΠΠu(C,X, ζ) without loss of generality, and then, by Lemma 5.1(iv),
(C,X, ζ)ΠΠu(B,W, γ) does not hold. By generalizing this property, we have the fol-
lowing lemma.

Lemma 5.2. Let (A,R, α)ΠΠu(B0,W0, γ0), (A,R, α)ΠΠu(B1,W1, γ1), . . ., (A,R, α)
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Fig. 5.2. Paths in the d-graph, where az = u.

ΠΠu (Bn,Wn, γn) be distinct relations. For the elements (B0,W0, γ0), (B1,W1, γ1), . . .,
(Bn,Wn, γn), there exists a unique sequence (Bm0 ,Wm0 , γm0), (Bm1 ,Wm1 , γm1), . . .,
(Bmn

,Wmn
, γmn

) such that (Bmi−1
,Wmi−1

, γmi−1
) ΠΠu (Bmi

,Wmi
, γmi

), i = 1, . . . , n.
The unique ordering property in Lemma 5.2 enable us to linearize ΠΠ relations.

Consequently, we can define ΦΦ function as follows.
Definition 5.3. Let A,R, α, u be given. For all the distinct elements (B0,W0, γ0),

(B1,W1, γ1), . . ., (Bn,Wn, γn) such that (A,R, α)ΠΠu(Bi,Wi, γi), i = 0, . . . , n, let (Bm0
,

Wm0 , γm0
), (Bm1 ,Wm1 , γm1), . . ., (Bmn ,Wmn , γmn) be the sequence such that (Bmi−1

,
Wmi−1 , γmi−1)ΠΠu(Bmi ,Wmi , γmi), i = 1, . . . , n. Then ΦΦ(A,R, α, u) is defined as
(Bm0

, Wm0
, γm0

); otherwise, ΦΦ(A,R, α, u) is undefined.
We have, in Example 4.1, (A, {$}, BBB) ΠΠb (A, {$}, B) and (A, {$}, BBB)

ΠΠb (B, {$}, ε). Then we have the unique sequence (A, {$}, B), (B, {$}, ε) satisfy-
ing the condition in Lemma 5.2; note that (A, {$}, B)ΠΠb(B, {$}, ε) holds. Hence,
ΦΦ(A, {$}, BBB, b) is defined as (A, {$}, B). Similarly, ΦΦ(A, {$}, BBB, c) is defined as
(A, {$}, B).

6. Extended PLR(k) grammars. Using the ΦΦ function, we give a transfor-
mation into LL(k) form, and the transformable grammars are defined as extended
PLR(k) grammars.

6.1. A transformation. Given G, the following algorithm is applied to obtain
TT (G).

Algorithm 1 (construction of TT (G)).
INPUT: G
OUTPUT: If this algorithm successfully terminates, TT (G) = (NN,Σ, PP, SS) is con-

structed.
METHOD:
1. Initially,
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SS = [S, {$k}, ε, F IRSTk(S$k)]; NN = {SS}; PP = ∅.
2. repeat

(a) For each [A,R, α, U ] ∈ NN , let Z = {u ∈ U | ΦΦ(A,R, α, u) is defined},
then do the following:
Type 1. PP = PP ∪ {[A,R, α, U ] → a[A,R, αa, V ]} if V 
= ∅, where V =

{k:zwr| there exists Ar ⇒∗
A,R βBwr ⇒A,R βγaδwr ⇒∗

A,R βγazwr
in G, where r ∈ R, βγ = α, k:azwr ∈ U, and k:azwr ∈/ Z}.

Type 2. PP = PP ∪ {[A,R, α, U ] → [A,R, βB, V ]}, where α = βγ if
V 
= ∅, where V = {k:wr| there exists Ar ⇒∗

A,R βBwr ⇒A,R βγwr
in G, where r ∈ R, k:wr ∈ U , and k:wr ∈/ Z}.

Type 3. PP = PP ∪ {[A,R,A,U ] → ε}, where R ∩ U 
= ∅ and α = A.
Type 4. PP = PP ∪ {[A,R, α, U ] → [B,W, γ, V ][A,R, βB,W ]}, where

α = βγ if V 
= ∅, where V = {u | ΦΦ(A,R, α, u) = (B,W, γ), u ∈ U}.
(b) New nonterminals that appeared in PP are added to NN .
until(PP is not changed)

Algorithm 1 does not successfully terminate when an infinite number of nonter-
minals is generated. The formal characterization of the successfully transformable
grammars is given in section 6.3. The remarkable observation is that our transfor-
mation depends on only G while Hammer’s transformation depends on both G and a
cycle-free multiple stack machine for G. As a result, given G, TT (G) is constructed in
a single process.

6.2. The LL(k) covering property. A homomorphism h is defined from PP to
P ∪ {ε}:

h(pT ) =

{
B → γ if pT = [A,R, βγ, U ] → [A,R, βB, V ],
ε otherwise.

The following two lemmas show a relationship between a rightmost derivation in
G and a leftmost derivation in TT (G).

Lemma 6.1. Let [A,R, α, U ] ∈ NN . Assume that there exists π such that Ar ⇒π
A,R

αxr in G, where r ∈ R and k:xr ∈ U . Then there exists πT such that [A,R, α, U ] ⇒πT

lm

x in TT (G), where h(πT ) = πR.
Proof. We use induction on |π|. As the basis, assume that |π| = 1. Then

A → αx ∈ P , and there exist an |x|-length string πT of Type 1 rules such that

[A,R, α, U ] ⇒πT

lm x[A,R, αx, T ] and a rule string p1
T p

2
T such that [A,R, αx, T ] ⇒p1

T

lm

[A,R,A,M ] ⇒p2
T

lm ε in TT (G) for some M . Here, h(πT p
1
T p

2
T ) = h(πT )h(p1

T )h(p2
T ) =

h(p1
T ) = A → αx because of h(πT ) = ε and h(p2

T ) = ε. Hence, this lemma holds
for the basis step. As an inductive hypothesis, assume that this lemma holds when
|π| ≤ l(l > 1). Now suppose that |π| > l.

Case 1. There exist y, B, W , and γ such that ΦΦ(A,R, αy, u) = (B,W, γ), where
u = k:zr with yz = x.

In this case, we have a |y|-length string π′
T of Type 1 rules such that [A,R, α, U ]

⇒π′
T

lm y[A,R, αy,X], where u ∈ X and a rule pT such that [A,R, αy,X] ⇒pT

lm [B,W, γ, V ]
[A,R, βB,W ], where u ∈ V and αy = βγ in TT (G). On the other hand, π such
that Ar ⇒π

A,R αyzr can be divided into π′′ and π′′′ such that Ar ⇒π′′

A,R βBz2r and

Bw ⇒π′′′

B,W γz1w, where w = k:z2r(w ∈ W ) and z1z2 = z by Lemma 4.3. Note that
k:z1w ∈ V and k:z2r ∈ W . By applying the inductive hypothesis to π′′ and π′′′, we

have [A,R, βB,W ] ⇒π′′
T

lm z2 and [B,W, γ, V ] ⇒π′′′
T

lm z1 in TT (G), where h(π′′
T ) = (π′′)R

and h(π′′′
T ) = (π′′′)R. Therefore, there exists a rule string πT (= π′

T pTπ
′′′
T π′′

T ) such
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that [A,R, α, U ] ⇒πT

lm yz(= x) in TT (G). Here, h(πT ) = h(π′
T pTπ

′′′
T π′′

T ) = h(π′′′
T )h(π′′

T )
= (π′′′)R(π′′)R = (π′′π′′′)R = πR because of h(π′

T ) = ε and h(pT ) = ε.
Case 2. The other cases.
(Subcase 2-1) The π is composed of π′ and p such that Ar ⇒π′

A,R βBzr ⇒p
A,R

βγyzr, where βγ = α and yz = x. Then there exist a |y|-length string π′′
T of Type 1

rules such that [A,R, α, U ] ⇒π′′
T

lm y[A,R, αy,M ], where k:zr ∈ M , and a Type 2 rule
pT such that [A,R, αy,M ] ⇒pT

lm [A,R, βB,W ], where k:zr ∈ W in TT (G) according to
the construction of TT (G). On the other hand, by applying the inductive hypothesis

to π′, we have [A,R, βB,W ] ⇒π′
T

lm z in TT (G), where h(π′
T ) = (π′)R. In all, there

exists πT (= π′′
T pTπ

′
T ) such that [A,R, α, U ] ⇒πT

lm yz in TT (G), where yz = x. Here,
h(πT ) = h(π′′

T pTπ
′
T ) = h(π′′

T )h(pT )h(π′
T ) = h(pT )h(π′

T ) = ph(π′
T ) = pπ′R = (π′p)R =

πR because of h(π′′
T ) = ε.

(Subcase 2-2) The π is composed of π′ and p such that Ar ⇒π′

A,R αy1Bzr ⇒p
A,R

αy1y2zr, where y1y2z = x. Then there exist a |y1y2|-length string π′′
T of Type 1 rules

such that [A,R, α, U ] ⇒π′′
T

lm y1y2[A,R, αy1y2,M ], where k:zr ∈ M , and a Type 2 rule
pT such that [A,R, αy1y2,M ] ⇒pT

lm [A,R, αy1B,W ], where k:zr ∈ W in TT (G). On

the other hand, we have [A,R, αy1B,W ] ⇒π′
T

lm z in TT (G), where h(π′
T ) = (π′)R by

applying the inductive hypothesis to π′. In all, there exists πT (= π′′
T pTπ

′
T ) such that

[A,R, α, U ] ⇒πT

lm y1y2z in TT (G). Here, h(πT ) = h(π′′
T pTπ

′
T ) = h(π′′

T )h(pT )h(π′
T ) =

h(pT )h(π′
T ) = ph(π′

T ) = p(π′)R = (π′p)R = πR because of h(π′′
T ) = ε.

Lemma 6.2. If there exists πT such that [A,R, α, U ] ⇒πT

lm x in TT (G), then there

exists Ar ⇒h(πT )R

A,R αxr in G, where r ∈ R and k:xr ∈ U .
Proof. If |πT | = 1, then x = ε, α = A, and R ∩ U 
= ∅. Let r ∈ R ∩ U ; then

there exists Ar ⇒ε
A,R Ar in G. Note that k:xr ∈ U because of k:xr = k:r = r and

r ∈ U ; h(πT )R = εR = ε. We have completed the proof of the basis case. Next, as an
inductive hypothesis, assume that this lemma holds when |πT | ≤ l(l > 1). Now let
|πT | > l and πT = pTπ

′
T . Then pT is a rule of Type 1, Type 2, or Type 4. According

to the type, we divide the cases as follows.
Case 1. pT = [A,R, α, U ] → a[A,R, αa,Q].

Let x = az. Then there exists π′
T such that [A,R, αa,Q] ⇒π′

T

lm z in TT (G). By

applying the inductive hypothesis to π′
T , we have Ar ⇒h(π′

T )R

A,R αazr in G, where
r ∈ R and k:zr ∈ Q. According to the construction of the set Q, k:azr ∈ U. Note
that h(πT )R = h(pTπ

′
T )R = h(π′

T )R because of h(pT ) = ε.
Case 2. pT = [A,R, α, U ] → [A,R, βB,W ].

Let α = βγ and p = B → γ. Then there exists π′
T such that [A,R, βB,W ] ⇒π′

T

lm x
in TT (G), and p is a rule in P . By applying the inductive hypothesis to π′

T , we have

Ar ⇒h(π′
T )R

A,R βBxr in G, where r ∈ R and k:xr ∈ W . On the other hand, the
condition of k:xr ∈ U is true according to TT (G)’s construction. Hence, we have the

derivation Ar ⇒h(π′
T )R

A,R βBxr ⇒p
A,R βγxr in G, where r ∈ R and k:xr ∈ U . Here,

h(π′
T )Rp = (ph(π′

T ))R = (h(pT )h(π′
T ))R = h(pTπ

′
T )R = h(πT )R.

Case 3. pT = [A,R, α, U ] → [B,W, γ, Y ][A,R, βB,W ].

Let [B,W, γ, Y ] ⇒π′′
T

lm x1 and [A,R, βB,W ] ⇒π′′′
T

lm x2 in TT (G), where x1x2 = x
and pTπ

′′
Tπ

′′′
T = πT . Then by applying the inductive hypothesis to π′′

T and π′′′
T , we

have Bw ⇒h(π′′
T )R

B,W γx1w, where w ∈ W and k:x1w ∈ Y , and Ar ⇒h(π′′′
T )R

A,R βBx2r,
where r ∈ R and k:x2r ∈ W in G. Here, k:x1w ∈ U because of Y ⊆ U . Without

loss of generality, we set w to be k:x2r. Then we have Ar ⇒h(π′′′
T )R

A,R βBx2r ⇒h(π′′
T )R

A,R

βγx1x2r in G. Here, k:x1x2r = k:x1(k:x2r) = k:x1w, and so k:x1x2r ∈ U . Note that
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h(π′′′
T )Rh(π′′

T )R = (h(π′′
T )h(π′′′

T ))R = (h(pT )h(π′′
T )h(π′′′

T ))R = h(pTπ
′′
Tπ

′′′
T )R = h(πT )R

because of h(pT ) = ε.
In all, we have this lemma.
From Lemmas 6.1 and 6.2, we get the following corollaries.
Corollary 6.3. If there exists π such that S$k ⇒π

rm x$k in G, then there exists
πT such that [S, {$k}, ε, F IRSTk(S$k)] ⇒πT

lm x in TT (G), where h(πT ) = πR.
Proof. If there exists π such that S$k ⇒π

rm x$k in G, then there exists S$k ⇒π
S,{$k}

x$k in G. On the other hand, [S, {$k}, ε, F IRSTk(S$k)] ∈ NN . Then according to
Lemma 6.1, there exists πT such that [S, {$k}, ε, FIRSTk(S$k)] ⇒πT

lm x in TT (G),
where h(πT ) = πR.

Corollary 6.4. If there exists πT such that [S, {$k}, ε, F IRSTk(S$k)] ⇒πT

lm x

in TT (G), then there exists S$k ⇒h(πT )R

rm x$k in G.
Proof. By Lemma 6.2, if there exists πT such that [S, {$k}, ε, F IRSTk(S$k)] ⇒πT

lm

x in TT (G), then there exists S$k ⇒h(πT )R

S,{$k} x$k in G, and so there exists S$k ⇒h(πT )R

rm

x$k in G.
According to Corollaries 6.3 and 6.4, we conclude the following theorem.
Theorem 6.5. TT (G) left-to-right covers G with respect to h.
On the other hand, the LL property of TT (G) can be proved as follows.
Theorem 6.6. TT (G) is LL(k).
Proof. Suppose that TT (G) is not LL(k). Then there exist two derivations in TT (G)

such that

[S, {$k}, ε, F IRSTk(S$k)] ⇒∗
lm x[A,R, α, U ]τ ⇒lm xωτ ⇒∗

lm xyτ ⇒∗
lm xyz

and

[S, {$k}, ε, F IRSTk(S$k)] ⇒∗
lm x[A,R, α, U ]τ ′ ⇒lm xρτ ′ ⇒∗

lm xy′τ ′ ⇒∗
lm xy′z′,

where k:yz = k:y′z′ and ω 
= ρ. Here, we can observe that k:z$k ∈ R and k:z′$k ∈ R.
Let r and r′ denote k:z$k and k:z′$k, respectively. At this time, we have k:yr = k:y′r′.
Denote [A,R, α, U ] → ω and [A,R, α, U ] → ρ by p1

T and p2
T , respectively. The possible

situations for p1
T and p2

T are divided as follows.
Case 1. p1

T = [A,R, α, U ] → a[A,R, αa, V ].
Then there exists [A,R, αa, V ] ⇒∗

lm y1 in TT (G), where ay1 = y. By applying
Lemma 6.2 to this derivation, we have

Ar ⇒∗
A,R αay1r in G.(6.1)

Derivation (6.1) is of the form

Ar ⇒∗
A,R βBwr ⇒A,R βγaδwr ⇒∗

A,R βγay1r,(6.2)

where βγ = α according to Type 1 rule’s construction.
(Subcase 1-1) p2

T = [A,R, α, U ] → [A,R, βB, V ].
Then there exists [A,R, βB, V ] ⇒∗

lm y′ in TT (G). By applying Lemma 6.2 to this
derivation, we have Ar′ ⇒∗

A,R βBy′r′ in G, and if α = βγ, then we know that there
exists

Ar ⇒∗
A,R βBy′r ⇒A,R βγy′r in G.(6.3)

At this point, we have an LR(k) conflict with the derivations (6.2) and (6.3) because
of k:ay1r = k:y′r′.
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(Subcase 1-2) p2
T = [A,R,A,U ] → ε.

In this case, α = A and y′ = ε. It implies that k:yr is also in R because of
k:yr = k:y′r′ = r′ and r′ ∈ R. However, k:yr(= k:ay1r) cannot be in R by the
definition of ⇒A,R because we already have the derivation (6.2).

(Subcase 1-3) p2
T = [A,R, α, U ] → [B,W, γ, V ][A,R, βB,W ], where βγ = α.

Let [B,W, γ, V ] ⇒∗
lm y′1 and [A,R, βB,W ] ⇒∗

lm y′2 in TT (G), where y′1y
′
2 = y′. By

applying Lemma 6.2 to these derivations, there exist Bw ⇒∗
B,W γy′1w, where w ∈ W

and k:y′1w ∈ V , and Ar′ ⇒∗
A,R βBy′2r

′, where k:y′2r
′ = w in G. Then we know that

ΦΦ(A,R, α, k:y′1w) = (B,W, γ). This is a contradiction to k:ay1r = k:y′1y
′
2r

′ because
k:ay1r cannot be in {u ∈ U | ΦΦ(A,R, α, u) is defined} according to the construction
of TT (G).

Case 2. p1
T = [A,R, α, U ] → [A,R, βB, V ].

Then there exists [A,R, βB, V ] ⇒∗
lm y in TT (G). By applying Lemma 6.2 to this

derivation, we have Ar ⇒∗
A,R βByr in G. If α = βγ, then B → γ ∈ P and there

exists

Ar ⇒∗
A,R βByr ⇒A,R βγyr in G.(6.4)

(Subcase 2-1) p2
T = [A,R, α, U ] → [A,R, ζC,Z].

Then there exists [A,R, ζC,Z] ⇒∗
lm y′ in TT (G). By applying Lemma 6.2 to this

derivation, there exists Ar′ ⇒∗
A,R ζCy′r′ in G, and if α = ζδ, then there exists

Ar′ ⇒∗
A,R ζCy′r′ ⇒A,R ζδy′r′ in G.(6.5)

At this time, we have an LR(k) conflict with the derivations (6.4) and (6.5) because
of B → γ 
= C → δ, although βγ = ζδ and k:yr = k:y′r′.

(Subcase 2-2) p2
T = [A,R,A,U ] → ε.

In this case, α = A and y′ = ε. If β = ε, then γ = A, and we have a contradiction
to derivation (6.4) similar to (Subcase 1-2). If β 
= ε, then β = A and γ = ε. Then
there exists Ar ⇒∗

A,R AByr ⇒A,R Ayr in G. Here, k:yr = k:y′r′, and so k:yr ∈ R
because of y′ = ε and r′ ∈ R. However, it is a contradiction to the definition of ⇒A,R.

(Subcase 2-3) p2
T = [A,R, α, U ] → [C,X, δ, Z][A,R, ζC,X], where ζδ = α.

In this case, we have a contradiction for the construction of TT (G) in a similar way
to (Subcase 1-3).

Case 3. p1
T = [A,R,A,U ] → ε.

Then α = A, y = ε, and the only possible form of p2
T is [A,R, α, U ] → [B,W, γ, V ]

[A,R, βB, W ], where βγ = α. Let [B,W, γ, V ] ⇒∗
lm y′1 and [A,R, βB,W ] ⇒∗

lm y′2
in TT (G), where y′1y

′
2 = y′. By applying Lemma 6.2 to these derivations, we have

Bw ⇒∗
B,W γy′1w, where w ∈ W , and Ar′ ⇒∗

A,R βBy′2r
′, where k:y′2r

′ = w in G.
Hence, there exists Ar′ ⇒∗

A,R βBy′2r
′ ⇒∗

A,R βγy′1y
′
2r

′. Note that βγ = A and
k:y′1y

′
2r

′ = r because of k:y′1y
′
2r

′ = k:yr and y = ε. It means that k:y′1y
′
2r

′ is in
R, but this containment cannot occur by the definition of ⇒A,R.

Case 4. p1
T = [A,R, α, U ] → [B,W, γ, V ][A,R, βB,W ], where βγ = α.

Let [B,W, γ, V ] ⇒∗
lm y1 and [A,R, βB,W ] ⇒∗

lm y2 in TT (G), where y1y2 = y. By
applying Lemma 6.2 to these derivations, we have Bw ⇒∗

B,W γy1w, where w ∈ W and
Ar ⇒∗

A,R βBy2r, where k:y2r = w in G. We note that ΦΦ(A,R, α, k:y1w) = (B,W, γ).

On the other hand, the only possible form of p2
T is [A,R, α, U ] → [C,X, δ, Z][A,R, ζC,X],

where ζδ = α. Let [C,X, δ, Z] ⇒∗
lm y′1 and [A,R, ζC,X] ⇒∗

lm y′2 in TT (G), where
y′1y

′
2 = y′. By applying Lemma 6.2 to these derivations, we have Cx′ ⇒∗

C,X δy′1x
′,

where x′ ∈ X and k:y′1x
′ ∈ Z, and Ar′ ⇒∗

A,R ζCy′2r
′, where k:y′2r

′ = x′ in G. Here,
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ΦΦ(A,R, α, k:y′1x
′) = (C,X, δ). Then we have a contradiction to the definition of ΦΦ

function because of k:y1w = k:y′1x
′.

For all the possible cases of p1
T and p2

T , we showed some contradictions, and hence
TT (G) has to be LL(k).

From Theorems 6.5 and 6.6, we obtain that TT (G) is an LL(k) covering grammar
of G.

6.3. Transformable grammars. We define some special nonterminals to de-
tect the infinite process of Algorithm 1. Let [A,R, α, U ] ∈ NN and α = X1 · · ·Xn.
Assume that qi = {[B → γ.δ, k:zr]| there exists Ar ⇒∗

A,R βBzr ⇒A,R βγδzr
⇒∗

A,R βγζyzr in G, where r ∈ R, k:yzr ∈ U , βγ = X1 · · ·Xi, and ζ = Xi+1 · · ·Xn

} for each i = 0, 1, . . . , n. For qi, qi+1, . . . , qj , if qi = qj(0 ≤ i < j ≤ n) and no other
pair of qi, qi+1, . . . , qj is identical, then qi, . . . , qj is a loop. We say that [A,R, α, U ]
is cyclic if there exist more than two different values for i, 0 ≤ i ≤ n for the same
loop such that qi, . . . , qj is a loop. If [A,R, α, U ] is cyclic and there is no u ∈ U such
that Φ(A,R, α, u) = (B,W, γ) for some B,W , and γ, then [A,R, α, U ] is an indivisible
cyclic. Using this nonterminal, we can characterize the transformable grammars as
follows.

Lemma 6.7. Algorithm 1 with G successfully terminates iff no indivisible cyclic
nonterminal is generated.

Proof. (Only if part) Assume that an indivisible cyclic nonterminal [A,R, α, U ]
is generated during the execution of Algorithm 1 with G. Then an infinite number
of cyclic nonterminals that have the common loop with [A,R, α, U ] are generated
according to Algorithm 1. Hence, Algorithm 1 does not successfully terminate.

(If part) During the execution of Algorithm 1, if no indivisible cyclic nonterminal
is generated, then the length of each nonterminal generated is bounded. It means
that Algorithm 1 successfully terminates.

As a result, whenever an indivisible cyclic nonterminal is found during the working
of Algorithm 1, it is desirable to stop anymore processing of the algorithm.

Next we will give another characterization of the transformable grammars using
grammatical derivations.

Theorem 6.8. Algorithm 1 with G successfully terminates iff (Statement 1) is
true:

(Statement 1) There exists a constant n, depending on G, such that if α(
= ε) is
a viable prefix of G, x is a string in LG(α), and v is a string in RCG

k (α), then there
exist B, W , and γ(
= ε), where α = βγ and |γ| ≤ n such that Condition 1 holds.

(Condition 1) Whenever there exists π such that S′ ⇒π
rm βγz ⇒∗

rm xz in G,

where k:z = v, there exist π1 and π2, where π1π2 = π such that S′ ⇒π1

rm βBz′′ and

Bw ⇒π2

B,W γz′w in G, where w = k:z′′ (w ∈ W ) and z′z′′ = z.

Proof. (Only if part) Assume that Algorithm 1 with G successfully terminates,
but there is no n satisfying Statement 1. In other words, there exist a viable prefix
α of G, a string x, x ∈ LG(α), and a string v, v ∈ RCG

k (α) for which there are
no predicted B, W , and γ satisfying Condition 1, where α = βγ and |γ| ≤ n for
some fixed n. Take an arbitrary rule string π̂(π̂ = π′π′′) such that there exists
S$k ⇒π′

rm αz ⇒π′′

rm xz in G, where k:z = v. Corresponding to π̂(= π′π′′), there
exists π̂T such that [S, {$k}, ε, F IRSTk(S$k)] ⇒π̂T

lm xz in TT (G), where h(π̂T ) = π̂R

according to Lemma 6.1. Furthermore, we know that π̂T is composed of π′′
T and

π′
T such that [S, {$k}, ε, F IRSTk(S$k)] ⇒π′′

T

lm x̄τ ⇒π′
T

lm x̄z̄ in TT (G), τ ∈ NN∗, where
x̄z̄ = xz, h(π′′

T )R = π′′, and h(π′
T )R = π′.
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Let τ be [Bn,Wn, γn, Un][Bn−1,Wn−1, γn−1Bn,Wn] · · · [B1,W1, γ1B2,W2]. Sup-
pose that πi

T = [Bi,Wi, γiBi+1,Wi+1] ⇒∗
lm zi for each i = 1, . . . , n − 1 and πn

T =
[Bn,Wn, γn, Un] ⇒∗

lm zn, where π1
T · · ·πn

T = π′
T and zn · · · z1 = z̄. Then by ap-

plying Lemma 6.2 to π1
T , . . . , π

n
T , respectively, we have Biwi ⇒h(πi

T )R

Bi,Wi
γiBi+1ziwi,

where wi ∈ Wi and k:ziwi ∈ Wi+1 for each i = 1, . . . , n − 1, and Bnwn ⇒h(πn
T )R

Bn,Wn

γnznwn, where wn ∈ Wn and k:znwn ∈ Un in G. Because of πn
Tπ

n−1
T · · ·π1

T = π′
T ,

h(π1
T )R · · ·h(πn

T )R = (h(πn
T ) · · ·h(π1

T ))R = h(πn
T · · ·π1

T )R = h(π′
T )R = π′. Here, we

have z = z̄, and so x = x̄; γ1 · · · γn = α.
On the other hand, we know that π′′

T is of the form

[S, {$k}, ε, F IRSTk(S$k)]

⇒πX
T

lm x′[Bn−1,Wn−1, γn−1δn, Xn−1] · · · [B1,W1, γ1B1,W2]

⇒rT
lm x′[Bn,Wn, δn, Vn][Bn−1,Wn−1, γn−1Bn,Wn] · · · [B1,W1, γ1B1,W2]

⇒πY
T

lm x′x′′[Bn,Wn, γn, Un][Bn−1,Wn−1, γn−1Bn,Wn] · · · [B1,W1, γ1B1,W2],

where x′x′′ = x. Hence, we have Φ(Bn−1,Wn−1, γn−1δn, u) = (Bn,Wn, δn), where
u = k:x′′z. Consequently, we have the following statement:

(Statement 2) whenever there exists Bn−1wn−1 ⇒∗
Bn−1,Wn−1

γn−1δnpwn−1, where
wn−1 ∈ Wn−1 and k:pwn−1 = u, there exist Bn−1wn−1 ⇒∗

Bn−1,Wn−1
γn−1Bnqwn−1

and Bnwn ⇒∗
Bn,Wn

δnrwn, where wn = k:qwn−1 and rq = p. Additionally, we know
that when α, x, and v are fixed, B1,W1, γ1, . . . , Bi,Wi, γi, . . . , Bn,Wn, γn, δn, Un are
also fixed because TT (G) is LL(k).

Consider the derivation πs
T = rTπ

Y
T πn

Tπ
n−1
T such that [Bn−1,Wn−1, γn−1δn, Xn−1]

⇒πs
T

lm x′′znzn−1. Then by applying Lemma 6.2, there exists h(πs
T )R such that Bn−1wn−1

⇒∗
Bn−1,Wn−1

γn−1δnx
′′znzn−1wn−1 in G, where wn−1 ∈ Wn−1 and k:x′′znzn−1wn−1 ∈

Xn−1. Here, h(πs
T )R = h(rTπ

Y
T πn

Tπ
n−1
T )R = h(πY

T πn
Tπ

n−1
T )R = h(πn−1

T )Rh(πn
T )Rh(πY

T )R

because of h(rT ) = ε. Since πY
T is a suffix of π′′

T , h(πY
T )R is a prefix of π′′. Let πZ

be the rule string such that π′′ = h(πY
T )RπZ . Then π̂ is composed of the derivations

such that

B1w1

⇒h(π1
T )Rh(π2

T )R···h(πn−2
T )R

rm γ1γ2γ3 · · · γn−2Bn−1zn−2 · · · z2z1w1

⇒h(πn−1
T )R

rm γ1γ2γ3 · · · γn−1Bnzn−1 · · · z2z1w1

⇒h(πn
T )R

rm γ1γ2 · · · γn−1γnznzn−1 · · · z2z1w1

⇒h(πY
T )R

rm γ1γ2 · · · γn−1δnx
′′znzn−1 · · · z2z1w1

⇒πZ

rm x′x′′znzn−1 · · · z2z1w1,

where B1 = S, w1 = $k, γ1 · · · γn = α, and znzn−1 · · · z2z1 = z. Then we have that
whenever there exists π such that S′ ⇒π

rm αz ⇒∗
rm xz in G, where k:z = v, there exists

π̃(= ππ′′) such that S′ ⇒π
rm αz ⇒π′′

rm γ1 · · · γn−1δnyz ⇒∗
rm xz in G. The derivation

π̃ is always composed of π̃1 and π̃2 such that π̃1 = S′ ⇒∗
rm γ1 · · · γn−1Bn−1z2 and

π̃2 = Bn−1wn−1 ⇒∗
Bn−1,Wn−1

γnz1wn−1 ⇒∗
Bn−1,Wn−1

δnyz1wn−1, where wn−1 = k:z2.
At this point, if we set β = γ1 · · · γn−1, B = Bn, W = Wn, γ = γn, and U = Un,
then from Statement 2, we obtain the property that whenever there exists π such that
S′ ⇒π

rm αz ⇒∗
rm xz in G, where k:z = v, there exist π1 and π2, where π1π2 = π such
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that S′ ⇒π1

rm βBz′′ and Bw ⇒π2

B,W γz′w in G, where w = k:z′′ and z′z′′ = z. Here,
|γ| is bounded since it is a component of the nonterminal [B,W, γ, U ]. As a result, it
is a contradiction of the assumption that α and v have no predictable B, W , and γ
satisfying Condition 1.

(If part) Assume that Statement 1 is true, but Algorithm 1 with G does not
successfully terminate. It means that an indivisible cyclic nonterminal is generated,
while Algorithm 1 with G works. Let [A,R, α, U ] be such a nonterminal. Suppose
that n is the constant in Statement 1. Without loss of generality, we can assume
|α| > n.

Take an arbitrary derivation

Ar ⇒∗
A,R αyr ⇒∗

A,R x̄yr(6.6)

in G, where r ∈ R. Let v = k:yr. Then there exists S′ ⇒∗
rm θAz ⇒∗

rm θαyz ⇒∗
rm xyz

in G, where k:z = r, k:yz = v, and x = x̂x̄. If we consider the viable prefix θα, the
string x, x ∈ LG(θα), and the string u, u ∈ RCG

k (θα), then there exist B, W , and γ,
where θα = βγ and |γ| ≤ n satisfying Condition 1 since Statement 1 is true. That
is, whenever there exists π such that S′ ⇒π

rm βγz ⇒∗
rm xyz in G, where k:z = v,

there exist π1 and π2, where π1π2 = π such that S′ ⇒π1

rm βBz′′ and Bw ⇒π2

B,W γz′w
in G, where z′z′′ = z and w = k:z′′. Hence, we have the property that: whenever
there exists a derivation (6.6), there exist Ar ⇒∗

A,R δBz′′′r and Bw ⇒∗
B,W γz′w,

where z′z′′′ = y and α = δγ. Consequently, we have the property: whenever there
exists Ar ⇒∗

A,R δγyr, where r ∈ R and k:yr = v, there exist Ar ⇒∗
A,R δBz′′′r and

Bw ⇒∗
B,W γz′w, where z′z′′′ = y and w = k:z′′′r. In accordance with Lemma 4.4,

(A,R, δγ)ΠΠv(B,W ′, γ) holds for some W ′, and hence, there exist B′,W ′′, and γ′

such that ΦΦ(A,R, δγ, v) = (B′,W ′′, γ′) holds. Then we have a contradiction to that
[A,R, α, U ] is indivisible cyclic.

In other words, the transformable grammars have a fixed constant n: when the
stack string is α(
= ε), the input string already read is x, and the k-length prefix of
the remaining input is v, we always have B,W, γ(
= ε), where |γ| ≤ n such that γ and
some prefix of the remaining input will be reduced to (B,W ). Figure 6.1 describes
this situation; the left side is expected to be the right.

We define the transformable grammars using Algorithm 1 as extended PLR(k)
grammars.
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Fig. 6.1. Derivation trees.
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Definition 6.9. G is an extended PLR(k) grammar iff Statement 1 is true.
We next relate extended PLR(k) grammars with PLR(k) grammars and k-trans-

formable grammars.
Lemma 6.10. Let G be PLR(k). Then G is extended PLR(k).
Proof. Suppose that α(
= ε) is a viable prefix of G, x is a string in LG(α), and v

is a string in RCG
k (α). Then there exists a derivation S′ ⇒∗

rm βBz ⇒rm βXδζz ⇒∗
rm

βXδy2z ⇒∗
rm βXy1y2z ⇒∗

rm xy2z in G, where βXδ = α, k:y2z = v, and Xδ 
= ε. On
the other hand, according to the definition of PLR(k) grammars,

if there exists S′ ⇒∗
rm β′Az′ ⇒rm β′β′′Xδ′ζ ′z′ ⇒∗

rm β′β′′Xδ′y′2z
′

⇒∗
rm β′β′′Xy′1y

′
2z

′ in G, where β′β′′ = β and k:y′1y
′
2z

′ = k:y1y2z,

then A = B and β′′ = ε.(6.7)

Let n be the maximum length of the right-side string of a rule of G and γ be Xδ.
Then we know that |γ| ≤ n(γ 
= ε). On the other hand, whenever there exists
S′ ⇒∗

rm βγz ⇒∗
rm xz in G, there exists S′ ⇒∗

rm βγz ⇒∗
rm βXyz ⇒∗

rm xz in G and,
according to (6.7), there exist S′ ⇒∗

rm βBz2 and Bw ⇒∗
rm γz1w in G, where w = k:z2

and z1z2 = z. Let us set W to be FOLLOWk(B). Then we have the property that
whenever there exists π such that S′ ⇒π

rm βγz ⇒∗
rm xz in G, there exist π1 and π2

such that S′ ⇒π1

rm βBz2 and Bw ⇒π2

B,W γz1w in G, where π1π2 = π, w = k:z2, and
z1z2 = z. In all, G is extended PLR(k).

Lemma 6.11. Let G be k-transformable. Then G is extended PLR(k).
Proof. Since G is k-transformable, there exists a constant n such that if α(
= ε)

is a viable prefix of G and v is a string in RCG
k (α), then there exist B,W , and

γ(
= ε), where α = βγ, |γ| ≤ n, and v ∈ RCB,W
k (γ) such that whenever there exists

S′ ⇒∗
rm βγz ⇒∗

rm βyz in G, where k:yz ∈ RCB,W
k (ε), there exist S′ ⇒∗

rm βBz′′ and
Bw ⇒∗

B,W γz′w ⇒∗
B,W yz′w in G, where w = k:z′′(w ∈ W ) and z′z′′ = z. Note

that the condition k:yz ∈ RCB,W
k (ε) implies k:z ∈ RCB,W

k (γ). Hence, we have the
property with the above n such that if α(
= ε) is a viable prefix of G, x ∈ LG(α),
and v ∈ RCG

k (α), then there exist B,W , and γ(
= ε), where α = βγ, |γ| ≤ n, and

v ∈ RCB,W
k (γ) such that whenever there exists π such that S′ ⇒π

rm βγz ⇒∗
rm xz

in G, where k:z ∈ RCB,W
k (γ), there exist π1 and π2, where π1π2 = π such that

S′ ⇒π1

rm βBz′′ and Bw ⇒π2

B,W γz′w in G, where w = k:z′′(w ∈ W ) and z′z′′ = z.
Thus, G is extended PLR(k).

We showed that extended PLR(k) grammars completely contain PLR(k) gram-
mars and k-transformable grammars. Extended PLR(k) grammars, moreover, are
larger than k-transformable grammars and PLR(k) grammars. It can be proved by
the following example.

Example 6.1. Let G3 = ({S,A}, {a, d, b, c}, {S → aAd, S → aB,B → aA,A →
ab,A → aA,A → bc}, S). Note that G3 is LR(1) and extended PLR(1). However, G3
is neither k-transformable nor PLR(k) for all k ≥ 1.

Theorem 6.12. Extended PLR(k) grammars are larger than PLR(k) grammars
and k-transformable grammars.

7. Concluding remarks. The contribution of this paper can be summarized as
follows. First, we showed the incomparable relationship between PLR(k) grammars
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and k-transformable grammars. Second, we presented the generalization of the reduc-
tion goal prediction in LR parsing. We believe that the proposed one is the uppermost
of the reduction goal prediction, which is performed by keeping the LR stack and in-
vestigating the k-length prefix of the remaining input. Extended PLR(k) grammars
are thus thought of as the uppermost class of LL(k) covering transformable gram-
mars based on such a prediction. Third, we showed that LL(k) covering grammars
can be deterministically constructed by defining the ΠΠ relation and investigating the
orderable property of the relation. As a result, we can decide the transformableness
of a given grammar in a single process. Lastly, we characterized the transformable
grammars using grammatical derivation.

Acknowledgments. The authors deeply appreciate many helpful comments
from an anonymous referee and coordinating efforts of the editor.
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COMPRESSED SUFFIX ARRAYS AND SUFFIX TREES WITH
APPLICATIONS TO TEXT INDEXING AND STRING MATCHING∗

ROBERTO GROSSI† AND JEFFREY SCOTT VITTER‡

Abstract. The proliferation of online text, such as found on the World Wide Web and in online
databases, motivates the need for space-efficient text indexing methods that support fast string
searching. We model this scenario as follows: Consider a text T consisting of n symbols drawn from
a fixed alphabet Σ. The text T can be represented in n lg |Σ| bits by encoding each symbol with
lg |Σ| bits. The goal is to support fast online queries for searching any string pattern P of m symbols,
with T being fully scanned only once, namely, when the index is created at preprocessing time.

The text indexing schemes published in the literature are greedy in terms of space usage: they
require Ω(n lgn) additional bits of space in the worst case. For example, in the standard unit cost
RAM, suffix trees and suffix arrays need Ω(n) memory words, each of Ω(lg n) bits. These indexes are
larger than the text itself by a multiplicative factor of Ω(lg|Σ| n), which is significant when Σ is of
constant size, such as in ascii or unicode. On the other hand, these indexes support fast searching,
either in O(m lg |Σ|) time or in O(m+ lgn) time, plus an output-sensitive cost O(occ) for listing the
occ pattern occurrences.

We present a new text index that is based upon compressed representations of suffix arrays and
suffix trees. It achieves a fast O(m/ lg|Σ| n + lgε|Σ| n) search time in the worst case, for any constant
0 < ε ≤ 1, using at most

(
ε−1 + O(1)

)
n lg |Σ| bits of storage. Our result thus presents for the first

time an efficient index whose size is provably linear in the size of the text in the worst case, and for
many scenarios, the space is actually sublinear in practice. As a concrete example, the compressed
suffix array for a typical 100 MB ascii file can require 30–40 MB or less, while the raw suffix array
requires 500 MB. Our theoretical bounds improve both time and space of previous indexing schemes.
Listing the pattern occurrences introduces a sublogarithmic slowdown factor in the output-sensitive
cost, giving O(occ lgε|Σ| n) time as a result. When the patterns are sufficiently long, we can use
auxiliary data structures in O(n lg |Σ|) bits to obtain a total search bound of O(m/ lg|Σ| n + occ)
time, which is optimal.

Key words. compression, text indexing, text retrieval, compressed data structures, suffix arrays,
suffix trees, string searching, pattern matching
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1. Introduction. A great deal of textual information is available in electronic
form in online databases and on the World Wide Web, and therefore devising effi-
cient text indexing methods to support fast string searching is an important topic for
investigation. A typical search scenario involves string matching in a text string T
of length n [49]: given an input pattern string P of length m, the goal is to find
occurrences of P in T . Each symbol in P and T belongs to a fixed alphabet Σ of
size |Σ| ≤ n. An occurrence of the pattern at position i means that the substring
T [i, i + m − 1] is equal to P , where T [i, j] denotes the concatenation of the symbols
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in T at positions i, i + 1, . . . , j.
In this paper, we consider three types of string matching queries: existential,

counting, and enumerative. An existential query returns a Boolean value that indi-
cates whether P is contained in T . A counting query computes the number occ of
occurrences of P in T , where occ ≤ n. An enumerative query outputs the list of occ
positions, where P occurs in T . Efficient offline string matching algorithms, such as
that of Knuth, Morris, and Pratt [49], can answer each individual query in O(m+ n)
time via an efficient text scan.

The large mass of existing online text documents makes it infeasible to scan
through all the documents for every query, because n is typically much larger than
the pattern length m and the number of occurrences occ. In this scenario, text indexes
are preferable, as they are especially efficient when several string searches are to be
performed on the same set of text documents. The text T needs to be entirely scanned
only once, namely, at preprocessing time when the indexes are created. After that,
searching is output-sensitive, that is, the time complexity of each online query is
proportional to either O(m lg |Σ|+ occ) or O(m+ lg n+ occ), which is much less than
Θ(m + n) when n is sufficiently large.

The most popular indexes currently in use are inverted lists and signature files [48].
Inverted lists are theoretically and practically superior to signature files [72]. Their
versatility allows for several kinds of queries (exact, Boolean, ranked, and so on) whose
answers have a variety of output formats. They are efficient indexes for texts that
are structured as long sequences of terms (or words) in which T is partitioned into
nonoverlapping substrings T [ik, jk] (the terms), where 1 ≤ ik ≤ jk < ik+1 ≤ n. We
refer to the set of terms as the vocabulary. For each distinct term in the vocabulary,
the index maintains the inverted list (or position list) {ik} of the occurrences of that
term in T . As a result, in order to search efficiently, search queries must be limited
to terms or prefixes of them; it does not allow for efficient searching of arbitrary
substrings of the text as in the string matching problem. For this reason, inverted
files are sometimes referred to as term-level or word-level text indexes.

Searching unstructured text to answer string matching queries adds a new diffi-
culty to text indexing. This case arises with DNA sequences and in some Eastern
languages (Burmese, Chinese, Taiwanese, Tibetan, etc.), which do not have a well-
defined notion of terms. The set of successful search keys is possibly much larger than
the set of terms in structured texts, because it consists of all feasible substrings of T ;
that is, we can have as many as

(
n
2

)
= Θ(n2) distinct substrings in the worst case,

while the number of distinct terms is at most n (considered as nonoverlapping sub-
strings). Suffix arrays [55, 35], suffix trees [57, 68], and similar tries or automata [20]
are among the prominent data structures used for unstructured texts. Since they can
handle all the search keys in O(n) memory words, they are sometimes referred to as
full-text indexes.

The suffix tree for text T = T [1, n] is a compact trie whose n leaves represent the
n text suffixes T [1, n], T [2, n], . . . ,T [n, n]. By “compact” we mean that each internal
node has at least two children. Each edge in the tree is labeled with one or more
symbols for purposes of search navigation. The leaf with value � represents the suffix
T [�, n]. The leaf values in an in-order traversal of the tree represent the n suffixes
of T in lexicographic order. An example suffix tree appears in Figure 1.

A suffix array SA = SA[1, n] for text T = T [1, n] consists of the values of the
leaves of the suffix tree in in-order, but without the tree structure information. In
other words, SA[i] = � means that T [�, n] is the ith smallest suffix of T in lexicographic
order. The suffix array corresponding to the suffix tree of Figure 1 appears in Figure 2.
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Fig. 1. Suffix tree built on text T = abbabbabbabbabaaabababbabbbabba# of length n = 32,
where the last character is an end-of-string symbol #. The rightmost subtree (the triangle represent-
ing the suffixes of the form bb · · · #) is not expanded in the figure. The edge label a · · · # or b · · · #
on the edge leading to the leaf with value � denotes the remaining characters of the suffix T [�, n]
that have not already been traversed. For example, the first suffix in lexicographic format is the
suffix T [15, n], namely, aaabababbabbbabba#, and the last edge represents the 16-symbol substring
that follows the prefix aa.

To speed up searches, a separate array is often maintained, which contains auxiliary
information such as the lengths of the longest common prefixes of a subset of the
suffixes [55].

Suffix trees and suffix arrays organize the suffixes so as to support the efficient
search of their prefixes. Given a search pattern P , in order to find an occurrence
T [i, i + m − 1] = P , we can exploit the property that P must be the prefix of suf-
fix T [i, n]. In general, existential and counting queries take O(m lg |Σ|) time using
automata or suffix trees and their variations, and they take O(m + lg n) time using
suffix arrays along with longest common prefixes. Enumerative queries take an ad-
ditive output-sensitive cost O(occ). In this paper, we use the term “suffix array” to
denote the array containing the permutation of positions, 1, 2, . . . , n, but without the
longest common prefix information mentioned above. Full-text indexes such as suffix
arrays are more powerful than term-level inverted lists, since full-text indexes can also
implement inverted lists efficiently by storing the suffixes T [ik, n] that correspond to
the occurrences of the terms.

1.1. Issues on space efficiency. Suffix arrays and suffix trees are data struc-
tures with increasing importance because of the growing list of their applications.
Besides string searching, they also have significant use in molecular biology, data com-
pression, data mining, and text retrieval, to name but a few applications [7, 38, 55].
However, the sizes of the data sets in these applications can become extremely large,
and space occupancy is often a critical issue. A major disadvantage that limits the
applicability of text indexes based upon suffix arrays and suffix trees is that they
occupy significantly more space than do inverted lists.
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1 15 aaabababbabbbabba#

2 16 aabababbabbbabba#

3 31 a#

4 13 abaaabababbabbbabba#

5 17 abababbabbbabba#

6 19 ababbabbbabba#

7 28 abba#

8 10 abbabaaabababbabbbabba#

9 7 abbabbabaaabababbabbbabba#

10 4 abbabbabbabaaabababbabbbabba#

11 1 abbabbabbabbabaaabababbabbbabba#

12 21 abbabbbabba#

13 24 abbbabba#

14 32 #

15 14 baaabababbabbbabba#

16 30 ba#

17 12 babaaabababbabbbabba#

18 18 bababbabbbabba#

19 27 babba#

20 9 babbabaaabababbabbbabba#

21 6 babbabbabaaabababbabbbabba#

22 3 babbabbabbabaaabababbabbbabba#

23 20 babbabbbabba#

24 23 babbbabba#
...

...
...

32 25 bbbabba#

Fig. 2. Suffix array for the text T shown in Figure 1, where a < # < b. Note that the array
values correspond to the leaf values in the suffix tree in Figure 1 traversed in in-order.

We can illustrate this point by a more careful accounting of the space requirements
in the unit cost RAM model. We assume that each symbol in the text T is encoded by
lg |Σ| bits, for a total of n lg |Σ| bits.1 In suffix arrays, the positions of the n suffixes
of T are stored as a permutation of 1, 2, . . . , n, using n lg n bits (kept in an array
consisting of n words, each of lg n bits). Suffix trees require considerably more space:
between 4n lg n and 5n lg n bits (stored in 4n–5n words) [55]. In contrast, inverted
lists require only approximately 10% of the text size [58], and thus suffix arrays and
suffix trees require significantly more bits. From a theoretical point of view, if the
alphabet is very large, namely, if lg |Σ| = Θ(lgn), then suffix arrays require roughly
the same number of bits as the text. However, in practice, the alphabet size |Σ| is
typically a fixed constant, such as |Σ| = 256 in electronic documents in ascii or larger
in unicode format, and Σ = 4 in DNA sequences. In such cases in practice, suffix
arrays and suffix trees are larger than the text by a significant multiplicative factor
of Θ(lg|Σ| n) = Θ(lgn). For example, a DNA sequence of n symbols (with |Σ| = 4)
can be stored with 2n bits in a computer. The suffix array for the sequence requires
instead at least n words of 4 bytes each, or 32n bits, which is 16 times larger than
the text itself. On the other hand, we cannot resort to inverted files since they do not
support a general search on unstructured sequences.

1In this paper, we use the notation lgcb n = (logb n)c = (logn/ log b)c to denote the cth power of
the base-b logarithm of n. If no base b is specified, the implied base is 2.
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In [62], Munro, Raman, and Rao solve the open question raised by Muthukrishnan
by showing how to represent suffix trees in n lg n+O(n) bits while allowing O(m)-time
search of binary pattern strings of length m. This result highlights the conceptual
barrier of n lg n bits of storage needed for text indexing. In this paper, we go one step
further and investigate whether it is possible to design a full-text index in o(n lg n)
bits, while still supporting efficient search.

The question of space usage is important in both theory and practice. Prior to
our work, the state of the art has taken for granted that at least n lg n bits are needed
to represent the permutation of the text positions for any efficient full-text index. On
the other hand, if we note that each text of n symbols is in one-to-one correspondence
with a suffix array, then we can easily see by a simple information-theoretic argument
that Ω(n lg |Σ|) bits are required to represent the permutation. The argument is based
upon the fact that there are |Σ|n different text strings of length n over the alphabet Σ;
hence, there are that many different suffix arrays, and we need Ω(n lg |Σ|) bits to
distinguish them from one another. It is therefore an interesting problem to close this
gap in order to see if there is an efficient representation of suffix arrays that use nearly
n lg |Σ| + O(n) bits in the worst case, even for random strings.

In order to have an idea of the computational difficulty of the question, let us
follow a simple approach that saves space. Let us consider binary alphabets. We
bunch every lgn bits together into a word (in effect, constructing a large alphabet)
and create a text of length n/ lg n and a pattern of length m/ lg n. The suffix array
on the new text requires O((n/ lg n) lg n) = O(n) bits. Searching for a pattern of
length m must also consider situations when the pattern is not aligned at the precise
word boundaries. What is the searching cost? It appears that we have to handle
lg n situations, with a slowdown factor of lgn in the time complexity of the search.
However, this is not really so; we actually have to pay a much larger slowdown factor
of Ω(n) in the search cost, which makes querying the text index more expensive than
running the O(m + n)-time algorithms from scratch, such as in [49]. To see why, let
us examine the situation in which the pattern occurs k positions to the right of a
word boundary in the text. In order to query the index, we have to align the pattern
with the boundary by padding k bits to the left of the pattern. Since we do not know
the correct k bits to prepend to the pattern, we must try all 2k possible settings of
the k bits. When k ≈ lg n, we have to query the index 2k = Ω(n) times in the worst
case. (See the sparse suffix trees [47] cited in section 1.3 to partially alleviate this
drawback.)

The above example shows that a small reduction in the index size can make query-
ing the index useless in the worst case, as it can cost at least as much as performing
a full scan of the text from scratch. In section 1.3, we describe previous results moti-
vated by the need to find an efficient solution to the problem of designing a full-text
index that saves space and time in the worst case. No data structures with the func-
tionality of suffix trees and suffix arrays that have appeared in the literature to date
use Θ(n lg |Σ|) + o(n lg n) bits and support fast queries in o(m lg |Σ|) or o(m + lg n)
worst-case time. Our goal in this paper is to simultaneously reduce both the space
bound and the query time bound.

1.2. Our results. In this paper, we begin the study of the compressibility of
suffix arrays and related full-text indexes. We assume for simplicity that the alphabet
Σ is of bounded size (i.e., ascii or unicode/utf8). We recall that the suffix array SA
for text T stores the suffixes of T in lexicographic order, as shown in Figure 2. We
represent SA in the form of a permutation of the starting positions, 1, 2, . . . , n, of the
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suffixes in T . For all 1 ≤ i < j ≤ n, we have T
[
SA[i], n

]
< T

[
SA[j], n

]
in lexicographic

order. We call each entry in SA a suffix pointer.
Given a text T and its suffix array SA, we consider the problem of obtaining a

compressed suffix array from both T and SA so as to support the following two basic
operations:

1. compress(T,SA): Compress SA to obtain its succinct representation. After
that, text T is retained while SA can be discarded.

2. lookup(i): Given the compressed representation mentioned above, return
SA[i], which is the suffix pointer in T of the ith suffix T

[
SA[i], n

]
in lexicographic

order.
(More functionalities are introduced in [64].) The primary measures of performance
are the query time to do lookup, the amount of space occupied by the compressed
suffix array, and the preprocessing time and space taken by compress.

In this paper, we exploit the “implicit structure” underlying the permutation
of the suffix pointers stored in SA, which takes advantage of the fact that not all
permutations are valid suffix arrays. For any fixed value of 0 < ε ≤ 1, we show how
to implement operation compress in (1 + ε−1)n lg |Σ| + o(n lg |Σ|) bits so that each
call to lookup takes sublogarithmic worst-case time, that is, O(lgε|Σ| n) time. We can
also achieve (1 + 1

2 lg lg|Σ| n)n lg |Σ|+O(n) bits so that calls to lookup can be done in
O(lg lg|Σ| n) time. The preprocessing time is O(n lg |Σ|). Note that the auxiliary space
during preprocessing is larger, i.e., O(n lg n) bits, since our preprocessing requires the
suffix array in uncompressed form to output it in compressed form. Our findings have
several implications as follows:

1. When |Σ| = O
(
2o(lgn)

)
, we break the space barrier of Ω(n lg n) bits for a

suffix array while retaining o(lg n) lookup time in the worst case. We refer the reader
to the literature described in section 1.3.

2. We can implement a form of compressed suffix trees in 2n lg |Σ| + O(n) bits
by using compressed suffix arrays (with ε = 1) and the techniques for compact rep-
resentation of Patricia tries presented in [62]. They occupy asymptotically up to a
small constant factor the same space as that of the text string being indexed.

3. Our compressed suffix arrays and compressed suffix trees are provably as
good as inverted lists in terms of space usage, at least theoretically. In the worst case,
they require asymptotically the same number of bits.

4. We can build a hybrid full-text index on T in at most
(
ε−1 + O(1)

)
n lg |Σ|

bits by a suitable combination of our compressed suffix trees and previous tech-
niques [17, 45, 62, 59]. We can answer existential and counting queries of any pattern
string of length m in O(m/ lg|Σ| n + lgε|Σ| n) search time in the worst case, which is

o
(
min{m lg |Σ|,m + lg n}

)
, smaller than previous search bounds. For enumerative

queries, we introduce a sublogarithmic slowdown factor in the output-sensitive cost,
giving O(occ lgε|Σ| n) time as a result. When the patterns are sufficiently long, namely,
for m = Ω

(
(lg2+ε n)(lg|Σ| lg n)

)
, we can use auxiliary data structures in O(n lg |Σ|)

bits to obtain a total search bound of O(m/ lg|Σ| n + occ) time, which is optimal.
The bounds claimed in point 4 need further elaboration. Specifically, search-

ing takes O(1) time for m = o(lg n), and O(m/ lg|Σ| n + lgε|Σ| n) = o(m lg |Σ|) time
otherwise. That is, we achieve optimal O(m/ lg|Σ| n) search time for sufficiently
large m = Ω(lg1+ε

|Σ| n). For enumerative queries, retrieving all occ occurrences has
cost O(m/ lg|Σ| n + occ lgε|Σ| n) when both conditions m ∈

[
ε lg n, o(lg1+ε n)

]
and

occ = o(nε) hold, and cost O
(
m/ lg|Σ| n + occ + (lg1+ε n)(lg |Σ| + lg lgn)

)
otherwise.
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The results described in this paper are theoretical, but they also have substan-
tial practical value. The ideas described here, with the extensions described by
Sadakane [64], have been tested experimentally in further work discussed in section
1.3. Central to our algorithms is the definition of function Φ and its implications
described in section 2. This function is at the heart of many subsequent papers on
compressed text indexing (such as suffix links in suffix trees, binary search trees in
sorted dictionaries, and join operators in relational databases), thus is the major
by-product of the findings presented in this paper. Ultimately Φ is related to sorting-
based compression because it represents the inverse of the last-to-first mapping for
the Burrows–Wheeler transform [14]. We refer the interested reader to section 1.3 for
the state of the art in compressed text indexing and to section 2 for a discussion of
the function Φ.

1.3. Related work. The seminal paper by Knuth, Morris, and Pratt [49] pro-
vides the first string matching solution taking O(m+n) time and O(m) words to scan
the text. The space requirement was remarkably lowered to O(1) words in [33, 19].
The new paradigm of compressed pattern matching was introduced in [2] and explored
for efficiently scanning compressed texts in [3, 24]. When many queries are to be per-
formed on the same text, it is better to resort to text indexing. A relevant paper [68]
introduced a variant of the suffix tree for solving the text indexing problem in string
matching. This paper pointed out the importance of text indexing as a tool to avoid
a full scan of the text at each pattern search. This method takes O(m lg |Σ|) search
time plus the output-sensitive cost O(occ) to report the occurrences, where occ ≤ n.
Since then, a plethora of papers have studied the text indexing problem in several
contexts, sometimes using different terminology [10, 11, 18, 28, 50, 41, 57, 55, 67];
for more references see [7, 20, 38]. Although very efficient, the resulting index data
structures are greedy in terms of space, using at least n words or Ω(n lg n) bits.

Numerous papers faced the problem of saving space in these data structures, both
in practice and in theory. Many of the papers were aimed at improving the lower-order
terms, as well as the constants in the higher-order terms, or at achieving tradeoff
between space requirements and search time complexity. Some authors improved
the multiplicative constants in the O(n lg n)-bit practical implementations. For the
analysis of constants, we refer the reader to [6, 15, 34, 44, 53, 54, 55]. Other authors
devised several variations of sparse suffix trees to store a subset of the suffixes [5, 35,
47, 46, 56, 59]. Some of them wanted queries to be efficient when the occurrences
are aligned with the boundaries of the indexed suffixes. Sparsity saves much space
but makes the search for arbitrary substrings difficult and, in the worst case, it is as
expensive as scanning the whole text in O(m + n) time. Another interesting index,
the Lempel-Ziv index [45], occupies O(n) bits and takes O(m) time to search patterns
shorter than lgn with an output-sensitive cost for reporting the occurrences; for longer
patterns, it may occupy Ω(n lg n) bits. An efficient and practical compressed index
is discussed in [21], but its searches are at word level and are not full text (i.e., with
arbitrary substrings).

An alternative line of research has been built upon succinct representation of
trees in 2n bits, with navigational operations [42]. That representation was extended
in [16] to represent a suffix tree in n lg n bits plus an extra O(n lg lg n) expected
number of bits. A solution requiring n lg n+O(n) bits and O(m+lg lgn) search time
was described in [17]. Munro, Raman, and Rao [62] used it along with an improved
succinct representation of balanced parentheses [61] in order to get O(m lg |Σ|) search
time with only n lg n + o(n) bits. They also show in [62] how to get O(m) time and
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O(n lg n/ lg lg n) bits for existential queries in binary patterns.
The preliminary version of our results presented in [37] stimulated much further

work; according to a search on http.//www.scholar.google.com, as of May 2005 more
than 80 interesting results have appeared citing this work. A first question raised
concerns lower bounds. Assuming that the text is read-only and using a stronger
version of the bit-probe model, Demaine and López-Ortiz [22] have shown in the
worst case that any text index with alphabet size |Σ| = 2 that supports fast queries
by probing O(m) bits in the text must use Ω(n) bits of extra storage space. (See
also Gál and Miltersen [32] for a general class of lower bounds.) Thus, our index
is space-optimal in this sense. A second concerns compressible text. Ferragina and
Manzini [29, 30] have devised the Fast Minute index (FM-index), based upon the
Burrows–Wheeler transform [14], that asymptotically achieves the order-k empirical
entropy of the text and allows them to obtain self-indexing texts (i.e., the compressed
text and its index are the same sequence of bits). Sadakane [64] has shown that
compressed suffix arrays can be used for self-indexing texts, with space bound by
the order-0 entropy. (He also uses our Lemma 2 in section 3.1 to show how to store
the skip values of the suffix tree in O(n) bits [65].) The space of compressed suffix
arrays has been further reduced to the order-k entropy (with a multiplicative constant
of 1) by Grossi, Gupta, and Vitter [36] using a novel analysis based on a finite set
model. Both the compressed suffix array and the FM-index require O(n lg n) auxiliary
bits of space during preprocessing, so a third question arises concerning a space-
efficient construction. Hon, Sadakane, and Sung [40] have shown how to build both the
compressed suffix array and the FM-index with O(n lg |Σ|) bits of auxiliary space by
using the text alone and small bookkeeping data structures. Numerous other papers
have appeared as well, representing a recent new trend in text indexing, causing space
efficiency to no longer be a major obstacle to the large-scale application of index data
structures [71]. Ideally we’d like to find an index that uses as few as bits as possible
and supports enumerative queries for each query pattern in sublinear time in the worst
case (in addition to the output-sensitive cost).

1.4. Outline of the paper. In section 2 we describe the ideas behind our new
data structure for compressed suffix arrays, including function Φ. Details of our
compressed suffix array construction are given in section 3. In section 4 we show how
to use compressed suffix arrays to construct compressed suffix trees and a general
space-efficient indexing mechanism to speed up text search. We give final comments
in section 5. We adopt the standard unit cost RAM for the analysis of our algorithms,
as does the previous work with which we compare. We use standard arithmetic and
Boolean operations on words of O(lg n) bits. Each operation takes constant time;
each word is read or written in constant time.

2. Compressed suffix arrays. The compression of suffix arrays falls into the
general framework presented by Jacobson [43] for the abstract optimization of data
structures. We start from the specification of our data structure as an abstract data
type with its supported operations. We take the time complexity of the “natural” (and
less space efficient) implementation of the data structure. Then we define the class Cn

of all distinct data structures storing n elements. A simple information-theoretic
argument implies that each such data structure can be canonically identified by lg |Cn|
bits. We try to give a succinct implementation of the same data structure in O

(
lg |Cn|

)
bits, while supporting the operations within time complexity comparable with that of
the natural implementation. However, the information-theoretic argument alone does
not guarantee that the operations can be supported efficiently.
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We define the suffix array SA for a binary string T as an abstract data type that
supports the two operations compress and lookup described in the introduction. We
will adopt the convention that T is a binary string of length n− 1 over the alphabet
Σ = {a, b}, and it is terminated in the nth position by a special end-of-string symbol #,
such that a < # < b.2 We will discuss the case of alphabets of size |Σ| > 2 at the end
of the section.

The suffix array SA is a permutation of {1, 2, . . . , n} that corresponds to the
lexicographic ordering of the suffixes in T ; that is, SA[i] is the starting position in T
of the ith suffix in lexicographic order. The example below shows the suffix arrays
corresponding to the 16 binary strings of length 4:

a a a a # a a a b # a a b a # a a b b # a b a a # a b a b # a b b a # a b b b #

1 2 3 4 5 1 2 3 5 4 1 4 2 5 3 1 2 5 4 3 3 4 1 5 2 1 3 5 2 4 4 1 5 3 2 1 5 4 3 2

b a a a # b a a b # b a b a # b a b b # b b a a # b b a b # b b b a # b b b b #

2 3 4 5 1 2 3 5 1 4 4 2 5 3 1 2 5 1 4 3 3 4 5 2 1 3 5 2 4 1 4 5 3 2 1 5 4 3 2 1

The natural explicit implementation of suffix arrays requires O(n lg n) bits and
supports the lookup operation in constant time. The abstract optimization discussed
above suggests that there is a canonical way to represent suffix arrays in O(n) bits.
This observation follows from the fact that the class Cn of suffix arrays has no more
than 2n−1 distinct members, as there are 2n−1 binary strings of length n − 1. That
is, not all the n! permutations are necessarily suffix arrays.

We use the intuitive correspondence between suffix arrays of length n and binary
strings of length n − 1. According to the correspondence, given a suffix array SA,
we can infer its associated binary string T and vice versa. To see how, let x be the
entry in SA corresponding to the last suffix # in lexicographic order. Then T must
have the symbol a in each of the positions pointed to by SA[1], SA[2], . . . ,SA[x− 1],
and it must have the symbol b in each of the positions pointed to by SA[x + 1],
SA[x + 2], . . . ,SA[n]. For example, in the suffix array 〈45321〉 (the 15th of the 16
examples above), the suffix # corresponds to the second entry 5. The preceding entry
is 4, and thus the string T has a in position 4. The subsequent entries are 3, 2, 1,
and thus T must have bs in positions 3, 2, 1. The resulting string T , therefore, must
be bbba#.

The abstract optimization does not say anything regarding the efficiency of the
supported operations. By the correspondence above, we can define a trivial compress
operation that transforms SA into a sequence of n − 1 bits plus #, namely, string T
itself. The drawback, however, is the unaffordable cost of lookup. It takes Ω(n) time
to decompress a single suffix pointer in SA, as it must build the whole suffix array on
T from scratch. In other words, the trivial method proposed so far does not support
efficient lookup operations.

In this section we describe an efficient method to represent suffix arrays in O(n)
bits with fast lookup operations. Our idea is to distinguish among the permutations
of {1, 2, . . . , n} by relating them to the suffixes of the corresponding strings, instead
of studying them alone. We mimic a simple divide-and-conquer “deconstruction” of
the suffix arrays to define the permutation for an arbitrary (e.g., random) string T
recursively in terms of shorter permutations. For some examples of divide-and-conquer

2Usually, an end-of-symbol character is not explicitly stored in T , but rather is implicitly repre-
sented by a blank symbol �, with the ordering � < a < b. However, our use of # is convenient for
showing the explicit correspondence between suffix arrays and binary strings.
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construction of suffix arrays and suffix trees, see [8, 25, 26, 27, 55, 66]. We reverse
the construction process to discover a recursive structure of the permutations that
makes their compression possible. We describe the decomposition scheme in section
2.1, giving some intuition on the compression in section 2.2. We summarize the results
thus obtained in section 2.3.

2.1. Decomposition scheme. Our decomposition scheme is by a simple recur-
sion mechanism. Let SA be the suffix array for binary string T . In the base case,
we denote SA by SA0, and let n0 = n be the number of its entries. For simplicity in
exposition, we assume that n is a power of 2.

In the inductive phase k ≥ 0, we start with suffix array SAk, which is available
by induction. It has nk = n/2k entries and stores a permutation of {1, 2, . . . , nk}.
(Intuitively, this permutation is that resulting from sorting the suffixes of T whose
suffix pointers are multiples of 2k.) We run four main steps as follows to transform
SAk into an equivalent but more succinct representation:

Step 1. Produce a bit vector Bk of nk bits such that Bk[i] = 1 if SAk[i] is even
and Bk[i] = 0 if SAk[i] is odd.

Step 2. Map each 0 in Bk onto its companion 1. (We say that a certain 0 is
the companion of a certain 1 if the odd entry in SA associated with the 0 is 1 less
than the even entry in SA associated with the 1.) We can denote this correspondence
by a partial function Ψk, where Ψk(i) = j if and only if SAk[i] is odd and SAk[j] =
SAk[i] + 1. When defined, Ψk(i) = j implies that Bk[i] = 0 and Bk[j] = 1. It is
convenient to make Ψk a total function by setting Ψk(i) = i when SAk[i] is even (i.e.,
when Bk[i] = 1). In summary, for 1 ≤ i ≤ nk, we have

Ψk(i) =

{
j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3. Compute the number of 1’s for each prefix of Bk. We use function rankk

for this purpose; that is, rankk(j) counts how many 1’s are in the first j bits of Bk.
Step 4. Pack together the even values from SAk and divide each of them by 2. The

resulting values form a permutation of {1, 2, . . . , nk+1}, where nk+1 = nk/2 = n/2k+1.
Store them in a new suffix array SAk+1 of nk+1 entries and remove the old suffix array
SAk.

The following example illustrates the effect of a single application of Steps 1–4.
Here, Ψ0(25) = 16 as SA0[25] = 29 and SA0[16] = 30. The new suffix array SA1

explicitly stores the suffix pointers (divided by 2) for the suffixes that start at even
positions in the original text T . For example, SA1[3] = 5 means that the third
lexicographically smallest suffix that starts at an even position in T is the one starting
at position 2 × 5 = 10, namely, abbabaa . . . #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0: 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0

rank0: 0 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 10 10 10 11 11 12 12 12 12 13 14 14 15 16 16
Ψ0: 2 2 14 15 18 23 7 8 28 10 30 31 13 14 15 16 17 18 7 8 21 10 23 13 16 17 27 28 21 30 31 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11
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procedure rlookup(i, k):

if k = � then
return SA�[i]

else
return 2 × rlookup

(
rankk(Ψk(i)), k + 1

)
+ (Bk[i] − 1).

Fig. 3. Recursive lookup of entry SAk[i] in a compressed suffix array.

The next lemma shows that these steps preserve the information originally kept
in suffix array SAk.

Lemma 1. Given suffix array SAk, let Bk, Ψk, rankk, and SAk+1 be the result of
the transformation performed by Steps 1–4 of phase k. We can reconstruct SAk from
SAk+1 by the following formula for 1 ≤ i ≤ nk:

SAk[i] = 2 · SAk+1

[
rankk

(
Ψk(i)

)]
+ (Bk[i] − 1).

Proof. Suppose Bk[i] = 1. By Step 3, there are rankk(i) 1’s among Bk[1],
Bk[2], . . . , Bk[i]. By Step 1, SAk[i] is even, and by Step 4, SAk[i]/2 is stored in the
rankk(i)th entry of SAk+1. In other words, SAk[i] = 2·SAk+1

[
rankk(i)

]
. As Ψk(i) = i

by Step 2, and Bk[i] − 1 = 0, we obtain the claimed formula.
Next, suppose that Bk[i] = 0 and let j = Ψk(i). By Step 2, we have SAk[i] =

SAk[j]−1 and Bk[j] = 1. Consequently, we can apply the previous case of our analysis
to index j, and we get SAk[j] = 2 · SAk+1

[
rankk(j)

]
. The claimed formula follows by

replacing j with Ψk(i) and by noting that Bk[i] − 1 = −1.
In the previous example, SA0[25] = 2 · SA1[rank0(16)] − 1 = 2 · 15 − 1 = 29. We

now give the main ideas to perform the compression of suffix array SA and support
the lookup operations on its compressed representation.

Procedure compress. We represent SA succinctly by executing Steps 1–4 of
phases k = 0, 1, . . . , �− 1, where the exact value of � = Θ(lg lgn) will be determined
in section 3. As a result, we have � + 1 levels of information, numbered 0, 1, . . . , �,
which form the compressed representation of suffix array SA as follows:

1. Level k, for each 0 ≤ k < �, stores Bk, Ψk, and rankk. We do not store SAk,
but we refer to it for the sake of discussion. The arrays Ψk and rankk are not stored
explicitly, but are stored in a specially compressed form described in section 3.

2. The last level k = � stores SA� explicitly because it is sufficiently small to
fit in O(n) bits. The �th level functionality of structures B�, Ψ�, and rank � are not
needed as a result.

Procedure lookup (i). We define lookup(i) = rlookup(i, 0), where rlookup(i, k) is
the procedure described recursively for level k in Figure 3.

If k is the last level �, then it performs a direct lookup in SA�[i]. Otherwise, it
exploits Lemma 1 and the inductive hypothesis so that rlookup(i, k) returns the value
of 2 · SAk+1

[
rankk

(
Ψk(i)

)]
+ (Bk[i] − 1) in SAk[i].

2.2. Compressibility. As previously mentioned, Bk, rankk, and Ψk are the
key ingredients for representing a compressed suffix array. Storing Bk and rankk

succinctly, with constant-time access, can be done using previous work (see, e.g.,
[42]). Hence, we focus on function Ψk, which is at the heart of the compressed suffix
array since its compression is challenging.

Before giving some intuition on the compressibility, a few comments are in order.
When Ψ0(i) �= i, we observe that Ψ0 is the analogue of the suffix links in McCreight’s



COMPRESSED SUFFIX ARRAYS 389

suffix tree construction [57]. (We recall that a suffix link for a node storing a nonempty
string cα, where c ∈ Σ, points to the node storing α.) This is clear when we consider
its extension, Φ0, defined in section 3.2 as follows:

Φk(i) =

{
j if SAk[i] �= nk and SAk[j] = SAk[i] + 1;
1 otherwise.

Indeed, if i is the position in SA for suffix T
[
SA[i], n

]
, then Φ0(i) returns j, which

is the position in SA for suffix T
[
SA[i] + 1, n

]
(when Φ0(i) is seen as a suffix link,

c = T
[
SA[i]

]
and α = T

[
SA[i] + 1, n

]
). Analogously, we can see Ψk and Φk as the

suffix links for the positions in SAk, for any k ≥ 0.
Functions Ψk and Φk can be seen as by-products of the suffix array construc-

tion. Let the inverse suffix array, SA−1, be the array satisfying SA−1
[
SA[i]

]
=

SA
[
SA−1[i]

]
= i. Note that SA−1 is well defined since SA stores a permutation

of 1, 2, . . . , n. When Φ0(i) �= 1, we have Φ0(i) = SA−1
[
SA[i] + 1

]
. An analogous

argument holds for any k ≥ 0.
In order to see why Ψ0 and Φ0 are compressible, we focus on Ψ0. If we consider

the values of Ψ0 in the example of section 2.1, we do not see any particular order.
However, if we restrict our focus to the positions i (1 ≤ i ≤ n) having (a) value of 0
in B0[i], and (b) the same leading character in the corresponding suffix, T

[
SA[i], n

]
,

we observe that the values of Ψ0 in those positions yield an increasing sequence.
For example, choosing a as the leading character in condition (b), we find that the
positions satisfying also condition (a) are i = 1, 3, 4, 5, 6, 9, 11, 12. Their corresponding
values are Ψ0(i) = 2, 14, 15, 18, 23, 28, 30, 31, respectively. The latter values form a
sorted sequence (called a list) that can be implicitly represented in several ways. We
clearly have to represent lists for all distinct characters that appear in the text (a list,
blist, . . . ).

In this paper, we represent the lists by relating them to the positions of the
companion 1’s in B0. Let the preceding character for position i in SA be T

[
SA[i]−1

]
for SA[i] �= 1; otherwise, let it be T [n]. We implicitly associate the preceding character
for position i with each entry of B0 containing 1. For example, in the case of the
a list, the positions corresponding to the 1’s in B0 and with preceding character a

are 2, 14, 15, 18, 23, 28, 30, 31, which are exactly the items in the a list itself! (The
motivation for this nice property is that the suffixes remain sorted in relative order,
even if interspersed with other suffixes, when we remove their leading character a.)
By exploiting this relation, we can implement constant-time access to Ψ0’s values
without needing to store them explicitly. Further details on how to represent rankk,
Ψk, and Φk in compressed form and how to implement compress and lookup(i) will
be given in section 3.

2.3. Results. Our main theorem below gives the resulting time and space com-
plexity that we are able to achieve.

Theorem 1 (binary alphabets). Consider the suffix array SA built upon a binary
string of length n− 1.

(i) We can implement compress in 1
2n lg lg n+ 6n+O(n/ lg lg n) bits and O(n)

preprocessing time, so that each call lookup(i) takes O(lg lg n) time.
(ii) We can implement compress in (1 + ε−1)n + O(n/ lg lg n) bits and O(n)

preprocessing time, so that each call lookup(i) takes O(lgε n) time, for any fixed value
of 0 < ε ≤ 1.

The coefficients on the second-order terms can be tweaked theoretically by a more
elaborate encoding. We also state the above results in terms of alphabets with |Σ| > 2.
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Theorem 2 (general alphabets). Consider the suffix array SA built upon a string
of length n− 1 over the alphabet Σ with size |Σ| > 2.

(i) We can implement compress in (1+ 1
2 lg lg|Σ| n)n lg |Σ|+5n+O(n/ lg lg n) =

(1 + 1
2 lg lg|Σ| n)n lg |Σ| + O(n) bits and O(n lg |Σ|) preprocessing time, so that each

call lookup(i) takes O(lg lg|Σ| n) time.
(ii) We can implement compress in (1 + ε−1)n lg |Σ| + 2n + O(n/ lg lg n) =

(1 + ε−1)n lg |Σ|+ o(n lg |Σ|) bits and O(n lg |Σ|) preprocessing time, so that each call
lookup(i) takes O(lgε|Σ| n) time, for any fixed value of 0 < ε ≤ 1. For |Σ| = O(1), the
space bound reduces to (1+ ε−1)n lg |Σ|+O(n/ lg lg n) = (1+ ε−1)n lg |Σ|+ o(n) bits.

We remark that Sadakane [64] has shown that the space complexity in Theo-
rem 1(ii) and Theorem 2(ii) can be restated in terms of the order-0 entropy H0 ≤ lg |Σ|
of the string, giving as a result ε−1H0 n + O(n) bits. Grossi, Gupta, and Vitter [36]
have shown how to attain order-h entropy, namely, Hh n + O(n lg lg n/ lg|Σ| n) bits,
where Hh ≤ H0.

The lookup process can be sped up when we need to report several contiguous
entries, as in enumerative string matching queries. Let lcp(i, j) denote the length of
the longest common prefix between the suffixes pointed to by SA[i] and SA[j], with
the convention that lcp(i, j) = −∞ when i < 1 or j > n. We say that a sequence i,
i+1, . . . , j of indices in SA is maximal if both lcp(i−1, j) and lcp(i, j+1) are strictly
smaller than lcp(i, j), as in enumerative queries. (Intuitively, a maximal sequence in
SA corresponds to all the occurrences of a pattern in T .)

Theorem 3 (batch of lookups). In each of the cases stated in Theorems 1 and 2,
we can use the additional space of O(n lg |Σ|) bits and batch together j−i+1 procedure
calls lookup(i), lookup(i + 1), . . . , lookup(j), for a maximal sequence i, i + 1, . . . , j,
so that the total cost is

(i) O
(
j−i+(lgn)1+ε(lg |Σ|+lg lgn)

)
time when lcp(i, j) = Ω(lg1+ε n), namely,

the suffixes pointed to by SA[i] and SA[j] have the same first Ω(lg1+ε n) symbols in
common, or

(ii) O(j − i + nα) time, for any constant 0 < α < 1, when lcp(i, j) = Ω(lg n),
namely, the suffixes pointed to by SA[i] and SA[j] have the same first Ω(lg n) symbols.

3. Algorithms for compressed suffix arrays. In this section we construc-
tively prove Theorems 1–3 by showing two ways to implement the recursive decompo-
sition of suffix arrays discussed in section 2.1. In particular, in section 3.1 we address
Theorem 1(i), and in section 3.2 we prove Theorem 1(ii). Section 3.3 shows how to
extend Theorem 1 to deal with alphabets of size |Σ| > 2, thus proving Theorem 2.
In section 3.4 we prove Theorem 3, showing how to batch together the lookup of sev-
eral contiguous entries in suffix arrays, which arises in enumerative string matching
queries.

3.1. Compressed suffix arrays in 1
2
n lg lg n + O(n) bits and O(lg lg n)

access time. In this section we describe the method referenced in Theorem 1(i) for
binary strings and show that it achieves O(lg lg n) lookup time with a total space usage
of O(n lg lg n) bits. Before giving the algorithmic details of the method, let’s continue
the recursive decomposition of Steps 1–4 described in section 2.1, for 0 ≤ k ≤ � − 1,
where � = 
lg lg n�. The decomposition below shows the result on the example of
section 2.1:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11
B1: 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0

rank1: 1 2 2 3 4 5 5 5 6 6 6 7 7 8 8 8
Ψ1: 1 2 9 4 5 6 1 6 9 12 14 12 2 14 4 5

1 2 3 4 5 6 7 8
SA2: 4 7 1 6 8 3 5 2
B2: 1 0 0 1 1 0 0 1

rank2: 1 1 1 2 3 3 3 4
Ψ2: 1 5 8 4 5 1 4 9

1 2 3 4
SA3: 2 3 4 1

The resulting suffix array SA� on level � contains at most n/ lg n entries and can
thus be stored explicitly in at most n bits. We store the bit vectors B0, B1, . . . , B�−1

in explicit form, using less than 2n bits, as well as implicit representations of rank0,
rank1, . . . , rank �−1, and Ψ0, Ψ1, . . . ,Ψ�−1. If the implicit representations of rankk

and Ψk can be accessed in constant time, the procedure described in Lemma 1 shows
how to achieve the desired lookup in constant time per level, for a total of O(lg lg n)
time.
All that remains, for 0 ≤ k ≤ �− 1, is to investigate how to represent rankk and Ψk

in O(n) bits and support constant-time access. Given the bit vector Bk of nk = n/2k

bits, Jacobson [42] shows how to support constant-time access to rankk using only
O
(
nk(lg lg nk)/ lg nk

)
extra bits, with preprocessing time O(nk).

We show next how to represent Ψk implicitly. First we explain the representation
by an example and then we describe it formally. In Lemma 3 we show that the space
used to represent Ψk is n(1/2 + 3/2k+1) + O(n/2k lg lg n) bits.

For each 1 ≤ i ≤ nk/2, let j be the index of the ith 1 in Bk. Consider the
2k symbols in positions 2k · (SAk[j] − 1), . . . , 2k · SAk[j] − 1 of T ; these 2k symbols
immediately precede the

(
2k · SAk[j]

)
th suffix in T , as the suffix pointer in SAk[j]

was 2k times larger before the compression. For each bit pattern of 2k symbols that
appears, we keep an ordered list of the indices j ∈ [1, n/2k] that correspond to it, and
we record the number of items in each list. Continuing the example above, we get the
following lists for level 0:

a list: 〈2, 14, 15, 18, 23, 28, 30, 31〉, |a list| = 8
b list: 〈7, 8, 10, 13, 16, 17, 21, 27〉, |b list| = 8

Level 1:

aa list: ∅, |aa list| = 0
ab list: 〈9〉, |ab list| = 1
ba list: 〈1, 6, 12, 14〉, |ba list| = 4
bb list: 〈2, 4, 5〉, |bb list| = 3

Level 2:

aaaa list: ∅, |aaaa list| = 0 baaa list: ∅, |baaa list| = 0
aaab list: ∅, |aaab list| = 0 baab list: ∅, |baab list| = 0
aaba list: ∅, |aaba list| = 0 baba list: 〈1〉, |baba list| = 1
aabb list: ∅, |aabb list| = 0 babb list: 〈4〉, |babb list| = 1
abaa list: ∅, |abaa list| = 0 bbaa list: ∅, |bbaa list| = 0
abab list: ∅, |abab list| = 0 bbab list: ∅, |bbab list| = 0
abba list: 〈5, 8〉, |abba list| = 2 bbba list: ∅, |bbba list| = 0
abbb list: ∅, |abbb list| = 0 bbbb list: ∅, |bbbb list| = 0
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Suppose we want to compute Ψk(i). If Bk[i] = 1, we trivially have Ψk(i) = i;
therefore, let’s consider the harder case in which Bk[i] = 0, which means that SAk[i]
is odd. We have to determine the index j such that SAk[j] = SAk[i] + 1. We can
determine the number h of 0’s in Bk up to index i by computing i − rankk(i), i.e.,
by subtracting the number of 1’s in the first i bits of Bk. Consider the 22k

lists
concatenated together in lexicographic order of the 2k-bit prefixes. We denote by Lk

the resulting concatenated list, which has |Lk| = nk/2 = n/2k+1 total items. What
we need to find now is the hth entry in Lk. For example, to determine Ψ0(25) in the
example above, we find that there are h = 13 0’s in the first 25 slots of B0. There are
eight entries in the a list and eight entries in the b list; hence, the 13th entry in L0 is
the fifth entry in the b list, namely, index 16. Hence, we have Ψ0(25) = 16 as desired;
note that SA0[25] = 29 and SA0[16] = 30 are consecutive values.

Continuing the example, consider the next level of the recursive call to rlookup,
in which we need to determine Ψ1(8). (The previously computed value Ψ0(25) =
16 has a rank0 value of 8, i.e., rank0(16) = 8, so the rlookup procedure needs to
determine SA1[8], which it does by first calculating Ψ1(8).) There are h = 3 0’s in
the first eight entries of B1. The third entry in the concatenated list L1 for aa, ab,
ba, and bb is the second entry in the ba list, namely, 6. Hence, we have Ψ1(8) = 6 as
desired; note that SA1[8] = 15 and SA1[6] = 16 are consecutive values.

We now describe formally how to preprocess the input text T in order to form the
concatenated list Lk on level k used for Ψk with the desired space and constant-time
query performance. We first consider a variant of the “inventories” introduced by
Elias [23] to get average bit efficiency in storing sorted multisets. We show how to
get worst-case efficiency.

Lemma 2 (constant-time access to compressed sorted integers). Given s integers
in sorted order, each containing w bits, where s < 2w, we can store them with at most
s(2 + w − lg s�) + O(s/ lg lg s) bits, so that retrieving the hth integer takes constant
time.

Proof. We take the first z = lg s� bits of each integer in the sorted sequence. Let
q1, . . . , qs be the integers so obtained, called quotients, where 0 ≤ qh ≤ qh+1 < s for
1 ≤ h < s. (Note that multiple values are allowed.) Let r1, . . . , rs be the remainders,
obtained by deleting the first z bits from each integer in the sorted sequence.

We store q1, . . . , qs in a table Q described below, requiring 2s+O(s/ lg lg s) bits.
We store r1, . . . , rs in a table R taking s(w − z) bits. Table R is the simple concate-
nation of the bits representing r1, . . . , rs.

As for Q, we use the unary representation 0i1 (i.e., i copies of 0 followed by 1) to
represent integer i ≥ 0. Then we take the concatenation of the unary representation
of q1, q2 − q1, . . . , qs − qs−1. In other words, we take the first entry encoded in
unary, and then the unary difference between the other consecutive entries, which
are in nondecreasing order. Table Q is made up of the binary string obtained by
the above concatenation S, augmented with the auxiliary data structure supporting
select operations to locate the position of the hth 1 in constant time [15, 42, 60].

Since S requires s+2z ≤ 2s bits, the total space required by Q is 2s+O(s/ lg lg s)
bits; the big-oh term is due to the auxiliary data structure that implements select . In
order to retrieve qh, we find the position j of the hth 1 in S by calling select(h), and
then compute the number of 0’s in the first j bits of S by returning j − h. As we can
see, this number of 0’s gives qh. The time complexity is constant.

In order to obtain the hth integer in the original sorted sequence, we find qh by
querying Q as described above, and we find ri by looking up the hth entry in R.
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We then output qh · 2w−z + rh as the requested integer by simply returning the
concatenation of the bit representations of qh and rh.

We now proceed to the implementation of Ψk.
Lemma 3. We can store the concatenated list Lk used for Ψk in n(1/2+3/2k+1)+

O(n/2k lg lg n) bits, so that accessing the hth entry in Lk takes constant time. Pre-
processing time is O(n/2k + 22k

).

Proof. There are d = 22k

lists, some of which may be empty. We number the lists
composing Lk from 0 to 22k − 1. Each integer x in list i, where 1 ≤ x ≤ nk, is trans-
formed into an integer x′ of w = 2k+lg nk bits by prepending the binary representation
of i to that of x−1. Given any such x′, we can obtain the corresponding x in constant
time. As a result, Lk contains s = nk/2 = n/2k+1 integers in increasing order, each
integer of w bits. By Lemma 2, we can store Lk in s(2 +w− lg s) +O(s/ lg lg s) bits,
so that retrieving the hth integer takes constant time. Substituting the values for s
and w, we get the space bound (nk/2)

(
2 + 2k + lg nk − lg(nk/2)

)
+ O(nk/ lg lg nk) =

(n/2k+1)(2k + 3) + O(n/2k lg lg n) = n(1/2 + 3/2k+1) + O(n/2k lg lg n).
A good way to appreciate the utility of the data structure for Ψk is to consider

the naive alternative. Imagine that the information is stored naively in the form of
an unsorted array of s = nk/2 entries, where each entry specifies the particular list
to which the entry belongs. Since there are d = 22k

lists, the total number of bits
needed to store the array in this naive manner is s lg d = (nk/2)2k = n/2, which is
efficient in terms of space. Let us define the natural ordering ≺ on the array entries,
in which we say that i ≺ j either if i < j or if i = j and the position of i in the array
precedes the position of j. The naive representation does not allow us to efficiently
look up the hth ≺-ordered entry in the array, which is equivalent to finding the hth
entry in the concatenated list Lk. It also doesn’t allow us to search quickly for the
gth occurrence of the entry i, which is equivalent to finding the gth item in list i.
In contrast, the data structure described in Lemma 3 supports both of these query
operations in linear space and constant time.

Corollary 1. Given an unsorted array of s entries, each in the range [0, d− 1],
we can represent the array in a total of s lg d+O(s) bits so that, given h, we can find
the hth entry (in ≺ order) in the array in constant time. We can also represent the
array in O(s lg d) bits so that, given g and i, we can find the gth occurrence of i in
the array in constant time. The latter operation can be viewed as a generalization of
the select operation to arbitrary input patterns.

Proof. The first type of query is identical to finding the hth item in the concate-
nated list Lk, and the bound on space follows from the construction in Lemma 3.
The corresponding values of s and w in the proof of Lemma 3 are s and lg d + lg s,
respectively.

The second type of query is identical to finding the gth entry in list i. It can be
turned into the first type of query if we can compute the value of h that corresponds
to g and i; that is, we need to find the global position h (with respect to ≺) of the
gth entry in list i. If d ≤ s, then we can explicitly store a table that gives for each
0 ≤ i < d the first location h′ in the concatenated list Lk that corresponds to an
entry in list i. We then set h = h′ + g − 1 and do the first type of query. (If list i
has fewer than g entries, which can be detected after the query is done, the value
returned by the first query must be nullified.) The total space used is d lg s, which
by the assumption d ≤ s is at most s lg d. If instead d > s, then we can use the same
approach as above, except that we substitute a perfect hash function to compute the
value h′. The space for the hash table is O(s lg s) = O(s lg d).
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Putting it all together. At this point, we have all the pieces needed to finish the
proof of Theorem 1(i). Given text T and its suffix array, we proceed in � = 
lg lg n�
levels of decomposition as discussed in procedure compress in section 2. The last
level � stores explicitly a reduced suffix array in (n/2�) lg n ≤ n bits. The other levels
0 ≤ k ≤ �− 1 store three data structures each, with constant time access as follows:

1. Bit vector Bk of size nk = n/2k, with O(nk) preprocessing time.
2. Function rankk in O

(
nk(lg lg nk)/ lg nk

)
bits, with O(nk) preprocessing time.

3. Function Ψk in n(1/2 + 3/2k+1) + O(n/2k lg lg n) bits, with O(nk + 22k

)
preprocessing time (see Lemma 3).

By summing over the levels, substituting the values � = 
lg lg n� and nk = n/2k,
we get the following bound on the total space:

n lg n

2�
+

�−1∑
k=0

n

(
1

2k
+ O

(
1

2k
lg lg(n/2k)

lg(n/2k)

)
+

1

2
+

3

2k+1
+ O

(
1

2k lg lg n

))

<
n lg n

2�
+ n

(
2 + O

(
lg lg n

lg n

)
+

1

2
� + 3 + O

(
1

lg lg n

))

=
n lg n

2�
+

1

2
�n + 5n + O

(
n

lg lg n

)
.(1)

It’s easy to show that (n lg n)/2� + 1
2�n ≤ 1

2n lg lg n + n, which combined with (1)
gives us the desired space bound 1

2n lg lg n + 6n + O(n/ lg lg n) in Theorem 1(i).

The total preprocessing time of compress is
∑�−1

k=0 O(nk + 22k

) = O(n). A call to
lookup goes through the � + 1 levels, in constant time per level, with a total cost of
O(lg lg n). This completes the proof of Theorem 1(i).

3.2. Compressed suffix arrays in ε−1n + O(n) bits and O(lgε n) access
time. In this section we give the proof of Theorem 1(ii). Each of the 
lg lg n� levels
of the data structure discussed in the previous section 3.1 uses O(n) bits, so one way
to reduce the space complexity is to store only a constant number of levels, at the
cost of increased access time. For example, we can keep a total of three levels: level 0,
level �′, and level �, where �′ = 
 1

2 lg lg n� and, as before, � = 
lg lg n�. In the previous
example of n = 32, the three levels chosen are levels 0, 2, and 3. The trick is to
determine how to reconstruct SA0 from SA�′ and how to reconstruct SA�′ from SA�.

We store the n�′ indices from SA0 that correspond to the entries of SA�′ in a
new dictionary D0, and similarly we store the n� indices from SA�′ that correspond
to the entries of SA� in a new dictionary D�′ . By using the efficient static dictionary
representation in [13, 63], we need less than O

(
lg
(

n
n�′

))
= O(n�′�

′) bits for D0 and

O
(
lg
(
n�′
n�

))
= O(n��) bits for D�′ . A dictionary lookup requires constant time, as

does a rank query to know how many smaller or equal indices are stored in the
dictionary [63].

We also have a data structure for k = 0 and k = �′ to support the function Ψ′
k,

which is similar to Ψk, except that it maps 1’s to the next corresponding 0. We
denote by Φk the resulting composition of Ψk and Ψ′

k, for 1 ≤ i ≤ nk:

Φk(i) =

{
j if SAk[i] �= nk and SAk[j] = SAk[i] + 1;
1 otherwise.

We implement Φk by merging the concatenated lists Lk of Ψk with the concatenated
lists L′

k of Ψ′
k. For example, in level k = 0 shown in section 3.1, we merge the a list
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of Lk with the a list of L′
k, and so on (we need also the singleton list for #). This is

better than storing Lk and L′
k separately. Computing Φk(i) amounts to taking the

ith entry in its concatenated list, and we no longer need the bit vector Bk.
Lemma 4. We can store the concatenated lists used for Φk in n + O(n/ lg lg n)

bits for k = 0, and n(1 + 1/2k−1) + O(n/2k lg lg n) bits for k > 0, so that accessing
the hth entry takes constant time. Preprocessing time is O(n/2k + 22k

).
Proof. For k > 0, the proof is identical to that of Lemma 3, except that s = nk

instead of s = nk/2. For k = 0, we have only the a list and the b list to store, with the
singleton # list handled a bit differently. Specifically, we encode a and # by 0 and b

by 1. Then, we create a bit vector of n bits, where the bit in position f is 0 if the list
for Φ0 contains either a or # in position f , and it is 1 if it contains b in position f . We
use auxiliary information to access the ith 1 of the bit vector in constant time by using
select(i) or the ith 0 by using select0(i). We also keep a counter c0 to know the total
number of 0’s in the bit vector (note that the single occurrence of 0 corresponding
to # in the bit vector is the c0th 0 in the bit vector as we assumed a < # < b ; it
is not difficult to treat the more common case # < a < b). The additional space
is O(n/ lg lg n) due to the implementation of select and select0. Suppose now that
we want to recover the hth entry in the list for Φ0. If h = c0, then we return the
position of # by invoking select0(c0). If h < c0, then we return the hth 0 (i.e., a) in
the bit vector by invoking select0(h). Otherwise, we invoke select(h − c0) to get the
position in the bit vector of the (h − c0)th 1 (i.e., b). In this way, we simulate the
concatenation of lists needed for L0. With n+O(n/ lg lg n) bits to implement Φ0, we
can execute Φ0(h) in constant time.

In order to determine SA[i] = SA0[i], we use function Φ0 to walk along indices i′,
i′′, . . . , such that SA0[i]+1 = SA0[i

′], SA0[i
′]+1 = SA0[i

′′], and so on, until we reach
an index stored in dictionary D0. Let s be the number of steps in the walk and r be
the rank of the index thus found in D0. We switch to level �′ and reconstruct the rth
entry at level �′ from the explicit representation of SA� by a similar walk until we find
an index stored in D�′ . Let s′ be the number of steps in the latter walk and r′ be the
rank of the index thus found in D�′ . We return (SA�[r

′] · 2� + s′ · 2�′ + s · 20), as this
is the value of SA0[i]. We defer details for reasons of brevity. The maximum length
of each walk is max{s, s′} ≤ 2�

′
< 2

√
lg n, and thus the lookup procedure requires

O(
√

lg n ) time.
To get the more general result stated in Theorem 1(ii), we need to keep a total

of ε−1 + 1 levels for constant 0 < ε ≤ 1. More formally, let us assume that ε� is an
integer. We maintain the ε−1 +1 levels 0, ε�, 2ε�, . . . , �. The maximum length of each
walk is 2ε� < 2 lgε n, and thus the lookup procedure requires O(lgε n) time.

By an analysis similar to the one we used at the end of section 3.1, the to-
tal space bound is given by (n/2�) lg n ≤ n plus a sum over the ε−1 indices k ∈
{0, ε�, 2ε�, 3ε�, . . . , (1 − ε)�}. We split the sum into two parts, one for k = 0 and the
other for the remaining ε−1 − 1 values of k > 0, and apply Lemma 4:

n lg n

2�
+ n + O

(
n

lg lg n

)
+

∑
k=iε�

1≤i<ε−1

n

(
1 +

1

2k−1
+ O

(
1

2k lg lg n

))

≤ (1 + ε−1)n + O

(
n

lg lg n

)
+ O

(
n

lgε n

)

= (1 + ε−1)n + O

(
n

lg lg n

)
.(2)
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We have to add the contribution of the space
∑

k |Dk| = O(nε� �) = O(n(lg lg n)/ lgε n)
taken by the dictionaries at the ε−1 levels, but this bound is hidden by the O(n/ lg lg n)
term in the above formula. The final bound is (1 + ε−1)n+O(n/ lg lg n), as stated in
Theorem 1(ii).

3.3. Extension to alphabets of size |Σ| > 2. We now discuss the case of
alphabets with more than two symbols. In this case, we encode each symbol by lg |Σ|
bits, so that the text T can be seen as an array of n entries, each of lg |Σ| bits, or
equivalently as a binary string that occupies n lg |Σ| bits. We describe how to extend
the ideas presented in sections 3.1–3.2. We redefine � to be 
lg lg|Σ| n�. The definitions
of suffix arrays SA and SAk, bit vector Bk, and functions rankk and Ψk are the same
as before. Their representation does not change, with the notable exception of Ψk, as
noted below in Lemma 5 (the analogue of Lemma 3).

Lemma 5. When |Σ| > 2, we can store the concatenated list Lk used for Ψk in
n
(
(1/2) lg |Σ| + 3/2k+1

)
+ O(n/2k lg lg n) bits, so that accessing the hth entry in Lk

takes constant time. Preprocessing time is O(n/2k + 22k

).
Proof. The extension of Lk with |Σ| > 2 is straightforward. For each of d =

|Σ|2k

= 22k lg |Σ| patterns of 2k symbols preceding the
(
2k · SAk[j]

)
th suffix in T ,

we keep an ordered list like the a list and b list described in section 3.1. Some of
these lists may be empty, and the concatenation of nonempty lists forms Lk. We
number these lists from 0 to 22k lg |Σ| − 1. Note that the number of entries in Lk

remains unchanged, namely, s = nk/2 = n/2k+1. Each integer x in list i, where
1 ≤ x ≤ nk, is transformed into an integer x′ of w = 2k lg |Σ| + lg nk bits, by
prepending the binary representation of i to that of x − 1. By Lemma 2, we can
store Lk in s(2 + w − lg s) + O(s/ lg lg s) bits, so that retrieving the hth integer
takes constant time. Substituting the values for s and w, we get the space bound
(nk/2)

(
2 + 2k lg |Σ|+ lg nk − lg(nk/2)

)
+O(nk/ lg lg nk) = n

(
(1/2) lg |Σ|+ 3/2k+1

)
+

O(n/2k lg lg n)
By replacing the space complexity of Ψk in formula (1) at the end of section 3.1,

we obtain

n lg n

2�
+

�−1∑
k=0

n

(
1

2k
+ O

(
1

2k
lg lg(n/2k)

lg(n/2k)

)
+

lg |Σ|
2

+
3

2k+1
+ O

(
1

2k lg lg n

))

<

(
1 +

1

2
lg lg|Σ| n

)
n lg |Σ| + 5n + O

(
n

lg lg n

)
,

as (n lg n)/2� + 1
2�n ≤ (1 + 1

2 lg lg|Σ| n)n lg |Σ|, thus proving Theorem 2(i).
To prove Theorem 2(ii), we follow the approach of section 3.2. We need dictio-

naries Dk and functions Φk for k ∈ {0, ε�, 2ε�, 3ε�, . . . , (1− ε)�}. Their definitions and
representations do not change, except for the representation of Φk, for which we need
Lemma 6 (the analogue of Lemma 4).

Lemma 6. We can store the concatenated lists used for Φk in n(lg |Σ|+1/2k−1)+
O(n/2k lg lg n) bits, so that accessing the hth entry takes constant time. Preprocessing
time is O(n/2k + 22k

). When |Σ| = O(1) and k = 0, we can store Φk in n lg |Σ| +
O(|Σ|n/ lg lg n) = n lg |Σ| + o(n) bits.

Proof. The proof is identical to that of Lemma 5, except that s = nk instead
of s = nk/2. When |Σ| = O(1), we can use a better approach for k = 0 as in the
proof of Lemma 4. We associate lg |Σ| bits with each character in Σ according to its
lexicographic order. Then we use a bit vector of n lg |Σ| bits to represent Φ0, in which
the fth chunk of lg |Σ| bits encoding a character c ∈ Σ represents the fact that the
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c list for Φ0 contains position f . We then implement |Σ| = O(1) versions of select ,
one version per character of Σ. The version for c ∈ Σ is in charge of selecting the
ith occurrence of c encoded in binary in the bit vector. To this end, it treats each
occurrence of the lg |Σ| bits for c in the bit vector as a single 1 and the occurrences of
the rest of the characters as single 0’s. It should be clear that the implementation of
each version of select can be done in O(n/ lg lg n) bits. To execute Φ0(h) in constant
time, we proceed as in Lemma 4, generalized to more than two characters.

By an analysis similar to the one we used in formula (2) at the end of section 3.2,
we obtain

n lg n

2�
+

∑
k=iε�

0≤i<ε−1

n

(
lg |Σ| + 1

2k−1
+ O

(
1

2k lg lg n

))

≤ (1 + ε−1)n lg |Σ| + 2n + O

(
n

lg lg n

)
.

When |Σ| = O(1), we can split the above sum for k = 0 and apply Lemma 6 to get
(1 + ε−1)n lg |Σ| + O(n/ lg lg n) bits, thus proving Theorem 2(ii).

3.4. Output-sensitive reporting of multiple occurrences. In this section
we prove Theorem 3 by showing how to output a contiguous set SA0[i], . . . ,SA0[j]
of entries from the compressed suffix array under the hypothesis that the sequence
i, i + 1, . . . , j is maximal (according to the definition given before Theorem 3) and
the corresponding suffixes share at least a certain number of initial symbols. This
requires adding further O(n lg |Σ|) bits of space to the compressed suffix array. One
way to output the j − i + 1 entries is via a reduction to two-dimensional orthogonal
range search [46]. Let D be a two-dimensional orthogonal range query data structure
on q points in the grid space [1 . . . U ] × [1 . . . U ], where 1 ≤ q ≤ U . Let P (q) be
its preprocessing time, S(q) the number of occupied words of O(lgU) bits each, and
T (q) +O(k) the cost of searching and retrieving the k points satisfying a given range
query in D.

Lemma 7. Fix U = n in the range query data structure D, and let n′ ≥ 1 be
the largest integer such that S(n′) = O(n/ lg n). If such an n′ exists, we can report
SA[i], . . . ,SA[j] in O

(
lg1+ε

|Σ| n+ (n/n′)(T (n′) + lg |Σ|) + j − i
)

time when the sequence
i, i+1, . . . , j is maximal and the suffixes pointed to by SA[i], . . . ,SA[j] have the same
first Ω(n/n′) symbols in common. Preprocessing time is P (n′)+O(n lg |Σ|) and space
is O(n lg |Σ|) bits in addition to that of the compressed version of SA.

Proof. Suppose by hypothesis that the suffixes pointed to by SA[i], . . . ,SA[j] have
in common at least l = 
n/n′� symbols. (This requirement can be further reduced to
l = Θ(n/n′).) We denote these symbols by b0, b1, . . . , bl−1, from left to right.

In order to define the two-dimensional points in D, we need to build the com-
pressed version of the suffix array SAR for the reversal of the text, denoted TR. Then
we obtain the points to keep in D by processing the suffix pointers in SA that are
multiples of l (i.e., they refer to the suffixes in T starting at positions l, 2l, 3l, . . . ).
Specifically, the point corresponding to pointer p = SA[s], where 1 ≤ s ≤ n and p
is a multiple of l, has first coordinate s. Its second coordinate is given by the po-
sition r of (T [1, p − 1])R in the sorted order induced by SAR. In other words, s is
the rank of T [p, n] among the suffixes of T in lexicographic order, and r is the rank
of (T [1, p−1])R among the suffixes of TR (or, equivalently, the reversed prefixes of T ).
Point 〈s, r〉 corresponding to p has label p to keep track of this correspondence.
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Since there are q ≤ n′ such points stored in D and we build the compressed suffix
array of TR according to Theorem 2(ii), space is S(n′)·O(lg n)+(ε−1+O(1))n lg |Σ| =
O(n lg |Σ|) bits. Preprocessing time is P (n′) + O(n lg |Σ|).

We now describe how to query D and output SA[i], . . . ,SA[j] in l stages, with
one range query per stage. In stage 0, we perform a range query for the points in
[i . . . j]× [1 . . . n]. For these points, we output the suffix pointers labeling them. Then
we locate the leftmost suffix and the rightmost suffix in SAR starting with bl−1 · · · b1b0.
For this purpose, we run a simple binary search in the compressed version of SAR,
comparing at most lg n bits at a time. As a result, we determine two positions g
and h of SAR in O(l lg |Σ| + lg1+ε

|Σ| n) time such that the sequence g, g + 1, . . . , h is
maximal for SAR and the suffixes of TR pointed to by SAR[g], . . . ,SAR[h] start with
bl−1 · · · b1b0.

Before proceeding with the next stages, we precompute some sequences of indices
starting from i, j, g, and h, respectively, as done in section 3.2. We use the function
Φ0 in the compressed version of SA = SA0 to walk along indices i0, i1, . . . , il−1, such
that i0 = i, SA0[i0] + 1 = SA0[i1], SA0[i1] + 1 = SA0[i2], and so on. An analogous
walk applies to j0 = j, j1, . . . , jl−1. In the same way, we use the function Φ0 in the
compressed version of SAR to obtain g0 = g, g1, . . . , gl−1 and h0 = h, h1, . . . , hl−1.
We then run the tth stage, for 1 ≤ t ≤ l − 1, in which we perform a range query for
the points in [it . . . jt]× [gl−t . . . hl−t]. For each of these points, we retrieve its label p
and output p− t.

In order to see why the above method works, let us consider an arbitrary suffix
pointer in SA[i], . . . ,SA[j]. By the definition of the points kept in D, this suffix pointer
can be written as p − t, where p is the nearest multiple of l and 0 ≤ t ≤ l − 1. We
show that we output p − t correctly in stage t. Let 〈s, r〉 be the point with label p
in D. We have to show that it ≤ s ≤ jt and gl−t ≤ r ≤ hl−t (setting border values
gl = 1 and hl = n). Recall that the suffixes pointed to by SA[i], p − t and SA[j] are
in lexicographic order by definition of the (compressed) suffix array and, moreover,
they share the first l symbols. If we remove the first t < l symbols from each of
them, the lexicographic order must be preserved because these symbols are equal.
Consequently, SA[i] − t, p, and SA[j] − t are still in lexicographic order, and their
ranks are ih, s, and jh, respectively. This implies it ≤ s ≤ jt. A similar property
holds for gl−t ≤ r ≤ hl−t, and we can conclude that p is retrieved in stage t giving p−t
as output. Finally, the fact that both i, i + 1, . . . , j and g, g + 1, . . . , h are maximal
sequences in their respective suffix arrays implies that no other suffix pointers besides
those in SA[i], . . . ,SA[j] are reported.

The cost of each stage is T (n′) plus the output-sensitive cost of the reported suffix
pointers. Stage 0 requires an additional cost of O((n/n′) lg |Σ|+lg1+ε n) to compute g
and h, and a cost of O(n/n′) to precompute the four sequences of indices, because
the length of the walks is l. The total time complexity is therefore O

(
(n/n′)(T (n′) +

lg |Σ|) + lg1+ε n + j − i
)
, where O(j − i + 1) is the sum of the output-sensitive costs

for reporting all the suffix pointers.
We use Lemma 7 to prove Theorem 3. We employ two range query data struc-

tures for D. The first one in [1] takes P (q) = O(q lg q) preprocessing time by us-
ing the perfect hash in [39], which has constant lookup time and takes O(q lg q)
construction time. Space is S(q) = O(q lgε q) words and query time is T (q) =
O(lg lg q). Plugging these bounds into Lemma 7 gives n′ = Θ(n/ lg1+ε n), and hence
O((lg1+ε n)(lg |Σ|+lg lgn)+ j− i) retrieval time for suffix pointers sharing Ω(lg1+ε n)
symbols. Preprocessing time is O(n lg |Σ|) and additional space is O(n lg |Σ|) bits.
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The second data structure in [9, 69] has preprocessing time P (q) = O(q lg q),
space S(q) = O(q), and query time T (q) = O(qβ) for any fixed value of 0 < β < 1.
Consequently, Lemma 7 gives n′ = Θ(n/ lg n) and O(nβ lg n + j − i) = O(nα + j − i)
retrieval time for suffix pointers sharing at least Ω(lgn) symbols (by choosing α > β).
Preprocessing time is O(n lg |Σ|) and additional space is O(n lg |Σ|) bits.

4. Text indexing, string searching, and compressed suffix trees. We
now describe how to apply our compressed suffix array to obtain a text index, called
a compressed suffix tree, which is very efficient in time and space complexity. We first
show that, despite their extra functionality, compressed suffix trees (and compressed
suffix arrays) require the same asymptotic space of Θ(n) bits as inverted lists in the
worst case. Nevertheless, inverted lists are space efficient in practice [72] and can be
easily maintained in a dynamic setting.

Lemma 8. In the worst case, inverted lists require Θ(n) bits for a binary text of
length n.

Proof. Let us take a De Bruijn sequence S of length n, in which each substring
of lgn bits is different from the others. Now let the terms in the inverted lists be
those obtained by partitioning S into s = n/k disjoint substrings of length k = 2 lg n.
Any data structure that implements inverted lists must be able to solve the static
dictionary problem on the s terms, and so it requires at least lg

(
2k

s

)
= Ω(n) bits

by a simple information-theoretic argument. The upper bound O(n) follows from
Theorem 1, and Theorem 4 below, since we can see compressed suffix arrays and
suffix trees as generalizations of inverted lists.

We now describe our main result on text indexing for constant size alphabets.
Here, we are given a pattern string P of m symbols over the alphabet Σ, and we are
interested in its occurrences (perhaps overlapping) in a text string T of n symbols
(where # is the nth symbol). We assume that each symbol in Σ is encoded by lg |Σ|
bits, which is the case with ascii and unicode text files when two or more symbols
are packed in each word.

Theorem 4. Given a text string T of length n over an alphabet Σ of constant
size, we can build a full text index on T in O(n lg |Σ|) time such that the index occupies(
ε−1 + O(1)

)
n lg |Σ| bits, for any fixed value of 0 < ε ≤ 1, and supports the following

queries on any pattern string P of m symbols packed into O(m/ lg|Σ| n) words:

(i) Existential and counting queries can be done in o
(
min{m lg |Σ|,m + lg n}

)
time; in particular, they take O(1) time for m = o(lg n), and O(m/ lg|Σ| n + lgε|Σ| n)
time otherwise.

(ii) An enumerative query listing the occ occurrences of P in T can be done in
O(m/ lg|Σ| n + occ lgε|Σ| n) time. We can use auxiliary data structures in O(n lg |Σ|)
bits to reduce the search bound to O

(
m/ lg|Σ| n+ occ +(lg1+ε n)(lg |Σ|+lg lgn)

)
time,

when either m = Ω(lg1+ε n) or occ = Ω(nε).
As a result, an enumerative query can be done in optimal Θ(m/ lg|Σ| n + occ)

time for sufficiently large patterns or number of occurrences, namely, when m =
Ω
(
(lg2+ε n) lg|Σ| lg n)

)
or occ = Ω(nε).

In order to prove Theorem 4, we first show how to speed up the search on com-
pacted tries in section 4.1. Then we present the index construction in section 4.2.
Finally, we give the description of the search algorithm in section 4.3. Let’s briefly
review three important data structures presented in [45, 59, 62] and that are needed
later on.

The first data structure is the Lempel-Ziv (LZ) index [45]. It is a powerful tool
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in searching for q-grams (substrings of length q) in T . If we fix q = ε lg n for any fixed
positive constant ε < 1, we can build an LZ index on T in O(n) time such that the
LZ index occupies O(n) bits and any pattern of length m ≤ ε lg n can be searched
in O(m + occ) time. In this special case, we can actually obtain O(1 + occ) time
by a suitable table lookup. (Unfortunately, for longer patterns, the LZ index may
take Ω(n lg n) bits.) The LZ index allows us to concentrate on patterns of length
m > ε lg n.

The second data structure is the Patricia trie [59], another powerful tool in text
indexing. It is a binary tree that stores a set of distinct binary strings, in which each
internal node has two children and each leaf stores a string. For our purposes, we can
generalize it to handle alphabets of size |Σ| ≥ 2 by using a |Σ|-way tree. Each internal
node also keeps an integer (called a skip value) to locate the position of the branching
character while descending toward a leaf. Each child arc is implicitly labeled with one
symbol of the alphabet. For space efficiency, when there are t > 2 child arcs, we can
represent the child arcs by a hash table of O(t) entries. In particular, we use a perfect
hash function (e.g., see [31, 39]) on keys from Σ, which provides constant lookup time
and uses O(t) words of space and O(t lg t) construction time, in the worst case.

Suffix trees are often implemented by building a Patricia trie on the suffixes of T
as follows [35]: First, text T is encoded as a binary sequence of n lg |Σ| bits, and
its n suffixes are encoded analogously. Second, a Patricia trie is built upon these
suffixes; the resulting suffix tree still has n leaves (not n lg |Σ|). Third, searching
for P takes O(m) time and retrieves only the suffix pointer in at most two leaves (i.e.,
the leaf reached by branching with the skip values, and the leaf corresponding to an
occurrence). According to our terminology, it requires only O(1) calls to the lookup
operation in the worst case.

The third data structure is the space-efficient incarnation of binary Patricia tries
in [62], which builds upon previous work to succinctly represent binary trees and
Patricia tries [16, 42, 60, 61]. When employed to store s out of the n suffixes of T , the
regular Patricia trie [59] occupies O(s lg n) bits. This amount of space usage is the
result of three separate factors [15, 16], namely, the Patricia trie topology, the skip
values, and the string pointers. Because of our compressed suffix arrays, the string
pointers are no longer a problem. For the remaining two items, the space-efficient
incarnation of Patricia tries in [62] cleverly avoids the overhead for the Patricia trie
topology and the skip values. It is able to represent a Patricia trie storing s suffixes
of T with only O(s) bits, provided that a suffix array is given separately (which in our
case is a compressed suffix array). Searching for query pattern P takes O(m lg |Σ|)
time and accesses O(min{m lg |Σ|, s}) = O(s) suffix pointers in the worst case. For
each traversed node, its corresponding skip value is computed in time O(skip value)
by accessing the suffix pointers in its leftmost and rightmost descendant leaves. In
our terminology, searching requires O(s) calls to lookup in the worst case.

4.1. Speeding up Patricia trie search. Before we discuss how to construct
the index, we first need to show that search in Patricia tries, which normally proceeds
one level at a time, can be improved to sublinear time by processing lgn bits of the
pattern at a time (maybe less if the pattern length is not a multiple of lgn).

Let us first consider the |Σ|-way Patricia trie PT outlined in section 4 for storing
s binary strings, each of length at least lgn. (For example, they could be some suffixes
of the text.) To handle border situations, we assume that these strings are (implicitly)
padded with lg|Σ| n symbols #. We will show how to reduce the search time for an
m-symbol pattern in PT from O(m lg |Σ|) to O(m/ lg|Σ| n + lgε|Σ| n). Without loss of
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generality, it suffices to show how to achieve O(m/ lg|Σ| n +
√

lg|Σ| n ) time, since this
bound extends from 1/2 to any exponent ε > 0. The point is that, in the worst case,
we may have to traverse Θ(m) nodes, so we need a tool to skip most of these nodes.
Ideally, we would like to branch downward, matching lgn bits (or equivalently, lg|Σ| n
symbols) in constant time, independently of the number of traversed nodes. For that
purpose, we use a perfect hash function h (e.g., see [31]) on keys each of length at
most 2 lg n bits. In particular, we use the perfect hash function in [39], which has
constant lookup time and takes O(k) words of space and O(k lg k) construction time
on k keys, in the worst case.

First of all, we enumerate the nodes of PT in preorder starting from the root,
with number 1. Second, we build hash tables to mimic a downward traversal from a
given node i, which is the starting point for searching strings x of length less than or
equal to lg|Σ| n symbols. Suppose that, in this traversal, we successfully match all the
symbols in x and we reach node j (a descendent of i). In general, there can be further
symbols to be added to equal the skip value in j; let b ≥ 0 be this number of symbols.
We represent the successful traversal in a single entry of the hash table. Namely, we
store pair 〈j, b〉 at position h(i, x), where the two arguments i and x can be seen as
a single key of at most 2 lg n bits. Formally, the relation between these parameters
must satisfy the following two conditions in the case of a successful search of x from
node i:

1. Node j is the node identified by starting out from node i and traversing
downward toward the nodes of PT according to the symbols in x;

2. b is the unique nonnegative integer such that the string corresponding to the
path from i to j has prefix x and length |x| + b; this condition does not hold for any
proper ancestor of j.

The rationale behind conditions 1–2 is that of defining shortcut links from certain
nodes i to their descendents j so that each successful branching takes constant time,
matches |x| symbols (with b further symbols to check), and skips no more than |x|
nodes downward. If the search is unsuccessful, we do not hash any pair.

The key mechanism that makes the above scheme efficient is that we adaptively
follow the trie topology of Patricia so that the strings that we hash are not all possible
substrings of lg|Σ| n (or

√
lg|Σ| n ) symbols, but only a subset of those that start at the

distinct nodes in the Patricia trie. Using an uncompacted trie would make this method
inefficient. To see why, let us examine a Patricia edge corresponding to a substring of
length l. We hash only its first lg|Σ| n (or

√
lg|Σ| n ) symbols because the rest of the

symbols are uniquely identified (and we can skip them). Using an uncompacted trie
would force us to traverse further b = l − lg|Σ| n (or b = l −

√
lg|Σ| n ) nodes.

In order to keep small the number of shortcut links, we set up two hash tables H1

and H2. The first table stores entries

H1

[
h(i, x)

]
= 〈j, b〉

such that all strings x consist of |x| = lg|Σ| n symbols, and the shortcut links stored
in H1 are selected adaptively by a top-down traversal of PT . Namely, we create all
possible shortcut links from the root. This step links the root to a set of descendents.
We recursively link each of these nodes to its descendents in the same fashion. Note
that PT is partitioned into subtries of depth at most lg|Σ| n.

We set up the second table H2 analogously. We examine each individual subtrie
and start from the root of the subtrie by using strings of length |x| =

√
lg|Σ| n symbols.

Note that the total number of entries in H1 and H2 is bounded by the number of nodes
in PT , namely, O(s).
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In summary, the preprocessing consists of a double traversal of PT followed by
the construction of H1 and H2, in O(s lg s + n) worst-case time and O(s) words of
space. In the general case, we go on recursively and build ε−1 hash tables, whose total
number of entries is still O(s). The preprocessing time does not change asymptotically.

We are now ready to describe the search of a pattern (encoded in binary) in
the Patricia trie PT thus augmented. It suffices to show how to match its longest
prefix. We compute hash function h(i, x) with i being the root of PT and x being
the concatenation of the first lg|Σ| n symbols in the pattern. Then we branch quickly
from the root by using H1

[
h(i, x)

]
. If the hash lookup in H1 succeeds and gives pair

〈j, b〉, we skip the next b symbols in the pattern and recursively search in node j
with the next lg|Σ| n symbols in the pattern (read in O(1) time). Instead, if the hash
lookup fails (i.e., no pair is found or fewer than lg|Σ| n symbols are left in the pattern),
we switch to H2 and take only the next

√
lg|Σ| n symbols in the pattern to branch

further in PT . Here the scheme is the same as that of H1, except that we compare√
lg|Σ| n symbols at a time. Finally, when we fail branching again, we have to match

no more than
√

lg|Σ| n symbols remaining in the pattern. We complete this task by
branching in the standard way, one symbol a time. The rest of the search is identical
to the standard procedure of Patricia tries. This completes the description of the
search in PT .

Lemma 9. Given a Patricia trie PT storing s strings of at least lg|Σ| n symbols
each over the alphabet Σ, we can preprocess PT in O(s lg s+n) time so that searching
a pattern of length m requires O(m/ lg|Σ| n + lgε|Σ| n) time.

Note that a better search bound in Lemma 9 does not improve the final search
time obtained in Theorem 4.

Finally, let us consider a space-efficient Patricia trie [62]. The speedup we need
while searching is easier to obtain. We need not skip nodes, but need only com-
pare Θ(lgn) bits at a time in constant time by precomputing a suitable table. The
search cost is therefore O(m/ lg|Σ| n) plus a linear cost proportional to the number of
traversed nodes.

A general property of our speedup of Patricia tries is that we do not increase the
original number of lookup calls originating from the data structures.

4.2. Index construction. We blend the tools mentioned so far with our com-
pressed suffix arrays of section 3 to design a hybrid index data structure, called the
compressed suffix tree, which follows the multilevel scheme adopted in [17, 62]. Be-
cause of the LZ index, it suffices to describe how to support searching of patterns of
length m > ε lg n. We assume that 0 < ε ≤ 1/2, as the case 1/2 < ε ≤ 1 requires
minor modifications.

Given text T in input, we build its suffix array SA in a temporary area, in
O(n lg |Σ|) time via the suffix tree of T . At this point, we start building the O(ε−1)
levels of the compressed suffix tree in top-down order, after which we remove SA as
follows:

1. At the first level, we build a regular Patricia trie PT 1 augmented with the
shortcut links as mentioned in Lemma 9. The leaves of PT 1 store the s1 = n/ lg|Σ| n
suffixes pointed to by SA[1], SA[1+lg|Σ| n], SA[1+2lg|Σ| n], . . . . This implicitly splits
SA into s1 subarrays of size lg|Σ| n, except the last one (which can be smaller).

Complexity. The size of PT 1 is O(s1 lg n) = O(n lg |Σ|) bits. It can be built in
O(n lg |Σ|) time by a variation of the standard suffix tree construction [51, 52] and
the preprocessing described in Lemma 9.

2. At the second level, we process the s1 subarrays from the first level, and create
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s1 space-efficient Patricia tries [62], denoted PT 2
1, PT 2

2, . . . ,PT 2
s1 . We associate the

ith Patricia PT 2
i with the ith subarray. Assume without loss of generality that the

subarray consists of SA[h + 1], SA[h + 2], . . . ,SA[h + lg|Σ| n] for a value of 0 ≤ h ≤
n − lg|Σ| n. We build PT 2

i upon the s2 = lg
ε/2
|Σ| n suffixes pointed to by SA[h + 1],

SA[h + 1 + lg
1−ε/2
|Σ| n], SA[h + 1 + 2lg

1−ε/2
|Σ| n], . . . . This process splits each subarray

into smaller subarrays, where each subarray is of size lg
1−ε/2
|Σ| n.

Complexity. The size of each PT 2
i is O(s2) bits without accounting for the suffix

array, and its construction takes O(s2) time [62]. Hence, the total size is O(s1s2) =
O(n/ lg1−ε

|Σ| n) bits and the total processing time is O(n lg |Σ|).
3. In the remaining 2ε−1 − 2 intermediate levels, we proceed as in the second

level. Each new level splits every subarray into s2 = lg
ε/2
|Σ| n smaller subarrays and

creates a set of space-efficient Patricia tries of size O(s2) each. We stop when we are
left with small subarrays of size at most s2. We build space-efficient Patricia tries on
all the remaining entries of these small subarrays.

Complexity. For each new level thus created, the total size is O(n/lgε|Σ| n) bits
and the total processing time is O(n lg |Σ|).

4. At the last level, we execute compress on the suffix array SA, store its com-
pressed version in the level, and delete SA from the temporary area.

Complexity. By Theorem 2, the total size is
(
ε−1 + O(1)

)
n lg |Σ| bits; accessing

a pointer through a call to lookup takes O(lg
ε/2
|Σ| n) time; the cost of compress is

O(n lg |Σ|) time. (Note that we can fix the value of ε arbitrarily when executing
compress.)

By summing over the levels, we obtain that the compressed suffix tree of T takes
O(n lg |Σ|) bits and O(n lg |Σ|) construction time. Temporary storage is O(n lg n) bits.

4.3. Search algorithm. We now have to show that searching for an arbitrary
pattern P in the text T costs O(m/ lg|Σ| n + lgε|Σ| n) time. The search locates the
leftmost occurrence and the rightmost occurrence of P as a prefix of the suffixes
represented in SA, without having SA stored explicitly. Consequently, a successful
search determines two positions i ≤ j such that the sequence i, i+1, . . . , j is maximal
(according to the definition given before Theorem 3) and SA[i], SA[i + 1], . . . ,SA[j]
contain the pointers to the suffixes that begin with P . The counting query returns j−
i+1, and the existence checks whether there are any matches at all. The enumerative
query executes the j − i + 1 queries lookup(i), lookup(i + 1), . . . , lookup(j) to list all
the occurrences.

We restrict our discussion to finding the leftmost occurrence of P ; finding the
rightmost is analogous. We search at each level of the compressed suffix tree in
section 4.2. We examine the levels in a top-down manner. While searching in the
levels, we execute lookup(i) whenever we need the ith pointer of the compressed SA.
We begin by searching P at the first level. We perform the search on PT 1 in the
bounds stated in Lemma 9. As a result of the first search, we locate a subarray at the
second level, say, the i1th subarray. We go on and search in PT 2

i1 according to the
method for space-efficient Patricia tries described at the end of section 4.1. We repeat
the latter search for all the intermediate levels. We eventually identify a position at
the last level, namely, the level which contains the compressed suffix array. This
position corresponds to the leftmost occurrence of P in SA.

The complexity of the search procedure is O(m/ lg|Σ| n+ lgε|Σ| n) time at the first
level by Lemma 9. The intermediate levels cost O(m/ lg|Σ| n + s2) time each, giving
a total of O(m/ lg|Σ| n + lgε|Σ| n). We have to account for the cost of the lookup
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operations. These calls originated from the several levels. In the first level, we call
lookup O(1) times; in the 2ε−1−1 intermediate levels we call lookup O(s2) times each.

Multiplying these calls by the O(lg
ε/2
|Σ| n) cost of lookup as given in Theorem 1 (using

ε/2 in place of ε), we obtain O(lgε|Σ| n) time in addition to O(m/ lg|Σ| n + lgε|Σ| n).
Finally, the cost of retrieving all the occurrences is the one stated in Theorem 3,
whose hypothesis is satisfied because the suffixes pointed to by SA[i] and SA[j] are,
respectively, the leftmost and rightmost sharing m = Ω(lg n) symbols. Combining
this cost with the O(lgε|Σ| n) cost for retrieving any single pointer in Theorem 1, we
obtain O(m/ lg|Σ| n + occ lgε|Σ| n) time when both conditions m ∈

[
ε lg n, o(lg1+ε n)

]
and occ = o(nε) hold, and in O

(
m/ lg|Σ| n + occ + (lg1+ε n)(lg |Σ| + lg lgn)

)
time

otherwise. This argument completes the proof of Theorem 4 on the complexity of our
text index.

5. Conclusions. We have presented the first indexing data structure for a text
T of n symbols over alphabet Σ that achieves, in the worst case, efficient lookup time
and linear space. For many scenarios, the space requirement is actually sublinear in
practice. Specifically, our algorithm uses o

(
min{m lg |Σ|,m + lg n}

)
search time and(

ε−1+O(1)
)
n lg |Σ| bits of space (where T requires n lg |Σ| bits). Our method is based

upon notions of compressed suffix arrays and suffix trees. Given any pattern P of m
symbols encoded in m lg |Σ| bits, we can count the number of occurrences of P in T in
o
(
min{m lg |Σ|,m+lg n}

)
time. Namely, searching takes O(1) time when m = o(lg n),

and O(m/ lg|Σ| n + lgε|Σ| n) time otherwise. We achieve optimal O(m/ lg|Σ| n) search
time for sufficiently large m = Ω(lg1+ε

|Σ| n). For an enumerative query retrieving all
occ occurrences with sufficiently long patterns, namely, m = Ω

(
(lg2+ε n) lg|Σ| lg n

)
, we

obtain a total search bound of O(m/ lg|Σ| n+occ), which is optimal. Namely, searching

takes O(m/ lg|Σ| n+occ lgε|Σ| n) time when both conditions m ∈
[
ε lg n, o(lg1+ε n)

]
and

occ = o(nε) hold, and O
(
m/ lg|Σ| n + occ + (lg1+ε n)(lg |Σ| + lg lg n)

)
time otherwise.

Crucial to our results are functions Ψk and Φk (see section 2), which are the building
blocks of many other results in compressed text indexing.

An interesting open problem is to improve upon our O(n)-bit compressed suffix
array so that each call to lookup takes constant time. Such an improvement would
decrease the output-sensitive time of the enumerative queries to O(occ) also when
m ∈

[
ε lg n, o(lg1+ε n)

]
and occ = o(nε). Another possibility for that is to devise a

range query data structure that improves the data structures at the end of section
3.4. This, in turn, would improve Theorems 3 and 4. A related question is to char-
acterize combinatorially the permutations that correspond to suffix arrays. A better
understanding of the correspondence may lead to more efficient compression methods.
Additional open problems are listed in [62]. The kinds of queries examined in this
paper are very basic and involve exact occurrences of the pattern strings. They are
often used as preliminary filters so that more sophisticated queries can be performed
on a smaller amount of text. An interesting extension would be to support some
sophisticated queries directly, such as those that tolerate a small number of errors in
the pattern match [4, 12, 35, 70].
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Abstract. It is known that random k-SAT instances with at least cn clauses, where c = ck is a
suitable constant, are unsatisfiable (with high probability). We consider the problem to certify effi-
ciently the unsatisfiability of such formulas. A backtracking-based algorithm of Beame et al. [SIAM
J. Comput., 31 (2002), pp. 1048–1075] shows that k-SAT instances with at least nk−1/(logn)k−2

clauses can be certified unsatisfiable in polynomial time. We employ spectral methods to improve on
this bound. For even k ≥ 4 we present a polynomial time algorithm which certifies random k-SAT
instances with at least n(k/2)+o(1) clauses as unsatisfiable (with high probability). For odd k we
focus on 3-SAT instances and obtain an efficient algorithm for formulas with at least n3/2+ε clauses,
where ε > 0 is an arbitrary constant.
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Introduction. We study the complexity of certifying unsatisfiability of random
k-SAT instances (or k-CNF formulas) over n propositional variables. Our discussion
refers to k fixed and then letting n be sufficiently large. The probability space of
random k-SAT instances has been widely studied in recent years for several good
reasons. A somewhat arbitrary selection of the most recent literature is [Ac2000],
[Fr99], [Be at al2002], [AcSo2000], [AcMo2002], [AcPe2004].

One of the reasons for studying random k-SAT instances is that they have the
following sharp threshold behavior [Fr99]: there exists a function c = ck(n) such that
for any ε > 0, formulas with at most (1 − ε) · c · n clauses are satisfiable, whereas
formulas with at least (1 + ε) · c · n are unsatisfiable with high probability (that
means with probability tending to 1 when n goes to infinity). In fact, it is not
known if ck(n) can be taken to be a constant (i.e., if the limit of ck(n) as n → ∞
exists). It might be that ck = ck(n) satisfying the aforementioned threshold property
depends on n. However, it is known that ck is at most 2k · ln 2, and the general
conjecture is that ck converges to a constant. For formulas with at least 2k · (ln 2) · n
clauses the expected number of satisfying assignments of a random formula tends
to 0 and the formulas are unsatisfiable with high probability. As it is well known
that the satisfiability problem for random 2-SAT instances is solvable in polynomial
time, the most interesting case is that of 3-SAT. Accordingly, much work is spent to
approximate the value of c3. Currently, the best results are that c3 is at least 3.26
[AcSo2000] improved to the recent 3.52 [KaKiLa2002] and at most 4.601 [KiKrKr98]
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improved to 4.506 [DuBoMa2000]. For k = 2 the threshold is known; we have c2 = 1
[ChRe92], [Go96].

The algorithmic interest in this threshold is due to the empirical observation that
random k-SAT instances at the threshold, i.e., with around ckn random clauses, are
seemingly hard instances. The following behavior has been reported consistently in
experimental studies with suitably optimized backtracking algorithms searching for a
satisfying assignment (see, for example, [SeMiLe96], [CrAu96]): the average running
time is quite low for instances below the threshold. For 3-SAT instances we observe
that almost all formulas with at most 4n clauses are satisfiable and it is quite easy
to find a satisfying assignment. A precipitous increase in the average running time is
observed at the threshold. For 3-SAT, about half of the formulas with 4.2n clauses
are satisfiable and it is difficult to decide whether a formula is satisfiable or not.
Finally, a speedy decline to lower complexity is observed beyond the threshold. For
3-SAT, almost all formulas with 4.5n clauses are unsatisfiable and the running time
decreases again (in spite of the fact that now the whole backtracking tree must always
be searched.)

There are no general complexity theoretic results relating the threshold to hard-
ness. The following observation is trivial: if we can efficiently certify almost all
instances with dn clauses, where d above the threshold unsatisfiable, then we can cer-
tify almost all instances with d′n clauses, d′ > d, as unsatisfiable by simply chopping
off the superfluous clauses. An analogous fact holds below the threshold, where we
extend a given formula with some random clauses. Of course, similar remarks apply
to the size of clauses.

The relationship between hardness and thresholds is not restricted to satisfiability.
It has also been observed for k-colorability of random graphs with a linear number
of edges. In [PeWe89] a peak in running time seemingly related to the threshold is
reported. The existence of a threshold is proved in [AcFr99], but again the value and
convergence to a constant are known only experimentally. For the subset sum problem,
which is of a quite different nature, the threshold is known. Some discussion related to
hardness is found in [ImNa96]. For the similarly looking number partitioning problem
threshold results can be found in [BoChPi2001].

Abandoning the general complexity theoretic point of view and looking at concrete
algorithms, we see that the following results are known for random k-SAT instances:
all progress approximating the threshold from below is based on the analysis of rather
simple polynomial time heuristics and is mostly restricted to clause size k = 3. In fact,
the most advanced heuristic analyzed [AcSo2000] finds only a satisfying assignment
with probability of at least ε, where ε > 0 is a small constant, for 3-SAT formulas with
at most 3.26n clauses. The same applies to the recent improvement to 3.52n clauses in
[KaKiLa2002]. The heuristic in [FrSu96] finds a satisfying assignment almost always
for random 3-SAT instances with at most 3.003n clauses. On the other hand the
progress made in approximating the threshold from above does not provide us at all
with efficient algorithms certifying the unsatisfiability of the formula at hand. Only
the expectation of the number of satisfying assignments is calculated and is shown to
tend to 0.

In fact, beyond the threshold we have negative results: for arbitrary but fixed
d ≥ 2k · ln 2, random k-SAT instances with dn clauses (are unsatisfiable and) have
only resolution proofs with an exponential number, that is, with at least 2Ω(n) clauses
with high probability [ChSz88]. This has been improved upon by [Fu95], [BePi96], and
[Be at al2002], all of whom proved (exponential) lower bounds for somewhat larger
clause/variable ratios. Note that a lower bound on the size of the resolution proofs
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provides a lower bound on the number of nodes in any classical backtracking tree as
generated by any variant of the well-known Davis–Putnam procedure.

Provably polynomial time results beyond the threshold are rather limited at
present: in [Fu95] it is shown that random k-SAT formulas with at least nk−1 clauses
allow for polynomial size resolution proofs with high probability. This is strengthened
in [Be at al2002] to the best result known at present: for at least nk−1/(log n)k−2 ran-
dom clauses a backtracking-based algorithm proves unsatisfiability in polynomial time
with high probability. (The result of Beame et al. is slightly stronger, as it applies to
formulas with Ω(nk−1/(log n)k−2) random clauses.)

We extend the region, where a provably polynomial time algorithm exists. For
even k ≥ 4 we give an algorithm which works when the number of clauses is only n to
a constant fraction of k (with high probability), that is, for formulas with at least
POLY(logn) · nk/2 = n(k/2)+o(1) clauses, where POLY denotes a polynomial growing
sufficiently fast (a degree of 7 is sufficient). A preliminary version of this result has
been published in [GoKr 2001]. To obtain our result we leave the area of strictly
combinatorial algorithms considered up to this point. Instead we associate a graph
with a given formula and show how to certify unsatisfiability of the formula with
the help of the eigenvalue spectrum of a certain matrix associated with this graph.
Note that our algorithm is not wholly complete but only complete with high probabil-
ity; in return for sacrificing completeness, we get small-size proofs that are efficiently
computable. Note that the eigenvalue spectrum can be approximated to arbitrary
accuracy in polynomial time by standard linear algebra methods. With respect to
odd k we focus on the case k = 3 and show by extending the previous arguments that
random 3-SAT instances with n(3/2)+ε clauses can be efficiently certified as unsatis-
fiable with high probability, again improving the n2 / log n bound of Beame et al. In
very recent work the aformentioned results have been improved; for k = 4 we have an
efficient certification algorithm for Cn2 random clauses, where C is a sufficiently large
constant [CoGoLaSch 2004]. And for k = 3, we have a bound of POLY(logn) · n3/2

clauses [CoGoLa 2004]. It seems to be a very hard task to get a bound below nk/2

random k-clauses; for one thing, this nk/2 seems to be a natural barrier to the spectral
techniques we use. For k = 3, [FeOf 2004] recently showed that formulas with n3/2

random clauses can be efficiently certified as unsatisfiable.
Eigenvalues are used in two ways in the algorithmic theory of random structures:

first, they can be used to find a solution of an NP-hard problem in a random instance
generated in such a way that it has a solution (not known to the algorithm). An
example for 3-colorability is shown in [AlKa97]. Second, they can be used to prove
the absence of a solution of an NP-problem. However, these applications are some-
what rare at the moment. The most prominent example is the expansion property of
random regular graphs [AlSp92]. Note that the expansion property is coNP-complete
[Bl et al81] and the eigenvalues certify the absence of a nonexpanding subset of ver-
tices (which is the solution in this case). Our result is an example of the second kind
and it might be worthwhile to investigate more systematically the existence of efficient
algorithms for coNP-complete properties of random structures. A general overview
on eigenvalues as applied to random graphs is given in [Al98].

We use the following notation throughout. The probabilistic model Formn,k,m of
k-CNF formulas with m clauses over n propositional variables is defined as follows:
the probability space of clauses of size k, Clausen,k, is the set of ordered k-tuples of
literals over n propositional variables v1, . . . , vn. We write l1 ∨ . . . ∨ lk with li = x
or li = ¬x, where x is one of our variables. To simplify the subsequent presentation,
our definition of Clausen,k allows for clauses containing the same literal twice and
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clauses containing a variable and its negation. We consider Clausen,k as endowed
with the uniform probability distribution: the probability of a clause is given by
Pr[l1 ∨ . . . ∨ lk] = (1/(2n))k. Formn,k,m is the m-fold cartesian product space of
Clausen,k. We write F = C1 ∧ . . . ∧ Cm and Pr[F ] = (1/(2n))k·m. The probability
space Formn,k,p is obtained by the following generation procedure: throw each clause
with probability p into the formula to be generated, and the probability of a given

formula with m clauses is pm · (1 − p)(2n)k−m. These two spaces Formn,k,m and
Formn,k,p are essentially equivalent when m = p · (2n)k. There are several other ways
of defining k-SAT probability spaces (for example, clauses might be sets of literals
instead of sequences; tautological clauses could be forbidden). Although we have not
closely checked the details, we feel confident we are in line with general usage to
assume that our results can be transferred to these other spaces, too. Note that the
clause size k always is fixed.

1. Even clause size.

1.1. From random formulas to random graphs. The following simple ob-
servation underlies our algorithm.

Lemma 1. If a propositional formula F in k-CNF over n variables is satisfiable,
there exists a subset S of at least n/2 variables such that F has no all-positive clause
x1 ∨ . . .∨xk with xi ∈ S for all i or F has no all-negative clause ¬x1 ∨ . . .∨¬xk with
xi ∈ S for all i.

Proof. Let A : {v1, . . . , vn} → {0, 1} be a satisfying assignment for F . A sets at
least n/2 variables to 0 (= false) or to 1 (= true). In the first case the set of variables
set to 0 satisfies the lemma; otherwise the set of variables set to 1 does.

Our algorithm proves unsatisfiability by efficiently showing the nonexistence of a
set S, as in the preceding lemma. To do this we translate the nonexistence of S into
a graph theoretical condition. To this end we assign two graphs to a formula. Let
F ∈ Formn,k,m, where k is even, be given. The graph G = GF depends only on the
sequence of all-positive clauses of F :

• The set of vertices of G is V = VF = {x1 ∨ . . . ∨ xk/2 | xi a variable}. We

have |V | = nk/2 and V is independent of F .
• The set of edges of G, E = EF is given as follows. For x1 ∨ . . . ∨ xk/2 �=

y1 ∨ . . .∨yk/2 we have {x1 ∨ . . .∨xk/2, y1 ∨ . . .∨yk/2} ∈ E iff x1 ∨ . . .∨xk/2 ∨
y1 ∨ . . .∨ yk/2 (or y1 ∨ . . .∨ yk/2 ∨ x1 ∨ . . .∨ xk/2) is a clause of F . Note that
it is possible that |E| < m as clauses might induce no edge, or two clauses
might induce the same edge. We do not allow for loops or multiple edges.

The graph HF is defined in a totally analogous way for the all-negative clauses
of F .

Recall that an independent set of a graph G is a subset of vertices W of G such
that we have no edge {v, w} in G, where both v, w ∈ W . The next lemma follows
directly from Lemma 1, as a set S of variables induces |S|k/2 vertices in GF consisting
only of variables from S.

Lemma 2. If F ∈ Formn,k,m is satisfiable, then GF or HF has an independent
set W of vertices with

|W | ≥ (n/2)k/2 = (1/2)k/2 · |V |.

Note that as k remains constant when n gets large, this is a constant fraction of
all vertices of GF . We need to show that the distribution of GF is just the distribution
of a usual random graph. To this end let Gn,m be the probability space of random
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graphs with n labeled vertices and m different edges. Each graph is equally likely;
that is, the probability of G is

Pr[G] = 1

/((n
2

)
m

)
.

Lemma 3. (1) Conditional on the event in Formn,k,m that |EF | = r, the graph GF

is a random member of the space Gν,r, where ν = nk/2 is the number of vertices
of GF . (2) Let ε > 0; with high probability the number of edges of GF is between
m · (1/2)k · (1 − ε) and m · (1/2)k · (1 + ε).

Proof. (1) The proof is a well-known (but sometimes forgotten) trick: let G be a
graph with vertices VF as defined above and with edge set E with |E| = r. The set
of formulas inducing this edge set can be constructed as follows: (a) Consider m slots
for clauses and pick r′ ≥ r of these slots; fill each of these r′ slots with an edge from
EF , such that each edge occurs at least once; (b) make each edge in these r′ slots
into an all-positive clause (2r

′
possibilities); (c) fill each of the remaining slots with a

clause containing at least one negative literal or with a clause having the same first
and second halves.

(2) The claim follows from the following statements, which we prove further below:
• Let ε > 0 be fixed. The number of all-positive clauses of F ∈ Formn,k,m is

between (1 − ε) · (1/2)k ·m and (1 + ε) · (1/2)k ·m with high probability.
• The number of all-positive clauses, such as x1 ∨ . . . ∨ xk/2 ∨ x1 ∨ . . . ∨ xk/2,

that is, with the same first and second halves, is o(m).
• The unordered pairs of positions of a formula F in which we have all-positive

clauses, which induce only one edge, that are pairs of clauses x1 ∨ . . . ∨ xk,
y1 ∨ . . . ∨ yk, where {x1 ∨ . . . ∨ xk/2, xk/2+1 ∨ . . . ∨ xk} = {y1 ∨ . . . ∨ yk/2,
yk/2+1 ∨ . . . ∨ yk}, are also o(m) with high probability.

This implies the claim of the lemma, with the actual ε slightly lower than the
ε from the first statement above because we have only o(m) clauses, which induce no
additional edge.

First statement above: This statement follows with Chernoff bounds because the
probability that a clause at a fixed position is all-positive is (1/2)k and clauses at
different positions are independent.

Second statement above: The probability that the clause at position i has the
same first and second halves is (1/2n)k/2. The expected number of such clauses in a
random F is therefore m · (1/2n)k/2 = o(m).

Third statement above: We fix 2 slots of clauses i �= j of F . The probability that
the clauses in these slots have the same set of first and second halves is bounded above
by (2/n)k and the expected number of such unordered pairs is at most m2 · (2/n)k =
O(m/n), provided m = O(nk−1), which we can assume. Let X be the random variable
counting the number of unordered pairs of positions with clauses with the same first
and second halves and let ε > 0. Markov’s inequality gives us

Pr[X > nε · ex] ≤ EX/(nε · EX) = 1/nε.

Therefore we get that with high probability X ≤ nε · (m/n) = o(m).
Spectral considerations. Eigenvalues of matrices associated with general

graphs are somewhat less common (at least in computer science applications) than
those of regular graphs. The monograph [Ch97] is a standard reference for the general
case. The easier regular case is dealt with in [AlSp92]. The necessary linear algebra
details cannot all be given here. They are very well presented in the textbook [St88].



RECOGNIZING UNSATISFIABLE RANDOM k-SAT INSTANCES 413

Let G = (V,E) be an undirected graph (loopless and without multiple edges)
with V = {1, . . . , n} being a standard set of n vertices. For 0 < p < 1 we consider the
matrix A = AG,p as in [KrVu2002] and [Ju82] and define it as follows: The (n × n)-
matrix A = AG,p = (ai,j)1≤i,j≤n has ai,j = 1 iff {i, j} /∈ E and ai,j = −(1 − p)/p =
1 − 1/p iff {i, j} ∈ E. In particular ai,i = 1. As A is real valued and symmetric,
A has n real eigenvalues when counting them with their multiplicities and allowing
for 0 as an eigenvalue (necessary when the matrix is not of full rank). We denote
these eigenvalues by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

Recall that the independence number of G, denoted by α(G), is the size (= number
of vertices) of a largest independent set of G. In general it is NP-hard to determine
the independence number. But we have an efficiently computable bound as follows.

Lemma 4 (Lemma 4 of [KrVu2002]). For any p with p > 0 we have λ1(AG,p) ≥
α(G).

Proof. Let l = α(G). Let χ be the characteristic column vector of a largest
independent set of G (i.e., taking the value 1 on elements from the set and 0 otherwise).
The matrix AG,p has an (l× l)-block which contains only 1’s. This block of course is
indexed with the vertices from our largest independent set. From the Courant–Fisher
characterization of the eigenvalues of real valued symmetric matrices we get that

λ1(A) ≥ χtr ·A · χ
χtr · χ = l2/l = l.

In order to bound the size of the eigenvalues of AG,p when G is a random graph
we rely on a suitably modified version of the following theorem.

Theorem 5 (Theorem 2 of [FuKo81]). For 1 ≤ i, j ≤ n, and i ≤ j, let ai,j
be independent, real valued random variables (not necessarily identically distributed)
satisfying the following conditions where the values K, ν, σ are constants independent
of n:

• |ai,j | ≤ K for all i ≤ j,
• the expectation Eai,i = ν for all i,
• the expectation Eai,j = 0 for all i < j,
• the variance V ai,j = E[a2

i,j ] − (Eai,j)
2 = σ2 for all i < j.

For j ≥ i let aj,i = ai,j and let A = (ai,j)1≤i,j≤n be the random (n × n)-matrix
defined by the ai,j. Let the eigenvalues of A be λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). With
probability at least 1 − (1/n)10 the matrix A is such that

max{|λi(A)| | 1 ≤ i ≤ n} = 2 · σ ·
√
n + O(n1/3 · log n) = 2 · σ ·

√
n · (1 + o(1)).

We intend to apply this theorem to the random matrix A = AG,p, where G is
a random graph from the probability space Gn,m. However, in this case the entries
of A are not strictly independent and Theorem 5 cannot be directly applied. We first
consider random graphs from the space Gn,p and proceed to Gn,m later on. Recall
that a random graph G from Gn,p is obtained by inserting each possible edge with
probability p independently of other edges.

For p constant and G a random member from Gn,p the assumptions of Theorem 5
can easily be checked to apply to AG,p. However, for sparser random graphs, that
is, p = p(n) = o(1), the situation changes. We have that ai,j can assume the value
−1/o(1) + 1 and thus its absolute value is no longer bounded above by a constant.
The same applies to the variance σ2 = (1 − p)/p = 1/o(1) − 1.

However, it can be checked that the proof of Theorem 5 as given in [FuKo81]
holds as long as we consider matrices AG,p, where p = (lnn)7/n. In this case we



414 J. FRIEDMAN, A. GOERDT, AND M. KRIVELEVICH

have that K = n/(lnn)7 − 1 and σ2 = n/(lnn)7 − 1. With this modification and the
previous assumptions, the proof of [FuKo81] leads to the following.

Corollary 6. With probability at least 1−(1/n)10 the random matrix A satisfies

max{|λi(A)| | 1 ≤ i ≤ n} = 2 · σ ·
√
n + O(n/(lnn)22/6) = 2 · (1/(lnn)7/2) · n · (1 + o(1)).

Proof. We sketch the changes, which need to be applied to the proof of Theorem 2
in [FuKo81]. These changes refer to the final estimates of the proof on page 237 of
[FuKo81]. We set

k := (σ/K)1/3 · n1/6 = (lnn)7/6(1 + o(1));

in fact, k should be the following even number: we set the error term

ν := 50 · n/(lnn)22/6.

We have

2 · σ ·
√
n = 2 · n/(lnn)7/2 = 2 · n/(lnn)21/6,

which implies that ν = o(2 · σ ·
√
n). Concerning the error estimate, we get

ν · k
2 · σ ·

√
n + v

=
50 · (lnn)7/6

(lnn)1/6
· (1 + o(1)) = 50 · lnn · (1 + o(1)).

This implies the claim.
Corollary 6 together with Lemma 4 gives us an efficiently computable certificate

bounding the size of independent sets in random graphs from Gn,m.
Corollary 7. Let G be a random member from Gn,m, where m = ((lnn)7/2) ·n,

and let p = m/
(
n
2

)
= (lnn)7/(n− 1). We have with high probability that

λ1(AG,p) ≤ 2 · (1/(lnn)7/2) · n · (1 + o(1)).

Proof. The proof is a standard transfer from the random graph model Gn,p

to Gn,m. For G random from Gn,p the induced random matrix AG,p satisfies the
assumptions of the last corollary. We have that with probability at least 1 − (1/n)10

the eigenvalues of AG,p are bounded by 2 · (1/(lnn)7/2) · n · (1 + o(1)).
By the de Moivre–Laplace local limit theorem for the binomial distribution the

probability that a random graph from Gn,p has exactly m edges is of Ω(1/(n ·p)1/2) =
Ω(1/(lnn)7/2). This implies the claim, as the probability in Gn,p that the eigenvalue
is not bounded as claimed is O((1/n)10) = o(1/(lnn)7/2). (We omit the formal
conditioning argument.)

1.2. The algorithm. We fix the clause size k ≥ 4 and assume that k is even.
We consider the probability space of formulas Form = Formn,k,m, where the number
of clauses is

m = 2k · (lnnk/2)7 · nk/2 = 2k · (k/2)7 · (lnn)7 · nk/2.

Given a random formula F from Form the algorithm first considers the all-positive
clauses from F and constructs the graph GF . From Lemma 3 we know that G = GF

is a random member of Gν,μ, where ν = nk/2 and μ is at least m · (1/2)k · (1 − ε) =
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(ln ν)7 · ν · (1 − ε), where we fix ε > 0 sufficiently small—in fact, ε = 1/2 will do. In
the case when the number of edges is smaller than this bound, the algorithm fails.

The algorithm determines the matrix A = AG,p, where p = μ/
(
ν
2

)
≥ (ln ν)7/(ν −

1). From Corollary 7 we get that with high probability

λ1(A) ≤ 2 · (1/(ln ν)7/2) · ν · (1 + o(1)),

and thus λ1(A) < (1/2)k · ν = (1/2)k · nk/2 with high probability. The algorithm
approximates λ1(A) by a polynomial time algorithm. In the case when the preceding
event does not occur, the algorithm fails. By Lemma 4 GF is now certain (not only
certain with high probability) to have no independent set comprising (1/2)k · nk/2

vertices.
The algorithm proceeds in the same way for the all-negative clauses and the

graph HF . When it succeeds (which happens with high probability) we have that F
is unsatisfiable by Lemma 2. If the algorithm fails, which happens with probability
o(1), we do not know whether the formula is satisfiable or not.

When the number of literals k is odd we can extend each clause by a random
literal and apply the preceding algorithm. It succeeds with high probability when the
number of clauses is

2k+1 · ((k + 1)/2)7 · (lnn)7 · n(k+1)/2.

Concerning the probability space Formn,k,p, the algorithm succeeds with high proba-
bility when p is picked such that the expected number of clauses is at least (1 + ε) ·
“the bound above” because, in this case, the number of clauses is with high probability
at least as large as this bound.

2. Clause size 3. From now on we restrict our attention to the family of prob-
ability spaces Formn,p = Formn,3,p. We assume that p = p(n) = 1/n1+γ , where
1/2 > γ > 0 is a constant. Our formulas get sparser with increasing γ. Note
that our space of formulas is analogous to the space of random graphs Gn,p. The
number of clauses in a random instance from Formn,p follows the binomial distribu-
tion with parameters 8n3 and p, Bin(8n3, p), and the expected number of clauses is
8n3 · p = 8 · n2−γ = 8 · n3/2+ε, where ε = 1/2 − γ > 0.

2.1. From random 3-SAT instances to random graphs. We state a graph
theoretical condition which implies the unsatisfiability of a 3-SAT instance F over
n propositional variables. To this end we again define the graphs GF and HF .
GF = (VF , EF ) is defined as follows:

• VF is the set of ordered pairs over the n propositional variables. We have
|VF | = n2.

• The edge (a1, b1) (a2, b2) (where in order to avoid loops (a1, b1) �= (a2, b2),
that is, a1 �= a2 or b1 �= b2) is in EF iff there exists a variable z such that F
contains the two clauses a1 ∨ a2 ∨ z and b1 ∨ b2 ∨ ¬z.

The graph HF is defined analogously but with different clauses: Its vertices are,
as before, ordered pairs of variables, and (a1, b1) (a2, b2) is an edge iff F has the
clauses ¬a1 ∨¬a2 ∨ z and ¬b1 ∨¬b2 ∨¬z for a variable z. Note that in the case of GF

the clause pairs a1 ∨ a2 ∨ z, b1 ∨ b2 ∨¬z and a2 ∨ a1 ∨ z′, b2 ∨ b1 ∨¬z′ induce the same
edge (a1, b1) (a2, b2). Of course analogous remarks apply to HF .

Some remarks concerning the intuition of this definition follow from the previous
case, k = 4. The clause a1 ∨ a2 ∨ b1 ∨ b2 is obtained by resolution [Sch89] with z from
the two clauses a1 ∨ a2 ∨ z and b1 ∨ b2 ∨¬z, which define an edge of GF . Similarly we
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have that ¬a1 ∨ ¬a2 ∨ ¬b1 ∨ ¬b2 is obtained from ¬a1 ∨ ¬a2 ∨ z and ¬b1 ∨ ¬b2 ∨ ¬z.
The correctness of resolution states that F is unsatisfiable if a set of resolvents (that
is, clauses obtained by resolution) of F is unsatisfiable.

For any z the number of clauses such as a1∨a2∨z and b1∨b2∨¬z is concentrated
at the expectation ≈ n2 · p = n1−γ > n1/2 as γ < 1/2. Applying resolution with z
to all these clauses gives ≈ n(1−γ)2 > n clauses a1 ∨ a2 ∨ b1 ∨ b2. Doing this for
all n variables z gives > n2 all-positive clauses of size 4. In the same way we get
> n2 all-negative 4-clauses. Efficiently bounding the size of independent sets in these
graphs, we get an efficient algorithm which demonstrates unsatisfiability of these newly
obtained 4-clauses. The correctness of resolution implies that F itself is unsatisfiable.

Some detailed remarks concerning GF follow: Only for technical reasons is the
variable z, which is resolved, the last variable in our clauses. (Recall we consider
clauses as ordered triples.) More important is the fact that the edge reflects the
resolvent a1 ∨ a2 ∨ b1 ∨ b2 not in the most natural way by the edge (a1, a2) (b1, b2)
but by (a1, b1) (a2, b2). The variables of the vertices connected by the edge come
from the different clauses taking part in the resolution step. This is important in
decreasing the stochastic dependency of the edges of GF when F is a random formula.
Again we have the convention (more of a technical nature) that the variables in the
first position of each vertex come from the clause which contains the positive literal z,
whereas the second variables b1, b2 come from the clause with ¬z.

Recall again that α(G) is the independence number of G, that is, the maximum
number of vertices of an independent set of G.

Theorem 8. If F is a 3-SAT instance over n variables which is satisfiable, then
we have

α(GF ) ≥ n2/4 or α(HF ) ≥ n2/4.

Proof. Let A be an assignment of the n underying propositional variables with
0, 1 (where 0 = false and 1 = true), which makes F true. We assume that A assigns 1
to at least n/2 variables. Let S be this set of variables. We show that the set of
vertices S × S is an independent set of HF . As this set has at least (n/2)2 = n2/4
vertices, the claim holds.

Let (a1, b1) (a2, b2) be an arbitrary edge from HF . Then F has the clauses
¬a1∨¬a2∨z and ¬b1∨¬b2∨¬z (or ¬a2∨¬a1∨z and ¬b2∨¬b1∨¬z). As the assignment
A makes F true, A sets at least one of the literals ¬a1, ¬a2, ¬b1, or ¬b2 to 1. (Here
the correctness proof of resolution is hidden: The clause ¬a1 ∨ ¬a2 ∨ ¬b1 ∨ ¬b2 is a
resolvent of ¬a1 ∨¬a2 ∨ z and ¬b1 ∨¬b2 ∨¬z and we have that if A satisfies F , then
A satisfies all resolvents of F .) So A sets at least one of the variables a1, a2, b1, or b2
to 0. But this means that one of these variables is not in our set S. This finishes our
proof, as now (a1, b1) /∈ S × S or (a2, b2) /∈ S × S. As the initially chosen edge is
arbitrary, we get that S × S is an independent set of HF . Finally, if A sets at least
half of the variables to 0, we apply the same argument to GF .

Now we will proceed in an analogous way as before: Given a random F from
Formn,p the graphs GF and HF are certain random graphs. With high probability
our algorithm certifies that GF has no independent set of size ≥ n2/4. The same
applies to HF . Therefore F is certified unsatisfiable.

The occurrence of different edges in GF and HF is not fully independent and
techniques from the area of standard random graphs cannot be applied without further
consideration. From now on we restrict our attention to GF ; of course everything
applies also to HF . We collect some basics about GF .
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An edge (a1, b1) (a2, b2) in GF is only possible if a1 �= a2 or b1 �= b2. We take a
look at the structure of the clause sets which induce the fixed edge (a1, b1) (a2, b2).
The edge (a1, b1) (a2, b2) is in GF iff F contains at least one of the pairs of clauses
a1 ∨ a2 ∨ z and b1 ∨ b2 ∨ ¬z or one of the pairs a2 ∨ a1 ∨ z and b2 ∨ b1 ∨ ¬z for a
variable z.

Case 1. a1 �= a2 and b1 �= b2. In this case all z-clauses are different and all
¬z-clauses are different, too. As the z and ¬z clauses are clearly different for each z,
we have 2n disjoint pairs of clauses which induce the edge (a1, b1) (a2, b2).

Case 2. a1 = a2 and b1 �= b2. In this case the clauses a1 ∨ a2 ∨ z are all different.
However, a1 ∨ a2 ∨ z = a2 ∨ a1 ∨ z. The ¬z-clauses are all different, as are the z- and
¬z-clauses. We have altogether 2n pairs of clauses, where two pairs always have the
common clause a1 ∨ a2 ∨ z.

The last case, a1 �= a2 and b1 = b2, is analogous to the second case.
With these observations we can get a first impression of the probability of a fixed

edge in GF : If a1 �= a2 and b1 �= b2, the number of pairs of clauses which induce the
edge (a1, b1) (a2, b2) is distributed as Bin(2n, p2). The probability that the edge is

induced by two pairs of clauses is at most
(
2n
2

)
·p4 = o(2np2). This makes it intuitively

clear that the probability of (a1, b1) (a2, b2) being in GF is about 2n · p2.
If a1 = a2 and b1 �= b2, we have that the number of clauses such as b1 ∨ b2 ∨ ¬z

or b2 ∨ b1 ∨ ¬z is distributed as Bin(2n, p). The probability of having at least two
of these clauses is O(n2p2) = o(2np). Restricting ourselves to the occurrence of at
least one of these clauses, it becomes intuitively clear that the probability of the edge
(a1, b1) (a2, b2) should also be about 2n · p2.

Lemma 9. We fix the edge e = (a1, b1) (a2, b2).
(a) For a1 �= a2 and b1 �= b2 we have that

Pr[F ; e is an edge of GF ] = 2n · p2 ·
(

1 + O

(
1

n1+2γ

))
.

(b) For a1 = a2 and b1 �= b2 this probability is

2n · p2 ·
(

1 + O

(
1

n1+γ

))
.

The same applies of course to a1 �= a2 and b1 = b2.
Proof. (a) Recalling the considerations just before this lemma, we have for the

probability that GF has the edge e

Pr[F ; e is an edge of GF ] = 1 − (1 − p2)2n.

Using the binomial formula and further simple estimates estimates such as(
2n

i

)
(−p2)i ≤ (2np2)i,

we get

1 − (1 − p2)2n = 1 − 1 + 2n · p2 −
2n∑
i=2

(
2n

i

)
(−p2)i ≥ 2n · p2 − 4

n2+4γ
·
∑
i≥0

(
2

n1+2γ

)i

.

In the same way,

1 − (1 − p2)2n ≤ 2n · p2 +
4

n2+4γ
·
∑
i≥0

(
2

n1+2γ

)i
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and the convergence of the geometric series and 2n · p2 = 2/n1+2γ imply the claim.
(b) We have that the edge e is not in GF iff for no z it holds that F has the clause

a1∨a2∨z and one of the clauses b1∨ b2∨¬z or b2∨ b1∨¬z. For a given z we get that
Pr[F ; F has a1∨a2∨z and one of b1∨b2∨¬z, b2∨b1∨¬z] = p·(2p−p2) = 2p2·(1−(p/2)).
As these triples of clauses are all disjoint for different z, we get that the probability
that the edge e is not in GF is (1 − 2p2 · (1 − (p/2)))n and

Pr[e is in GF ]

= 1 −
(
1 − 2p2 ·

(
1 − p

2

))n

≥ n · 2p2 ·
(
1 − p

2

)
− 4

n2+4γ

∑
i≥0

(
2

n1+2γ

)i

= 2n · p2 ·
(

1 + O

(
1

n1+γ

))
.

In the same way we get the upper bound

Pr[F ; e is in GF ] ≤ 2n · p2 ·
(

1 + O

(
1

n1+γ

))

and the claim holds.
The preceding lemma implies the following expectations.
Corollary 10. (a) Let the random variable X denote the number of edges

of GF . For the expectation of X we get

EX = n3−2γ ·
(

1 + O

(
1

n

))
.

(b) Let X(a1,b1) be the degree of the vertex (a1, b1) in GF . Then

E[X(a1,b1)] = 2n1−2γ ·
(

1 + O

(
1

n

))
.

Proof. (a) The expected number of edges such as (a1, b1) (a2, b2) with a1 �= a2

and b1 �= b2 in GF is with Lemma 9(a) as 2n · p2 = 2/n1+2γ ,

n2 · (n− 1)2

2
· 2

n1+2γ
·
(

1 + O

(
1

n1+2γ

))

= (n3−2γ − 2n2−2γ + n1−2γ) ·
(

1 + O

(
1

n1+2γ

))
= n3−2γ ·

(
1 + O

(
1

n

))

as γ > 0. For the expected number of edges (a1, b1) (a2, b2), where a1 = a2 (and
b1 �= b2), we get by Lemma 9(b)

n2 · (n− 1)

2
· 2

n1+2γ
·
(

1 + O

(
1

n1+γ

))
= (n2−2γ − n1−2γ) ·

(
1 + O

(
1

n1+γ

))

= n2−2γ ·
(

1 + O

(
1

n

))
.

The same applies of course to these edges when a1 �= a2 and b1 = b2. As n2−2γ =
n3−2γ · 1/n, the claim follows.
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(b) Fixing the vertex (a1, b1), we see the number of edges (a1, b1) (a2, b2) with
a1 �= a2 and b1 �= b2 altogether is (n− 1)2, and for the expected number of such edges
we get, as 2n · p2 = 2/n1+2γ ,

(n− 1)2 · 2

n1+2γ
·
(

1 + O

(
1

n1+2γ

))

=

(
2n1−2γ − 4

n2γ
+

2

n1+2γ

)
·
(

1 + O

(
1

n1+2γ

))
= 2n1−2γ ·

(
1 + O

(
1

n

))
.

The number of edges (a1, b1) (a2, b2), where a1 = a2 and b1 �= b2 altogether, is
n− 1, and for the expected number of these edges we get with Lemma 9(b)

(n− 1) · 2

n1+2γ
·
(

1 + O

(
1

n1+γ

))
= O

(
1

n2γ

)
= n1−2γ ·O

(
1

n

)
.

Of course the same applies to these edges, where a1 �= a2 and b1 = b2.

Observe that n2 ·2n1−2γ = 2·n3−2γ , reflecting the fact that the sum of the degrees
of all vertices is two times the number of edges. The number of vertices is n2 and the
probability that a given edge occurs is ≈ 2/n1+2γ . Disregarding edge dependencies,
we see GF is a random graph Gn2,p′ , where p′ ≈ 2/n1+2γ = 2n1−2γ/n2. Note that the
exponent is 1 − 2γ > 0 as 0 < γ < 1/2. The analogous situation in standard random
graphs is the probability space Gn,p′ , where p′ = nε/n.

For random graphs according to Gn,p′ the degree of any vertex is with high
probability concentrated at its expectation. This follows easily from tail bounds for
the binomial distribution. In the case of our graphs GF and HF there is possibly
some overlap between clauses inducing edges. This entails a weak kind of stochastic
dependency between the occurrence of different edges. Nevertheless the following
concentration result holds.

Theorem 11. With high probability we have for all vertices (a1, b1) of GF that
the degree of (a1, b1) is of 2 · n1−2γ(1 + o(1)).

Proof. Let the variables a1, b1 be given. For a variable z let Xz be the indicator
random variable on the probability space Formn,p of the event that there are (non-
negated) variables a2, b2 such that a1 ∨ a2 ∨ z ∈ F and b1 ∨ b2 ∨ ¬z ∈ F . Let Yz

indicate the event, a2 ∨ a1 ∨ z ∈ F , and b2 ∨ b1 ∨ ¬z ∈ F . Let X =
∑

Xz and Y be
the same for the Yz. We show two points: The degree of the vertex (a1, b1) of GF is
with probability at least 1 − o(1/n2) equal to (X + Y ) · (1 + o(1)). Moreover, with
probability 1 − o(1/n2) the random variable X + Y is 2 · n1−2γ(1 + o(1)).

First we compute the value of X + Y . For a given variable z we have

Pr[Xz = 1] = (1 − (1 − p)n) · (1 − (1 − p)n) = 1 − 2 · (1 − p)n + (1 − p)2n,

as 1− (1− p)n is the probability that at least for one a2 the clause a1 ∨ a2 ∨ z occurs
in a random formula. As 0 ≤ γ < 1/2, we get from the binomial theorem and the
formula for the geometric series that

(1 − p)n = 1 − 1/nγ + 1/(2 · n2γ) + O(1/n3γ)

and

(1 − p)2n = 1 − 2/nγ + 2/n2γ + O(1/n3γ).



420 J. FRIEDMAN, A. GOERDT, AND M. KRIVELEVICH

Plugging these values into the formula for Pr[Xz = 1], we get

Pr[Xz = 1] = 1/n2γ + O(1/n3γ) = 1/n2γ · (1 + o(1)),

as we can assume that γ > 0.
As distinct Xz refer to disjoint sets of clauses, the Xz are stochastically indepen-

dent and X follows the binomial distribution Bin(n, 1/n2γ · (1+ o(1))). Therefore the
expectation of X is n1−2γ ·(1+o(1)). As γ < 1/2, we have 1−2γ > 0, and exponential
tail bounds for the binomial distribution imply that the random variable X is with
probability at least 1 − o(1/n2) of n1−2γ · (1 + o(1)). Of course everything holds in
the same way for Y , and the required concentration result for X + Y holds.

We come to the degree. The degree of (a1, b1) in the graph GF is the number of
distinct vertices (a2, b2) �= (a1, b1) for which there is a variable z such that a1∨a2∨z ∈
F and b1 ∨ b2 ∨ ¬z ∈ F or a2 ∨ a1 ∨ z ∈ F and b2 ∨ b1 ∨ ¬z ∈ F . We show that
there exists a constant C = C(γ) such that with probability at most o(1/n2) the
degree of (a1, b1) differs additively from the random variable X+Y by more than this
constant C. We need to analyze the cases in which a variable z with Xz = 1 or Yz = 1
induces either no or strictly more than one additional edge incident with (a1, b1).

Case 1. We have Xz = 1 but no additional edge is induced. This can happen
only if Xz = 1 due to the clauses a1 ∨ a1 ∨ z, b1 ∨ b1 ∨ ¬z ∈ F or if the edge induced
by a1 ∨ a2 ∨ z, b1 ∨ b2 ∨ ¬z ∈ F is also induced by another set of two clauses from F .

The first case occurs for at most C variables z with probability 1 − o(1/n2). For
constant C the expected number of sets of C variables z such that the two clauses
above are in a random F is at most

nC · (1/n1+γ)2C = 1/n(1+2γ)·C

and for C = 2, recalling γ > 0, this expectation is o(1/n2). By Markov’s inequality
the probability that there are at least 2 variables z accompanied by clauses as above
in a random formula F is o(1/n2). The case Yz = 1 proceeds in the same way.

The second case is slightly more complex but follows with the same principle. First
we consider the case that no additional edge is induced by the clauses a1 ∨ a2 ∨ z,
b1 ∨ b2 ∨ ¬z ∈ F due to a disjoint set of two clauses, which yields the same edge.
That is, there exists a z′ �= z such that a1 ∨ a2 ∨ z′, b1 ∨ b2 ∨ ¬z′ ∈ F or there is a z′

(z′ = z may be possible) such that a2 ∨ a1 ∨ z′, b2 ∨ b1 ∨ ¬z′ ∈ F . For a suitably
chosen constant C this situation occurs for C variables z with probability o(1/n2).
The expected number of sets of C variables z such that for each of these z one of the
preceding possibilities occurs in a random F is bounded above by

nC · nC · n2C · 2C · (1/n1+γ)4C = 2C/n4Cγ .

For C ≥ 1 and γ > 0 this expectation is o(1). Picking C > 1/(2γ) makes this
expectation o(1/n2) and the result follows with Markov’s inequality.

It may also be the case that no additional edge is induced due to a set of two
clauses which, however, now is not disjoint to the two clauses a1∨a2∨z, b1∨b2∨¬z ∈ F .
In this case we must have a1 = a2 (or the same for the bi’s) and we have the clause
b2 ∨ b1 ∨ ¬z ∈ F . Therefore we now have Yz = 1. For the expectation as before we
get

nC · n2C · 2C · (1/n1+γ)3C = 1/n3Cγ

which is o(1/n2) for C ≥ 2/(3γ) and γ > 0.
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Case 2. We consider the situation Xz = 1. Strictly more than one edge is
induced by the clauses with z ¬z in the third position. We show that the number of
edges incident with (a1, b1) induced by clauses with the fixed z,¬z in the end can be
bounded above by a constant. For the appropriate expectation we get

nC · nC′ · 2C · 2C′ · (1/n1+γ)C+C′
= O(1/nγ·(C+C′))

and picking C +C ′ large enough we get that at least C ·C ′ edges are induced due the
clauses with z,¬z in the end with probability o(1/n2).

We still need to bound the number of z’s altogether such that strictly more than
one edge is induced due to clauses with z,¬z in the end. The appropriate expectation
is

nC · n3C · 2C · (1/n1+γ)3C = 1/n(3γ−1)·C ,

which is o(1) if γ > 1/3, which we can safely assume, and C ≥ 1. Picking C >
2/(3γ − 1) we see the expectation is o(1/n2).

The claim of the theorem now follows from the preceding considerations. Picking
C as the sum of all possible deviations from exactly one edge being induced by Xz = 1
or Yz = 1 should do.

2.2. Spectral considerations. In this section we prove a general relationship
between the size of an independent set in a graph and the eigenvalues of its adjacency
matrix. Then we prove that the random graphs GF and HF satisfy certain eigenvalue
bounds with high probability. These eigenvalue bounds certify that the graphs GF

and HF do not have independent sets, which are necessary for F to be satisfiable by
Theorem 8. Again background from spectral graph theory can be found for regular
graphs in [AlSp92] and for the general case in [Ch97]. The linear algebra required is
well presented in [St88].

Let G = (V,E) be an undirected graph and A = AG the adjacency matrix of G.
Let A’s eigenvalues be ordered as λ1(A) ≥ · · · ≥ λn(A), with n = |V |. We abbreviate
λi = λi(A). We say that G is ν-separated if |λi| ≤ νλ1 for i > 1. With λ = maxi>1 |λi|
this reads λ ≤ νλ1. We say that G is ε-balanced for some ε > 0 if there is a real d
such that the degree of each vertex is between d(1 − ε) and d(1 + ε). As opposed to
Lemma 4, the subsequent theorem only uses the eigenvalues of the adjacency matrix
of the graph considered.

Theorem 12. If G is ν-separated and ε-balanced, then G contains no independent
set of size > (n/5) + n · f(ν, ε), where f(ν, ε) tends to 0 as ν, ε tend to 0.

We remark that this theorem can probably be greatly improved upon (see the
remark in the proof). But this weak theorem does preclude independent sets of size
n/4 for small ν, ε, and that is all we need here.

Proof. Let S be an independent subset of vertices of G. We will bound |S|. Let
T = V \S. Let χS , χT be the characteristic functions (represented as column vectors)
of S, T , respectively, (i.e., taking the value 1 on the set and 0 outside of the set). As
S is an independent set and G is ε-balanced, we have

d(1 − ε)|S| ≤
∣∣∣ edges leaving S

∣∣∣ = 〈AGχS , χT 〉.(2.1)

Note that AGχS is the column vector whose ith entry is the number of edges going
from vertex i into the set S. Recall that T = V \S and 〈· · · , · · ·〉 is the standard inner
product of two vectors. We show further below that

〈AGχS , χT 〉 ≤ d(1 + ε) · (1/2 + ν) ·
√

|S||T |.(2.2)
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Abbreviating θ = |S|/n we get from (2.1) and (2.2)

|S| ≤ 1 + ε

1 − ε

(
1

2
+ ν

)
·
√

|S||T |.

This implies that

√
|S|
|T | ≤ 1 + ε− ε + ε

1 − ε

(
1

2
+ ν

)
=

(
1 +

2ε

1 − ε

)(
1

2
+ ν

)
=

1

2
+ g(ε, ν),

where g(ε, ν) goes to 0 when ε and ν do. Next we get

θ

1 − θ
≤

(
1

2
+ g(ν, ε)

)2

=
1

4
+ g(ν, ε) + g(ν, ε)2.

We set f(ν, ε) = (4/5)(g + g2) and can easily conclude that

θ ≤ (1 − θ) · (1/4) + (1 − θ) · g + (1 − θ) · g2 ≤ (1/4) − θ · (1/4) + g + g2

⇒ θ ≤ (1/4)(4/5) + (4/5)(g + g2) = 1/5 + f,

which is the theorem.

We need to show inequality (2.2). Let u1, . . . , un be an orthonormal basis of the
n-dimensional vectorspace over the reals, where ui is an eigenvector with eigenvalue λi

of AG. We can decompose the adjacency matrix as

AG = λ1 · u1 · uT
1 + λ2 · u2 · uT

2 + · · · + λn · un · uT
n ,

where uT
i = (ui,1, . . . , ui,n) is the transpose of the column vector ui. Note that

λi · (ui · uT
i ) · v = λi · v if v = α · ui and λi · (ui · uT

i ) · v = 0 for v orthogonal to ui. Let

E = AG − λ1 · u1 · uT
1 =

∑
i≥2

λi · ui · uT
i

and represent χS , χT over the basis of the ui:

χS =

n∑
i=1

αi · ui and χT =

n∑
i=1

βi · ui.

Recall the fact known as Parseval’s equation:

|S| = ||χS ||2 =
∑

α2
i and |T | = ||χT ||2 =

∑
α2
i .

We get

〈AGχS , χT 〉 = 〈λ1 · u1 · uT
1 · χS + · · · + λn · un · uT

n · χS , χT 〉
= 〈(λ1 · (uT

1 · χS)) · u1, χT 〉 + 〈E · χS , χT 〉
= (λ1(u

T
1 · χS)) · (uT

1 · χT ) + 〈E · χS , χT 〉.
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We bound the two summands separately. Because of the orthornormality of the ui

we get

〈EχS , χT 〉 = 〈E · (α1u1 + · · · + αnun), χT 〉
= 〈λ2α2u2 + · · · + λnαnun, β1u1 + · · · + βnun〉
= 〈λ2α2u2, β2u2〉 + 〈λ3α3u3, β3u3〉 + · · · + 〈λnαnun, βnun〉
= λ2α2β2 + λ3α3β3 + · · · + λnαnβn

≤ λ ·
∑
i>1

|αiβi| ≤ λ ·
√∑

i>1

α2
i ·

√∑
i>1

β2
i ≤ λ ·

√∑
i≥1

α2
i ·

√∑
i≥1

β2
i

= λ ·
√
|S| ·

√
|T | ≤ ν · d(1 + ε)

√
|S||T |,

where the last step holds because λ1 is bounded above by the maximal degree of a
vertex, the step before the last is Parseval’s equation, and the third step before the
last is the Cauchy–Schwarz inequality,

∑
|αiβi| ≤

√∑
α2
i ·

√∑
β2
i .

Now we come to the other summand, (λ1(u
T
1 · χS)) · (uT

1 · χT ). Let α, β be the
average values of u1 on S, T , respectively, that is, α = (

∑
u1,j)/|S|, where the sum

goes over j ∈ S. With the Cauchy–Schwarz inequality we get

α2 =
(
∑

(u1,j · 1))2

|S|2 ≤
(
∑

u2
1,j) · (

∑
1)

|S|2 =

∑
u2

1,j

|S|

which implies α2|S| ≤
∑

u2
1,j . As T = V \ S we get

α2|S| + β2|T | ≤
n∑

j=1

u2
1,j = ||u1||2 = 1.

Using the fact that the geometric mean is bounded by the arithmetic mean, this
implies

α
√
|S| · β

√
|T | =

√
α2|S| · β2|T | ≤ α2|S| + β2|T |

2
≤ 1

2
.

(The weakness of this theorem undoubtedly comes from the pessimistic first estimate,
which is close to the truth only when α2|S| is close to β2|T |.) This implies, as λ1 is
bounded above by the maximum degree, that

λ1 · (uT
1 χS) · (uT

1 χT ) ≤ d(1 + ε)α|S| · β|T | ≤ (1/2) · d(1 + ε)
√

|S||T |,

and we get (2.2), finishing the proof.
We next show that the graphs GF and HF are ν-separated for a small ν. We do

this by applying the trace method; see, for example, [Fr91]. For our purposes it is
sufficient to use an elementary version of this method. We first give a general outline
of this method and then apply it to the Gn,p model of random graphs. Finally, we
proceed to the technically more complex graphs GF , HF . For A = AG, an adjacency
matrix, we have from linear algebra that, for each k ≥ 0, Trace(Ak) =

∑n
i=1 λ

k
i . (The

trace of a matrix is the sum of the elements on the diagonal.) Trace(Ak) can be
calculated from the underlying graph as Trace(Ak) = | closed walks of length k in the
underlying graph |. A closed walk of length k in G is a walk like

a0
e1

a1
e2

a2
e3

· · ·
ek−1

ak−1
ek

ak = a0.
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Note that the ei and ai need by no means be different, only ai−1 �= ai as we assume
the graph loopless. If k is even we have that all λk

i ≥ 0 and we get Trace(Ak) =∑n
i=1 λ

k
i ≥ λk

1 + maxi>1 λ
k
i . Abbreviating λ = maxi>1 |λi| we get further

λk ≤ Trace(Ak) − λk
1 =

n∑
i=2

λk
i .

If the underlying adjacency matrix A is random, this applies in particular to the
expected values:

E[λk] ≤ E[Trace(Ak)] − E[λk
1 ] = E

[
n∑

i=2

λk
i

]
.(2.3)

Now assume that k is an even constant, that n is a variable and sufficiently large
(having a model that allows a variable n such as Gn,p), and that E[λk] = o(λk

1) with
high probability. Then we have that the graph underlying A is ν-separated for any
fixed ν > 0 with high probability, which is easy to see:

Pr[λ > νλ1] = Pr[λk > (νλ1)
k] = Pr

[
λk >

(νλ1)
k

E[λk]
· E[λk]

]
≤ o(1),

where we apply Markov’s inequality, using the fact that (νλ1)
k/E[λk] = 1/o(1) with

high probability, as k and ν are constant. The last estimate of course implies that
for each ν > 0 almost all graphs considered are ν-separated. (The idea of considering
the kth power of the eigenvalues seems to be to increase the gap between the largest
eigenvalue and the remaining eigenvalues.)

Now we apply this to the Gn,p model of random graphs, where p = nδ/n and δ > 0
is a constant. We calculate the two expected values in (2.3) separately. The largest
eigenvalue is always between the minimum and maximum degree of any vertex, as
follows from the Courant–Fisher characterization of the eigenvalues of real symmetric
matrices. From Chernoff bounds we know that for any ε > 0 with high probability all
vertices x from a random G satisfy (1−ε)nδ ≤ the degree of x ≤ (1+ε)nδ. Thus with
high probability (1− ε)nδ ≤ λ1 ≤ (1 + ε)nδ. As the probability bounds of the degree
estimate follow directly from Chernoff bounds, the probability that the estimate does
not hold is exponentially low, that is, at most n · exp(−Ω(nδ)). The same probability
estimate applies to the estimate for λ1. (The exponentially small term is for a single
fixed vertex; the factor n is necessary, as we have n vertices.) As k is even, λk

1 ≥ 0
and

E[λk
1 ] ≥

(
(1 − ε)nδ

)k
(1 − n exp(−Ω(nδ)) = (1 − ε)knδk − o(1).

Next we come to the expectation of the trace in (2.3). For

a = (a0, . . . , ak−1, ak = a0)

let walk(a) be the indicator random variable of the event that the walk given by a is
possible in a random graph; that is, all edges ei = (ai−1, ai) = {ai−1, ai} for 1 ≤ i ≤ k
occur. Then

E[Trace(Ak)] = E

[∑
�a

walk(a)

]
=

∑
�a

P [walk(a) = 1]
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by linearity of expectation and as walk(a) is an indicator random variable. To cal-
culate the preceding sum we distinguish three types of possible walks a. A walk is
distinct iff all edges ei are distinct. A walk is duplicated iff each edge among the ei
occurs at least twice. A walk is quasi distinct iff some edges among the ei occur
at least twice and some only once. (Notice that for quasi-distinct walks and dupli-
cated walks, one type does not subsume the other—indeed, quasi-distinct walks must
have an edge that occurs only once; furthermore the arguments given below differ
essentially for the quasi-distinct and duplicated cases.) For a distinct we have that
Pr[walk(a) = 1] = pk, and the number of a’s altogether which can induce a distinct
walk is at most nk because we can choose a0, . . . , ak−1. Hence, the expected number
of distinct walks is bounded above by nδk. (Compare our estimate for E[λ1].)

For a duplicated we parametrize further with respect to the number j, with
1 ≤ j ≤ k/2, of different edges among the ei. Any walk which is possible at all
is generated at least once by the following process: 1. Pick the j positions among
k possible positions, where each of the j different edges occurs for the first time in
e = (e1, . . . , ek):

(
k
j

)
≤ kk possibilities. 2. For each of the remaining k − j positions

specify which of the preceding first occurrences of an edge is to be used in this position:
≤ jk−j ≤ kk possibilities. 3. Specify the vertices incident with the edges picked in 1.
As the j edges from 1 must induce a connected graph, the number of possibilities here
is at most nj+1. Now we get for the expected number of duplicated walks∑

�a duplicated

Pr[walk(a) = 1]

≤
k/2∑
j=1

k2k · nj+1 · (nδ/n)j ≤
k/2∑
j=1

k2k · n · nδj ≤ (k/2) · k2k · n · nδk/2.

Note that 1 + δk/2 < δk iff 2/δ < k. So for this estimate to be true k must increase
if δ gets smaller.

For the number of quasi-distinct walks, we first assume that the last edge, ek,
is a unique edge of the walk. As our walks are quasi distinct, there are at most
1 ≤ j ≤ k − 2 first occurrences of different edges in (e1, . . . , ek−1). This implies that
the expected number of quasi-distinct walks with the last edge unique is bounded by

k−2∑
j=1

k2k · nj+1 ·
(
nδ

n

)j

· n
δ

n
≤ k · k2k · nδ(k−1).

We account for those quasi-distinct walks, where the last edge is not unique by shifting
a unique edge to the end and counting as before. As there are k positions where
a unique edge might occur, we need an additional factor of k. Note that always
δ(k − 1) < δk.

Summing the preceding estimates, we get

E[Trace(Ak)] ≤ nδk + k2 · k2k · (nnδk/2 + nδ(k−1)) = nδk + o(nδk)

if k > 2/δ is an even constant, which we assume. Now (2.3) implies

E[λk] ≤ (1 − (1 − ε)k) · nδk + o(nδk)

as k even. As ε > 0 can be chosen arbitrarily small, k is constant and the preceding
estimate holds whenever n is sufficiently large, we have that E[λk] = o(nδk). Now
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fix ν > 0. By the general principle stated above we get that Pr[λ > νλ1] = o(1),
meaning that almost all graphs are ν-separated. Applying Theorem 12 we can for
almost all graphs from Gn,p efficiently certify that they do not have independent sets
with much more than n/5 vertices.

The treatment of our graphs GF , HF based on the method above is more technical
but follows the same principles.

Theorem 13. For F ∈ Formn,p,3 let A = AF be the adjacency matrix of GF and
let λ1 ≥ λ2 ≥ · · · ≥ λn2 be the eigenvalues of A. Then

E

⎡
⎣ n2∑

i=1

λk
i

⎤
⎦ = E[Trace(Ak

F )]

≤
(
2n1−2γ

)k
+ c · k4 · k4k · 2k · (n(1−2γ)(k−1) + n2 · n(1−2γ)k/2),

where c is a constant (possibly c = 100 should be enough). If k > 4/(1 − 2γ), the
preceding estimate is (2n1−2γ)k + o((2n1−2γ)k).

Proof. For any F we have that Trace(AF ) = | closed walks of length k in GF |. A
typical closed walk of length k is

(a0, b0) (a1, b1) · · · (ak−1, bk−1) (ak, bk) = (a0, b0)

with the only constraint that adjacent vertices (= pairs of propositional variables) are
different. Now consider a step (ai−1, bi−1) (ai, bi) of this walk. For this step to
be possible in GF the formula F must have one of the following 2n pairs of clauses:
ai−1∨ai∨z, bi−1∨bi∨¬z for a propositional variable z or the other way around, that is,
ai, bi first. We say that pairs of the first type induce the step (ai−1, bi−1) (ai, bi)
with sign +1, whereas the second type induces this step with sign −1. For two
sequences of clauses C = (C1, C2, . . . , Ck), where the last literal of each Ci is a positive

literal, and D = (D1, D2, . . . , Dk), where the last literal of each Di is negative, and

a sequence of signs ε = (ε1, . . . , εk), we say that C, D, ε induce the walk above iff for
each i the pair of clauses Ci, Di induces the ith step of the walk with sign given by εi.
Note that the occurrence of the clauses Di and Cj in a random F is independent, as
these clauses are always distinct. We say that F induces the walk above iff we can
find sequences of clauses C, D ⊆ F (the Ci, Di need not necessarily be all distinct)

and a sequence of signs ε such that C, D, ε induce the given walk. We observe that
• GF allows for a given walk iff F induces this walk as defined above;
• three sequences C, D, ε induce at most one walk, but one walk can be induced

by many C, D, ε ’s. (Without the ε it is possible that C, D induce several
walks.)

Thus we get that Trace(Ak
F ) can be bounded above by the number of different se-

quences C, D, ε with C, D ⊆ F inducing a closed walk of length k, and this estimate
transfers to the expectation over a random formula F . The notions of distinct, quasi
distinct, and duplicated are defined as for graphs: The sequence C is distinct iff all
component clauses Ci are different. C is quasi distinct iff some Ci’s occur at least
two times and some only once. C is duplicated iff all Ci’s which occur in C occur at
least twice in C. The same notions apply to D. We decompose the expected number
of C, D, ε ’s which induce a closed walk of length k according to all combinations of
C, D being distinct, quasi distinct, or duplicated.

The expected number of C, D, ε ’s with C, D both distinct can be bounded as
follows: The number of possible sequences C, D altogether can be bounded above
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by n3k. Note that we have unique correspondence between three sequences of vari-
ables a = (a0, . . . , ak−1, ak = a0), b = (b0, . . . , bk−1, bk = b0), and z = (z1, . . . , zk)

and two sequences of clauses, which might induce a closed walk of length k, C, D:
Ci = ai−1 ∨ ai ∨ zi and Di = bi−1 ∨ bi ∨ ¬zi. To account for the signs we get an ad-

ditional factor of 2k. The probability that C, D ⊆ F for C, D distinct is (1/n1+γ)2k

and we can bound the expectation by

2k · n3k

(
1

n1+γ

)2k

= (2n1−2γ)k.

Recall that γ < 1/2 and the degree of each vertex is concentrated at 2n1−2γ . Note
also the analogous situation for Gn,p above.

For C distinct and D duplicated we parameterize further with respect to the
number l with 1 ≤ l ≤ k/2 of different clauses Di. Each D possible at all is generated
at least once as follows: 1. Pick l positions among the k possible positions where the
different clauses Di occur for the first time:

(
k
l

)
≤ kk possibilities. 2. For each of the

k − l remaining positions pick one of the preceding positions which were picked in 1:
≤ lk−l ≤ kk possibilities. 3. Pick the clauses and the signs for the l positions from 1:
≤ nl+1 ·nl ·2l possibilities. (Pick the bi’s, pick the zi’s, pick a sign.) 4. The remaining
Di’s are specified through 2 and 3, but perhaps we can pick a sign: 2k−j possibilities.
5. Pick the sequence C: nk possibilities. (We can choose only the ai’s.) For the
expectation we get, observing that l ≤ k/2 < k,

k/2∑
l=1

k2k · 2k · nl+1 · nl · nk ·
(

1

n1+γ

)l+k

≤
∑

k2k · 2k · nl+1 ·
(

1

nγ

)2l

=

k/2∑
l=1

k2k · 2k · n · n(1−2γ)l ≤ k · k2k · 2k · n · n(1−2γ)k/2,

where we use γ < 1/2 and have omitted some of the factors 1/nγ not necessary.
Observe that 1 + (1− 2γ)k/2 < (1− 2γ)k iff k > 2/(1− 2γ). For this to hold k must
become large when γ approaches 1/2.

Now let C be distinct and D be quasi distinct. We first consider the case that
the last clause from D, Dk is unique. We parameterize further with respect to the
number l with 1 ≤ l ≤ k − 2 of different clauses in (D1, . . . , Dk−1). The num-
ber of possibilities for (D1, . . . , Dk−1) altogether is bounded by k2k · nl+1 · nl. For
D1, . . . , Dk−1, Dk altogether we have only an additional factor of n. For the sign we

get 2k and for C we have only at most nk possibilities. Thus for the expectation we
get, noting that always l + 2 ≤ k,

k−2∑
l=1

k2k · 2k · nl+1 · nl · n · nk ·
(

1

n1+γ

)l+k

· 1

n1+γ
≤

∑
k2k · 2k · nl+1 ·

(
1

nγ

)l+l+2

=
∑

k2k · 2k · n(1−2γ)(l+1) ≤ k · k2k · 2k · n(1−2γ)(k−1).

Again we have omitted some unnecessary 1/nγ ’s. To account for the fact that the
unique Di is in between we get an additional factor of k.

Now we come to the case that both C and D are duplicated. We parameterize
further with respect to the number j (1 ≤ j ≤ k/2) of different Ci’s and l (1 ≤ l ≤ k/2)
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of different Di’s. Assume first j ≤ l; the other case follows symmetrically. The number
of different sequences C, D, ε altogether is bounded by k4k · 2k · nj+1 · nj · nl+1 as we
choose the zi’s with C. Summing over j, l, this gives for the expectation a bound of

k2 · k4k · 2k · n2 · n(1−2γ)k/2.

Note that γ < 1/2 and 2 + (1 − 2γ)k/2 < (1 − 2γ)k iff k > 4/(1 − 2γ).

Now we look at the cases C duplicated and D quasi distinct. We first assume that
the last clause of D is unique. We parameterize further with respect to j, the number
of distinct clauses in C, and l, the number of distinct clauses in (D1, . . . , Dk−1). First

assume that j ≤ l+1. The number of possible sequences C, D, ε altogether is bounded
above by k4k · 2k · nj+1 · nj · nl+1 as we choose the zi’s with the j different Ci. For
the expectation we get the sum going over 1 ≤ j ≤ k/2, 1 ≤ l ≤ k − 2, j ≤ l + 1

∑
k4k · 2k · nj+1 · nj · nl+1 ·

(
1

n1+γ

)j+l

· 1

n1+γ
≤

∑
k4k · 2k · n · nj ·

(
1

nγ

)2j

≤ k2 · k4k · 2k · n · n(1−2γ)k/2.

Again note that 1 + (1 − 2γ)k/2 < (1 − 2γ)k for k a sufficiently large constant.
The case l+ 1 ≤ j yields the following in the same way, now choosing the zi with

the Di’s:

∑
k4k · 2k · nl+1 · nl · n · nj+1 ·

(
1

n1+γ

)j+l

· 1

n1+γ
≤ k2 · k4k · 2k · n2 · n(1−2γ)k/2.

For the unique clause of D being somewhere in between we need an additional factor
of k.

Now finally we look at the case that C, D are both quasi distinct. First assume
that the two last clauses Ck, Dk are unique and let j be the number of different Ci

among the first k − 1 Ci’s and l the same for the Di’s. First assume the j ≤ l. We
get for the expectation

∑
1≤j≤l≤k−2

k4k · 2k · nj+1 · nj · n · nl+1 ·
(

1

n1+γ

)l+j

·
(

1

n1+γ

)2

≤ k2 · k4k · 2k · n(1−2γ)(k−1).

For the unique clauses standing at different positions we get the same estimate, which
altogether accounts for another factor of k2. For l ≤ j we get another factor of 2.

Now our algorithm is obvious: We pick ε, ν sufficiently small such that the f(ν, ε)
from Theorem 12 is < 1/20. Given F ∈ Formn,p, p = 1/n1+γ , we construct GF . We
check if maximum degree/minimum degree ≤ (1 + ε)/(1 − ε). This holds with high
probability; when it does not, the algorithm fails. Now we determine λ1 and λ. With
high probability we have that λ ≤ νλ1. If the last estimate does not hold, we fail. By
Theorem 12 the algorithm now has certified that GF has no independent set of size
≥ n2/4. We do the same for HF . With high probability we succeed and by Theorem 8
F is certified unsatisfiable.

Conclusion. Our algorithm works with high probability with respect to the bi-
nomial space Formn,p, where p is such that the expected number of clauses is the
announced n3/2+ε. When we always draw exactly n3/2+ε clauses the algorithm should
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also work, as can be shown by applying very similar arguments to those given in the
paper. Note that we generate formulas in Formn,p with exactly the expectation of
many clauses with probability bounded below only Ω(1/

√
n). However, after generat-

ing exactly n3/2+ε clauses one can formally delete some clauses with the appropriate
low probability. This yields a subset having high probability on Formn,p with an
appropriate p and the preceding consideration applies to these new formulas, thus
showing the unsatisfiability of the original formula.
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from combinatorial approximation algorithms yield efficient algorithms
for random 2k-SAT, Theoret. Comput. Sci., 329 (2004), pp. 1–45.

[CrAu96] J. M. Crawford and L. D. Auton, Experimental results on the crossover
point in random 3-SAT, Artificial Intelligence, 81 (1996), pp. 31–57.

[DuBoMa2000] O. Dubois, Y. Boufkhad, and J. Mandler, Typical random 3-SAT formulae
and the satisfiability threshold, in Proceedings of the 11th Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2000,
pp. 126–127.

[DuZi98] P. E. Dunne and M. Zito, An improved upper bound for the non-3-colour-
ability threshold, Inform. Process. Lett., 65 (1998), pp. 17–23.

[FeOf 2004] U. Feige and E. Ofek, Easily refutable subformulas of large random 3-CNF
formulas, in Proceedings of the 31st International Colloquium on Au-
tomata, Languages and Programming (ICALP), Lecture Notes in Comput.
Sci. 3142, Springer, Berlin, 2004, pp. 519–530.

[Fr91] J. Friedman, On the second eigenvalue and random walks in random d-regular
graphs, Combinatorica, 11 (1991), pp. 331–362.

[Fr99] E. Friedgut, Necessary and sufficient conditions for sharp thresholds of
graph properties and the k-SAT problem, J. Amer. Math. Soc., 12 (1999),
pp. 1017–1054.

[FrSu96] A. M. Frieze and S. Suen, Analysis of two simple heuristics on a random
instance of k-SAT, J. Algorithms, 20 (1996), pp. 312–355.

[Fu95] X. Fu, On the Complexity of Proof Systems, Ph.D. thesis, University of
Toronto, Toronto, Ontario, Canada, 1995.
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OPTIMAL ONLINE ALGORITHMS FOR
MULTIDIMENSIONAL PACKING PROBLEMS∗

LEAH EPSTEIN† AND ROB VAN STEE‡

Abstract. We solve an open problem in the literature by providing an online algorithm for
multidimensional bin packing that uses only bounded space. To achieve this, we introduce a new
technique for classifying the items to be packed. We show that our algorithm is optimal among
bounded space algorithms for any dimension d > 1. Its asymptotic performance ratio is (Π∞)d,
where Π∞ ≈ 1.691 is the asymptotic performance ratio of the one-dimensional algorithm Harmonic.
A modified version of this algorithm for the case where all items are hypercubes is also shown to be
optimal. Its asymptotic performance ratio is sublinear in d.

Furthermore, we extend the techniques used in these algorithms to give optimal algorithms for
online bounded space variable-sized packing and resource augmented packing.

Key words. multidimensional bin packing, online algorithms, optimal algorithms

AMS subject classifications. 68Q25, 68W40
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1. Introduction. Bin packing is one of the oldest and most well-studied prob-
lems in computer science [12, 6]. The study of this problem dates back to the early
1970’s, when computer science was still in its formative phase—ideas which origi-
nated in the study of the bin packing problem have helped shape computer science
as we know it today. The influence and importance of this problem are witnessed
by the fact that it has spawned off whole areas of research, including the fields of
online algorithms and approximation algorithms. In this paper, we study a natural
generalization of bin packing called box packing.

Problem definition: Let d ≥ 1 be an integer. In the d-dimensional box packing
problem, we receive a sequence σ of items h1, h2, . . . , hn. Each item h has a fixed size,
which is s1(h) × · · · × sd(h), i.e., si(h) is the size of h in the ith dimension. We have
an infinite number of bins, each of which is a d-dimensional unit hypercube. Each
item must be assigned to a bin and a position (x1(h), . . . , xd(h)), where 0 ≤ xi(h) and
xi(h)+si(h) ≤ 1 for 1 ≤ i ≤ d. Further, the positions must be assigned in such a way
that no two items in the same bin overlap. A bin is empty if no item is assigned to it,
otherwise it is used. The goal is to minimize the number of bins used. Note that for
d = 1, the box packing problem reduces to exactly the classic bin packing problem.

There are a number of variants of this problem which are of interest:

• In the online version of this problem, each item must be assigned in turn,
without knowledge of the next items.
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• In the hypercube packing problem we have the restriction that all items are
hypercubes, i.e., an item has the same size in every dimension.

• In the bounded space variant, an algorithm has only a constant number of
bins available to accept items at any point during processing. The bounded
space assumption is a quite natural one, especially so in online box packing.
Essentially the bounded space restriction guarantees that output of packed
bins is steady, and that the packer does not accumulate an enormous backlog
of bins which are only output at the end of processing.

• In variable-sized bin packing, bins of various sizes are available to be used for
packing and the goal is to minimize the total size of all the bins used.

• In resource-augmented bin packing, the online algorithm has larger bins at its
disposal than the offline algorithm, and the goal is to minimize the number
of bins used.

The offline versions of these problems are NP-hard, while even with unlimited
computational ability it is impossible in general to produce the best possible solution
online. We consider online approximation algorithms.

The standard measure of algorithm quality for box packing is the asymptotic
performance ratio, which we now define. For a given input sequence σ, let costA(σ)
be the number of bins used by algorithm A on σ. Let cost(σ) be the minimum
possible number of bins used to pack items in σ. The asymptotic performance ratio
for an algorithm A is defined to be

R∞
A = lim sup

n→∞
sup
σ

{
costA(σ)

cost(σ)

∣∣∣∣∣cost(σ) = n

}
.

Let O be some class of box packing algorithms (for instance, online algorithms or
bounded space online algorithms). The optimal asymptotic performance ratio for O
is defined to be R∞

O = infA∈O R∞
A . Given O, our goal is to find an algorithm with an

asymptotic performance ratio close to R∞
O .

Previous results: The classic (one-dimensional) online bin packing problem
was first investigated by Ullman [33]. He showed that the First Fit algorithm has
performance ratio 17

10 . This result was then published in [20]. Johnson [22] showed
that the Next Fit algorithm has a performance ratio of 2. Yao showed that Revised

First Fit has a performance ratio of 5
3 , and further showed that no online algorithm

has a performance ratio of less than 3
2 [38]. Brown and Liang independently improved

this lower bound to 1.53635 [3, 28]. The lower bound currently stands at 1.54014, due
to van Vliet [34]. Define

πi+1 = πi(πi − 1) + 1, π1 = 2,

and

Π∞ =

∞∑
i=1

1

πi − 1
≈ 1.69103.

Lee and Lee presented an algorithm called Harmonic, which uses m > 1 classes and
uses bounded space. For any ε > 0, there is a number m such that the Harmonic

algorithm that uses m classes has a performance ratio of at most (1+ε)Π∞ [25]. They
also showed there is no bounded space algorithm with a performance ratio below Π∞.
Bounded space algorithms for bin packing were also considered by Woeginger in [37]
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and by Van Vliet in [36]. Currently the best known unbounded space upper bound is
1.58889 due to Seiden [31].

Offline bin packing has also received a great deal of attention, for a survey see [6].
The most prominent results are as follows: Garey, Graham, and Ullman [20] were
the first to study the approximation ratios of both online and offline algorithms.
Fernandez de La Vega and Lueker [15] presented the first (asymptotic) approximation
scheme for bin packing. Karmarkar and Karp [23] gave an algorithm which uses at
most cost(σ) + log2(cost(σ)) bins.

The online one-dimensional variable-sized bin packing problem was first investi-
gated by Friesen and Langston [17]. Csirik [9] proposed the Variable Harmonic

algorithm and showed that it has performance ratio at most Π∞. Seiden [30] showed
that this algorithm is optimal among bounded space algorithms.

The online one-dimensional resource augmented bin packing problem was stud-
ied by Csirik and Woeginger [13]. They showed that the optimal bounded space
asymptotic performance ratio is a function ρ(b) of the size b of the bins of the online
algorithm.

While box packing is a natural next step from bin packing, the problem seems
to be more difficult, and the number of results is smaller. The offline problem was
introduced by Chung, Garey, and Johnson [5]. Caprara [4] presented an algorithm
with an approximation ratio of Π∞ for d = 2.

The online problem was first investigated by Coppersmith and Raghavan [7],
who give an algorithm based on Next Fit with performance ratio 13

4 = 3.25 for
d = 2. Csirik, Frenk, and Labbe [10] gave an algorithm based on First Fit with a
performance ratio of 49

16 = 3.0625 for d = 2. Csirik and van Vliet [11] presented an
algorithm with a performance ratio of (Π∞)d for all d ≥ 2 (2.85958 for d = 2). Even
though this algorithm is based on Harmonic, it was not clear how to change it to
bounded space. Li and Cheng [27] also gave a Harmonic-based algorithm for d = 2
and d = 3.

Seiden and van Stee [32] improved the upper bound for d = 2 to 2.66013. Several
lower bounds have been shown [18, 19, 35, 2]. The best lower bound for d = 2 is
1.907 [2], while the best lower bound for large d is less than 3. For bounded space
algorithms, a lower bound of (Π∞)d is implied by [11].

For online square packing, even less is known. The following results are known
for d = 2: Coppersmith and Raghavan [7] showed an upper bound of 43/16 = 2.6875
and a lower bound of 4/3 (which holds for all d ≥ 2). The upper bound was im-
proved to 395/162 < 2.43828 by Seiden and van Stee [32]. For d = 3, Miyazawa and
Wakabayashi [29] showed an upper bound of 3.954. For the offline problem, Ferreira,
Miyazawa, and Wakabayashi give a 1.988-approximation algorithm [16]. A sequence
of results improved this result [24, 32, 4], recently culminating in an APTAS by Bansal
and Sviridenko [1] and Correa and Kenyon [8] independently.

Our results: In this paper, we present a number of results for online and offline
box and square packing:

• We begin by presenting a bounded space algorithm for the packing of hy-
percubes. An interesting feature of the analysis is that although we show
the algorithm is optimal, we do not know the exact asymptotic performance
ratio; the asymptotic performance ratio is Ω(log d) and O(d/ log d).

• We then extend this algorithm to a bounded space algorithm for general hy-
perbox packing and show that this algorithm is also optimal, with an asymp-
totic performance ratio of (Π∞)d. This solves the ten-year-old open problem



434 LEAH EPSTEIN AND ROB VAN STEE

of how to pack hyperboxes using only bounded space.
• We present a bounded space algorithm for the variable-sized multidimensional

bin packing problem. As for the first algorithm above, we do not know the
exact asymptotic performance ratio.

• We then give an analogous algorithm for the problem of resource augmented
online bin packing. This algorithm is also optimal, with an asymptotic per-
formance ratio of

∏d
i=1 ρ(bi) where b1 × · · · × bd is the size of the bins that

the online algorithm uses.

For the online results, we will use the technique of weighting functions. This tech-
nique was originally introduced for one-dimensional bin packing algorithms [33, 21].
In [32], it was demonstrated how to use the analysis for one-dimensional algorithms
to get results for higher dimensions. In contrast, in the current paper we will de-
fine weighting functions directly for multidimensional algorithms, without using one-
dimensional algorithms as subroutines.

New technique: To construct the bounded space algorithm we adapt some of
the ideas used in previous work. Specifically, the algorithm of [11] also required a
scheme of partitioning bins into sub-bins, and of sub-bins into smaller and smaller
sub-bins. However, in order to keep a constant number of bins active, we had to
introduce a new method of classifying items. Our key improvement is that there is
not one single class of “small” items like all the standard algorithms have, but instead
we partition the items into an infinite number of classes that are grouped into a finite
number of groups. The hypercube packing algorithm uses an easier scheme for the
same purpose. This is a more direct extension of the method used in [7].

1.1. The harmonic algorithm. In this section we briefly discuss the important
one-dimensional Harmonic algorithm [25]. In the next sections we adapt it to the
multidimensional cases using our novel techniques.

The fundamental idea of these algorithms is to first classify items by size, and
then pack an item according to its class (as opposed to letting the exact size influence
packing decisions).

For the classification of items, we need to partition the interval (0, 1] into subin-
tervals. The standard Harmonic algorithm uses M − 1 subintervals of the form
(1/(i + 1), 1/i] for i = 1, . . . ,M − 1 and one final subinterval (0, 1/M ]. Each bin will
contain only items from one subinterval (type). Items in subinterval i are packed i
per bin for i = 1, . . . ,M − 1 and the items in interval M are packed in bins using
Next Fit (i.e., a greedy algorithm that opens a new active bin whenever an item
does not fit into the current active bin and never uses the previous bins).

2. Packing hypercubes. In this section we define the algorithm for hypercubes
denoted by algε. In the next section we extend the algorithm to deal with hyperboxes.
Let the size of hypercube h, s(h) be the length of each side of the hypercube.

The algorithm has a parameter ε > 0. Let M ≥ 10 be an integer parameter such
that M ≥ 1/(1 − (1 − ε)1/(d+1)) − 1. We distinguish between “small” hypercubes (of
size smaller or equal to 1/M) and “big” hypercubes (of size larger than 1/M). The
packing algorithm will treat them in different ways.

All large hypercubes are packed using a multidimensional version of Harmonic [25].
The hypercubes are assigned a type according to their size: type i items have a size in
the interval (1/(i+1), 1/i] for i = 1, . . . ,M − 1. The bins that are used to pack items
of these types all contain items of only one type. We use the following algorithm to
pack them. A bin is called active if it can still receive items, otherwise it is closed.
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Algorithm AssignLarge(i). At all times, there is at most one active bin for
each type. Each bin is partitioned into id hypercubes (sub-bins) of size 1/i each (the
sub-bins create a grid of i strips in each dimension). Each such sub-bin can contain
exactly one item of type i. On arrival of a type i item it is assigned to a free sub-bin
(and placed anywhere inside this sub-bin). If all sub-bins are taken, the previous
active bin is closed, a new active bin is opened and partitioned into sub-bins.

The small hypercubes are also assigned types depending on their size, but in a
different way. Consider an item h of size s(h) ≤ 1/M . Let k be the largest nonnegative
integer such that 2ks(h) ≤ 1/M ; clearly 2ks(h) > 1/(2M). Let i be the integer such
that 2ks(h) ∈ (1/(i+ 1), 1/i], i ∈ {M, . . . , 2M − 1}. The item is defined to be of type
i. Each bin that is used to pack small items contains only small items with a given
type i. Note that items of very different sizes may be packed together in one bin. We
now describe the algorithm to pack a new small item of type i for i = M, . . . , 2M − 1.
A sub-bin which received a hypercube is said to be used. A sub-bin which is not used
and not cut into smaller sub-bins is called empty.

Algorithm AssignSmall(i). The algorithm maintains a single active bin. Each
bin may, during its use, be partitioned into sub-bins which are hypercubes of different
sizes of the form 1/(2ji). When an item h of type i arrives we perform the following.
Let k be the integer such that 2ks(h) ∈ (1/(i + 1), 1/i].

1. If there is an empty sub-bin of size 1/(2ki), then the item is simply assigned
there and placed anywhere within the sub-bin.

2. Else, if there is no empty sub-bin of any size 1/(2ji) for j < k inside the
current bin, the bin is closed and a new bin is opened and partitioned into
sub-bins of size 1/i. Then the procedure in step 3 is followed, or step 1 in
case k = 0.

3. Take an empty sub-bin of size 1/(2ji) for a maximum j < k. Partition
it into 2d identical sub-bins (by cutting into two identical pieces, in each
dimension). If the resulting sub-bins are larger than 1/(2ki), take one of
them and partition it in the same way. This is done until sub-bins of size
1/(2ki) are reached. The new item is assigned into one such sub-bin.

Finally, the main algorithm only determines the type of newly arriving items and
assigns them to the appropriate algorithms. The total number of active bins is at
most 2M − 1. In order to perform a competitive analysis, we prove the following
claims.

Claim 1. For a given i ≥ M , consider an active bin of type i. At all times, the
number of empty sub-bins in it of each size except 1/i is at most 2d − 1.

Proof. Note that the number of empty sub-bins of size 1/i decays from id to
zero during the usage of such a bin. Consider a certain possible size r of a sub-bin
in it. When a sub-bin of some size r is created, it is due to a partition of a larger
sub-bin. This means that there were no empty sub-bins of size r before the partition.
Afterwards, there are at most 2d − 1 of them for each size that has been created
during the partitioning (for the smallest size into which the sub-bin is partitioned, 2d

sub-bins created, but one is immediately used).

Claim 2. For a given i ≥ M , when a bin of type i is about to be closed, the total
volume of empty sub-bins in the bin is at most 1/id.

Note that the above claims bound the volume of sub-bins that are not used at
all. There is some waste of volume also due to the fact that each item does not fill its
sub-bin totally. We compute this waste later.
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Proof. For i ≥ M , when a bin of type i is to be closed, there are no empty sub-bins
of size 1/i in it. There are at most 2d − 1 empty sub-bins of each other size by Claim
1. This gives a total unused volume of at most (2d − 1)

∑
k≥1(2

ki)−d = 1/id.
Claim 3. The occupied volume in each closed bin of type i ≥ M is at least 1− ε.
Proof. A hypercube which was assigned into a sub-bin of size 1/(2ki) always has

size of at least 1/(2k(i+1)). Therefore the ratio of occupied space and existing space
in each used sub-bin is at least id/(i+ 1)d. When a bin is closed, the total volume of
used sub-bins is at least 1 − 1/id by Claim 2. Therefore the occupied volume in the
bin is at least id/(i+1)d(1−1/id) = (id−1)/(i+1)d. We use i ≥ M and Md ≥ M +1
to get (id − 1)/(i + 1)d ≥ (Md − 1)/(M + 1)d ≥ ( M

M+1 )d+1 ≥ 1 − ε.
Now we are ready to analyze the performance. We define a weighting function

for algε [33]. Each item p with type 1 ≤ i ≤ M − 1 has weight wε(p) = 1/id. Each
item p′ of higher type has weight wε(p

′) = (s(p))d/(1− ε) which is the volume of the
item divided by (1− ε). We begin by showing that this weighting function is valid for
our algorithm.

Lemma 2.1. For all input sequences σ, costALGε(σ) ≤
∑

h∈σ wε(h) + 2M − 1.

Proof. Each closed bin of type 1 ≤ i ≤ M − 1 contains id items. All sub-bins
are used when the bin is closed, and thus it contains a total weight of 1. Each closed
bin of type M ≤ i ≤ 2M − 1 has an occupied volume of at least 1 − ε by Claim 3,
and therefore the weights of the items in such a bin sum up to at least 1. At most
2M −1 bins are active. Thus the total number of bins used by algε for a given input
sequence σ is upper bounded by the total weight of the items plus 2M − 1.

By Lemma 2.1, for any given ε > 0, the asymptotic performance ratio of our
algorithm can be upper bounded by the maximum amount of weight that can be
packed in a single bin: for a given input sequence σ (with fixed weight w), the offline
algorithm minimizes the number of bins that it needs to pack all items in σ by packing
as much weight as possible in each bin. If it needs k bins, the performance ratio on
this input is w/k, which is also the average weight per offline bin.

Therefore we need to find the worst case offline bin, i.e., an offline bin which is
packed with a maximum amount of weight. However, for the case of cubes, we only
have M+1 different types of items. All large items of type i have the same weight. All
small items have the same ratio of weight to volume. Therefore the exact contents of
a bin are not crucial. In order to define a packed bin, we need only to know how many
items there are of each type, and the volume of the small items. To maximize the
weight we can assume that the large items are as small as possible (without changing
their type), and the rest of the bin is filled with small items.

Formally, we define a pattern as a tuple q = 〈q1, . . . , qM−1〉, where there exists a
feasible packing into a single bin containing qi items of type i for all 1 ≤ i ≤ M − 1.
This generalizes the definition from [31]. The weight of a pattern q is at most

wε(q) =

M−1∑
i=1

qi
id

+
1

1 − ε

(
1 −

M−1∑
i=1

qi
(i + 1)d

)
.(1)

Note that for any given pattern the amounts of items of types M, . . . , 2M − 1 are
unspecified. However, as mentioned above, the weight of such items is always their
volume divided by 1 − ε. Therefore (1) gives an upper bound for the total weight
that can be packed in a single bin for a given pattern q. Summarizing, we have the
following theorem.

Theorem 2.2. The asymptotic performance ratio of algε is upper bounded by
maxq wε(q), where the maximum is taken over all patterns q that are valid for algε.
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In order to use Theorem 2.2, we need the following geometric claim. We imme-
diately formulate it in a general way so that we can also apply it in the next section.

Claim 4. Given a packing of hyperboxes into bins, such that component j of each
hyperbox is bounded in an interval (1/(kj + 1), 1/kj ], where kj ≥ 1 is an integer for

j = 1, . . . , d, then each bin has at most
∏d

j=1 kj hyperboxes packed in it.

Proof. We prove the claim by induction on the dimension. Clearly for d = 1 the
claim holds. To prove the claim for d > 1, the induction hypothesis means that a
hyperplane of dimension d − 1 through the bin which is parallel to one of the sides
(the side which is the projection of the bin on the first d− 1 dimensions) can meet at

most
∏d−1

j=1 kj hyperboxes. Next, take the projection of the hyperboxes and the bin
on the last axis. We get short intervals of length in (1/(kd + 1), 1/kd] (projections of
hypercubes) on a main interval of length 1 (the projection of the bin). As mentioned

above, each point of the main interval can have the projection of at most
∏d−1

j=1 kj
items. Consider the short intervals as an interval graph. The size of the largest clique
is at most

∏d−1
j=1 kj . Therefore, as interval graphs are perfect, we can color the short

intervals using
∏d−1

j=1 kj colors. Note that the number of intervals of each independent
set is at most kd (due to length), and so the total number of intervals is at most∏d

j=1 kj .

Lemma 2.3. Let α = lim infε→0 maxq wε(q), where the maximum is taken over
all patterns q that are valid for algε. Then the asymptotic performance ratio of any
bounded space algorithm is at least α.

Proof. We show that there is no bounded space algorithm with an asymptotic
performance ratio strictly below α. For any ε′ > 0, there exists an ε ∈ (0, ε′) such
that R∞(algε) ≤ (1 + ε′)α. Consider the pattern q for which wε(q) is maximal. We
write wε(q) = (1 + ε′′)α for some ε′′ ∈ [0, ε′].

Note that a pattern does not specify the precise sizes of any of the items in it.
Based on q, we define a set of hypercubes that can be packed together in a single
bin. For each item of type i in q, we take a hypercube of size 1/(i + 1) + δ for some

small δ > 0. Take Vδ = 1−
∑M−1

i=1 qi(1/(i+ 1) + δ)d. We add a large amount of small
hypercubes of total volume Vδ, where the sizes of the small hypercubes are chosen
in such a way that they can all be packed in a single bin together with the large
hypercubes prescribed by q. By the definition of a pattern, such a packing is feasible
for δ sufficiently small.

Define the following input for a bounded space algorithm. Let N be a large
constant. The sequence contains M phases. The last phase contains a volume NVδ

of small hypercubes. Phase i (1 ≤ i ≤ M − 1) contains Nqi hypercubes of size
1/(i+ 1) + δ. After phase i, almost all hypercubes of this phase must be packed into
closed bins (except a constant number of active bins). Each such bin may contain up
to id items, which implies that in each phase i, Nqi/i

d − O(1) bins are closed. The
last phase contributes at least Vδ −O(1) extra bins. The cost of the online algorithm

is
∑M−1

i=1 Nqi/i
d + Vδ − O(M). But the optimal offline cost is simply N . Taking

δ = 1/N and letting N grow without bound, N becomes much larger than M and the
asymptotic performance ratio of any bounded space online algorithm is lower bounded
by

∑M−1
i=1 qi/i

d + V0. Note that the weight of this set of hypercubes according to our

definition of weights tends to
∑M−1

i=1 qi/i
d +V0/(1− ε) = wε(q) = (1 + ε′′)α as δ → 0.

Therefore
∑M−1

i=1 qi/i
d + V0 ≥ (1 − ε)(1 + ε′′)α ≥ (1 − ε′)α.

Lemma 2.3 implies that our algorithm is the best possible bounded space al-
gorithm. More precisely, for every ε′ > 0, there exists an ε ∈ (0, ε′) such that
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R∞(algε) ≤ (1 + ε′)α, and no bounded space algorithm has an asymptotic perfor-
mance ratio below (1 − ε′)α. This also implies that our weighting function cannot
be improved and determines the asymptotic performance ratio exactly. However, we
have no general formula for this ratio. We do have the following bounds.

Theorem 2.4. There exists a value of M such that the asymptotic performance
ratio of algε is O(d/ log d). Any bounded space algorithm (in particular algε) has
an asymptotic performance ratio of Ω(log d).

Proof. We first show the upper bound. Take M = 2d/ log d. The occupied
area in bins of small types is at least ( M

M+1 )d+1 by the proof of Claim 3. This

is greater than (M+1
M )−d = (1 + 1/M)−d = (1 + (log d)/(2d))−d, which tends to

e−(log d)/2 = (elog d)−1/2 = 1/
√
d for d → ∞.

Suppose the input is I. Denote by Ii the subsequence of items of type i (i =
1, . . . ,M), where we consider all the small types as a single type. Then we have
alg(Ii) = opt(Ii) ≤ opt(I) for i = 1, . . . ,M−1, since if items of only one type arrive,
our algorithm packs them perfectly. Moreover, alg(IM ) = O(

√
d)·opt(IM ) = O(

√
d)·

opt(I) for i = M . Thus alg(I) =
∑M

i=1 alg(Ii) ≤ (M −1)opt(I)+O(
√
d)opt(I) =

O(d/ log d)opt(I).

We now prove the lower bound. Consider the following lower bound construction.
(This lower bound can also be shown using the weighting function.) We use �log d�
phases. In phase i, N((2i − 1)d − (2i − 2)d) items of size 2−i(1 + δ) arrive, where
δ < 2−	log d
 ≤ 1/d. It is possible to place all these items in just N bins by using
the following packing scheme. Each bin is packed identically, so we just describe the
packing of a single bin. The first item is placed in a corner of the bin. We assign
coordinates to the bin so that this corner is the origin and all positive axes are along
edges of the bin. (The size of the bin in each dimension is 1.)

Consider any coordinate axis. We reserve the space between (1−21−i)(1+δ) and
(1−2−i)(1+ δ) for items of phase i. Note that this is exactly the size of such an item.
By doing this along every axis, we can place all (2i − 1)d − (2i − 2)d items of phase i.
(There would be room for (2i−1)d items if we used all the space until (1−2−i)(1+δ)
along each axis; we lose (2i − 2)d items because the space until (1 − 21−i)(1 + δ) is
occupied.)

The minimum number of bins that any bounded space online algorithm needs to

place the items of phase i is N((2i−1)d− (2i−2)d)/(2i−1)d = N(1− ( 2i−2
2i−1 )d). Note

that the contribution of each phase i to the total number of bins required to pack all
items is strictly decreasing in i. Consider the contribution of the last phase, which is
phase �log d�. Since �log d� ≤ 1+log d, it is greater than N(1−( 2d−2

2d−1 )d) = N(1−(1−
1

2d−1 )d) ≥ N(1 − e−1/2) > 0.39N for all d ≥ 2. Thus all �log d� terms all contribute
at least 0.39N , and the total number of bins required is at least 0.39N(�log d�).
This implies a lower bound of Ω(log d) on the asymptotic performance ratio of this
problem.

In [14], we give specific upper and lower bounds for dimensions 2, . . . , 7.

3. Packing hyperboxes. Next, we describe how to extend the algorithm for
hypercubes to handle hyperboxes instead of hypercubes. This algorithm also uses the
parameter ε. The value of M as a function of ε is picked so that M ≥ 1/(1 − (1 −
ε)1/(d+2)) − 1. Similar to the previous algorithm, the hyperboxes are classified into
types. An arriving hyperbox h of dimensions (h1, h2, . . . , hd) is classified as one of
(2M − 1)d types depending on its components: a type of a hyperbox is the vector of
the types of its components.
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There are 2M − 1 types of components. A component larger than 1/M has type
i if 1/(i + 1) < hi ≤ 1/i, and is called large. A component smaller than 1/M has
type i, where M ≤ i ≤ 2M − 1, if there exists a nonnegative integer fi such that
1/(i + 1) < 2fihi ≤ 1/i. Such components are called small.

Each of the (2M−1)d types is packed separately and independently of the others.
The algorithm keeps one active bin for each type (s1, . . . , sd). When such a bin is

opened, it is split into
∏d

i=1 si identical sub-bins of dimensions (1/s1, . . . , 1/sd). On
arrival of a hyperbox h, after classification into a type, a sub-bin has to be found for
it. If there is no sub-bin in the current bin that is larger than h in every dimension,
we close the bin and open a new one. Otherwise, we take an empty sub-bin that has
minimum volume among all sub-bins that can contain h.

Now consider the components of h one by one. If the ith component is large, the
sub-bin has the correct size in this dimension: its size is 1/si whereas the component
is in (1/(si + 1), 1/si].

If the ith component is small, the size of the sub-bin in the ith dimension may be
too large. Suppose its size is 1/(2f

′
si) whereas the hyperbox has size ∈ (1/(2f (si +

1)), 1/(2fsi)] in this dimension for some f > f ′. In this case, we divide the sub-bin
into two equal parts by cutting halfway (across the ith dimension). If the new sub-
bins have the proper size, take one of the two smallest sub-bins that were created,
and continue with the next component. Otherwise, take one of the new sub-bins and
cut it in half again, repeating until the size of a created sub-bin is 1/(2fsi).

Thus we ensure that the sub-bin that we use to pack the item h has the proper
size in every dimension. We then place this item anywhere inside the sub-bin.

We now generalize the proofs from the previous section for this algorithm.
Claim 5. Consider a type (s1, . . . , sd), and its active bin. For every vector

(f1, . . . , fd) = 0 of nonnegative integers such that fi = 0 for each large component i,
there is at most one empty sub-bin of size (1/(2f1s1), . . . , 1/(2

fdsd)).
Proof. Note that the number of sub-bins of size (1/s1, . . . , 1/sd), is initialized to

be
∏d

i=1 si, and decays until it reaches the value zero. The cutting process does not
create more than a single empty sub-bin of each size. This is true for all the sub-bins
created except for the smallest size that is created in any given process. For that size
we create two identical sub-bins. However, one of them is filled right away.

Furthermore, no sub-bins of existing sizes are created due to the choice of the
initial sub-bin. The initial sub-bin is chosen to be of minimum volume among the
ones that can contain the item, and hence all the created sub-bins (all of which can
contain the item) are of smaller volume than any other existing sub-bin that can
contain the item.

Claim 6. The occupied volume in each closed bin of type (s1, . . . , sd) is at least

(1 − ε)
∏
i∈L

si/(si + 1),

where L is the set of large components in this type.
Proof. To bound the occupied volume in closed bins, note that a sub-bin which

was assigned an item is full by a fraction of at least

d∏
i=1

si
si + 1

≥
(

M

M + 1

)d−|L| ∏
i∈L

si
si + 1

.

Considering sub-bins that were empty when the bin was closed, by Claim 5 there
may be one empty sub-bin of each size (1/(2f1s1), . . . , 1/(2

fdsd)), with the restrictions
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that fi is a nonnegative integer for i = 1, . . . , d, fi = 0 for each large component i,
and there exists some i ∈ {1, . . . , d} such that fi = 0.

If there are no small components, there can be no empty sub-bins because large
components never cause splits into sub-bins, so all sub-bins are used when the bin is
closed. This gives a bound of

∏
i∈L si/(si + 1).

If there is only one small component, the total volume of all empty sub-bins
that can exist is 1/(s1 · · · sd) · ( 1

2 + 1
4 + · · ·) ≤ 1/(s1 · · · sd) ≤ 1/M , since one of the

components is small (type is at least M) and all other components have types of
at least 1. The occupied volume is at least (1 − 1/M) · M

M+1

∏
i∈L(si/(si + 1)) ≥

( M
M+1 )d+2

∏
i∈L(si/(si + 1)). This holds for any d ≥ 2 and M ≥ 2.

If there are r ≥ 2 small components, the total volume of empty sub-bins is at
most (2r − 1)/(s1s2 · · · sd) ≤ (2r − 1)/Mr ≤ 2r/Mr. (We get the factor 2r − 1 by
enumerating over all possible choices of the values fi.) We get that the fraction of
each bin that is filled is at least(

1 − 2r

Mr

)(
M

M + 1

)r ∏
i∈L

si
si + 1

=
Mr − 2r

(M + 1)r

∏
i∈L

si
si + 1

≥
(

M

M + 1

)r+2 ∏
i∈L

si
si + 1

≥
(

M

M + 1

)d+2 ∏
i∈L

si
si + 1

.

The first inequality holds for Mr − 2r ≥ Mr+2/(M + 1)2, which holds for any r ≥ 2
and M ≥ 4.

Using ( M
M+1 )d+2 ≥ 1 − ε we get Claim 6.

We now define a weighting function for our algorithm. The weight of a hyperbox
p with components (h1, . . . , hd) and type (s1, . . . , sd) is defined as

wε(p) =
1

1 − ε

∏
i/∈L

hi

∏
i∈L

1

si
,

where L is the set of large components in this type.

Lemma 3.1. For all input sequences σ, costalg(σ) ≤
∑

h∈σ wε(h) + O(1).

Proof. In order to prove the claim, it is sufficient to show that each closed bin
contains items of total weight of at least 1. Consider a bin filled with hyperboxes
with type (s1, . . . , sd). It is sufficient to consider the subsequence σ of the input that
contains only items of this type, since all types are packed independently. We build
an input σ′ for which both the behavior of the algorithm and the weights are the
same as for σ, and show that the claim holds for σ′. Let δ < 1/M3 be a very small
constant.

For a hyperbox h ∈ σ with components (h1, . . . , hd) and type (s1, . . . , sd), let
h′ = (h′

1, . . . , h′
d) ∈ σ′ be defined as follows. For i /∈ L, h′

i = hi. For i ∈ L,
h′
i = 1/(si + 1) + δ < 1/si. As h and h′ have the same type, they require a sub-bin of

the same size in all dimensions. Therefore the algorithm packs σ′ in the same way as
it packs σ. Moreover, according to the definition of weight above, h and h′ have the
same weight.

Let v(h) denote the volume of an item h. For h ∈ σ, we compute the ratio of
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weight and volume of the item h′. We have

wε(h
′)

v(h′)
=

1

1 − ε

∏
i/∈L

h′
i

∏
i∈L

1

si

/
d∏

i=1

h′
i

=
1

1 − ε

∏
i∈L

1

sih′
i

>
1

1 − ε

∏
i∈L

si + 1

si + M2δ
.

As δ tends to zero, this bound approaches the inverse of the number in Claim 6. This
means that the total weight of items in a closed bin is no smaller than 1.

Just like in section 2, Lemma 3.1 implies that the asymptotic worst case ratio
is upper bounded by the maximum amount of weight that can be packed in a single
bin. After the following definition, we prove a technical lemma which implies that
this weighting function is also “optimal” in that it determines the true asymptotic
performance ratio of our algorithm.

Definition 3.2. The pseudovolume of a hyperbox h = (h1, . . . , hd) is defined as∏
i/∈L hi, where L is the set of large components of h.

Suppose that for a given set of hyperboxes X, we can partition the dimensions
into two sets, S and T , such that for each dimension j in S, we have that the jth
components of all hyperboxes in X are bounded in an interval (1/(kj + 1), 1/kj ].
There are no restrictions on the dimensions in T . (Thus such a partition can always
be found by taking S = ∅.)

For a hyperbox h ∈ X, define the generalized pseudovolume of the components
in T by ṽ(h, T ) =

∏
j∈T hj , where hj is the jth component of h. Define the total

generalized pseudovolume of all hyperboxes in a set X by ṽ(X,T ) =
∑

h∈X ṽ(h, T ).
Claim 7. For a given set X of hyperboxes, for sufficiently large N , any packing

of X into bins requires at least ṽ(X,T )(1− 1
N )|T |/

∏
i∈S ki bins, where S and T form

a partitioning of the dimensions as described above.
Proof. We prove the claim by induction on the number of dimensions in T . For

|T | = 0, we find that the total generalized pseudovolume of X is simply the number
of hyperboxes in X (since the empty product is 1) and thus the claim is true using
Claim 4.

Assume the claim is true for |T | = 0, . . . , r − 1. Suppose |S| = d − r < d. Take
any dimension i ∈ T . We replace each hyperbox h, with component hi in dimension i,
by �N2hi� hyperboxes that have 1

N2 as their ith component, and are identical to h in
all other components. Here N is taken sufficiently large, such that 1

N < hi. Clearly,
the new input X ′ is no harder to pack, as we split each item into parts whose sum
is smaller than or equal to the original items. The total generalized pseudovolume of
the hypercubes in X ′ is at most a factor of 1− 1

N2hi
≥ 1− 1

N smaller than that of X.

So if we write T ′ = T\{i}, we have ṽ(X ′, T ′) · 1
N2 ≥ ṽ(X,T )(1− 1

N ). By induction, it
takes at least

ṽ(X ′, T ′) ·
(

1 − 1

N

)r−1

/
∏

j∈S∪{i}
kj

bins to pack the modified input X ′. Using that ki = N2, this is ṽ(X,T ) · (1 −
1
N )r/

∏
j∈S kj bins.

Letting γ = 1− (1− 1
N )d, we get that the required number is at least ṽ(X,T )(1−

γ)/
∏

j∈S kj bins, where γ → 0 as N → ∞. In the remainder, we will take S to be
the dimensions where the components of the hyperboxes in X are large, and T the
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dimensions where they are small. Note that this choice of S satisfies the constraints
on S above, and that this reduces the generalized pseudovolume to the (normal)
pseudovolume defined before. We are ready to prove the following lemma.

Lemma 3.3. Let ε > 0. Suppose the maximum amount of weight that can be
packed in a single bin is αε. Then our algorithm has an asymptotic performance ratio
of αε, and the asymptotic performance ratio of any bounded space algorithm is at least
(1 − ε)αε.

Proof. The first statement follows from Lemma 3.1. We show a lower bound of
value which tends to αε on the asymptotic performance ratio of any bounded space
algorithm.

Consider a packed bin for which the sum of weights is αε. Partition the hyperboxes
of this bin into Md types in the following way. Each component is either of a type in
{1, . . . ,M − 1} or small (i.e., of a type i, i ≤ M). Let N ′ be a large constant. The
sequence consists of phases. Each phase consists of one item from the packed bin,
repeated N ′ times. The optimal offline cost is therefore N ′. Using Claim 7 we see
that the amount of bins needed to pack a phase which consists of an item p repeated
N ′ times is simply N ′wε(p)(1 − γ)(1 − ε). Therefore the cost of an online algorithm
is at least N ′αε(1− γ)(1− ε)−O(1), which makes the asymptotic performance ratio
arbitrarily close to (1 − ε)αε.

Furthermore, we can determine the asymptotic performance ratio of our algorithm
for hyperbox packing. Comparing to the unbounded space algorithm in [11] we can
see that all the weights we defined are smaller than or equal to the weights used in
[11]. So the asymptotic performance ratio is not higher. However, it can also not be
lower due to the general lower bound for bounded space algorithms. This means that
both algorithms have the same asymptotic performance ratio, namely (Π∞)d, where
Π∞ ≈ 1.691 is the asymptotic performance ratio of the algorithm Harmonic [25].

4. Variable-sized packing. In this section we consider the problem of multi-
dimensional packing where the bins used can have different sizes. We assume that all
bins are hypercubes, with sides α1 < α2 < · · · < αm = 1. In fact our algorithm is
more general and works for the case where the bins are hyperboxes with dimensions
αij (i = 1, . . . ,m, j = 1, . . . , d). We present the special case of bins that are hyper-
cubes in this paper in order to avoid an overburdened notation and messy technical
details.

The main structure of the algorithm is identical to the one in section 3. The main
problem in adapting that algorithm to the current problem is selecting the right bin
size to pack the items in. In the one-dimensional variable-sized bin packing problem,
it is easy to see which bin will accommodate any given item the best; here it is not so
obvious how to select the right bin size, since in one dimension a bin of a certain size
might seem best whereas for other dimensions, other bins seem more appropriate.

We begin by defining types for hyperboxes based on their components and the
available bin sizes. Once again we use a parameter ε. The value of M as a function
of ε is again picked so that M ≥ 1/(1 − (1 − ε)1/(d+2)) − 1. An arriving hyperbox
h of dimensions (h1, h2, . . . , hd) is classified as one of at most (2mM/α1 − 1)d types
depending on its components: a type of a hyperbox is the vector of the types of its
components. We define

Ti =

{
αi

j

∣∣∣∣ j ∈ N,
αi

j
≥ α1

2M

}
, T =

m⋃
i=1

Ti.

Let the members of T be 1 = t1 > t2 > · · · > tq′ = α1/M > · · · > tq = α1/(2M).
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The interval Ij is defined to be (tj+1, tj ] for j = 1, . . . , q′. Note that these intervals
are disjoint and they cover (α1/M, 1].

A component larger than α1/M has type i if hi ∈ Ii, and is called large. A
component smaller than α1/M has type i, where q′ ≤ i ≤ q− 1, if there exists a non-
negative integer fi such that ti+1 < 2fihi ≤ ti. Such components are called small.
Thus in total there are q − 1 ≤ 2mM/α1 − 1 component types.

Bin selection. We now describe how to select a bin for a given type. Intuitively,
the size of this bin is chosen in order to maximize the number of items packed relative
to the area used. This is done as follows.

For a given component type si and bin size αj , write F (si, αj) = max{k | αj/k ≥
tsi}. Thus for a large component, F (si, αj) is the number of times that a component
of type si fits in an interval of length αj . This number is uniquely defined due to
the definition of the numbers ti. Basically, the general classification into types is too
fine for any particular bin size, and we use F (si, αj) to get a less refined classification
which only considers the points ti of the form αj/k.

Denote by L the set of components in type s = (s1, . . . , sd) that are large. If
L = ∅, we use a bin of size 1 for this type. Otherwise, we place this type in a bin of
any size αj which maximizes1

∏
i∈L

F (si, αj)

αj
.(2)

Thus we do not take small components into account in this formula. Note that for a
small component, F (si, αj) is not necessarily the same as the number of times that
such a component fits into any interval of length αj . However, it is at least M for any
small component.

When such a bin is opened, it is split into
∏d

i=1 F (si, αj) identical sub-bins of
dimensions (αj/F (s1, αj), . . . , αj/F (sd, αj)). These bins are then further sub-divided
into sub-bins in order to place hyperboxes in “well-fitting” sub-bins in the manner
which is described in section 3.

Similar to in section 3, the following claim can now be shown.
Claim 8. The occupied volume in each closed bin of type s = (s1, . . . , sd) is at

least

Vs,j = (1 − ε)αd
j

∏
i∈L

F (si, αj)

F (si, αj) + 1
,

where L is the set of large components in this type and αj is the bin size used to pack
this type.

We now define a weighting function for our algorithm. The weight of a hyperbox
h with components (h1, . . . , hd) and type s = (s1, . . . , sd) is defined as

wε(h) =
1

1 − ε

(∏
i/∈L

hi

)(∏
i∈L

αj

F (si, αj)

)
,

where L is the set of large components in this type and αj is the size of bins used to
pack this type.

1For the case that the bins are hyperboxes instead of hypercubes, we get the formula∏
i∈L

(F (si, αij)/αij), and similar changes throughout the text.
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In order to prove that this weighting function works (gives a valid upper bound
for the cost of our algorithm), we will want to modify components si to the smallest
possible component such that F (si, αj) does not change. (Basically, a component will
be rounded to αj/(F (si, αj) + 1) plus a small constant.) However, with variable-sized
bins, when we modify components in this way, the algorithm might decide to pack the
new hyperbox differently. (Remember that F (si, αj) is a “less refined” classification
which does not take other bin sizes than αj into account.) To circumvent this technical
difficulty, we will show first that as long as the algorithm keeps using the same bin
size for a given item, the volume guarantee still holds.

For a given type s = (s1, . . . , sd) and the corresponding set L and bin size αj ,
define an extended type Ext(s1, . . . , sd) as follows: an item h is of extended type
Ext(s1, . . . , sd) if each large component hi ∈ (

αj

F (si,αj)+1 ,
αj

F (si,αj)
] and each small

component hi is of type si.
Corollary 4.1. Suppose items of extended type Ext(s1, . . . , sd) are packed into

bins of size αj. Then the occupied volume in each closed bin is at least Vs,j.
Proof. In the proof of Claim 8, we only use that each large component hi is

contained in the interval (
αj

F (si,αj)+1 ,
αj

F (si,αj)
]. Thus the proof also works for extended

types.
Lemma 4.2. For all input sequences σ, costalg(σ) ≤

∑
h∈σ wε(h) + O(1).

Proof. In order to prove the claim, it is sufficient to show that each closed bin
of size αj contains items of total weight of at least αd

j . Consider a bin of this size
filled with hyperboxes of type s = (s1, . . . , sd). It is sufficient to consider the subse-
quence σ of the input that contains only items of this type, since all types are packed
independently. This subsequence only uses bins of size αj so we may assume that no
other sizes of bins are given. We build an input σ′ for which both the behavior of the
algorithm and the weights are the same as for σ and show the claim holds for σ′. Let
δ < 1/M3 be a very small constant.

For a hyperbox h ∈ σ with components (h1, . . . , hd) and type s = (s1, . . . , sd),
let h′ = (h′

1, . . . , h
′
d) ∈ σ′ be defined as follows. For i /∈ L, h′

i = hi. For i ∈ L,
h′
i = αj/(F (si, αj) + 1) + δ < αj/F (si, αj).

Note that h′ is of extended type Ext(s1, . . . , sd). Since only one bin size is given,
the algorithm packs σ′ in the same way as it packs σ. Moreover, according to the
definition of weight above, h and h′ have the same weight.

Let v(h) denote the volume of an item h. For h ∈ σ, we compute the ratio of
weight and volume of the item h′. We have

wε(h
′)

v(h′)
=

wε(h)

v(h′)
=

1

1 − ε

(∏
i/∈L

h′
i

)(∏
i∈L

αj

F (si, αj)

)/
d∏

i=1

h′
i

=
1

1 − ε

∏
i∈L

αj

F (si, αj)h′
i

>
1

1 − ε

∏
i∈L

F (si, αj) + 1

F (si, αj) + M
αj

α1
δ
.

Here we have used in the last step that a component with a large type fits less than
M times in a (one-dimensional) bin of size α1, and therefore less than M

αj

α1
times in

a bin of size αj ≥ α1. As δ tends to zero, this bound approaches αd
j/Vs,j . We find

wε(h) ≥ αd
j

v(h′)

Vs,j
for all h ∈ σ.

Then Corollary 4.1 implies that the total weight of items in a closed bin of size αj is
no smaller than αd

j , which is the cost of such a bin.
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Suppose the optimal solution for a given input sequence σ uses nj bins of size αj .
Denote the ith bin of size αj by Bi,j . Then∑

h∈σ wε(h)∑m
j=1 α

d
jnj

=

∑m
j=1

∑nj

i=1

∑
h∈Bi,j

wε(h)∑m
j=1 α

d
jnj

=

∑m
j=1

∑nj

i=1

∑
h∈Bi,j

wε(h)∑m
j=1

∑nj

i=1 α
d
j

.

This implies that the asymptotic worst case ratio is upper bounded by

max
j

max
Xj

∑
h∈Xj

wε(h)/αd
j ,(3)

where the second maximum is taken over all sets Xj that can be packed in a bin
of size αj . Similar to section 3, it can now be shown that this weighting function
is also “optimal” in that it determines the true asymptotic performance ratio of our
algorithm.

In particular, it can be shown that packing a set of hyperboxes X that have the
same type vectors of large and small dimensions takes at least

∑
h∈X

∏
i/∈L

hi

αj

/∏
i∈L

F (si, αj)

bins of size αj , where hi is the ith component of hyperbox h, si is the type of the
ith component, and L is the set of large components (for all the hyperboxes in X).
Since the cost of such a bin is αd

j , this means that the total cost to pack N ′ copies of
some item h is at least N ′wε(h)(1 − ε) when bins of this size are used. However, it
is clear that using bins of another size αk does not help: packing N ′ copies of h into
such bins would give a total cost of

N ′

(∏
i/∈L

hi

)(∏
i∈L

αk

F (si, αk)

)
.

Since αj was chosen to maximize
∏

i∈L(F (si, αj)/αj), this expression cannot be less
than N ′wε(h)(1− ε). More precisely, any bins that are not of size αj can be replaced
by the appropriate number of bins of size αj without increasing the total cost by more
than 1 (it can increase by 1 due to rounding).

This implies that our algorithm is optimal among online bounded space algo-
rithms.

5. Resource augmented packing. The resource augmented problem is now
relatively simple to solve. In this case, the online algorithm has bins at its disposal
that are hypercubes of dimensions b1 × b2 × · · · × bd. We can use the algorithm from
section 3 with the following modification: the types for dimension j are not based on
intervals of the form (1/(i+ 1), 1/i] but rather intervals of the form (bj/(i+ 1), bj/i].

Then, to pack items of type s = (s1, . . . , sd), a bin is split into
∏d

i=1 si identical
sub-bins of dimensions (b1/s1, . . . , bd/sd), and then subdivided further as necessary.

We now find that each closed bin of type s = (s1, . . . , sd) is full by at least

(1 − ε)B
∏
i∈L

si
si + 1

,

where L is the set of large components in this type, and B =
∏d

j=1 bi is the volume
of the bins of the online algorithm.
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We now define the weight of a hyperbox h with components (h1, . . . , hd) and type
s = (s1, . . . , sd) as

wε(h) =
1

1 − ε

(∏
i/∈L

hi

bi

)(∏
i∈L

1

si

)
,

where L is the set of large components in this type.
This can be shown to be valid similarly as before, and it can also be shown that

items cannot be packed better. However, in this case we are additionally able to give
explicit bounds for the asymptotic performance ratio.

5.1. The asymptotic performance ratio. Csirik and Woeginger [13] showed
the following for the one-dimensional case.

For a given bin size b, define an infinite sequence T (b) = {t1, t2, . . .} of positive
integers as follows:

t1 = �1 + b� and r1 =
1

b
− 1

t1
,

and for i = 1, 2, . . . , let

ti+1 =

⌊
1 +

1

ri

⌋
and ri+1 = ri −

1

ti+1
.

Define

ρ(b) =

∞∑
i=1

1

ti − 1
.

Lemma 5.1. For every bin size b ≥ 1, there exist online bounded space bin packing
algorithms with worst case performance arbitrarily close to ρ(b). For every bin size
b ≥ 1, the bound ρ(b) cannot be beaten by any online bounded space bin packing
algorithm.

The following lemma was proved in Csirik and Van Vliet [11] for a specific weight-
ing function which is independent of the dimension, and is similar to a result of Li
and Cheng [26]. However, the proof holds for any positive one-dimensional weight-
ing function w. We extend it for the case where the weighting function depends on
the dimension. For a one-dimensional weighting function wj and an input sequence
σ, define wj(σ) =

∑
h∈σ wj(h). Furthermore, define Wj = supσ wj(σ), where the

supremum is taken over all sequences that can be packed into a one-dimensional bin.
Lemma 5.2. Let σ be a list of d-dimensional rectangles, and let Q be a packing

which packs these rectangles into a d-dimensional unit cube. Let wj (j = 1, . . . , d)
be arbitrary one-dimensional weighting functions. For each h ∈ σ, we define a new
hyperbox h′ as follows: sj(h

′) = wj(sj(h)) for 1 ≤ j ≤ d. Denote the resulting list of
hyperboxes by σ′. Then, there exists a packing Q′ which packs σ′ into a cube of size
(W1, . . . ,Wd).

Proof. We use a construction analogous to the one in [11]. We transform the
packing Q = Q0 of σ into a packing Qd of σ′ in a cube of the desired dimensions.
This is done in d steps, one for each dimension. Denote the coordinates of item h in
packing Qi by (xi

1(h), . . . , xi
d(h)), and its dimensions by (si1(h), . . . , sid(h)).

In step i, the coordinates as well as the sizes in dimension i are adjusted as follows.
First, we adjust the sizes and set sii(h) = wi(si(h)) for every item h, leaving other
dimensions unchanged.
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To adjust coordinates, for each item h in packing Qi−1 we find the “left-touching”
items, which is the set of items g which overlap with h in d − 1 dimensions, and for
which xi−1

i (g) + si−1
i (g) = xi−1

i (h). We may assume that for each item h, there is
either a left-touching item or xi−1

i (h) = 0.
Then, for each item h that has no left-touching items, we set xi

i(h) = 0. For
all other items h, starting with the ones with smallest i-coordinate, we make the
i-coordinate equal to max(xi

i(g) + sii(g)), where the maximum is taken over the left-
touching items of h in packing Si−1. Note that we use the new coordinates and sizes
of left-touching items in this construction and that this creates a packing without
overlap.

If in any step i the items need more than Wi room, this implies a chain of left-
touching items with total size less than 1 but total weight more than Wi. From this
we can find a set of one-dimensional items that fit in a bin but have total weight more
than Wi (using weighting function wi), which is a contradiction.

As in [11], this implies immediately that the total weight that can be packed into

a unit-sized bin is upper bounded by
∏d

i=1 Wi, which in the present case is
∏d

i=1 ρ(bi).
Moreover, by extending the lower bound from [13] to d dimensions exactly as in [11],
it can be seen that the asymptotic performance ratio of any online bounded space bin
packing algorithm can also not be lower than

∏d
i=1 ρ(bi).

6. Conclusions. An open question left by this paper is what the asymptotic
performance ratio of the bounded space hypercube packing problem is. We can show
that it is Ω(log d), and we conjecture that it is Θ(log d). Giving a explicit expression
for the competitive ratio in variable-sized packing (as a function of the bin sizes) would
be harder. Already in [30] where an optimal one-dimensional bounded space algorithm
was given for the variable-sized problem, its ratio is unknown. It is interesting to find
out whether in the multidimensional case the worst case occurs when only unit sized
bins are available.
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STRICTLY NONBLOCKING WDM CROSS-CONNECTS∗

APRIL RASALA† AND GORDON WILFONG‡

Abstract. Using wavelength division multiplexing (WDM) technology, an optical network can
route multiple signals simultaneously along a single optical fiber by encoding each signal on its own
wavelength. If the network contains places where multiple fibers connect together and signals are
allowed to be moved from any of the incoming fibers to any of the outgoing fibers, then the network
is said to contain cross-connects. More precisely, a k1 × k2 WDM cross-connect has k1 input fibers
and k2 output fibers. Each of the k1 input fibers supports the same n1 input wavelengths and
each of the k2 output fibers supports the same n2 output wavelengths. Since a signal on input
wavelength λ can be routed from its input fiber to an output fiber such that it arrives on the output
fiber using wavelength γ, where λ �= γ, the cross-connect must be capable of performing wavelength
conversion. Along any fiber in the cross-connect a device called a wavelength interchanger can be
inserted to perform wavelength conversion. In other words if the path of a signal from an input
fiber to an output fiber passes through a wavelength interchanger, then the wavelength of the signal
can be changed to any wavelength that is not already in use along the fiber leaving the wavelength
interchanger. Given the high cost of wavelength interchangers, the overall cost of a k1 × k2 WDM
cross-connect is minimized by reducing the number of wavelength interchangers in the cross-connect.
However, a desirable property for a cross-connect C is for C to always be able to provide a route (and
wavelength conversion) for any valid demand from any pair of input and output fibers regardless of
the routes of other demands currently routed in C. If C has this capability then it is said to be
strictly nonblocking.

For most of this paper we consider a demand to be a request for a connection from an input fiber
to an output fiber such that the connection starts on a specified input wavelength and leaves the
cross-connect on a second specified wavelength. Using this demand model, we consider cross-connects
for which k1 is not necessarily equal to k2 and the number n1 of supported input wavelengths can
differ from the number n2 of supported output wavelengths. Without loss of generality we assume
that k1 ≤ k2 and present a family of strictly nonblocking k1 × k2 WDM cross-connects that use
min(k1 + k2 − 1, n1k1) wavelength interchangers. For the case when k1 = k2 = k and n1 = n2, we
prove that this is optimal. For cross-connects where n1 is not necessarily equal to n2, we show that
if there is at most one wavelength interchanger on any path from an input fiber to an output fiber,
min(k1 + k2 − 1, n1k1) wavelength interchangers are optimal. Finally, we consider a more flexible
demand model where k1 = k2 but the input and output wavelengths are not specified as part of the
demand. We show that 2k−1 wavelength interchangers are still necessary for any strictly nonblocking
k × k WDM cross-connect.

Key words. optical networking, cross-connect, wavelength division multiplexing, strictly non-
blocking
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1. Introduction. We present designs of cross-connects for optical networks sup-
porting wavelength division multiplexing. We prove that our designs use only the
minimum number of an expensive device, known as a wavelength interchanger, and
thus are optimal in terms of the cost of the cross-connect.

A fiber in an optical network supporting wavelength division multiplexing (WDM)
can carry multiple signals simultaneously if each signal is encoded on a distinct wave-
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length. In order to fully exploit the benefits of WDM technology, it is useful to be
able to switch a signal from one wavelength to another when the signal switches to a
new fiber. A k1 × k2 WDM cross-connect has k1 input fibers and k2 output fibers
and allows signals from the input fibers to be moved to available wavelengths on the
output fibers. Specifically, a demand on the cross-connect specifies an input fiber, an
input wavelength, an output fiber and an output wavelength. If the input wavelength
is unused on the input fiber and the output wavelength is unused on the output fiber,
then the cross-connect should be able to route the signal from the input fiber to the
output fiber and change the encoding of the signal from the input wavelength to the
output wavelength. A WDM cross-connect must maintain current connections (the
results of previous demands placed on it) and at the same time satisfy new requests
for connections between input fibers and output fibers. A strictly nonblocking cross-
connect C is guaranteed to be able to route any new demand placed on it regardless
of the set of existing connections routed through C.

A cross-connect contains various optical devices and optical fibers. A wavelength
interchanger is an optical device with a single input fiber and a single output fiber.
Any of the signals entering the wavelength interchanger on any of the supported
wavelengths can be changed to any of the supported wavelengths on the fiber leaving
the wavelength interchanger provided those wavelengths are not already in use by
another connection. Given the high cost of wavelength interchangers now and in
the foreseeable future [13], the cost of a strictly nonblocking WDM cross-connect is
dominated by the number of wavelength interchangers required in the design. Thus we
focus our attention on determining the optimal number of wavelength interchangers
needed in any strictly nonblocking k1 × k2 WDM cross-connect and on presenting
a family of strictly nonblocking k1 × k2 WDM cross-connects that use the optimal
number of wavelength interchangers.

The task of optimizing strictly nonblocking WDM cross-connects is simplified by
drawing from work on classical cross-connects. In classical cross-connects, signals do
not share wires and therefore there is no need for wavelength conversion. Of course,
one can view time slots in a time division multiplexing (TDM) network as equivalent
to a WDM network but time slot interchange is an inexpensive operation as opposed
to wavelength interchange in a WDM network. A vast amount of literature exists on
the design of such cross-connects [4, 8, 12, 1, 7]. In particular, work has been done
on the optimization of strictly nonblocking classical cross-connects that guarantee
that a connection can always be made between any input line and any output line
provided neither are already in use. The topology of a strictly nonblocking classical
cross-connect can be used as the topology of a WDM network. In this case we assume
that the WDM network supports n wavelength and does not allow any wavelength
conversion. Since the WDM network has the topology of a classical network and does
not support wavelength conversion, it is conceptually equivalent to n copies, one for
each wavelength, of the classical network. Furthermore, since the WDM network has
the topology of a strictly nonblocking classical cross-connect, any connection on any
wavelength can be completed as long as the requesting input and output fibers do
not already have an existing connection on that wavelength. We refer to a section
of directed fiber and optical devices without wavelength conversion capability as a
fabric.

The designs of strictly nonblocking WDM cross-connects presented in this paper
use the topology of classical strictly nonblocking cross-connects as the basis for fabrics
that connect the input fibers to a set of wavelength interchangers and connect those
wavelength interchangers to the set of output fibers. Such a design is referred to
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as a split cross-connect. For the case where the number of input fibers, k, is equal
to the number of output fibers and the set of input wavelengths is the same as the
set of output wavelengths, we present split cross-connects with 2k − 1 wavelength
interchangers and prove that these designs are optimal. We also consider general
split cross-connects where the number of input fibers, k1, and the number of input
wavelengths, n1, may differ from the number of output fibers, k2, and the number of
output wavelengths, n2. In this case we present designs of strictly nonblocking split
cross-connects that use min(k1 + k2 − 1, n1k1) wavelength interchangers. We show
that this is optimal for the class of split cross-connects. However, we leave as an
open question whether the family of split cross-connects are optimal if the number
of input fibers is not equal to the number of output fibers and the set of supported
input wavelengths differs from the set of supported output wavelengths.

2. Definitions.

2.1. Wavelength division multiplexing. WDM technology allows multiple
signals to be routed along an optical fiber simultaneously by encoding each signal on
its own wavelength. For example, a WDM network might allow each fiber to carry
up to n signals simultaneously by giving each signal its own wavelength out of a set
of n supported wavelengths. Devices crucial to such networks are optical switches.
An optical switch has an arbitrary number of input fibers and output fibers, and any
signal encoded on any wavelength on any of the input fibers can be routed to the same
wavelength on any of the outgoing fibers. If these are the only devices included in an
optical network, then a connection that is originally routed on a particular wavelength,
say λ, must stay on that wavelength for its entire route. Even in simple networks this
can result in congestion of the network even when no single fiber is carrying all n
signals [6, 14]. Therefore it is often desirable to allow the wavelength of a connection
to be changed. A wavelength interchanger is a device that has a single input fiber
and a single output fiber. A wavelength interchanger can change the wavelength of
any subset of the signals entering it provided the wavelengths that it encodes those
signals on are unused on its output fiber; see Figure 1.

input fiber to W output fiber for W

direction of fiberdirection of fiber

wavelength interchanger W

˘1

λ4

λ3

λ2

γ1

γ2

γ3

γ4

Fig. 1. A wavelength interchanger W with four signals passing through it. The signals on input
wavelengths λ1, λ2, λ3, and λ4 are changed to output wavelengths γ1, γ2, γ3, and γ4, respectively.

2.2. WDM cross-connects. In a WDM network, fibers join at various places,
and signals on the incoming fibers can be routed to the outgoing fibers. The part
of the network that allows this routing of signals from some set of incoming fibers
to a set of outgoing fibers is referred to as a WDM cross-connect. A k1 × k2 WDM
cross-connect has k1 input fibers and k2 output fibers. We define I = {I1, . . . , Ik1}
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to be the set of input fibers and O = {O1, . . . , Ok2
} to be the set of output fibers.

The set of n1 wavelengths, {λ1, . . . , λn1}, supported on each of the k1 input fibers is
referred to as the set of input wavelengths and similarly the set of output wavelengths
is the set of n2 wavelengths, {γ1, . . . , γn2} supported on each of the output fibers.
Without loss of generality we assume that k1 ≤ k2 and n1, n2 ≥ 2.

In general, a demand on a WDM cross-connect could be specified in various ways.
For this paper we define a demand d = (Ix, λy, Oz, γw) to be a request for a path and
an assignment of wavelengths along the path from input fiber Ix to output fiber Oz

such that the connection starts on input wavelength λy, changes wavelength only
at a wavelength interchanger, and ends on output wavelength γw. Such a path and
wavelength assignment is called a route. A routing R of D is a collection of routes, one
for each demand d ∈ D, such that no two demands are assigned the same wavelength
along a shared section of fiber. We will show that for some classes of cross-connects,
this demand and route model is equivalent to models in which a demand does not
specify the input and/or the output wavelength and a route is allowed to use any
wavelengths available on the specified input and output fibers. We leave as an open
question whether more flexible demand models allow for improved results for other
types of cross-connects.

Given an existing set of demands, D, we say demand d = (Ix, λy, Oz, γw) is valid
with respect to D if input wavelength λy is unused on input fiber Ix by all demands
in D and output wavelength γw is unused on output fiber Oz by all demands in D.
A route r for d is valid with respect to a routing R of D if the wavelength assigned
to d along each fiber in r is not used by any other connection currently routed on the
fiber according to R.

2.3. Nonblocking properties. Ideally a cross-connect will always be able to
satisfy a valid demand with a valid route. Depending on various assumptions, a
number of different levels of nonblocking have been defined as follows.

• Rearrangeably nonblocking: A cross-connect is rearrangeably nonblocking
if any new valid demand can be assigned a valid route provided that routes
for already existing demands are allowed to be rerouted.

• Wide-sense nonblocking: A cross-connect is wide-sense nonblocking if any
new valid demand can be assigned a route by an algorithm A provided that
all currently routed demands were routed using A.

• Strictly nonblocking: A cross-connect is strictly nonblocking if any new
valid demand can be assigned a route regardless of the routes assigned to any
currently routed demands.

Strictly nonblocking and wide-sense nonblocking cross-connects have many advan-
tages over rearrangeably nonblocking cross-connects. For example, a rearrangeably
nonblocking cross-connect will create a buffering problem when it must interrupt cur-
rently routed connections to reroute them. While both strictly nonblocking and wide-
sense nonblocking cross-connects avoid this buffering problem, a strictly nonblocking
cross-connect is perhaps more robust since it does not depend upon having taken
care to route previously requested demands in order to guarantee a route for any new
demands. This is particularly desirable in practice because often hardware failures
necessitate that some routes are chosen without regard to a particular algorithm. A
wide-sense nonblocking cross-connect might require that all routes are rerouted after
such a hardware failure. In contrast, since a strictly nonblocking cross-connect does
not depend on the cross-connect having routed existed demands carefully, it is capable
of handling situations where the set of existing routes may have been chosen to work
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around a hardware failure without regard for how they utilize the resources inside the
cross-connect. We focus our attention on the design of strictly nonblocking k1 × k2

WDM cross-connects but note that the design of optimal wide-sense nonblocking
cross-connects would also be of interest.

2.4. Topologies of cross-connects.

2.4.1. Split cross-connects. A fabric is defined to be a subnetwork that does
not contain any wavelength interchangers. A k1 × k2 WDM cross-connect is said to
be a split cross-connect if it has k1 input fibers connected to a fabric, F1, and k2 output
fibers connected to a second fabric, F2. Furthermore, the output fibers of F1 are the
input fibers for a set W of wavelength interchangers and the output fibers for the set
W of wavelength interchangers are the input fibers of the fabric F2. Another way to
say this is to say that C is a split cross-connect if every path from an input fiber to
an output fiber through C passes through exactly one wavelength interchanger; see
Figure 2.

{λ1, λ2, . . . ,λn1}

{λ1, λ2, . . . ,λn1}

{λ1, λ2, . . . ,λn1}

{λ1, λ2, . . . ,λn1
}

O1

O2

O3

Ok2

{γ1, γ2, . . . , γn2
}

{γ1, γ2, . . . , γn2}

{γ1, γ2, . . . , γn2}

{γ1, γ2, . . . , γn2}
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w1

w2

w3
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wj

F1

F2

I2

I3

Ik1

I1

Fig. 2. A k1 × k2 WDM split cross-connect with m wavelength interchangers. The set of
k1 input fibers is connected to the m wavelength interchangers with a fabric F1. The set of m
wavelength interchangers is connected to the k2 output fibers with a fabric F2.

The designs for strictly nonblocking cross-connects that we present are all split
cross-connects. We will prove that in the case where the number of input and output
fibers is the same, this is optimal. Note that without loss of generality we will over-
load the definition of split and allow it to also refer to any cross-connect for which
every path p from any input fiber to any output fiber has at most one wavelength
interchanger.

2.4.2. Homogeneous and heterogeneous cross-connects. We consider cross-
connects for two different situations. The first situation involves cross-connects that
have the same number of input fibers as output fibers. In these cross-connects the
same set of input and output wavelengths are supported throughout the cross-connect.
We call such cross-connects homogeneous cross-connects.
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In the second case, the purpose of the cross-connect is to connect a set of fibers
from a given network to a set of fibers from another network. In this case the set
of wavelengths supported on the input fibers may differ from the set of wavelengths
supported on the output fibers. Also the number of input fibers may differ from the
number of output fibers. We call such a cross-connect a heterogeneous cross-connect.

3. Previous results. This work draws both from the literature of classical cross-
connects and from more recent work on WDM cross-connects.

A classical architecture considers the case where each input and output line carries
only one signal at a time. Designs for cross-connects in classical networks have been
well studied [3, 12, 8, 1, 2, 7]. In a classical network the optimization criterion is
the number of edges in the graph representing the topology of the cross-connect. In
contrast, in wavelength interchanging WDM cross-connects the optimality criterion
is the number of wavelength interchangers.

In general the cost of a design of a WDM network is dominated by the number
of wavelength interchangers needed in the network. Thus the problem of optimizing
WDM networks has been studied in a model that assigns a cost of one to any node
in the network where wavelength conversion capability is provided [14, 6].

Other work has focused on the possibility of using less powerful (and therefore
less expensive) wavelength conversion devices. One example would be a device that
was capable of swapping two wavelengths while leaving the others fixed. That work
has considered what effect using such less powerful wavelength interchangers has on
the number of wavelength interchangers needed in total [9].

Recently some work has been done on considering the cost of providing complete
wavelength conversion capability in a WDM cross-connect. For instance, various wave-
length interchanging WDM homogeneous cross-connects with a variety of nonblocking
capabilities have been considered and in particular one design that used k log k wave-
length interchangers was shown to be strictly nonblocking [13]. We will improve upon
this result by presenting a design for a strictly nonblocking cross-connect with 2k− 1
wavelength interchangers.

4. Our contribution. We will consider homogeneous and heterogeneous cross-
connects. We present the design of a strictly nonblocking k1 × k2 WDM cross-connect
that uses k1 + k2 − 1 wavelength interchangers. We also present the design of strictly
nonblocking k1 × k2 WDM cross-connects that use n1k1 wavelength interchangers.
Together these provide a family of strictly nonblocking k1 × k2 WDM cross-connects
that use at most min(k1 + k2 − 1, n1k1) wavelength interchangers.

When considering the optimality of these designs we handle the homogeneous
and heterogeneous cases separately. We start our discussion of the optimal number
of wavelength interchangers in a homogeneous cross-connect by showing that if there
exists a family of optimal nonsplit cross-connects, then there exists a family of split
cross-connects that use the same number of wavelength interchangers. This reduces
the problem to a special case of showing that a heterogeneous k × k WDM split
cross-connect requires 2k − 1 wavelength interchangers. For the heterogeneous case
we consider only split cross-connects and leave as an open question whether there exist
strictly nonblocking nonsplit cross-connects with strictly fewer wavelength interchang-
ers. We present a sequence of demands that requires that any strictly nonblocking
k1 × k2 WDM heterogeneous split cross-connect use at least min(k1 + k2 − 1, n1k1)
wavelength interchangers. These results together show that the family of strictly
nonblocking k1 × k2 WDM cross-connects presented in section 5 are optimal for ho-
mogeneous cross-connects and heterogeneous split cross-connects. Finally, we consider
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more relaxed demand models where the input and output wavelengths are not speci-
fied as part of the demand. We show that even under this model of demands, 2k − 1
wavelength interchangers are necessary and sufficient for homogeneous cross-connects.
Preliminary versions of much of this work were presented in [11, 10].

4.1. Overview. In section 5 we present the design of a family of k1 × k2 WDM
cross-connects. We show that these are strictly nonblocking. For the case of homoge-
neous cross-connects we prove, in section 6, that if there is a family of optimal nonsplit
cross-connects, then there is a family of optimal split cross-connects with the same
number of wavelength interchangers. We then restrict our attention to cross-connects
with split designs. We present a sequence of demands that shows that any homoge-
neous strictly nonblocking k × k WDM cross-connect must have 2k − 1 wavelength
interchangers. We then show that the lower bounds presented hold under demand
models that do not specify the input and output wavelength as part of the demand.
For the heterogeneous case we show, in section 7, that any strictly nonblocking k1 × k2

WDM split cross-connect must have min(k1 + k2 − 1, n1k1) wavelength interchangers.
Finally, in section 8, we consider future work.

5. Designs for a family of strictly nonblocking cross-connects.

5.1. Traditional cross-connects. We start our discussion with a look at tradi-
tional cross-connect designs and how they apply to the design of WDM cross-connects.
In a classical network, a line carried only one channel (wavelength) and therefore no
two signals shared a line. A traditional strictly nonblocking k1 × k2 cross-connect had
k1 input lines and k2 output lines. A demand was a request for a connection from an
input line to an output line. Note that in this setting at most one demand could use
any particular input or output line at a given time. A route for a demand in a classical
cross-connect was a path from the input line to the output line that was edge-disjoint
from any existing route in the cross-connect. Therefore we say that the topology of a
strictly nonblocking classical cross-connect is pathwise strictly nonblocking.

In the WDM setting we require that no two signals on the same wavelength share
a fiber. Therefore if a WDM fabric has no wavelength conversion capability, then a
demand will be a request for a connection on a specified wavelength from an input
fiber to an output fiber. A route for such a demand is a path from the input fiber to
the output fiber that is edge-disjoint (fiber-disjoint) from all other existing demands
on the same wavelength. Therefore it is natural to extend the designs of classical
cross-connects to WDM fabrics as follows.

Suppose we consider the topology of a classical cross-connect C. The topology of
C can be represented by a graph, G, where the edges correspond to lines in C and
the nodes correspond to components in C. We create a WDM fabric F from G by
putting a WDM fiber in F , supporting n wavelengths, for each edge in G and a WDM
switch in F for each node in G. Notice that since we have not placed any wavelength
interchangers in F , a signal passing through F must stay on the same wavelength
for its entire path through F . Furthermore, since signals on different wavelengths do
not interfere with each other in WDM fabrics, one can conceptually think of F as
allowing us to have n copies of C, one for each of the n wavelengths. Therefore if
C was pathwise strictly nonblocking, then for each wavelength λi we are guaranteed
that we can route a demand from input fiber a to output fiber b on wavelength λi as
long as both a and b currently do not have a demand that uses wavelength λi.

A WDM fabric that is pathwise strictly nonblocking greatly simplifies the design
of a strictly nonblocking WDM cross-connect and therefore we will make use of this
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idea when presenting our designs.

5.2. Split cross-connects. We start with the design of a strictly nonblocking
k1 × k2 WDM split cross-connect. First, we connect the input fibers to a set of
k1 + k2 − 1 wavelength interchangers with a fabric F1. The only restriction on F1 is
that it must have the topology of a pathwise strictly nonblocking k1 × (k1 + k2 − 1)
classical cross-connect. We then connect the set of k1+k2−1 wavelength interchangers
to the input side of another fabric F2. The output side of F2 is the set of k2 output
fibers of our cross-connect. The only restriction on F2 is that it has the topology of a
pathwise strictly nonblocking (k1 + k2 − 1) × k2 classical cross-connect. This family
of strictly nonblocking k1 × k2 WDM cross-connects is by definition a family of split
cross-connects; see Figure 3.
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Fig. 3. A k1 × k2 WDM split cross-connect with m = k1 + k2 − 1 wavelength interchangers.
The set of k1 input fibers is connected to the m wavelength interchangers with a fabric F1. The set
of m wavelength interchangers is connected to the k2 output fibers with a fabric F2.

Theorem 1. Let C be a k1 × k2 WDM split cross-connect where the number of
wavelength interchangers is k1 + k2 − 1. Suppose that the topology of F1 is that of
some pathwise strictly nonblocking k1 × (k1 +k2−1) cross-connect. Similarly, F2 has
the topology of a pathwise strictly nonblocking (k1 + k2 − 1) × k2 cross-connect. Then
C is a strictly nonblocking k1 × k2 WDM cross-connect.

Proof. To show that C is strictly nonblocking it is enough to show that for any
existing set of demands D that are currently routed through C and for any new valid
demand d = (a, λ1, b, γ2) where D

⋃
{d} is a valid demand set, there is a valid route

for d. Let R be any valid routing of D.
We will break D into three sets of demands. First, let D1 be the set of demands

in D that use λ1 as their input wavelength and let D2 be the set of demands in D
that use γ2 as their output wavelength. Finally, let D3 be D \ (D1

⋃
D2). Notice that

no demands in D3 can possibly keep us from routing d since these demands all use a
wavelength other than λ1 as they pass through F1 and a wavelength other than γ2 as
they pass through F2. Therefore we restrict our attention to showing that d cannot
be blocked by demands in D1

⋃
D2.
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Let W be the set of wavelength interchangers without a demand in D1 or D2

routed through them. First, we show that W is nonempty. Since d is a valid demand,
input fiber a could not have a demand in D that used input wavelength λ1 and
output fiber b could not have a demand in D that used output wavelength γ2. Hence,
|D1| ≤ k1 − 1 and |D2| ≤ k2 − 1 and therefore |D1

⋃
D2| ≤ k1 + k2 − 2. Since C is a

split cross-connect, each route passes through at most one wavelength interchanger.
Therefore |W | ≥ k1 + k2 − 1 − |D1

⋃
D2| ≥ 1.

Let w ∈ W be a wavelength interchanger that does not currently have a demand
routed through it using either λ1 or γ2. If there exists a route from a to w and a route
from w to b, then there exists a route for d through C. However, since F1 has the
topology of a pathwise strictly nonblocking k1 × (k1 + k2 − 1) cross-connect, there
must exist a path from a to w that is edge-disjoint from all other paths for demands
in D1. Similarly, there must exist a path in F2 from w to b that is edge-disjoint from
all other paths through F2 for demands in D2.

Therefore there exists a valid route through C for d and as a result C is strictly
nonblocking.

We call this type of strictly nonblocking k1 × k2 WDM cross-connect a standard
strictly nonblocking k1 × k2 WDM cross-connect.

5.3. Dedicated cross-connects. Note that the family of standard k1 × k2

WDM cross-connects presented in the previous section uses k1 + k2 − 1 wavelength
interchangers. For homogeneous cross-connects we will show in section 6 that this is
optimal. However, for heterogeneous cross-connects we must also consider a limiting
case.
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O2

O3

Ok2

{γ1, γ2, . . . , γn2}

{γ1, γ2, . . . , γn2
}

{γ1, γ2, . . . , γn2
}

{γ1, γ2, . . . , γn2}

w1

w2

{λ1,λ2, . . . , λn1
}

{λ1,λ2, . . . , λn1}

{λ1,λ2, . . . , λn1}

F2

I2

Ik1

I1
S1

S2

wn1k1

w2n1

wn1+1

wn1

Sk1 wi

Fig. 4. A k1 × k2 WDM dedicated cross-connect with n1k1 wavelength interchangers. For each
of the k1 input fibers, Ii, there is a 1 × n1 switch Si. The n1 output fibers of Si are connected to
n1 wavelength interchangers that are used only for demands from Ii. The set of n1k1 wavelength
interchangers is connected to the k2 output fibers with a fabric F2.

Notice that for a heterogeneous k1 × k2 WDM cross-connect with n1 supported
input wavelengths on each input fiber, the maximum number of demands in any valid
demand set is n1k1. In particular, if k2 > (n1 − 1)k1, then the maximum number of
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possible demands is no more than k1 + k2 − 1. In this case we will use what we refer
to as a dedicated cross-connect.

In a dedicated k1 × k2 WDM cross-connect each input fiber is connected to its
own 1 × n1 optical switch and the n1 output fibers of this switch are then connected
to n1 wavelength interchangers. Conceptually, each input fiber has n1 wavelength
interchangers dedicated to service demands from it. The set of n1k1 wavelength
interchangers is connected to the set of output fibers with a fabric F2 that has the
topology of a pathwise strictly nonblocking (n1k1) × k2 cross-connect; see Figure 4.

Theorem 2. Let C be a k1 × k2 WDM dedicated cross-connect where the number
of wavelength interchangers is n1k1. Then C is strictly nonblocking.

Proof. Each of the k1 input fibers can support at most n1 demands. For each
input fiber there are n1 wavelength interchangers that are reachable from that input
fiber alone. Therefore, each wavelength interchanger can be reserved for a demand
using a specific input wavelength on the input fiber that can reach that wavelength
interchanger. The fabric F2 is pathwise strictly nonblocking. Therefore, after the de-
mand has been routed through the wavelength interchanger, it can be routed through
F2 to the appropriate output fiber.

5.4. Minimal strictly nonblocking cross-connects. By choosing either a
dedicated or standard cross-connect, this set of designs provides a family of k1 × k2

WDM cross-connects that use min(k1 + k2 − 1, n1k1) wavelength interchangers. In
the next section we prove that this is optimal for homogeneous cross-connects and
heterogeneous split cross-connects.

6. Lower bound for homogeneous cross-connects. In section 5 we pre-
sented a family of strictly nonblocking k1 × k2 WDM cross-connects that contain
min(k1 + k2 − 1, n1k1) wavelength interchangers. If the cross-connect is a homoge-
neous cross-connect with k input fibers and k output fibers, these designs use 2k − 1
wavelength interchangers. In this section we present matching lower bounds. In gen-
eral, the flavor of these proofs is that we assume that we have a strictly nonblocking
k × k WDM cross-connect that uses m < 2k− 1 wavelength interchangers and show
that there is a sequence of demands and a routing of those demands such that there
is a final valid demand d that cannot be routed by the cross-connect.

Although we presented our upper bounds for homogeneous and heterogeneous
cases simultaneously, in this section we handle only the homogeneous case and assume
that k = k1 = k2, n = n1 = n2 and the set of input wavelengths, {λ1, . . . , λn}, is also
the set of output wavelengths. We leave the heterogeneous case for the next section.

Initially, we prove our lower bounds using a demand model where the input and
output wavelengths are specified as part of the demand. In this setting we prove
that if there is some k ≥ 3 for which there is a strictly nonblocking k × k WDM
cross-connect with m < 2k − 1 wavelength interchangers, then there exists some
k′ ≥ 2 for which there is a strictly nonblocking k′ × k′ WDM split cross-connect with
m′ < 2k′ − 1 wavelength interchangers. We then show that any strictly nonblocking
k × k WDM split cross-connect requires 2k−1 wavelength interchangers. Combining
these results shows that any strictly nonblocking k × k WDM cross-connect requires
2k − 1 wavelength interchangers.

We then consider a demand model in which a demand consists of only an input
and output fiber and the cross-connect is allowed to choose the input and output
wavelengths from the set of available input and output wavelengths. We present a
simple construction that extends the proofs in this section to hold in this new demand
model.
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6.1. The adversarial view of a strictly nonblocking cross-connect. In
this section we will prove a lower bound on the number of wavelength interchangers
necessary in any strictly nonblocking k × k WDM cross-connect. To prove such a
lower bound, we will present a sequence of demands and a sequence of valid routings
the cross-connect could have chosen that eventually force the cross-connect to use at
least 2k − 1 wavelength interchangers.

We assume that we are given a strictly nonblocking k × k WDM cross-connect
C. As an exercise, first suppose that C is such that there is an edge disjoint path
from every input fiber to every wavelength interchanger and an edge disjoint path
from every wavelength interchanger to every output fiber. Suppose C contains 2k− 2
wavelength interchangers. For the purposes of this example, consider a demand set
with k − 1 demands with input wavelength λ1 and output wavelength λ1 and k − 1
demands with input wavelength λ2 and output wavelength λ2. A valid routing of
these demands would use k − 1 wavelength interchangers to route the demands with
input wavelength λ1 and output wavelength λ1. Furthermore, it could route the k−1
demands with input wavelength λ2 and output wavelength λ2 through a disjoint set
of k − 1 wavelength interchangers. By the definition of strictly nonblocking, it must
be possible to route another demand through C even if this is the current state of C.
However, a new demand with input wavelength λ1 and output wavelength λ2 cannot
be serviced by any of the wavelength interchangers in C. Thus C cannot be strictly
nonblocking.

In general, we cannot assume that C has this structure. Therefore we will play
the part of the adversary that is attempting to force C to reveal 2k − 1 wavelength
interchangers. Initially, we do not know anything about the structure of the cross-
connect. Each time we place a demand d on the cross-connect, the route r that C
uses to satisfy d becomes known to us. Suppose that at some point there is a set
of demands D on the cross-connect and a routing R of D. Furthermore, let d be
a demand that is valid with respect to D. If there is a route r that could be used
to satisfy d and r is known to us at that point, then we can also insist that the
cross-connect uses r to route d.

Therefore when proving our lower bounds we will sometimes insist that a demand
be routed according to a particular route that is already known to exist.

6.2. Existence of minimum cost split cross-connects. In this section we
prove that for the case of homogeneous k × k WDM cross-connects it is sufficient to
consider only homogeneous k × k WDM split cross-connects. We reduce our problem
to considering only strictly nonblocking k × k WDM split cross-connects through the
following steps.

1. We define the set Long of strictly nonblocking cross-connects that contain at
least one path with multiple wavelength interchangers along the path.

2. By definition, Long cannot contain a strictly nonblocking 1 × 1 WDM cross-
connect with 1 wavelength interchanger. This provides a base case for our
inductive proof.

3. We then consider the smallest k > 2 such that there exists a strictly nonblock-
ing k × k WDM cross-connect C ∈ Long with fewer than 2k− 1 wavelength
interchangers and show that C can be reduced to a smaller strictly nonblock-
ing k ′ × k ′ WDM cross-connect C ′ with the property that C ′ has fewer than
2k′ − 1 wavelength interchangers.

4. Thus, 2 and 3 together imply that if there exists a strictly nonblocking k × k
WDM cross-connect C ∈ Long with fewer than 2k − 1 wavelength inter-
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changers, then we can reduce it to a strictly nonblocking k ′ × k ′ WDM
cross-connect C ′ /∈ Long with fewer than 2k′ − 1 wavelength interchangers.

More precisely, we define Long to be the set of strictly nonblocking WDM cross-
connects that contain at least one directed path P from some input node a ∈ I
through wP > 1 wavelength interchangers to some output node b ∈ O. We say P is a
long path; see Figure 5.
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Ik Ok

O2

{λ1, λ2, . . . , λn}

{λ1, λ2, . . . , λn}

{λ1, λ2, . . . , λn}

{λ1, λ2, . . . , λn}{λ1, λ2, . . . , λn}

{λ1, λ2, . . . , λn}

I1

I2

{λ1, λ2, . . . , λn}

{λ1, λ2, . . . , λn}

a

b

Fig. 5. A long path in C with three wavelength interchangers.

To reduce a cross-connect C ∈ Long to a smaller strictly nonblocking cross-
connect, we make n demands from the input fiber a to the output fiber b. By assump-
tion, there exists a long path P from a to b. Therefore we can insist that C route these
n demands along P . As long as these demands are routed along P , no other demands
on C can use any part of P . Therefore all future demands will be handled by other
parts of C. Thus, C is then equivalent to a smaller cross-connect that has one less
input fiber and one less output fiber and at least two fewer wavelength interchangers.

Formally, for any C ∈ Long with n wavelengths supported on each input and
output fiber and any long path P ∈ C from input fiber a to output fiber b, we define
the operation Fill(C,P, n) that routes demands (a, λi, b, λi) for all 1 ≤ i ≤ n along P
with constant wavelength assignment λi.

Lemma 3. For any C ∈ Long, the result of the operation Fill(C,P, n) is that no
new demands can be routed through any wavelength interchanger on P .

Proof. Let D be the set of demands made by the operation Fill(C,P, n). Since
Fill(C,P, n) routes one demand per wavelength, with constant wavelength assign-
ment, along P , all wavelengths on all fibers in P are used for demands in D. Therefore
there are no available supported wavelengths for any input or output fibers for any
wavelength interchangers on P .

By definition, Long cannot contain a strictly nonblocking 1 × 1 WDM cross-
connect with a 1 wavelength interchanger. Thus we now focus our attention on cross-
connects in Long with k ≥ 2. We show that we can reduce a strictly nonblocking
k × k WDM cross-connect C ∈ Long with m < 2k − 1 wavelength interchangers
to a strictly nonblocking k ′ × k ′ WDM cross-connect with m′ < 2k′ − 1 wavelength
interchangers.
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Theorem 4. If for some k ≥ 2, there exists a k × k WDM cross-connect C ∈
Long that has fewer than 2k − 1 wavelength interchangers, then for some k′, where
1 ≤ k′, there exists a strictly nonblocking k ′ × k ′ WDM cross-connect C ′ /∈ Long that
has fewer than 2k′ − 1 wavelength interchangers.

Proof. By the definition of Long, if C ∈ Long then k ≥ 2. Let k ≥ 2 be the
smallest number such that there exists some k × k WDM cross-connect C ∈ Long
with m < 2k − 1 wavelength interchangers. Let wP be the number of wavelength
interchangers on a long path P from input fiber a to output fiber b that must exist
in C by the definition of the class Long of cross-connects. Let n be the number of
supported wavelengths.

We will use Fill(C,P, n) to route n demands along P . Once these demands have
been routed along P , no new demands can use any portion of P . Thus any new
demand on C must be routed through other sections of C. Therefore we show that C,
with these n demands routed along P , is equivalent to a strictly nonblocking k ′ × k ′

WDM cross-connect C ′ with one less input fiber, one less output fiber, and wp fewer
wavelength interchangers.

We start by performing Fill(C,P, n) and assume that the demands placed on
C by Fill(C,P, n) are not removed. By Lemma 3 no new demands can be routed
through wavelength interchangers on P . Thus consider the cross-connect C ′ obtained
by the process Modify(C,P ) that is defined as follows. Remove input fiber a and
output fiber b from C. Remove all fibers along path P . All wavelength interchang-
ers along P are isolated (i.e., have no incoming or outgoing fibers) and so they are
also removed. This construction can easily be seen to have the property that after
performing Fill(C,P, n) any other demand will have a routing and wavelength assign-
ment in C if and only if it does in C ′. See Figure 6 to see the change to C as a result
of performing Fill(C,P, n) and Modify(C,P ).

{γ1, γ2, . . . , γn2
}

O2I2

{λ1, λ2, . . . ,λn1}
I1

{λ1, λ2, . . . ,λn1
}

O1

{γ1, γ2, . . . , γn2}

Ik′

{λ1, λ2, . . . ,λn1} {γ1, γ2, . . . , γn2}
Ok′

Fig. 6. The result of performing Fill(C,P, n) and Modify(C,P ).

Therefore since C is strictly nonblocking, C ′ must also be strictly nonblocking.
Notice that since we have removed one input and output fiber from C to create C ′, C ′

is a k ′ × k ′ WDM cross-connect where k′ = k− 1. Furthermore, we removed at least
two wavelength interchangers from C in Modify(C,P ) and therefore the number of
wavelength interchangers is m−wP < 2k′−1. Therefore C ′ is a k ′ × k ′ WDM cross-



462 APRIL RASALA AND GORDON WILFONG

connect with fewer than 2k′−1 wavelength interchangers. Since k was assumed to be
the smallest number such that there exists a k × k WDM cross-connect C ∈ Long
with fewer than 2k − 1 wavelength interchangers and since k′ < k and m′ < 2k′ − 1,
C ′ /∈ Long. Thus C ′ /∈ Long is a strictly nonblocking k ′ × k ′ WDM cross-connect
with fewer than 2k′ − 1 wavelength interchangers.

Theorem 4 says that if for some k ≥ 2 there is an optimal strictly nonblocking
k × k WDM cross-connect C with m < 2k − 1 wavelength interchangers and C is
not a split cross-connect, then there is some k′ ≥ 1 for which there is a strictly non-
blocking k ′ × k ′ WDM cross-connect C ′ with m′ < 2k′−1 wavelength interchangers.
Furthermore, C ′ must be a split cross-connect. In the next section we will show that
any strictly nonblocking k × k WDM split cross-connect must have at least 2k − 1
wavelength interchangers.

6.3. Lower bound for split cross-connects. In the last section we reduced
the problem of showing that the optimal number of wavelength interchangers for any
strictly nonblocking k × k WDM cross-connect is 2k− 1 to showing that this is true
for any strictly nonblocking k × k WDM split cross-connect. We now show that any
strictly nonblocking k × k WDM split cross-connect must have 2k − 1 wavelength
interchangers.

To do this we consider any strictly nonblocking WDM split cross-connect C with
fewer than 2k − 1 wavelength interchangers. For such a cross-connect we will create
a demand set D and a routing R of D that routes D in such a way that C must
use each wavelength interchanger to service a demand with either input wavelength
λ1 or output wavelength λ2. Given this set of demands D and routing R we will
then show that one additional valid demand d /∈ D exists with input wavelength
λ1 and output wavelength λ2. Since all the wavelength interchangers in the cross-
connect will already be servicing a demand that either uses this new demand’s input
wavelength or its output wavelength, the cross-connect will not have a wavelength
interchanger to service the new demand. Thus any strictly nonblocking k × k WDM
split cross-connect must have at least 2k − 1 wavelength interchangers.

We say that a valid demand set D is standard if and only if
1. |D| = 2k and
2. all of the demands in D use input wavelength λ1 or λ2 and output wavelength

λ1 or λ2.
Suppose we have a routing Ri for a standard set of demands Di. Let WB

i be
the set of wavelength interchangers that service a demand with either input wave-
length λ1 or output wavelength λ2. These wavelength interchangers are thought of as
“blocking” demands with input wavelength λ1 and output wavelength λ2 from being
routed through them. Let WF

i be the set of all other wavelength interchangers. The
wavelength interchangers in WF

i are thought to be “free” to service demands with
input wavelength λ1 and output wavelength λ2.

If a routing Ri of a standard set of demands Di uses fewer than 2k−1 wavelength
interchangers, then there must be at least two wavelength interchangers that are both
in WB

i and are each servicing two demands.
As an example, assume WIu and WIv are two such wavelength interchangers. For

this example, suppose (Iu1, λ1, Ou1, λ1) and (Iu2, λ2, Ou2, λ2) are the two demands
that WIu services. Furthermore, suppose (Iv1, λ1, Ov1, λ1) and (Iv2, λ2, Ov2, λ2) are
the two demands that WIv services; see Figure 7.

Consider the following change to Di.
• Remove (Iu1, λ1, Ou1, λ1) and (Iv2, λ2, Ov2, λ2) from Di; see Figure 8.
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Fig. 7. Two wavelength interchangers that each service two demands.
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Fig. 8. The effect of removing demands (Iu1, λ1, Ou1, λ1) and (Iv2, λ2, Ov2, λ2).

Notice that WIu and WIv both remain in WB
i after we remove these two demands.

However, Iu1 now can ask for a new demand with input wavelength λ1 and Ov2 can
now ask for a new demand with output wavelength λ2. Now, we do the following.

• Add demand (Iu1, λ1, Ov2, λ2) to Di to create Di+1; see Figure 9.
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Fig. 9. The effect of adding demand (Iu1, λ1, Ov2, λ2).

This new demand is a valid demand with respect to Di. However, since it has
input wavelength λ1 and output wavelength λ2, it will not be able to be routed by
any wavelength interchanger in WB

i . Thus the route for this demand will force a new
wavelength interchanger to service a demand with input wavelength λ1 and output
wavelength λ2. The wavelength interchanger that services this demand will thus be
added to WB

i+1. By repeating this process we eventually will show that either C is
not strictly nonblocking or there exists a set of standard demands Dt and a routing of
these demands such that |WB

t | ≥ 2k−1 and thus C contains at least 2k−1 wavelength
interchangers.

We now formalize this construction. First, we show that a standard set of demands
D0 exists and can be routed by C. Create k demands of the form di1 = (Ii, λ1, Oi, λ2)
for 1 ≤ i ≤ k. Clearly, since C is strictly nonblocking, C must be able to satisfy these
k demands. For 1 ≤ i ≤ k, create a demand di2 = (Ii, λ2, Oi, λ1) and route along
the same path as di1. Notice that there are 2k demands and each demand uses input
wavelength λ1 or λ2 and output wavelength λ1 or λ2. Therefore this set of demands
meets the definition of a standard set of demands.

Now we prove that any routing Ri of a standard set of demands Di that uses



464 APRIL RASALA AND GORDON WILFONG

2k − g wavelength interchangers will have g wavelength interchangers servicing two
demands. Since a standard set of demands D consists of 2k demands each involving
only wavelengths λ1 and λ2, routing D will require at least k wavelength interchangers.
Thus we assume that any cross-connect under consideration has at least k wavelength
interchangers. Therefore in what follows, we always assume that g ≤ k.

Lemma 5. If C is a strictly nonblocking k × k WDM split cross-connect, Di is
a standard set of demands and Ri is a routing of the demands in Di that uses 2k− g
wavelength interchangers, where g > 0, then g wavelength interchangers in WB

i will
each service two demands both of whose input wavelengths are λ1 and λ2 and whose
output wavelengths are λ1 and λ2.

Proof. The 2k demands in Di use only input wavelengths λ1 and λ2 and output
wavelengths λ1 and λ2. As a result no wavelength interchanger can service more than
two of these demands. This implies that g wavelength interchangers in WB

i or WF
i

must service two demands. Any such wavelength interchanger that services two of
these demands must service a demand with input wavelength λ1 and a demand with
output wavelength λ2 and therefore is by definition in WB

i .
Given the standard set of demands D0 and the routing R0 of D0 we now present

two manipulations that together can be used to iteratively change the set of demands
on C so that eventually we arrive at a standard set of demands Dt and a standard
routing Rt of Dt such that every wavelength interchanger in C is servicing a demand
with either input wavelength λ1 or output wavelength λ2. Notice that this is equiva-
lent to showing that if C has no more than 2k− g wavelength interchangers for some
g > 0, then a standard set of demands Di and a standard routing Ri of Di exists such
that |WB

i | = 2k − g and |WF
i | = 0.

Let WIj ∈ WB
i be a wavelength interchanger that services exactly two demands,

d1 and d2. Suppose these demands have the form d1 = (I1, λ1, O2, λ2) and d2 =
(I2, λ2, O1, λ1). The operation Uncross(WIj) is defined to have the effect of changing
these two demands to be (I1, λ1, O1, λ1) and (I2, λ2, O2, λ2) and routing these new
demands exactly as d1 and d2 were routed while keeping all other demands and
routes unchanged. Recall that we can force the cross-connect to use a known route
for a new demand in order to construct a particular routing. Notice that the only
real change made by Uncross(WIj) is to swap the output paths of the routes of d1

and d2. On the other hand, if the demands have the form d1 = (I1, λ1, O2, λ1) and
d2 = (I2, λ2, O1, λ2), then Uncross(WIj) has no effect; see Figure 10.
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I2

O1

O2

Fig. 10. In a) the wavelength interchanger is shown before the operation Uncross is performed.
The result of Uncross is shown in b).

Next, we define the operation Block(C, (Di, Ri)) where C is a strictly nonblock-
ing k × k WDM split cross-connect, Di is a standard set of demands, and Ri is a
routing of the demands in Di that uses fewer than 2k − 1 wavelength interchangers.
The goal of Block(C, (Di, Ri)) is to alter Di and Ri to create a new standard set of
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demands Di+1 and a routing Ri+1 for Di+1 such that WB
i+1 > WB

i . In order to achieve
this, Block(C, (Di, Ri)) will use the demands serviced by two of the wavelength in-
terchangers in WB

i that must be servicing two demands by Lemma 5 to create a new
demand with input wavelength λ1 and output wavelength λ2 that must be serviced
by a wavelength interchanger that was not in WB

i . Figure 11 illustrates the steps of
Block(C, (Di, Ri)).

Block(C, (Di, Ri)).

1. Take two wavelength interchangers, WIu and WIv, in WB
i that, by Lemma

5, each service two demands.
2. Uncross(WIu) and Uncross(WIv).
3. Let (Iu1, λ1, Ou1, λ1) and (Iu2, λ2, Ou2, λ2) be the two resulting demands that

WIu services. Let (Iv1, λ1, Ov1, λ1) and (Iv2, λ2, Ov2, λ2) be the two resulting
demands that WIv services.

4. Remove (Iu1, λ1, Ou1, λ1) and (Iv2, λ2, Ov2, λ2) from Di and route all remain-
ing demands according to Ri to create Di+1 and Ri+1.

5. Add (Iv2, λ2, Ou1, λ1) to Di+1 and add the route chosen by C for this demand
to Ri+1.

6. Add (Iu1, λ1, Ov2, λ2) to Di+1 and add the route chosen by C for this demand
to Ri+1.

7. Return (Di+1, Ri+1).
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Steps 1–3 of Block(C, (Di, Ri)).
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Fig. 11. The steps in Block(C, (Di, Ri)).

We start with D0 and R0 as defined above and then inductively define (Di+1, Ri+1) =
Block(C, (Di, Ri)) as long as Ri uses fewer than 2k − 1 wavelength interchangers.
Consider Block(C, (Di, Ri)). By Lemma 5 and the assumption that Ri uses fewer
than 2k− 1 wavelength interchangers, there must exist two wavelength interchangers
in WB

i that service two demands. Given these two wavelength interchangers, we then
“uncross” their demands in Step 2. This does not change any of the wavelengths
used along any of the fibers in C. In particular, while this alters the set of demands,
the new set of demands is still a standard set of demands. In Step 4 we remove two
demands and leave the remaining demands unchanged. By our choice of demands to
remove we ensure that WIv and WIu will still each service one demand with either
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input wavelength λ1 or output wavelength λ2. Thus WIv and WIu remain in WB
i .

Since C is strictly nonblocking, a valid route for the new demand in Step 6 must
exist. A wavelength interchanger in WF

i must be used to service this demand since all
wavelength interchangers in WB

i are servicing a demand with either input wavelength
λ1 or output wavelength λ2. Since the demand requested in Step 6 has both input
wavelength λ1 and output wavelength λ2, the wavelength interchanger that services
this new demand will be in WB

i+1. Notice that the demand in Step 5 ensures that
there are a total of 2k demands on C. Hence, after Step 6, Di+1 is a standard set of
demands and Ri+1 is a routing for those demands such that |WB

i+1| = |WB
i | + 1 and

|WF
i+1| = |WF

i | − 1. Thus we can conclude the following lemma.
Lemma 6. If C is a strictly nonblocking k × k WDM split cross-connect, Di

is a standard set of demands and Ri is a routing of the demands in Di that uses
fewer than 2k − 1 wavelength interchangers, then Block(C, (Di, Ri)) can be executed
and (Di+1, Ri+1) = Block(C, (Di, Ri)), where Di+1 is a standard set of demands
and Ri+1 is a routing of the demands in Di+1. Also, Di+1 and Ri+1 are such that
|WB

i+1| = |WB
i | + 1 and |WF

i+1| = |WF
i | − 1.

We now use Lemma 6 to show that there must be 2k−1 wavelength interchangers
in any strictly nonblocking k × k WDM split cross-connect.

Theorem 7. For any strictly nonblocking k × k WDM split cross-connect there
must be a standard set of demands Dt and a standard routing Rt of Dt that uses at
least 2k − 1 wavelength interchangers.

Proof. By contradiction, let C be a strictly nonblocking k × k WDM split cross-
connect. As noted earlier, for such a cross-connect there exists a standard set of
demands D0 with routing R0. Let M = 2k − 1. If R0 uses at least M wavelength
interchangers, then we are done. Otherwise, by Lemma 6, we can repeatedly apply
Block to produce a series of pairs (Di+1, Ri+1) = Block(C, (Di, Ri)) where Di is a
standard set of demands and Ri is a routing of the demands in Di as long as Ri has
the property that it uses fewer than M wavelength interchangers. By Lemma 6 we
know that |WF

i+1| = |WF
i |−1 because the demand in Step 7 must be routed through a

wavelength interchanger in WF
i . Thus if |WF

0 | = t, then for some i < t, either Ri uses
at least M wavelength interchangers and we are done or |WF

t | = 0. If Rt uses fewer
than M wavelength interchangers, then Lemma 6 guarantees that we can perform
Block(C, (Dt, Rt)). However, the demand in Step 7 must be serviced by a wavelength
interchanger in WF

t . Therefore Step 7 cannot be completed in Block(C, (Dt, Rt)).
Since C is strictly nonblocking it must be that Rt uses 2k − 1 or more wavelength
interchangers.

Theorem 7 says that any strictly nonblocking k × k WDM split cross-connect
must have 2k − 1 wavelength interchangers. Combining this with Theorem 4, we
arrive at the following result for homogeneous cross-connects.

Corollary 8. Any strictly nonblocking homogeneous k × k WDM cross-connect
with n > 1 wavelengths must have at least 2k − 1 wavelength interchangers.

6.4. Other demand models for homogeneous cross-connects. In present-
ing the results of this section we have used a demand model in which the input and
output wavelengths are specified as part of the demand. In this section we show that
homogeneous cross-connects require 2k − 1 wavelength interchangers even under less
restrictive demand models. To prove this lower bound we must assume that n ≥ 4.
Although this is slightly weaker than our assumption in the previous sections that
n ≥ 2, it covers all cases that arise in practice.

For a fiber a and a routing R of existing demands, we define f(a,R) to be the
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set of wavelengths not in use on a by any route r ∈ R. We define a general demand
d = (Ix, Oy) to be a request for a connection from input fiber Ix to output fiber Oy.
A general route r for d is a path from input fiber Ix to output fiber Oy such that the
connection starts on an unused input wavelength, λy ∈ f(Ix, R), stays on the same
wavelength as long as it does not pass through a wavelength interchanger, and ends
on unused output wavelength λw ∈ f(Oy, R). We say that a cross-connect uses a
general demand model if it supports general demands and general routes.

Note that considering a strictly nonblocking cross-connect in a general demand
model actually weakens the definition of a strictly nonblocking cross-connect. Since
a strictly nonblocking cross-connect must route any new demand regardless of the
set of current routes in use and the wavelength assignment of those routes, one can
view a demand model that specifies the input and output wavelengths as part of the
demand as representing a worst-case adversary that requires not only a new connection
from some input fiber to some output fiber but also chooses the worst wavelength
assignment for the route chosen in the cross-connect. By allowing the cross-connect
to choose the input and output wavelengths, the cross-connect is allowed to plan the
choice of wavelengths. Therefore a cross-connect that supports only a general demand
model is, to some extent, a hybrid between a strictly nonblocking cross-connect and
a wide-sense nonblocking cross-connect. We consider such cross-connects and prove
that by allowing the cross-connect , this added flexibility to choose the wavelength
assignment of the routes does not change the number of wavelength interchangers
needed in the cross-connect.

Note that although we allow the cross-connect to choose the input and output
wavelengths, we still have the ability to force it to use a route that is known to satisfy
a particular demand.

The outline for this section is similar to the earlier part of the section. We
begin by reducing the problem to considering only split cross-connects. We then
show that under certain conditions we can use a sequence of general demands to
simulate a demand that specifies the input and output wavelengths as part of the
demand. This allows us to prove that a strictly nonblocking k × k WDM split cross-
connect supporting a general demand model requires 2k−1 wavelength interchangers
and thus any strictly nonblocking k × k WDM cross-connect supporting a general
demand model requires 2k − 1 wavelength interchangers.

Thus, we begin this discussion showing that we can still reduce this problem to
considering only split cross-connects. We assume throughout this section that n ≥ 4.
We define LongGeneral to be the set of strictly nonblocking WDM cross-connects
using a general demand model that contain at least one directed path P from some
input node a ∈ I through wP > 1 wavelength interchangers to some output node
b ∈ O. We refer to P as a long path (see Figure 5). We define the operation
GeneralFill(C,P, n) to route a set G of n demands from input fiber a to output
fiber b along P .

Lemma 9. For any long path P with wP ≤ n− 2 and any routing chosen by the
operation GeneralFill(C,P, n), there is a set S of demands such that

1. S ⊂ G, and
2. S contains at most n− 1 demands,
3. there is at least one wavelength λi such that for every section of fiber along

P , there is some demand in S (possibly a different demand on each section)
that is assigned λi along that section of fiber.

Proof. By the assumptions of the lemma, P contains at most n − 2 wavelength
interchangers. Therefore any route r along P can change wavelength at most n − 2
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times. Therefore any particular demand can use at most n − 1 wavelengths. This
implies that for any wavelength λi there must be at least one demand d ∈ G that
is not assigned λi anywhere along its route. Let S = G \ {d}. Since G contained n
demands, each wavelength must be used by some demand on each section of P . Since
d did not use λi on any section of P , the routes chosen for demands in S are such
that for each section of fiber along P there is a route for some demand in S using λi.
Therefore S ⊂ G containing n− 1 demands and the routes for demands in S are such
that for every section of fiber in P , there is some demand in S that has been assigned
λi along that section of fiber.

Using Lemma 9, we can now prove that there does not exist a 2 × 2 WDM
cross-connect with at most 2 wavelength interchangers such that those wavelength
interchangers are on a long path. We will use this as a base case for a reduction
that shows that we can always consider split cross-connects when showing that any
k × k WDM cross-connect must have 2k−1 wavelength interchangers. Since a 1 × 1
WDM cross-connect cannot have both less than 2k − 1 = 1 wavelength interchanger
and a long path, we must use a 2 × 2 WDM cross-connect as our base case for the
reduction.

Theorem 10. There does not exist a 2 × 2 WDM cross-connect C ∈ LongGeneral
with fewer than three wavelength interchangers.

Proof. Assume that there exists a C ∈ LongGeneral with two wavelength in-
terchangers and n ≥ 4. Let P be a long path from input fiber a to output fiber b
with both wavelength interchangers in C on P . First, perform GeneralFill(C,P, n)
to route a set G of n demands from a to b. Notice that after this has been done all
wavelength interchangers along P have every wavelength in use on their input and
output fibers. Since all the wavelength interchangers in C are on P , any new demands
must not change wavelength. Let α be the other input fiber and β be the other output
fiber. Suppose we now ask for n demands from α to β. Either the routing for these de-
mands must use constant wavelength assignments for these demands or it contradicts
the assumption that C has exactly two wavelength interchangers. Therefore assume
that these new demands are routed with constant wavelength assignment.

By Lemma 9 there exists S ⊂ G such that S contains at most n − 1 demands,
such that for each section of fiber along P , there is some demand in S that has been
assigned wavelength λi on that section. Remove the demand from α to β that is
routed with constant wavelength assignment λi; see Figure 12.

Wavelength λ4

Wavelength λ3

βα

ba

Wavelength λ1
Wavelength λ2

Fig. 12. A 2 × 2 WDM cross-connect C with n = 4 and a path P from input fiber a to output
fiber b such that both wavelength interchangers in C are on P . There are currently three demands
routed along P such that each section of P has at least one demand routed on wavelength λ3. There
are three demands between α and β, none of which is assigned wavelength λ3 on any fiber.

Furthermore, remove all demands along P that are not in S. At least one demand
must be removed from P and that demand must have been routed such that it didn’t
use λi along any fiber in P . In particular it cannot have used λi on output fiber
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b. Now add a demand from α to b. Since λi is the only wavelength available on α,
any route for this demand must start with wavelength assignment λi. Since λi is not
available on output fiber b this demand must change wavelength. However, each fiber
along P and hence each input fiber to each wavelength interchanger along P already
has a demand in S routed on it that is using wavelength λi. Therefore there is no
wavelength interchanger that can be used to service this new demand and as a result
either C /∈ LongGeneral or C must contain three or more wavelength interchangers
which violates the assumption that C has at most two wavelength interchangers.

Recall that Theorem 4 considered the smallest k for which there was a k × k
WDM cross-connect C ∈ Long that had fewer than 2k− 1 wavelength interchangers.
It then used Fill(C,P, n) to fill the path P with n demands. Once this path was filled
with these demands, C was functionally equivalent to a k ′ × k ′ WDM cross-connect
C ′ /∈ Long with fewer than 2k′ − 1 wavelength interchangers. Theorem 10 provides
the base case for a similar reduction since it shows that there does not exist a cross-
connect C ∈ LongGeneral with k = 2 and at most two wavelength interchangers.
Furthermore, the effect of GeneralFill(C,P, n) when C is a cross-connect supporting
a general demand model is to completely fill path P such that no new demands can
use any of the fibers or any wavelength interchanger along P . Thus the following is a
straightforward extension of Theorem 4.

Corollary 11. If for some k > 2, there exists a k × k WDM cross-connect C ∈
LongGeneral with n ≥ 4 that has fewer than 2k − 1 wavelength interchangers, then
for some k′, where 1 < k′ < k, there exists a strictly nonblocking k ′ × k ′ WDM cross-
connect C ′ /∈ LongGeneral that has fewer than 2k′ − 1 wavelength interchangers.

Corollary 11 says that we need only consider whether there exists a strictly non-
blocking k × k WDM split cross-connect supporting a general demand model that
uses fewer than 2k − 1 wavelength interchangers. Therefore recall the version of
Block(C, (Di, Ri)) that requires that demands specify the input and output wave-
lengths. We assume that Ri uses at most 2k − 2 wavelength interchangers and every
demand in Di has input wavelength λ1 or λ2 and output wavelength λ1 or λ2.

Block(C, (Di, Ri)).

1. Take two wavelength interchangers, WIu and WIv, in WB
i that, by Lemma

5, each service two demands.
2. Uncross(WIu) and Uncross(WIv).
3. Let (Iu1, λ1, Ou1, λ1) and (Iu2, λ2, Ou2, λ2) be the two resulting demands that

WIu services. Let (Iv1, λ1, Ov1, λ1) and (Iv2, λ2, Ov2, λ2) be the two resulting
demands that WIv services.

4. Remove (Iu1, λ1, Ou1, λ1) and (Iv2, λ2, Ov2, λ2) from Di and route all remain-
ing demands according to Ri to create Di+1 and Ri+1.

5. Add (Iv2, λ2, Ou1, λ1) to Di+1 and add a valid route for this demand to Ri+1.
6. Add (Iu1, λ1, Ov2, λ2) to Di+1 and add a valid route for this demand to Ri+1.
7. Return (Di+1, Ri+1).

Consider Step 5 which asks for a route from Iv2 to Ou1 such that the demand
is routed on input wavelength λ2 on input fiber Iv2 and output wavelength λ1 on
output fiber Ou1. In the current model we cannot specify the input or output wave-
length. Therefore we need to replace Step 5 with a sequence of general demands
{d1, d2, . . . , dj} such that the final general demand, dj , is from input fiber Iv2 to out-
put fiber Ou1 and the routes for the demands {d1, d2, . . . , dj−1} require that demand
dj uses input wavelength λ2 and output wavelength λ1. Once dj has been routed
through C, we can remove demands {d1, d2, . . . , dj−1} and be left with the same re-



470 APRIL RASALA AND GORDON WILFONG

sult as Step 5. In order to show that this is possible, we will use the fact that the
set of demands Di and routing Ri of Di are such that all demands are routed using
either input wavelength λ1 or λ2 and either output wavelength λ1 or λ2.

More generally, for a set of demands, D, we will define a routing R of D to be
Constrained(λi, λj) if for every demand d ∈ D, the route r for d uses either λi or λj

as the input wavelength and either λi or λj as the output wavelength. Notice that the
advantage of maintaining a Constrained(λi, λj) routing is that we are guaranteed
that all other wavelengths are unused on all the fibers. Since n ≥ 4 this implies that
at most half of the wavelengths are in use on any given input or output fiber under
any Constrained(λi, λj) routing.

Consider a cross-connect C and suppose there is a set of demands, D, where
the routing R of D is Constrained(λi, λj). Furthermore, assume that there is an
input fiber Ia with λi ∈ f(Ia, R) and there is an output fiber Ob with λj ∈ f(Ob, R).
We create the following operation Force(C, (D,R), (Ia, λi, Ob, λj)) that forces the
route for a new general demand from Ia to Ob to use input wavelength λi and out-
put wavelength λj . In describing Force(C, (D,R), (Ia, λi, Ob, λj)) we assume that
|f(Ia, R)| ≥ |f(Ob, R)|. The case when |f(Ia, R) < |F (Ob, R)| is analogous.

Force(C, (D,R), (Ia, λi, Ob, λj .)).

1. Assume |f(Ia, R)| ≥ |f(Ob, R)|.
2. Create |f(Ob, R)| demands from input fiber Ia to output fiber Ob.
3. If a demand from Step 2 is routed on output wavelength λj , then remove it.
4. Let D′ and R′ be the current set of demands and current routing of these

demands.
5. Create |f(Ia, R

′)| demands from input fiber Ia to output fibers other than
Ob.

6. Remove the demand that uses input wavelength λi on input fiber Ia and
redefine D′ and R′ to be the current set of demands and routing of these
demands.

7. Add |f(Ob, R
′)| demands from input fibers other than Ia to output fiber Ob.

8. Remove the demand from output fiber Ob that is routed on output wavelength
λj .

9. Add a demand from Ia to Ob to D′ and add the route r for this demand to
R′.

10. Remove any existing demands that were made in Steps 2, 5, and 7.
11. Return the current set of demands, D′, and the current routing R′ of D′.

Lemma 12. Let C be a homogeneous strictly nonblocking k × k WDM split cross-
connect with n ≥ 4 available wavelengths. Let D be a set of demands and R a set of
routes that are Constrained(λi, λj). If λi ∈ f(Ia, R) and λj ∈ f(Ob, R), then

1. (D′, R′) = Force(C, (D,R), (Ia, λi, Ob, λj)) can be performed,
2. D′ = {d} ∪D, where d is a demand from input fiber Ia to output fiber Ob,
3. R′ = {r}∪R, where r is the route for d using input wavelength λi and output

wavelength λj, and
4. R′ is Constrained(λi, λj).

Proof. Notice that the case when |f(Ia, R)| < |f(Ob, R)| is analogous to the
case when |f(Ia, R)| > |f(Ob, R)|. Therefore without loss of generality we consider
|f(Ia, R)| ≥ |f(Ob, R)|. Note that since R was Constrained(λi, λj), each fiber can
have at most two demands and therefore n−2 ≤ |f(Ia, R)| ≤ n and n−2 ≤ |f(Ia, R)|.

In Step 2 we make |f(Ob, R)| demands. If |f(Ia, R)| = |f(Ob, R)|, then all free
input wavelengths will be used on Ia. Otherwise, if |f(Ia, R)| > |f(Ob, R)|, then
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one wavelength on input fiber Ia will be unused. We then remove the demand that
used output wavelength λj . Therefore, before Step 5, |f(Ia, R

′)| ≤ 2. Since R was
Constrained(λi, λj) and since we have added only demands from output fiber Ob,
all other output fibers must still have at least two wavelengths unused prior to Step
5. Therefore there are enough output wavelengths to make the requested demands
in Step 5. After Step 6 there will be only one free wavelength, λi, on input fiber Ia
and at most two free wavelengths on output fiber Ob. Therefore, by an analogous
argument, there are enough free input wavelengths to make the demands requested
in Step 7. Furthermore, prior to Step 7 we removed any demand from output fiber
Ob that was routed on output wavelength λj . Therefore the demand we remove in
Step 8 that is routed on output wavelength λj on output fiber Ob is guaranteed to
use an input fiber other than Ia. Hence after Step 8, input fiber Ia has only input
wavelength λi available and output fiber Ob has only output wavelength λj available.
Therefore the route for the demand made in Step 9 will use input wavelength λi and
output wavelength λj . Finally, since we remove all demands added in Steps 2, 5, and
7, D′ = {d} ∪D, where d is a demand from input fiber Ia to output fiber Ob and R′

is Constrained(λi, λj).

Notice that Lemma 12 allows us to create a set of standard demands, D, and a
set of routes R for those demands. Furthermore, Lemma 12 allows us to replace the
demands made in Steps 2, 5, and 6 of Block(C, (Di, Ri)) with the appropriate sequence
of general demands. Therefore we arrive at the following corollary to Theorem 7.

Corollary 13. For any homogeneous strictly nonblocking k × k WDM split
cross-connect using a general demand model with k ≥ 2 and n ≥ 4, there must be a
standard set of demands, Dt, and a standard routing Rt of Dt that uses at least 2k−1
wavelength interchangers.

Combining the results in Corollaries 11 and 13 implies the following result for
homogeneous cross-connects.

Corollary 14. Any homogeneous strictly nonblocking k× k WDM cross-connect
with k ≥ 2 and n ≥ 4 wavelengths supporting any demand model must have at least
2k − 1 wavelength interchangers.

7. Determining the optimal number of wavelength interchangers for
heterogeneous split cross-connects. In this section we focus on heterogeneous
split cross-connects. Recall that a heterogeneous k1 × k2 WDM cross-connect has k1

input fibers that each support n1 input wavelengths and k2 output fibers that each
support n2 output wavelengths. Note that the set of input and output wavelengths
can be completely disjoint. Therefore we now refer to the output wavelengths as
{γ1, γ2, . . . , γn2}. Without loss of generality, we assume that k1 ≤ k2.

In section 5 we presented a family of strictly nonblocking k1 × k2 WDM cross-
connects that use min(k1 + k2 − 1, n1k1) wavelength interchangers. In section 6 we
showed that this is the optimal number of wavelength interchangers for any k × k
WDM homogeneous cross-connect. In this section we extend the techniques of section
6 to k1 × k2 WDM heterogeneous split cross-connects. To show that any heteroge-
neous k1 × k2 WDM split cross-connect requires min(k1 + k2 − 1, n1k1) wavelength
interchangers we consider any strictly nonblocking k1 × k2 WDM split cross-connect
with m < min(k1 + k2 − 1, n1k1) wavelength interchangers and show that there is a
sequence of demands and a routing of those demands such that there is a final valid
demand d that cannot be routed by the cross-connect. For the heterogeneous case
we consider only split cross-connects and only a demand model where the input and
output wavelengths are specified as part of the demand.
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The proof that any heterogeneous strictly nonblocking k1 × k2 WDM split cross-
connect must have min(k1 + k2 − 1, n1k1) wavelength interchangers has a flavor simi-
lar to the proof, presented in the previous section, that showed that any homogeneous
k × k WDM cross-connect requires 2k− 1 wavelength interchangers. We present the
lower bound in two cases. First, we consider k1 × k2 WDM cross-connects where
n1k1 ≤ k2. In this case we can create a set of demands that all use the same output
wavelength and therefore must all use their own wavelength interchanger. Hence we
arrive at a simple lower bound that says that any strictly nonblocking k1 × k2 WDM
cross-connect must have at least n1k1 wavelength interchangers if n1k1 ≤ k2. We
then consider cross-connects where n1k1 > k2. Our basic idea is to mimic the proof
from section 6 that showed that any k × k WDM cross-connect requires 2k−1 wave-
length interchangers. To achieve this for heterogeneous cross-connects we use two
input wavelengths, {λ1, λ2}, two output wavelengths {γ1, γ2}, and a set of input and
output fibers of equal size, say z, to force 2z − 1 wavelength interchangers to service
either a demand with input wavelength λ1 or a demand with output wavelength γ2.
We use the remaining k2 − z output fibers and the unused wavelengths on the input
fibers to “hold” k2 − z wavelength interchangers. By making z as large as possible
while still having enough available input wavelengths to make the k2 − z demands,
we are able to show that any strictly nonblocking k1 × k2 WDM split cross-connect
requires min(k1 + k2 − 1, n1k1) wavelength interchangers.

7.1. Lower bound for heterogeneous split cross-connects. We approach
the lower bound for the number of wavelength interchangers in a strictly nonblocking
k1 × k2 WDM cross-connect as follows.

1. We show that if k2 ≥ n1k1, then n1k1 wavelength interchangers are necessary.
2. We show that when k2 < n1k1, any strictly nonblocking k1 × k2 WDM cross-

connect must have at least min(k1+k2−1, n1k1−1) wavelength interchangers.
3. We then consider the case when (n1 − 1)k1 < k2 < n1k1, where the previous

step only proved that n1k1 − 1 wavelength interchangers are necessary, and
show that in fact n1k1 wavelength interchangers are necessary for any strictly
nonblocking k1 × k2 WDM cross-connect.

We begin this section by considering the case when k2 ≥ n1k1 where we saw in
section 5 that there exists a strictly nonblocking WDM cross-connect that uses n1k1

wavelength interchangers.

Theorem 15. If C is a strictly nonblocking k1 × k2 WDM cross-connect with
k2 ≥ n1k1, then C must have at least n1k1 wavelength interchangers.

Proof. If k2 ≥ n1k1, then a valid demand set could include n1k1 demands that all
use the same output wavelength. Since no wavelength interchanger can service more
than one of these demands, any k1 × k2 WDM cross-connect will need at least n1k1

wavelength interchangers if it is strictly nonblocking.

If k2 < n1k1, it is easy to see by the argument in the proof of Theorem 15 that
any strictly nonblocking WDM cross-connect must have at least k2 wavelength inter-
changers. In order to show that any strictly nonblocking WDM split cross-connect
actually requires min(k1 + k2 − 1, n1k1) wavelength interchangers, we first show that
min(k1, n1k1 − k2) + k2 − 1 = min(k1 + k2 − 1, n1k1 − 1) wavelength interchangers
are needed. To do this we consider any strictly nonblocking WDM split cross-connect
C with fewer than min(k1, n1k1 − k2) + k2 − 1 wavelength interchangers. For such a
cross-connect we will create a demand set D and a routing R of D such that C must
use each wavelength interchanger to service a demand with either input wavelength
λ1 or output wavelength γ2. Given D and R we will then show that one additional
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valid demand d /∈ D exists with input wavelength λ1 and output wavelength γ2. By
construction, all the wavelength interchangers in the cross-connect will already be
servicing a demand that either uses this new demand’s input wavelength or its output
wavelength. Therefore the cross-connect will not have a wavelength interchanger to
service the new demand. This implies that if a k1 × k2 WDM split cross-connect is
strictly nonblocking, then it must have at least min(k1 + k2 − 1, n1k1 − 1) wavelength
interchangers. For cases where this construction shows that n1k1 − 1 wavelength
interchangers are necessary, we then start with the routing that uses n1k1 − 1 wave-
length interchangers and then manipulate the demands to require n1k1 wavelength
interchangers for any k1 × k2 WDM cross-connect.

Consider a strictly nonblocking k1 × k2 WDM cross-connect C where k2 < n1k1.
Let z = min(k1, n1k1 − k2), IA = {a1, a2, . . . , az} be a subset of I consisting of z
input fibers, OA = {b1, b2, . . . , bz} be a subset of z output fibers in O, and OH =
{h1, h2, . . . , hk2−z} be the remaining output fibers. Given this partition of the input
and output fibers we say that a valid demand set D is standard if and only if

1. |D| = k2 + z,
2. 2z of the demands in D are demands with an input fiber in IA, an output

fiber in OA, input wavelength either λ1 or λ2 and output wavelength either
γ1 or γ2, and

3. the other k2 − z demands in D have output wavelength γ2 and an output
fiber in OH .

See Figure 13 for an example of a standard set of demands and a standard routing
of those demands on a heterogeneous cross-connect C.

Some input wavelength.

O1O1

Ok2

OH

OA

Oz

Ok2

Oi

Oj

Oq

Or

Ok2−z+1

Wavelength λ1 on the input side or wavelength γ1 on the output side.

Wavelength λ2 on the input side or wavelength γ2 on the output side.

Ik1

Ij

I1

Iz

IA

Fig. 13. A set of standard demands, D0, on C.

We will be constructing various standard demand sets Di in what follows. For
such a standard set of demands, Di, define DA

i to be the subset of demands in Di
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with an output fiber in OA. The subset of demands in Di with an output fiber in OH

will remain fixed for all i and we denote this set by DH .

As with our construction for homogeneous cross-connects, we will assume that
we have a routing Ri for a standard set of demands, Di. We will then successively
transform the standard demand sets into new standard demand sets by creating new
demands with input wavelength λ1 and output wavelength γ2 with the goal of forcing
these new demands to use wavelength interchangers that are so far unaccounted for.
To do this for heterogeneous cross-connects we must partition the set of wavelength
interchangers in C into three sets depending on the types of demands that they
service. The routes for the fixed demands in DH will be unchanging and the fixed set
of wavelength interchangers that service these routes is denoted by WH . The intuition
is that these wavelength interchangers will always be “held” by these routes and so
the cross-connect will be unable to route other demands with output wavelength
γ2 through them. We modify the definition of WB

i from the homogeneous case to
be the set of wavelength interchangers that are not in WH yet service a demand
with either input wavelength λ1 and/or output wavelength γ2. These wavelength
interchangers are thought of as “blocking” demands with input wavelength λ1 and
output wavelength γ2 from being routed through them. Finally, let WF

i be the set of
all other wavelength interchangers. This set of wavelength interchangers is thought
to be “free” to service demands with input wavelength λ1 and output wavelength γ2.

We define a valid routing Ri of a standard set of demands Di to be standard if

1. each wavelength interchanger in WH services only one demand and
2. the set of output paths of the routes for demands in DH are edge disjoint

from all output paths of the routes for demands in DA
i .

Suppose C is a strictly nonblocking k1 × k2 WDM split cross-connect where
k2 < n1k1. Then we show that a standard set of demands, D0, and a standard
routing R0 for D0 exist within C. First, create z = min(k1, n1k1 − k2) demands of
the form di1 = (ai, λ1, bi, γ1) for 1 ≤ i ≤ z. Since C is strictly nonblocking, C must
be able to satisfy these z demands. Notice also that these demands must be routed
on edge disjoint paths because they all have the same input and output wavelengths.
For 1 ≤ i ≤ z, create a demand di2 = (ai, λ2, bi, γ2) routed along the same path as
di1.

Now with these 2z demands on the cross-connect, we would like to create k2 − z
demands such that each output fiber hj ∈ OH has a demand with output wavelength
γ2. First, consider the case where k1 ≤ n1k1−k2 and hence z = k1. In this case (n1−
1)k1 ≥ k2. Thus, (n1 − 2)k1 ≥ k2 − k1. Since there are n1k1 − 2k1 input wavelengths
unused on the set of input fibers, clearly there are enough input wavelengths available
to make k2 − k1 new valid demands all using output wavelength γ2. On the other
hand, if z = n1k1 − k2, then n1k1 − 2z = k2 − z, and therefore there are again
enough available wavelengths on the input side to make k2 − z demands with output
wavelength γ2. Therefore we add k2 − z valid demands such that each fiber hj ∈ OH

has a demand with output wavelength γ2.

Clearly the set of demands that use output wavelength γ2 must all have edge
disjoint output paths. Since all other demands in DA

0 are routed along a path that
also has a demand in DA

0 with output wavelength γ2, all demands in DA
0 are routed

along output paths that are edge disjoint with respect to all output paths of routes for
demands in DH . Therefore D0 is a standard set of demands and the routing described
is a standard routing R0 for D0.



STRICTLY NONBLOCKING WDM CROSS-CONNECTS 475

Lemma 16. If C is a strictly nonblocking k1 × k2 WDM split cross-connect, Di

is a standard set of demands, and Ri is a standard routing of the demands in Di

that uses min(k1, n1k1 − k2) + k2 − g wavelength interchangers, where g > 0, then g
wavelength interchangers in WB

i will each service two demands both of whose input
wavelengths are λ1 and λ2 and whose output wavelengths are γ1 and γ2.

Proof. By definition, any standard routing Ri of Di routes at most one demand
through any wavelength interchanger in WH and therefore that demand must be
a demand whose output fiber is in OH . There are k2 − z of these demands and
therefore |WH | = k2 − z. Since the total number of wavelength interchangers used is
min(k1, n1k1 − k2) + k2 − g = z + k2 − g and |WH | = k2 − z, it must be the case that
the number of wavelength interchangers in WB

i and WF
i is 2z − g. The 2z demands

of DA
i must be routed through wavelength interchangers in WB

i or WF
i since Ri is

a standard routing. These 2z demands in DA
i use only input wavelengths λ1 and λ2

and output wavelengths γ1 and γ2. Thus no wavelength interchanger can service more
than two of these demands. This implies that g wavelength interchangers in WB

i or
WF

i must service two demands. Any such wavelength interchanger that services two
of these demands must service a demand with input wavelength λ1 and a demand
with output wavelength γ2 and therefore is by definition in WB

i .

Given the standard set of demands, D0, and the routing R0 of D0, we now present
a manipulation, similar to Block(C, (Di, Ri)), that can be used to iteratively change
the set of demands on C so that eventually we arrive at a standard set of demands,
Dt, and a standard routing Rt of Dt such that every wavelength interchanger in C is
servicing a demand with either input wavelength λ1 or output wavelength γ2. Notice
that this is equivalent to showing that if C has no more than min(k1, n1k1−k2)+k2−g
wavelength interchangers for some g > 0, then a standard set of demands Di and a
standard routing Ri of Di exist such that |WH | = k2−z, |WB

i | = 2z−g and |WF
i | = 0.

Let WIj ∈ WB
i be a wavelength interchanger that services exactly two demands,

d1 and d2. Suppose these demands have the form d1 = (a1, λ1, b2, γ2) and d2 =
(a2, λ2, b1, γ1). Recall the operation Uncross(WIj) which is defined to have the
effect of changing these two demands to be (a1, λ1, b1, γ1) and (a2, λ2, b2, γ2) and
routing these new demands exactly as d1 and d2 were routed while keeping all other
demands and routes unchanged. Again, notice that the only real change made by
Uncross(WIj) is to swap the output paths of the routes of d1 and d2. On the other
hand, if the demands have the form d1 = (a1, λ1, b2, γ1) and d2 = (a2, λ2, b1, γ2), then
Uncross(WIj) has no effect; see Figure 10.

We define the operation HeterogeneousBlock(C, (Di, Ri)), which is similar to
Block (C, (Di, Ri)). However, now we assume that C is a heterogeneous strictly non-
blocking k1 × k2 WDM split cross-connect, Di is a standard set of demands, and Ri is
a standard routing of the demands in Di that uses fewer than min(k1, n1k1−k2)+k2−1
wavelength interchangers. Each time we run HeterogeneousBlock(C, (Di, Ri)) we
alter Di and Ri to create a new standard set of demands Di+1 and a standard rout-
ing Ri+1 for Di+1 such that the number of wavelength interchangers that service a
demand with either input wavelength λ1 or output wavelength γ2 is strictly greater
under Di+1 and Ri+1 than it was under Di and Ri. In section 6 we saw the operation
Block(C ′, (Di, Ri)) which performed a similar task for a homogeneous cross-connect
C ′. In Block(C ′, (Di, Ri)) we did not have “extra” demands, DH , that “held” the
wavelength interchangers in WH . For a heterogeneous cross-connect we use these
demands to block the wavelength interchangers in WH from servicing the two new
demands that we create each iteration. In order to prevent either demand from being
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routed through one of the wavelength interchangers in WH , we switch the output
wavelength of the demands in DH such that the demands in DH always use the same
output wavelength as the new demand that we are creating; see Figure 14.

After we define HeterogeneousBlock(C, (Di, Ri)), we will show that it consists
of a sequence of valid operations.

HeterogeneousBlock(C, (Di, Ri)).

1. Take two wavelength interchangers, WIu and WIv, in WB
i that, by Lemma

16, each service two demands.
2. Uncross(WIu) and Uncross(WIv).
3. Let (au1, λ1, bu1, γ1) and (au2, λ2, bu2, γ2) be the two resulting demands that

WIu services. Let (av1, λ1, bv1, γ1) and (av2, λ2, bv2, γ2) be the two resulting
demands that WIv services.

4. Remove (au1, λ1, bu1, γ1) and (av2, λ2, bv2, γ2) from Di and route all remaining
demands according to Ri to create Di+1 and Ri+1.

5. For any demand dj ∈ Di+1 of the form (Ie, λt, hj , γ2), remove dj from Di+1,
replace it with the demand d′j = (Ie, λt, hj , γ1), and route d′j along the same
path that dj was routed along.

6. Add (av2, λ2, bu1, γ1) to Di+1 and add a valid route for this demand to Ri+1.
7. For any demand d′j ∈ Di+1 of the form (Ie, λt, hj , γ1), remove d′j from Di+1,

replace it with demand dj = (Ie, λt, hj , γ2), and route dj along the same path
that d′j was routed along.

8. Add (au1, λ1, bv2, γ2) to Di+1 and add a valid route for this demand to Ri+1.
9. Return (Di+1, Ri+1).
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Fig. 14. The steps in HeterogeneousBlock(C, (Di, Ri)).
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The initial set of demands on C is D0 and these are routed according to R0 as defined
above. We inductively define (Di+1, Ri+1) = HeterogeneousBlock(C, (Di, Ri)) as
long as Ri uses fewer than min(k1, n1k1 − k2) + k2 − 1 wavelength interchangers.
Consider HeterogeneousBlock(C, (Di, Ri)). We now prove that each step can be
performed. Consider Steps 1–3.

1. Take two wavelength interchangers, WIu and WIv, in WB
i that, by Lemma

16, each service two demands.
2. Uncross(WIu) and Uncross(WIv).
3. Let (au1, λ1, bu1, γ1) and (au2, λ2, bu2, γ2) be the two resulting demands that

WIu services. Let (av1, λ1, bv1, γ1) and (av2, λ2, bv2, γ2) be the two resulting
demands that WIv services.

By Lemma 16 and the assumption that Ri uses fewer than min(k1, n1k1−k2)+k2−1
wavelength interchangers, there must exist two wavelength interchangers in WB

i that
service two demands. Given these two wavelength interchangers, we then “uncross”
their demands. This does not change any of the wavelengths used along any of the
fibers in C. In particular, while this alters the set of demands, the new set of demands
is still a standard set of demands.

In Step 4, we remove two demands and leave the remaining demands unchanged.
By our choice of demands to remove, we ensure that WIv and WIu will still each
service one demand with either input wavelength λ1 or output wavelength γ2. Thus
WIv and WIu remain in WB

i .

4. Remove (au1, λ1, bu1, γ1) and (av2, λ2, bv2, γ2) from Di and route all remaining
demands according to Ri to create Di+1 and Ri+1.

Next in Step 5, we change the output wavelength of every demand in DH to be
γ1. Since Ri is a standard routing, all the output paths for demands in DH are edge
disjoint from all other demands. Therefore this step does not create an invalid set of
demands or routings for those demands. Changing the output wavelength of every
demand in DH means that each wavelength interchanger in WH is servicing a demand
with output γ1 when a route for the new demand with output wavelength γ1 in Step
6 is found.

5. For any demand dj ∈ Di+1 of the form (Ie, λt, hj , γ2), remove dj from Di+1,
replace it with the demand d′j = (Ie, λt, hj , γ1), and route d′j along the same
path that dj was routed along.

6. Add (av2, λ2, bu1, γ1) to Di+1 and add a valid route for this demand to Ri+1.

As a result this demand can be serviced only by a wavelength interchanger in either
WB

i or WF
i and any route for this demand will use an output path that is edge disjoint

from the output paths for all demands in DH . If the wavelength interchanger that
does service the demand from Step 6 is in WF

i , then it will be in WF
i+1, and clearly if

it is in WB
i , then it will be in WB

i+1. So after Step 6, |WB
i+1| = |WB

i |, |WF
i+1| = |WF

i |
and |WH | of course remains fixed.

Next, in Step 7, we switch all d′j = (Ie, λt, hj , γ1) back to dj = (Ie, λt, hj , γ2).
Again this is possible since Ri is a standard routing and the output paths of the routes
for these demands must be edge disjoint from all other output paths. Furthermore,
switching the output wavelength of each of the demands serviced by a wavelength
interchanger in WH back to γ2 means that the new demand in Step 8 must be serviced
by a wavelength interchanger in either WB

i or WF
i and the route chosen to service

the demand will have an edge disjoint output path from all output paths for demands
in DH .

7. For any demand d′j ∈ Di+1 of the form (Ie, λt, hj , γ1), remove d′j from Di+1,
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replace it with demand dj = (Ie, λt, hj , γ2), and route dj along the same path
that d′j was routed along.

8. Add (au1, λ1, bv2, γ2) to Di+1 and add a valid route for this demand to Ri+1.

A valid route for the new demand in Step 8 must exist since C is strictly non-
blocking. Furthermore, a wavelength interchanger in WF

i must be used to service this
demand since all wavelength interchangers in WB

i are servicing a demand with either
input wavelength λ1 or output wavelength γ2, and all wavelength interchangers in
WH are servicing a demand with output wavelength γ2. Since the demand requested
in Step 8 has both input wavelength λ1 and output wavelength γ2, the wavelength
interchanger that services this new demand will be in WB

i+1. Thus, after Step 8, Di+1

is a standard set of demands and Ri+1 is a standard routing for those demands such
that |WH | remains fixed, |WB

i+1| = |WB
i | + 1, and |WF

i+1| = |WF
i | − 1. Hence we

conclude the following lemma.

Lemma 17. If C is a strictly nonblocking k1 × k2 WDM split cross-connect with
k2 < n1k1, Di is a standard set of demands, and Ri is a standard routing of the de-
mands in Di that uses fewer than min(k1, n1k1−k2)+k2−1 wavelength interchangers,
then

1. HeterogeneousBlock(C, (Di, Ri)) can be executed,
2. (Di+1, Ri+1) = HeterogeneousBlock(C, (Di, Ri)),
3. Di+1 is a standard set of demands,
4. Ri+1 is a standard routing of the demands in Di+1,
5. |WH | remains fixed,
6. |WB

i+1| = |WB
i | + 1, and

7. |WF
i+1| = |WF

i | − 1.

We now apply Lemma 17 to show that any strictly nonblocking k1 × k2 WDM
split cross-connect with k1 ≤ k2 < n1k1 must have at least min(k1, n1k1−k2)+k2−1
wavelength interchangers.

Theorem 18. For any strictly nonblocking k1 × k2 WDM split cross-connect with
k1 ≤ k2 < n1k1, there must be a standard set of demands Dt and a standard routing
Rt of Dt that uses at least min(k1, n1k1 − k2) + k2 − 1 = min(k1 + k2 − 1, n1k1 − 1)
wavelength interchangers.

Proof. By contradiction, let C be a strictly nonblocking k1 × k2 WDM split
cross-connect where k1 ≤ k2 < n1k1. Start with the standard set of demands D0

with standard routing R0, which must exist. Let M = min(k1, n1k1 − k2) + k2 − 1.
If R0 uses at least M wavelength interchangers, then we are done. Otherwise, by
Lemma 17, we can repeatedly apply HeterogeneousBlock to produce a series of
pairs (Di+1, Ri+1) = HeterogeneousBlock(C, (Di, Ri)) where each Di is a stan-
dard set of demands and each Ri is a standard routing of the demands in Di. This
sequence continues as long as Ri has the property that it uses fewer than M wave-
length interchangers. By Lemma 17 we know that |WF

i+1| = |WF
i | − 1 because the

demand in Step 9 must be routed through a wavelength interchanger in WF
i . Thus

if |WF
0 | = t, then either for some i < t, Ri uses at least M wavelength interchangers

and we are done or |WF
t | = 0. If Rt uses fewer than M wavelength interchangers,

then Lemma 17 guarantees that we can perform HeterogeneousBlock(C, (Dt, Rt)).
However, the demand in Step 9 must be serviced by a wavelength interchanger in
WF

t . Therefore Step 9 cannot be completed in HeterogeneousBlock(C, (Dt, Rt)).
Since C is strictly nonblocking it must be that Rt uses min(k1, n1k1 − k2) + k2 − 1 or
more wavelength interchangers.
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Theorem 18 says that if k2 ≤ (n1−1)k1, then k1+k2−1 wavelength interchangers
are needed. However, if (n1 − 1)k1 < k2 < n1k1, then it says only that n1k1 − 1
wavelength interchangers are needed. We now show that in this case, there must, in
fact, be at least n1k1 wavelength interchangers.

We could easily show that n1k1 wavelength interchangers are necessary, if we
could continue executing (Di+1, Ri+1) = HeterogeneousBlock(C, (Di, Ri)) until
Ri+1 uses n1k1 − 1 wavelength interchangers and WF

i+1 = 0. However, in general,
it is possible that at some point HeterogeneousBlock(C, (Di, Ri)) could return a
standard set of demands Di+1 and a standard routing Ri+1 for Di+1 such that n1k1−1
wavelength interchangers in C are used to service the demands but WF

i+1 > 0. Once
this many wavelength interchangers in C are used to service a demand we can no
longer run HeterogeneousBlock(C, (Di+1, Ri+1)). Thus we need a procedure that is
similar to HeterogeneousBlock(C, (Di+1, Ri+1)) but instead of using the demands
corresponding to two wavelength interchangers that each service two demands, it will
use one such set of demands, which must exist by Lemma 16, and one single demand
in DH that uses input wavelength λ1 and output wavelength γ2. Before presenting
the new construction we need to prove that such a demand in DH exists.

Lemma 19. Let C be a strictly nonblocking k1 × k2 WDM split cross-connect
where (n1 − 1)k1 < k2 < n1k1. If Di is a standard set of demands, then at least one
demand in DH has input wavelength λ1 and output wavelength γ2.

Proof. Since Di is a standard set of demands, there must be one demand in Di

with output wavelength γ2 for each output fiber in OH . The set of all such demands
is by definition DH . If (n1 − 1)k1 < k2 < n1k1, then z = n1k1 − k2 < k1. The total
number of demands is k2 + z = n1k1. Therefore every input fiber has a demand for
every input wavelength. Only z input fibers have demands with input wavelength λ1

in DA. Therefore at least one input fiber must have n1 demands originating from it,
all of which are in DH . Since no two demands from the same input fiber can have
the same input wavelength, this input fiber must have exactly one demand for each
possible input wavelength. Therefore it has a demand in DH with input wavelength
λ1. Since all demands in DH have output wavelength γ2, this demand is a demand
in DH with input wavelength λ1 and output wavelength γ2.

Now assume we have a standard set of demands Di and a standard routing Ri

that routes Di in such a way that all n1k1 − 1 wavelength interchangers in C service
a demand in Di. We can use Lemma 19 to show that in fact C must have n1k1

wavelength interchangers if it is strictly nonblocking.

First, we need to define the following notation. Let p1 and p2 be paths such
that the last node v in p1 is the first node in p2. We will use the notation p1||p2

to denote the path formed by following p1 to v and then following p2. Consider
HeterogeneousBlock2(C, (Di, Ri)), defined as follows.

HeterogeneousBlock2(C, (Di, Ri)).

1. Take one wavelength interchanger, WIv, in WB
i that services two demands

and one wavelength interchanger, WIu, in WH that services a demand in DH

with input wavelength λ1 and output wavelength γ2.
2. Uncross(WIv).
3. Let dv1 = (av1, λ1, bv1, γ1) and dv2 = (av2, λ2, bv2, γ2) be the two resulting

demands that WIv services.
4. Let du = (Iu, λ1, h2, γ2) be the demand that WIu services.
5. Remove du from Di and replace it with demand d′u = (Iu, λ1, h2, γ1) and

route d′u along the path on which du was routed.
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6. Remove dv1 = (av1, λ1, bv1, γ1) and route all remaining demands according to
Ri.

7. Add the demand d′v1 = (av1, λ1, h2, γ2) to Di, add a valid route r′v1 for d′v1

to Ri, and let p′v1 be the input path of r′v1.
8. Let WIx be the wavelength interchanger in WF

i that services d′v1 =
(av1, λ1, h2, γ2).

9. Let dx = (ax2, λ2, bx1, γ1) be the other demand that WIx services and let px1

be the output path of the route for dx.
10. Remove dx and d′v1 from Di.
11. Add dq = (av1, λ1, bx1, γ1) to Di to create Di+1 and add the valid route

rq = p′v1||px1 for dx to Ri to create Ri+1.
12. For any demand dj ∈ Di+1 of the form (Ie, λt, hj , γ2), remove dj from Di+1,

replace it with the demand d′j = (Ie, λt, hj , γ1), and route d′j along the same
path that dj was routed on.

13. Add (ax2, λ2, bv1, γ1) to Di+1 and add a valid route for this demand to Ri+1.
14. For any demand d′j ∈ Di+1 of the form (Ie, λt, hj , γ1), remove d′j from Di+1,

replace it with demand dj = (Ie, λt, hj , γ2), and route dj along the same path
that d′j was routed on.

15. Return (Di+1, Ri+1).

Figure 15 shows the steps of HeterogeneousBlock2(C, (Di, Ri)). In Lemma 20
we prove its correctness.

Lemma 20. If C is a strictly nonblocking k1 × k2 WDM split cross-connect with
n1k1−1 wavelength interchangers where (n1−1)k1 < k2 < n1k1, Di is a standard set
of demands, and Ri is a standard routing of the demands in Di that uses all n1k1 − 1
wavelength interchangers, then HeterogeneousBlock2(C, (Di, Ri)) can be executed
and (Di+1, Ri+1) = HeterogeneousBlock2(C, (Di, Ri)), where Di+1 is a standard
set of demands and Ri+1 is a standard routing of the demands in Di+1 such that all
n1k1 − 1 wavelength interchangers in C service a demand in Di+1. Also, Di+1 and
Ri+1 are such that |WH | remains fixed, |WB

i+1| = |WB
i | + 1, and |WF

i+1| = |WF
i | − 1.

Proof. We look at each step of HeterogeneousBlock2(C, (Di, Ri)) and prove
its correctness. Consider first Steps 1–4.

1. Take one wavelength interchanger, WIv, in WB
i that services two demands

and one wavelength interchanger WIu in WH that services a demand in DH

with input wavelength λ1 and output wavelength γ2.
2. Uncross(WIv).
3. Let dv1 = (av1, λ1, bv1, γ1) and dv2 = (av2, λ2, bv2, γ2) be the two resulting

demands that WIv services.
4. Let du = (Iu, λ1, h2, γ2) be the demand that WIu services.

See Figure 16.

Lemmas 16 and 19 show the existence of a wavelength interchanger WIv ∈ WB
i

that services two demands and a wavelength interchanger WIu ∈ WH that services
a demand with input wavelength λ1 and output wavelength γ2. After “uncrossing”
the demands that WIv services, we change the output wavelength from γ2 to γ1 of
the demand du that WIu services. The inductive assumption that Ri is a standard
routing allows us to change this output wavelength without rerouting the demand.

By the definition of a standard set of demands, no other demand in Di used the
output fiber h2 that du uses. Thus consider Step 5.

5. Remove du from Di and replace it with demand d′u = (Iu, λ1, h2, γ1) and
route d′u along the path on which du was routed.
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Fig. 15. The steps in HeterogeneousBlock2(C, (Di, Ri)).
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Fig. 16. Steps 1–4 of HeterogeneousBlock2(C, (Di, Ri)).

After Step 5, when we change the only demand in Di that uses h2 to a demand with
output wavelength γ1, it becomes valid to add a new demand with output wavelength
γ2 and output fiber h2. After Step 6, input fiber av1 will have input wavelength λ1

free.

6. Remove dv1 = (av1, λ1, bv1, γ1) and route all remaining demands according to
Ri.

See Figure 17.
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γ1
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WIu

bv1

bv2

h2

Fig. 17. Steps 5 and 6 of HeterogeneousBlock2(C, (Di, Ri)).

We then add the demand, from input fiber av1 to output fiber h2; see Figure 18.
This new demand uses input wavelength λ1 and output wavelength γ2. Therefore it
must be serviced by a wavelength interchanger WIx ∈ WF

i since all of the wavelength
interchangers in WB

i and WH are already servicing a demand with either input wave-
length λ1 or output wavelength γ2. The second demand dx that WIx services must
exist because every wavelength interchanger in C services a demand in Di. Thus
Steps 9 and 10 are as follows.

7. Add the demand d′v1 = (av1, λ1, h2, γ2) to Di, add a valid route r′v1 for d′v1

to Ri, and let p′v1 be the input path of r′v1.

γ1

γ2

γ2 γ1

λ1

λ2

λ2
λ1

Iu

av1

ax2

av2

WIu

WIx

WIv

h2

bv1

bv2

bx1

Fig. 18. Steps 7–9 of HeterogeneousBlock2(C, (Di, Ri)).

9. Let dx = (ax2, λ2, bx1, γ1) be the other demand that WIx services and let px1

be the output path of the route for dx.
10. Remove dx and d′v1 from Di.

Since Ri is able to route the first half of demand d′v along p′v1 with wavelength λ1

and the second half of dx along px1 with wavelength γ1, it must be possible to route
demand dq from Step 11 along rq = p′v1||px1; see Figure 19.

11. Add dq = (av1, λ1, bx1, γ1) to Di to create Di+1 and add the valid route
rq = p′v1||px1 for dx to Ri to create Ri+1.

γ1

γ2

γ1

λ1

λ2

λ1

Iu

av1

ax2

av2

WIu

WIx

WIv

h2

bv1

bv2

bx1

Fig. 19. Steps 10 and 11 of HeterogeneousBlock2(C, (Di, Ri)).

Notice that this adds WIx to WB
i+1.

Next in Step 12, we “switch” the output wavelength used by all demands in DH ;
see Figure 20. Since Ri is a standard routing, switching the output wavelength of
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the demands in DH does not make their routes invalid. The reason for switching the
output wavelength of all demands in DH is to ensure that the new demand in Step
13, is not serviced by a wavelength interchanger in WH ; see Figure 21.

12. For any demand dj ∈ Di+1 of the form (Ie, λt, hj , γ2), remove dj from Di+1,
replace it with the demand d′j = (Ie, λt, hj , γ1), and route d′j along the same
path that dj was routed on.

Iu h2

av1

ax2 bx1

bv2av2

hjIe

bv1

λ1

λ2

λt

λ1

WIu

WIx

WIv

WIh

γ1

γ1

γ2

γ1

Fig. 20. Step 12 of HeterogeneousBlock2(C, (Di, Ri)).

13. Add (ax2, λ2, bv1, γ1) to Di+1 and add a valid route for this demand to Ri+1.

Iu h2

av1

ax2 bx1

bv2av2

hjIe

bv1

λ2

λ1

λ1

λ2

λt

WIu

WIx

WIv

WIh

WIj

γ1

γ1

γ2

γ1

γ1

Fig. 21. Step 13 of HeterogeneousBlock2(C, (Di, Ri)).

Since this new demand is a valid demand and C is strictly nonblocking, there
must exist a valid route for this demand. Furthermore, the output path of the route
for the new demand must be edge-disjoint from all demands that use output wave-
length γ1. Therefore the route chosen for the new demand will maintain the inductive
invariant that all demands not in DH use edge-disjoint output paths from those used
by demands in DH . After we have found a route for the demand made in Step 13,
Step 14 switches the output wavelength of all demands in DH back to γ2 so that Di+1

meets the definition of a standard set of demands; see Figure 22.
14. For any demand d′j ∈ Di+1 of the form (Ie, λt, hj , γ1), remove d′j from Di+1,

replace it with demand dj = (Ie, λt, hj , γ2), and route dj along the same path
that d′j was routed on.

Notice that |Di+1| = k2+z. Furthermore, 2z of the demands in Di+1 are demands
with an input fiber in IA, an output fiber in OA, input wavelength either λ1 or λ2,
and output wavelength either γ1 or γ2. The other k2 − z demands in Di+1 have
output wavelength γ2 and an output fiber in OH . Additionally, the routing Ri+1

is such that each wavelength interchanger in WH services at most one demand and
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Fig. 22. Step 14 of HeterogeneousBlock2(C, (Di, Ri)).

the set of output paths for demands in DH are edge-disjoint from all output paths
for demands in DA

i+1. Therefore Ri+1 is a standard routing of Di+1. Furthermore,
|WH | remains fixed, |WB

i+1| = |WB
i | + 1, and |WF

i+1| = |WF
i | − 1. Finally, since

HeterogeneousBlock2(C, (Di, Ri)) only ever removed a demand from a wavelength
interchanger that already serviced two demands, each wavelength interchanger in C
must service a demand in Di+1 under Ri+1.

By Lemma 17 we can repeatedly perform HeterogeneousBlock(C, (Di, Ri))
until all n1k1 − 1 wavelength interchangers are used to service a standard set of
demands Di routed according to a standard routing Ri of Di. Using Lemma
20 we can then repeatedly augment Di and Ri until we arrive at a standard
set of demands Dt and a standard routing Rt of Dt for which |WF

t | = 0. In
HeterogeneousBlock2(C, (Dt, Rt)), the new demand in Step 7 is a valid demand
and therefore any strictly nonblocking WDM cross-connect must be able to find a
route for this demand. However, since it must be serviced by a wavelength inter-
changer from WF

t , C must not be strictly nonblocking. This contradiction leads to
the following result.

Theorem 21. Any strictly nonblocking k1 × k2 WDM split cross-connect with
(n1 − 1)k1 < k2 < n1k1, where n1 > 1 and n2 > 1 are the number of available
wavelengths in each input fiber and output fiber, respectively, will have at least n1k1

wavelength interchangers.
Together the results in Theorems 15, 18, and 21 imply the following.
Theorem 22. Any strictly nonblocking k1 × k2 WDM split cross-connect with

n1 > 1 input wavelengths and n2 > 1 output wavelengths must have at least min(k1 +
k2 − 1, n1k1) wavelength interchangers.

8. Conclusions and future work. For a homogeneous k × k WDM cross-
connect we have presented an optimal design using 2k − 1 wavelength interchang-
ers. For heterogeneous cross-connects we have considered only the case of a k1 × k2

WDM split cross-connect and have shown that min(k1 + k2 − 1, n1k1) wavelength in-
terchangers are necessary and sufficient. One obvious open question is to consider
whether a nonsplit design is optimal for heterogeneous cross-connects. The reason we
cannot extend Theorem 4 to heterogeneous cross-connects is that we need to be able
to remove n−1 wavelength interchangers along a long path in some cases of heteroge-
neous cross-connects. However, as with the homogeneous case, we can be sure only to
remove two wavelength interchangers. Therefore a new idea is required to prove that
split cross-connects are optimal for heterogeneous cross-connects. Considering general
demand models for heterogeneous cross-connects is also an interesting line of work.
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Another open area of work is to consider wide-sense nonblocking cross-connects. In
[5] it is shown that wide-sense nonblocking k × k WDM split cross-connects with
n ≥ O(k2) available wavelengths require at least 2k − 1 wavelength interchangers.
However, it is still open as to whether a split cross-connect is optimal for wide-sense
nonblocking cross-connects. Furthermore, for wide-sense nonblocking k × k WDM
cross-connects with 2 < n < O(k2), the optimal number of wavelength interchangers
is unknown even if only split cross-connects are considered.

Acknowledgment. We would like to thank the anonymous referee for helpful
comments.
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STRONG SPATIAL MIXING WITH FEWER COLORS FOR LATTICE
GRAPHS∗

LESLIE ANN GOLDBERG† , RUSSELL MARTIN‡ , AND MIKE PATERSON†

Abstract. Recursively-constructed couplings have been used in the past for mixing on trees.
We show how to extend this technique to nontree-like graphs such as lattices. Using this method, we
obtain the following general result. Suppose that G is a triangle-free graph and that for some Δ ≥ 3,
the maximum degree of G is at most Δ. We show that the spin system consisting of q-colorings of G
has strong spatial mixing, provided q > αΔ − γ, where α ≈ 1.76322 is the solution to αα = e, and

γ = 4α3−6α2−3α+4
2(α2−1)

≈ 0.47031. Note that we have no additional lower bound on q or Δ. This is

important for us because our main objective is to have results which are applicable to the lattices
studied in statistical physics, such as the integer lattice Z

d and the triangular lattice. For these graphs
(in fact, for any graph in which the distance-k neighborhood of a vertex grows subexponentially in k),
strong spatial mixing implies that there is a unique infinite-volume Gibbs measure. That is, there
is one macroscopic equilibrium rather than many. Our general result gives, for example, a “hand
proof” of strong spatial mixing for 7-colorings of triangle-free 4-regular graphs. (Computer-assisted
proofs of this result were provided by Salas and Sokal [J. Stat. Phys., 86 (1997), pp. 551–579] (for the
rectangular lattice) and by Bubley, Dyer, Greenhill, and Jerrum [SIAM J. Comput., 29 (1999), pp.
387–400].) It also gives a hand proof of strong spatial mixing for 5-colorings of triangle-free 3-regular
graphs. (A computer-assisted proof for the special case of the hexagonal lattice was provided earlier
by Salas and Sokal [J. Stat. Phys., 86 (1997), pp. 551–579].) Toward the end of the paper we show
how to improve our general technique by considering the geometry of the lattice. The idea is to
construct the recursive coupling from a system of recurrences rather than from a single recurrence.
We use the geometry of the lattice to derive the system of recurrences. This gives us an analysis
with a horizon of more than one level of induction, which leads to improved results. We illustrate
this idea by proving strong spatial mixing for q = 10 on the lattice Z

3. Finally, we apply the idea
to the triangular lattice, adding computational assistance. This gives us a (machine-assisted) proof
of strong spatial mixing for 10-colorings of the triangular lattice. (Such a proof for 11 colors was
given by Salas and Sokal [J. Stat. Phys., 86 (1997), pp. 551–579].) For completeness, we also show
that our strong spatial mixing proof implies rapid mixing of Glauber dynamics for sampling proper
colorings of neighborhood-amenable graphs. (It is known that strong spatial mixing often implies
rapid mixing, but existing proofs seem to be written for Z

d.) Thus our strong spatial mixing results
give rapid mixing corollaries for neighborhood-amenable graphs such as lattices.
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1. Introduction. This paper is concerned with (proper) colorings of an infinite
graph G, such as the integer lattice Z

d. A coloring is an assignment of colors from the
set {1, . . . , q} to the vertices. It is proper if adjacent vertices receive different colors.
Proper colorings correspond to configurations in the zero-temperature antiferromag-
netic Potts model. Two important closely-related questions which have received a lot
of recent attention follow.
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• Do boundary effects decay exponentially? (This notion is known as “strong
spatial mixing.”)

• Is there a unique infinite-volume Gibbs measure? (The converse situation is
often called a “phase transition.”)

See Weitz’s Ph.D. thesis [31] and Martinelli’s lecture notes [22] for an exposition of
this material and the papers [1, 3, 13, 20, 23, 27] for some recent (and not so recent)
results. For graphs like regular lattices (in fact, for any graph in which the distance-k
neighborhood of a vertex grows subexponentially in k), strong spatial mixing implies
that there is a unique infinite-volume Gibbs measure; see [31] and [22] for details.1

For these graphs, the two questions above are also known to be closely related to a
third question:

• Are Glauber dynamics rapidly mixing on finite pieces of the graph?

For graphs such as lattice graphs, strong spatial mixing implies rapid mixing; more
details are given in section 7. A number of papers have given bounds on the number
of colors that are necessary for rapid mixing, both for general graphs [9, 10, 14, 16,
17, 19, 25, 29] and for specific graphs and lattices [1, 15, 21, 24].

1.1. Definitions and background. In order to define “strong spatial mixing”
and “infinite-volume Gibbs measure,” we need notation for describing colorings of
finite regions of the infinite graph G. A region R of G is a (not necessarily connected)
subset of the vertices. A coloring of R is a function from R to the set of colors
Q = {1, . . . , q}. If R is nonempty and finite, then ∂R denotes the vertex boundary
around R. That is, ∂R is the set of vertices that are not in R, but are adjacent to R.
A coloring of ∂R is a function from ∂R to the set {0}∪Q. The color “0” corresponds
to an unconstrained boundary vertex. Given a coloring B of ∂R, a coloring C of R
is said to be proper if adjacent vertices in R receive different colors, and vertices
in R receive colors different from adjacent boundary vertices. S(B) denotes the set
of proper colorings of R and πB denotes the uniform distribution on S(B). For any
Λ ⊆ R, πB,Λ denotes the distribution on colorings of Λ induced by πB.

A measure μ on the set of proper colorings of G is an infinite-volume Gibbs measure
(with respect to the uniform specification) if, for any finite region R, the conditional
probability distribution μ(· | σR) (conditioned on the coloring σR of all vertices other
than those in R) is the uniform distribution on proper colorings of R. Infinite-volume
Gibbs measures exist for any G. The problem of determining whether there is more
than one infinite-volume Gibbs measure for a given “specification” is known as the
DLR problem (for Dobrushin, Lanford, and Ruelle) in statistical physics (see [3]).

An important notion in statistical physics is whether the system (as specified by
the finite-volume Gibbs measures) satisfies strong spatial mixing [22]. Informally, this
means that for any finite set of vertices R, if you consider two different colorings B
and B′ of the boundary of R which differ at a single vertex y, then the effect that this
difference has on a subset Λ ⊆ R decays exponentially with the distance from Λ to y.
For the formal definition (which we take from [13]), recall that the total variation

1The formal definition of “strong spatial mixing” that we use [13, 22] requires that there be
exponential decay in the effect of a single discrepancy at the boundary of a region. If the graph has
subexponential growth (e.g., the distance-k neighborhood of a vertex grows subexponentially in k),
then this implies uniqueness.
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distance between distributions θ1 and θ2 on Ω is

dtv(θ1, θ2) =
1

2

∑
i∈Ω

|θ1(i) − θ2(i)| = max
A⊆Ω

|θ1(A) − θ2(A)|.

We can now define strong spatial mixing.
Definition 1. The spin system specified by uniform finite-volume Gibbs measures

on proper q-colorings of G has strong spatial mixing if there are constants β and β′ > 0
such that for any nonempty finite region R, any Λ ⊆ R, any vertex y ∈ ∂R, and any
pair of colorings (B,B′) of ∂R which differ only at y,

dtv(πB,Λ, πB′,Λ) ≤ β|Λ| exp(−β′d(y,Λ)),

where d(y,Λ) is the distance within R from the vertex y to the region Λ.
For a wide family of graphs, this notion of strong spatial mixing implies that there

is a unique infinite-volume Gibbs measure with exponentially decaying correlations.
For further details on this connection, see [22, 30, 31].

In order to demonstrate that there is strong spatial mixing for the systems studied
in this paper, we will consider an arbitrary finite set of vertices R and two different
colorings B and B′ of the boundary of R which differ at a single vertex y. We will
show inductively that there is a coupling of the two conditional distributions in which,
for every vertex v ∈ R, the probability of disagreement at v is exponentially small (as
a function of its distance to the boundary discrepancy).

Another issue that we address is the mixing time of Glauber dynamics for sampling
proper graph colorings. Let R be a finite region and let B be a coloring of ∂R. The
(heat-bath) Glauber dynamics is a Markov chain that can be used to sample from
S(B), the set of proper colorings that are consistent with the coloring B of ∂R. The
transition from a coloring σ ∈ S(B) is made by choosing a vertex v uniformly at
random from R and then recoloring v from the conditional distribution induced by
the colors of the neighbors of v.

A condition sufficient for the Glauber dynamics Markov chain to be connected
(i.e., any proper coloring can be obtained from another proper coloring by a series
of the transitions described) is to have q ≥ Δ + 2, where Δ is the maximum degree
of the graph. The stationary distribution of this Markov chain is πB, the uniform
distribution on S(B). In this setting, the question of interest is to determine the
mixing time, τ(δ), of the Glauber dynamics chain defined as

τ(δ) = min{t : dtv(P
(t′)(σ, ·), πB) ≤ δ ∀t′ ≥ t}.

Here P (t)(σ, ν) is the probability of moving from σ to ν in exactly t steps of the
Markov chain.

Heat-bath dynamics on larger regions is defined similarly except that a “block”
of K vertices is updated during each transition; see [13] for one example of heat-bath
dynamics on the lattice Z

2. We discuss a general version of heat-bath dynamics later
when we examine the connections between strong spatial mixing and rapid mixing
more closely.

For some graphs with subexponential growth (that is, for graphs in which the
volume of increasing balls around any vertex increases subexponentially with the
radius), it is well known that strong spatial mixing implies rapid mixing of Glauber
dynamics. For example, [13] provides a purely combinatorial proof that when G is the
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d-dimensional integer lattice Z
d, if the system has strong spatial mixing, then there

exists a finite integer K for which the heat-bath dynamics on a “cube” of side length
K mixes in O(n log n) time, where n = |R|. This result holds for the “permissive”
case, which corresponds to the restriction q > Δ+1 in our setting. As [13] observes, it
is also known for Z

d that strong spatial mixing implies O(n log n) mixing for Glauber
dynamics (see [6, 22]) though no purely combinatorial proof of this fact is known. Also,
the proofs as written may need to be modified to apply to the “zero-temperature”
(proper coloring) case. Even without using these results in the zero-temperature case,
we can deduce that Glauber dynamics mix in polynomial time (in fact, in O(n2) time)
for a general family of graphs. This can be shown by using the comparison method
of Diaconis and Saloff-Coste [7] to turn a rapid mixing result for heat-bath dynamics
(for a fixed K) into a rapid mixing result for Glauber dynamics. For an example on
the integer lattice Z

2, refer to Theorem 2 of [1] which shows rapid mixing for Glauber
dynamics on 6-colorings of square pieces of Z

2. (For convenience, the authors have
bounded the mixing time as O(n2 log n), but if one wanted to tighten the bound to
O(n2) by tuning the parameters in the comparison, this is possible; see, for example,
[11, Example 9].)

The theorems in [13] are explicitly stated for the integer lattice Z
d, but the authors

state that similar techniques apply to any lattice with subexponential growth. This
is mentioned as a footnote in [13] and is discussed more fully in [31]. We provide a
proof that strong spatial mixing implies rapid mixing of Glauber dynamics for a class
of graphs that we call neighborhood-amenable, whose definition is given below.

First, for any vertex v ∈ G and a nonnegative integer d, let Balld(v) denote the
set of vertices that are at most distance d from v. Thus we have Ball0(v) = {v}.

Definition 2. For a nonnegative integer d, let Td = supv∈G
|∂Balld(v)|
|Balld(v)| . G is

said to be neighborhood-amenable if infd Td = 0.
Neighborhood-amenability is a related, yet different, notion to amenability in

graphs.2 From the definition we can see that for a neighborhood-amenable graph,

given any real number c > 0, we can find d ≥ 0 such that |∂Balld(v)|
|Balld(v)| ≤ c, uniformly in

v, meaning that the “surface-area-to-volume” ratio of balls can be made arbitrarily
small with a suitable choice of radius d. Most natural lattices, such as the triangular
lattice and Z

k, are neighborhood-amenable.
Conditions under which we can prove rapid mixing of Glauber dynamics on

neighborhood-amenable graphs are given in Theorem 8 in section 1.3.

1.2. The framework. Our results rely on considering proper colorings of a finite
region for a pair of boundary colorings of that region that differ on the color of a single
vertex. First, we outline the general framework in which we operate.

Let G denote an infinite graph with maximum degree Δ. Let R be a finite
subgraph of G, and as before, define ∂R to be the boundary of R, i.e., those vertices
in G that are not in R but are joined by an edge to at least one vertex of R. First we
give the following definition.

Definition 3. A vertex-boundary pair X consists of
• a nonempty finite region RX of the graph G,
• a distinguished vertex vX in ∂RX , and

2An infinite graph G is amenable if

inf

{ |∂S|
|S|

: S is a finite and nonempty subset of V (G)

}
= 0.
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• a pair (B1
X ,B2

X) of colorings of ∂RX (using the colors Q ∪ {0}) which differ
only on the vertex vX . We require that the two colors B1

X(vX) and B2
X(vX)

are both in the set Q. That is, the two boundary colorings differ on the color
of vX , but this vertex is not an unconstrained vertex (with color 0) in either
boundary coloring.

We are interested in the effect that the difference in color at vX has on the other
vertices. Let S(B1

X) be the set of proper q-colorings of RX that are consistent with
the boundary coloring B1

X , and similarly define S(B2
X). We use πB1

X
(resp., πB2

X
) to

denote the uniform distribution on S(B1
X) (resp., S(B2

X)).
We want to construct a coupling ΨX of the distributions πB1

X
and πB2

X
, i.e., a

joint distribution on S(B1
X) × S(B2

X) that has πB1
X

and πB2
X

as its marginal distribu-
tions. For such a coupling ΨX and for each vertex f ∈ RX , we define the indicator
random variable 1ΨX ,f for the event that, when a pair of colorings is drawn accord-
ing to ΨX , the color of f differs in these two colorings. We would like to show that∑

f∈RX
E[1ΨX ,f ] is small. If this quantity is small enough for all vertex-boundary

pairs X, we can use that conclusion to infer strong spatial mixing. We can also show
rapid mixing of Glauber dynamics for a general class of graphs. One way to show that
the sum is small is to show that E[1ΨX ,f ] decreases rapidly as the distance between vX
and f grows. We give a method to construct a coupling using couplings of subgraphs
which may overlap. In the course of the proof we use what we call an ε-coupling cover
for G, whose definition follows.

Definition 4. Let G denote an infinite graph with maximum degree Δ. Fix
ε > 0. We say that G has an ε-coupling cover if for all vertex-boundary pairs X,
there is a coupling ΨX of πB1

X
and πB2

X
such that

∑
f∈RX

E[1ΨX ,f ] ≤ Δ

ε
.

Thus, if G has an ε-coupling cover, then the sum
∑

f∈RX
E[1ΨX ,f ] is small. The

precise manner in which this property is used to prove strong spatial mixing is de-
scribed in section 4 after we lay the groundwork in sections 2 and 3.

1.3. Our results. Our first main result is the following theorem.
Theorem 5. Let α be the solution to αα = e (so α ≈ 1.76322), and γ =

4α3−6α2−3α+4
2(α2−1) ≈ 0.47031. Let G denote an infinite triangle-free graph, and suppose

that for some Δ ≥ 3 the maximum degree of G is at most Δ. The spin system specified
by uniform finite-volume Gibbs measures on proper q-colorings of G has strong spatial
mixing if q > αΔ − γ.

With some additional consideration of the structure of the graph we can prove
two additional results about strong spatial mixing. Theorem 6, proven in section 5,
uses a system of recurrence relations to show strong spatial mixing. The geometry of
Z

3 plays an important role in deriving this system of recurrences. This special case
is not covered by our general result above since α · 6 − γ ≈ 10.10901.

Theorem 6. The spin system specified by uniform finite-volume Gibbs measures
on proper 10-colorings of Z

3 has strong spatial mixing.
With computational assistance, we also show another special case that is not

covered by our general theorem. (This graph has lots of triangles in it!) In this case
we again derive a system of recurrence relations to show strong spatial mixing; see
section 6 for more details.
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Theorem 7. The spin system specified by uniform finite-volume Gibbs measures
on proper 10-colorings of the triangular lattice has strong spatial mixing.

In addition to the results on strong spatial mixing, we prove a general result on
rapid mixing of Glauber dynamics for sampling proper colorings. Provided there exists
an ε-coupling cover, Glauber dynamics is rapidly mixing for neighborhood-amenable
graphs.

Theorem 8. Let G denote an infinite neighborhood-amenable graph with maxi-
mum degree Δ. Let R be a finite subgraph of G with |R| = n and B(R) denoting a
coloring of ∂(R) using the colors Q ∪ {0}. (We assume that q ≥ Δ + 2.)

Suppose there exists ε > 0 such that G has an ε-coupling cover. Then the Glauber
dynamics Markov chain on S(B(R)) is rapidly mixing and τ(δ) ∈ O(n(n + log 1

δ )).
Path coupling is used to prove this theorem. To show Theorem 8 we first ex-

amine a heat-bath Markov chain on “windows” in the graph (more specifically, small
regions of the form Balld(v) ∩R for a suitable d) and prove this chain mixes in time
O(n log n). Then using the standard technique of comparing Markov chains, we are
able to conclude that the simpler Glauber dynamics (single-vertex) chain is rapidly
mixing in time O(n2). It is for this reason that we require an ε-coupling cover for G,
since in our analysis we examine proper colorings of R that differ at a single vertex
and we need to determine what happens in a single step of the heat-bath chain.

A brief review of path coupling, the comparison method, and all the details of
the proof of Theorem 8 can be found in section 7.

In the proof of Theorem 5 we construct an ε-coupling cover (see Lemmas 15 and
20). Taking these lemmas and Theorem 8 together, we obtain the following corollary
regarding rapid mixing of Glauber dynamics; see section 7.5 for some remarks on
the “neighborhood-amenable” condition in the hypothesis of Theorem 8 and in the
corollary.

Corollary 9. Let G denote an infinite triangle-free, neighborhood-amenable
graph and suppose that for some Δ ≥ 3 the maximum degree of G is at most Δ.
Suppose q > αΔ−γ. Let R be a finite subgraph of G with |R| = n and B(R) denoting
a coloring of ∂(R) using the colors Q ∪ {0}. (We assume that q ≥ Δ + 2.)

The Glauber dynamics chain on proper colorings of R compatible with B(R) is
rapidly mixing with τ(δ) ∈ O(n(n + log 1

δ )).
Since Z

3 and the triangular lattice are neighborhood-amenable graphs, we also
obtain the following corollaries. We note that in the course of showing strong spatial
mixing for 10-colorings of Z

3 and the triangular lattice, we prove the existence of an
ε-coupling cover in each case. These results, together with Theorem 8, give us the two
corollaries below; see sections 5 and 6, respectively, for more details on the existence
of an ε-coupling cover in each case.

Corollary 10. Let R denote a finite subgraph of Z
3 with |R| = n. Let B(R)

denote a coloring of ∂R with the colors {1, . . . , 10}∪{0}; Glauber dynamics is rapidly
mixing on the set of 10-colorings compatible with B(R) and τ(δ) ∈ O(n(n + log 1

δ )).
Corollary 11. Let R denote a finite subgraph of the triangular lattice with

|R| = n. Let B(R) denote a coloring of ∂R with the colors {1, . . . , 10} ∪ {0}; Glauber
dynamics is rapidly mixing on the set of 10-colorings compatible with B(R) and τ(δ) ∈
O(n(n + log 1

δ )).

1.4. Related work. Previous papers [20, 23, 24] have used recursively-
constructed couplings to show rapid mixing and exponential decay of correlations
on trees. To apply this approach more generally (i.e., to graphs other than trees)
we need a mechanism for constructing a coupling from couplings of subgraphs (even
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though these subgraphs may overlap). Our approach (see Lemma 12) gives an upper
bound on the effect of the discrepancy at a site by summing over discrepancies at
adjacent edges (using the triangle inequality as in path coupling). The subgraphs
corresponding to these edges overlap but the triangle inequality is used a second time
to bound the quality of the resulting coupling.

The closest directly applicable result similar to ours is that of Salas and Sokal [27].
They showed that strong spatial mixing occurs whenever q > 2Δ. Given that strong
spatial mixing and rapid mixing are sometimes interchangeable (as we noted above),
it is perhaps more appropriate to compare our result with recent (stronger) results
about rapid mixing for colorings. There are lots of these results. Since our goal is to
have results which apply to lattices such as those studied in statistical physics (i.e.,
small Δ and small q) the most relevant result is the new theorem of Dyer et al. [10].
They show that if the girth of the graph is at least 5 (i.e., there are no 4-cycles or
triangles) then Glauber dynamics is rapidly mixing provided q > max(αΔ, C), where
C is an absolute constant (it depends upon q − αΔ but not upon the number of
vertices) which is at least 200. Our result (Theorem 5) can be viewed as a companion
to that one. Both results apply when q > αΔ. Ours gives strong spatial mixing when
the girth is at least 4 (and the maximum degree Δ ≥ 3). The result in [10] gives
rapid mixing when the girth is at least 5 and q ≥ C. The two results are interesting
for different, but overlapping, classes of graphs. Ours is interesting (since it implies
uniqueness of Gibbs measure and rapid mixing) even for graphs with very small degree
(all the way down to Δ = 3 and q = 6) but the applications to uniqueness and rapid
mixing apply only if the graph is neighborhood-amenable (or some similar condition).
(All natural lattices satisfy this.) The result of [10] is interesting even for graphs with
other neighborhood growth properties, but it applies only if q ≥ C.

Better results for rapid mixing are known when the degree, or the girth, is guar-
anteed to be large. (For graphs with large degree, the distribution is concentrated, so
strong results are possible.) These results include rapid mixing for q > αΔ assuming
Δ = Ω(log n) and girth of at least 4 (Hayes and Vigoda [18]), rapid mixing for q > αΔ
assuming Δ = Ω(log n) and “local sparsity” (Frieze and Vera [14]), rapid mixing for
q > (1 + ε)Δ assuming Δ = Ω(log n) and girth of at least 9 (Hayes and Vigoda [17]),
and rapid mixing for graphs with girth of at least 6 when q > max(βΔ, C ′) for some
constant C ′ and β ≈ 1.49 (Dyer et al. [10]).

Theorem 5 provides the first hand proof of strong spatial mixing for 7-colorings of
triangle-free graphs with degree of at most 4. A machine-assisted proof for the rect-
angular lattice was provided by Salas and Sokal [27] and a machine-assisted proof of
rapid mixing for triangle-free 4-regular graphs was provided by Bubley, Dyer, Green-
hill, and Jerrum [5]. Our result also shows strong spatial mixing for q = 5 and Δ = 3.
This is the first hand proof of strong spatial mixing for 5-colorings of triangle-free
graphs with degree of at most 3. A machine-assisted proof for the special case of
the hexagonal lattice was proved by Salas and Sokal [27]. They also give a machine-
assisted proof for 4-colorings of this lattice.

In section 5 we show how to improve our general technique by considering the
geometry of the lattice. The idea is to construct the recursive coupling from a system
of recurrences rather than from a single recurrence. We use the geometry of the lattice
to derive the system of recurrences. This gives us an analysis with a horizon of more
than one level of induction, which leads to improved results. We illustrate this idea
by proving strong spatial mixing for q = 10 on the lattice Z

3.
In section 6 we further extend our results using computational assistance. An idea

used to reduce the amount of computation is the notion of a “relevant” boundary pair.
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In order to reduce the search space, we want to look just at “relevant” boundary pairs,
and not at all of them. Boundary pairs induced by vertex boundaries are “relevant,”
and we can show by induction that our method recurses from relevant boundary pairs
to relevant boundary pairs of subproblems. The proof of this fact again relies on the
geometry of the lattice; see section 6 for details. Using the approach we obtain a
(machine-assisted) proof of strong spatial mixing (and therefore, uniqueness of the
infinite-volume Gibbs measure) for q = 10 on the triangular lattice. This improves
an earlier result of Salas and Sokal [27] which used a machine-assisted proof to show
strong spatial mixing for q = 11. Our approach can also be used to show (with
computational assistance) strong spatial mixing for q = 6 on the rectangular lattice.
This gives an alternative proof of the result of Achlioptas, Molloy, Moore, and Van
Bussel [1] (which was also proved with machine assistance).

As we have previously mentioned, by using standard techniques our results can
be used to show rapid mixing for Glauber dynamics for a wide class of graphs; see
section 7 for full details.

2. Exponential decay and edge discrepancies. Let R be a nonempty finite
region of the graph. For most of the technical part of this paper it will be conve-
nient to consider the edge-boundary of R rather than the boundary ∂R of vertices
surrounding R. Here is the notation that we will use. The boundary of the region R
is the collection of all edges that have exactly one endpoint in R. A coloring of the
boundary is a function from the set of edges in the boundary to the set {0} ∪Q.

Let R be a finite region and let B be a coloring of its boundary. A coloring C
of R is said to be proper if

• adjacent vertices in R receive different colors, and
• vertices in R receive colors different from adjacent boundary edges.

Let S(B) denote the set of proper colorings of R and let πB be the uniform distribution
on S(B). We will be interested in studying how much S(B) varies when we change the
boundary coloring B by recoloring a single edge. This small change to the boundary
is formalized in the following notation.

A boundary pair X consists of
• a nonempty finite region RX of the graph,
• a distinguished edge sX on the boundary of RX , and
• a pair (BX , B′

X) of colorings of the boundary of RX which differ only on the
edge sX . We require that the two colors BX(sX) and B′

X(sX) are both in Q.
That is, the two boundary colorings differ on the coloring of edge sX , but this
edge is not an unconstrained edge (with color 0) in either boundary coloring.

For any boundary pair X, we define fX to be the endpoint of sX that is in RX

and wX to be the other endpoint of sX . Let EX be the set of edges which connect fX
to another vertex in RX . A coupling Ψ of πBX

and πB′
X

is a distribution on S(BX)×
S(B′

X) which has marginal distributions of πBX
and πB′

X
. For such a coupling Ψ,

we define 1Ψ,f to be the indicator random variable for the event that, when a pair of
colorings is drawn from Ψ, the color of f differs in these two colorings.

For any boundary pair X we define ΨX to be some coupling of πBX
and πB′

X

minimizing E[1Ψ,fX ]. For every pair of colors c and c′, let pX(c, c′) be the probability
that, when a pair of colorings (C,C ′) is drawn from ΨX , fX is colored with color c
in C and with color c′ in C ′.

Suppose that X is a boundary pair and that f is a vertex in RX . Let d(f, sX)
denote the distance within RX from f to sX . Thus, d(fX , sX) = 1, and if vertex f in
RX adjoins fX , then d(f, sX) = 2 and so on.
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A main objective is to prove that the effect of the discrepancy at the boundary
edge sX decays exponentially with the distance from sX (see Lemma 19). In order
to do this, we use a recursive coupling (Lemma 12). The technique in Lemma 12
does not require that the graph be triangle-free—the general technique should also be
applicable to models other than colorings.

To aid our analysis, we define a labelled tree TX associated with each boundary
pair X. The tree TX is constructed as follows. Start with a vertex r which will be
the root of TX . For every pair of colors c ∈ Q and c′ ∈ Q, add an edge labelled
(pX(c, c′), fX) from r to a new node rc,c′ . If EX is empty, rc,c′ is a leaf. Otherwise,
let e1, . . . , ek be the edges in EX . For each i ∈ {1, . . . , k}, let Xi(c, c

′) be the boundary
pair consisting of

• the region RX − fX ;
• the distinguished edge ei;
• the coloring B of the boundary of RX − fX that

– agrees with BX on common edges,
– colors e1, . . . , ei−1 with color c′, and
– colors ei, . . . , ek with color c; and

• the coloring B′ that agrees with B except that it colors ei with color c′.

Recursively construct TXi(c,c′), the tree corresponding to boundary pair Xi(c, c
′).

Add an edge with label (1, ·) from rc,c′ to the root of TXi(c,c′). That completes the
construction of TX .

We say that an edge e of TX is degenerate if the second component of its label
is “·”. For edges e and e′ of TX , we write e → e′ to denote the fact that e is an
ancestor of e′. That is, either e = e′ or e is a proper ancestor of e′. Define the level
of edge e to be the number of nondegenerate edges on the path from the root down
to, and including, e. Suppose that e is an edge of TX with label (p, f). We say that
the weight w(e) of edge e is p. Also the name n(e) of edge e is f . The likelihood (e)
of e is

∏
e′:e′→e w(e). The cost γ(f, TX) of a vertex f in TX is

∑
e:n(e)=f (e).

Lemma 12. For every boundary pair X there exists a coupling Ψ of πBX
and

πB′
X

such that, for all f ∈ RX , E[1Ψ,f ] ≤ γ(f, TX).

Proof. The coupling Ψ is constructed recursively in the same manner as the
tree TX , where at each stage the discrepancy at a given vertex is broken into discrep-
ancies at single edges, so at every stage of the recursion we need only consider a pair
of colorings with a discrepancy at a single edge (i.e., a boundary pair).

Let (C,C ′) denote the random variable corresponding to a pair of colorings
from Ψ. If |RX | = 1, then Ψ = ΨX . Otherwise, let e1, . . . , ek be the edges in EX , i.e.,
those that are adjacent both to fX and to another vertex in RX . We will use ΨX to
couple the coloring of vertex fX and we will recursively construct a different coupled
coloring of the other vertices in RX . We will assign C(fX) = c and C ′(fX) = c′ with
probability pX(c, c′).

Let X(c, c′) be an “extended boundary pair” consisting of

• the region RX − fX ;
• the coloring Bc of the boundary of RX −fX that agrees with BX on common

edges and colors edges in EX with color c; and
• the coloring Bc′ of the boundary of RX−fX that agrees with BX on common

edges and colors edges in EX with color c′.

We can complete the coupling Ψ by constructing (for each c and c′) a coupling Ψc,c′

of πBc and πBc′ . (The reader may verify that this ensures that the marginal dis-
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tributions of Ψ are correct.) The particular choice that we make for Ψc,c′ is either
the perfect coupling if c = c′ or, if c �= c′, the composition3 of Ψ1(c, c

′), . . . ,Ψk(c, c
′),

where Ψi(c, c
′) is a recursively-constructed coupling for boundary pair Xi(c, c

′).
We will now show that, for all f ∈ RX , E[1Ψ,f ] ≤ γ(f, TX). The proof is by

induction on |RX |. If f = fX , then E[1Ψ,f ] = γ(f, TX) by the construction of Ψ
and TX . This handles the base case, |RX | = 1. Suppose f �= fX and |RX | > 1. Then

E[1Ψ,f ] =
∑
c,c′

pX(c, c′)E[1Ψc,c′ ,f ] ≤
∑
c,c′

pX(c, c′)
k∑

i=1

E[1Ψi(c,c′),f ]

≤
∑
c,c′

pX(c, c′)
k∑

i=1

γ(f, TXi(c,c′)) = γ(f, TX),

where the second inequality uses the inductive hypothesis.
Suppose that X is a boundary pair. Lemma 12 ensures that there is a coupling

of πBX
and πB′

X
with substantial agreement as long as, for most vertices f ∈ RX ,

γ(f, TX) is small. A key ingredient from the construction of TX which affects γ(f, TX)
is the quantity E[1ΨX ,fX ], which we denote ν(X). (Thus, ν(X) = minΨ E[1Ψ,fX ],
where the minimum is over all couplings Ψ of πBX

and πB′
X

.) An important part of
our method is to determine good upper bounds on ν(X).

Let d = BX(sX) and d′ = B′
X(sX). Let Q′ = Q − {d, d′}. For c �= d, let nc(X)

denote the number of colorings in S(BX) which color fX with color c. Let nd(X)
denote the number of colorings in S(B′

X) which color fX with color d. Let N(X) =∑
c∈Q′ nc(X). Define μ(X) to be the maximum of the probabilities PrπBX

(fX = d′)
and PrπB′

X

(fX = d). That is,

μ(X) =
max(nd(X), nd′(X))

N(X) + max(nd(X), nd′(X))
.

We use the following straightforward lemma to derive upper bounds on ν(X).
Figure 1 is an illustration of part (ii) of this lemma. The basic idea is to pick a
subregion R′ that contains the vertex fX . Compute the maximum value of μ for that
subregion, where we maximize over colorings of the boundary of R′ that agree with
B(R) on the common overlap of these boundaries. This maximum value is an upper
bound for ν(X).

Lemma 13. Suppose that X is a boundary pair. Let R′ be any subset of RX

which includes fX . Let χ be the set of boundary pairs X ′ = (RX′ , sX′ , BX′ , B′
X′) such

that RX′ = R′, sX′ = sX , BX′ agrees with BX on common edges, and B′
X′ agrees

with B′
X on common edges. Then ν(X) ≤ maxX′∈χ μ(X ′).

Proof. We will show that
(i) ν(X) ≤ μ(X) and
(ii) μ(X) ≤ maxX′∈χ μ(X ′).
Let X be a boundary pair. To shorten the notation we will use nc to denote nc(X)

and N to denote N(X). Let d = BX(sX) and d′ = B′
X(sX). Let Q′ = Q− {d, d′}.

3The composition that we have in mind is the natural one—to choose a pair (σ0, σk) from Ψc,c′

first choose (σ0, σ1) from Ψ1(c, c′). Say σ0 = x0 and σ1 = x1. Then choose (σ1, σ2) from the
conditional distribution of Ψ2(c, c′), conditioned on σ1 = x1. Say that σ2 = x2. Now choose (σ2, σ3)
from the conditional distribution of Ψ3(c, c′) conditioned on σ2 = x2, and so on. This is the same
as the composition that occurs in path coupling [4].
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fX

wX
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RX

R′
fX

wX

sX

Fig. 1. Fix a subregion R′ containing fX . Then maximize μ(X′) over boundary colorings of
R′ that agree with B(R) on the overlapping part of the boundary.

For (i), we can construct a coupling Ψ of πBx and πB′
X

which matches N colorings,
each of which occurs with probability of at least

1

max(|S(BX)|, |S(B′
X)|)

=
1

N + max(nd, nd′)
.

Thus,

ν(X) ≤ 1 −
N

N + max(nd, nd′)
= μ(X).

(In fact, ν(X) = μ(X), but we will not need this fact.)
Part (ii) will follow from the fact that PrπBX

(fX = d′) is a convex combination
of PrπB

X′ (fX = d′) for X ′ ∈ χ and that PrπB′
X

(fX = d) can be decomposed similarly.

Let W = RX − RX′ . Let H be the set of colorings of W . For c �= d and ρ ∈ H,
let nc,ρ denote the number of colorings in S(BX) which color fX with color c and W
with coloring ρ. For ρ ∈ H, let nd,ρ denote the number of colorings in S(B′

X) which
color fX with color d and W with coloring ρ. Let Nρ =

∑
c∈Q′ nc,ρ. Then

μ(X) = 1 − N

N + max(nd, nd′)

= 1 −
∑

ρ∈H Nρ∑
ρ∈H Nρ + max(

∑
ρ∈H nd,ρ,

∑
ρ∈H nd′,ρ)

≤ 1 −
∑

ρ∈H Nρ∑
ρ∈H Nρ +

∑
ρ∈H max(nd,ρ, nd′,ρ)

=

∑
ρ∈H max(nd,ρ, nd′,ρ)∑

ρ∈H(Nρ + max(nd,ρ, nd′,ρ))

≤ max
ρ∈H

max(nd,ρ, nd′,ρ)

Nρ + max(nd,ρ, nd′,ρ)

= max
ρ∈H

μ(X ′),

where X ′ is the boundary pair that is induced by ρ.

3. Bounding μ(X). In this section we show how to bound μ(X) for triangle-
free graphs with sufficiently many colors. So that we can separate the task of bounding
μ(X) from the task of showing strong spatial mixing, we define the notion of “ε-good.”
Informally, the number of colors q will be ε-good for a graph G (for some ε ∈ (0, 1))
whenever we can show strong spatial mixing for q-colorings of G.
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Definition 14. Suppose ε ∈ (0, 1). We will say that the number of colors, q, is
ε-good for the graph G if

μ(X) ≤ 1

max(1, r)

(
1

1 + ε

)

for every boundary pair X in which RX consists of a node fX plus r ≥ 0 neighbors
y1, . . . , yr of fX .

The purpose of this section is to prove Lemma 15 given below, which enables
us to establish strong spatial mixing whenever q > αΔ − γ. The basic idea of the
lemma is as follows. Consider a triangle-free region RX and boundary condition BX .
Suppose that the region contains sufficiently many neighbors of a vertex fX , which
is adjacent to the boundary. Then we derive an upper bound on the probability, in
the equilibrium distribution, that fX is assigned a particular color (in particular, the
color d′ from the definition of μ(X)).

Lemma 15. Let α be the solution to αα = e (so α ≈ 1.76322), and γ =
4α3−6α2−3α+4

2(α2−1) ≈ 0.47031. Suppose that the graph G is triangle-free and that for some

Δ ≥ 3 the maximum degree of G is at most Δ. If q ≥ αΔ − γ + αε(Δ − 1), then q is
ε-good for G.

We prove Lemma 15 by reducing to the case in which RX contains only fX and
its neighbors. We then use the fact that the graph has no triangles to count the
number of colorings as a product. This leaves us with an optimization problem, the
solution of which gives the result. Before we can prove Lemma 15, it helps to prove
a preliminary lemma.

Lemma 16. Let r, q,Δ be integers satisfying q > Δ > r ≥ 2. Define p =
q − Δ + 1 ≥ 2. Consider a set of {0, 1}-variables {δc,j : 1 ≤ c ≤ q; 1 ≤ j ≤ r} and
an integer q′, subject to the bounds

sj =

q∑
c=1

δc,j ≥ p for 1 ≤ j ≤ r, q ≥ q′ ≥ p + r.

Define

nc =

r∏
j=1

(sj − δc,j) for 1 ≤ c ≤ q′, and Z =

q′∑
c=3

nc/n1.

Then a minimal value of Z is attained by taking q′ = p + r and some choice of δ’s
such that sj = p for all j and δc,j = 0 if c �∈ {3, . . . , q′}.

Proof. The choice q′ = p + r is clearly optimal. Fix some j and consider the
dependence of Z on δc,j for all c, 1 ≤ c ≤ q′. For some positive a1, . . . , aq′ , we can
write

Z =

q′∑
c=3

ac(sj − δc,j)

a1(sj − δ1,j)
.

We now suppose that Z is minimal and derive the properties claimed. First, we can
ensure that δc,j = 0 for c �∈ {3, . . . , q′}. If any of these values δc,j is positive, we can
set it to zero without increasing Z. If sj had been at its lower bound of p, then we
can restore this value by increasing δc,j from 0 to 1 for some c ∈ {3, . . . , q′}. Note
that such a c exists since q′ − 2 ≥ p.
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Now n1 = a1sj (since δ1,j = 0), and

Z =

q′∑
c=3

ac
a1

(
1 − δc,j

sj

)
= A− 1

a1

∑q′

c=3 acδc,j∑q′

c=3 δc,j
, where A =

q′∑
c=3

ac
a1

.

Since
∑q′

c=3 acδc,j/
∑q′

c=3 δc,j is the average of sj of the a’s, a maximal value for
this quotient can be obtained by taking sj = p, i.e., as small as possible, and selecting
a set of p largest a’s with the corresponding δ’s.

Here is the proof of Lemma 15.
Proof. We will show that q is ε-good for G, assuming that q ≥ αΔ−γ+εα(Δ−1).

Again, let p = q − Δ + 1.
Suppose that X is a boundary pair in which RX consists of a node fX plus r ≤ 1

neighbors. By Part (ii) of Lemma 13, μ(X) ≤ maxX′ μ(X ′), where X ′ is a boundary
pair containing fX only. The numerator of μ(X ′) is at most 1. The denominator is at
least q−Δ, so μ(X) ≤ 1/(q−Δ). Now we have q−Δ ≥ (α−1)Δ−γ+εα(Δ−1) > 1+ε
for Δ ≥ 3, so μ(X) < 1/(1 + ε).

For a boundary pair X we will use the notation μ1(X) to denote n1(X)/(N(X)+
n1(X)); define μ2(X) similarly. We will show that, for every boundary pair X in
which RX consists of a node fX plus r > 1 neighbors y1, . . . , yr of fX , we have
μ1(X) ≤ 1

r ( 1
1+ε ). By symmetry, every such pair has the same upper bound on μ2(X)

and therefore on μ(X).
Suppose without loss of generality that BX(sX) = 1 and B′

X(sX) = 2. Let K
be the set of all colors which BX assigns to neighbors of fX other than sX . We can
assume without loss of generality that color 1 is not in K. Otherwise, μ1(X) = 0.
Let δc,j be the Boolean indicator variable which is 0 if color c is used at a neighbor
of yj in the boundary of RX . Let Q′ = Q−K.

Now for every c ∈ Q − Q′ we have nc(X) = 0. Since the graph is triangle-free,
every c ∈ Q′ satisfies nc(X) =

∏r
j=1(sj − δc,j), where sj =

∑q
c=1 δc,j . Thus,

1

μ1(X)
− 1 =

∑q
c=3 nc(X)

n1(X)
=

∑
c∈Q′−{1,2} nc(X)

n1(X)
.

Without loss of generality, we can assume that the colors in Q′ − {1, 2} are colors
3, . . . , q′, for some q′, so we have

1

μ1(X)
− 1 =

∑q′

c=3 nc(X)

n1(X)
.(1)

We are now in the framework of Lemma 16. We have the constraints sj ≥ p since the
degree of yj is at most Δ, and q′ ≥ p+r since q′−2 = |Q′−{1, 2}| ≥ q−2−(Δ−(r+1)).
Let Z be the right-hand side of (1). Z is minimized by taking q′ = p + r and some
choice of δ’s such that sj = p for all j and δc,j = 0 if c �∈ {3, . . . , q′}. Writing
mc =

∑r
j=1 δc,j and plugging in nc(X) =

∏r
j=1(sj − δc,j), we have

1

μ1(X)
− 1 = Z ≥

q′∑
c=3

r∏
j=1

(
1 − δc,j

p

)

=

q′∑
c=3

(
1 − 1

p

)mc

,(2)
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where
∑q′

c=3 mc =
∑r

j=1 sj = rp, and q′ − 2 = p + r − 2 ≥ p.
Our goal is to derive a lower bound for (Z + 1)/r with respect to r and the mc’s.

Let S denote the expression (2) for an arbitrary choice of mc’s, and consider the effect
of increasing r by 1. The sum of the mc’s is increased by p and the number of them,
q′, is increased by 1. One possibility is to leave the existing mc’s unchanged and add
the extra term (1 − 1/p)p, corresponding to the new mc. To show that the lower
bound given by minimizing (S + 1)/r with respect to the mc’s is decreasing in r, it is
sufficient to verify that

S + 1

r
≥

S + 1 +
(
1 − 1

p

)p

r + 1
, i.e., S + 1 ≥ r

(
1 − 1

p

)p

.

The expression S is minimized by taking the mc’s as equal as possible, so

S ≥ (q′ − 2)

(
1 − 1

p

) rp

q′−2

≥ r

(
1 − 1

p

)p

,

since q′ − 2 ≥ r. Thus the smallest lower bound that we get is derived from the
expression S with r taking its maximum value of Δ−1 (so q′ = q) and the mc’s being
taken as nearly equal as possible subject to integrality constraints. The same bound
holds for other choices of r and the mc’s.

We therefore define

J(q,Δ) = (q− 2− v)

(
1 − 1

p

)u

+ v

(
1 − 1

p

)u+1

= (q− 2)

(
1 − 1

p

)u (
1 − v

(q − 2)p

)
,

where u = �(Δ − 1)p/(q − 2) and v = (Δ − 1)p mod (q − 2), and also define

J ′(q,Δ) = (q − 2)

(
1 − 1

p

) p(Δ−1)
q−2

.

Note that J ≥ J ′, since J and J ′ are minimizations with and without the constraint
of integral mc’s, respectively. We have Z ≥ J(q,Δ) ≥ J ′(q,Δ). To prove that q is
ε-good we need to show that Z/(Δ − 1) ≥ 1 + ε− 1/(Δ − 1). For the current lemma
we just use the simpler expression J ′ in the proof. (We observe later that by using
the inequality based on J we may obtain a slight improvement for the lower bound
on q for some values of Δ; see the remark following Theorem 5 on page 18.)

Define x = 1 − (q − 2)/(α(Δ − 1)), so that

J ′(q,Δ)

Δ − 1
= α(1 − x)

(
1 − 1

p

) p
α(1−x)

.

We use two simple inequalities.
Lemma 17.

(i) − ln(1 − x) ≤ x
1−x for −∞ < x < 1.

(ii) −p ln
(
1 − 1

p

)
< 1 + 1

2(p−1) for p > 1.

Proof. For (i), let f(x) = x/(1 − x) + ln(1 − x), so that f(0) = 0. Since df/dx =
x/(1 − x)2 has the sign of x, the inequality holds. For (ii), it is enough to compare
the power series expansions in 1/p.
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Note that

p− 1 = q − Δ > αΔ − γ − Δ > (α− 1)(Δ − 1).(3)

Applying Lemma 17, the equality α lnα = 1, and inequality (3), we then derive

ln

(
J ′(q,Δ)

Δ − 1

)
= lnα + ln(1 − x) +

p

α(1 − x)
ln

(
1 − 1

p

)
> lnα− x

1 − x
−

1 + 1
2(p−1)

α(1 − x)

=
α lnα (1 − x) − αx− 1 − 1

2(p−1)

α(1 − x)
=

−(α + 1)x− 1
2(p−1)

α(1 − x)

>
−(α + 1)x− 1

2(α−1)(Δ−1)

α(1 − x)
=

α + 1

α
−

α + 1 + 1
2(α−1)(Δ−1)

α(1 − x)
.(4)

Since

1 − x =
q − 2

α(Δ − 1)
=

q − αΔ + γ

α(Δ − 1)
+

α(Δ − 1) − (2 + γ − α)

α(Δ − 1)
≥ ε + 1 − 2 + γ − α

α(Δ − 1)
,

we may write w = 1/(Δ − 1) and give the following lower bound for the right-hand
side of (4):

α + 1

α
−

α+1
α + w

2α(α−1)

1 + ε− (2+γ−α)w
α

= A− B(ε)

C(ε) −Dw
= F (ε, w), say,

where

B(ε) =
α + 1

α
+

1 + ε

2(α− 1)(2 + γ − α)
> 0, A = B(0), C(ε) = 1+ε, and D =

2 + γ − α

α
.

Our remaining goal in proving that q is ε-good is to show that

F (ε, w) ≥ ln(1 + ε− w), for 0 ≤ ε ≤ 1, and 0 < w ≤ 1/2.(5)

We first show that

∂(F − ln(1 + ε− w))

∂w
= − DB(ε)

(C(ε) −Dw)2
+

1

1 + ε− w
> 0.

Since 1+ε−w > 0, this is equivalent to checking that (C(ε)−Dw)2−(1+ε−w)DB(ε) >
0. Numerically, this polynomial in ε and w is approximately

0.6285ε2 + (0.6285 − 0.4305w)ε + 0.1980w + 0.1608w2,

which is clearly positive4 since w ≤ 0.5. The constant term

C(0)2 −DB(0) =
4α3 − 6α2 − 3α + 4 − 2γ(α2 − 1)

2α2(α− 1)

is zero by the choice of γ. It is sufficient therefore to verify the inequality (5) for
w = 0.

4To verify formally that the expression is positive, one can derive upper and lower bounds on
the coefficients using upper and lower bounds on α.
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To show that F (ε, 0) − ln(1 + ε) ≥ 0, we first verify that the second derivative is
negative, and then merely check the inequality at the extreme values, ε = 0, 1.

However,

d2

dε2
(F (ε, 0) − ln(1 + ε)) =

d2

dε2

(
α + 1

α

(
1 − 1

1 + ε

)
− ln(1 + ε)

)

= −α + 1

α

2

(1 + ε)3
+

1

(1 + ε)2
=

−2(α + 1) + α(1 + ε)

α(1 + ε)3
< 0,

F (0, 0) − ln 1 = 0, and F (1, 0) − ln(1 + 1) =
α + 1

2α
− ln 2 ≈ 0.0904 > 0.

This completes the verification.

We now show how to use Lemma 15 to prove that the effect of a discrepancy at
the boundary edge sX decays exponentially with the distance from sX .

Let X be a boundary pair. For any d ≥ 1, let Ed(X) denote the set of level-d
edges in TX . Let Γd(X) =

∑
e∈Ed(X) (e). In Lemma 18 below we show that Γd(X) is

exponentially small in d. Say that a boundary pair X is in Ni (for i ∈ {0, . . . ,Δ−1})
if exactly i of the neighbors of fX are in RX . Let Γd be the maximum of Γd(X),
maximized over all boundary pairs X.

Lemma 18. Suppose that q is ε-good for G. Then for every boundary pair X and
any d ≥ 1, Γd(X) ≤ (1 + ε)−d.

Proof. The proof is by induction on d. For the base case, d = 1, note that
for any boundary pair X, Γ1(X) ≤ ν(X). Now apply Lemma 13 with R′ = {fX},
and by the given upper bound on μ(X) (and the definition of ε-good), we find that
ν(X) ≤ 1/(1 + ε). For the inductive step, suppose that X ∈ Nr. Then using the
definition of ε-good again (and Lemma 13), we see that Γd(X) ≤ ν(X) · r ·Γd−1.

Lemma 19. Suppose that q is ε-good for G. Then for every boundary pair X
there exists a coupling Ψ of πBX

and πB′
X

such that, for all f ∈ RX ,

E[1Ψ,f ] ≤ 1

ε
(1 + ε)

−d(f,sX)+1
.

Furthermore,

∑
f∈RX

E[1Ψ,f ] ≤ 1

ε
.

Proof. By Lemma 12, E[1Ψ,f ] ≤ γ(f, TX). Furthermore, γ(f, TX) =
∑

e:n(e)=f (e),

which is at most
∑

d≥d(f,sX) Γd(X). By Lemma 18, this is at most

∑
d≥d(f,sX)

(1 + ε)
−d

= (1 + ε)
−d(f,sX)

∑
d≥0

(1 + ε)
−d

= (1 + ε)
−d(f,sX) 1 + ε

ε
.

Similarly,

∑
f∈RX

E[1Ψ,f ] ≤
∑

f∈RX

γ(f, TX) =
∑

f∈RX

∑
e:n(e)=f

(e) =
∑

e:n(e)∈RX

(e) =
∑
d≥1

Γd(X).
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4. Exponential decay, vertex discrepancies, and strong spatial mixing.
Lemma 19 shows that the effect of a discrepancy at a boundary edge decays exponen-
tially with the distance from that edge. In this section we show that the same holds
for a discrepancy at a boundary vertex. This enables us to show that the collection
of finite-volume Gibbs measures corresponding to the uniform distribution on proper
colorings has strong spatial mixing.

A vertex-boundary pair X consists of
• a nonempty finite region RX of the graph;
• a distinguished vertex vX in ∂RX ; and
• a pair (BX ,B′

X) of colorings of ∂R which differs only on vertex vX . We
require that the two colors BX(vX) and B′

X(vX) are both in Q. That is, the
two boundary colorings differ on the color of vertex vX , but this vertex is not
an unconstrained vertex (with color 0) in either boundary coloring.

Let d(f, vX) be the distance within RX from a vertex f to vertex vX .
Lemma 20. Suppose that q is ε-good for a graph G with degree at most Δ. For

every vertex-boundary pair X there is a coupling Ψ of πBX
and πB′

X
such that, for all

f ∈ R,

E[1Ψ,f ] ≤ Δ
1

ε
(1 + ε)

−d(f,vX)+1
.

Furthermore, ∑
f∈RX

E[1Ψ,f ] ≤ Δ

ε
.

Proof. This follows from Lemma 19 using a union bound by breaking the difference
in a single vertex into the sum of differences in the edges that bound it. Let e1, . . . , ek
be the boundary edges of RX that are adjacent to vX . Let Xi be the boundary pair
consisting of the region RX , the distinguished edge ei, a coloring B of the boundary
of RX that agrees with BX except that edges e1, . . . , ei−1 are colored with color
B′
X(vX) and ei, . . . , ek are colored with color BX(vX), and a coloring B′ that is the

same as B except that it colors ei with color B′
X(vX). We construct a coupling of

πBX
and πB′

X
by composing couplings Ψ1, . . . ,Ψk of X1, . . . , Xk. Now

E[1Ψ,f ] ≤
k∑

i=1

E[1Ψi,f ].

Corollary 21. Suppose that q is ε-good for the graph G, and that the maximum
degree, Δ, of G is bounded. Then the system specified by uniform finite-volume Gibbs
measures on proper q-colorings of G has strong spatial mixing.

Proof. Using Definition 1, we wish to show that there are constants β and β′ > 0
such that for any vertex-boundary pair X and any Λ ⊆ RX ,

dtv(πBX ,Λ, πB′
X
,Λ) ≤ β|Λ| exp(−β′d(vX ,Λ)).

The total variation distance of πBX ,Λ and πB′
X
,Λ is at most the probability that the in-

duced colorings differ in the coupling Ψ from Lemma 20. This is at most
∑

f∈Λ E[1Ψ,f ].
As in the proof of Lemma 20, Ψ is the composition of Ψ1, . . . ,Ψk. Following the proof
of Lemma 19,∑

f∈Λ

E[1Ψi,f ] ≤
∑

e:n(e)∈Λ

(e) ≤
∑

d≥d(vX ,Λ)

Γd(X) ≤ 1

ε
(1 + ε)

−d(vX ,Λ)+1
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so the total variation distance is at most

Δ

ε
(1 + ε)

−d(vX ,Λ)+1
.

Now we can take β = Δ(1+ε)
ε and β′ = log(1 + ε).

Remark. Note that the |Λ| factor is not crucial in the definition of strong spatial
mixing. In particular, our upper bound on the total variation distance does not use
this factor.

Combining Corollary 21 with Lemma 15 we get the following result.
Theorem 5. Let α be the solution to αα = e (so α ≈ 1.76322), and γ =

4α3−6α2−3α+4
2(α2−1) ≈ 0.47031. Let G denote an infinite triangle-free graph, and suppose

that for some Δ ≥ 3 the maximum degree of G is at most Δ. The spin system specified
by uniform finite-volume Gibbs measures on proper q-colorings of G has strong spatial
mixing if q > αΔ − γ.

Remark. In the proof of Lemma 15 we show that the simple bound of q ≥
αΔ − γ + αε(Δ − 1) is sufficient to guarantee that (J ′(q,Δ) + 1)/(Δ − 1) ≥ 1 + ε,
which yields ε-goodness since 1/μ1(X) − 1 = Z ≥ J(q,Δ) ≥ J ′(q,Δ). However,
for any particular value of Δ we may use the bounds (J(q,Δ) + 1)/(Δ − 1) − 1 ≥
(J ′(q,Δ) + 1)/(Δ − 1) − 1 ≥ ε directly.

For example, with Δ = 4 and q = 7, Lemma 15 gives ε-goodness for ε ≈ 0.079,
whereas the direct use of J ′ or J give values of about 0.169 or 0.177, respectively.

Of a little more interest are the rather sparse cases where the direct inequalities
give a reduced value of q. Strong spatial mixing can be shown for q = �αΔ − γ for
Δ = 19, 36, 74, 357, 2380, 148264, 686821, . . . . In the two cases, Δ = 19, 74, the bounds
of q = 33, 130, respectively, require the use of J (with its integral constraints) rather
than just J ′.

5. Using the geometry of the lattice. In this section we consider the lattice
Z

3. This is a triangle-free graph with degree 6, so Theorem 5 gives strong spatial
mixing for q ≥ 11. We will exploit the geometry of the lattice to show strong spatial
mixing for q = 10. The idea is to use the geometry to derive a system of recurrences
and to use these recurrences to construct the coupling.

We start by recording some upper bounds on μ(X). Let μ′ = 125/589 and let
μ′′ = 625/3121. The following corollary follows from the proof of Lemma 15.

Corollary 22. Suppose X is a boundary pair in which RX consists of a node fX
plus r ≥ 0 neighbors y1, . . . , yr of fX . If r = 0, then μ(X) ≤ 1/4. If r = 4, then
μ(X) ≤ μ′. If r = 5, then μ(X) ≤ μ′′.

Proof. The r = 0 case follows from the fact that μ(X) ≤ 1/(q − Δ) = 1/4. For
the other cases, we use the same reasoning that we used in the proof of Lemma 15
to determine J(q,Δ). Let q′ = q − Δ + 1 + r, u = � rp

q′−2 and v = rp mod (q′ − 2).

(These are the same as the definitions in the proof of Lemma 15 except that there we
specialized to r = Δ − 1 so we had q′ = q.) Let h(q,Δ, r) be the sum of the q′ − 2
terms in (2) when we minimize by making the mc’s as equal as possible. Namely,

h(q,Δ, r) = (q′ − 2 − v)

(
1 − 1

p

)u

+ v

(
1 − 1

p

)u+1

.

It follows from (2) and from the argument in the proof of Lemma 15 that

μ(X) ≤ 1

1 + h(q,Δ, r)
.
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Fig. 2. Configurations in U with y �∈ RX , or those in V with z �∈ RX .

The values can then be calculated directly.
We would like to use the bounds in Corollary 22 to prove that Γd(X) is exponen-

tially small in d. The proof in Lemma 18 uses the following simple recursive idea. If
X ∈ Nr, then Γd(X) ≤ ν(X) · r ·Γd−1. This idea suffices if our upper bound on ν(X)
is less than 1/r. This is not the case for the bounds in Corollary 22. However, it is
a bit pessimistic to assume that all of the r recursive subproblems correspond to the
worst recursive case Γd−1. Using the geometry of the lattice, we can keep track of the
recursion and do better.

We start by defining some sets of boundary pairs.
We will say that a boundary pair is in the set U if either of the following conditions

hold:
• Either X ∈ N1 ∪N2 ∪N3; or
• X ∈ N4 and the following is true. Let y be the neighbor of fX that is not

in RX and is not equal to wX . We require that the vertices wX and y differ
in exactly two coordinates (in 3-dimensional space); see Figure 2.

We will say that a boundary pair is in the set V if the following condition holds:
There is a vertex z �∈ RX and a vertex y �= wX such that z ∼ wX (meaning z is
adjacent to wX) and z ∼ y ∼ fX ; see Figure 2 again for the relevant configurations.
Note that the subsets U and V of boundary pairs depend only on RX and sX (they
do not depend on BX or B′

X). Let Ud = maxX∈U Γd(X) and Vd = maxX∈V Γd(X).
The next lemma follows from the geometry of the lattice.

Lemma 23. Suppose that q = 10 and G is Z
3. Suppose d > 1. Then

Γd ≤ max

(
4μ′Γd−1, μ

′′(Γd−1 + 4Vd−1),
3

4
Γd−1

)
,

Ud ≤ max

(
μ′(Γd−1 + 3Vd−1),

3

4
Γd−1

)
,

Vd ≤ max

(
4μ′Γd−1, μ

′′(Ud−1 + 4Γd−1),
3

4
Γd−1

)
.

Proof. Consider a boundary pair X. If X ∈ N1 ∪ N2 ∪ N3, then Γd(X) ≤
ν(X) · 3 · Γd−1. By Lemma 13 and Corollary 22 (with r = 0), ν(X) ≤ 1/4, so
Γd(X) ≤ 3

4Γd−1 and one of the inequalities on Γd is satisfied. If X ∈ N4, then
applying Corollary 22 with r = 4 we get Γd(X) ≤ μ′4Γd−1, and the upper bound on
Γd is satisfied. Otherwise, X is in N5. Using the definition of V , we can deduce that

Γd(X) ≤ ν(X)(Γd−1 + 4Vd−1),(6)

which gives us the other bound on Γd (using Corollary 22 with r = 5). To see that
inequality (6) is satisfied, let y be any of the 4 neighbors of fX in RX such that y
and wX differ on two coordinates. Now consider the recursive problem in which fX
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becomes the new wX and y becomes the new fX . The original wX becomes the (new)
z in the definition of V . So this recursive problem is in V .
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Fig. 3. The basic recursion step for a configuration.

Next, consider a boundary pair X ∈ U . We wish to show that the inequality on
Ud is satisfied. This is straightforward if X ∈ N1 ∪ N2 ∪ N3, so suppose that X is in
N4. Let y denote the vertex in the definition of U . (So y is not in RX and y and wX

differ in exactly two coordinates.) Using the definition of V , we can deduce that

Γd(X) ≤ ν(X)(Γd−1 + 3Vd−1),

giving one of the upper bounds on Ud. (To see this, let y′ be one of the three neighbors
of fX in RX that differs from y in two coordinates. Note that the subproblem moving
from fX to y′ is in V ; see Figure 4.)
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Fig. 4. The recursion step for a configuration in U .

Finally, consider a boundary pair X ∈ V . The inequality for Vd is similar to that
for Γd except when X ∈ N5. In this case, let z and y be the vertices in the definition
of V . Now note that the subproblem moving from fX to y is in U . This gives the
third equation.

Here is the analogy of Lemma 18.
Lemma 24. Let ζ = 0.0001. Suppose that q = 10 and G is Z

3. For every
boundary pair X and every d ≥ 1, Γd(X) ≤ (1 − ζ)

d
.

Proof. Let u = 0.8294 and v = 0.968. We will prove by induction on d that
Γd ≤ (1 − ζ)

d
and Ud ≤ u(1 − ζ)

d
and Vd ≤ v(1 − ζ)

d
. For the base case, d = 1,

note that for any relevant boundary pair X, Γ1(X) ≤ ν(X). Now apply Lemma 13
with R′ = {fX}, and by Corollary 22 (with r = 0), we find that ν(X) ≤ 1/4. Thus,
Γ1(x) ≤ min{u, v, 1}(1 − ζ).

The inductive step follows directly from Lemma 23 since the following inequalities
hold: 4μ′ ≤ (1−ζ) min(1, v), 3

4 ≤ (1−ζ) min(1, v, u), μ′′(1+4v) ≤ (1−ζ), μ′(1+3v) ≤
(1 − ζ)u, and μ′′(u + 4) ≤ (1 − ζ)v.

The proof of Theorem 6 now follows the argument in sections 3 and 4. The
only difference is that instead of applying Lemma 18, we use Lemma 24 (which gives
exactly the same result with ε = ζ/(1 − ζ)). The analogue of Lemma 20 provides an
ε-coupling cover. Since Z

3 is neighborhood-amenable, we obtain Corollary 10.
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Fig. 5. The triangular lattice.

6. Computational assistance. In section 5 we showed strong spatial mixing
for q = 10 and the degree-6 lattice Z

3. The same argument does not apply to the
triangular lattice because we cannot apply Lemma 15 (or its proof) to a graph with
triangles. Nevertheless, we can use our method with computational assistance to
prove strong spatial mixing for the triangular lattice.

6.1. The lattice. A piece of the triangular lattice is depicted in Figure 5. Each
vertex of the lattice is depicted as a hexagonal face in the picture. Every vertex has
degree 6. Thus, the 6 neighbors of vertex fX are wX , y1, y2, y3, y4, and y5.

6.2. Relevant boundary pairs. In order to prove strong spatial mixing, we
will need upper bounds on μ(X) similar to those obtained in Corollary 22. Since we
will use computation, we want to restrict the search space as far as possible. We do
that by defining the notion of a “relevant” boundary pair. Intuitively, the idea is
that these boundary pairs are the ones that are induced by a pair of colorings of the
vertex-boundary ∂RX .

We say that a boundary pair is relevant if it is the case that any two adjacent
edges on the boundary that share a vertex f �∈ RX have the same color in at least one
of the two colorings BX and B′

X (and so in both of BX and B′
X except when edge

sX is involved). For example, in Figure 5, if RX consists of the five vertices enclosed
by the thicker line (namely fX , y1, y2, y3, and y4) and X is a relevant boundary pair,
then BX and B′

X assign the same color to the edges (y1, z3) and (y2, z3). Note that
our definition of “relevant” is specific to the geometry of the lattice. The edges (y1, z2)
and (y1, z3) are adjacent but the edges (y1, z3) and (y1, z1) are not adjacent.

It is important to observe that our recursive construction preserves “relevance.”
That is, if X is a relevant boundary pair, then all of the boundary pairs in the tree TX

are also relevant. We can ensure this by refining the construction of TX (see section 2)
as follows. When the edges in EX are given the names e1, . . . , ek, order these edges
clockwise around the vertex fX starting from sX . This ordering ensures that ei is not
“adjacent” to ej unless i and j differ by 1. Now note that if X is relevant, then so is
the constructed boundary pair Xi(c, c

′).
Next, note that Lemma 13 can be extended as follows. If the boundary pair X is

relevant, then the boundary pair X ′ constructed in the proof is also relevant. There-
fore, the set χ can be restricted to relevant boundary pairs. For convenience, we state
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the extended lemma here.
Lemma 25. Suppose that X is a relevant boundary pair. Let R′ be any sub-

set of RX which includes fX . Let χ be the set of relevant boundary pairs X ′ =
(RX′ , sX′ , BX′ , B′

X′) such that RX′ = R′, sX′ = sX , BX′ agrees with BX on common
edges, and B′

X′ agrees with B′
X on common edges. Then ν(X) ≤ maxX′∈χ μ(X ′).

6.3. Bounding μ(X). By analogy to Corollary 22 we will now provide some up-
per bounds on μ(X) for the triangular lattice. Let μ′ = 31/136 and μ′′ = 1111/4966.
We now give four lemmas bounding μ(X) for particular boundary pairs X.

Lemma 26. Suppose X is a boundary pair with |RX | = 1. Then μ(X) ≤ 1/4.
Proof. The numerator in the definition of μ(X) is at most 1. The denominator is

at least q − Δ = 4.
Lemma 27. Suppose X is a boundary pair in which RX consists of fX and one

neighbor y of fX . Then μ(X) ≤ 5/21.
Proof. Let E1 be the set of edges of fX except for sX and the edge between fX

and y. Let E2 be the set of edges of y except for the edge between fX and y. Let U
be the set of colors that BX (and so also B′

X) assigns to edges in E1, and similarly
let V be the set of colors assigned to E2. Let d = BX(sX) and d′ = B′

X(sX). Let
Q′ = Q − {d, d′}. To shorten the notation we will use nc to denote nc(X) and N to
denote N(X). Let q1 = |Q′ \ U | and let q2 = |Q \ V |. We see that q1 ≥ 8 − |U | ≥ 4
and q2 ≥ 10 − |V | ≥ 5.

For c ∈ Q we see that

nc = 0 if c ∈ U,
= q2 if c /∈ U and c ∈ V,
= q2 − 1 if c /∈ U and c /∈ V.

Thence, max(nd, nd′) ≤ q2 and

N =
∑
c∈Q′

nc ≥ (q2 − 1)|Q′ \ U | = (q2 − 1)q1.

Since μ(X) is monotone increasing in max(nd, nd′) and decreasing in N , we have

μ(X) ≤ q2
q2 + (q2 − 1)q1

=
1

1 + (1 − 1/q2)q1
≤ 1

1 + (1 − 1/5)4
=

5

21
.

Lemma 28. Suppose X is a relevant boundary pair in which RX = {fX , y1, y2, y3}
and fX is adjacent to each of the yi’s and wX ∼ y1 ∼ y2 ∼ y3. Then μ(X) ≤ μ′.

Proof. By computation, we considered every such relevant boundary pair X
(approximately 2 × 106 of them) and calculated μ(X).

Lemma 29. Suppose X is a relevant boundary pair in which RX = {fX , y1, y2, y3, y4}
and fX is adjacent to each of the yi’s and wX ∼ y1 ∼ y2 ∼ y3 ∼ y4. Then μ(X) ≤ μ′′.

Proof. By computation, we considered every such relevant boundary pair X
(approximately 16 × 106 of them) and calculated μ(X).

6.4. Proving exponential decay. As in section 5, we will prove that Γd(X) is
exponentially small in d by defining a system of recursive equations. We will restrict
attention to relevant boundary pairs; let Rel be the set of relevant boundary pairs.
Say that a relevant boundary pair X is in NR

i (for i ∈ {0, . . . , 5}) if at most i of the
neighbors of fX are in RX ; let ΓR

d = maxX∈Rel Γd(X).
Lemma 30. Suppose d > 1. If X ∈ NR

2 , then Γd(X) ≤ ΓR
d−1/2. If X ∈ NR

3 ,

then Γd(X) ≤ 3ΓR
d−1/4. If X ∈ NR

4 , then Γd(X) ≤ 20ΓR
d−1/21.
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Proof. If X ∈ NR
2 , then by the definition of TX , Γd(X) ≤ ν(X) ·2 ·ΓR

d−1. Then by

Lemma 25 with R′ = {fX} and Lemma 26, ν(X) ≤ 1/4. Similarly, if X ∈ NR
3 , then

Γd(X) ≤ ν(X) · 3 · ΓR
d−1 ≤ 3ΓR

d−1/4. Finally, suppose that exactly 4 neighbors of fX
are in RX . Then Γd(X) ≤ ν(X) · 4 · ΓR

d−1. Apply Lemma 25 where R′ contains fX
and one of its neighbors in RX . By Lemma 27, ν(X) ≤ 5/21.

Next, we define some subsets of Rel; refer to Figure 5 to clarify these definitions.
Let X be a relevant boundary pair.

• X is in U if there is a neighbor y5 of fX and of wX that is not in RX , and
there is a neighbor y4 �= wX of fX and of y5 that is not in RX .

• X is in V if there is a neighbor y5 of fX and of wX that is not in RX .
• X is in W if there is a neighbor y5 of fX and of wX in RX , and a neigh-

bor z11 �= fX of wX and of y5 that is not in RX .
Let Ud = maxX∈U Γd(X), Vd = maxX∈V Γd(X), and Wd = maxX∈W Γd(X). The
following lemma follows from the definition of TX and the geometry of the lattice.

Lemma 31. Suppose that q = 10 and G is the triangular lattice. Suppose d > 1.
Then

ΓR
d ≤ max

(
μ′′ (ΓR

d−1 + 2Vd−1 + 2Wd−1

)
, 20ΓR

d−1/21
)
,

Ud ≤ max
(
μ′ (2Vd−1 + Wd−1) ,Γ

R
d−1/2

)
,

Vd ≤ max
(
μ′′ (2Vd−1 + 2Wd−1) , 3ΓR

d−1/4
)
, and

Wd ≤ max
(
μ′′ (ΓR

d−1 + Vd−1 + 2Wd−1 + Ud−1

)
, 20ΓR

d−1/21
)
.

Proof. Suppose X ∈ Rel. If X ∈ NR
4 , then Γd(X) ≤ 20ΓR

d−1/21 by Lemma 30.
Otherwise an examination of Figure 5 reveals that

Γd(X) ≤ ν(X)
(
ΓR
d−1 + 2Vd−1 + 2Wd−1

)
.

The two instances of Vd−1 correspond to y1 and y5 in the picture (since wX is not in
RX), the two instances of Wd−1 correspond to y2 and y4, and the instance of ΓR

d−1

corresponds to y3. Apply Lemma 25 where R′ is the set containing fX and the vertices
y1, y2, y3, and y4 from Figure 5. By Lemma 29, ν(X) ≤ μ′′. This proves the upper
bound on ΓR

d .
Suppose X ∈ U . If X ∈ NR

2 , then Γd(X) ≤ ΓR
d−1/2 by Lemma 30. Otherwise

Γd(X) ≤ ν(X) (2Vd−1 + Wd−1) .

As in the upper bound on ΓR
d , one instance of Vd−1 corresponds to y1 and one instance

of Wd−1 corresponds to y2. An examination of Figure 5 reveals that, since X ∈ U ,
y3 corresponds to Vd−1. Apply Lemma 25, where R′ is the set containing fX and
the vertices y1, y2, and y3 from Figure 5; by Lemma 28, ν(X) ≤ μ′. This proves the
upper bound on Ud.

Suppose X ∈ V . If X ∈ NR
3 , then Γd(X) ≤ 3ΓR

d−1/4 by Lemma 30. Otherwise

Γd(X) ≤ ν(X) (2Vd−1 + 2Wd−1) .

This is the same as the upper bound on ΓR
d except that, since X ∈ V , y3 corresponds

to Wd−1 and y4 to Vd−1. Apply Lemma 25, where R′ is the set containing fX and
the vertices y1, y2, y3, and y4 from Figure 5. By Lemma 29, ν(X) ≤ μ′′. This proves
the upper bound on Vd.
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Suppose X ∈ W . If X ∈ NR
4 , then Γd(X) ≤ 20ΓR

d−1/21 by Lemma 30. Otherwise

Γd(X) ≤ ν(X)
(
ΓR
d−1 + Vd−1 + 2Wd−1 + Ud−1

)
.

This is the same as the upper bound on ΓR
d except that, since X ∈ W , y5 corresponds

to Ud−1. Apply Lemma 25, where R′ is the set containing fX and the vertices y1, y2,
y3, and y4 from Figure 5; by Lemma 29, ν(X) ≤ μ′′. This proves the upper bound
on Wd.

Here is the analogue of Lemma 18.
Lemma 32. Let ζ = 0.001. Suppose that q = 10 and G is the triangular lattice.

For every relevant boundary pair X and every d ≥ 1, Γd(X) ≤ (1 − ζ)
d
.

Proof. Let u = 15/26, v = 31/40, and w = 21/22. We will prove by induction on

d that ΓR
d ≤ (1 − ζ)

d
, Ud ≤ u(1 − ζ)

d
, Vd ≤ v(1 − ζ)

d
, and Wd ≤ w(1 − ζ)

d
. For the

base case, d = 1, note that for any relevant boundary pair X, Γ1(X) ≤ ν(X). Now
apply Lemma 25 with R′ = {fX} and by Lemma 26, we find that ν(X) ≤ 1/4. Thus,
Γ1(x) ≤ min{u, v, w, 1}(1 − ζ).

The inductive step follows directly from Lemma 31 since the following inequalities
hold: μ′′(1 + 2v + 2w) ≤ 1− ζ, 20/21 ≤ 1− ζ, μ′(2v +w) ≤ u(1− ζ), 1/2 ≤ u(1− ζ),
μ′′(2v + 2w) ≤ v(1 − ζ), 3/4 ≤ v(1 − ζ), μ′′(1 + v + 2w + u) ≤ w(1 − ζ), and
20/21 ≤ w(1 − ζ).

Unlike Lemma 18, Lemma 32 applies just to relevant boundary pairs, so we have
to finish up the proof of strong spatial mixing. Following the proof of Lemma 19, we
obtain the following lemma.

Lemma 33. Let ζ = 0.001. Suppose that q = 10 and G is the triangular lattice.
Then for every relevant boundary pair X there exists a coupling Ψ of πBX

and πB′
X

such that, for all f ∈ RX ,

E[1Ψ,f ] ≤ 1

ζ
(1 − ζ)

d(f,sX)
.

Furthermore,

∑
f∈RX

E[1Ψ,f ] ≤ 1 − ζ

ζ
.

6.5. Vertex discrepancies and strong spatial mixing. The proof of strong
spatial mixing (Theorem 7) is similar to the proof on section 4. The only extra
problem is showing that the boundary pairs created in Lemma 20 are actually relevant
boundary pairs (so that we can apply Lemma 33). This detail complicates the proof
of the theorem, so we give a new version of the lemma.

Lemma 34. Let ζ = 0.001. Suppose that q = 10 and G is the triangular lattice.
For every vertex-boundary pair X there is a coupling Ψ of πBX

and πB′
X

such that,
for all f ∈ R,

E[1Ψ,f ] ≤ 10
1

ζ(1 − ζ)
(1 − ζ)

d(f,vX)
.

Furthermore,

∑
f∈RX

E[1Ψ,f ] ≤ 10(1 − ζ)

ζ
.
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Proof. First suppose that vX has a neighbor y �∈ RX . (This case is straightforward
and is like the proof of Lemma 20.) Let e1, . . . , ek be the boundary edges of RX that
are adjacent to vX . Label these clockwise so that there is at least one nonboundary
edge between ek and e1. (The point here is that ei and ej are adjacent only if i and j
differ by 1.) Let Xi be the relevant boundary pair consisting of the region RX , the
distinguished edge ei, a coloring B of the boundary of RX that agrees with BX except
that edges e1, . . . , ei−1 are colored with color B′

X(vX) and ei, . . . , ek are colored with
color BX(vX), and a coloring B′ that is the same as B except that it colors ei with
color B′

X(vX). We construct a coupling of πBX
and πB′

X
by composing couplings

Ψ1, . . . ,Ψk of X1, . . . , Xk. Now

E[1Ψ,f ] ≤
k∑

i=1

E[1Ψi,f ] ≤ 5
1

ζ
(1 − ζ)

d(f,vX)
.

Now we must deal with the case in which all neighbors of vX are in RX . A
technical detail arises here because the natural induced boundary pairs are not all
relevant. Let y be any neighbor of vX . Let Ψ′ be any coupling of πBX

and πB′
X

. Let
(C,C ′) be the random variable corresponding to the pair of colorings in S(BX)×S(B′

X)
drawn from Ψ. We will choose the color of y in C and C ′ according to Ψ′. To
complete the construction of Ψ, for every pair (c, c′), we will let BX(c) denote the
vertex-boundary of RX −{y} which agrees with BX except that y is colored c, and we
will let B′

X(c′) denote the vertex-boundary of RX −{y} which agrees with B′
X except

that y is colored c′. We will construct a coupling of BX(c) and B′
X(c′) by composing

the couplings of up-to-10 relevant boundary pairs (these boundary pairs correspond to
discrepancies on the 5 boundary edges of vertex vX and the up-to-5 boundary edges
on vertex y). The (1 − ζ) in the denominator comes from the fact that the distance
from a vertex f to the discrepancy edge may be one less than d(f, vX).

Lemma 34 provides an ε-coupling cover for ε = ζ
1−ζ

6
10 . Since the lattice is

neighborhood-amenable, we obtain Corollary 11.

6.6. Extensions. Using techniques similar to those presented in section 6, we
can give an alternative proof to the result of [1]—strong spatial mixing for 6-colorings
of the rectangular lattice. The amount of computation in the alternative proof and the
proof in section 6 can be reduced by applying some of the techniques from Lemma 16.
Our technique can also be applied to other lattices, for example, some of the others
studied by Salas and Sokal [27].

7. Rapid mixing. Now we prove Theorem 8, showing that for neighborhood-
amenable graphs, our strong spatial mixing proof implies rapid mixing. It is known
that strong spatial mixing implies rapid mixing in such cases (see [13, 22, 31]) but
existing proofs seem to be written for Z

d, so we add this section for completeness.
Theorem 8. Let G denote an infinite neighborhood-amenable graph with max-

imum degree Δ. Let R be a finite subgraph of G with |R| = n and B(R) denote a
coloring of ∂(R) using the colors Q ∪ {0}. (We assume that q ≥ Δ + 2.)

Suppose there exists ε > 0 such that G has an ε-coupling cover. Then the Glauber
dynamics Markov chain on S(B(R)) is rapidly mixing and τ(δ) ∈ O(n(n+ log 1

δ )).
We use the method of path coupling to prove this theorem, approaching our result

indirectly through the use of Markov chain comparison. We give a brief review of the
path-coupling method in the next section, then proceed with the first step in our
analysis for graphs that satisfy the hypotheses of Theorem 8. In section 7.2 we first
examine an auxiliary Markov chain which allows recoloring of a slightly larger set of
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vertices in a single recoloring step. We show this new chain mixes in time O(n log n).
Markov chain comparison is reviewed in section 7.3, and then the second part of the
proof of Theorem 8 is presented in section 7.4.

7.1. Path coupling. Coupling is a popular method for analyzing mixing times
of Markov chains. A (Markovian) coupling for a Markov chain M with state space Ω
is a stochastic process (Xt, Yt) on Ω × Ω such that each of (Xt) and (Yt), considered
marginally, is a faithful copy of M. The coupling lemma (see, for example, Aldous [2])
states that the total variation distance of M at time t is bounded above by Pr(Xt �=
Yt). The path-coupling method, introduced in [4], is a powerful method for finding
couplings. The idea is that one can find a coupling on a subset U of Ω×Ω and extend
this to a coupling on Ω × Ω. The following theorem, adapted from [12], summarizes
the path-coupling method.

Theorem 35 (see [4, 12]). Let U be a relation U ⊆ Ω2 such that U has transitive
closure Ω2. Let φ : U → {0, 1, 2, . . .} be a “proximity function” defined on pairs in U .
We use φ to define a function Φ on Ω2 as follows: For each pair (ω, ω′) ∈ Ω2, let

Φ(ω, ω′) = min
ω0,...,ωk

k−1∑
i=0

φ(ωi, ωi+1),

where the minimum is over all paths ω = ω0, . . . , ωk = ω′ such that, for all i ∈ [0, k−1],
(ωi, ωi+1) ∈ U . Let (Xt, Yt) be a coupling for M defined over all pairs in U . Suppose
for this coupling there is β < 1 such that for all (σ1, σ2) ∈ U we have

E[Φ(Xt+1, Yt+1) | (Xt, Yt) = (σ1, σ2)] ≤ βΦ(σ1, σ2).

Let D be the maximum value that Φ achieves on Ω2. Then

τ(δ) ≤ ln(D/δ)

1 − β
.

7.2. Proof of rapid mixing (Part I). Our goal is to sample from S(B) the set
of proper colorings of R consistent with the boundary coloring, uniformly at random,
using the single-vertex Glauber dynamics Markov chain. To do this, we first define
another Markov chain that corresponds to heat-bath dynamics on small subregions of
R. As we defined in section 1.1, for a vertex f ∈ G and a nonnegative integer d we
let Balld(f) denote the set of vertices that are at most distance d from f .

Now consider a problem instance of R and B. For a fixed d ≥ 0 (to be specified
later) and a vertex f ∈ G, let Rf = Balld(f) ∩R. Further, let

R∗ = {f ∈ G | Rf �= ∅}.

Then Md is the heat-bath Markov chain with state space S(B) and the following
transitions: Md makes a transition from a state σ ∈ S(B) by choosing a vertex
f ∈ R∗ uniformly at random. Let Bf be the coloring of ∂Rf induced by σ and B.
To make the transition from σ, recolor the vertices in Rf by sampling from πBf

, the
uniform distribution of colorings on the region Rf induced by Bf .

Since Ball0(f) = {f}, Glauber dynamics is M0. However, in order to prove rapid
mixing of M0 we first demonstrate rapid mixing of the chain Md for some constant
d. Then we use the comparison method (see section 7.3 below) to infer rapid mixing
of M0.
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Proof of Theorem 8 (Part I). Path coupling is used to prove rapid mixing of
the Markov chain Md. First, we specify the value of d that we use.

Fix an ε > 0 for which G has an ε-coupling cover as guaranteed in the hypothesis
of Theorem 8. Recalling Definition 2, since G is neighborhood-amenable, we can find
d such that

Td = sup
v

|∂Balld(v)|
|Balld(v)|

≤ ε

ε + Δ
.

In this setting, the distance measure we use is Hamming distance. Because of
this, we use the standard approach of taking the set Ω in Theorem 35 to be the set
of all (proper and improper) q-colorings of the region R. We take U to be the set
of pairs of colors that differ at a single vertex. Consider two colorings σ and θ in U
with Hamming distance 1, i.e., σ and θ are two (not necessarily proper) colorings of
R that disagree at a single vertex v. We describe a coupled transition from the pair
(σ, θ) to a new pair of colorings (σ′, θ′). In this coupling, we choose the same vertex
f for the transition σ → σ′ that we choose for the transition θ → θ′. Note that while
σ and θ may not be proper colorings of R, a transition σ → σ′ is allowed only if σ′ is
“not more improper” than σ, and similarly for a transition θ → θ′. In other words,
having chosen a vertex f , we recolor the “window” Rf using a proper coloring of that
window (conditioned, of course, on its induced boundary coloring).

First, note that by construction of R∗, we have Balld(v) ⊆ R∗. For each vertex
f ∈ Balld(v), if f is chosen in the chain Md, we can ensure that σ′ = θ′ by choosing
the same coloring to recolor Rf . Thus there are |Balld(v)| ways to decrease the
Hamming distance by one.

If the chosen vertex f is far from v, in the sense that v �∈ ∂Rf , then we will couple
the transitions by again choosing the same recoloring for the region Rf . This ensures
that σ′ and θ′ disagree only at v so they still have Hamming distance 1.

We now calculate an upper bound on how much the distance can increase in one
step of the coupling. This can happen only if we choose some vertex f such that
v ∈ ∂Rf . With this in mind we define Hd(v) = {f ∈ R∗ : v ∈ ∂Rf}; |Hd(v)| is an
upper bound on the number of vertices whose selection can increase the distance in the
new pair (σ′, θ′). Let B1 be the coloring of ∂Rf induced from the coloring σ and let B2

be that induced from θ. Then B1 and B2 differ solely at the vertex v. The ε-coupling
cover in the hypothesis of the theorem guarantees we can construct a coupling that
allows us to choose a pair (σ′, θ′) of proper colorings so that the expected Hamming
distance increases by at most Δ/ε.

Adding it all up, we see the expected Hamming distance between σ′ and θ′ after
one step of the coupling is at most

1 − |Balld(v)|
|R∗| +

|Hd(v)|
|R∗|

Δ

ε
= 1 − |Balld(v)|ε− |Hd(v)|Δ

|R∗|ε .

From the choice of d (using the neighborhood-amenability property of G), and using
Hd(v) ⊆ ∂Balld(v), we have

|Balld(v)|ε− |Hd(v)|Δ ≥ |∂Balld(v)|(ε + Δ) − |∂Balld(v)|Δ = |∂Balld(v)|ε ≥ ε.

Thus we have E[Φ(σ′, θ′)] ≤ 1 − 1/|R∗|.
So for Theorem 35, we can take β = 1− 1/|R∗|. Since we use Hamming distance,

we have that D = n. Using the facts that d ∈ O(1) and that Δ ∈ O(1) (since Δ
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is a universal bound on maximum degree for any finite subgraph of G), we see that
1/(1− β) = |R∗| ∈ O(n). Using Theorem 35 we conclude that τMd

(δ) ∈ O(n log(nδ )).

The final step to get the desired result about M0 uses the method of compar-
ing Markov chains. We review this method below, then continue with the proof of
Theorem 8 after that.

7.3. The comparison method. In the previous section we showed rapid mixing
of Md on the set of all (proper and improper) colorings. This implies that Md mixes
rapidly on the set of proper colorings. In this section we will compare the mixing times
of Md and M0 on the set of proper colorings. We use the method of Diaconis and
Saloff-Coste [7]. We provide definitions in the context of these two coloring Markov
chains. Pd (resp., P0) will be used to denote the transition matrix for the chain Md

(resp., M0).

For i ∈ {0, d}, let Ei be the set of pairs of distinct colorings (σ, θ) with Pi(σ, θ) > 0.
We will sometimes refer to the members of Ei as “edges” because they are edges in
the transition graph of Mi. For every edge (σ, θ) ∈ Ed, let Pσ,θ be the set of paths
from σ to θ using transitions of M0. More formally, let Pσ,θ be the set of paths
γ = (σ = σ0, σ1, . . . , σk = θ) such that

1. each (σi, σi+1) is in E0, and
2. each (σ′, θ′) ∈ E0 appears at most once on γ.

We write |γ| to denote the length of path γ. So, for example, if γ = (σ0, . . . , σk) we
have |γ| = k. Let P = ∪(σ,τ)∈Ed

Pσ,τ .

A flow is a function φ from P to the interval [0, 1] such that for every (σ, θ) ∈ Ed,

∑
γ∈Pσ,θ

φ(γ) = Pd(σ, θ)πB(σ).(7)

For every (σ′, θ′) ∈ E0, the congestion of edge (σ′, θ′) in the flow φ is the quantity

Aσ′,θ′(φ) =
1

πB(σ′)P0(σ′, θ′)

∑
γ∈P:(σ′,θ′)∈γ

|γ|φ(γ).

The congestion of the flow is the quantity

A(φ) = max
(σ′,θ′)∈E∗

0

Aσ′,θ′(φ).

A proof of the following theorem can be found in [11, Observation 13]. This
theorem is similar to Proposition 4 of Randall and Tetali [26] except that the latter
requires the eigenvalues of the transition matrices to be nonnegative. Both results are
based closely on the ideas of Aldous [2], Diaconis and Stroock [8], and Sinclair [28].

Theorem 36. Suppose that φ is a flow. Let c = minσ P0(σ, σ) and note that
c ≥ 1/q. Then for any 0 < δ′ < 1

2

τ(M0, δ) ≤ max

{
A(φ)

[
τ(Md, δ

′)

ln 1
2δ′

+ 1

]
,

1

2c

}
ln

1

δ · πmin
,

where πmin = minσ πB(σ).

We continue with the proof of Theorem 8 in the next section.
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7.4. Proof of rapid mixing (Part II). Suppose we take δ′ = 1/n and use the
upper bound from the first part of the proof of Theorem 8. We then have τ(Md, δ

′) ∈
O(n log n). We now construct a flow φ such that A(φ) ∈ O(1), and then Theorem 36
gives

τ(M0, δ) ≤ O(1) ·O(n) · ln 1

δ · πmin
.

This yields Theorem 8 since ln(1/πmin) ∈ O(n).
Proof of Theorem 8 (Part II).

Constructing a flow.
Consider a problem instance consisting of a nonempty region R with |R| = n and

a coloring B of ∂R. We will now construct a flow φ.
For every pair (σ, θ) ∈ Ed, we fix some vertex f such that Balld(f) contains all

the vertices on which σ and θ differ. Then we fix a canonical ordering on these vertices
where they differ, say v1, . . . , vm.

Let γσ,θ ∈ Pσ,θ be the canonical path from σ to θ, constructed as follows:
• Update the vertices v1, . . . , vm in order.
• In order to update a given vertex vi:

– If any neighbors of vi have color θ(vi), recolor these with the lexico-
graphically first available color. (Note that these neighbors do not have
their final color in θ.)

– Recolor vi with color θ(vi).
Assign all of the flow from σ to θ to path γσ,θ. That is, set φ(γσ,θ) = Pd(σ, θ)πB(σ).
Bounding A(φ).

We show that A(φ) ∈ O(1), which completes the proof of Theorem 8.
Let σ′ and θ′, where (σ′, θ′) ∈ E0, be colorings that disagree on vertex x. Now

Aσ′,θ′(φ) =
1

πB(σ′)P0(σ′, θ′)

⎛
⎜⎜⎝ ∑

(σ,θ)∈Ed
(σ′,θ′)∈γσ,θ

|γσ,θ|Pd(σ, θ)πB(σ)

⎞
⎟⎟⎠ .

Since πB is uniform and all of the path lengths are O(1), this simplifies to

Aσ′,θ′(φ) ≤ O(1) ×

⎛
⎜⎜⎝ ∑

(σ,θ)∈Ed
(σ′,θ′)∈γσ,θ

Pd(σ, θ)

P0(σ′, θ′)

⎞
⎟⎟⎠ .

To see that this sum is O(1) note that there are only O(1) pairs (σ, θ) in the summation
(this holds since σ and θ agree with σ′ except in a constant-sized ball around x), since
σ �= θ, Pd(σ, θ) ∈ O(1/n). Finally, P0(σ

′, θ′) ∈ Ω(1/n).

7.5. Neighborhood-amenability—How restrictive is it? Theorem 8 ap-
plies to graphs that are neighborhood-amenable. This condition, while sufficient, is
not necessary. The theorem could be extended to a larger class of graphs. The rele-
vant issue is to balance the number of “good” transitions that decrease the distance
between the pair with Hamming distance 1 with the number of “bad” transitions
that increase the distance (of course, how much the distance increases from any bad
transition also matters). There are other similar conditions that we might require
from our graph to prove rapid mixing.
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Instead of studying these conditions here, we show that neighborhood-amenability
is applicable fairly widely. We do this by defining an alternative natural condition
and showing that it implies neighborhood-amenability.

Definition 37. For a vertex v of G, let Nd(v) denote the set of vertices that are
at distance d from v, and let nd(v) = |Nd(v)|. (Note that n0(v) = 1.)

We say that G is uniformly subexponential if there exists a function κ(d) such
that

1. for all b > 1, κ(d) ∈ o(bd), and
2. there exist c2 ≥ c1 > 0 such that for all v ∈ G, c1κ(d) ≤ nd(v) ≤ c2κ(d).

As stated, the condition of being uniformly subexponential implies neighborhood-
amenability as we show below. We first state a lemma that we use to prove this claim.

Lemma 38. Let {ai}i≥0 be a sequence of positive numbers. Suppose that ad >
α(ad−1 + ad−2 + · · · + a0) for all d ≥ 1. Then ad > a0α(1 + α)d−1 for d ≥ 1.

Proof. We prove this by induction, where the base case (with d = 1) is obvious
from the condition imposed on the sequence. Then

ad > α(ad−1 + ad−2 + · · · + a1 + a0)

> α(a0α(1 + α)d−2 + a0α(1 + α)d−3 + · · · + a0α + a0) (by inductive assumption)

= a0α
(
α
(
(1 + α)d−2 + (1 + α)d−3 + · · · + 1

)
+ 1

)
= a0α

(
α

(1 + α)d−1 − 1

α
+ 1

)
= a0α(1 + α)d−1.

Lemma 39. Suppose that G is uniformly subexponential. Then G is neighborhood-
amenable.

Proof. We apply the contrapositive of Lemma 38 to the sequence of numbers
κ(0), κ(1), . . . . This means that given ε > 0, there is a d such that κ(d + 1) ≤
ε(κ(d) + · · · + κ(0)). (Otherwise, if κ(d + 1) > ε(κ(d) + · · · + κ(0)) for all d, then the
lemma says that κ(d + 1) > κ(0)ε(1 + ε)d for all d ≥ 0. Clearly this would violate
condition 1 in the definition of “uniformly subexponential.”)

Thus, for any vertex v ∈ G we have, using condition 2 in Definition 37,

|∂Balld(v)| = nd+1(v) ≤ c2κ(d + 1)

≤ c2 · ε(κ(d) + · · · + κ(0))

≤ c2
c1

· ε(nd(v) + · · · + n0(v)) =
c2
c1

· ε|Balld(v)|.

Hence Td = supv
|∂Balld(v)|
|Balld(v)| ≤ c2

c1
· ε. Since ε > 0 is arbitrary, this implies that G is

neighborhood-amenable.

One could think of other conditions that would imply neighborhood-amenability
or even different conditions for which a similar proof of rapid mixing such as the one
we gave in Theorem 8 could be demonstrated. If we are dealing with a graph that
is vertex-transitive, for example, checking whether it is uniformly-subexponential or
not provides a relatively straightforward method to determine if it is neighborhood-
amenable.

Readers should consult [30, 31] for further discussion about conditions under
which one could demonstrate rapid mixing of Markov chains for sampling proper
colorings.
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GENERAL MULTIPROCESSOR TASK SCHEDULING:
APPROXIMATE SOLUTIONS IN LINEAR TIME∗

KLAUS JANSEN† AND LORANT PORKOLAB‡

Abstract. We study the problem of scheduling n independent tasks on a set of m parallel
processors, where the execution time of a task is a function of the subset of processors assigned to
the task. For any fixed m, we propose a fully polynomial approximation scheme that for any fixed
ε > 0 finds a preemptive schedule of length at most (1 + ε) times the optimum in O(n) time. We
also discuss the nonpreemptive variant of the problem, and present for any fixed m a polynomial
approximation scheme that computes an approximate solution of any fixed accuracy in linear time.
In terms of the running time, this linear complexity bound gives a substantial improvement of the
best previously known polynomial bound [J. Chen and A. Miranda, SIAM J. Comput., 31 (2001),
pp. 1–17].
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1. Introduction. In classical scheduling theory, each task is processed by only
one processor at a time. However, recently, due to the rapid development of parallel
computer systems, new theoretical approaches have emerged to model scheduling
on parallel architectures. One of these is scheduling multiprocessor tasks (see, e.g.,
[5, 8, 9]).

In this paper we address some multiprocessor scheduling problems, where a set
of n tasks has to be executed by m processors such that each processor can work
on at most one task at a time and a task can be (or may need to be) processed
simultaneously by several processors. In the dedicated variant of this model, each
task requires the simultaneous use of a prespecified set of processors. In the parallel
variant, which is also called nonmalleable parallel task scheduling, the multiprocessor
architecture is disregarded, and there is simply a size associated with each task which
indicates that the task can be processed on any subset of processors of this size. In
the malleable variant, each task can be executed on an arbitrary (nonempty) subset
of processors, and the execution time of the task depends on the number of processors
assigned to it. A generalization of the dedicated variant allows tasks to have a number
of alternative modes, where each processing mode specifies a subset of processors and
the task’s execution time on that particular processor set. This problem is called
general multiprocessor task scheduling.

Depending on the model, tasks can be preempted or not. In the nonpreemptive
model, a task once started has to be completed without interruption. In the pre-
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emptive model, each task can be interrupted any time at no cost and restarted later,
possibly on a different set of processors. The objective of the scheduling problems
discussed in this paper is to minimize the makespan, i.e., the maximum completion
time Cmax. The nonpreemptive versions of malleable and nonmalleable parallel task
scheduling have recently been discussed in several papers (see, e.g., [9, 15, 16]). The
authors have also studied this problem [12] and proposed an approximation scheme
that finds for any fixed ε > 0 a nonpreemptive schedule of makespan at most (1 + ε)
times the optimum (such a schedule is called an ε-approximate solution). The algo-
rithm runs in linear time when the number of parallel processors is fixed. The dedi-
cated and general variants of nonpreemptive (preemptive) scheduling for independent
multiprocessor tasks on a fixed number of processors are denoted by Pm|fixj |Cmax

(Pm|fixj , pmtn|Cmax) and Pm|setj |Cmax (Pm|setj , pmtn|Cmax), respectively.

Regarding the complexity, problems P3|fixj |Cmax and P3|setj |Cmax are strongly
NP-hard [3, 4, 11], thus they do not have fully polynomial-time approximation schemes,
unless P=NP. Recently, Amoura et al. [1] developed a polynomial-time approximation
scheme for Pm|fixj |Cmax. For the general problem Pm|setj |Cmax, Bianco et al. [2]
presented an approximation algorithm whose approximation ratio is bounded by m.
Later Chen and Lee [6] improved their algorithm by achieving an approximation ratio
m
2 +ε. Until very recently, this was the best approximation result for the problem, and
it was not known whether there is a polynomial-time approximation scheme or even a
polynomial-time approximation algorithm with a constant approximation guarantee.
Independently from our work presented here, Chen and Miranda [7] have recently pro-
posed a polynomial-time approximation scheme for the problem. The running time
of their approximation scheme is O(nλm,ε+jm,ε+1), where λm,ε = (2jm,ε +1)Bmm and
jm,ε ≤ (3mBm +1)�m/ε� with Bm ≤ m! denoting the mth Bell number. In this paper,
we propose another polynomial-time approximation scheme for Pm|setj |Cmax that
computes an ε-approximate solution in O(n) time for any fixed positive accuracy ε.
In terms of the running time this gives a substantial improvement of the previously
mentioned result [7] and also answers an open question of that paper by providing an
approach that is not based on dynamic programming.

It is known that the preemptive variant Pm|setj , pmtn|Cmax of the problem can
be solved in polynomial time [2] by formulating it as a linear program with n con-
straints and nm variables and computing an optimal solution by using any polynomial-
time linear programming algorithm. Even though (for any fixed m), the running time
in this approach is polynomial in n, the degree of this polynomial depends linearly
on m. Therefore it is natural to ask whether there are more efficient algorithms for
Pm|setj , pmtn|Cmax (of running time, say, for instance, O(n) or O(nc) with an abso-
lute constant c) that compute exact or approximate solutions. In this paper we focus
on approximate solutions and present a fully polynomial approximation scheme for
Pm|setj , pmtn|Cmax that finds an ε-approximate solution in O(n) time for any fixed
positive accuracy ε. This result also shows that as long as approximate solutions (of
any fixed positive accuracy) are concerned, linear running time can be achieved for
the problem, but it leaves open the question (which also partly motivated this work)
of whether there exists a linear-time algorithm for computing an optimal solution
of Pm|setj , pmtn|Cmax. This question was answered in an affirmative way for the
dedicated variant Pm|fixj , pmtn|Cmax of the problem by Amoura et al. [1].

2. Preemptive scheduling. In this section we consider the preemptive version
Pm|pmtn, setj |Cmax of the general multiprocessor task scheduling problem. Suppose
there are a set of tasks T = {T0, . . . , Tn−1} and a set of processors M = {1, . . . ,m}.
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Each task Tj has an associated function tj : 2M → Q+ ∪ {+∞} that gives the
execution time tj(S) of task Tj in terms of the set of processors S ⊆ M that is
assigned to Tj . Given a set Sj of processors assigned to task Tj , the processors
in Sj are required to execute task Tj simultaneously; i.e., they all have to start
processing task Tj at some starting time τj , and complete it at τj +tj(Sj) or interrupt
it before. A feasible preemptive schedule can be defined as a system of interval
sequences {Ij1 = [aj1, bj1), . . . , Ijsj = [ajsj , bjsj )}, corresponding to the uninterrupted
processing phases of task Tj , j = 0, . . . , n − 1, where bjq ≤ aj,q+1 for every j and q.
In addition there is an associated set Sjq ⊆ M of processors for each interval Ijq
such that Sjq �= Sj,q+1 for every j and q (if bjq = aj,q+1). Moreover, for each time
step τ there is no processor assigned to more than one task; i.e., Sjq ∩ Sj′q′ = ∅ for
every τ such that τ ∈ Ijq ∩ Ij′q′ , j �= j′. The objective is to compute a feasible
preemptive schedule that minimizes the overall makespan Cmax = max{bjsj : j =
0, . . . , n− 1}. In section 2.1, we formulate this problem as a linear program and then,
based on this linear programming formulation, we give an approximation scheme
for Pm|pmtn, setj |Cmax in section 2.2 with running time O(n) for any fixed ε > 0.
Interestingly, the running time is polynomial in 1

ε .

2.1. Linear programming formulation. Let L ⊆ T and k = |L|. Later L
will be selected such that for any fixed m and ε > 0, it consists of a constant number
k = Θ(2m(m/ε)) of “long” tasks. (For the choice of k we refer to section 2.4.) Let
P1 = M,P2 = M \ {1}, P3 = M \ {2}, . . . , P2m−1 = {m}, P2m = ∅ be a fixed order
of all subsets of M . Since preemptions are allowed, every feasible (and therefore
also every optimal) schedule can be modified such that it remains feasible with the
same makespan T and in addition has the following property: The time interval [0, T )
can be partitioned into 2m consecutive subintervals I(P1) = [t0 = 0, t1), I(P2) =
[t1, t2), . . . , I(P2m) = [t2m−1, t2m = T ) such that during I(Pi), i = 1, . . . , 2m, tasks in
L are processed by exactly the processors in Pi ⊆ M . Each processor in Pi is working
on one of the tasks from L, and all the other processors are either idle or executing
tasks from S = T \ L. (For illustration see Figure 1, but notice that in contrast to
the figure the lengths ti+1 − ti of the intervals are in general different and determined
in the linear program below.)

t0 t1 t2 t3 t4 t5 t6 t7 t8

1

2

3

Fig. 1. Schedule with processors 1, 2, 3.

For tasks from L and processors in Pi, i = 1, . . . , 2m−1, we consider assignments
fi : Pi → L. Let Ai denote the set containing all such assignments. Let Fi = M \ Pi

be the set of free processors for executing tasks from S during the interval I(Pi).
Notice that F1 = ∅ and F2m = M . For processor sets Fi, i = 2, . . . , 2m, let PFi,q,
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q = 1, . . . , ni, denote the different partitions of Fi, and let Pi = {PFi,1, . . . , PFi,ni
}.

Finally, to simplify the notation below, we introduce the following indicators for every
μ ⊆ M and every PFi,q ∈ Pi, i = 2, . . . , 2m: ξFi,q(μ) = 1 if μ ∈ PFi,q and 0 otherwise.

The following variables will be used in the linear program:
ti: the starting (and finishing) time of the interval when exactly the processors

in Pi+1, i = 0, . . . , 2m − 1 (Pi, i = 1, . . . , 2m) are used for processing long
tasks from L.

uf : the total processing time corresponding to the assignment f ∈ Ai, i =
1, . . . , 2m − 1.

zji: the fraction of task Tj ∈ L processed in the interval I(Pi) = [ti−1, ti), i =
1, . . . , 2m − 1.

xFi,q: the total processing time for partition PFi,q ∈ Pi, q = 1, . . . , ni, i = 2, . . . , 2m,
where exactly processors of Fi are executing short tasks and each subset of
processors μ ∈ PFi,q executes at most one short task at each time step in
parallel.

Dμ: the total processing time for all tasks in S = T \ L executed on processor set
μ.

yjμ: the fraction of task Tj ∈ S executed by the processor set μ ⊆ M , μ �= ∅. (By
introducing these variables we can handle the possibility of nonfixed processor
assignments also for the tasks in S. Later, for the nonpreemptive version of
the problem, the yjμ’s will be 0 − 1 variables.)

We consider the following linear program (which will be explained in detail following
its complete statement).
Minimize t2m

s.t. (0) t0 = 0,
(1) ti ≥ ti−1, i = 1, . . . , 2m,
(2) ti − ti−1 =

∑
f∈Ai

uf , i = 1, . . . , 2m − 1,
(3) uf ≥ 0 ∀f ∈ Ai, i = 1, . . . , 2m − 1,
(4)

∑
μ⊆Pi

∑
f∈Ai:f−1(j)=μ

uf

tj(μ) = zji ∀j ∈ L, i = 1, . . . , 2m − 1,

(5)
∑2m−1

i=1 zji = 1 ∀j ∈ L,
(6) zji ≥ 0 ∀j ∈ L, i = 1, . . . , 2m − 1,
(7)

∑ni

q=1 xFi,q ≤ ti − ti−1, i = 2, . . . , 2m,

(8)
∑2m

i=2

∑ni

q=1 ξFi,q(μ) · xFi,q ≥ Dμ ∀μ ⊆ M , μ �= ∅,
(9) xFi,q ≥ 0, i = 2, . . . , 2m, q = 1, . . . , ni,

(10)
∑

Tj∈S tj(μ) · yjμ = Dμ ∀μ ⊆ M , μ �= ∅,
(11)

∑
μ⊆M,μ 	=∅ yjμ = 1 ∀Tj ∈ S,

(12) yjμ ≥ 0 ∀Tj ∈ S, ∀μ ⊆ M , μ �= ∅.
Constraints (0)–(1) define the endpoints of the intervals [ti, ti+1), i = 0, 1, . . . , 2m−

1. The further subdivision of these intervals corresponding to the different assignments
in Ai is described by (2)–(3). The processing time of each long job can also be parti-
tioned according to the processor sets Pi, i = 1, . . . , 2m−1, and each of these fractions
has to be covered as it is formulated by (4)–(6). The inequalities of (7) require for
every set of free processors Fi, i = 2, . . . , 2m, that its total processing time (which
is the sum of processing times corresponding to the different partitions) be bounded
by the length of the interval [ti−1, ti). Furthermore, the inequalities of (8) guarantee
that there is enough time for the execution of all μ-processor tasks in S. In (10), the
total processing times Dμ required by short tasks using processor set μ ⊆ M , μ �= ∅,
are expressed in terms of variables yjμ. Finally, constraints (11) and (12) formulate
the possibility of nonfixed processor assignments for short tasks in S. Notice that
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solutions of the above linear program allow for each task from S to be executed par-
allel on different subsets μ of processors. Thus the schedule obtained directly from a
solution of this linear program might contain some incorrectly scheduled tasks, which
therefore have to be corrected afterwards. (See section 2.3.)

Lemma 2.1. In the preemptive schedule corresponding to any feasible solution of
(0)–(12), every task Tj is processed completely.

Proof. For every task Tj ∈ T , let wj(μ) be the total time while task Tj is
processed by exactly the processors in μ ⊆ M . Clearly task Tj is processed completely

if and only if
∑

μ⊆M
wj(μ)
tj(μ) ≥ 1. Since by definition yjμ =

wj(μ)
tj(μ) for Tj ∈ S, the

lemma is implied by (11) for the short tasks. For a long task Tj ∈ L, wj(μ) =∑2m−1
i=1

∑
f∈Ai:f−1(j)=μ uf . Therefore we obtain by using (4) and (5) that

∑
μ⊆M

wj(μ)

tj(μ)
=

∑
μ⊆M

2m−1∑
i=1

∑
f∈Ai:f−1(j)=μ

uf

tj(μ)

=

2m−1∑
i=1

∑
μ⊆M

∑
f∈Ai:f−1(j)=μ

uf

tj(μ)
=

2m−1∑
i=1

zji = 1,

which proves the lemma also for tasks from L.
Let dj = minμ⊆M tj(μ) be the minimum execution time for task Tj , and let

D =
∑

Tj∈T dj . Then, the minimum makespan OPT among all schedules satisfies
D
m ≤ OPT ≤ D. By normalization (dividing all execution times by D), we may
assume that D = 1 and that 1

m ≤ OPT ≤ 1. This implies that for any optimal
schedule, and for every μ ⊆ M , μ �= ∅, the total execution time Dμ of tasks executed
by processor set μ can be bounded by 1.

2.2. Solving the linear program. Fix the length of the schedule to a constant
s ∈ [ 1

m , 1]. Let LP (s, λ) denote the linear program obtained from (0)–(12) by setting
t2m = s and replacing (8) and (10) with the following constraints:

(8′)
∑2m

i=2

∑ni

q=1 ξFi,q(μ) · xFi,q ≤ 1, μ ⊆ M , μ �= ∅.
(10′)

∑
Tj∈S tj(μ) · yjμ −

∑2m

i=2

∑ni

q=1 ξFi,q(μ) · xFi,q + 1 ≤ λ, μ ⊆ M , μ �= ∅.
Note that we have eliminated the variables Dμ but bounded the corresponding lengths

for the configurations by 1. Since OPT ≤ 1, we have
∑2m

i=2

∑ni

q=1 xFi,q ≤ 1 and∑2m

i=2

∑ni

q=1 ξFi,q(μ) · xFi,q ≤ 1 (for any optimal solution). The problem LP (s, λ) has

a special block angular structure. The blocks Bj = {yj : yjμ ≥ 0,
∑

μ⊂M yjμ = 1}
for Tj ∈ S are 2m-dimensional simplices, and the block B|S|+1 = {(ti, uf , zji, xFi,q) :
t2m = s and conditions (0)–(7), (8′), (9)} contains only a constant number of variables
and constraints (the numbers depend exponentially on m, but are polynomial in 1/ε).
The coupling constraints are the replaced linear inequalities (10′). Note that for every

μ ⊆ M , μ �= ∅, the function fμ =
∑

Tj∈S tj(μ) · yjμ −
∑2m

i=2

∑ni

q=1 ξFi,q(μ) · xFi,q + 1
is nonnegative over the blocks.

The logarithmic potential price directive decomposition method [10] developed by
Grigoriadis and Khachiyan for a large class of problems with block angular structure
provides a δ-relaxed decision procedure for LP (s, λ). This procedure either determines
that LP (s, 1) is infeasible or computes (a solution that is nearly feasible in the sense
that it is) a feasible solution of LP (s, (1+δ)). This can be done [10, 14] in O(2m(m+
δ−2)) iterations, where each iteration requires O(2m ln ln(2mδ−1)) operations and |S|+
1 ≤ n + 1 block optimizations performed to a relative accuracy of Θ(δ), where δ =
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Θ(ε). In our case each block optimization over B1, . . . , B|S| is the minimization of
a given linear function over a 2m-dimensional simplex which can be done (not only
approximately, but even) exactly in O(2m) time. Furthermore, the block optimization
over B|S|+1 is the minimization of a linear function over a block with a constant
number of variables and constraints, which can be done in constant time. The number
M of constraints in the last block is O(2mk), and the number N of variables is
O((2k)m), where k = O(2m(m/ε)). The execution times tj(μ) for tasks Tj ∈ L have
values between ε/(2m2m+1) and 1 (see also section 2.4). Therefore we may assume
that the coefficients in the inequalities (4) have values between 1 and 2O(m)/ε. A linear
program with N variables and M constraints can be solved in O((MN2 +M1.5N)L)
time for M ≥ N , where L is the size of instance [18]. In our case N > M , and the
running time can be bounded by O(N3L). The size of each coefficient (either in the
inequalities or the linear objective function) is at most O(m+log(1/ε)). The size L can
be bounded by O(NM+(k2m)(m+log(1/ε))), since there are at most O(k2m) different
execution times tj(μ) for tasks Tj ∈ L. Therefore the running time to solve the linear

program for block B|S|+1 is at most O(N5(k2m)(m + log 1/ε)) = 2O(m2)(1/ε)O(m).

This implies a running time for LP (s, λ) of at most [2O(m)nε−2 + 2O(m2)(1/ε)O(m)].
Therefore for any fixed m and δ > 0, the overall running time of this procedure for
(approximately) solving LP (s, λ) is O(n). The number of strictly positive variables
corresponding to block B|S|+1 is at most O(k22m(m + ε−2)) = [2O(m)ε−3].

The next lemma summarizes a few simple observations that can be easily checked.
Lemma 2.2. The following assertions are true:
1. If LP (s, 1) is feasible and s ≤ s′, then LP (s′, 1) is feasible.
2. If LP (s, 1) is infeasible, then there is no schedule with makespan at most s.
3. LP (OPT, 1) is feasible.

These statements imply that one can use binary search on s ∈ [ 1
m , 1] and obtain

in O(log m
ε ) iterations a value s̄ ≤ OPT (1 + ε

4 ) such that LP (s̄, (1 + δ)) is feasible.

2.3. Generating a schedule. In this subsection, we show how to generate
a feasible schedule using an approximate solution of the previously described linear
program. Consider the solution obtained after the binary search on s. The inequalities
(10′) imply that for any μ ⊆ M , μ �= ∅,

∑
Tj∈S

tj(μ) · yjμ −
2m∑
i=2

ni∑
q=1

ξFi,q(μ) · xFi,q ≤ δ.

Let D̄μ =
∑2m

i=2

∑ni

q=1 ξFi,q(μ) ·xFi,q, the free space for small tasks that use processor

set μ. The idea is to shift a subset S̄ ⊂ S of small jobs to the end of the schedule
such that

∑
Tj∈S\S̄ tj(μ) · yjμ ≤ D̄μ. Then, the subset S \ S̄ of remaining small jobs

fits into the free space for the μ-processor tasks.
In the following, we show how to compute such a subset S̄ in linear time for

any fixed m. First we modify the y-components of the solution obtained from the
linear program. The key idea is to allow no change of processor sets μ ⊆ M (or to
have fractional y-components) for small tasks. Using this assumption it is easier to
compute a set S̄ and a feasible schedule for the small tasks. Furthermore, only a few
small tasks will have fractional y-components. The y-components of the approximate
solution of LP (s̄, (1+δ)) can be considered as fractional assignments. Let the lengths
of y be defined as Lμ =

∑
Tj∈S tj(μ) · yjμ, μ ⊆ M . Then for every μ ⊆ M , we have

Lμ ≤ D̄μ + δ. A fractional assignment y can be represented by a bipartite graph
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G = (V1, V2, E), where V1 and V2 correspond to row and column indices of y (tasks
and subsets of processors), respectively, and (j, μ) ∈ E if and only if yjμ > 0.

Any assignment y represented by a bipartite graph G of lengths Lμ, μ ⊆ M ,
can be converted in O(n22m) time into another (fractional) assignment ỹ of lengths
at most Lμ, μ ⊆ M , represented by a forest [17] (see Lemma 5.1). For a fractional
assignment y, a task Tj has a nonunique processor assignment if there are at least two
processor sets μ and μ′, μ �= μ′, such that yjμ > 0 and yjμ′ > 0. Let U1 be the set of
tasks with nonunique processor assignments. For an assignment y corresponding to a
forest, we have |U1| ≤ 2m − 1.

In the next step, we compute for every μ ⊆ M a subset Sμ ⊂ S \U1 of tasks with
yjμ = 1 for all tasks Tj ∈ Sμ such that the total execution length

∑
Tj∈Sμ tj(μ) ≥ δ

and there is a task Tjμ ∈ Sμ for which
∑

Tj∈Sμ\{Tjμ} tj(�) < δ. Let U2 = {Tjμ |μ ⊆ M}.
In total, we get a set U1 ∪ U2 with at most 2m+1 − 1 tasks and a subset of tasks
V = (∪μ⊆MSμ) \ U2 of total execution length 2mδ. By choosing δ = ε

4m2m , the total

execution length of V can be bounded by ε
4m ≤ ε

4OPT . Using that s̄ ≤ (1 + ε
4 )OPT ,

this implies the following lemma.
Lemma 2.3. The objective function value of the computed linear programming

solution restricted to T ′ = T \ (U1 ∪ U2) is at most OPT + ε
2OPT , and |U1 ∪ U2| ≤

2m+1 − 1.
The next step of the algorithm computes a schedule for the tasks in T ′′ = T \

(U1∪U2∪V). (The tasks in U1∪U2∪V will be scheduled afterwards at the end.) The
makespan of the computed schedule is bounded by (1 + ε

4 )OPT . Furthermore, the
total execution time for V is bounded by ε

4OPT . Note that each small task Tj ∈ T ′∩S
has a unique set of assigned processors.

Let D̂μ be the total processing time for all tasks in T ′′∩S assigned to processor set
μ, and let (t∗, u∗, z∗, x∗, y∗) be a solution of the linear program with objective value
t∗2m . In the first step, we compute a schedule for the long tasks Tj ∈ L according
to the variables t∗i , u∗

f , and z∗ji. As a result, during the interval [t∗i−1, t
∗
i ) only the

processors in Pi are used by the long tasks for every i = 1, . . . , 2m. This first step can
be done in time [2O(m)ε−3].

In the second step, we schedule all μ-processor tasks in S ′ = T ′′ ∩ S for every
μ ⊆ M . From the left to the right (starting with the second interval), we place
the tasks of S ′ on the free processors in Fi = M \ Pi for each interval [t∗i−1, t

∗
i )

(and 2 ≤ i ≤ 2m). To do this, we consider each partition PFi,q of Fi with value
x∗
Fi,q

> 0. For each set μ ∈ PFi,q, we place a sequence of tasks that use processor
set μ with total execution length x∗

Fi,q
. If necessary, the last (and first) task assigned

to μ is preempted. Since
∑2m

i=2

∑ni

q=1 ξFi,q(μ) · xFi,q ≥ D̂�, this procedure completely

schedules all small tasks (assigned to processor set μ for every μ ⊆ M), and it runs
in [O(n) + 2O(m)ε−3] time. Note that the computed schedule is feasible.

2.4. Selecting the cardinality of L. The following lemma will be used to
select the cardinality k of L (a constant for any fixed m and ε > 0), such that the
total processing time of U1 ∪U2 can be bounded by ε

2OPT . Note that a more general
version of this lemma was proved in [12].

Lemma 2.4. Suppose d1 ≥ d2 ≥ · · · ≥ dn > 0 is a sequence of real numbers
and D =

∑n
j=1 dj. Let p be a nonnegative integer, α ∈ (0, 1), and assume that n is

sufficiently large (i.e., all the indices of the di’s in the statement are smaller than n;
e.g., n > (� 1

α�p + 1) suffices). Then, there exists an integer k = k(p, α) such that

dk + · · · + dk+p−1 ≤ α ·D
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and

k ≤ 1 + p

(⌈
1

α

⌉
− 1

)
.

In our problem D =
∑

Tj∈T dj , where dj = minμ⊆M tj(μ) is the minimum exe-
cution time for task Tj . The minimum makespan OPT among all schedules satisfies
D
m ≤ OPT ≤ D. By normalization, we assumed that D = 1 and that 1

m ≤ OPT ≤ 1.
We select now p = 2m+1 − 1 and α = ε

2m in Lemma 2.4. Then, Lemmas 2.3 and
2.4 imply that there exists a constant k ≤ 1 + (2m+1 − 1)(� 2m

ε � − 1) such that the
total execution time of the tasks in U1 ∪ U2 can be bounded by ε

2OPT . Further-
more, the makespan for the partial (feasible) schedule of T \ (U1 ∪ U2) is at most
(1 + ε

2 )OPT . Thus the overall makespan of the (complete) schedule is bounded by

(1 + ε)OPT . According to the arguments above all computations can be carried out

in [2O(m)(1/ε)2n+ 2O(m2)(1/ε)m] time, which implies a running time of O(n) for any
fixed m and ε > 0. Thus, we have proved the following result.

Theorem 2.5. There is an algorithm that, given a set of n independent tasks,
a constant number of processors m, a fixed positive accuracy ε, and execution times
tj(μ) for each task Tj and subset of processors μ, produces a preemptive schedule whose
makespan is at most (1 + ε)OPT in O(n) time.

Clearly for any fixed m, the running time of the above algorithm depends only
polynomially on 1

ε ; hence it is a fully polynomial approximation scheme.

3. Nonpreemptive scheduling. In this section, we study the nonpreemptive
variant Pm|setj |Cmax of the general multiprocessor scheduling problem. Given a set
Sj of processors assigned to task Tj , the processors in Sj are required to execute task
Tj in union and without preemption; i.e., they all have to start processing task Tj

at some starting time τj and complete it at τj + tj(Sj). A feasible nonpreemptive
schedule consists of a processor assignment Sj ⊆ M and a starting time τj ≥ 0 for
each task Tj such that for each time step τ , there is no processor assigned to more than
one task. The objective is to find a feasible nonpreemptive schedule that minimizes
the overall makespan Cmax = max{τj + tj(Sj) : j = 0, . . . , n− 1}.

3.1. Linear programming formulation. First we consider a mixed 0 − 1 in-
teger linear program which is closely related to our scheduling problem. Similar for-
mulations were studied in [1, 12] for restricted (dedicated and malleable) variants of
the problem. Based on this linear programming formulation we will give a linear-time
approximation scheme for Pm|setj |Cmax.

Let L ⊂ T . A processor assignment for L is a mapping f : L → 2M . Two tasks
Tj and Tj′ are compatible if f(Tj) ∩ f(Tj′) = ∅. For a given processor assignment
for L, a snapshot of L is a subset of compatible tasks. A relative schedule of L is a
processor assignment f : L → 2M along with a sequence M(1), . . . ,M(g) of snapshots
of L such that

• each Tj ∈ L occurs in a subset of consecutive snapshots M(αj), . . . ,M(ωj),
1 ≤ αj ≤ ωj < g, where M(αj) is the first and M(ωj) is the last snapshot
that contains Tj ;

• consecutive snapshots are different; i.e., M(t) �= M(t + 1) for 1 ≤ t ≤ g − 1;
• M(1) �= ∅ and M(g) = ∅.

A relative schedule corresponds to an order of executing the tasks in L. One can
associate a relative schedule for each nonpreemptive schedule of L by looking at the
schedule at every time where a task of L starts or ends and creating a snapshot
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right after that time step. Creating snapshots this way, M(1) �= ∅, M(g) = ∅,
and g, the number of snapshots, can be bounded by max(2|L|, 1). Given a relative
schedule R = (f,M(1), . . . ,M(g)), the processor set used in snapshot M(i) is given by
P (i) = ∪T∈M(i) f(T ). Let F denote the set containing (as elements) all the different
(M\P (i)) sets, i = 1, . . . , g. (Thus the sets in F are the different sets of free processors
corresponding to R.) For each F ∈ F , let PF,i, i = 1, . . . , nF , denote the different
partitions of F , and let PF = {PF,1, . . . , PF,nF

}. Furthermore, let Dμ be the total
processing time for all tasks in S = T \ L executed on processor set μ ⊆ M . Finally,
we define the indicators for every μ ⊆ M and every PF,i ∈ PF , i = 1, . . . , nF , F ∈ F ,
similarly as before: ξF,i(μ) = 1 if μ ∈ PF,i and 0 otherwise.

For each relative schedule R = (f,M(1), . . . ,M(g)) of L, we formulate a mixed
0−1 integer program ILP (R) as follows (where again we defer a complete explanation
of the linear program until after its complete statement). For every Tj ∈ L, let
pj = tj(f(Tj)).

Minimize tg
s.t. (0) t0 = 0,

(1) ti ≥ ti−1, i = 1, . . . , g,
(2) tωj

− tαj−1 = pj ∀Tj ∈ L,
(3)

∑
i:P (i)=M\F (ti − ti−1) = eF ∀F ∈ F ,

(4)
∑nF

i=1 xF,i ≤ eF ∀F ∈ F ,
(5)

∑
F∈F

∑nF

i=1 ξF,i(μ) · xF,i ≥ Dμ ∀μ ⊆ M , μ �= ∅,
(6) xF,i ≥ 0 ∀F ∈ F , i = 1, . . . , nF ,
(7)

∑
Tj∈S tj(μ) · yjμ = Dμ ∀μ ⊆ M , μ �= ∅,

(8)
∑

μ⊆M yjμ = 1 ∀Tj ∈ S,
(9) yjμ ∈ {0, 1} ∀Tj ∈ S, ∀μ ⊆ M , μ �= ∅.

The variables of ILP (R) have the following interpretation:

ti: the time when snapshot M(i) ends (and M(i + 1) starts), i = 1, . . . , g − 1.
The starting time of the schedule and snapshot M(1) is denoted by t0 = 0
and the finishing time by tg.

eF : the total time while exactly the processors in F are free.
xF,i: the total processing time for PF,i ∈ PF , i = 1, . . . , nF , F ∈ F , where only

processors of F are executing short tasks and each subset of processors Fj ∈
PF,i executes at most one short task at each time step in parallel.

yjμ: the assignment variable indicating whether task Tj ∈ S is executed on pro-
cessor set μ, i.e.,

yjμ =

{
1 if Tj is executed by the processor set μ,
0 otherwise.

The given relative schedule R along with constraints (1) and (2) define a feasible
schedule of L. In (3), the total processing times eF for all F ∈ F are determined.
Clearly, these equalities can be inserted directly into (4). The inequalities in (4)
require for every set of free processors F ∈ F that its total processing time (corre-
sponding to the different partitions) be bounded by eF . Furthermore, the inequalities
(5) guarantee that there is enough time for the execution of all tasks in S that use
processor set μ. The constraints (8)–(9) describe the processor assignments for the
tasks in S. The equations of (7) express for every μ ⊆ M , μ �= ∅, the total processing
time Dμ of all tasks in S that are executed by the processor set μ. As before, these
equations can be inserted directly into the inequalities of (5).
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We will use the relaxation LP (R) of ILP (R), where we replace the 0 − 1 con-
straints by the inequalities yjμ ≥ 0 for every Tj ∈ S and μ ⊆ M . Notice that the
solutions of LP (R) allow for each task from S to be preempted or to be executed on
different subsets μ of processors. Thus there might be incorrectly scheduled tasks in
the schedule based on the solution of LP (R). These have to be corrected afterwards.
It is easy to check that the approach we used in section 2.2 for solving the linear
program of the preemptive problem can also be applied to LP (R). This way one can
obtain the same approximation bounds as those in section 2.2.

3.2. Generating a schedule. Similarly to the preemptive variant, one can also
compute a subset S̄ ⊂ S of small jobs such that

∑
Tj∈S\S̄ tj(μ) · yjμ ≤ D̄μ; i.e., the

set S \ S̄ of remaining small tasks fits into the free space for the μ-processor tasks.
The computation of S̄ can be done in the exact same manner as in section 2.3. Let
U1 be the set of tasks with nonunique processor assignments, and let U2 be a subset
of S̄ as described in section 2.3. Hence the following lemma also holds.

Lemma 3.1. The objective function value of the best approximate solution of
LP (R) (over all relative schedules R) restricted to T ′ = T \ (U1 ∪ U2) is at most
OPT + ε

2OPT , and |U1 ∪ U2| ≤ 2m+1 − 1.

The next step of the algorithm requires the computation of a pseudoschedule
PS(T ′′) for the tasks in T ′′ = T \ (U1 ∪ U2 ∪ V), in which we allow that some tasks
from S are preempted. The makespan of the computed pseudoschedule is at most
OPT + ε

4OPT . Furthermore, the total execution time for V is at most ε
4OPT . We

note that each task Tj ∈ T ′ ∩ S has a unique subset of assigned processors. Let

D̂μ be the total processing time for all tasks in T ′′ ∩ S assigned to subset μ. We
schedule all μ-processor tasks in S ′ = T ′′ ∩ S for every subset μ ⊆ M . From left
to right (starting with the first snapshot M(1)), we place the tasks of S ′ on the free
processors in M \ P (i) for each snapshot M(i) (and 0 ≤ i ≤ g). To do this, we
consider each partition PF (i),� of F (i) = M \ P (i) with value x∗

F (i),� > 0. For each
set μ in the partition PF (i),�, we place a sequence of tasks that use processor set μ
with total execution length x∗

F (i),�. If necessary, the last (and first) task assigned

to μ is preempted. Since
∑

F∈F
∑nF

i=1 ξF,i(μ) · xF,i ≥ D̂μ, this procedure completely
schedules all tasks (assigned to processor set μ) for every μ ⊆ M , and it runs in
O(kmm + n) = [mO(m/ε) + O(n)] time (using k = mO(m/ε); see Lemma 3.3), which
leads to a running time of O(n) for any fixed m and ε > 0. Let W be the set
of preempted (and therefore incorrectly scheduled) tasks in PS(T ′′). The following
lemma gives an upper bound on the cardinality of W.

Lemma 3.2. |W| ≤ 2(m− 1)k + 2mm+1.

Proof. First, we may assume that all partitions with m free processors are in
the last interval [tg−1, tg); otherwise we can shift all such intervals to the end of the
schedule. There are two different cases of incorrectly scheduled tasks: 1. inside of an
interval [ti, ti+1) caused by a change from a partition PF,a to PF,a+1; 2. at the end of an
interval [ti, ti+1) or inside of an interval without a change of partitions. In the second
case, we have at most (m−1) new incorrectly scheduled tasks (not counted before) for
each interval [ti, ti+1). In the interval [tg−1, tg), the last selected tasks are either not
preempted or counted before. In total, we obtain at most (m− 1)(g− 1) ≤ 2(m− 1)k
incorrectly scheduled tasks in case 2. In the first case, for each change from a partition
PF,a to PF,a+1 we get at most m incorrectly scheduled tasks. The number of all
partitions can be bounded by m! + mm ≤ 2mm, which implies the bound 2mm+1 for
incorrectly scheduled tasks in case 1.
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Lemmas 3.1 and 3.2 imply the following upper bound (Corollary 3.3) on the total
number of tasks that we have to shift to the end of the schedule.

Corollary 3.3. |U1∪U2∪W| ≤ 2(m−1)k+2mm+1+2m ≤ 2(m−1)k+3mm+1.
The following general lemma which was proved in [13] will be used to select the

cardinality k of L (a constant for any fixed m and ε > 0), such that the total processing
time of U1 ∪ U2 ∪ W can be bounded. We mention in passing that this lemma (or
various simplified variants and corollaries of it) can be used in designing polynomial
approximation schemes for other scheduling problems as well; see [1, 7, 12, 13].

Lemma 3.4. Suppose d1 ≥ d2 ≥ · · · ≥ dn > 0 is a sequence of real numbers
and D =

∑n
j=1 dj. Let p, q be nonnegative integers, α > 0, and assume that n is

sufficiently large (i.e., all the indices of the di’s in the statement are smaller than n;

e.g., n > (� 1
α�p + 1)(q + 1)�

1
α � suffices). Then, there exists an integer k = k(p, q, α)

such that

dk + · · · + dk+p+qk−1 ≤ α ·D

and

k ≤ (q + 1)�
1
α �−1 + p[1 + (q + 1) + · · · + (q + 1)�

1
α �−2].

If q > 0, the bound on k simplifies to [(p + q)(q + 1)�
1
α �−1 − p]/q. By applying

Lemma 3.4 with values p = 3mm+1, q = 2(m− 1), and α = ε
2m , we obtain that there

exists a constant k = k(m, ε) ≤ 1 + 4mm(2m)2m/ε = mO(m/ε) such that the total
execution time of the tasks in U1 ∪ U2 ∪W can be bounded by ε

2m ≤ ε
2OPT . Notice

that k = mO(m/ε) is exponential in 1/ε and that the number of all relative schedules
can be bounded by a constant kO(k). The overall running time can be bounded by
[kO(k)(TIME(LP (R), ε) + mO(m/ε) + n)], where TIME(LP (R), ε) denotes the time
required to calculate an ε-approximate solution for the linear program LP (R). Using
the same arguments as in section 2.2 one can show that for any fixed m and ε > 0, the
linear program LP (R) can be solved with ε-accuracy in O(n) time. Furthermore, the
makespan for the partial (feasible) schedule of T \ (U1 ∪ U2) is at most (1 + ε

2 )OPT .
Thus, the overall makespan of the (complete) schedule is bounded by (1+ ε)OPT . As
stated by the arguments above, for any fixed m and ε > 0, all computations can be
carried out in O(n) time. Therefore the following result holds for Pm|setj |Cmax.

Theorem 3.5. There is an algorithm which, given a set of n independent tasks,
a constant number of processors m, a fixed positive accuracy ε, and execution times
tj(μ), for each task Tj and subset of processors μ, calculates in O(n) time a nonpre-
emptive schedule whose makespan is at most (1 + ε)OPT .

4. Conclusions. In the present paper, we have proposed for the scheduling
problem Pm|pmtn, setj |Cmax a fully polynomial approximation scheme which for
any fixed positive accuracy computes an approximate solution in O(n) time. The
previous approach [2] to this problem was based on a linear programming formulation
with O(nm) variables, and hence it had a substantially larger time complexity in
terms of n.

We have also studied the nonpreemptive version Pm|setj |Cmax of the problem
and presented a polynomial-time approximation scheme whose running time depends
only linearly on n. Regarding the running time, this gives a significant improvement on
the recent result obtained (independently from our work) by Chen and Miranda [7].
In addition, our approach avoids the use of dynamic programming and hence also
answers an open question in [7].
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SÁNDOR P. FEKETE¶, JOSEPH S. B. MITCHELL† , AND SAURABH SETHIA‖

Abstract. We give the first algorithmic study of a class of “covering tour” problems related
to the geometric traveling salesman problem: Find a polygonal tour for a cutter so that it sweeps
out a specified region (“pocket”) in order to minimize a cost that depends mainly on the number of
turns. These problems arise naturally in manufacturing applications of computational geometry to
automatic tool path generation and automatic inspection systems, as well as arc routing (“postman”)
problems with turn penalties. We prove the NP-completeness of minimum-turn milling and give
efficient approximation algorithms for several natural versions of the problem, including a polynomial-
time approximation scheme based on a novel adaptation of the m-guillotine method.
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1. Introduction. An important algorithmic problem in manufacturing is to
compute effective paths and tours for covering (“milling”) a given region (“pocket”)
with a cutting tool. The objective is to find a path or tour along which to move a
prescribed cutter in order that the sweep of the cutter covers the region, removing all
of the material from the pocket, while not “gouging” the material that lies outside of
the pocket. This covering tour or “lawn mowing” problem [6] and its variants arise
not only in numerically controlled (NC) machining applications but also in automatic
inspection, spray painting/coating operations, robotic exploration, arc routing, and
even mathematical origami.

The majority of research on these geometric covering tour problems as well as on
the underlying arc routing problems in networks has focused on cost functions based on
the lengths of edges. However, in many actual routing problems, this cost is dominated
by the cost of switching paths or direction at a junction. A drastic example is given by
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fiber-optical networks, where the time to follow an edge is negligible compared to the
cost of changing to a different frequency at a router. In the context of NC machining,
turns represent an important component of the objective function, as the cutter may
have to be slowed in anticipation of a turn. The number of turns (“link distance”)
also arises naturally as an objective function in robotic exploration (minimum-link
watchman tours) and in various arc routing problems, such as snow plowing or street
sweeping with turn penalties. Klein [35] has posed the question of minimizing the
number of turns in polygon exploration problems.

In this paper, we address the problem of minimizing the cost of turns in a covering
tour. This important aspect of the problem has been left unexplored so far in the
algorithmic community, and the arc routing community has examined only heuristics
without performance guarantee, or exact algorithms with exponential running time.
Thus, our study provides important new insights and a better understanding of the
problems arising from turn cost. We present several new results:

(1) We prove that the covering tour problem with turn costs is NP-complete,
even if the objective is purely to minimize the number of turns, the pocket is
orthogonal (rectilinear), and the cutter must move axis-parallel. The hard-
ness of the problem is not apparent, as our problem seemingly bears a close
resemblance to the polynomially solvable Chinese postman problem; see the
discussion below.

(2) We provide a variety of constant-factor approximation algorithms that ef-
ficiently compute covering tours that are nearly optimal with respect to
turn costs in various versions of the problem. While getting some O(1)-
approximation is not difficult for most problems in this class, through a careful
study of the structure of the problem, we have developed tools and techniques
that enable significantly stronger approximation results.
One of our main results is a 3.75-approximation for minimum-turn axis-
parallel tours for a unit square cutter that covers an integral orthogonal poly-
gon, possibly with holes. Another main result gives a 4/3-approximation for
minimum-turn tours in a “thin” pocket, as arises in the arc routing version
of our problem.
Table 1.1 summarizes our results. The term “coverage” indicates the number
of times a point is visited, which is of interest in several practical applications.
This parameter also provides an upper bound on the total length.

(3) We devise a polynomial-time approximation scheme (PTAS) for the covering
tour problem in which the cost is given as a weighted combination of length
and number of turns, i.e., the Euclidean length plus a constant C times the
number of turns. For an integral orthogonal polygon with h holes and N
pixels, the running time is 2O(h) ·NO(C). The PTAS involves an extension of
the m-guillotine method, which has previously been applied to obtain PTASs
in problems involving only length [38].

We should stress that our paper focuses on the graph-theoretic and algorithmic
aspects of the turn-cost problem; we make no claims of immediate applicability of our
methods to NC machining.

Related work. In the CAD community, there is a vast literature on the subject
of automatic tool-path generation; we refer the reader to Held [27] for a survey and
for applications of computational geometry to the problem. The algorithmic study of
the problem has focused on the problem of minimizing the length of a milling tour:
Arkin, Fekete, and Mitchell [5, 6] show that the problem is NP-hard for the case
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Table 1.1

Approximation factors achieved by our (polynomial-time) algorithms. Rows marked “APX”
give approximation factors for the minimum-turn cycle cover (“Cycle cover”), the minimum-turn
covering tour (“Tour”), and the simultaneous approximation of length of a covering tour (“Length”).
The row marked “Max cover” indicates the maximum number of times a point is visited. The
parameter δ denotes the maximum degree in the underlying graph, while the parameter ρ is the
maximum number of directions in the graph. The two rows for running time refer to an “explicit”
description of input pixels and output and a more compact “implicit” encoding of pixels and output.
(See section 2 for more detailed definitions.)

Discrete Thin Orthogonal Thin
milling discrete milling orthogonal

Section 5.1.1 5.1.2 5.3 5.4

Cycle cover APX 2δ + ρ 4 1.5 4.5 1
Tour APX 2δ + ρ + 2 6 3.5 6.25 4/3
Length APX δ 2 - 8 4
Max cover δ 2ρ - 8 4
Time (explicit) O(N) O(N) O(N3) O(N2.376 + n3) O(n3)
Time (implicit) n/a n/a n/a O(n2.5 logN + n3) O(n3)

Integral
orthogonal

Section 5.2

Cycle cover APX 10 4 2.5
Tour APX 12 6 3.75
Length APX 4 4 4
Max cover 4 4 4
Time (explicit) O(N) O(N2.376) O(N2.376 + n3)
Time (implicit) O(n logn) O(n2.5 logN) O(n2.5 logN + n3)

where the mower is a square. Constant-factor approximation algorithms are given in
[5, 6, 30], with the current best factor being a 2.5-approximation for min-length milling
(11/5-approximation for orthogonal simple polygons). For the closely related lawn
mowing problem (also known as the “traveling cameraman problem” [30]), in which
the covering tour is not constrained to stay within P , the best current approximation
factor is 3 + ε (utilizing PTAS results for the traveling salesman problem (TSP)).
Also closely related is the watchman route problem with limited visibility (or “d-
sweeper problem”); Ntafos [42] provides a 4/3-approximation, and Arkin, Fekete,
and Mitchell [6] improve this factor to 6/5. The problem is also closely related to
the Hamiltonicity problem in grid graphs; the results of [44] suggest that in simple
polygons, minimum-length milling may in fact have a polynomial-time algorithm.

Covering tour problems are related to watchman route problems in polygons,
which have received considerable attention in terms of both exact algorithms (for
the simple polygon case) and approximation algorithms (in general); see [39] for a
relatively recent survey. Most relevant to our problem is the prior work on minimum-
link watchman tours: see [2, 3, 8] for hardness and approximation results, and [14, 36]
for combinatorial bounds. However, in these problems the watchman is assumed to
see arbitrarily far, making them distinct from our tour cover problems.

Other algorithmic results on milling include a study of multiple tool milling by
Arya, Cheng, and Mount [9], which gives an approximation algorithm for minimum-
length tours that use different size cutters, and the paper of Arkin, Held, and Smith [7],
which examines the problem of minimizing the number of retractions for “zig-zag”
machining without “remilling,” showing that the problem is NP-complete and giving
an O(1)-approximation algorithm.
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Geometric tour problems with turn costs have been studied by Aggarwal et al. [1],
who study the angular-metric TSP. The objective is to compute a tour on a set of
points, such that the sum of the direction changes at vertices is minimized: For
any vertex vi with incoming edge vi−1vi and outgoing edge vivi+1, the change of
direction is given by the absolute value of the angle between vi−1vi and vivi+1. The
problem turns out to be NP-hard, and an O(log n)-approximation is given. Fekete [20]
and Fekete and Woeginger [21] have studied a variety of angle-restricted tour (ART)
problems. Covering problems of a different nature have been studied by Demaine,
Demaine, and Mitchell [16], who considered algorithmic issues of origami.

In the operations research literature, there has been an extensive study of arc
routing problems, which arise in snow removal, street cleaning, road gritting, trash
collection, meter reading, mail delivery, etc.; see the surveys of [10, 18, 19]. Arc
routing with turn costs has had considerable attention, as it enables a more accurate
modeling of the true routing costs in many situations. Most recently, Clossey, Laporte,
and Soriano [13] presented six heuristic methods of attacking arc routing with turn
penalties, without resorting to the usual transformation to a TSP problem; however,
their results are purely based on experiments and provide no provable performance
guarantees. The directed postman problem in graphs with turn penalties has been
studied by Benavent and Soler [11], who prove the problem to be (strongly) NP-hard
and provide heuristics (without performance guarantees) and computational results.
(See also Fernández’s thesis [22] and [41] for computational experience with worst-case
exponential-time exact methods.)

Our covering tour problem is related to the Chinese postman problem (CPP),
which can be solved exactly in polynomial time for “purely” undirected or purely
directed graphs. However, the turn-weighted CPP is readily seen to be NP-complete:
Hamiltonian cycle in line graphs is NP-complete (contrary to what is reported in [25];
see page 246 of West [45]), implying that the TSP in line graphs is also NP-complete.
The CPP on graph G with turn costs at nodes (and zero costs on edges) is equivalent
to the TSP on the corresponding line graph, L(G), where the cost of an edge in L(G)
is given by the corresponding turn cost in G. Thus, the turn-weighted CPP is also
NP-complete.

2. Preliminaries. This section formally defines the problems at hand and var-
ious special cases of interest.

Problem definitions. The general geometric milling problem is to find a closed
curve (not necessarily simple) whose Minkowski sum with a given tool (cutter) is
precisely a given region P bounded by n edges. In the context of numerically controlled
(NC) machines, this region is usually called a pocket. Subject to this constraint, we
may wish to optimize a variety of objective functions, such as the length of the tour
or the number of turns in the tour. We call these problems minimum-length and
minimum-turn milling, respectively. While the latter problem is the main focus of
this paper, we are also interested in bicriteria versions of the problem in which both
length and number of turns must be small; we also consider the scenario in which the
objective function is given by a linear combination of turn cost and distance traveled
(see section 5.5).

In addition to choices in the objective function, the problem version depends on
the constraints on the tour. The most general case arises when considering a tour that
has to visit a discrete set of vertices, connected by a set of edges, with a specified turn
cost at each vertex to change from one edge to the next. More precisely, at each vertex,
the tour has the choice of (0) going “straight,” if there is one “collinear” edge with
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the one currently used (costing no turn), (1) turning onto another, noncollinear edge
(costing one turn), or (2) “U-turning” back onto the source edge (costing two turns).
Which pairs of the d edges incident to a degree-d vertex are considered “collinear”
are specified by a matching in the complete graph Kd: three incident edges cannot
be “collinear.” We call this graph-theoretic abstraction the discrete milling problem,
indicating the close relationship to other graph-theoretic tour optimization problems.
We are able to give a number of approximation algorithms for discrete milling that
depend on some graph parameters: δ denotes the maximum degree of a vertex and
ρ denotes the maximum number of distinct “directions” coming together at a vertex.
(For example, for graphs arising from d-dimensional grids, these values are bounded
by 2d and d, respectively.)

A special case of discrete milling arises when dealing with “thin” structures in two-
or three-dimensional space, where the task is to travel all of a given set of “channels,”
which are connected at vertices. This resembles a CPP, in that it requires us to travel
a given set of edges; however, in addition to the edge cost, there is a cost at the
vertices when moving from one edge to the next. For this scenario, we are able to
describe approximation factors that are independent of other graph parameters.

More geometric problems arise when considering the milling of a polygonal region
P . In the orthogonal milling problem, the region P is an orthogonal polygonal domain
(with holes) and the tool is an (axis-parallel) unit-square cutter constrained to axis-
parallel motion, with edges of the tour alternating between horizontal and vertical.
All turns are orthogonal; 90◦ turns incur a cost of 1, while a “U-turn” has a cost of 2.
In the integral orthogonal case, all coordinates of boundary edges are integers, so the
region can be considered to be the (connected) union of N pixels, i.e., axis-parallel
unit squares with integer vertices. Note that in general, N may not be bounded by
a polynomial in n. Instead of dealing directly with a geometric milling problem, we
often find it helpful to consider a more combinatorial problem, and then adapt the
solution back to the geometric problem. In particular, for integral orthogonal milling,
we may assume that an optimal tour can be assumed to have its vertex coordinates of
the form k + 1

2 for integral k. Then, milling in an integral orthogonal polygon (with
holes) is equivalent to finding a tour of all the vertices (“pixels”) of a grid graph; see
Figure 2.1.

Fig. 2.1. An instance of the integral orthogonal milling problem (left) and the grid graph model
(right).

An interesting special case of integral orthogonal milling is the thin orthogonal
milling problem, in which the region does not contain a 2×2 square of pixels. This
is also closely related to discrete milling, as we can think of edges embedded into
the planar grid, such that vertices and channels are well separated. This problem of



536 E. M. ARKIN ET AL.

finding a tour with minimum turn cost for this class of graphs is still NP-complete,
even for a subclass for which the corresponding problem of minimizing total distance is
trivial; this highlights the particular difficulty of dealing with turn cost. On the other
hand, thin orthogonal milling allows for particularly fast and efficient approximation
algorithms.

Other issues. It should be stressed that using turn cost instead of (or in addition
to) edge length changes several characteristics of distances. One fundamental problem
is illustrated by the example in Figure 2.2: the triangle inequality does not have to
hold when using turn cost. This implies that many classical algorithmic approaches
for graphs with nonnegative edge weights (such as using optimal 2-factors or the
Christofides method for the TSP) cannot be applied without developing additional
tools.

b

a

c

Fig. 2.2. The triangle inequality may not hold when using turn cost as distance measure:
d(a, c) = 3 > 2 = d(a, b) + d(b, c).

In fact, in the presence of turn costs we distinguish between the terms 2-factor, i.e.,
a set of edges, such that every vertex is incident to two of them, and cycle cover, i.e.,
a set of cycles, such that every vertex is covered. While the terms are interchangeable
when referring to the set of edges that they constitute, we make a distinction between
their respective costs: a “2-factor” has a cost consisting of the sum of edge costs but
does not necessarily account for the turn cost between its two incident edges, while
the cost of a “cycle cover” includes also the turn costs at vertices.

It is often useful in designing approximation algorithms for optimal tours to begin
with the problem of computing an optimal cycle cover, minimizing the total number
of turns in a set of cycles that covers P . Specifically, we can decompose the problem
of finding an optimal (minimum-turn) tour into two tasks: finding an optimal cycle
cover, and merging the components. Of course, these two processes may influence
each other: there may be several optimal cycle covers, some of which are easier to
merge than others. (In particular, we say that a cycle cover is connected if the graph
induced by the set of cycles and their intersections is connected.) As we will show,
even the problem of optimally merging a connected cycle cover is NP-complete. This
is in contrast to minimum-length milling, where an optimal connected cycle cover can
trivially be converted into an optimal tour that has the same cost.

Algorithms whose running time is polynomial in the explicit encoding size (pixel
count) are pseudopolynomial. Algorithms whose running time is polynomial in the
implicit encoding size are polynomial. This distinction becomes an important issue
when considering different ways to encode input and output; e.g., a large set of pix-
els forming an a × b rectangle can be described in space O(log a + log b) by simply
describing the bounding edges, instead of listing all ab individual pixels. In integral
orthogonal milling, one might think that it is most natural to encode the grid graph
with vertices, because the tour will be embedded on this graph and will, in general,
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have complexity proportional to the number N of pixels. But the input to any ge-
ometric milling problem has a natural encoding by specifying only the n vertices of
the polygon P . In particular, long edges are encoded in binary (or with one real
number, depending on the model) instead of unary. It is possible to get a running
time depending only on this size, but of course we need to allow for the output to
be encoded implicitly. That is, we cannot explicitly encode each vertex of the tour
because there are too many (the number can be arbitrarily large even for a succinctly
encodable rectangle). Instead, we encode an abstract description of the tour that is
easily decoded.

Finally, we mention that many of our results carry over from the tour (or cycle)
version to the path version, in which the cutter need not return to its original position.
In this paper, we omit the straightforward changes necessary to compute optimal
paths. A similar adjustment can be made for the related case of lawn mowing, in
which the sweep of the cutter is allowed to go outside P during its motion. Clearly,
our techniques are also useful for scenarios of this type.

3. NP-completeness. Arkin, Fekete, and Mitchell [6] have proved that the
problem of optimizing the length of a milling tour is NP-hard. Their proof is based
on the well-known hardness of deciding whether a grid graph has a Hamiltonian cycle
[29, 31]. This result implies that it is NP-hard to find a tour of minimum total length
that visits all vertices. If, on the other hand, we are given a connected cycle cover of
a graph that has minimum total length, then it is trivial to convert it into a tour of
the same length by merging the cycles into one tour.

In this section we show that if the quality of a tour is measured by counting turns,
then even this last step of turning an optimal connected cycle cover into an optimal
tour is NP-complete. Thus we prove that it is NP-hard to find a milling tour that
optimizes the number of turns for a polygon with holes.

Theorem 3.1. Minimum-turn milling is NP-complete, even when we are re-
stricted to the orthogonal thin case, and are already provided with an optimal connected
cycle cover.

Because thin orthogonal milling is a special case of thin milling as well as orthog-
onal milling, and because it is easy to convert an instance of thin orthogonal milling
into an instance of integral orthogonal milling, we have the following.

Corollary 3.2. Discrete milling, orthogonal milling, and integral orthogonal
milling are NP-complete.

Proof of Theorem 3.1. Our reduction proceeds in two steps. First we show that
the problem Hamiltonicity of unit segment intersection graphs (Husig) of deciding
the Hamiltonicity of intersection graphs of axis-parallel unit segments is hard. To see
this, we use the NP-hardness of deciding Hamiltonicity of grid graphs [29, 31] and
argue that any grid graph can be represented in this form (see Figure 3.1).

Consider a set of integer grid points that induce a grid graph G. Note that G
is bipartite, because one can 2-color the nodes by coloring a grid point (x, y) black
(resp., white) if x + y is odd (resp., even). After rotating the point set by π/4, the
coordinate of each point is an integer multiple of 1/

√
2. Scaling down the resulting

arrangement by a factor of 3/
√

2 results in an arrangement in which the coordinate
of each point is an integer multiple of 1/3, and the shortest distance between two
points of the same color class is 2/3. For the resulting set of points pi = (xi, yi), let
p′i = pi + (εi, εi) be given as the set obtained by “perturbations” εi that are small
and all distinct. Then represent each “white” vertex by a horizontal unit segment
centered at p′i and each “black” vertex by a vertical unit segment centered at p′i. Now
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(a) (b)

Fig. 3.1. (a) A grid graph G. (b) A representation of G as an intersection graph of axis-parallel
unit segments.

it is easy to see that the resulting unit segment intersection graph is precisely the
original grid graph G.

In a second step, we show that the problem Husig reduces to the problem of
milling with turn costs. The outline of our argument is illustrated in Figure 3.2.

Consider a unit segment intersection graph G, given by a set of axis-parallel unit
segments, as shown in Figure 3.2(a). Figure 3.2(b) shows the corresponding graph,
with a Hamiltonian cycle indicated in bold. Without loss of generality, we may assume
that G is connected. Let s be the number of nodes of G.

As shown in Figure 3.2(c), we replace each line segment by a cycle of four thin
axis-parallel corridors. This results in a connected polygonal region P having 4s
convex corners. Clearly, any cycle cover or tour cover of P must have at least 4s
turns; by using a cycle for each set of four corridors representing a strip, we get a
cycle cover C with 4s turns. Therefore, C is an optimal cycle cover, and it is connected,
because G is connected.

Now assume that G has a Hamiltonian cycle. It is easy to see (Figure 3.2(f))
that this cycle can be used to construct a milling tour of P with a total of 5s turns:
Each time the Hamiltonian cycle moves from one vertex vi of the grid graph to the
next vertex vj , the milling tour moves from the cycle Ci representing vi to the cycle
Cj representing vj , at an additional cost of 1 turn for each of the s edges in the
Hamiltonian cycle.

Assume conversely that there is a milling tour T with at most 5s turns. We refer
to turns at the corners of 4-cycles as convex turns. The other turns are called crossing
turns.

As noted above, the convex corners of P require at least 4s convex turns. Con-
sider the sequence of turns t1, . . . , t5s in T . By construction, the longest contiguous
subsequence of convex turns contains at most four different convex turns. (More pre-
cisely, we can have such a subsequence with four different convex corners only if these
four corners belong to the same 4-cycle representing a unit segment.) Furthermore,
we need at least one additional crossing turn at an interior crossing of two corridors to
get from one convex corner to another convex corner not on the same 4-cycle. (More
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Fig. 3.2. Thin orthogonal milling with turn cost is NP-hard: (a) a set of s = 8 axis-parallel unit
segments, denoted by s1, . . . , s8; (b) the corresponding intersection graph G, with the Hamiltonian
cycle v1, v2, v3, v6, v7, v8, v5, v4 shown in bold; (c) representing G by a connected region consisting
of 4s corridors; (d) a drawing of the graph induced by the instance of thin orthogonal milling,
with the s = 8 rectangular cycles C1, . . . , C8; (e) a milling tour with 5s turns corresponding to the
Hamiltonian cycle in G; (f) milling the four corridors of a cycle using five turns.

precisely, one crossing turn is sufficient only if the two connected convex corners be-
long to 4-cycles representing intersecting unit segments.) Therefore, we need at least
c crossing turns if we have at least c contiguous subsequences as described above.
This means that c ≥ s; hence, c = s by the assumption on the number of turns on T .
Because the c crossing turns correspond to a closed round trip in G that visits all s
vertices, this implies that we have a Hamiltonian cycle, concluding the proof.
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4. Approximation tools. There are three main tools that we use to develop
approximation algorithms: computing optimal cycle covers for milling the “boundary”
of P (section 4.1), converting cycle covers into tours (section 4.2), and using optimal
(or nearly optimal) “strip covers” (section 4.3). In this section, our description mostly
focuses on orthogonal milling; however, we will see in the following section 5.1 how
some of our tools can also be applied to the general case of discrete milling.

4.1. Boundary cycle covers. Consider first the problem of finding a minimum-
turn cycle cover for covering a certain subset, P , of P that is along its boundary.
This will turn out to be a useful tool for approximation algorithms. Specifically, in
orthogonal milling we define the set P of boundary pixels to consist of pixels that have
at least one of their four edges on a boundary edge of the polygon; i.e., in the grid
graph that describes adjacency of pixels, these are pixels of degree at most 3. Let NP
be the number of boundary pixels. A boundary cycle cover is a collection of cycles
that visit all boundary pixels.

We define an auxiliary structure, GP = (VP , EP ), which is a complete weighted
graph on 2NP vertices; for ease of description, we will refer to GP as a set of points
and paths between them. This will allow us to map boundary cycle covers in P to
matchings of corresponding turn cost in GP . For this purpose, map each pixel pi ∈ P

to two vertices in VP , v
(0)
i and v

(1)
i . For each boundary pixel pi, this pair represents an

orientation that is attained by a cutter when visiting pi. Depending on the boundary
structure of pi, there are four different cases; refer to Figure 4.1.

(i) (ii)

(iii) (iv)

v(1)
i

p
i p

i

v(1)
i p

i

v(1)
i

p
i

v
i

v(1)
i

v
i

v
i

v
i

(0)

(0)

(0)
(0)

Fig. 4.1. Representing a boundary pixel pi by a pair of vertices v
(0)
i and v

(1)
i .

(i) One edge of pi is a boundary edge of the polygon.
(ii) Two opposite edges of pi are boundary edges of the polygon.
(iii) Two adjacent edges of pi are boundary edges of the polygon.
(iv) Three edges of Pi are boundary edges of the polygon.

For easier description, we refer to the vertices v
(0)
i and v

(1)
i as points embedded
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within pi, as shown in Figure 4.1. Furthermore, we add a mandatory path mi between

v
(0)
i and v

(1)
i , represented by a polygonal path with c(mi) = 0 (cases (i) and (ii)),

c(mi) = 1 (case (iii)), or c(mi) = 2 turns (case (iv)), as shown in the figure. This
path maps the contour of P at pi, and it represents orientations that a cutter has to

attain when visiting pixel pi. Note that traveling from v
(h)
i to v

(1−h)
j along mi induces

a heading δ
(h,−)
i when leaving v

(h)
i and a heading δ

(1−h,+)
i when arriving at v

(1−h)
i .

Note that δ
(h,−)
i is opposite to δ

(h,+)
i .

Now we add a set of optional paths, representing the weighted edges EP of the

complete graph GP . For an example, refer to Figure 4.2. For any pair of vertices v
(h)
i

and v
(k)
j , let d(v

(h)
i , v

(k)
j ) be the minimum number of turns necessary when traveling

from v
(h)
i with heading δ

(h,+)
i to v

(k)
j with heading δ

(k,−)
j . Note that d(v

(h)
i , v

(k)
j ) =

d(v
(k)
j , v

(h)
i ), as any shortest path can be traveled in the opposite direction. Using

a Dijkstra-like approach, we can compute these distances from one boundary pixel
to all other boundary pixels in time O(NP logNP ); see the overview in [39] or the
paper [37]. The overall time of O(N2

P
logNP ) for computing all these link distances

is dominated by the following step: In time O(N3
P

) [24, 43], find a minimum-weight
perfect matching in the complete weighted graph GP .

v(1)
j

v(0)

v
i

(1)

v
i

(0)

j

δ i
(1,−)

δ i

jδ(1,−)
j δ(0,−)

(0,−)

Fig. 4.2. The cost of traveling between two pixels: d(v
(1)
i , v

(0)
j ) = d(v

(0)
j , v

(1)
i ) = 2, while

d(v
(0)
i , v

(1)
j ) = d(v

(1)
j , v

(0)
i ) = 5.

Now it is not hard to see the following.
Lemma 4.1. Any boundary cycle cover in P with t turns can be mapped to a

perfect matching in GP of cost t−
∑

pi∈P c(mi), and vice versa.
Proof. Whenever a boundary cycle cover visits a boundary pixel pi, it has to

perform the turns corresponding to the mandatory path mi. Moreover, moving from
one pixel pi to the next pixel pj can be mapped to the optional path corresponding

to the edges (v
(h)
i , v

(k)
j ); clearly, the overall cost is as stated.

Conversely, it is straightforward to see that the combination of a perfect match-
ing in GP and the mandatory paths yields a boundary cycle cover of corresponding
cost.

Using the algorithms described above, we also obtain the following.
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Theorem 4.2. Given the set of NP boundary pixels, a minimum-turn boundary
cycle cover can be computed in time O(N3

P
), the time it takes to compute a perfect

matching in GP .
If the set of pixels is not given in unary, but implicitly as the pixels contained in

a region with n edges, the above complexity is insufficient. However, we can use local
modifications to argue the following tool for speeding up the search for an optimal
perfect matching.

Lemma 4.3. Let pi and pj be neighboring boundary pixels that are adjacent to the

same boundary edge, so d(v
(h)
i , v

(k)
j ) = 0 for an appropriate choice of h and k. Then

there is an optimal matching containing (v
(h)
i , v

(k)
j ).

Proof. This follows by a simple exchange argument. See Figure 4.3. Suppose
two adjacent pixels pi and pj along the same boundary edge are not matched to each

other, let v
(h)
i be the vertex such that δi(h,−) is heading for pj , and let v

(k)
j be the

vertex such that δj(k,−) is heading for pi. Furthermore suppose that v
(h′)
i′ is matched

to v
(h)
i and v

(k′)
j′ is matched to v

(k)
j . Then we can match v

(h′)
i′ to v

(k′)
j′ and v

(h)
i to v

(k)
j

without changing the cost of the matching.

j
v(k)

j
v(k)v

i
(h) v

i
(h)

v
i’

(h’) v
i’

(h’)
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j’

v(k’)
j’

δ i
(h,−) δ i
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i’
(h’,−)
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Fig. 4.3. By performing local modifications, an optimal cycle cover can be assumed to cover
each collinear piece of the boundary in one connected strip.

This allows us to obtain a strongly polynomial version of the matching algorithm
of Theorem 4.2.

Theorem 4.4. A minimum-turn boundary cycle cover can be computed in time
O(n3).

Proof. By applying Lemma 4.3 repeatedly, we get O(n) connected boundary
strips, consisting of sets of collinear boundary pixels. These can be determined effi-
ciently by computing offsets of the boundary edges. This leaves only O(n) endpoints
of such strips to be matched, resulting in the claimed complexity.

Note that the validity of this argument is not restricted to the integral orthogonal
case, but remains valid even for orthogonal regions with arbitrary boundary edges.

Remark. The definition of the “boundary” pixels P used here does not include
all pixels that touch the boundary of P in a diagonal fashion; in particular, it omits
the “reflex pixels” that share a corner, but no edge, with the boundary of P . It seems
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Fig. 4.4. Optimally covering all pixels that have an edge against the boundary can leave reflex
pixels uncovered.

difficult to require that the cycle cover mill reflex pixels, because Lemma 4.3 does not
extend to this case, and an optimal cycle cover of the boundary (as defined above)
may have fewer turns than an optimal cycle cover that mills the boundary P plus the
reflex pixels; see Figure 4.4.

4.2. Merging cycles. It is often easier to find a minimum-turn cycle cover (or
constant-factor approximation thereof) than to find a minimum-turn tour. We show
that an exact or approximate minimum-turn cycle cover implies an approximation for
a minimum-turn tour.

We concentrate on the integral orthogonal case. First we define a few terms
precisely. Two pixels are adjacent if the distance between their centers is 1. Two
cycles T1, T2 are intersecting if and only if T1∩T2 �= ∅. Two cycles are called touching
if and only if they are not intersecting and there exist pixels p1 ∈ T1, p2 ∈ T2 such
that p1 and p2 are adjacent.

Lemma 4.5. Let P1 and P2 be two cycles, with t1 and t2 turns, respectively, and
let p be a pixel that is contained in both cycles. Then there is a cycle milling the union
of pixels milled by P1 and P2 and having at most t1 + t2 + 2 turns. This cycle can be
found in time linear in the number of its turns.

Proof. Let the neighbors of p in P1 be a1, a2 and those of p in P2 be b1, b2. Connect
a1 via p to b1 and a2 via p to b2 to get the required tour. The two connections may add
at most a turn each. Hence the resulting tour can be of size at most t1 + t2 + 2.

Lemma 4.6. Given two touching cycles T1, T2 with t1, t2 turns, respectively,
there is a tour T with at most t1 + t2 + 2 turns that mills the union of pixels milled
by T1, T2.

Proof. Because T1, T2 are touching, T1 ∩ T2 = ∅ and there exist adjacent pixels
p1 ∈ T1 and p2 ∈ T2. Without loss of generality assume that p2 is a leftmost such
pixel, and below p1. Due to these constraints, T2 can enter/exit p2 from only two
sides. Hence there are only three ways in which T2 can visit p2. These are shown in
Figure 4.5. For all three ways we show in Figure 4.5 how to cut and extend tour T2

without adding any extra turns, to get a path P2 starting and ending at pixel p1. Cut
T1 at p1 to get a path P1. By possibly adding two turns, we can merge the two paths
into one tour.

With the help of these lemmas, we deduce the following.
Theorem 4.7. A cycle cover with t turns can be converted into a tour with at
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Fig. 4.5. Merging two touching tours: There are three possible ways of tour T2 visiting pixel p2

(above). In each case, we can modify T2 into a path that visits pixel p1 (below); at a cost of possibly
one extra turn at each end of the path, we can merge it with tour T1.

most t + 2(c− 1) turns, where c is the number of cycles.
Proof. We prove this theorem by induction on the number of tours, c, in the cycle

cover. The theorem is trivially true for c = 1. For any other c, choose any c − 1
cycles with a total of t′ turns and find a tour T ′ that covers those c − 1 cycles; by
induction, it has t′ + 2(c− 1) turns. Let the remaining cycle, R, have r turns. Thus
t = t′+r. Because the polygon is connected, the set of pixels milled by R and T ′ must
be connected. Hence either T ′ and R are intersecting or touching. By Lemmas 4.5
and 4.6 we can merge R and T ′ into a single tour T with at most t′ + 2(c− 1) + r+ 2
turns, i.e., t + 2c turns.

Corollary 4.8. A cycle cover of a connected rectilinear polygon with t turns
can be converted into a single milling tour with at most 3

2 t turns.
Proof. This follows immediately from Theorem 4.7 and the fact that each cycle

has at least four turns.
Unfortunately, general merging is difficult (as illustrated by the NP-hardness proof

of Theorem 3.1), so we cannot hope to improve these general merging results by more
than a constant factor.

4.3. Strip and star covers. A key tool for approximation algorithms is a cov-
ering of the region by a collection of “strips.” A strip is a maximal straight segment
whose Minkowski sum with the tool is contained in the region. A strip cover is a
collection of strips whose Minkowski sums with the tool cover the entire region. A
minimum strip cover is a strip cover with the fewest strips.

Lemma 4.9. The size of a minimum strip cover is a lower bound on the number
of turns in a cycle cover (or tour) of the region.

Proof. Any cycle cover induces a strip cover by extending each edge to have
maximal length. The number of strips in this cover equals the number of turns in the
cycle cover.

In the discrete milling problem, a related notion is a “rook placement.” A rook
is a marker placed on a pixel, which can attack every pixel to which it is connected
via a straight axis-parallel path inside the region. A rook placement is a collection of
rooks, no two of which can attack each other. See Figure 4.6 for an illustration; this
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Fig. 4.6. (Left) An orthogonal region, its subdivision into axis-parallel strips, and a resulting
greedy rook cover (indicated by black pixels). (Right) An optimal strip cover, and an optimal rook
cover (indicated by black pixels).

tool will be used in Theorem 5.6, based on the following lemma.
Lemma 4.10. The size of a maximum rook placement is a lower bound on the

number of turns in a cycle cover (or tour) for discrete milling.
Proof. Consider a rook placement and a cycle cover of the region, which must

in particular cover every rook. Suppose that one of the cycles visits rooks q1, . . . , qk
in that order. No two rooks can be connected by a single straight axis-parallel line
segment, so the cycle must turn between each rook, for a total of at least k turns.
Because each rook is traversed by at least one cycle, the number of turns (and hence
the number of segments in a tour) is at least the number of rooks.

In the integral orthogonal milling problem, the notions of strip cover and rook
placement are dual and efficient to compute.

Lemma 4.11. For integral orthogonal milling, a minimum strip cover and a
maximum rook placement have equal size. For a polygonal region with n edges and N
pixels they can be computed in time O(N2.376) or O(n2.5 logN).

Proof. For the case of N ∈ O(n), the claim follows from Proposition 2.2 in [26]:
We rephrase the rook-placement problem as a matching problem in a bipartite graph
G = (V1, V2, E). Let the vertices in V1 correspond to vertical strips, and let the
vertices in V2 correspond to horizontal strips. An edge e = (u, v) ∈ E exists if the
vertical strip corresponding to u and the horizontal strip corresponding to v have a
pixel in common (i.e., the strips cross). It is easy to see that a maximum-cardinality
matching in this bipartite graph corresponds to a rook placement: each edge (u, v)
in the matching corresponds to the unique pixel that vertical strip u and horizontal
strip v have in common.

Similarly, observe that the minimum strip-cover problem is equivalent to a min-
imum vertex-cover problem in the bipartite graph defined above. Each strip in the
strip cover defines a vertex in the vertex cover. The requirement that each pixel must
be covered by at least one strip is equivalent to the requirement that each edge of the
graph must be covered by at least one vertex.

By the famous König–Egerváry theorem, the maximum cardinality matching in
a bipartite graph is equal in size to the minimum vertex cover, and therefore both
can be solved in time polynomial in the size of the graph; more precisely, this can be
achieved in time O(Nω), the time needed for multiplying two N × N matrices, for
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example, ω = 2.376; see the paper [28], or the survey in chapter 16 of [43], which also
lists other, more elementary methods.

To get the claimed running time even for “large” N , using implicit encoding, we
decompose the region into “thick strips” by conceptually coalescing adjacent horizon-
tal strips with the same horizontal extent, and similarly for vertical strips. In other
words, thick strips are bounded by two vertices of the region, and hence there are only
O(n) of them. We define the same bipartite graph but add a weight to each vertex
corresponding to the width of the strip (i.e., the number of strips coalesced). Instead
of a matching, in which each edge of the graph is either included in the matching or
not, we now have a multiplicity for each edge, which is the minimum of the weights
of its two endpoints. The interpretation is that an edge corresponds to a rectangle in
the region (the intersection of two thick strips), and the number of rooks that can be
placed in such a rectangle is at most the minimum of its width and height.

The weighted-matching problem we consider is that each edge can be included
in the matching with a multiplicity up to its weight. Furthermore, the sum of the
included multiplicities of edges incident to a vertex cannot exceed the weight of the
vertex. A weighted version of the König–Egerváry theorem states that the minimum-
weight vertex cover is equal to the maximum-weight matching. (This weighted version
can be easily proved using the max-flow min-cut theorem.) Both problems can be
solved in polynomial time using a max-flow algorithm, on a modified graph in which
a source vertex s is added with edges to all vertices in V1, of capacity equal to the
weight of the vertex, and a sink vertex t is added with edges to it from all vertices
in V2 with capacity equal to the vertex capacity. Edges between V1 and V2 are
directed from V1 and have capacity equal to the weight of the edge. Currently, the
best known running time is O(

√
nm log nW ) for a bipartite graph with n vertices, m

edges, and maximum weight W [23, 43]. For our purposes, this yields a complexity
of O(n2.5 logN).

Note that using weights on the edges is crucial for the correctness of our objective;
moreover, this has a marked effect on the complexity of the problem: Finding a
minimum number of axis-parallel rectangles (regardless of their size) that covers an
integral orthogonal polygon is known to be an NP-complete problem, even for the
case of polygon without holes [15].

For general discrete milling, it is possible to approximate an optimal strip cover
as follows. Greedily place rooks until no more can be placed (i.e., until there is no
unattackable vertex). This means that every vertex is attackable by some rook, so
by replacing each rook with all possible strips through that vertex, we obtain a strip
cover of size ρ times the number of rooks, where ρ is the maximum degree of the
underlying graph. (We call this type of strip cover a star cover.) But each strip in a
minimum strip cover can only cover a single rook, so this is a ρ-approximation to the
minimum strip cover. We have thus proved the following.

Lemma 4.12. In discrete milling, the number of stars in a greedy star cover is a
lower bound on the number of strips, and hence serves as a ρ-approximation algorithm
for minimum strip covers. Computing a greedy star cover can be done in time O(N).

Proof. Loop over the vertices of the underlying graph. Whenever an unmarked
vertex is found, add it to the list of rooks, and mark it and all vertices attackable by
it. Now convert each rook into a star as in the proof of Lemma 4.10. Each edge is
traversed only once during this process.

5. Approximation algorithms. We employ four main approaches to building
approximation algorithms, repeatedly in several settings:
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(i) Star cover + doubling + merging.
The simplest but most generally applicable idea is to cover the region by a
collection of stars. “Doubling” these stars results in a collection of cycles,
which can then be merged into a tour using general techniques.

(ii) Strip cover + doubling + merging.
Tighter bounds can be achieved by covering directly with strips instead of
stars. Similar doubling and merging steps follow.

(iii) Strip cover + perfect matching of endpoints + merging.
The covering of the region is done by the strip cover. To connect these strips
into cycles, we find a minimum-weight perfect matching on their endpoints.
This results in a cycle cover, which can be merged into a tour using general
techniques.

(iv) Boundary tour + strip cover + perfect matching of odd-degree vertices.
Again coverage is by a strip cover, but the connection is done differently. We
add a tour of the boundary (by merging an optimal boundary cycle cover) and
attach each strip to this tour on each end. The resulting graph has several
degree-3 vertices, which we fix by adding a minimum-weight matching on
these vertices.

5.1. Discrete milling. As described in the preliminaries, we consider two sce-
narios: While general discrete milling focuses on vertices (and thus resembles the
TSP), thin discrete milling requires traveling a set of edges, making it similar to the
CPP.

5.1.1. General discrete milling. Our most general approximation algorithm
for the discrete milling problem runs in linear time. First we take a star cover ac-
cording to Lemma 4.12, which approximates an optimal strip cover to within a factor
of ρ. Then we tour the stars using an efficient method described below. Finally we
merge these tours using Theorem 4.7.

We tour each star emanating from a vertex v using the following method—see
Figure 5.1. Consider a strip s in the star, and suppose its ends are the vertices ui

and uj . A strip having both of its endpoints distinct from v is called a full strip; a
strip one of whose endpoints is equal to v is called a half strip. Half strips are covered
by three edges, (v, uj), (uj , uj), and (uj , v), making a U-turn at endpoint uj . (This
covering is shown for the half strip (v, u1) in Figure 5.1(b).) Full strips are covered by
five edges, (v, ui), (ui, ui), (ui, uj), (uj , uj), and (uj , v), with U-turns at both ends,
ui and uj . (This covering is shown for the full strip (u5, u2) in Figure 5.1(b).) Now
we have several paths of edges starting and ending at v. By joining their ends we can
easily merge these paths into a cycle.

The number of turns in this cycle is 3 times the number of half strips, plus 5 times
the number of full strips. This is equivalent to the number of distinct directions at v
plus 2 times the degree of v. (The number of directions at v is equal to the number
of full strips plus the number of half strips, by definition. The degree of v is equal to
2 times the number of full strips plus the number of half strips.) Lemma 4.12 implies
that the number of stars is a lower bound on the number of turns in a cycle cover of
the region, proving the following.

Theorem 5.1. There is an O(N)-time (2δ + ρ)-approximation for finding a
minimum-turn cycle cover in discrete milling. Furthermore, the maximum coverage
of a vertex (i.e., the maximum number of times a vertex is swept) is δ, and the cycle
cover is a δ-approximation on length.
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Fig. 5.1. (a) A star of degree 5 around vertex v. (v, u1), (v, u3), (v, u4) are half strips, and
(u2, u5) is a full strip. (b) A covering with three edges for a half strip, and a covering with five
edges for the full strip.

Proof. As the star cover, by definition, contains all vertices, the cycle cover
obtained by traversing the stars also does. As stated above, the number of turns in
each cycle covering a star is the number of directions at v, plus 2 times the degree of
v. Summing over all stars, we get the claimed approximation bound. The running
time follows directly from Lemma 4.12. Deriving the values for maximum coverage
and overall length is straightforward.

Corollary 5.2. There is a linear-time (2δ+ρ+2)-approximation for minimum-
turn discrete milling. Furthermore, the maximum coverage of a vertex is δ, and the
tour is a δ-approximation on length.

Proof. We apply Theorem 4.7. The number of cycles to be merged is the number
of stars, which by Lemma 4.12 is a lower bound on the number of turns in a tour of
the region. We pay at most two turns per cycle for the merge. There is no additional
cost of length due to the merge, as the stars form a connected graph.

5.1.2. Thin discrete milling. As described in section 2, a more special struc-
ture arises if the structure to be milled consists of a connected set of “channels” that
have to be milled. In this case, achieving a strip cover is trivial.

Lemma 5.3. In thin discrete milling a strip cover can be obtained in linear time
by merging edges that are collinear at some vertex.

Using method (ii) described at the beginning of the section, we get the following
approximation results.

Theorem 5.4. There is a 4-approximation of complexity O(n log n) for comput-
ing a minimum-turn cycle cover for a graph with n edges, and a 6-approximation of
the same complexity for computing minimum-turn tours.

Proof. Clearly, the number of strips is a lower bound on the cost of any cycle
cover or tour. Turning each strip into a cycle with two U-turns, i.e., 4 turns, yields
a cycle cover within a factor 4 of the optimum. Merging these cycles at a cost of 2
turns per merge yields a tour within a factor of 6 times the optimum, as each cycle
has 4 turns.

Clearly, all edges get covered twice (yielding a bound of 2 on the simultaneous
length approximation) and no vertex gets covered more than 2ρ times.

Using the more time-consuming method (iii), we get better approximation factors
for the turn cost.
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Theorem 5.5. There is a 1.5-approximation of complexity O(n3) for computing
a minimum-turn cycle cover for a graph with n edges, and a 3.5-approximation of the
same complexity for computing minimum-turn tours.

Proof. As before, we can compute an optimal strip cover S in linear time. Anal-
ogous to the approach in section 4.1, define a weight function between endpoints of
strips, taking into account the direction when leaving a strip. Clearly, any feasible
tour consists of two different matchings M1 and M2 between strip endpoints; more-
over, if d(M1) and d(M2) are the total weights of the edges in the matchings, we get
d(M1) + d(M2) ≤ d(T ). It follows that for an optimal matching M , we have d(M) ≤
opt/2. By construction, the edges of M and the strips of S induce a 2-factor of the
vertices that covers all edges. Thus, we get a cycle cover of cost at most 1.5 opt.

Now consider the c cycles in a cycle cover. c is at most the number of strips in
S, which is a lower bound on the cost of an optimal tour. As the cost of merging the
c cycles is at most 2c− 2, we get a total cost of not more than 3.5 opt.

5.2. Integral orthogonal. As mentioned in the preliminaries, just the pixel
count N may not be a satisfactory measure for the complexity of an algorithm, as the
original region may be encoded more efficiently by its boundary, and a tour may be
encoded by structuring it into a small number of pieces that have a short description.
It is possible to use the above ideas for approximation algorithms in this extended
framework. We describe how this can be done for the integral orthogonal case, where
the set of pixels is bounded by n boundary edges.

Theorem 5.6. There is a 10-approximation of (strongly polynomial) complexity
O(n log n) for computing a minimum-turn cycle cover for a region of pixels bounded
by n integral axis-parallel segments, and a 12-approximation of the same complexity
for computing minimum-turn tours. In both cases, the maximum coverage of a point
is at most 4, so the algorithms are also 4-approximations on length.

For the special case in which the boundary is connected (meaning that the region
has no holes), the complexities drop to O(n).

Proof. The basic idea is to find a greedy rook cover, then use it to build an
approximate tour. Lemma 4.12 still holds, and each strip in a star (as described in
the previous section) will be a full strip. The approximation ratios follow as special
cases of Theorem 5.1: In this case, ρ = 2 and δ = 4. It remains to show how we can
find a greedy rook cover in the claimed time.

Refer back to Figure 4.6. Subdivide the region by the n vertical chords through
its n vertices, resulting in at most n vertical strips X1, . . . , Xn, of widths x1, . . . , xn.
Similarly, consider a subdivision by the n horizontal chords through the n vertices
into at most n horizontal strips Y1, . . . , Yn, of width y1, . . . , yn. In total, we get a
subdivision into at most n2 cells Cij . Despite this quadratic number of cells, we can
deal with the overall problem in near-linear time: Note that both subdivisions can be
found in time O(n log n). For the case of a connected boundary, Chazelle’s linear-time
triangulation algorithm [12] implies a complexity of O(n).

Choose any cell Cij , which is a rectangle of size xi × yj . Then rij = min{xi, yj}
rooks can be placed greedily along the diagonal of Cij , without causing any interfer-
ence; such a set of rooks can be encoded as one “fat” rook, described by its leftmost
uppermost corner (ξij , ηij), and its width rij . Then the strip Xi can contain at most
xi−rij additional rooks, and Yj can contain at most yj−rij rooks. Therefore, replace
xi by xi − rij , and yj by yj − rij . This changes the width of at least one of the strips
to zero, effectively removing it from the set of strips. After at most 2n − 1 steps of
this type, all horizontal or all vertical strips have been removed, implying that we
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have a maximal greedy rook cover.

It is straightforward to see that for a fat rook at position (ξij , ηij) and width rij ,
there is a canonical set of rij cycles with 10 edges each that covers every pixel that can
be attacked from this rook. Furthermore, there is a “fat” cycle with at most 12rij −2
turns that is obtained by a canonical merging of the rij small cycles. Finally, it is
straightforward to merge the fat cycles.

If we are willing to invest more time for computation, we can find an optimal
rook cover (instead of a greedy one). As discussed in the proof of Lemma 4.11, this
optimal rook cover yields an optimal strip cover. An optimal strip cover can be used
to get a 6-approximation, and the new running time is O(n2.5 log n) or O(N2.376).

Theorem 5.7. There is an O(n2.5 logN)-time or O(N2.376)-time algorithm that
computes a milling tour with number of turns within 6 times the optimal, and with
length within 4 times the optimal.

Proof. Apply Lemma 4.11 to find an optimal strip cover of the region. (See
Figure 4.6.) As described in the proof of that lemma, the cardinality of an optimal
strip cover is equal to the cardinality of an optimal rook cover. As stated, the number
of strips is a lower bound on the number of turns in a cycle cover or tour.

Now any strip from u to w is covered by a “doubling” cycle with edges (u,w),
(w,w), (w, u), (u, u). This gives a 4-approximation to minimum-turn cycle covers.
Finally apply Corollary 4.8 to get a 6-approximation to minimum-turn tours.

The claim about coverage (and hence overall length) follows from the fact that an
optimal strip cover has maximum coverage 2, and hence the cycle cover has maximum
coverage 4.

By more sophisticated merging procedures, it is possible to reduce the approx-
imation factor for tours to a figure closer to 4. Note that in the case of N being
large compared to n, the above proof grossly overestimates the cost of merging, as
all cycles within a fat strip allow merging at no additional cost. However, our best
approximation algorithm achieves a factor less than 4 and uses a different strategy.

Theorem 5.8. For an integral orthogonal polygon with n edges and N pix-
els, there are 2.5-approximation algorithms, with running times O(N2.376 + n3) and
O(n2.5 logN + n3), for minimum-turn cycle cover, and hence there is a polynomial-
time 3.75-approximation for minimum-turn tours.

Proof. As described in Lemma 4.11, find an optimal strip cover S, in time
O(N2.376) or O(n2.5 logN). Let s be its cardinality and let opt be the cost of an
optimal tour; then opt ≥ s.

Now consider the end vertices of the strip cover. By construction, they are part
of the boundary. Because any feasible tour T must encounter each pixel and cannot
cross the boundary, either any endpoint of a strip is crossed orthogonally or the tour
turns at the boundary segment. In any case, a tour must have an edge that crosses
an end vertex orthogonally to the strip. (Note that this edge has zero length in the
case of a U-turn.)

As in section 4.1 and the proof of Theorem 5.5, define a weight function between
endpoints of strips, taking into account the direction when leaving a strip. Again any
feasible tour consists of two different matchings M1 and M2 between strip endpoints,
and for an optimal matching M , we have d(M) ≤ opt/2.

Computing such a matching can be achieved as follows. Note that for N pixels, an
optimal strip cover has O(min{

√
N,n}) strips; by matching endpoints of neighboring

strips within the same fat strip, we are left with O(n) endpoints. As described in
the proof of Lemma 4.11, the overall cost for computing the link distance between
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(b)(a)

Fig. 5.2. A bad example for the 3.75-approximation algorithm: (a) Half the cycles constructed
by the algorithm. (b) An optimal tour.

all pairs of endpoints can be achieved in O(min{N logN,n2 log n}). Computing a
minimum-weight perfect matching can be achieved in time O(max{N1.5, n3}).

The edges of M and the strips of S induce a 2-factor of the endpoints. Because
any matching edges leave a strip orthogonally, we get at most 2 additional turns
at each strip for turning each 2-factor into a cycle. The total number of turns is
2s + w(M) ≤ 2.5·opt. Because the strips cover the whole region, we get a feasible
cycle cover.

Finally, we can use Corollary 4.8 to turn the cycle cover into a tour. By the
corollary, this tour does not have more than 3.75·opt turns.

The class of examples in Example 5.9 shows that the cycle cover algorithm may
use 2·opt turns, and the tour algorithm may use 3·opt turns, assuming that no special
algorithms are used for matching and merging. Moreover, the same example shows
that this 3.75-approximation algorithm does not give an immediate length bound on
the resulting tour.

Example 5.9. The class of regions shown in Figure 5.2 may yield a heuristic cycle
cover with 2·opt turns, and a heuristic tour with 3·opt turns.

The region consists of a “square donut” of width k. An optimal strip cover
consists of 4k strips; an optimal matching of strip ends yields a total of 8k + 2 turns,
and we get a total of 2k cycles. (In Figure 5.2(a), only the vertical strips and their
matching edges are shown to keep the drawing cleaner.) If the merging of these cycles
is done badly (by merging cycles at crossings and not at parallel edges), it may cost
another 4k − 2 turns, for a total of 12k turns. As can be seen from Figure 5.2(b),
there is a feasible tour that uses only 4k+2 turns. This shows that optimal tours may
have almost all turns strictly inside of the region. Moreover, the same example shows
that this 3.75-approximation algorithm does not give an immediate length bound on
the resulting tour. However, we can use a local modification argument to show the
following theorem.

Theorem 5.10. For any given feasible tour (or cycle cover) of an integral or-
thogonal region, there is a feasible tour (or cycle cover) of equal turn number that
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Fig. 5.3. Rearranging a tour to ensure that no pixel is covered more than three times in each
direction: (a) A set of horizontal edges that covers some pixel three times. (b) A rearranged tour, if
the second matching between endpoints connects two left and two right endpoints. (c) A rearranged
tour, if the second matching between endpoints connects any left with a right endpoint.

covers each pixel at most four times. This implies a performance ratio of 4 on the
total length.

Proof. See Figure 5.3. Suppose there is a pixel that is covered at least five times.
Then there is a direction (say, horizontal) in which it is covered at least three times.
Let there be three horizontal segments (1, 1′), (2, 2′), (3, 3′) covering the same pixel,
as shown in Figure 5.3(a); we denote by 1, 2, 3 the endpoints to the left of the pixel,
and by 1′, 2′, 3′ the endpoints to the right of the pixel.

Now consider the connections of these points by the rest of the tour, i.e., a second
matching between the points 1, 2, 3, 1′, 2′, 3′ that forms a cycle when merged with
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the first matching (1, 1′), (2, 2′), (3, 3′). This second matching is shown dashed in
Figure 5.3(b,c). We consider two cases, depending on the structure of the second
matching.

In the first case, there are two right endpoints that are matched, say 1′ and 2′.
Then there must be two left endpoints that are matched; because both matchings must
form one large cycle, these cannot be 1 and 2. Without loss of generality, we may
assume they are 1 and 3. Thus, 2 and 3′ must be matched, as shown in Figure 5.3(b).
Then we can replace (1, 1′), (2, 2′), (3, 3′) by (1, 2′), (2, 3), (1′, 3′), respectively, which
yields a feasible tour with the same number of turns, but with some pixels being
covered fewer times, and no pixel being covered more times than was the case in the
original tour.

In the other case, all right endpoints are matched with left endpoints. Clearly, 1′

cannot be matched with 1; without loss of generality, we assume it is matched with 2,
as shown in Figure 5.3(c). Then the cycle condition implies that the second matching
is (1, 3′), (2, 1′), (3, 2′). This allows us to replace (1, 1′), (2, 2′), (3, 3′) by (1, 3), (2, 3′),
(1′, 2′), respectively, again producing a feasible tour with the same number of turns,
but with some pixels being covered fewer times, and no pixel being covered more
times than was the case in the original tour.

This can be repeated until no pixel is covered more than four times. As the
above procedure can be carried out as part of the merging phase (i.e., after an op-
timal weighted matching has been found), the overall complexity is not affected.
Furthermore, it is straightforward to see that it also works for the case of “thick”
strips, where N is large compared to n, by treating parallel edges in a thick strip
simultaneously.

5.3. Nonintegral orthogonal polygons. Nonintegral orthogonal polygons pre-
sent a difficulty in that no polynomial-time algorithm is known to compute a minimum
strip cover for such polygons. Fortunately, however, we can use the boundary tours
from section 4.1 to the approximation factor of 12 from Theorem 5.6 for the integral
orthogonal case.

Theorem 5.11. In nonintegral orthogonal milling of a polygonal region with
n edges and N pixels, there is a polynomial-time 4.5-approximation for minimum-
turn cycle covers and 6.25-approximation for minimum-turn tours, with a simultane-
ous performance guarantee of 8 on length and cover number. The running time is
O(N2.376 + n3), or O(n2.5 logN + n3).

Proof. Take the 2.5-approximate cycle cover of the integral pixels in the region
as in Theorem 5.8; for a tour, turn it into a 3.75-approximate tour. This may leave a
fractional portion along the boundary uncovered. See Figure 5.4.

Now add an optimal cycle cover of the boundary which comes from Theorem 4.4.
This may leave only fractional boundary pieces uncovered that are near reflex vertices
of the boundary, as shown in Figure 5.4. Whenever this happens, there must be a
turn of the boundary cycle cover on both sides of the reflex vertex. The fractional
patch can be covered at the cost of an extra two turns, which are charged to the two
turns in the boundary cycles. Therefore, the modified boundary cover has a cost of at
most 2·opt. Compared to an optimal cycle cover of length opt, we get a cycle cover
of length at most 4.5·opt, as claimed. For an optimal tour of length opt, merging
all modified boundary cycles into one cycle can be done at a cost of at most 2 turns
per unmodified boundary cycle, i.e., for a total of 1

2 ·opt.
Finally, the remaining two cycles can be merged at a cost of 2 turns. This yields

an overall approximation factor of 3.75 + 2.5 = 6.25. The claim on the cover number
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detour of boundary tour
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Fig. 5.4. Milling a nonintegral orthogonal polygon.

(and thus length) follows from applying Theorem 5.10 to each of the two cycles.

The running times follow from Theorems 4.4 and 5.8.

5.4. Milling thin orthogonal polygons. In this section we consider the spe-
cial case of milling thin polygons. Again, we focus on the integral orthogonal case.
Formally, a thin polygon is one in which no axis-aligned 2×2 square fits, implying
that each pixel has all four of its corners on the boundary of the polygon. Intuitively,
a polygon is thin if it is composed of a network of width-1 corridors, where each pixel
is adjacent to some part of the boundary of the region, making this related to discrete
milling.

5.4.1. Basics of thin orthogonal polygons. Any pixel in the polygon has one,
two, three, or four neighbor pixels; we denote this number of neighbors as the degree
of a pixel. See Figure 5.5. Degree-1 pixels (1) are “dead ends,” where the cutter has to
make a U-turn. There are two types of degree-2 pixels, without forcing a turn (2a) or
with forcing a turn (2b); in either case, applying Lemma 4.3 in an appropriate manner
will suggest that they should be visited in a canonical way: after one neighbor, and
before the other. Neighbors of degree-3 pixels (3) form “T” intersections that force
duplication of paths. Degree-4 pixels (4) are the only pixels in thin polygons that are
not boundary pixels as defined in section 4; however, in the absence of 2×2 squares
of pixels, all their neighbors are of degree 1 or 2.

In the following, we will use the ideas developed for boundary cycle covers in
section 4.1 to obtain cycle covers for thin polygons. The following is a straightforward
consequence of Theorems 4.4 and 4.7.

Corollary 5.12. In thin orthogonal milling, there is an O(n3) algorithm for
computing a minimum-turn cycle cover, and an O(n3) 1.5-approximation for comput-
ing a minimum-turn tour.

Proof. Apply the strongly polynomial algorithm described in Theorem 4.4 for
computing a minimum cost boundary cycle cover. By definition, this covers all pixels
of degree 1, 2, and 3. Moreover, degree-4 pixels are surrounded by pixels of degree 1
or 2, implying that they are automatically covered as neighbors of those pixels, when
applying Lemma 4.3. Using Theorem 4.7, we can turn this into a tour, yielding the
claimed approximation factor.

More interesting is that we can do much better than general merging in the case
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(2b)(1) (2a)

(4)(3)

Fig. 5.5. Pixel types in a thin polygon.

of thin orthogonal milling. The idea is to decompose the induced graph into a number
of cheap cycles and a number of paths.

5.4.2. Milling thin Eulerian orthogonal polygons. We first solve the spe-
cial case of milling Eulerian polygons, that is, polygons that can be milled without
retracing edges of the tour, so that each edge in the induced graph is traversed by the
cutting tool exactly once. In an Eulerian polygon, all pixels have either two or four
neighbors, meaning there are no odd-degree pixels.

Although one might expect that the optimal milling is one of the possible Eulerian
tours of the graph, in fact, this is not always true, as Example 5.13 points out.

Example 5.13. There exist thin grid graphs, such that no turn-minimal tour of
the graph is an Eulerian tour.

Proof. See Figure 5.6. Observe that an optimal milling is not an Eulerian tour.
The best Eulerian tour for this figure requires 22 turns, as shown symbolically in the
bottom left of the figure: Each cycle uses 4 turns and an additional 6 turns can be used
to connect the 4 cycles together. On the other hand, the optimal milling traverses
the edges in the internal pixel twice, both times in the same direction: The order
of turns is 1, 2, C, 13, 16, 15, 14, D, 9, 12, 11, 10, B, 5, 8, 7, 6, A, 3, 4, 1, and the structure
is shown symbolically in the bottom right. Thus, the optimal milling only requires
20 turns, where each cycle uses 4 turns and an additional 4 turns connect the cycles
together.

By strengthening the lower bound, we can achieve the following approximation
of an optimal tour of length opt.

Theorem 5.14. There is an O(n log n) (or O(N)) algorithm that finds a tour of
turn cost at most 6

5 ·opt.
Proof. By applying Theorem 4.4, we get an optimal boundary cycle cover. There

are three observations that lead to the claimed stronger results.
(1) For a thin polygon, extracting the collinear strips can be performed in strongly

polynomial time O(n log) (or weakly polynomial time O(N)).
(2) For an Eulerian thin polygon, no vertices in GP remain unmatched after

repeatedly applying Lemma 4.3. Instead, we get an optimal cycle cover right away.
This cycle cover can be merged into one connecting tour by merging at pixels where
two cycles cross each other: Let the optimal cycle cover be composed of c disjoint
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Fig. 5.6. A thin Eulerian polygon consisting of four overlapping cycles (above). Shown symbol-
ically below is how to obtain an overall tour by merging the four canonical cycles: A tour obtained
by iteratively merging cycles incurs a total of 16 + 6 = 22 turns (bottom left). An optimal tour has
16 + 4 = 20 turns (bottom right).

cycles, where c ≥ 1. Let t be the cost of the optimal cycle cover. At each phase of the
cycle-merging algorithm, two cycles are merged into one. Therefore, the algorithm
finds a solution having cost t + 2 · (c− 1).

(3) We can strengthen the lower bound on an optimal tour as follows. Consider
(for c > 1) a lower bound on the cost of the optimal solution. Just like in the proof of
Theorem 3.1, all turns in a cycle cover are forced by convex corners of the polygon,
implying that any solution must contain these t turns. In addition, turning from one
cycle into another incurs a crossing cost of at least one turn; thus, we get a lower
bound of t + c. Observe that there are at least 4 turns per cycle so that t ≥ 4c.

Therefore, t+2·(c−1)
t+c ≤ t+2c

t+c ≤ 6
5 .

5.4.3. Milling arbitrary thin orthogonal polygons. Now we consider the
case of general thin polygons. For any odd-degree vertex, and any feasible solution,
some edges may have to be traversed multiple times. As in Corollary 5.12, we can
apply Theorem 4.4 to achieve a minimum-cost cycle cover and merge them into a
tour. Using a more refined analysis, we can use this to obtain a 4/3-approximation
algorithm for finding a minimum-cost tour.

Theorem 5.15. For thin orthogonal milling, we can compute a tour of turn cost
at most 4

3 ·opt in time O(n3), where opt is the cost of an optimal tour.
Proof. We start by describing how to merge the cycles into one connected tour.
1. Find an optimal cycle cover as provided by Theorem 4.4.
2. Repeat until there is only one cycle in the cycle cover:

• If there are any two cycles that can be merged without any extra cost
(by having partially overlapping collinear edges), perform the merge.
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• Otherwise,
– find a vertex at which two cycles cross each other;
– modify the vertex to incorporate at most two additional turns,

thereby connecting the two cycles.
Now we analyze the performance of our algorithm. Consider the situation after

extracting the cost zero matching edges from Lemma 4.3. This already yields a set K
of cycles, obtained by only turning at pixels of degree 2 that force a turn. Let k denote
the number of cycles in K, and let c be the number of turns in K. Let P be the set of
“dangling” paths at degree-1 or degree-3 pixels, and let p be the number of turns in
P , including the mandatory turn for each endpoint. Let M be a minimum matching
between odd-degree vertices, and let m be the number of turns in M . Finally, let O
be the matching between odd-degree pixels that is induced by an optimal tour, and
let o be the number of turns in O.

First note that P is a matching between odd-degree nodes.
P , M , and O may connect some of the cycles in K. In P a path between two

odd-degree pixels connects the two cycles that the two nodes belong to. On the other
hand, a path in M and O between two odd-degree nodes can encounter several cycles
along the way, and thus it may be used to merge several cycles at no extra cost.

Therefore, let j be the number of cycles after using P for free merging, let i be
the number of components with P and M used for free merging, and let h be the
number of components with P and O used for free merging.

Note that

1 ≤ i ≤ j ≤ k(5.1)

and

1 ≤ h ≤ j ≤ k.(5.2)

Now consider the number of cycles encountered by a path in the matching. It is
not hard to see that this number cannot exceed the number of its turns. Therefore,

m ≥ k − i ≥ j − i,(5.3)

o ≥ k − h ≥ j − h.(5.4)

If a particular matching results in x components, we would need at least x more
turns to get a tour. Thus with O we need at least h more turns.

Thus, for an optimal tour of cost opt, we have

opt ≥ c + p + o + h.(5.5)

Our heuristic method adds the minimum matching to C and P and merges the
remaining components with two turns per merge, and hence the cost heur of the
resulting tour is

heur ≥ c + p + m + 2(i− 1).(5.6)

Thus we get the following estimate for the approximation factor R ≥ 1:

R ≤ c + p + m + 2i

c + p + o + h
.(5.7)
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Because each cycle has at least four turns, we know that

c ≥ 4k ≥ 4j.(5.8)

Using the fact that c + p + m + 2i ≥ c + p + o + h (because R ≥ 1), we see that
the ratio on the right in (5.7) gets larger if we replace c in the numerator and in the
denominator by the smaller nonnegative value 4j; thus,

R ≤ 4j + p + m + 2i

4j + p + o + h
.(5.9)

Because P is also a matching, we have

p ≥ m,(5.10)

which implies that

R ≤ 4j + 2m + 2i

4j + m + o + h
.(5.11)

We also know that

m ≤ o.(5.12)

Using this, together with the fact that R can be assumed to be less than 2, we can
argue that R is maximal for maximal values of m; hence,

R ≤ 4j + 2o + 2i

4j + 2o + h
.(5.13)

Using (5.4) in (5.13), we see that R is maximal for minimal o; hence,

R ≤ 4j + 2(j − h) + 2i

4j + 2(j − h) + h
=

6j − 2h + 2i

6j − h
.(5.14)

Using h > o in (5.14) and the facts that R < 2 and i ≤ j, we get that

R ≤ 6j − 2o + 2i

6j − o
≤ 6j + 2i

6j
≤ 4

3
.(5.15)

The following shows that the estimate for the performance ratio is tight.
Theorem 5.16. There is a class of examples for which the estimate of 4/3 for

the performance ratio of the algorithm for thin orthogonal milling is tight.
Proof. See Figure 5.7. The region consists of k = 2s+ 4 cycles, all with precisely

4 turns, s cycles without degree-three vertices, and s + 4 cycles with two degree-3
vertices each. We get c = 4k = 8s+16 and p = 2(s+4) = 2s+8. Figure 5.7(b) shows
a min-cost matching of cost m = 2(s + 4) = 2s + 8 and one of cost o = 2s + 8 that is
induced by an optimum tour. As Figure 5.7(c) suggests, merging all cycles, odd-degree
paths, and matching paths is possible without requiring any further turns, resulting
in opt = c + p + o = 12s + 32. On the other hand, using the min-cost matching of
cost m leaves k cycles that cannot be merged for free; thus, merging two cycles at a
time at a cost of 2 turns requires an additional cost of 2(k− 1) = 4s+6, for a total of
heur = c + p + m + 2(k − 1) = 16s + 38 turns, which gets arbitrarily close to 4

3opt

for large s.
Note that the argument of Theorem 5.10 remains valid for this section, so the

bounds on coverage and length approximation still apply.
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Fig. 5.7. An example with performance ratio 4/3 for our heuristic. (a) The structure of the
example for s = 8. (b) A min-cost matching of the odd-degree vertices, and the matching induced
by an optimal tour. (c) A portion of the optimal tour: Subtours can be merged without extra cost.
(d) A corresponding portion of the heuristic tour: Subtours still need to be merged, which results in
an additional cost of 2(k − 1) = 4s + 6.

5.5. PTAS. We describe a polynomial-time approximation scheme (PTAS) for
the problem of minimizing a weighted average of the two cost criteria: length and
number of turns. Our technique is based on using the theory of m-guillotine subdivi-
sions [38], properly extended to handle turn costs. We prove the following result.

Theorem 5.17. Define the cost of a tour to be its length plus C times the number
of (90-degree) turns. For any fixed ε > 0, there is a (1 + ε)-approximation algorithm,
with running time 2O(h) · NO(C), for minimizing the cost of a tour for an integral
orthogonal polygon P with h holes and N pixels.

Proof. Let T ∗ be a minimum-cost tour and let m be any positive integer. Follow-
ing the notation of [38], we first apply the main structure theorem of that paper to
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claim that there is an m-guillotine subdivision, TG, obtained from T ∗ by adding an
appropriate set of bridges (m-spans, which are horizontal or vertical segments) of total
length at most 1

m |T ∗|, with length at most (1 + 1
m ) times the length of T ∗. (Because

T ∗ may traverse a horizontal/vertical segment twice, we consider such segments to
have multiplicities (1 or 2), as multiedges in a graph.)

We note that part of TG may lie outside the polygon P , because the m-spans
that we add to make T ∗ m-guillotine need not lie within P . We convert TG into
a new graph by subtracting those portions of each bridge that lie outside of P . In
this way, each bridge of TG becomes a set of segments within P ; we trim each such
segment at the first and last edges of TG that are incident on it and call the resulting
trimmed segments subbridges. (Note that a subbridge may be a single point if the
corresponding segment is incident on a single edge of T ∗; we can ignore such trivial
subbridges.) As in the TSP method of [38], we double the (nontrivial) subbridges: We
replace each subbridge by a pair of coincident segments, which we “inflate” slightly
to form a degenerate loop, such that the endpoints of the subbridge become vertices
of degree 4, and the endpoints of each edge incident on the interior of the subbridge
become vertices of degree 3 (which occur in pairs). Refer to Figure 5.8. We let T ′

G

denote the resulting graph. Now T ′
G ⊂ P , and, because T ′

G is obtained from T ∗,
a tour, we know that the number of odd-degree vertices of T ′

G that lie on any one
subbridge is even (the degree-3 vertices along a subbridge come in pairs).
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Fig. 5.8. Definitions of subbridges and the graph T ′
G. A vertical line l is shown, which defines

a cut. The slice of an optimal solution along l is shown, with thinner lines drawn along the edges of
the solution (which is not intended to be an accurate instance of an optimal solution, but is drawn
to illustrate some of the possible cases). Also shown is an enlargement of one portion of the cut l,
showing a segment of the m-span between two portions of the boundary of P , the trimmed segment
that forms the subbridge, and the portion of the resulting graph T ′

G in the vicinity of the inflated
subbridge.

The cost of the optimal solution T ∗ is its length, |T ∗|, plus C times the number
of its vertices. We consider the cost of T ′

G to be also its (Euclidean) length plus C
times the number of its vertices. Because the number of vertices on the subbridges is
proportional to their total length, and each edge multiplicity is at most two, we see
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l

(a) (b)

Fig. 5.9. (a) The vertical decomposition of P (holes in dark gray). (b) The decomposition of P
into junctions (light gray) and corridors, with the dual graph overlaid. The nodes of the dual graph
are shown as hollow for junctions and as smaller solid disks for the corridors.

that the cost of T ′
G is O((1 +C)/m) · |T ∗| greater than the optimal cost, i.e., the cost

of T ∗.

In order to avoid exponential dependence on n in our algorithm, we need to
introduce a subdivision of P that allows us to consider the subbridges along an m-
span to be grouped into a relatively small (O(h)) number of classes. We now describe
this subdivision of P .

By standard plane sweep with a vertical line, we partition P into rectangles, us-
ing vertical chords, according to the vertical decomposition; see Figure 5.9(a). We
then decompose P into a set of O(h) regions, each of which is either a “junction” or
a “corridor.” This decomposition is analogous to the corridor structure of polygons
that has been utilized in computing shortest paths and minimum-link separators (see,
e.g., [32, 33, 40]), with the primary difference being that we use the vertical decom-
position into rectangles, rather than a triangulation, as the basis of the definition.
Consider the (planar) dual graph, G, of the vertical partition of P ; the nodes of G are
the rectangles, and two nodes are joined by an edge if and only if they are adjacent.
We now define a process to transform the vertical decomposition into our desired
decomposition. First, we take any degree-1 node of G and delete it, along with its
incident edge; in the vertical decomposition, we remove the corresponding vertical
chord (dual to the edge of G that was deleted). We repeat this process, merging a
degree-1 region with its neighbor, until there are no degree-1 nodes in G. At this
stage, G has h+1 faces and all nodes are of degree 2 or more. Assume that h ≥ 2 (the
case h ≤ 1 is easy); then not all nodes are of degree 2, implying that there are at least
two higher-degree nodes. Next, for each pair of adjacent degree-2 nodes, we merge
the nodes, deleting the edge between them and removing the corresponding vertical
chord separating them in the decomposition. The final dual graph G has nodes of two
types: those that are dual to regions of degree 2, which we call the corridors, and
those that are dual to regions of degree greater than 2, which we call the junctions.
Each corridor is bounded by exactly two vertical chords, together with two portions of
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the boundary of P . (These two portions may, in fact, come from the same connected
component of the boundary of P .) Each of the h bounded faces of G contains exactly
one of the holes of P . Refer to Figure 5.9.

Let V denote the decomposition of P just described; there is an analogous hor-
izontal partition, H, of P into O(h) regions. The vertical subbridges of a vertical
bridge are partitioned into O(h) classes according to the identity of the region, τ ,
that contains the subbridge in the vertical decomposition V. A subbridge intersecting
a region τ of V is called separating if it separates some pair of vertical chords on the
boundary of τ ; it is trivial otherwise. (Corridor regions have only two vertical chords
on their boundary, while junctions may have several, as many as Θ(h) in degenerate
cases.)

First, consider a corridor region τ in V, and let a and b denote the two vertical
chords that bound it. An important observation regarding subbridge classes in cor-
ridors is this: The parity of the number of times a tour crosses a must be the same
as the parity of the number of times a tour crosses b. The consequence is that we
can specify the parity of the number of incidences on all separating subbridges of a
given corridor class by specifying the parity of the number of incidences on a single
subbridge of the class; the trivial subbridges always have an even parity of crossing.

Now consider a junction region τ in V. Because, in the merging process that
defines V, we never merge a degree-2 region with a higher-degree region, we know
that τ consists of a single high-degree (> 2) rectangle, Rτ , from the original vertical
decomposition, together with possibly many other rectangles that form a “pocket”
attached to Rτ , corresponding to a tree in the dual graph (so that removal of degree-
1 nodes leads to a collapse of the tree and a merging of the pocket to Rτ ). The
consequence of this observation is that there can be at most one separating subbridge
in a junction class. (There may be several trivial subbridges.)

Our algorithm applies dynamic programming to obtain a minimum-cost m-guillo-
tine subdivision, T ∗

G, from among all those m-guillotine subdivisions that have the
following additional properties:

(1) It consists of a union of horizontal/vertical segments, having half-integral
coordinates, within P .

(2) It is connected.
(3) It covers P , in that the center of every pixel of P is intersected by an edge of

the subdivision.
(4) It is a bridge-doubled m-guillotine subdivision, so that every (nontrivial) sub-

bridge of an m-span appears twice (as a multiedge).
(5) It interconnects the subbridges in each of a specified partition of the classes

of subbridges.
(6) It obeys a parity constraint on each of the O(h) classes of subbridges: The

number of edges of the subdivision incident on each separating subbridge of
the class corresponding to a region τ is even or odd, according to the specified
parity for τ .

A subproblem in the dynamic programming algorithm is specified by a rectangle,
having half-integral coordinates, together with boundary information associated with
the rectangle, which specifies how the subdivision within the rectangle interacts with
the subdivision outside the rectangle. The boundary information includes (a) O(m)
attachment points, where edges meet the boundary at points other than along the m-
span; (b) the multiplicity (1 or 2) of each attachment point, and the interconnection
pattern (if any) of adjacent attachment points along the rectangle boundary; (c)
the endpoints of a bridge on each side of the rectangle (from which one can deduce
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the subbridges); (d) interconnection requirements among the attachment points and
the classes of subbridges; and (e) a parity bit for each class of subbridge, indicating
whether an even or an odd number of edges should be incident to the separating
subbridges of that class. There are NO(m) · 2O(h) subproblems. At the base of the
dynamic programming recursion are rectangles of constant size (e.g., unit squares).

The optimization considers each possible cut (horizontal or vertical, at half-
integral coordinates) for a given subproblem, together with all possible choices for
the new boundary information along the cut, and minimizes the total resulting cost,
adding the costs of the two resulting subproblems to the cost of the choices made at
the cut (which includes the length of edges added, plus C times the number of vertices
added).

Once an optimal subdivision, T ∗
G, is computed, we can recover a valid tour from

it by extracting an Eulerian subgraph obtained by removing a subset of the edges on
each doubled subbridge. The parity conditions imply that such an Eulerian subgraph
exists. An Eulerian tour on this subgraph is a covering tour, and its cost is at most
O(C/m) · |T ∗| greater than optimal. For any fixed ε > 0, we set m = 
C/ε�, resulting
in a (1 + ε)-approximation algorithm with running time O(NO(C/ε) · 2O(h). The
techniques of [38], which use “grid-rounded” m-guillotine subdivisions, can be applied
to reduce the exponent on N to a term, O(C), independent of m.

Remarks. It should be possible to apply a variant of our methods to obtain a
PTAS that is polynomial in n (versus N), with a careful consideration of implicit
encodings of tours. We note that our result relies on effectively “charging off” turn
cost to path length, because the objective function is a linear combination of the two
costs (turns and length). We have not yet been able to give a PTAS for minimizing
only the number of turns in a covering tour; this remains an intriguing open problem.

6. Conclusion. We have presented a variety of results for finding an optimal
tour with turn cost. Many open problems remain. The most curious seems to be the
following, which highlights the difference between turn cost and length, as well as the
difference between a cycle cover and a 2-factor.

Problem 6.1. What is the complexity of finding a minimum-turn cycle cover in
a grid graph?

This problem has been open for several years now; in fact, it is Problem # 53 on
the well-known list [17], known as “The Open Problems Project.” Finding a minimum
weighted turn cycle cover is known to be NP-hard for a set of points in the plane [1];
however, the proof uses the fact that there are more than two directions for the edges
in a convex cycle. While we tend to believe that Problem 6.1 may have the answer
“NP-complete,” a polynomial solution would immediately lead to a 1.5-approximation
for the orthogonal case, and a (1 + 2

3 )-approximation for the general case.
For various optimization problems dealing with geometric regions, there is a no-

table difference in complexity between a region with holes and a simple region that
does not have any holes. (In particular, it can be decided in polynomial time whether
a given grid graph without holes has a Hamiltonian cycle [44], even though the com-
plexity of the TSP on these graphs is still open.) Our NP-hardness proof makes strong
use of holes; furthermore, the complexity of the PTAS described above is exponential
in the number of holes. This raises the following natural question.

Problem 6.2. Is there a polynomial-time algorithm for exactly computing a
minimum-turn covering tour for simple orthogonal polygons?

It may be possible to improve the performance of some of our approximation
algorithms. In particular, the following remains unclear.
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Problem 6.3. Is the analysis of the 3.75-approximation algorithm tight?
We believe that it may be possible to improve the factor. We also believe that

there is room for improvement in approximating nonintegral orthogonal milling, in
particular by improving the cost of finding a strip cover.

Problem 6.4. What is the complexity of computing a minimum strip cover in
nonintegral orthogonal polygons?

An important tool for our approximation algorithms is a strip cover of small cost;
finding a strip cover remains a possible approach even if strips may be parallel to
more than two directions. This is closely related to other decomposition problems;
see [34] for a survey.

Problem 6.5. What is the complexity of computing minimum strip covers in
nonorthogonal polygons?

The answer may very well be “NP-hard, even for three directions”: Hassin and
Megiddo [26] show that the problem of hitting a set of points with a minimum number
of lines with three slopes is hard. However, their proof constructs a disconnected set
of grid points and cannot be applied directly to milling problems. In any case, even an
approximation would be of interest, in particular if it achieves the following property.

Problem 6.6. Is there a strip cover approximation algorithm for d directions
whose performance ratio is independent of d?

This would imply a positive result for a special case of the following, even more
general, problem.

Problem 6.7. Can one obtain approximation algorithms for unrestricted direc-
tions in an arbitrary polygonal domain, and an appropriately shaped cutter?
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ON THE COMPLEXITY OF NETWORK SYNCHRONIZATION∗
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Abstract. We show that if a minimal-time solution to a fundamental distributed computation
primitive, synchronizing a network path of finite-state processors, exists on the three-dimensional,
undirected grid, then we can conclude the purely complexity-theoretic result P = NP.

Every previous result on network synchronization for various network topologies either demon-
strates the existence of fast synchronization solutions or proves that a synchronization solution cannot
exist at all. To date, it is unknown whether there is a network topology for which there exists a
synchronization solution but for which no minimal-time synchronization solution exists. Under the
assumption that P �= NP, this paper solves this longstanding open problem in the affirmative.
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1. Introduction. The firing squad synchronization problem (FSSP) is a famous
problem originally posed almost half a century ago. A prisoner is about to be executed
by firing squad. The firing squad is made up of soldiers who have formed in a straight
line with muskets aimed at the prisoner. Some of the soldiers are using blanks and
some are using real bullets. There are good reasons for this: Nobody will ever know
who the true executioner of the prisoner is, and no single member of the firing squad
is able to save the condemned man’s life by not firing, which reduces the moral
compulsion not to fire when the order is given. But for these same reasons, it is
absolutely imperative that all of the soldiers fire simultaneously.

The general stands on the left side of the line, ready to give the order, but he
knows that he can only communicate with the soldier to his right. In fact, each soldier
can only communicate with the soldier to his immediate left and/or right but nobody
else. Soldiers have limited memory and can only pass along simple instructions.
Is it possible to come up with a protocol, independent of the size of the line, for
getting all of the soldiers to fire at the prisoner simultaneously if their only means
of communication are small, whispered instructions only to adjacent soldiers? (The
possibility of counting the number of soldiers in the line can be discounted because
no soldier can remember such a potentially large amount of information; each soldier
can only remember messages that are independent of the size of the line.)

The problem itself is interesting as a mathematical puzzle. More importantly,
there are also applications to the synchronization of small, fast processors in large
networks. In the literature on the subject (e.g., [29, 18]), the problem has been re-
ferred to as “macrosynchronization given microsynchronization” and “realizing global
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synchronization using only local information exchange.” The synchronization of mul-
tiple small but fast processors in general networks is a fundamental problem of parallel
processing and a computing primitive of distributed computation.

1.1. Early history. The FSSP has a rich history; solutions to various subprob-
lems have been discovered over a period of decades. We summarize the history here.
J. Myhill introduced the problem in 1957, though the first published reference is
[26] from 1962. McCarthy and Minsky first solved the problem for the bidirectional
line (as described above) in [25]. In an unpublished 1962 manuscript, Goto [11] also
solved the problem on the bidirectional line. Goto’s solution fired the bidirectional
line in time 2n − 2, where n is the number of soldiers in the line; 2n − 2 is equal
to the time it would take a message to percolate from the general to the furthest
soldier and back again and is therefore obviously minimal-time. Goto’s solution re-
quired a great number of states, but researchers have since reduced the number to
six over a period of decades (culminating with Mazoyer’s solution in [22]). As the
number of states required per automata to perform the computation has decreased
from thousands to merely six, the allowable speed of the process has correspondingly
increased; in general, smaller processors have higher clock speeds.1 Given that pro-
cessor synchronization is a fundamental primitive of distributed computation, it is an
important problem to find solutions that are both theoretically minimal-time (i.e.,
requiring minimal-time steps) and as small as possible (i.e., allowing for higher clock
speed/lower actual time per step).

1.2. The model. As mentioned previously, we wish to model the operation of
a large network of processors whose computations are all governed synchronously by
the same global clock. The model is intended to mathematically abstract a physical
switching network or a very large-scale parallel processing machine. The processors are
designed to be small, fast, and unable to access large memory caches. Each processor
is identical and assumed to have a fixed constant number of ports which can both send
and receive a constant amount of data per clock cycle. (“Constant” quantities must
be independent of the size and topology of the network.) One processor is specified
as the root. Its purpose is to begin the algorithm. (Intuitively, the root has the job
of the “general.”)

More formally, the problem is to construct a deterministic finite-state automaton
with a transition function that satisfies certain conditions. We assume that each
processor in the network is identical. Initially, the root is in a special “general” state.
All other nodes are initially in a special “quiescent” state, in which, at each time step,
the processor sends a “blank” character through all of its ports. A processor remains
in the quiescent state until a nonblank character is received by one of its inports.
We consider connected networks of such identical synchronous finite-state automata
with vertex degree uniformly bounded by a constant.2 These automata are meant to
model very small, fast processors. The network itself may have a specific topology
(see below) but potentially unbounded size. The network is formed by connecting
ports of a given automaton to those of other automata with wires. Not all ports of a
given automaton need necessarily be connected to other automata. The network has
a global clock, the pulses between which each processor performs its computations.

1Note that the number of clock cycles required by the algorithm does not necessarily decrease.
It is the time taken by each clock cycle that decreases.

2The vertex degree of each processor must be bounded uniformly by a constant; otherwise, a
constant-sized automaton might not be able to distinguish its own ports.
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Processors synchronously, within a single global clock pulse, perform the following
actions in order: read in the inputs from each of their ports, process their individual
state changes, and prepare and broadcast their outputs. As mentioned, our network
structure is specifically designed to model the practical situation of many small and
fast processors performing a synchronous distributed computation. The goal of the
protocol is to cause every process in the network to enter the same special “firing”
state for the first time simultaneously. In keeping with current technological trends
that are likely to continue indefinitely, we assume that the time it takes for messages
to travel along the various wires is vastly greater than the time for a simple processor
state change. Our global clock pulses are therefore used to count the number of global
“message interchanges” that occur.

A solution A for a given network topology (e.g., the bidirectional line, as above) is
defined to be the instantiation of an automaton with a transition function that satisfies
the firing conditions outlined above for any network size. (So, by this definition, a
solution for the bidirectional line must function for a bidirectional line of any size.)
Assuming a solution A is specified, the firing time of A on a given network will refer
to the number of clock cycles it takes for this network of processors programmed
with the solution A to complete the protocol and simultaneously fire. The minimum
firing time of a given network (of a specified topology) will refer to the minimum
over all solutions A of the firing time of the network of processors programmed with
solution A. A minimal-time solution Amin for a given network topology will be a
solution such that the firing time for a network of any given size (with the given
topology) programmed with the algorithm Amin will equal the minimum firing time
of the network. Note that even though the network can be of arbitrary size, the size
of the algorithm Amin must be fixed.

1.3. Additional history. Numerous other variations of the problem have also
been studied, and there is a large body of results that spans almost 50 years. Mazoyer
provides an overview of the problem (up to 1986, at least) in addition to some of
its history in [23]. We give a brief survey of results and open problems restricting
ourselves only to variations that satisfy the following conditions.

� The structure of the configurations (placements of soldiers) that we consider
will not change dynamically. Once the protocol is initiated, the network is
considered static.

� Adjacent soldiers can exchange information with one unit time delay. (Au-
tomata-theoretically speaking, the state of a soldier at time t depends only
on the states of the soldier and adjacent soldiers at time t− 1.)

� There are no restrictions on how much information is exchanged between ad-
jacent soldiers. For example, there are variations of the problem that restrict
the messages to be only a single bit long. Because the automata under con-
sideration are finite-state, messages are restricted to be of constant size but
not necessarily just a single bit.

1.3.1. Variations for which minimal-time solutions are known. The fol-
lowing lists some of the variations for which minimal-time solutions to the FSSP are
known and their corresponding minimum firing times.

• The original FSSP on the bidirectional line of length n: The minimum firing
time is 2n− 2 (see Goto [11], Waksman [38], Balzer [1], and Mazoyer [22]).

• The one-dimensional line of length n such that the position of the root may
be at any position: The minimum firing time is 2n− 2 − min{k − 1, n− k},
where k is the position of the root (1 ≤ k ≤ n) (see Moore and Langdon [27],
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Fig. 1.1. An example of a 2PATH configuration.

Varshavksky, Marakhovsky, and Peschansky [37], Szwerinski [36], and Settle
and Simon [34]).

• The square of size n×n: The minimum firing time is 2n−2 (see Shinahr [35]).
• The rectangle of size m×n: The minimum firing time is m+n+max{m,n}−3

(see Shinahr [35]).
• The cube of size n×n×n: The minimum firing time is 3n−3 (see Shinahr [35]).
• The bilateral ring of size n: The minimum firing time is n (see Culik [5] and

Berthiaume et al. [3]).
• The ring of size n with one-way information flow: The minimum firing time

is 2n− 1 (see Kobayashi [20] and LaTorre, Napoli, and Parente [21]).

1.3.2. Variations for which minimal-time solutions are not known. The
following lists five basic variations for which solutions have been shown to exist but
for which no minimal-time solutions are known.

• FSSP for paths in the two-dimensional or the three-dimensional grid spaces:
A configuration is a path in the two-dimensional or the three-dimensional
grid spaces, and the position of the root is at one of the two endpoints. We
abbreviate these problems 2PATH and 3PATH, respectively. In Figure 1.1
we show an example of such configurations for 2PATH. These are the natural
generalizations of the original FSSP.

• FSSP for paths in the two-dimensional or the three-dimensional grid spaces
such that the position of the root may be at any position in the path:
We call these problems the generalized FSSP for paths in the two-dimensional
or the three-dimensional grid spaces, respectively, and abbreviate them g-
2PATH and g-3PATH. These problems are natural generalizations of the
variation studied by Moore and Langdon [27].

• FSSP for regions in the two-dimensional or the three-dimensional grid spaces:
A configuration is a connected finite subset of grid points in the two-dimen-
sional or the three-dimensional grid spaces. We abbreviate these problems
2REG and 3REG, respectively. These problems are natural generalizations
of squares, rectangles, and cubes. In Figure 1.2, we show an example of
a 2REG configuration. We discuss the 2REG, a subproblem of FSSP for
general undirected networks, in greater detail below. The first solution by
Rosenstiehl [31] and Rosenstiehl, Fiksel, and Holliger [32] for the latter FSSP
was also the first solution for 2REG. Romani [30] improved that solution,
and this improvement also applied to 2REG. At present, the best solution by
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Fig. 1.2. An example of a 2REG configuration.

Nishitani and Honda [28] for FSSP for general undirected networks mentioned
below is also the best solution for 2REG. Some fast solutions that work
only for some special types of two-dimensional regions are also known (see
Grasselli [12] and Kobayashi [15]).

• FSSP for general undirected networks:
Each soldier is modeled by a finite automaton having a constant number of
bidirectional terminals. The study of this version of the FSSP started with
Rosenstiehl [31] and Rosenstiehl, Fiksel, and Holliger [32]. At present, the
solution with the smallest firing time is by Nishitani and Honda [28]. The
firing time of their solution is 3r−1, where r is the radius of the network. The
coefficient 3 is optimal in the sense that there is no solution having firing time
cr + c′ for any constants c < 3 and c′. The basic idea used for their solution
is to create two basic data structures within the network: a “directed ring”
(that is, a firing squad in the shape of a circle with the caveat that soldiers
may only listen to the man on their left and speak to the man on their right)
and a “ring-of-trees” (that is, networks which include a loop, containing the
root, whose length is at least as great as the maximum distance from the root
to any processor).

• FSSP for general directed networks:
Each soldier is modeled by a finite automaton that has a fixed number of in-
put terminals and a fixed number of output terminals. Edges connect output
terminals to input terminals. Each output terminal is connected to at most
one input terminal (that is, fan-out is at most 1). The first solution of this
variation is by Kobayashi [16]. The firing time of his solution is an expo-
nential function of the number n of soldiers, and the solution essentially uses
the same structures as Nishitani and Honda. Even, Litman, and Winkler [8]
constructed a solution with firing time O(n2). This solution again uses the
same data structures as Nishitani and Honda, but they are constructed in a
faster way thanks to their invention of network-traversing “snakes.” Ostro-
vsky and Wilkerson [29] improved the firing time to O(nd), where d refers to
the diameter of the network, which remains the best to date.

1.3.3. Variations that have no minimal-time solutions. There are only a
couple of “lower bound” results in the literature. The first is an impossibility result
for the specific topology in which processors may have unbounded fan-out from any
given outport (proved in [17]); there cannot exist any solution at all for this particular
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topology. Additionally, Jiang [14, 13] showed that the FSSP for the bilateral ring
with an arbitrary number of roots has no solution. In this case, all the soldiers may
potentially be roots, and all roots are activated simultaneously. (Note that there
are many variations of FSSP with multiple roots that have solutions. For example,
Culik [5] showed that FSSP for the one-dimensional line with roots at the leftmost
and rightmost ends does have a minimal-time solution.)

1.4. Our contribution. It has been a longstanding open problem to determine
whether there is a network topology for which a synchronization solution is known
to exist, but a minimal-time synchronization solution provably does not exist. After
many years, the contribution of this paper is to finally answer this question in the
affirmative under the assumption that P �= NP. In this paper, we show that 3PATH,
g-3PATH, and 3REG have no minimal-time solutions if P �= NP. Hence, of the
eight variations of FSSP mentioned above, at least three are highly unlikely to have
minimal-time solutions.

The main result of this paper is the following theorem.
Theorem 1.1. If P �= NP, then there does not exist a minimal-time solution

to FSSP for the network topology introduced below as variation 3PATH, the direct
three-dimensional analogue of Kobayashi’s variation 7 from [18].

Note that, by this theorem, the straightforward complexity-theoretic statement
P �= NP implies a result about the absence of minimal-time solutions (i.e., instan-
tiations of automata) for synchronization, two seemingly unconnected subjects. Or,
equivalently, the existence of a minimal-time solution for a distributed computation
synchronization primitive implies the purely complexity-theoretic result P = NP.

In order to prove this theorem, we need to define the three-dimensional equivalent
to a problem proposed in [18, 19], the three-dimensional path extension problem (or
3PEP), which we define rigorously in section 2. The proof proceeds in steps as follows.

1. We show that a minimal-time solution for FSSP on variation 3PATH implies
that there exists a deterministic Turing machine that can solve the problem
3PEP in polynomial time.

2. We prove that if 3PEP ∈ P, then two simpler versions of the 3PEP problem,
1CUBE and 2CUBE, are also solvable in polynomial time. The fact that the
reduction below is polynomial-time depends heavily on these two problems
also being polynomial-time.

3. Given the result in step 2, we show that 3PEP ∈ P → HAM ∈ P, where HAM
represents a restricted NP-complete version of the Hamilton path problem.

Aside from being theoretically interesting, this result is important to the field of paral-
lel processing, as fast network processor synchronization is a fundamental computing
primitive. Indeed, decades of research have focused on extending the network topolo-
gies for which there exist solutions [8, 28, 16, 29], minimizing the time and space
complexity [11, 22, 38, 39], and even proving the asymptotic time equivalence of a
number of other common network problems to FSSP [10].

1.5. Additional remarks. Before concluding this section we should mention
some results by Mazoyer and by Schmid and Worsch and make an additional comment
on the formulation of FSSP we use in this paper.

1.5.1. Results by Mazoyer and by Schmid and Worsch. In section 1.3, we
surveyed known results on variations of FSSP that are generalizations of the original
FSSP to more general network topologies. However, if we do not restrict ourselves
to these types of variations, we know at least two others that have solutions yet no
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minimal-time solutions, and the nonexistence of minimal-time solutions can be shown
without a complexity-theoretical assumption such as P �= NP.

Mazoyer [24] considered the following variation of FSSP. There is only one general
and one soldier. The information exchange between the two nodes takes τ units of
time (where τ is a positive integer). The state of a given node at time t is determined
by the state of the node at time t − 1 and the state of the other node at time t − τ .
Neither node knows the value τ . The minimum firing time is a function of τ , and the
notion of the minimal-time solutions is naturally defined. Mazoyer proved that this
variation of FSSP has a solution yet no minimal-time solution.

Schmid and Worsch [33] considered a variation of the original FSSP on the bidi-
rectional line such that each node may be either a general or a soldier, and generals
are activated independently. A problem instance of this variation is specified by the
following values: (1) the number n of nodes, (2) the number k of generals (1 ≤ k ≤ n),
and (3) for each i (1 ≤ i ≤ k) the position pi of the ith general (1 ≤ pi ≤ n) and
the time ti at which the ith general is activated (0 ≤ ti). All the nodes start with
the quiescent state, and for each i the node at the position pi is forced to enter the
state of a general at time ti. They proved that this variation has a solution but has
no minimal-time solution.

1.5.2. The formulation of FSSP. In this section, we give a more formal de-
scription of the FSSP. First, we review the classical formulation and then introduce
and justify our slight modification.

The usual/classical formulation of FSSP can be summarized as follows. Each
node of a network is a copy of a finite automaton. The set of the states of the finite
automaton includes at least three different states, the general state G, the quiescent
state Q, and the firing state F. Each input terminal of a node receives the state of the
node to which the terminal is connected or a special symbol # if the input terminal
is open. The state of a node at time t + 1 is completely determined by its state and
the states of its adjacent nodes at time t. A node in the state Q remains in that state
until the value of at least one of its input terminals is neither G nor #. At time 0, the
state of a node is G or Q depending on whether or not it happens to be the root. The
goal of FSSP for a network topology is to design the finite automaton so that, for each
network of that network topology, all of the nodes enter the state F simultaneously
for the first time.

As a model of current network synchronization algorithms, this formulation has
two problems. The first is that there is only one general state G, and hence the
root cannot know its boundary condition (the existence or nonexistence of adjacent
nodes for each input terminal) at time 0. In reality, the time for a node to check
its boundary condition is negligibly small compared with the time for an information
exchange between adjacent nodes. Hence it is natural to assume that the root can
know its boundary condition at time 0. The second problem is that the general state G
and the firing state F must be different, and hence the root cannot fire at time 0 even
if the network has only one node. By the same reasoning, it is natural to assume that
the root can fire at time 0 when the network has only one node.

Based on these considerations we modify the formulation of FSSP in the following
way. First, we allow the automaton to have more than one general state. The general
state to be used is uniquely determined by the boundary condition of the root. This
modification solves the first problem. Second, instead of using one firing state F, we
specify multiple firing states. A general state may be also specified as one of the firing
states. However, the quiescent state Q cannot be specified as a firing state. All the
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nodes should enter some firing state simultaneously for the first time. Different nodes
may enter different firing states. If we specify the general state that corresponds to
the root having no adjacent nodes as one of the firing states, the root can fire at
time 0. Hence this modification solves the second problem.

We show the proofs for our main results (Theorems 1.1 and 4.3) using this mod-
ified formulation of FSSP. However, all of these results are also true for the usual
formulation of FSSP. At the end of section 4 we will briefly explain how to modify
the proofs for the other formulation.

The rest of the paper is organized as follows. In section 2, we rigorously define
our new variation 3PATH. In section 3, we outline steps 1, 2, and 3 of the proof
of Theorem 1.1. In section 4, we present the generalizing theorems for variations
g-3PATH and 3REG and the corresponding proofs. Finally, section 5 explores possible
avenues of further research.

2. Variation 3PATH. In this section, we will introduce the new network topol-
ogy 3PATH.

We can place a processor on any point (x1, x2, x3) ∈ Z3 in the three-dimensional
grid. We say that two processors in positions (x1, x2, x3) and (y1, y2, y3) are adjacent
if and only if |xi − yi| = 1 for exactly one value of i and for all j �= i, xj = yj . Note
that processors have six available ports for adjacent processors: North, South, East,
West, Up, and Down.

We can abstract this type of network by a three-dimensional orthogonal grid
graph in which certain vertices are marked. Each marked vertex corresponds to the
position of a processor, and each edge corresponds to a bidirectional link between
processor ports.

Definition 2.1 (variation 3PATH). We define a path in the infinite three-
dimensional orthogonal grid Z3 as follows. A path is a sequence of distinct vertices
p1, p2, . . . , pn ∈ Z3 that satisfy the following properties. For any 1 ≤ i < n, pi is
adjacent to pi+1. With the exception of p1 and pn, all vertices in the path must have
exactly two adjacent vertices. If n ≥ 2, p1 and pn must have exactly one adjacent
vertex each. (Diagonal vertices, though allowed, are not considered adjacent by the
definition above.) The root processor must be placed at p1. If two processors are placed
in adjacent positions, we assume that the adjacent port is connected by a bidirectional
wire; only adjacent processors can be connected.

Note that this definition implies that the configuration is connected in the sense
that a signal released by any processor must be able to eventually reach any other pro-
cessor in the network via data transfers passed back and forth through the processors’
ports.

The length of a path p1p2 . . . pn is defined to be n.

This definition corresponds to the intuitive definition of a self-avoiding network
path in three dimensions. The path is “self-avoiding” in the following sense: not
only must the path not intersect itself, but it cannot even become adjacent to itself.
If it does, then there must exist some vertex with three or more neighbors (or the
boundary conditions must be violated).

A solution to this variation of the FSSP trivially exists because solutions have
been found for arbitrary undirected (and directed) networks. The same solutions will
function on this subvariation, just not in minimal time.

3. The results. In this section, we will outline steps 1, 2, and 3 of the proof of
Theorem 1.1.
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3.1. A minimal-time solution to variation 3PATH implies 3PEP ∈ P.
This section will be devoted to step 1 of the proof of Theorem 1.1. First, we need to
define the problem 3PEP.

Definition 3.1 (3PEP). A problem instance will be a path as in Definition 2.1.
We assume that p1 = (0, 0, 0) and represent a path as a sequence of directions: North,
South, East, West, Up, and Down. The decision problem 3PEP is as follows: Is it
possible to extend the given path instance to double its length from its end (and still
remain a path as in Definition 2.1)?

This is precisely the three-dimensional analogue of the two-dimensional path prob-
lem presented in [18, 19].

The proof that a minimal-time FSSP solution to variation 3PATH implies 3PEP ∈
P is a direct three-dimensional adaptation of that given in [18, 19], and we will present
only a short explanation here for the sake of completeness. For a much more thorough
treatment, we recommend consulting the stated references. In the following, whenever
we refer to a “path,” we mean a path in the sense of Definition 2.1.

Let p1p2 . . . pn be a path. For 1 ≤ i ≤ n, let the value e(p1p2 . . . pn, i) be the value
of the length of the longest possible consistent extension to the path p1p2 . . . pi if i < n
(i.e., the maximum value3 m such that there exists a path p1p2 . . . pipi+1q2 . . . qm) and
0 if i = n.

Lemma 3.2. Let p1p2 . . . pn be a path, and let i0 = min{i : 1 ≤ i ≤ n,
i ≥ e(p1p2 . . . pn, i)}. Intuitively, i0 represents the label of the first vertex after which
point we are guaranteed that any signal released from the root has traversed at least
half the total “possible” path length.

Then a minimal-time FSSP solution for variation 3PATH, if it exists, running on
the network p1p2 . . . pn, will fire the network in number of clock steps equal to either
2i0 − 1 if i0 = e(p1p2 . . . pn, i0) or 2i0 − 2 if i0 > e(p1p2 . . . pn, i0).

Proof. First, we show that the firing time of any solution A to FSSP for variation
3PATH is at least the value stated in the lemma.

Suppose that i0 = e(p1p2 . . . pn, i0). This implies that i0 < n and that there is a
path of the form p1p2 . . . pi0pi0+1q2 . . . qi0 . Consider running the solution A on both of
the paths α = p1p2 . . . pn and β = p1p2 . . . pi0pi0+1q2 . . . qi0 . Then, at the time 2i0−2,
the states of A at p1 in α and p1 in β are the same, and the state of A at qi0 in β is
the quiescent state Q. Hence the solution A cannot fire on α = p1p2 . . . pn at the time
2i0 − 2. Therefore the firing time of A for α = p1p2 . . . pn is at least 2i0 − 1.

Now suppose that i0 > e(p1p2 . . . pn, i0). If i0 = 1, the firing time is at least 2i0−2
because 2i0 − 2 = 0. Suppose that i0 ≥ 2. Then we have i0 ≤ e(p1p2 . . . pn, i0 − 1).
Hence there exists a path of the form β = p1p2 . . . pi0−1pi0q2 . . . qi0 . As in the previous
case, using this we can show that the firing time of A for α = p1p2 . . . pn is at least
2i0 − 2.

Next we show that there exists a solution whose firing time for p1p2 . . . pn is at
most the value stated in the lemma. We consider only the case where i0 < n. The
modification for the case where i0 = n is easy. Assume we are given some solution A to
FSSP for variation 3PATH that is not necessarily minimal-time for all paths. For any
path p1p2 . . . pn, we can modify the solution to a new solution A′ which is minimal-
time for that particular path. Along with all other signals sent by A, send a searcher
signal down the path until it reaches processor pi0 .

3If a maximum value m does not exist (i.e., if the path could extend indefinitely), we define
e(p1p2 . . . pn, i) = ∞.
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Suppose that the searcher signal4 finds that the current problem instance has
the same initial sequence as the special path p1p2 . . . pi0pi0+1. The searcher signal
finds this at time i0 − 1 arriving at pi0 .

5 Then the distance between pi0 and any
vertex pi behind it (1 ≤ i < i0) is at most i0 − 1, and the distance between pi0 and
any possible vertex ahead of it is at most i0 if i0 = e(p1p2 . . . pn, i0) and at most
i0 − 1 if i0 > e(p1p2 . . . pn, i0). Hence, as soon as the searcher signal arrives at pi0 at
time i0 − 1, it sends a signal back to both ends of the line saying “fire after i0 more
steps” if i0 = e(p1p2 . . . pn, i0) and “fire after i0−1 more steps” if i0 > e(p1p2 . . . pn, i0).
After each time step, the signal decreases its countdown by one. When the countdown
reaches 0, every processor simultaneously fires. The firing time is (i0−1)+i0 = 2i0−1
if i0 = e(p1p2 . . . pn, i0) and (i0 − 1) + (i0 − 1) = 2i0 − 2 if i0 > e(p1p2 . . . pn, i0).

If the searcher signal fails to find that the current problem instance has the same
initial sequence, the algorithm simply uses the signals from the original protocol, A.

Thus, the minimum firing time of the network given by the path p1p2 . . . pn is at
most 2i0−1 if i0 = e(p1p2 . . . pn, i0) and at most 2i0−2 if i0 > e(p1p2 . . . pn, i0).

Theorem 3.3 (step 1 in the proof of Theorem 1.1). If a minimal-time FSSP
solution to variation 3PATH exists, then 3PEP ∈ P.

Proof. Assume that a minimal-time FSSP solution MIN to variation 3PATH
exists. Let p1p2 . . . pn be an instance of 3PEP, encoded appropriately.

Consider the path p1p2 . . . pn. At the vertex pn, there are five different directions
for extending the path. If it is impossible to extend the path by one more vertex
from pn, then clearly the answer to 3PEP is NO.

We will assume that the path can be extended in some direction to p1p2 . . . pnr.
Arrange n+1 copies of the solution MIN on the n+1 vertices of p1p2 . . . pnr. Simulate
the algorithm and note the firing time. Let i0(r) be the value min{i : 1 ≤ i ≤ n + 1,
i ≥ e(p1p2 . . . pnr, i)}. Lemma 3.2 yields the following results:

− If the firing time is greater than or equal to 2n, then either 2i0(r) − 1 ≥ 2n
or 2i0(r)− 2 ≥ 2n, and hence i0(r)− 1 ≥ n. This together with i0(r) ≤ n+ 1
implies i0(r) = n + 1. From i0(r) ≤ e(p1p2 . . . pnr, i0(r) − 1), or equivalently
n+1 ≤ e(p1p2 . . . pnr, n), we know that p1p2 . . . pnr has an extension of length
at least n + (n + 1) = 2n + 1. Therefore the answer to 3PEP is YES.

− If the firing time is 2n − 1, then n = i0(r) = e(p1p2 . . . pnr, n). Hence
p1p2 . . . pnr has an extension of length n + n = 2n. Therefore the answer
to 3PEP is YES.

− If the firing time is 2n − 2, then n = i0(r) > e(p1p2 . . . pnr, n). Hence the
length of any extension of p1p2 . . . pnr is at most n+(n−1) = 2n−1. Therefore
the path p1p2 . . . pnr cannot be extended to an extension of length 2n, and
we need to check other possible directions for r.

− Finally, if the firing time is less than or equal to 2n− 3, then either 2i0(r) −
1 ≤ 2n − 3 or 2i0(r) − 2 ≤ 2n − 3, and hence i0(r) ≤ n − 1. From
i0(r) ≥ e(p1p2 . . . pnr, i0(r)) we know that the length of any extension of
p1p2 . . . pi0(r)pi0(r)+1 is at most i0(r) + i0(r) ≤ 2n − 2. Therefore the path

4The size of the searcher signal and the other signals sent by this algorithm depend critically on
the number i0. If we attempt to create a minimal-time solution for all paths using this construction,
we will run into a serious problem. As the paths grow in size, the size of this number i0 may become
unbounded. However, if we fix some particular i0 and tailor a specific solution for that i0, even
though the size of the automata will depend on i0, once we fix its value, it is a constant. Therefore,
for any fixed path, there exists a solution that is minimal-time for that particular path.

5Note that the signal need not reach pi0+1 in order to verify its existence. Once it reaches
processor pi0 , the processor can “inform” the signal if it is connected in the correct direction.
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p1p2 . . . pn cannot be extended to twice its length, and hence the answer to
3PEP is NO.

So to determine the answer to 3PEP for the path p1p2 . . . pn, we can have the
deterministic Turing machine simulate the operation of a network on p1p2 . . . pnr for
each r, using the minimal-time FSSP solution MIN. We check every possible direction
for r (only five at most). If a single choice for r yields a definitive answer, then we
return that answer as the answer to 3PEP. Otherwise, the answer is NO. This clearly
takes polynomial time in the input size.

3.2. 3PEP ∈ P → 1CUBE ∈ P and 3PEP ∈ P → 2CUBE ∈ P. In this
section, we complete step 2 of Theorem 1.1. The final step in the proof of Theorem 1.1
is a reduction that depends heavily on these two problems being polynomial-time
solvable.

We will make use of four basic building blocks illustrated in Figures 3.1, 3.2, 3.3,
and 3.4. They are closed walls, open walls, spigots, and connectors. We will show how
they are used to make more complicated structures later in this section. We make the
convention in all our constructions below that all walls are square as they are above.
(This is not essential to the proof, but it makes explanations conveniently shorter.)
A path will never pass through a closed wall and can only pass through an open wall
through the 6× 4 opening. Note that the basic building blocks are all composed of a
single path.

We now describe the formation of the “2-holed cube.” A 2-holed cube will consist
of 4 closed walls, 2 open walls, 2 spigots, and 7 paths connecting the various building
blocks together. This structure is confusing to view in a single picture all at once.
We will describe the steps used to create it using a sequence of pictures. Figures
3.2 and 3.3 illustrate how the spigot should be placed so that the multiple potential
openings in the open wall will not “leak.” Figure 3.5 illustrates the appropriate
placement of the cube walls.

We will now define the decision problems 1CUBE and 2CUBE.
Definition 3.4 (1CUBE). A problem instance will be a number n represented

in unary6 and a positive integer K. The decision problem 1CUBE is as follows: Does
an n × n × n 2-holed cube in Z3 admit an avoiding7 path (as in Definition 2.1) of
length at least K that begins in the middle of the spigots of one of the open walls,
enters the cube, and remains inside the cube? The path may end at the center of the
spigot of the other open wall but may not pass through.

Definition 3.5 (2CUBE). A problem instance will be a number n represented in
unary and a positive integer K. The decision problem 2CUBE is as follows: Does an
n× n× n 2-holed cube in Z3 admit an avoiding path (as in Definition 2.1) of length
at least K that begins at the center of the spigot of one of the open walls, enters the
cube, and ends at the center of the spigot of the other open wall?

Theorem 3.6. 3PEP ∈ P → 1CUBE ∈ P.
Proof. Assume that 3PEP is solvable in polynomial time. Consider the problem

1CUBE with parameters n and K. In the three-dimensional grid, we form a 2-holed
cube of size n × n × n. We form this cube from a single path beginning outside the
cube and ending outside the cube in the position adjacent to the center of one of the

6The reason we represent the number n in unary here and in Definition 3.5 is that we wish to
be able to construct the cube in Z3 as a polynomial-time part of the problem instance. Note that
in Definition 3.1, the path is also explicitly constructed.

7The term avoiding refers to the fact that the path must never become adjacent to itself or the
walls of the cube. We use this term in the same manner in Definition 3.5.
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Fig. 3.1. This figure illustrates some of the simple building blocks we will use to create the
more complicated structures below. The upper left picture is a “closed” wall formed by a single path.
Just to the right, we provide a snapshot of the center of the closed wall. Note that even though there
is not a solid mass of vertices, a continuation of the path could not possibly pass through the wall,
as it would violate the definition of a path (Definition 2.1).

Below these two is an “open” wall and a “spigot.” Note that because the height of the hole in
the center is 6 edges tall and 4 edges wide, it is possible for the path to pass through the center
of this structure without violating any path properties. (We provide a close-up of the center of the
open wall in Figure 3.2.) Unfortunately, there are several potential places for a path to pass through
our open wall. We would prefer that there be only a single unique entrance/exit point for any open
wall; we therefore place a “spigot” at the opening of every open wall. Of course, it must be placed
2 units from the wall opening so as not to violate the path definition. This concept will be further
outlined in Figure 3.2.
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Fig. 3.2. This figure shows the shapes of holes and spigots and their relative placement. Above
is a figure illustrating the general idea of where the spigot would be placed: 2 units away from the
wall in the center of the hole. The lower figure makes this more precise:

Three figures (a), (b), (c) represent three adjacent planes. A snapshot of the center of an
open wall is on the plane (a) and a spigot is on the plane (c). The plane (b) is between the two
planes (a) and (c) and is empty. Three positions d, d’, d” are on one straight line, and similarly
for the other letters. We may regard the hole in (a) as a rectangle with dimensions 6 edges tall
and 4 edges wide containing 15 inner grid points a, b, c, . . . , o. For a path to enter into the wall
through the hole, the path must pass through the center h” of the spigot. After that position, there
are numerous ways for the path to proceed, e.g., h” → h’ → h → inside, h” → h’ → h → e → inside,
h” → h’ → h → k → inside, h” → h’ → e’ → e → inside, and h” → h’ → k’ → k → inside. Note
that if we do not place the spigot, a path can pass through the hole at least four times, for example,
enter through c, exit through e, enter through k, and exit through o. The spigot forces the path to
enter (or exit) only once through one fixed position h”.

spigots. We create an extension from the beginning of the path in such a way that the
path begins at a distance 2 away from the center of the other spigot. See Figure 3.6
for an illustration of the beginning of the path “plugging” one of the opening spigots.
Note that the path, when extended from the end, must lead into the cube. Either the
parameter K is less than the number of processors in the current path or it is not.
If K happens to be less than the current number of processors in the path, then for
large enough n, the answer to 1CUBE is YES because the volume inside the cube is
Θ(n3) and K = O(n2).

Now assume that K is greater than or equal to the number of processors in the
current path. Extend the beginning of the path outwards until the total path length
is precisely equal to K. We can now use the polynomial-time oracle for 3PEP to
determine the answer for the 1CUBE problem. If we run the 3PEP algorithm on the
constructed path, the answer will be the same as that for 1CUBE.
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Fig. 3.3. This figure illustrates a potential pitfall of the spigot placement: If we place them
in the way illustrated here rather than correctly (as in Figure 3.2), a path can enter into the wall
through the positions o’ and o without passing through the spigot. For one fixed orientation of the
hole there are eight ways to place the spigot, and we must avoid two of them, those with the vacant
position of the spigot at c” and o”.

Fig. 3.4. This figure illustrates a “connector” that connect two open walls together. Note that
the ends of the connector are simply two spigots.

Note that because the 1CUBE decision problem is solvable in polynomial time,
it is trivial to construct a polynomial-time algorithm to determine the length of the
longest path that enters an n × n × n cube once through the middle of a face and
remains inside.

Theorem 3.7. 3PEP ∈ P → 2CUBE ∈ P.

Proof. Assume that 3PEP is solvable in polynomial time. Consider the problem
2CUBE with parameters n and K. In the three-dimensional grid, we form a 2-holed
cube of size n×n×n. This cube is again formed from a single path beginning outside
the cube and ending outside the cube in the position adjacent to the center of one of
the spigots; thus the path, when extended, again must lead into the cube. We also
form another n2 × n2 × n2 2-holed cube at a distance n away such that the opening
for the n × n × n cube lines up exactly with the uncovered opening from the larger
cube. We then connect the two with a connector as illustrated in Figure 3.7. Using
the same construction as in the proof of Theorem 3.6, we close off the other opening
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Fig. 3.5. This figure illustrates the placement of the walls for the formation of the cube struc-
ture. We choose four of the walls to be closed and the other two open. The two open walls must
be adjacent. If (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) are the coordinates of the three vertices at the
corner of the cube, then we specify that for each i, j (1 ≤ i < j ≤ 3), of the three values |xi − xj |,
|yi − yj |, |zi − zj |, two have value 1 and the other has value 0. Hence, a path can pass through
neither the corner nor the edge of a cube. Each opening in the open walls is a rectangle of size
4× 6. We require that the two open walls are always placed so that the four sides of length 6 of the
rectangles are always parallel.

Fig. 3.6. This figure illustrates a spigot plug. Note that the path begins at a distance 2 from
the center of the spigot. Because the only exit from the spigot is through the center, this effectively
stops any path inside the cube from exiting through the hole.

of the larger cube. The entire structure is built from a single path.

Given the result from Theorem 3.6 and the subsequent remark, it is possible to
determine the length of the longest path that can be contained within the one-holed
cube of size n2 × n2 × n2. Call this length L. We also know that the distance from
the exit of the n× n× n 2-holed cube to the entrance of the other is n.

Note that for large enough n, the current path length must be strictly less than
the quantity L + n + K because L = Θ(n6). We can therefore extend the beginning
of the current path until it has length exactly L + n + K. We can now use the
polynomial-time oracle for 3PEP to determine the answer for the 2CUBE problem.
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Fig. 3.7. This figure illustrates the connection of open cube faces via a connector, one of the
basic building blocks. Note that the connector stops at a distance of 2 units away from the faces of
the cube. The connector, by construction, conveniently has a spigot on both ends. Note that we must
be very careful with the placement of the spigots on the holes in the cubes as illustrated by Figures
3.2 and 3.3. A misplacement may allow a path to enter a cube via a “bad” path. (We need the
entrances and exits to be exactly the same for each cube so that the problems 1CUBE and 2CUBE
are well defined.) Luckily our construction allows us to move cubes and connectors by a constant
amount, so we can always assume that the spigots connect in exactly the right way.

If we run the 3PEP algorithm on the constructed path, the answer will be the same
as that for 2CUBE.

Note that because the 2CUBE decision problem is solvable in polynomial time,
we can also trivially construct an algorithm for determining the length of the longest
path completely enclosed by the n × n × n cube that is required to begin at the
“entrance” and end at the “exit.”

3.3. 3PEP ∈ P → HAM ∈ P. In this section, we will justify step 3 in the
proof of Theorem 1.1.

In order to do so, we need to introduce an operation on graphs in Z3, called a
blow-up, by a factor of k. The idea behind this operation is simple. We apply the
linear map (x1, x2, x3) �→ (kx1, kx2, kx3) to every point in Z3. Note that the blow-up
operation preserves slopes of lines but increases distances by a factor of k.

Theorem 3.8 (step 3 in the proof of Theorem 1.1). Let HAM be the following
special case of the Hamilton path problem. As stated in [9], the Hamilton path problem
[GT39] remains NP-complete under the assumption that the graph G is planar, cubic,
3-connected, and has no face with fewer than five edges. (A cubic graph is one with
every vertex of degree 3. We will not need the latter two properties.) Then we have
the following result: 3PEP ∈ P → HAM ∈ P.

Proof. Assume that we are given a planar, cubic graph G and that 3PEP ∈ P.
We first choose two vertices in G, vstart and vend, and remove two edges from each
vertex, leaving only one edge remaining per vertex. These vertices will correspond to
the start and end of a potential Hamilton path in the graph G. Call the new graph G′.

Our first nontrivial goal will be to illustrate how it is possible to build a three-
dimensional connected structure out of a single path that has the same connectivity
properties as G′. The structure will contain an “inside” and an “outside” such that a
path originating on the inside of the structure cannot possibly make it to the outside
and vice versa. The beginning of the path (root) will be required to be outside the
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structure, and the end of the path will be inside the structure. We will then show
how it is possible to solve the Hamilton path problem on G′ utilizing a solution to
the 3PEP problem.

An integer-grid straight-line drawing of a planar graph G is an embedding of G
in the two-dimensional integer grid such that the vertices of G are grid points and
the edges of G are noncrossing straight lines. In [7, 6], it is shown how an n-vertex
planar graph can be embedded as an integer grid straight-line drawing into the plane
in O(n2) space, requiring a grid of size O(n) × O(n), and polynomial time. In fact,
[4] does the same in linear time. Many other references on graph embedding can be
found in [2]. Embed the graph G′ in the xy-plane (i.e., z = 0) in Z3 in this way. (Note
that it is possible to create the structure outlined below without making use of the
planarity and the integer-grid straight-line drawing. Eliminating these restrictions will
not change the ultimate result, though it will increase the length of the explanation
significantly by forcing us to explicitly describe a separate method for the relevant
constructions.)

In the following discussion, we will assume that n is large enough to dwarf all
constants hidden by the asymptotic notation.

We now have a planar graph in Z3 with no crossing edges. Blow-up Z3 by a factor
of n5. Note that, by elementary geometry, any vertex or line without an endpoint
at v must have been at least distance Ω( 1

n ) from v before the blow-up. Blow-ups
increase distances by factors. Thus, for any vertex v, we can be guaranteed that all
other vertices and lines without an endpoint at v are at least a distance Ω(n4) from v.
Around each vertex v, we can draw the following figure using our building blocks:
(a) an “inner” Θ(n3)-sized 2-holed cube with v at the center (following the same
construction as in Theorems 3.6 and 3.7), (b) for all vertices other than vstart and
vend, a “surrounding” 3-holed cube with v at the center and with edge size Θ(1) larger
than the 2-holed cube, and (c) for vstart and vend, a “surrounding” 1-holed cube with
the appropriate center vertex and size. We specify that any 3-holed cube must have
each open face adjacent to the other two open faces. One of the open faces must be
facing in the positive z-direction. The 1-holed cube must also have its single opening
face in the positive z-direction. Both 1-holed and 3-holed cubes are required to have
spigots on all open faces in the appropriate places to plug leaks. We are guaranteed
that no surrounding cube comes within a distance of Ω(n4) of any other surrounding
cube. Once the cubes have been drawn, delete the vertex v. (In other words, we are
replacing vertices with cubes.)

At this point, we have a three-dimensional situation in which the vertices are
represented by two large cubes, one inside the other, and are connected by straight-
line segments. We now concentrate on replacing the edges of the original straight-line
drawing with three-dimensional structures. Our goal is to replace the straight lines
that would otherwise enter the vertices with three-dimensional connectors. Of course,
these straight line segments do not necessarily proceed along a rectilinear path, as
the three-dimensional connectors do, and we are therefore required to use the third
dimension: If a connector needs to make a rectilinear turn, we simply direct it into a
small Θ(1)-sized box8 and open a second face of the box in the direction that we wish
to turn, continuing a second connector out of this new opening. We replace every
straight-line segment by an appropriate string of connectors that turn as necessary.

8Terminology: Note that a “box” is used for a turn and is always constant-sized. “Cubes” are
the structures that replaced the vertices above, and all have edge size Θ(n3). We use two different
words to distinguish between these two, even though both shapes are the same; their size and utility
are different.
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In order to make the new three-dimensional structure have the same connectivity
properties as G′, we need to guarantee that all connectors are able to enter and leave
the appropriate cubes without crossing or interfering with the rest of the structure.
Recall that the original graph G′ was embedded in the xy-plane in Z3. Number each
of the O(n2) edges of G′. (In fact, because G′ is cubic, an even better bound of O(n)
edges applies, but throughout this paper we will need only the O(n2) bound. The
cubic nature of the graph G′ is used in a different essential way in the construction:
it is trivial to insert the constant-sized holes in the sides of the cubes if there only
need to be three of them.) Note that if we proceed upwards in the z-direction, after
Θ(n3) distance (the maximum distance that any cube stretches outwards), the space
is structure-free. Assign each edge a unique space in which to maneuver from cube to
cube. Let the edge size of the “turn” box for the connectors be cturn = Θ(1). Edge i
will receive the grid space between (cturn+4)∗i+Θ(n3) and (cturn+4)∗(i+1)+Θ(n3)
in the z-direction.9 (In other words, edge i receives all grid points of the form (x, y, z)
where (cturn + 4) ∗ i+ Θ(n3) ≤ z < (cturn + 4) ∗ (i+ 1) + Θ(n3).) We connect Cubes
A and B with connectors as follows: upon leaving Cube A, we simply make a turn
directly upwards (if necessary), move to the appropriate maneuver space, proceed to
the spot above Cube B using only at most two more turns, turn downwards towards
Cube B, and then turn towards Cube B (if necessary) to enter. In this way, the new
three-dimensional graph has the same connectivity properties as the original graph G′.

At this point, we have a three-dimensional structure that is broken into many
separate pieces. We connect these pieces into one long path G′

3D by connecting the
beginning of one structure with the end of the next structure.10 Let the path G′

3D end
between the inner and outer cubes of the vertex vstart; thus, the path must extend
into the unique connector of vstart with or without entering the inner cube. G′

3D will
begin outside the enclosed structure. We now have a connected three-dimensional
structure G′

3D that represents the graph G′ in three dimensions, where the vertices
are pairs of large concentric cubes, edges are three-dimensional connectors, and the
entire structure is drawn with a single path originating outside the structure and
terminating in such a way that any extension must continue inside the structure.

Before continuing with the analysis, we must guarantee that the number of ver-
tices in the path represented by G′

3D is bounded above by a polynomial in n (the
input size of G) and that the time it took to construct G′

3D is also polynomial in n.
We omit a lengthy but fairly easy proof of both of these statements.

We now examine the structure G′
3D. Note that the size of each cube in the

structure is Θ(n3). Because 3PEP ∈ P by assumption, we know from Theorems
3.6 and 3.7 that 1CUBE ∈ P and 2CUBE ∈ P. By the subsequent remarks, we
can determine the maximum path length that a given cube of either type admits in
polynomial time in n. Let this maximum path length be L1(n) for 1CUBE and L2(n)
for 2CUBE. Both quantities are clearly Θ(n9). (Again, we omit the fairly trivial
proof of the previous statements.)

The length of the path given by G′
3D is O(n8). Because the path originates

outside the structure G′
3D we have formed, we can extend the beginning (the root)

as far as we like. Extend the beginning of the path so that the length of the path

9The extra 4 in the expressions is a guarantee that we have a two unit buffer on either side of
the connector, so the path remains true to Definition 2.1. We require the extra Θ(n3) to make sure
that we make it over the tops of all of the cubes we have already made and into the structure-free
space.

10This is actually a nontrivial exercise in practice. Theoretically, however, it is trivial that it is
possible to make these connections given the huge amount of space between each structure.
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structure G′
3D ends up being (n − 1)L2(n) + L1(n) − 
L2(n)

2 �. Call this new path
G′

3D,ext. We then ask the following question (3PEP): Can we extend the path given
by G′

3D,ext to double its length? (In other words, can we extend G′
3D,ext by length at

least (n− 1)L2(n) +L1(n)− 
L2(n)
2 � and still have the resulting structure satisfy the

properties for a path in Definition 2.1?)
We claim that a Hamilton path exists in the graph G′ if and only if the answer

to this question for the corresponding path G′
3D,ext is YES.

There are two cases to consider.
1. Assume that there is a Hamilton path in the graph G that starts at vstart,

uses the edge from vstart that was not removed, and terminates at vend via
the single edge not removed. Then we can guarantee that there exists a
path extension of G′

3D,ext that enters and exits exactly n− 1 inner cubes and
enters and possibly remains inside one additional inner cube. The length of
this path extension can be made to exceed (n− 1)L2(n) + L1(n). Therefore
the maximal path extension of G′

3D,ext must have at least this length, clearly

greater than (n− 1)L2(n) + L1(n) − 
L2(n)
2 �.

2. Assume that there is not a Hamilton path in the graph G that starts at vstart,
uses the edge from vstart that was not removed, and terminates at vend via
the single edge not removed.
We claim that any path extension of G′

3D,ext can pass through at most n− 1
outer cubes. To see this, assume that G′

3D,ext has a path extension that
passes through all of the n outer cubes. If the extension ends in a connector,
delete its tail in the connector so that the extension ends in an outer cube.
Then this extension naturally determines a path in G′ such that (i) it starts
with vstart, (ii) it touches all nodes of G′, and (iii) it never passes through
an edge more than once. This path starts at vstart and proceeds through the
only edge from vstart and eventually through the only edge to vend, finally
terminating at vend. Each vertex other than vstart and vend has three edges;
hence the path passes through each exactly once. However, this means that
the path is a Hamilton path of G′, and this is a contradiction.
Thus, a maximal path extension of G′

3D,ext can only enter at most n−1 outer
cubes and hence only at most n − 1 inner cubes. Consider an extension to
G′

3D,ext that does not enter every inner cube in the drawing. The total length

of all of the “connector” edges is at most O(n8) because there are at most
O(n2) edges, each of which has “length” at most O(n6). If we skip at least
one cube, then the most the path can be is either (n−2)L2(n)+L1(n)+O(n8)
or (n−1)L2(n)+O(n8), and both of them are at most (n−2)L2(n)+L1(n)+

O(n8) < (n− 1)L2(n) + L1(n) − 
L2(n)
2 � because L2(n) ≤ L1(n).

In this way, we can decide whether or not the graph G′ has a Hamilton path in
polynomial time. To decide whether or not the original graph G has a Hamilton
path, we need to perform the above decision for each combination of vstart, vend, and
edge removal. The answer to HAM for G is YES if and only if the answer is YES for at
least one combination. The number of combinations is a polynomial in n. Hence, we
can decide HAM for G in polynomial time under the assumption that 3PEP ∈ P.

4. FSSP for generalized 3PATH and 3REG. In this section we prove results
similar to Theorem 1.1 for two other variations g-3PATH and 3REG. First, we give
the definitions of these variations.

Definition 4.1 (variation g-3PATH). The FSSP for generalized three-dimen-
sional paths in the three-dimensional grid, or g-3PATH for short, is the FSSP such
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that a problem instance is a path p1p2 . . . pn in Z3 and the position of the root may
be any vertex pi of the path (1 ≤ i ≤ n).

Definition 4.2 (variation 3REG). The FSSP for regions in the three-dimensional
grid, or 3REG for short, is the FSSP such that a problem instance is a nonempty fi-
nite connected subset X of Z3 and the position of the root may be any vertex in X.
(A subset X of Z3 is said to be connected if for any p, p′ in X there exists a path
p1p2 . . . pn such that p1 = p, pn = p′, and {p1, p2, . . . , pn} ⊆ X.)

In this section we prove the following theorem for g-3PATH and 3REG that
corresponds to Theorem 1.1 for 3PATH.

Theorem 4.3. If P �= NP, then there do not exist minimal-time solutions of
g-3PATH or 3REG.

We prove this theorem by outlining a result for g-3PATH and 3REG that corre-
sponds to Lemma 3.2. The rest follows trivially from this observation.

The following lemma corresponds to Lemma 3.2.
Lemma 4.4. Let p1p2 . . . pn be a path. We regard this path as a problem instance

of g-3PATH or 3REG such that p1 is the position of the root. Let i0 be min{i :
1 ≤ i ≤ n, i ≥ e(p1p2 . . . pn, i)}.

Then a minimal-time FSSP solution of variation g-3PATH or 3REG, if it exists,
running on p1p2 . . . pn will fire at time either 2i0−1 if i0 = e(p1p2 . . . pn, i0) or 2i0−2
if i0 > e(p1p2 . . . pn, i0).

In other words, a minimal-time FSSP solution of variation g-3PATH or 3REG
runs in exactly the same time as a minimal-time FSSP solution of variation 3PATH
when running on a 3PATH problem instance.

Proof. By Lemma 3.2 we know that the minimum firing time of p1p2 . . . pn for
3PATH is 2i0 − 1 if i0 = e(p1p2 . . . pn, i0) and 2i0 − 2 if i0 > e(p1p2 . . . pn, i0). More-
over, g-3PATH is a subproblem of 3REG, and 3PATH is a subproblem of g-3PATH.
Consequently, the minimum firing time of 3REG is at least that of g-3PATH, and
the minimum firing time of g-3PATH is at least that of 3PATH. Hence, to prove
the lemma it suffices to show that there is a solution of 3REG whose firing time for
p1p2 . . . pn is at most this quantity.

We can use the same searcher signal idea as in Lemma 3.2. Suppose that the
searcher signal finds that the current problem instance has the same initial sequence as
the special path p1p2 . . . pi0pi0+1. The searcher signal finds this at time i0−1 arriving
at pi0 . Then the distance between pi0 and any vertex pi behind it (1 ≤ i < i0) is at
most i0 − 1; the distance between pi0 and any possible vertex ahead of it is at most i0
if i0 = e(p1p2 . . . pn, i0) and at most i0 − 1 if i0 > e(p1p2 . . . pn, i0) independent of
whether the remainder of the configuration is a path or a connected vertex set. Thus,
the remainder of the proof concludes exactly as in Lemma 3.2.

By Lemma 4.4, all of the previous results that were applicable to the variation
3PATH continue to apply to the variations g-3PATH and 3REG because only 3PATH
configurations are used in all of the proofs.

As was stated in section 1.5.2, our main results Theorems 1.1 and 4.3 were proved
using a modified formulation of FSSP. We will briefly explain how to modify the proofs
for the usual formulation of FSSP.

The proof of Theorem 1.1 (the result for 3PATH) needs no modifications. The
proofs of Theorem 4.3 (the results for g-3PATH and 3REG) need the following mod-
ifications.

In the proof of Lemma 4.4 we use the searcher signal. For g-3PATH and 3REG, the
signal must check that the root p1 has only one neighbor p2. In the usual formulation
of FSSP, this needs one unit time because the root cannot know its boundary condition
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at time 0, and the signal starts at p1 at time 1 instead of at time 0. Hence, all we
know on the minimum firing time is that it is either j0 or j0 + 1, where j0 is 2i0 − 1
or 2i0 − 2 depending on whether i0 = e(p1p2 . . . pn, i0) or i0 > e(p1p2 . . . pn, i0).

This uncertainty of 1 on the minimum firing time influences Theorems 3.3, 3.6,
and 3.7. As for Theorem 3.3, we can construct a polynomial-time algorithm for 3PEP
that may give an incorrect answer when the length m of the longest extension of
the given input path p1p2 . . . pn satisfies |m − 2n| ≤ c1 for some constant c1. As for
Theorems 3.6 and 3.7, we can construct polynomial-time algorithms that calculate
values L′

1(n), L′
2(n) such that |L1(n) − L′

1(n)| ≤ c2, |L2(n) − L′
2(n)| ≤ c3 for some

constants c2, c3 for the functions L1(n), L2(n) defined in the proof of Theorem 3.8.
As is easily seen, these results are sufficient for proving Theorem 3.8.

5. Conclusions and topics for further research. We have shown that there
cannot exist minimal-time solutions to the FSSP for our variations 3PATH, g-3PATH,
and 3REG if P �= NP, as most researchers believe. The most obvious open problems
we leave are the other five variations in section 1.3.2, that is, 2PATH, g-2PATH, 2REG,
general undirected networks, and general directed networks. In [19], Kobayashi has
shown that a solution to 2PATH is highly unlikely to exist if the two-dimensional
path extension problem, 2PEP, is NP-complete. This result can be readily extended
to g-2PATH and 2REG. Unfortunately, the computational complexity of 2PEP is
unknown and seems difficult to pin down. If there happens to be a polynomial-time
solution to 2PEP, it would be interesting from a strictly mathematical point of view,
as it is very likely to be nontrivial.

We showed that if 3PEP is decidable in polynomial time, then HAM is decidable
in polynomial time. However, this does not imply that 3PEP is NP-complete via a
many-one reduction. Our result is only a Turing reduction because the determination
of the two values L1(n) and L2(n) repeatedly use 3PEP as an oracle. However, it is
highly probable that both of the problems 1CUBE and 2CUBE have polynomial-time
algorithms, although to prove it will likely require a very tedious and deep analysis of
the lengths of paths in cubes. If one can show this, the construction in Theorem 3.8
gives the stronger many-one reduction of HAM to 3PEP.

Another obviously interesting area of exploration would be the opposite direction
of Theorem 1.1. What does the complexity-theoretic statement P = NP imply about
the existence of a minimal-time solution to the synchronization problem on these
networks?

Finally, given that a minimal-time solution to the variation we studied in this
paper will most likely not be found (as most researchers believe that P �= NP), it is
also an interesting question to ask for approximations. Can we get within a small
constant factor of optimal? Given the importance of the synchronization primitive to
parallel processing, determining the best approximating factor seems to be a promising
and practical avenue of further exploration.
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Abstract. The relationship between congruences and bisimulations is investigated for stochastic
relations. It is shown that stochastic relations are bisimilar provided they have congruences that gen-
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1. Introduction and motivation. Larsen and Skou propose in [18] a system-
atic framework for testing a process against its specification, where a specification
may be formulated in formalisms like modal logic, temporal logic, or using process al-
gebra. Testable properties are formulated, and among the logics through which these
properties may be formulated a new probabilistic logic is proposed and investigated.
The associated process equivalence is called probabilistic bisimulation, and one of
the central statements is that—under the technical assumption that the probabilities
are not too close to each other—two processes are probabilistically bisimilar iff they
satisfy the same formulas in the probabilistic modal logic [18, Theorem 6.4]. This
equivalence is dubbed here the Hennessy–Milner property for the sake of discussion.
The probability theory involved is discrete, so issues of measurability are not really
important. Bisimulations are formulated in terms of binary relations on the involved
sets.

A little later, Joyal, Nielsen, and Winskel [15] argued that bisimulation between
processes can be formulated in terms of spans of open maps between them, hereby
pointing to the presentation of models for concurrency through categories of models
[15] with the desire for a uniform treatment of all these models. Coalgebras enter the
field, and it is shown that the relational formulation of bisimulation for coalgebras
for functors based on the category of sets and maps is equivalent with a formulation
in terms of spans of projections [25, Example 2.1]. Panangaden’s work [23, 22] sug-
gests that it may be worthwhile to look not only at discrete probability spaces when
formulating labeled Markov transition systems, but that nondiscrete probabilities are
necessary for modelling concurrency as well. This leads to the question of whether
the equivalence of bisimilarity and the acceptance of the same formulas of a modal
logic, the Hennessy–Milner property, holds also in a more general probabilistic set-
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ting. In fact, Desharnais, Edalat, and Panangaden [6] show that this equivalence is
valid when the underlying space is a Polish space (i.e., a completely metrizable and
separable topological space) or even an analytic space (i.e., the image of a Polish space
under a Borel map) [6]. The elegant solution had a small catch, however: it requires
the existence of semipullbacks in the category of stochastic relations. This in turn
could only be guaranteed if the transition probabilities are universally measurable,
i.e., measurable with respect to an σ-algebra that arises from the Borel sets through
an elaborate completion process which adds certain sets of measure zero.

But the natural notion of measurability is Borel measurability, so there remained
the question whether the equivalence result can be established for the Borel measur-
able case, too. This question is not only of conceptual interest: when one wants to
apply these results for testing, one definitively does not want to go through a some-
what complex completion process when the Borel sets are readily available. It could
be shown in [9, 13] that the semipullback of stochastic relations exists in Polish and
in analytic spaces, when the measurable structure is given through the Borel sets. As
a consequence of this, the Hennessy–Milner property is established in this scenario,
too, under a technical condition that is called smallness in [9].

This paper investigates the relationship between modal logics and stochastic re-
lations: it is shown how a general modal logic can be interpreted through a stochastic
Kripke model, and that the Hennessy–Milner property holds in general for these
stochastic Kripke models. This is dealt with in a somewhat wider context: the argu-
mentation in [6, 9] shows that the equivalence on the states on which the Hennessy–
Milner property is based (viz., to be valid for exactly the same formulas) has the
property that it is countably generated, leading to the notion of smooth equivalence
relations, and to congruences for stochastic relations. Thus we discuss the triangle
congruences, bisimulations, and the Hennessy–Milner property in this paper. The
following questions are central to the investigations:

1. Can we find an intrinsic criterion for bisimilarity of stochastic relations?
“Intrinsic” means that we do not have to appeal to an external instance like a logic
for knowing whether or not two relations are bisimilar.

2. Can we formulate stochastic Kripke models for arbitrary modal logics, and
does the Hennessy–Milner property still hold?
Both answers are in the positive; we give a sufficient condition for bisimilarity in terms
of equivalent congruences. We show that stochastic relations that have isomorphic
nontrivial subsystems are bisimilar, and, conversely, that under a topological condition
bisimilar relations have nontrivial isomorphic subsystems. The topological condition
refers to compactness and continuity, hence it is rather substantial. We conjecture,
however, that bisimilarity and the existence of isomorphic factor spaces are equivalent
for general analytic spaces. Addressing the second question, we show that bisimilarity
and validity for exactly the same formulas are equivalent, so that a general Hennessy–
Milner theorem can also be established for the stochastic interpretation of general
modal logic. This includes the well-known versions from [6, 9] as special cases. These
properties hold under small restrictions (similar to Larsen and Skou’s assumption of
not having too-close probabilities) which prevent trivial conditions from creeping in
and invalidating the results.

The main cornerstone for these constructions is the existence of semipullbacks
for stochastic relations over analytic spaces [13]. We also have a look at smooth
equivalence relations over analytic spaces which are of independent interest. We show
that these relations have a confluence property that is also crucial in establishing the
relationship between congruences and bisimulations for the compact case.
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Organization. Section 2 introduces stochastic relations and collects some measure-
theoretic results that will be useful. This section also contains the definition of stochas-
tic relations with their morphisms, and of bisimulations. Smooth equivalence relations
are introduced formally in section 4, some measure-theoretic machinery associated
with them is also developed there, so that we are prepared to enter the world of con-
gruences in section 4. The notion of equivalent congruences is proposed here (after
some preparatory work in section 3), it is shown that relations that have equivalent
congruences are bisimilar, and an application of this general result to relations with
isomorphic factor spaces is formulated and proved. The next two sections give an ap-
plication to modal logic: section 5 defines Kripke models for a modal similarity type,
both nondeterministic and stochastic ones. It is demonstrated in section 5.1 that
this can be applied to various well-known logics. Section 5.2 proposes the refinement
of a nondeterministic Kripke model through a stochastic one and shows that these
refinements exist under some mild topological assumptions. Section 6 is devoted to
bisimulations for Kripke models. It is argued that the notion of morphism and, con-
sequently, of bisimulation has to be strengthened for Kripke models, and that then a
Hennessy–Milner theorem can be proved: two Kripke models are strongly bisimilar iff
they accept exactly the same formulas. Section 7 discusses related work, and section 8
draws some conclusions and gives some indications for further work.

2. Stochastic relations. This section collects in section 2.1 some basic facts and
constructions from measure theory for convenience and for later reference. Stochas-
tic relations and the categories we are working with are defined, we provide also a
definition of bisimulation.

2.1. Preliminaries.
Polish and analytic spaces. A Polish space (X,G) is a topological space which is

second countable, i.e., which has a countable dense subset, and which is metrizable
through a complete metric. A measurable space (X,A) is a set X with a σ-algebra
A. The Borel sets B(X,G) for the topology G is the smallest σ-algebra on X which
contains G. Given two measurable spaces (X,A) and (Y,B), a map f : X → Y is
A− B-measurable whenever

f−1 [B] ⊆ A

holds, where

f−1 [B] := {f−1[B]|B ∈ B}

is the set of inverse images

f−1[B] := {x ∈ X|f(x) ∈ B}

of elements of B. Note that f−1 [B] is a σ-algebra, provided B is one. If the σ-algebras
are the Borel sets of some topologies on X and Y , resp., then a measurable map is
called Borel measurable or simply a Borel map. The real numbers R carry always the
Borel structure induced by the usual topology which will usually not be mentioned
explicitly when talking about Borel maps.

An analytic set X ⊆ Z for a Polish space Z is the image f [Y ] of a Polish space
Y for some Borel measurable map f : Y → Z. Endow X with the trace A of B(Z) on
X, i.e.,

A = B(Z) ∩X := {B ∩X|B ∈ B(Z)},
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the elements of which are still called Borel sets. A measurable space (X ′,A′) which
is Borel isomorphic to (X,A) is called an analytic space (a Borel isomorphism is a
Borel measurable and bijective map the inverse of which is also Borel measurable).

Inverse systems. The product (X1 × X2,A1 ⊗ A2) of two measurable spaces
(X1,A1) and (X2,A2) is the Cartesian product X1 ×X2 endowed with the σ-algebra

A1 ⊗A2 := σ ({A1 ×A2|A1 ∈ A1, A2 ∈ A2}) .

This is the smallest σ-algebra which contains all the measurable rectangles A1 ×A2,
and it is the smallest σ-algebra E on X1 × X2 which makes the projections πi :
X1 ×X2 → Xi E − Ai-measurable for i = 1, 2.

Given finite measures μi on Ai, there exists a unique finite measure μ1 ⊗ μ2 on
A1 ⊗A2 such that

(μ1 ⊗ μ2) (A1 ×A2) = μ1(a1) · μ2(A2)

holds for each A1 ∈ A1, A2 ∈ A2.
Extending this, let (μn)n∈N be an inverse system of probabilities on (Xi,B(Xi))i∈N

for some Polish spaces Xi; see [24, section V.3]. Thus μn is a probability measure on
B(X1 × · · · ×Xn) for each natural n such that μn+1 (B ×Xn+1) = μn(B), whenever
B ⊆ X1 × · · · ×Xn is a Borel set. Then there exists a unique probability measure μ∗

on the Borel sets of
∏

n∈N
Xn with the property that

μ∗

(
B ×

∏
m>n

Xm

)
= μn(B)

for each Borel set B ⊆ X1 × · · · ×Xn; see [24, Theorem V.3.1]. μ∗ is usually called
the inverse limit of (μn)n∈N. We will use this construction when illustrating a logic
for model checking.

The direct sum (X1+X2,A1+A2) of the measurable spaces (X1,A1) and (X2,A2)
has the direct sum of the underlying base sets as a base set. Then A ∈ A1 + A2 iff
both A ∩X1 ∈ A1 and A ∩X2 ∈ A2 hold. If both spaces are Polish, resp., analytic,
their sum is B(X1 + X2) = B(X1) + B(X2).

We will occasionally talk about the trivial σ-algebra on a set X: the σ-algebra
A is called trivial iff A = {∅, X}, hence iff it consists only of the empty set and the
entire set X.

When the context is clear, we will write down topological or measurable spaces
without their topologies and σ-algebras, resp., and the Borel sets are always under-
stood with respect to the topology under consideration.

Measurable relations. Measurable relations will provide a link between nondeter-
ministic and stochastic systems, as we will see. Let us fix some notations first. Assume
that Y and Z is a measurable, resp., Polish space. Consider a set-valued map R :
Y → P (Z) , (equivalently, a relation R ⊆ Y ×Z. We will not distinguish too narrowly
between relations and set-valued maps, so that even for a relation R the set R(x) will
be defined.) If R(y) always takes closed and nonempty values, and if the (weak)
inverse

(∃R)(G) := {y ∈ Y |R(y) ∩G 	= ∅}

is a measurable set, whenever G ⊆ Z is open, then R is called a measurable relation
on Y × Z. Since Z is Polish, R is a measurable relation iff the strong inverse

(∀R)(F ) := {y ∈ Y |R(y) ⊆ F}
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is measurable, whenever F ⊆ Z is closed [14, Theorem 3.5].
We note for later use the representation of weakly measurable relations through

measurable selectors (some times called a Castaing representation). This representa-
tion implies in particular that a weakly measurable set-valued map has a measurable
selector. It is established in [27, Theorem 4.2.e].

Proposition 2.1. Given the Polish spaces Y and Z and a set-valued map R ⊆
Y × Z, then R is weakly measurable iff there exists a sequence (fn)n∈N of Borel
measurable maps fn : Y → Z such that {fn(y) | n ∈ N} is dense in R(y) for each
y ∈ Y.

Thus measurable relations have measurable selectors. This will be used when
providing a link between nondeterministic and stochastic Kripke models in section 5.2,
and it will also help establishing the smoothness of an equivalence relation in section 3.

It is interesting to note that this kind of construction did recently become of
interest in modal logics: see, e.g., the discussion of Stone duality in the context of
Vietoris topologies on hyperspaces in [17] or the discussion of descriptive general frame
in [3, Chapter 5.5].

2.2. Categories of stochastic relations. The intuition behind stochastic re-
lations over, say, a set of states is that each state is assigned not deterministically
a new state or a set of possible new states but rather a distribution over the states,
indicating with which probability a transition to another state may happen. This is
generalized somewhat: first, we will not deal exclusively with probabilities but rather
take subprobabilities into account; this is helpful when, e.g., nonterminating compu-
tations are modeled. Second, we will not only consider transitions on a space to itself
but rather consider something as input-output behavior, so that we get a richer struc-
ture (which will pay off when discussing arbitrary modal logics with an operator of
arbitrary arity). We will define these stochastic relations now and indicate the basic
constructions.

Given two measurable spaces (X,A) and (Y,B), a stochastic relation K : (X,A) �
(Y,B) is a Borel map from X to the set S (Y,B), the latter denoting the set of all sub-
probability measures on (Y,B) which carries the weak*-σ-algebra. This is the smallest
σ-algebra on S (Y,B) which renders all maps μ �→ μ(D) measurable, where D ∈ B.
Hence K : (X,A) � (Y,B) is a stochastic relation iff

1. K(x) is a subprobability measure on (Y,B) for all x ∈ X,
2. x �→ K(x)(D) is a measurable map for each measurable set D ∈ B.

This is a more common formulation of stochastic relations. Note that the only if -
part follows directly from the definition of the weak-*-σ-algebra, and from the fact
that the composition of measurable maps is measurable. The if -part follows from the
observation that a map into S (Y,B) for which the setwise evaluations are measurable
is weak-*-measurable. We will deal usually with stochastic relations between Polish
or between analytic spaces. Accordingly, we then call (X,Y,K) a Polish, resp., an
analytic object.

An A − B- measurable map f : X → Y between the measurable spaces (X,A)
and (Y,B) induces a map S (f) : S (X,A) → S (Y,B) upon setting

S (f) (μ)(D) := μ(f−1[D])

(for μ ∈ S (X,A) , D ∈ B). It is easy to see that S (f) is measurable.
If the stochastic relation K : (X,A) � (Y,B) has the property that K(x)(Y ) = 1

holds for all x ∈ X, then K is called a probabilistic relation. A stochastic relation
(X,Y,K) such that Y consists of exactly one point only will be called degenerate.
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Morphisms. The category Stoch has as objects stochastic relations K = (X,Y,K)
for measurable spaces X,Y and K : X � Y . A morphism

f : K → K′

between the objects K = (X,Y,K) and K′ = (X ′, Y ′,K ′) is a pair f = (φ, ψ) of
surjective measurable maps φ : X → X ′ and ψ : Y → Y ′ such that

K ′ ◦ φ = S (ψ) ◦K

holds, i.e., such that the diagram

X
φ � X ′

S (Y )

K

�

S (ψ)
� S (Y ′)

K ′

�

is commutative. The maps underlying morphisms are assumed to be surjective in order
to make sure that each target element is actually coming from some source element;
technically, surjectivity is required for establishing the existence of semipullbacks; see
Theorem 2.2.

The morphisms defined here correspond to zig-zag-morphisms in [6, Definition
5.1] when X = Y and X ′ = Y ′; because the approach proposed here does not need to
work with what is called simulation morphism in [6] we need not distinguish the two
kinds of morphisms.

We will usually investigate morphisms for stochastic relations based on Polish
or analytic spaces. Accordingly, we denote by P − Stoch and A − Stoch the full
subcategories having Polish, resp., analytic objects as their objects.

We note for later use [13, Theorem 2] the existence of semipullbacks in P − Stoch
and A − Stoch (recall that a semipullback in a category for a pair of morphisms
f : a → c and g : b → c with the same target is a pair of morphisms t : p → a and
s : p → b with the same source such that f ◦ t = g ◦ s). Since we will refer to the
specific shape of the underlying spaces, we indicate its components.

Theorem 2.2. Let

K1
f1 � L � f2

K2

be morphisms in A − Stoch with fi = (φi, ψi),Ki = (Xi, Yi,Ki), and L = (A,B,L).
There exist Polish topologies on

S := {〈x1, x2〉 ∈ X1 ×X2 | φ1(x1) = φ2(x2)},
T := {〈y1, y2〉 ∈ Y1 × Y2 | ψ1(y1) = ψ2(y2)}

and a stochastic relation M = (S, T,M) such that
1. pi : M → Ki are morphisms in A − Stoch, where pi = (πi,S , πi,T ) is consti-

tuted by the respective projections, i = 1, 2,
2. f1 ◦ p1 = f2 ◦ p2.

Consequently, both P − Stoch and A − Stoch have semipullbacks, the underlying
object of which is Polish.
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Bisimilarity. Bisimilarity is introduced essentially as a span of morphisms [15,
25, 9]. For coalgebras based on the category of sets, this definition agrees with the
one through relations originally given by Milner; see [25]. In [7] the authors call a
bisimulation what we will introduce as congruence, albeit that paper restricts itself to
labeled Markov transition systems, thus technically to families of stochastic relations
S � S for some state space S. It seems conceptually to be clearer to distinguish
spans of morphisms from equivalence relations, thus we make this distinction here.
Later we will see some very close connections. We introduce an additional condition
which models the tight relationship between bisimilar relations.

Definition 2.3. The stochastic relations K = (X,Y,K) and L = (V,W,L)
are called bisimilar iff there exist a stochastic relation M = (A,B,M) , morphisms
f = (φ, ψ) : M → K, and g = (γ, δ) : M → L such that

1. the diagram

X � φ
A

γ � V

S (Y )

K

�
�
S (ψ)

S (B)

M

�

S (δ)
� S (W )

L

�

is commutative,
2. the σ-algebra ψ−1 [B(Y )]∩ δ−1 [B(W )] is nontrivial, i.e., contains not only ∅

and B.
The relation M is called mediating.

The first condition on bisimilarity states that f and g form a span of Stoch-
morphisms

K � f
M

g � L;

thus we have for each a ∈ A,D ∈ B(Y ), E ∈ B(W ) that the equalities

K(φ(a))(D) = (S (φ) ◦M)(a)(D) = M(a)(φ−1 [D])

and

L(ψ(a))(E) = (S (ψ) ◦M)(a)(E) = M(a)(ψ−1 [E])

hold. The second condition states that we can find an event C∗ ∈ B(B) which is
common to both K and L in the sense that

ψ−1 [D] = C∗ = δ−1 [E]

for some D ∈ B(Y ) and E ∈ B(W ) such that both C∗ 	= ∅ and C∗ 	= B hold (note
that for C∗ = ∅ or C∗ = W we can always take the empty or full set, resp.). Given
such a C∗ with D and E from above we get for each a ∈ A

K(φ(a))(D) = M(a)(ψ−1 [D])

= M(a)(C∗)

= M(a)(δ−1 [E])

= L(γ(a))(E);
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thus the event C∗ ties K and L together. Loosely speaking, ψ−1 [B(Y )] ∩ δ−1 [B(W )]
can be described as the σ-algebra of common events, which is required to be nontrivial.

Note that without the second condition the two relations K and L, which are
strictly probabilistic (i.e., for which the entire space is always assigned probability
one), would always be bisimilar: Put A := X × V,B := Y ×W and set for 〈x, v〉 ∈ A
as the mediating relation M(x, v) := K(x)⊗L(v); then the projections will make the
diagram commutative. It is also clear that this argument does not work for the sub-
probabilistic case. This curious behavior of probabilistic relations is a bit surprising,
but it occurs in other situations as well: e.g., it turns out that the full subcategory
of probabilistic relations in A − Stoch has a final object, while A − Stoch itself
does not have one; see [12]. The second condition serves to prevent this somewhat
anomalous behavior; it is technically not too restrictive, as we will see below.

3. Smooth equivalence relations. Observing systems leads to identifying
states, which in turn gives rise to an equivalence relation. Those relations that are
suited for our purposes have a countable generator, so that by looking at a countable
family of sets it can be decided whether or not two states are equivalent. We call
these relations smooth. They may be characterized as the kernels of Borel measur-
able maps and have technically the remarkable property that factoring does not leave
the realm of analytic spaces. We define these relations in this section and carry out
some technical constructions which, albeit used for stochastic relations, are discussed
best in isolation. The operations concern factoring and an operation we call spawning.
The latter one permits the description of an equivalence relation and of the associated
measurable structure through the machinery of another one. We will need this kind of
operation for describing equivalent congruences later on, and we show that isomorphic
factor spaces have the property that the relations spawn each other. These results
will be taken to bear fruit for stochastic relations in a later section. We show also
that in the case of compact base spaces two smooth relations are always related to
each other through a kind of confluence property.

Although the results presented here are preparatory in nature, some of them
appear to be interesting in their own right.

Definition 3.1. An equivalence relation ρ on a measurable space (X,A) is said
to be smooth iff there exists a sequence (An)n∈N ⊆ A such that

x ρx′ iff ∀n ∈ N : [x ∈ An ⇔ x′ ∈ An] .

We say that the sequence (An)n∈N determines relation ρ.
A smooth relation ρ on X can be represented as a subset of X×X as [26, Exercise

5.1.10] shows:

ρ = (X ×X) \
⋂

(An × (X \An)) ;

thus it follows that a smooth equivalence relation is a Borel subset of X × X. The
equivalence classes can be expressed in terms of the sequence (An)n∈N:

[x]α =
⋂

{An|x ∈ An} ∩
⋂

{X \An|x /∈ An};

hence each class is a Borel subset of X.
It is easy to see that ρ is smooth iff ρ = ker (f) for some A-B(Y )-measurable map

f : X → Y with an analytic space Y . Here

ker (f) := {〈x, x′〉 | f(x) = f(x′)}
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is the kernel of f .
Denote by

INV (A, ρ) := {A ∈ A|A is ρ− invariant}

the σ-algebra of ρ-invariant measurable sets. Here A ⊆ X is called ρ-invariant iff
A =

⋃
{[x]ρ |x ∈ A} holds, thus iff x ∈ A and x ρx′ together imply x′ ∈ A. We will

see that smooth equivalence relations with their invariant sets are just the natural
kind of equivalence relations compatible with the structure of stochastic relations.

Denote for the equivalence relation ρ on the analytic space X by X/ρ the set of
equivalence classes, and let ηρ : x �→ [x]ρ assign to each x its class [x]ρ; denote by
B(X)/ρ the final σ-algebra on X/ρ with respect to the Borel sets B(X) on X and the
natural projection ηρ.

Smooth equivalence relations arise in a natural fashion from kernels of measurable
maps, as we will see in a moment. These relations enjoy the technically interesting
property that the factor space (X/ρ,B(X)/ρ) for an analytic space X and a smooth
relation ρ is an analytic space again; cf. [26, Exercise 5.1.14]. In particular, B(X/ρ) =
B(X)/ρ holds. A little bit more can be said. We introduce a kind of multiplicative
operation first. Assume that ρ is a smooth equivalence relation on the analytic space
X, and that θ is a smooth equivalence on X/ρ. Define for x, x′ ∈ X

x (θ • ρ) x′ ⇔ [x]ρ θ [x′]ρ .

For later use some useful properties of this operation, and of smooth relations in
general, are collected from [11].

Lemma 3.2. Let X be an analytic space and ρ a smooth equivalence relation on
X.

1. Let S be an analytic space, and assume that f : X → S is a surjective and
Borel measurable map. Then ker (f) is smooth, and f−1 [B(S)] = INV (B(X), ker (f)) .

2. The ρ-invariant Borel sets of X are exactly the inverse images of the canonic
projection ηρ, viz., INV (B(X), ρ) = η−1

ρ [B(X/ρ)] holds. If ρ is determined by the
sequence (An)n∈N of Borel sets An ⊆ X, then

INV (B(X), ρ) = σ ({An|n ∈ N}) .

3. If θ is smooth on X/ρ, then θ • ρ is smooth, and the analytic spaces X/θ • ρ
and (X/ρ)/θ are Borel isomorphic.

4. The following conditions are equivalent for a smooth equivalence relation σ
on X:

(a) ρ ⊆ σ,
(b) there exists a smooth equivalence relation θ on X/ρ such that σ = θ • ρ.
As a first application, we establish that smoothness is preserved through finite

products, and we represent the corresponding invariant Borel sets.
Lemma 3.3. Let α and α′ be smooth equivalence relations on the analytic spaces

X, resp., X ′. Define

〈x1, x
′
1〉(α× α′)〈x2, x

′
2〉 ⇔ x1α x2 ∧ x′

1α
′ x′

2.

Then
1. α× α′ is a smooth equivalence relation on X ×X ′,
2. INV (B(X ×X ′), α× α′) = INV (B(X), α) ⊗ INV (B(X ′), α′).
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Proof. Let {An | n ∈ N} and {A′
n | n ∈ N} be the generators for INV (B(X), α)

and INV (B(X ′), α′), resp. Then {An ×A′
n | n ∈ N} generates

INV (B(X), α) ⊗ INV (B(X ′), α′) ,

and

〈x1, x
′
1〉(α×α′)〈x2, x

′
2〉 ⇔ ∀n ∈ N : [〈x1, x

′
1〉 ∈ An ×A′

n ⇔ 〈x2, x
′
2〉 ∈ An ×A′

n] .

We will establish a confluence property for later use. This property will be helpful
for the investigation of the relationship between congruences and bisimulations: we
will use this confluence property in a crucial way when it comes to show that bisimilar
relations have isomorphic factors.

Proposition 3.4. Let T be a compact metric space, and assume that ρ =
ker (φ) , σ = ker (ψ) for some continuous maps φ : T → N,ψ : T → N ′ with met-
ric spaces N,N ′. There exist smooth equivalence relations θ on T/σ and θ′ on T/ρ
such that

1. θ′ • ρ = θ • σ,
2. θ and θ′ are minimal: if θ′0 • ρ = θ0 • σ, for smooth equivalence relations θ0

on T/σ and θ′0 on T/ρ, then θ ⊆ θ0 and θ′ ⊆ θ′0.
The following diagram visualizes this claim and suggests the characterization as

a confluence property.
•

• �

ρ

•

σ

�

• �................................

θ

....
....
....
....
....
....
....
....
.

θ
′

�

Note that the universal relations on the respective factor spaces would satisfy the
first condition. But since the universal relation is usually no congruence, it is of no
use for our purposes.

The proof will be broken into several parts. Because of part 4 in Lemma 3.2 we
will first find a smooth equivalence relation θ on T/σ such that ρ ⊆ θ • σ holds. We
will assume through the end of the proof of Proposition 3.4 that T is a compact metric
space, and that ρ = ker (φ) , σ = ker (ψ) .

Claim 1. T/σ is a compact metric space when endowed with the final topology
for ησ.

Proof. Let d′ be the metric on N ′, and put for t, t′ ∈ T

D([t]σ , [t
′]σ) := d′(ψ(t), ψ(t′)),

then D is a metric on T/σ (since σ = ker (ψ) by assumption). Let T be the topology
on T/σ induced by ησ, then a set G ⊆ T/σ which is D-open is also T -open. This
follows easily from the continuity of ψ. Conversely, let F be T -closed, and assume
that ([tn]σ)n∈N

be a sequence in F such that D([tn]σ , [t]σ) → 0, as n → ∞. Select

an arbitrary xn ∈ [tn]σ ; thus xn ∈ η−1
σ [F ] . The latter is a closed, hence compact,

set. Thus we can find a convergent subsequence (which we take w.l.o.g. the sequence
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itself), so that there exists x∗ ∈ η−1
σ [F ] with xn → x∗. By the continuity of ψ we

may conclude ψ(xn) → ψ(x∗). This implies x∗ ∈ [t]σ ; thus [t]σ ∈ F . Hence F is also
metrically closed, and the topologies coincide.

Claim 1 shows among other things that the Borel sets in T/σ come from a compact
metric space. This observation will make some arguments easier. When talking about
the topology on T/σ, we refer interchangeably to the metric topology and the topology
induced by the canonic projection.

Claim 2. Put

ζ := {〈s, s〉 | s, s′ ∈ T/σ, s× s′ ∩ ρ 	= ∅}.

Then ζ ⊆ (T/σ)
2

is reflexive, symmetric, and a closed subset of (T/σ)
2
.

Proof. Since ρ is reflexive and symmetric, ζ is also. Now let 〈sn, s′n〉 ∈ ζ be a
convergent sequence, say, sn → s, s′n → s′. For sn there exists by the construction of
ζ a pair 〈tn, t′n〉 ∈ ρ with tn ∈ sn, t

′
n ∈ s′n. In particular, φ(tn) = φ(t′n). Compactness

implies the existence of a subsequence (q(n))n∈N and of elements t, t′ such that tq(n) →
t, t′q(n) → t′, as n → ∞. Continuity implies 〈t, t′〉 ∈ ker (φ) = ρ, and s = [t]σ , s

′ =

[t′]σ . Thus ζ is closed.
Now define inductively the n-fold composition of ζ:

ζ(1) := ζ,

ζ(n+1) := ζ(n) ◦ ζ,

where ◦ denotes the usual relational composition.
The following properties are easily established through a compactness argument

using induction on n.
Claim 3. For each n ∈ N

1. ζ(n) ⊆ T/σ is closed,
2. if C ⊆ T/σ is compact, then the set

∃ζ(n)(C) = {s ∈ T/σ | ∃s′ ∈ C : 〈s, s′〉 ∈ ζ(n)}

is closed.
Claim 4. The transitive closure θ of ζ is a smooth equivalence relation on T/σ.
Proof. It is clear from the properties of ζ that θ is an equivalence relation.

Smoothness needs to be shown, and we will exhibit a Borel measurable map into a
Polish space with θ as its kernel. Write θ as

θ =
⋃
n∈N

ζ(n),

and let C ⊆ T/σ be a compact set; then

∃θ(C) = {s ∈ T/σ | ∃s′ ∈ C : 〈s, s′〉 ∈ θ}

is a measurable subset of T/σ by Claim 3. By Proposition 2.1 we can find a measurable
selector w for the set-valued map s �→ ηθ(s), and hence a Borel measurable map
w : T/σ → T/σ such that w(s) ∈ [s]θ for each s ∈ T/σ. Now we know that T/σ is a
Polish space, and from θ = ker (w) we can infer that θ is smooth.

We are in a position now to establish Proposition 3.4.
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Proof of Proposition 3.4. 1. It is sufficient for the first part to establish ρ ⊆ θ • σ.
In fact, let t ρ t′; then [t]σ × [t′]σ ∩ ρ 	= ∅. This implies 〈[t]σ , [t′]σ〉 ∈ ζ ⊆ θ, which in
turn establishes the inclusion and hence the proposition.

2. Now assume that θ′0 • ρ = θ0 • σ, for smooth equivalence relations θ0 on T/σ
and θ′0 on T/ρ. From part 4 of Lemma 3.2 we infer σ ⊆ θ′0 • ρ and ρ ⊆ θ0 •σ. In order
to establish θ ⊆ θ0 it is enough to show that ζ ⊆ θ0. But if 〈s, s′〉 ∈ ζ, we know that
s× s′ ∩ ρ 	= ∅. The remark above implies that s× s′ ∩ θ0 • σ 	= ∅; thus 〈t, t′〉 ∈ θ0 • σ
for some t ∈ s = [t]σ , t

′ ∈ s′ = [t′]σ . Consequently, s θ0 s′ holds. Interchanging the
roles of ρ and σ establishes that θ′ ⊆ θ′0 also holds.

For later use we record a property of θ-invariant Borel sets that characterizes these
sets in terms of the equivalence relations from which θ is constructed. It gives an easy
criterion on invariance and shows that the relation θ is probably not as unpractical
as it appears on first sight.

Lemma 3.5. Under the assumptions of Proposition 3.4, let D ⊆ T/σ be a Borel
set, where θ is defined as in Claim 4 as the equivalence relation generated through
{〈s, s′〉 | s, s′ ∈ T/σ, s× s′ ∩ ρ 	= ∅}. Then these conditions are equivalent:

1. D is θ-invariant,
2. η−1

σ [D] ∈ INV (B(T ), σ) ∩ INV (B(T ), ρ) .
Proof. 1. “1 ⇒ 2”: We know from part 2 of Lemma 3.2 that η−1

σ [D] ∈
INV (B(T ), σ) , because D ⊆ T/σ is a Borel set. Now let t ∈ η−1

σ [D] with t ρ t′.
Then [t]σ ∈ D and [t]σ× [t′]σ ∩ρ 	= ∅; thus 〈[t]σ , [t′]σ〉 ∈ θ, and, since D is θ-invariant,
t′ ∈ η−1

σ [D] . Hence η−1
σ [D] is also ρ-invariant.

2. The implication “2 ⇒ 1” is established through a routine argument using
induction accounting for the construction of θ.

As a preparation for the definition of how two smooth relations may be to each
other we will have a quick look at how the atoms of a countably generated σ-algebra
are characterized through the generators. This representation is established in the
proof of [26, section 3.1.15].

Lemma 3.6. Let E = σ({En|n ∈ N}) be a countably generated σ-algebra over a
set E. Define A1 := A,A0 := E \ A for A ⊆ E. Then there exists F ⊆ {0, 1}N such
that {⋂

n∈N

Eα(n)
n |α ∈ F

}

are exactly the atoms of E.
We are ready for a technical definition that permits stating how a smooth equiva-

lence relation is transported through a map between classes in such a way that impor-
tant properties are maintained. We call this spawning. This definition of spawning is
still done only for equivalence relations, but it will be later extended to incorporate
congruences.

Definition 3.7. Let α and β be smooth equivalence relations on the analytic
spaces X, resp., Y , and assume that Υ : X/α → Y/β is a map between the equivalence
classes. We say that α spawns β via (Υ,A0) iff A0 is a countable generator of
INV (B(X), α) such that

1. A0 is closed under finite intersections,
2. {ΥA|A ∈ A0} is a generator of INV (B(Y ), β), where ΥA :=

⋃
{Υ ([x]α) |x ∈

A},
3. [x1]α = [x2]α implies the equality of⋂

{ΥA|A ∈ A0, x1 ∈ A} ∩
⋂

{X ′ \ ΥA|A ∈ A0, x1 /∈ A}
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and ⋂
{ΥA|A ∈ A0, x2 ∈ A} ∩

⋂
{X ′ \ ΥA|A ∈ A0, x2 /∈ A}.

Thus if α spawns β, then the measurable structure induced by α on X is all we
need for constructing the measurable structure induced by β on Y : the map Υ can be
made to carry over the generator A0 from INV (B(X), α) to INV (B(Y ), β) and—in
light of Lemma 3.6—to transport the atoms from one σ-algebra to the other. This
is of particular interest since the atoms constitute the equivalence classes. Hence α
together with Υ and the generator A0 is all we may care to know or to learn about β.

The first condition reflects a measure-theoretic precaution: we will need to make
sure, e.g., in the construction of the direct sum of stochastic relations that measures
are uniquely determined by their values on a generator. This, however, can best be
guaranteed if the generator is stable against taking finite intersections. Note that
ΥA1∩A2 = ΥA1 ∩ ΥA2 also holds, so that closedness under intersections is inherited
through Υ.

Whenever we have two smooth equivalence relations such that one spawns the
other we obtain on the sum of the underlying spaces a unique smooth relation, the
traces of which on the summands are just the given relations. Since we will introduce
later on the sum of two relations, this effect will now be studied in greater detail.

Lemma 3.8. Let α and β be smooth equivalence relations on the analytic spaces
X, resp., Y .

1. If α spawns β via (Υ,A0), then there exists exactly one smooth equivalence
relation γ on X + Y such that [x]γ ∩ X = [x]α and [x]γ ∩ Y = Υ([x]α) hold for all
x ∈ X.

2. If in addition β spawns α via (Θ,B0), then we have for all x ∈ X, y ∈ Y the
equivalence

[y]β = Υ([x]α) ⇔ [x]α = Θ([y]β).

Proof. 1. In order to establish property 1, we consider the equivalence relation γ
generated from {An + ΥAn | n ∈ N} with A0 = {An | n ∈ N}. Relation γ is evidently
smooth and it is uniquely determined through α and β. Let x ∈ X; then we can find
y ∈ Y with Υ([x]α) = [y]β , since Υ maps X/α to Y/β. It is easy to see that

Υ([x]α) =
⋂

{ΥAn | An ∈ A0, x ∈ An} ∩
⋂

{Y \ ΥAn | An ∈ A0, x /∈ An}.

This establishes part 1.
2. The claim in part 2 follows from the observation that β is the relation on Y

which is generated from {ΥAn | n ∈ N}, and that α is the relation on X which is
generated from {ΘBn | n ∈ N}, where B0 = {Bn | n ∈ N}.

We need this construction later on, so we fix it in the following definition.
Definition 3.9. Let α and β be smooth equivalence relations on the analytic

spaces X, resp., Y, and assume that α spawns β via (Υ,A0) and β spawns α via
(Θ,B0); the equivalence relation constructed in Lemma 3.8 on X + Y is denoted by
α + β.

The isomorphism of two factor systems is another illustration of the concept of
spawning.

Proposition 3.10. Let T, T ′ be analytic spaces with smooth equivalence relations
ρ, resp., ρ′. Assume that Υ : T/ρ → T ′/ρ′ is a Borel isomorphism, and let A be
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a countable generator of INV (B(X), ρ) which is closed under finite intersections.
Then ρ spawns ρ′ via (Υ,A).

Proof. The assumption that the generator A is closed under finite intersections
is easily met: take an arbitrary countable generator A0; then

{
⋂

F | F ⊆ A0 is finite}

is a countable generator which is closed under finite intersections.
1. If A ∈ INV (B(T ), ρ) is a ρ-invariant Borel set, then ΥA is ρ′-invariant, and

it is easily established that

ΥA = η−1
ρ′ [Υ [ηρ [A]]]

holds. From part 2 in Lemma 3.2 we infer that C1 is a generator for B(T/ρ), where
C1 := ηρ [INV (B(T ), ρ)] . Consequently, {ΥA | A ∈ A} is a generator for the ρ′-
invariant Borel sets INV (B(T ′), ρ′) , because we may conclude that

INV (B(T ′), ρ′) = η−1
ρ′ [B(T ′/ρ′)] (by Lemma 3.2)

= η−1
ρ′ [Υ [B(T ′/ρ′)]] (since Υ is a Borel isomorphism)

= σ({η−1
ρ′ [Υ [C]] | C ∈ C1}) (by construction of C1)

= σ ({ΥA | A ∈ INV (B(T ), ρ)})
= σ ({ΥA | A ∈ A}) (since A generates INV (B(T ), ρ)).

2. As in the proof of [11, Corollary 1] one shows that

Υ
(
[t]ρ

)
=

⋂
{ηρ′ [ΥA] | A ∈ A, t ∈ A} ∩

⋂
{ηρ′ [T ′ \ ΥA] | A ∈ A, t /∈ A}.

This settles the condition of well-defined atoms and concludes the proof.
The proof is technically a bit laborious. The statement, however, will be most

useful in permitting us to show that stochastic relations are bisimilar, provided they
have isomorphic factors. Working with isomorphisms alone for characterizing bisimi-
larity may be too strong a condition. In the application to modal logic below we will
see that the equivalence relation which is induced on states through having the same
logic satisfies the condition on spawning, but it is far from clear in this case whether
or not the corresponding factor spaces are Borel isomorphic. Consequently, it seems
to be worthwhile to work with the weaker condition.

4. Equivalent congruences. Observing a stochastic system K : X � Y , pairs
with equivalent behavior are identified. This leads to a pair (α, β) of equivalence
relations on the inputs X, resp., the outputs Y , with the idea that equivalent inputs
lead to equivalent outputs. While equivalent inputs can be described directly through
α, the equivalence of outputs requires a description of the level of measurable sets.
We argue that a set B ⊆ Y does not distinguish between equivalent outputs iff it is
invariant under β, i.e., if y ∈ B and y β y′ together imply y′ ∈ B. This leads naturally
to the notion of a congruence.

Definition 4.1. A congruence c = (α, β) for the stochastic relation K =
(X,Y,K) is a pair of smooth equivalence relations α on X and β on Y such that
K(x)(D) = K(x′)(D) holds whenever xαx′ and D is a β-invariant measurable sub-
set of Y . The congruence c is called nontrivial iff the σ-algebra INV (B(Y ), β) is
nontrivial.
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Note that each equivalence class of a smooth equivalence relation is an invariant
Borel set; thus if we know that INV (B(Y ), β) is trivial for a smooth relation β, then
this implies β = Y ×Y. The exclusion of the universal relation from our discussions is
justified through the observation that this relation does not provide us with additional
information. If α is a smooth equivalence relation, then (α, Y × Y ) is a congruence,
provided K(x)(Y ) = K(x′)(Y ) holds for x α x′. But this is not really enough infor-
mation to work with, because INV (B(Y ), Y × Y ) = {∅, Y }, so the invariant sets are
not rich enough.

For later use we extend the •-notation to congruences, and order congruences by
componentwise refinement. Formally, if c = (α, β), c′ = (α′, β′), then c � c′ iff both
α ⊆ α′ and β ⊆ β′ hold.

The next lemma shows that kernels of morphisms and congruences are basically
the same thing.

Lemma 4.2. If f : K → K′ is a morphism for the stochastic relations K and K′,
then ker (f) is a congruence for K.

Proof. Let K = (X,Y,K) and K′ = (X ′, Y ′,K ′) with f = (φ, ψ). Let x1 ker (φ) x2

and D ⊆ Y be a ker (ψ)-invariant Borel subset of Y . Lemma 3.2 shows that D =
ψ−1 [D′] for some Borel set D′ ⊆ Y ′. Thus we obtain from f = (φ, ψ) being a
morphism

K(x1)(D) = K(x1)(ψ
−1 [D′])

= (S (ψ) ◦K) (x1)(D
′)

= (K ′ ◦ φ) (x1)(D
′)

= K ′(φ(x1))(D
′)

= K ′(φ(x2))(D
′)

= (K ′ ◦ φ) (x′)(D′)

= K(x2)(D),

the last equality just reversing the argument for the first ones. This establishes the
claim.

This construction permits introducing factor objects which will be heavily used
throughout.

Proposition 4.3. Let c = (α, β) be a congruence on the stochastic relation
K = (X,Y,K), and define

Kα,β([x]α)(D) := K(x)(η−1
β [D])

for x ∈ X,D ∈ B(Y/β); then
1. Kα,β : X/α � Y/β is a stochastic relation,
2. ηc := (ηα, ηβ) : K → K/c is a morphism.

We call K/c := (X/α, Y/β,Kα,β) the factor object (of K with respect to c).
Proof. 1. Given D ∈ B(Y/β), η−1

β [D] is an invariant Borel set; thus K(x)(η−1
β [D])

does depend only on the α-class of x ∈ X. Consequently, Kα,β is well defined.
2. Kα,β : X/α � Y/β is a stochastic relation. In fact, it is plain that Kα,β ([x]α) is

a subprobability measure on B(Y/β), so it remains to be shown that t �→ Kα,β(t)(D)
is a B(X/α)-measurable map for each D ∈ B(Y/β). Fix such a D and a Borel set
F ⊆ R; then

FD := {x ∈ X | K(x)(η−1
β [D]) ∈ F}
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is a Borel set in X, and since η−1
β [D] is β-invariant, FD is α-invariant with

{t ∈ X/α | Kα,β(t)(D) ∈ F} = ηα [FD] ∈ B(X/α)

by Lemma 3.2. This establishes measurability.
3. The construction of Kα,β yields Kα,β ◦ ηα = S (ηβ) ◦ K; hence ηc is a

morphism.
An important instance of congruences and factor spaces is furnished through

equivalent congruences.
Definition 4.4. Let K = (X,Y,K) and K′ = (X ′, Y ′,K ′) be Polish objects with

congruences c = (α, β) and c′ = (α′, β′), respectively.
1. Call c proportional to c′ (symbolically c ∝ c′) iff α spawns α′ via (Υ,A0)

and β spawns β′ via (Θ,B0) such that

∀x ∈ X ∀x′ ∈ Υ([x]α) ∀B ∈ B0 : K(x)(B) = K ′(x′)(ΘB).

2. Call these congruences equivalent iff both c ∝ c′ and c′ ∝ c hold.
Thus equivalent congruences behave in exactly the same way. The same behavior

is exhibited on each atom, i.e., equivalence class, as far as the input is concerned, and
the respective invariant output sets. It becomes visible now that a characterization
of equivalent behavior through congruences requires the double face of congruences:
it is certainly necessary to use the equivalence relation on the input spaces, but since
the behavior on the output spaces is modeled through probabilities, we also need the
invariant Borel sets for a characterization.

We will now show how equivalent congruences on stochastic relations give rise to
a factor object built on their sum. This construction will be of use in Proposition 4.5
for investigating the bisimilarity of stochastic relations.

Assume that c and c′ are equivalent congruences on the Polish objects K =
(X,Y,K) and K′ = (X ′, Y ′,K ′), respectively. Construct for K and K′ the direct
sum

K ⊕ K′ := (X + X ′, Y + Y ′,K ⊕K ′) ,

where the only nonobvious construction is K ⊕K ′: put for the Borel set E ⊆ Y + Y ′

(K ⊕K ′)(z)(E) :=

{
K(z)(E ∩ Y ) if z ∈ X,

K ′(z)(E ∩ Y ′) if z ∈ X ′.

Then clearly K ⊕ K ′ : X + X ′ � Y + Y ′. Define on X + X ′, resp., Y + Y ′, the
σ-algebras

G := {C + C ′|C ∈ INV (B(X), α) , C ′ ∈ INV (B(X ′), α′)},
H := {D + D′|D ∈ INV (B(Y ), β) , D′ ∈ INV (B(Y ′), β′)}.

Then G and H are countable generated sub-σ-algebras of the respective Borel sets.
Because the σ-algebras in question are countably generated, so is their sum, and
because the congruences are equivalent, we claim that z (α + α′) z′ implies that
(K ⊕ K ′)(z)(F ) = (K ⊕ K ′)(z′)(F ) holds for all F ∈ H. To establish this, fix z ∈
X, z′ ∈ X ′, and consider

S := {F ∈ H|(K ⊕K ′)(z)(F ) = (K ⊕K ′)(z′)(F )}.
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Since the congruences are equivalent, this is a σ-algebra containing the generator
{Dn + ΘDn |n ∈ N}, where β spawns β′ via (Θ, {Dn | n ∈ N}). Since the generator
is closed under finite intersections, measures are uniquely determined. This implies
H ⊆ σ(S), and thus H = S. Consequently,

G = INV (B(X + X ′), α + α′) ,

H = INV (B(Y + Y ′), β + β′) ,

and c + c′ := (α + α′, β + β′) is a congruence on K ⊕ K′.
The factor object

(K ⊕ K′)/(c + c′)

constructed in this way will be investigated more closely in Proposition 4.5 below when
we establish that K and K′ are bisimilar, provided they have equivalent nontrivial
congruences.

Equivalent congruences give rise to bisimilar stochastic relations. This is a rather
far-reaching generalization of the by now well-known characterization of bisimilarity
of labeled Markov transition systems through mutually equivalent states. Note that
this is an intrinsic characterization of bisimilarity: we investigate the relations and
their congruences on their own, but we do not need an external instance (like a logic)
to determine bisimilarity.

Proposition 4.5. If ci are equivalent nontrivial congruences on the Polish ob-
jects Ki for i = 1, 2, then K1 and K2 are bisimilar.

Proof. 1. Let Ki = (Xi, Yi,Ki) and ci = (αi, βi) for i = 1, 2. Construct the sum
K1⊕K2 as above, and let (κi, λi) be the corresponding injections, which are, however,
not morphisms. Let

(ηα1+α2 , ηβ1+β2) : K1 ⊕ K2 → (K1 ⊕ K2)/(c1 + c2)

be the canonical injection; then

(ηα1+α2
◦ κi, ηβ1+β2

◦ λi)

constitutes a morphism Ki → (K1 ⊕ K2)/(c1 + c2), as will be shown now. Surjectivity
has to be established, and we have to show that the σ-algebra of common events is
nontrivial.

2. Each equivalence class a ∈ (X1 + X2)/(α1 + α2) can be represented as

a = [x1]α1
+ [x2]α2

for some suitably chosen x1 ∈ X1, x2 ∈ X2. Similarly, each equivalence class b ∈
(Y1 + Y2)/(β1 + β2) can be written as

b = [y1]β1
+ [y2]β2

for some y1 ∈ Y1, y2 ∈ Y2. Conversely, the sum of classes is a class again. This follows
from Lemma 3.8.

3. The semipullback of the pair of morphisms with a joint target constructed in
the first step exists by Theorem 2.2. It is a Polish object (A,B,M), where

B = {〈y1, y2〉 ∈ Y1 × Y2 | [y1]β1+β2
= [y2]β1+β2

}.



CONGRUENCES AND BISIMULATIONS FOR STOCHASTIC RELATIONS 607

Since c is nontrivial, we can find an invariant Borel set D ∈ INV (B(Y1), β1) with
∅ 	= D 	= Y1. Assume that β1 spawns β2 via (Θ, {Dn | n ∈ N}); then ∅ 	= ΘD 	= Y2

also holds. Because D is β1-invariant,

π−1
1,Y1

[D] = {〈y1, y2〉 | y1 ∈ D}
= {〈y1, y2〉 | y2 ∈ ΘD}
= π−1

2,Y2
[ΘD] ;

thus

π−1
1,Y1

[D] ∈ π−1
1,Y1

[B(Y1)] ∩ π−1
2,Y2

[B(Y2)] ,

and we are done once it is shown that π−1
1,Y1

[D] 	= B. Since D 	= Y1 is invariant, there
exists y1 with

[y1]β1+β2
∩D = [y1]β1

∩D = ∅.
Let [y2]β2

:= Θ([ψ1]β1
); then

[y2]β1+β2
∩ ΘD = [y2]β2

∩ ΘD = ∅.

Consequently, 〈y1, y2〉 ∈ B \ π−1
1,Y1

[D] . This shows that π−1
1,Y1

[B(Y1)] ∩ π−1
2,Y2

[B(Y2)] is
nontrivial.

The proof’s strategy is to make sure that the classes associated with the con-
gruences are distributed evenly among the summands in the sense that each class in
the sum is the sum of appropriate classes. This then implies that we can construct
surjective maps, and from them morphisms through some general mechanisms. This
idea works, in particular, with isomorphic factor spaces.

Proposition 4.6. Let K and K′ be analytic objects such that K/c is isomorphic
to K′/c′ for some nontrivial congruences c and c′. Then K and K′ are bisimilar.

Proof. Let K = (X,Y,K) with c = (α, β), and similarly for K′ and c′. Assume
that f = (Φ,Ψ) is the isomorphism K/c → K′/c′ which is composed of the Borel
isomorphisms Φ : X/α → X ′/α′ and Ψ : Y/β → Y ′/β′. Moreover, let A and B be
countable generators of INV (B(X), α) and INV (B(Y ), β) which are closed under
finite intersections. We know from Proposition 3.10 that α spawns α′ via (Φ,A), and
that β spawns β′ via (Ψ,B). Hence we have to establish for each x ∈ X,x′ ∈ Φ([x]α)
and for each β-invariant Borel subset B ⊆ Y that

K(x)(B) = K ′(x′)(ΨB)

holds. This will imply c ∝ c′. Interchanging the roles of c and c′ then will yield the
result.

1. Given B ∈ INV (B(Y ), β) we know from Lemma 3.2 that we can find a Borel
set B1 ∈ B(Y/β) such that B = η−1

β [B1] . Since Ψ is a Borel isomorphism, we find

B2 ∈ B(Y ′/β′) with B1 = Ψ−1 [B2] . A routine calculation shows that ΨB = η−1
β′ [B2] .

Now assume that x ∈ X,x′ ∈ Φ([x]α); then the following chain of equations is obtained
from the argumentation above, and from the assumption that f is an isomorphism.

K(x)(B) = K(x)(η−1
β

[
Ψ−1 [B2]

]
)

= Kα,β([x]α)(Ψ−1 [B2])

= K ′
α′,β′(Φ([x]α)(B2)

= K ′(x′)(η−1
β′ [B2])

= K ′(x′)(ΨB).
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This establishes the desired relation c ∝ c′ and completes the proof.
Thus isomorphic factor spaces make sure that the relations are bisimilar. The

natural question is whether or not the converse also holds: given bisimilar relations,
do they have isomorphic factor spaces? A first step toward an answer is shown in the
following proposition.

Proposition 4.7. If the Polish objects K and K′ are bisimilar such that the me-
diating object is compact with continuous morphisms, then K and K′ have isomorphic
nondegenerate factor spaces.

Proof. 1. Let

K � f
M

f′ � K′

be the span of morphisms constituting bisimilarity. Because K is isomorphic to
M/ker (f) by [11, Corollary 3], we may restrict our attention to factors of M. Thus we
assume that K = M/c,K′ = M/c′, where both c and c′ are the kernels of continuous
morphisms. Suppose that we can find congruences d and d′ such that d • c = d′ • c′.
Then

K/d = (M/c)/d
∼= M/d • c (by [11, Proposition 2])

= M/d′ • c′

= (M/c′)/d′

∼= K′/d′

(∼= indicating isomorphism), and we are done, provided K/d is shown to be nondegen-
erate, or, equivalently, d not to have the universal relation as its second component.
When looking for suitable congruences d and d′ it is in view of [11, Corollary 4] suffi-
cient to find a congruence d′ = (γ, δ) with c � d′ • c′ for the given congruences c and
c′, and δ is not universal.

2. Assume M = (X,Y,M), and suppose c = (α, β), c′ = (α′, β′). We know that
there exist smooth equivalence relations γ and δ with α ⊆ γ • α′ and β ⊆ δ • β′;
moreover, we know for a δ-invariant Borel subset D ∈ INV (Y/β′, δ) that

η−1
β′ [D] ∈ INV (B(Y ), β) ∩ INV (B(Y ), β′) .

This was shown in Proposition 3.4 and Lemma 3.5.
We show that d = (γ, δ) is a congruence; thus we have to show that Kα′,β′(s)(D) =

Kα′,β′(s′)(D), whenever D is a δ-invariant Borel subset of Y/β′ and s γ s′.
Assume first that

〈s, s′〉 ∈ γ0 := {〈t, t′〉 | t, t′ ∈ X/α′, t× t′ ∩ α 	= ∅}.

Then we can find 〈x, x′〉 ∈ α such that s = [x]α′ , s′ = [x′]α′ , and [x]α = [x′]α . Thus
we obtain from D’s invariance properties

Kα′,β′(s)(D) = K(x)(η−1
β′ [D])

= K(x′)(η−1
β′ [D])

= Kα′,β′(s′)(D).

This means that the assertion is true for all 〈s, s′〉 ∈ γ0.
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Now consider

γ̂ := {〈t, t′〉 | t, t′ ∈ X/α′,Kα′,β′(t)(D) = Kα′,β′(t′)(D)};

then γ̂ is an equivalence relation which contains γ0, and, consequently, it contains γ,
as the construction of γ as the transitive closure of γ0 shows (see Claim 4).

3. Since M/c and M′/c′ are bisimilar, we can find F ∈ INV (B(Y ), β)∩INV (B(Y ), β′)
with ∅ 	= F 	= Y (this is so since, e.g., INV (B(Y ), β) = η−1

β [B(Y/β)] by Lemma 3.2,
part 1). Now minimality of the construction leading to Proposition 3.4 enters the
game: from Lemma 3.5 we infer that

η−1
β′ [INV (B(Y/β′), δ)] = INV (B(Y ), β) ∩ INV (B(Y ), β′)

holds; thus we can find F0 ∈ INV (B(Y/β′), δ) with ∅ 	= F0 	= Y/β′. Consequently, δ
is not universal and we are done.

Summarizing, we have established the following characterization of bisimilarity
through congruences.

Theorem 4.8. Consider for analytic objects K and K′ the following statements.
1. There exist nontrivial congruences c and c′ on K, resp., K′, such that K/c

and K′/c′ are isomorphic.
2. K and K′ are bisimilar.

Then 1 ⇒ 2 holds always, and 2 ⇒ 1 holds in the case that the mediating object is
compact and the associated morphisms are continuous.

This is an intrinsic characterization of bisimilarity through congruences, because
we can look at the stochastic relations and say that they are bisimilar without having
to look at an external instance (like the sentences of a modal logic). It would be
most valuable to lift the rather strong condition on compactness. The proofs given
above, in particular in section 3, are Claims 1 through 4 relying on compact spaces
via the possibility to extract from each sequence a converging subsequence (hence on
sequential compactness, to be specific). Otherwise smoothness cannot be guaranteed,
but smoothness is crucial since it makes sure that the factor space is analytic.

Conjecture. The characterization of bisimilarity through isomorphic factor spaces
is valid for all stochastic relations over analytic spaces.

5. Interpretations of modal logic. We have so far established a criterion
for bisimilarity through equivalent congruences and discussed bisimilarity in terms
of isomorphic factor spaces. The rest of the paper will apply this to modal logic.
This section defines the logic we will be working with, and Kripke models are defined
in their usual nondeterministic and stochastic versions, together with their satisfac-
tion relation. In section 5.1 some examples are given in order to demonstrate how
probabilistic models are defined for specific logics, and in section 5.2 we relate non-
deterministic to stochastic interpretations by introducing probabilistic refinements.

Let P be a countable set of propositional letters which is fixed throughout; O 	= ∅
is a set of modal operators. Following [3], τ = (O, ρ) is called a modal similarity
type iff O 	= ∅, and if ρ : O → N is a map, assigning each modal operator � its
arity ρ(�) ≥ 1. We will not deal with modal operators of arity zero, since as modal
constants they do not have to be dealt with in an interpretation. The similarity type
τ will be fixed.

We define three modal languages based on τ and P . The formulas of the basic
modal language Modb(τ, P ) are given by the syntax

ϕ ::= p | � | ϕ1 ∧ ϕ2 | ¬ϕ | �(ϕ1, . . . , ϕρ(�)),
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where p ∈ P . Omitting negation defines the formulas in the negation free basic modal
language Mod1(τ, P ). Finally, the extended modal language Mods(τ, P ) is defined
through the syntax

ϕ ::= p | � | ϕ1 ∧ ϕ2 | ¬ϕ | �q(ϕ1, . . . , ϕρ(�)),

where q ∈ Q ∩ [0, 1] is a rational number, and p ∈ P is a propositional letter.
A nondeterministic τ -Kripke model R = (S,Rτ , V ) consists of a state space S, a

family Rτ = ((R�)�∈O) of set-valued maps R� : S → P
(
Sρ(�)

)
, and a set-valued

map V : P → P (S) .
The satisfaction relation for a nondeterministic τ -Kripke model R is defined as

usual for Modb(τ, P ):
(i) R, s |= p ⇔ s ∈ V (p),
(ii) R, s |= ¬ϕ ⇔ R, s 	|= ϕ,
(iii) R, s |= ϕ1 ∧ ϕ2 ⇔ R, s |= ϕ1 and R, s |= ϕ2,
(iv) R, s |= �(ϕ1, . . . , ϕρ(�)) ⇔ ∃〈s1, . . . , sρ(�)〉 ∈ R�(s) : R, si |= ϕi for 1 ≤

i ≤ ρ(�).
Denote by [[ϕ]]R := {s ∈ S|R, s |= ϕ} the set of states for which formula ϕ is

valid, and by

ThR(s) := {ϕ ∈ Modb(τ, P )|R, s |= ϕ}

the theory of state s in R.
An easy calculation shows that

R, s |= �(ϕ1, . . . , ϕρ(�)) ⇔ R�(s) ∩ [[ϕ1]]R × · · · × [[ϕρ(�)]]R 	= ∅.

In analogy, a stochastic τ -Kripke model K = (S,Kτ , V ) has a state space S
which is endowed with a σ-algebra, a family Kτ = (K�)�∈O of stochastic relations

K� : S � Sρ(�), and a set-valued map V : P → P (S) such that V (p) is always
a measurable set (we leave the σ-algebra on the state space anonymous to avoid
cluttering the notation; note that Sρ(�) carries the product σ-algebra).

The interpretation of formulas in Mods(τ, P ) for a stochastic τ -Kripke model K is
fairly straightforward, the interesting case arising when a modal operator is involved:

K, s |= �q(ϕ1, . . . , ϕρ(�))

holds iff there exists measurable subsets A1, . . . , Aρ(�) of S such that K, si |= ϕi holds
for all si ∈ Ai for 1 ≤ i ≤ ρ(�), and

K�(s)(A1 × · · · ×Aρ(�)) ≥ q.

Arguing from the point of view of state transition systems, this interpretation of
validity reflects that upon the move indicated by �q, a state s satisfies �q(ϕ1, . . . , ϕρ(�))
iff we can find states si satisfying ϕi with a K�-probability exceeding q. Note that
the usual operators � and ∇ are replaced by a whole spectrum of operators �q which
permit a finer and probabilistically more adequate notion of satisfaction (see [18]).

Again, let [[ϕ]]K be the set of all states for which ϕ ∈ Mods(τ, P ) is satisfied under
K, and

ThK(s) := {ϕ ∈ Mods(τ, P )|K, s |= ϕ}
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the state’s theory.
It turns out that the sets [[ϕ]]K are measurable, so that they may be used as

arguments for the stochastic relations we are working with.
Lemma 5.1. [[ϕ]]K is a measurable subset of S for each ϕ ∈ Mods(τ, P ).
Proof. The proof proceeds by induction on ϕ. If ϕ = p ∈ P , then [[ϕ]]K = V (p)

holds, which is measurable by assumption. Since the measurable sets are closed under
complementation and intersection, the only interesting case is again the one in which
a modal operator is involved. Since

[[�q(ϕ1, . . . , ϕρ(�))]]K = {s ∈ S|K�(s)([[ϕ1]]K × · · · × [[ϕρ(�)]]K) ≥ q},

the assertion follows from the induction hypothesis and the fact that K� is a stochastic
relation.

As in the case of stochastic relations, we need to exclude trivial cases.
Definition 5.2. A τ -Kripke model K with state space S is called degenerate iff

[[ϕ]]K = S or [[ϕ]]K = ∅ holds for each formula ϕ ∈ Mods(τ, P ).
Hence a degenerate model does not carry useful information.

5.1. Examples. We show how some popular logics may be interpreted through
Kripke models, indicating that specific logics require specific probabilistic arguments.
But first we indicate that each stochastic relation may be “trained” to interpret a
modal logic simply by interpreting the subformulas of a compound formula as stochas-
tically independent. Then we introduce the well-known logic associated with labeled
transition systems. This example is of historic significance, given the seminal work
of Larsen and Skou [18]. It is shown also how the basic temporal language may be
interpreted stochastically by reversing a relation, and arrow logic as a popular logic
modelling simple programming constructs is interpreted through a simple transfor-
mation of a distribution. The last example leaves the realm of modal logics somewhat
by tackling a logic that is used for model checking. It will be shown how a stochastic
relation generates path probabilities (through an inverse limit construction), and how
this can be made use of for a probabilistic interpretation of a simple kind of tree logic.

A stochastic relation on the state space induces a stochastic τ -Kripke model. This
is illustrated through the following example.

Example 5.1. Let K : S � S be a stochastic relation on the state space S, and
define for s ∈ S and for the modal operator �

K�(s) :=

ρ(�)⊗
i=1

K(s).

Then K� : S � Sρ(�) is a stochastic relation. If V (p) ⊆ S is a measurable subset of
S, then

KK,V := (S, (K�)�∈O, V )

is a stochastic τ -Kripke model such that

KK,V , s |= �q(ϕ1, . . . , ϕρ(�)) ⇔ K(s)([[ϕ1]]KK,V
) · · · · ·K(s)([[ϕρ(�)]]KK,V

) ≥ q.

Thus the arguments to each modal operator are stochastically independent.
Example 5.2. Suppose that L is a countable alphabet of actions. Each action

a ∈ L is associated with a unary modal operator 〈a〉, so put τ := (O, ρ) with O :=
{〈a〉| a ∈ L} and ρ(〈a〉) := 1.
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A nondeterministic τ -Kripke model is based on a labeled transition system (S,
(→a)a∈L) which associates with each action a a binary relation →a⊆ S × S. Thus

s |= 〈a〉ϕ ⇔ ∃s′ : s →a s′ ∧ s′ |= ϕ.

A stochastic τ -model is based on a labeled Markov transition system [18, 6, 9]
(S, (ka)a∈L) which associates with each action a a stochastic relation ka : S � S.
Thus

s |= 〈a〉qϕ ⇔ ka(s)([[ϕ]]) ≥ q,

and hence making a transition is replaced by a probability with which a transition
can happen.

Variants of the logic Mods(τ, P ) with P = ∅ were investigated in [18, 6] with a
reference to the logic investigated by Hennessy and Milner; we refer to them also as
Hennessy–Milner logic.

Example 5.3. The basic temporal language has two unary modal operators F
(forward) and B (backward), so that O = {F,B}. A nondeterministic τ -Kripke model
interprets the forward operator F through a relation R ⊆ S × S and the backward
operator B through the converse R	, so that

s |= Bϕ ⇔ ∃t ∈ S : 〈t, s〉 ∈ R ∧ t |= ϕ

holds.
A probabilistic interpretation interprets F through a stochastic relation K : S �

S, so that

s |= Fqϕ ⇔ K(s)([[ϕ]]) ≥ q.

The backward operator B is interpreted through the converse K	
μ : S � S, provided

the state space S is Polish and an initial probability μ is given (the converse K	
μ of

K given μ is the stochastic relation L : S � S such that∫
S

K(s)({s′|〈s, s′〉 ∈ B}) μ(ds) =

∫
S

L(s′)({s|〈s, s′〉 ∈ B}) μ(ds′)

holds for each Borel set B ⊆ S × S; see [1] for algebraic and [10] for relational and
measure-theoretic properties of the converse). Thus

s |= Bqϕ ⇔ K	
μ (s)([[ϕ]]) ≥ q.

An easy calculation shows that

s |= B1F1ϕ ⇔ K	
μ (s) ({s′| K(s′)([[ϕ]]) = 1}) = 1

⇔
∫
S

K(s′)([[ϕ]]) K	
μ (s)(ds′) = 1.

Note that the definition of the converse requires an initial probability (this is
intuitively clear: if the probability for a backward running process is described, one
has to say where to start). It is also noteworthy that a topological assumption has
been made; if the state space is not a Polish space, then the technical arguments
permitting the definition of the converse are not available.
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Example 5.4. Arrow logic has three modal operators modelling reversal, com-
position, and skip, resp.; thus O = {1,⊗, ◦} with respective arities ρ(1) = 0, ρ(⊗) =
1, ρ(◦) = 2. The usual interpretation of arrow logic is done over a world of pairs, so
the base state space is S × S for some S, with associated relations

R1 = {〈s, s〉 | s ∈ S},
R⊗ = {〈〈s0, s1〉, 〈s1, s0〉〉 | s0, s1 ∈ S},
R◦ = {〈〈s0, s1〉, 〈s0, s〉, 〈s, s1〉〉 | s, s0, s1 ∈ S}

(see [3, Example 1.27]). Thus, e.g.,

〈s, s′〉 |= φ ◦ ψ ⇔ ∃s0 : 〈s, s0〉 |= φ ∧ 〈s0, s
′〉 |= ψ

and

〈s, s′〉 |= ⊗φ ⇔ 〈s′, s〉 |= φ.

Now assume that S is a Polish space and let μ ∈ S (S) be a subprobability. Put
for A ∈ B(S × S)

μ̂(A) := μ({s ∈ S | 〈s, s〉 ∈ A}).

Thus μ̂ transports a Borel set in S to a Borel set in the diagonal of S × S. Denote by
δa the Dirac measure on a.

Interpret the composition operator ◦q through the stochastic relation

K◦(s, s
′) := δs ⊗ μ̂⊗ δs′ .

Note that the operator ⊗ is somewhat overloaded: it denotes the modal operator for
reversal, and the product operator for measures; the context should make it clear
which version is meant.

We then obtain

K◦(s, s
′)([[φ]] × [[ψ]]) = (δs ⊗ μ̂⊗ δs′) ([[φ]] × [[ψ]])

= μ̂({〈s1, s2〉 | 〈s, s1〉 ∈ [[φ]], 〈s2, s
′〉 ∈ [[ψ]]})

= μ({s1 | 〈s, s1〉 ∈ [[φ]], 〈s1, s
′〉 ∈ [[ψ]]}).

Consequently,

〈s, s′〉 |= φ ◦1 ψ ⇔ 〈s, s1〉 |= φ ∧ 〈s1, s
′〉 |= ψ for μ-almost all s1.

(Here μ-almost all s1 means as usual that the set of all s1 for which the property does
not hold has μ-measure 0.) More generally,

〈s, s′〉 |= φ ◦q ψ ⇔ 〈s, s1〉 |= φ ∧ 〈s1, s
′〉 |= ψ ∀ s1 from a Borel set S0 with μ(S0) ≥ q.

Finally, put

K⊗(s, s′) := δ〈s,s′〉;

then

〈s, s′〉 |= ⊗qφ ⇔ 〈s′, s〉 |= φ
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for all rational q with 0 ≤ q ≤ 1 (which is independent of q). Let

K1(s, s′) :=

{
0, s 	= s′,

δ〈s,s〉, s = s′

(here 0 is the null measure). Then

〈s, s′〉 |= 1 ⇔ s = s′.

Note that in general we did exclude modal constants, i.e., modal operators of arity 0,
when defining modal similarity types, since they will not contribute to the discussion.
The example shows that it is possible to include them nevertheless.

The next example will deal with a logic that is used for model checking. Since
this logic (sometimes called pCTL*) incorporates both temporal and probabilistic
properties, we leave the strict realm of modal logic.

The example requires some preparations. Fix a Polish state space S and assume
that a family (Kn)n∈N of probabilistic relations Kn : S � S is given with Kn(s)(S) =
1 for each s ∈ S, n ∈ N. Kn(s) governs the state transitions at time n when the system
is in state s ∈ S. We will have to deal with path probabilities, so let S∞ :=

∏
n∈N

S
be the set of all S-sequences, which is a Polish space in the product topology (this
is the smallest topology on S∞ which contains all sets of the form

∏
n∈N

Gn where
Gn = S for all but a finite number of n, and all Gn are open in S). Similarly, the
Borel sets B(S∞) are the smallest σ-algebra on S∞ which contains all sets of the form∏

n∈N
Bn where Bn = S for all but a finite number of n, and all Bn are Borel sets in

S; Sn denotes the n-fold product of S.
Define inductively a sequence Kn : S � Sn by setting K1 := K1, and for s ∈

S,A ⊆ Sn+1 measurable

Kn+1(s)(A) :=

∫
Sn

Kn+1(sn)({sn|〈s1, . . . , sn〉 ∈ A}) Kn(s)(d〈s1, . . . , sn〉).

Since Kn specifies probabilistically the nth state transition, Kn(s)(A) gives the prob-
ability that the sequence 〈s1, . . . sn〉 is an element of A, provided the system was
initially in state s.

It is not difficult to see that the sequence (Kn(s))n∈N forms an inverse system for
each state s ∈ S, since for the measurable subset A ⊆ Sn and for s ∈ S the equality

Kn+1(s)(A×X) = Kn(s)(A)

holds for each n ∈ N. Denote for s ∈ S by K∞(s) the inverse limit of the inverse system
(Kn(s))n∈N of probabilities; see section 2.1. Then we claim that K∞ : S � S∞ defines
a stochastic relation.

For establishing this, we have to demonstrate that for each Borel subset B ⊆ S∞

the map s �→ K∞(s)(B) is measurable. In fact, consider the set

S := {B ∈ B(S∞) | s �→ K∞(s)(B) is measurable}.

Then S is a σ-algebra which contains all sets of the form
∏

n∈N
Bn where Bn = S

for all but a finite number of n, and all Bn are Borel sets in S. This is so since by
construction

K∞(s)

(∏
n∈N

Bn

)
= Km(s)(B1 × · · · ×Bm),
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where m is an index such that Bk = S for all k > m. Thus S contains the generator
for B(S∞), and since S is comprised of Borel sets, S must equal the Borel σ-algebra
of S∞.

It may be noted that this representation is a bit simplistic in that a transition
is assumed to be possible between two arbitrary states. Actually, one constructs an
infinite tree from a relation modelling a more restricted transition graph. But this
would have only increased the technical complexity without adding to the example.

Example 5.5. Model checking is a popular technique for verifying system prop-
erties. It is used in connection with stochastic techniques for the verification of non-
functional properties in distributed systems; see, e.g., [4] where we show how the
stochastic framework in the latter paper can be encoded in the approach proposed
here. For a similar logic, see [2, 8]. An approach based on the mu-calculus is presented
in [21] and could be dealt with in a similar way (this requires dealing appropriately
with the Æ-operator discussed in that paper).

A state formula ψ is given through the syntax

ψ ::= p | � | ψ1 ∧ ψ2 | ¬ψ | [ϕ1U∼cϕ2] �� q,

where ϕ is given through

ϕ ::= p | � | ϕ1 ∧ ϕ2

(here p ∈ P, c ∈ N ∪ {0}, q ∈ Q ∩ [0, 1] , and ∼, �� are relational symbols from {<,>,
≤,≥}.

A state formula [φ1U∼cφ2] �� q can only be used on the top level and cannot
be nested. Various modal operators may be obtained as special cases, e.g., �qψ as
[�U ≥ 0ψ] ≤ q.

Validity for a state formula which does not contain the until operator is given in
the usual way, and if σ is a path, then

σ |= [ϕ1U∼cϕ2] ≥ 1 ⇔ ∃x ∼ c : (σx |= ϕ2 ∧ ∀y ∈ [0, x [ : σy |= ϕ1)

(here σk is the kth component of σ).
For modelling validity of the U-operator on paths, we assume that we are given

a stochastic relation K : S � S. Construct from K the inverse system Kn : S � Sn,
and let K∞ : S � S∞ be the stochastic relation corresponding to the inverse limit of
this system. Then we set

s |= [ϕ1U∼cϕ2] �� q ⇔ K∞(s)
(
{σ ∈ S∞ | σ1 = s ∧ σ |= [ϕ1U∼cϕ2] ≥ 1}

)
�� q.

In this way satisfaction of state formulas through the stochastic system generated
from the relation K can be modeled.

This example requires the construction of the inverse limit as a stochastic relation
that relates states to infinite sequences of states which is in addition compatible with
the transitions being done in each step.

5.2. Refinements. Given a nondeterministic and a stochastic interpretation,
we want to compare both. Intuitively, the stochastic interpretation is more precise
than its nondeterministic cousin, whereas nondeterministically we can only talk about
possibilities (we can assign weights to these possibilities using probabilities). To say
that after a certain input the output put will be a, b, or c conveys certainly less



616 ERNST-ERICH DOBERKAT

information than saying that the probabilities for these outputs will be, resp., p(a) =
1/100, p(b) = 1/50, and p(c) = 97/100.

Since negation has its own problems, we will restrict ourselves to the negation
free logic Mod1(τ, P ) and will deal with probabilistic relations (see section 2.2: the
whole space is always assigned probability one).

Definition 5.3. Let R and K be a nondeterministic and a stochastic τ -Kripke
model, resp., and assume that K�(s)(S × · · · × Sρ(�)) = 1 holds for each s ∈ S (we
will call these models probabilistic). K is said to refine R (K � R) iff

∀ϕ ∈ Mod1(τ, P ) : [[ϕ]]K ⊆ [[ϕ]]R.

Consequently, given the interpretations K and R, we have K � R if R, s |= ϕ
holds only if K, s |= ϕ is true for each formula ϕ in the negation free part of the logic.

We will investigate here the relationship between nondeterministic and stochas-
tic satisfaction by showing that for each stochastic interpretation K we can find a
nondeterministic one R with K � R by simply taking all possible state changes and
making it into a Kripke model. Conversely, we will look into the possibility of refining
a given nondeterministic Kripke model into a stochastic model. This requires some
topological assumptions (for otherwise the notion of all possible states cannot be made
precise). Thus from now on the state space S is a Polish space with its Borel sets as
σ-algebra.

The set of all states possible for a probability μ on a Polish space X is captured
through the support of a probability μ: Define supp(μ) as the smallest closed subset
F ⊆ X such that μ(F ) = 1; thus

supp(μ) =
⋂

{F ⊆ X|F is closed and μ(F ) = 1}.

It can be shown that μ(supp(μ)) = 1, and x ∈ supp(μ) iff μ(U) > 0 for each neigh-
borhood U of x; this is exactly what we want.

Proposition 5.4. Let K = (S, (K�)�∈O , V ) be a probabilistic τ -Kripke model.
Define for the modal operator � ∈ O the set-valued map

RK
�(s) := supp(K�(s)).

Put

RK :=
(
S,

(
RK

�
)
�∈O

, V
)

;

then K is a probabilistic refinement of RK.
Proof. The proof proceeds by induction on the structure of the formulas. Assume

that � is a modal operator and that we know that

[[ϕi]]K ⊆ [[ϕi]]RK

for 1 ≤ i ≤ ρ(�). Now suppose

RK
�, s 	|= �1(ϕ1, . . . , ϕρ(�))

for some state s. Thus

RK
�(s) ∩ [[ϕ1]]RK × · · · × [[ϕρ(�)]]RK = ∅,
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and, consequently, by the hypothesis,

RK
�(s) ∩ [[ϕ1]]R × · · · × [[ϕρ(�)]]R = ∅.

But this means

K�(s)([[ϕ1]]R × · · · × [[ϕρ(�)]]R) < 1;

hence

K, s 	|= �1(ϕ1, . . . , ϕρ(�)).

Thus each probabilistic Kripke model carries a nondeterministic one with it, and it
refines this companion (one is tempted to perceive this as a nondeterministic shadow :
a shadow as a coarser, black-and-white image of a probably more colorful, picturesque,
and graphic original).

It will be shown now that the converse of Proposition 5.4 is also true: Given a
nondeterministic Kripke model, there exists a stochastic one refining it. Intuitively,
and in the finite case, one simply assigns a uniform weight as a probability to all
possible outcomes. This is basically what we will do here, too, but we have to be
a bit more careful since in an uncountable setting this idea requires some additional
underpinning.

It is immediate that the support yields a measurable relation for a probabilistic
relation K : Y � Z: put

RK := {〈y, z〉 ∈ Y × Z|z ∈ supp(K(y))}.

Then

(∀RK)(F ) = {y ∈ Y |K(y)(F ) = 1}

is true for the closed set F ⊆ Z, and

(∃RK)(G) = {y ∈ Y |K(y)(G) > 0}

holds for the open set G ⊆ Z. Both sets are measurable.
It is also plain that a representation of R through a stochastic relation K which

is given by

(∗) ∀y ∈ Y : R(y) = supp(K(y))

implies that R has to be a measurable relation.
Given a set-valued relation R, a probabilistic relation K with (∗) can be found.

For this, R has to take closed values, and a condition of measurability is imposed.
We obtain from [10] the following existential statement (which depends on the ex-
istence of a sufficient number of measurable selectors for a measurable relation; see
Proposition 2.1).

Lemma 5.5. Let R ⊆ Y ×Z be a measurable relation for Z Polish. There exists a
probabilistic relation K : Y � Z such that R(y) = supp(K(y)) holds for each y ∈ Y .

Thus we can find a probabilistic Kripke structure refining a given nondeterministic
one, provided we impose a measurability condition.

Proposition 5.6. Suppose R := (S, (R�)�∈O, V ) is a nondeterministic τ -
Kripke model such that
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1. V (p) ∈ B(S) for all p ∈ P ,
2. R� is a measurable relation on S × Sρ(�) for each � ∈ O.

Then there exists a probabilistic τ -Kripke model K = (S, (K�)�∈O , V ) with K � R.

Proof. Applying Lemma 5.5, find for each modal operator � ∈ O a transition
probability K� : S � Sρ(�) such that

∀s ∈ S : R�(s) = supp(K�(s))

holds. The argumentation in the proof of Lemma 5.4 establishes the claim.

It is clear that the probabilistic τ -Kripke model is underspecified by merely re-
quiring to be a refinement to a nondeterministic one. This is supported through the
following corollary.

Corollary 5.7. Let R be a nondeterministic τ -Kripke model satisfying the
conditions of Proposition 5.6. Assume that Ki = (S, (K�,i)�∈O , V ) is a probabilistic

τ -Kripke model with Ki � R for each i ∈ N. Let (αi)i∈N be a sequence of positive real
numbers such that

∑
i∈N

αi = 1, and define for � ∈ O the stochastic relation

K�(s) :=
∑
i∈N

αi ·K�,i(s).

Then (
S, (K�)�∈O , V

)
� R.

Proof. 1. Let (μi)i∈N be a sequence of probability measures. Since all αi are
positive, the definition of the support function yields that

supp

(∑
i∈N

αi · μi

)
=

(⋃
i∈N

supp(μi)

)cl

holds, (·)cl denoting topological closure. Thus R� equals supp(K�).

2. The assertion now follows from Proposition 5.6.

Thus we know not only that a probabilistic τ -Kripke model is the refinement of
a probabilistic one, but also that refinements offer a considerable degree of freedom,
because they are closed under countable convex combinations (in fact, it can also be
shown that it is closed under integration as the generalization of convex combinations).
This supports the intuitive feeling that a probabilistic model conveys much more
information than a nondeterministic one, but that it is also much harder to obtain.

6. Bisimulations for Kripke models. This section investigates morphisms
for stochastic τ -Kripke models; we want to know whether bisimilarity and mutually
identical theories are equivalent also for this general case. To this end we first discuss
morphisms that are based on morphisms for stochastic relations (after all, a τ -Kripke
model contains a family of stochastic relations), indicate that this notion of morphism
is not adequate for our purposes, and propose the notion of a strong morphism. We
show that strong morphisms are suitable for our purposes.

Fix the modal similarity type τ = (O, ρ) again. Assume first that the set P
of propositional letters is empty, rendering the initial discussion a bit less technical.
Then a stochastic τ -Kripke model K := (S, (K�)�∈O) is determined through the
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Polish state space S and the family K� : S � Sρ(�) of stochastic relations. A
morphism

Φ : (S, (K�)�∈O) →
(
S′, (K ′

�)�∈O

)
for stochastic τ -Kripke models is then a family

Φ = ((φ�, ψ�)�∈O)

of morphisms

(φ�, ψ�) : (S, Sρ(�),K�) → (S′, (S′)ρ(�),K ′
�)

for the associated relations.

Consider a modal operator �. The σ-algebra A� generated by

{[[ϕ1]]K × · · · × [[ϕρ(�)]]K| ϕ1, . . . , ϕρ(�) ∈ Mods(τ, P )}

is evidently countably generated, thus giving rise to a smooth equivalence relation β�
on Sρ(�), and the relation

sα�s′ ⇔ ∀B ∈ A� : K�(s)(B) = K�(s′)(B)

is smooth due to A� being countably generated. Consequently, (α�, β�) is a con-
gruence for K� : S � Sρ(�), and if K is nondegenerate, this congruence is nontrivial.

Let K′ = (S′, (K ′
�)�∈O) be another τ -Kripke model which is equivalent to the

first one in the sense that for the states the corresponding theories mutually coincide;
the following definition will be more precise.

Definition 6.1. The stochastic τ -Kripke models K and K′ are said to be equiv-
alent (K ∼ K′) iff given s ∈ S there exists s′ ∈ S′ such that ThK(s) = ThK′(s′) and
vice versa.

Assume both K and K′ are nondegenerate. Construct for K′ the congruence
(α′

�, β′
�) for each modal operator � as above; then it can be shown that K ∼ K′

implies that the congruences (α�, β�) and (α′
�, β′

�) are equivalent. From Proposi-
tion 4.5 we see that K� and K ′

� are bisimilar for each modal operator�, so that
there exists a span of morphisms

(S, Sρ(�),K�) �(φ�, ψ�)
(A�, B�,M�)

(φ′
�, ψ′

�)
� (S′, (S′)ρ(�),K ′

�).

This is rather satisfying from the point of view of stochastic relations, but not
when considering stochastic τ -Kripke models. This is so since in general ((A�, B�,
M�)�∈O) fails to be such a model because there is no way to guarantee that all A�
coincide with, say, a Polish space T , and so that B� equals T ρ(�).

Consequently, we have to strengthen the requirements for a morphism in order to
achieve some uniformity. This will be done now, and we admit propositional letters
again.

The basic idea is to have just one map φ between the state spaces so that

K ′
�(φ(s))(A) = K�(s)({〈s1, . . . , sρ(�)〉|〈φ(s1), . . . , φ(sρ(�))〉 ∈ A}
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holds for each state s ∈ S and each Borel set A ⊆ (S′)ρ(�), making the diagram

S
φ � S′

S

(
Sρ(�)

)
K�

�

S
(
φρ(�)

)� S

(
(S′)ρ(�)

)
K ′

�
�

commutative (where φn : 〈x1, . . . , xn〉 �→ 〈φ(x1), . . . , φ(xn)〉 distributes φ into the
components), and we want to have s ∈ V (p) iff φ(s) ∈ V ′(p) for each propositional
letter. This leads to the following definition.

Definition 6.2. Let K := (S, (K�)�∈O, V ) and K′ := (S′, (K ′
�)�∈O, V

′) be
stochastic τ -Kripke models. A strong morphism φ : K → K′ is determined through a
measurable and surjective map φ : S → S′ so that these conditions are satisfied:

1. ∀p ∈ P : V (p) = φ−1 [V ′(p)] ,
2. for each modal operator �,

K ′
� ◦ φ = S

(
φρ(�)

)
◦K�

holds.
Thus, if φ : K → K′ is a strong morphism, then

(φ, φρ(�)) : (S, Sρ(�),K�) → (S′, (S′)ρ(�),K ′
�)

is a morphism between the corresponding stochastic relations for each modal operator
� ∈ O. Note that we also take the propositional letters into account.

It is clear that stochastic τ -Kripke models over general measurable spaces form a
category pKripke with this notion of morphism, because the composition of strong
morphisms is again a strong morphism, and because the identity is a strong morphism,
too. Furthermore, each modal operator � induces a functor F� : pKripke → Stoch
which forgets all but K�. We will below make (rather informal) use of this functor.

Because we work on the safe grounds of a category, we have bisimulations at our
disposal, which can be defined again as spans of strong morphisms.

Definition 6.3. The stochastic τ -Kripke models K1 and K2 are called strongly
bisimilar iff

1. there exist a mediating stochastic τ -Kripke model M and strong morphisms

K1
� φ1 M φ2 � K2,

2. the σ-algebra

φ−1
1 [B(S1)] ∩ φ−1

2 [B(S2)]

is nontrivial (here Si is the state space of Ki, i = 1, 2).
Since the product σ-algebra is the smallest σ-algebra which contains all the mea-

surable rectangles, it is not difficult to see that

φ−1
1 [B(S1)] ∩ φ−1

2 [B(S2)]



CONGRUENCES AND BISIMULATIONS FOR STOCHASTIC RELATIONS 621

is nontrivial iff for each modal operator � ∈ O the σ-algebra

ρ(�)⊗
i=1

φ−1
1 [B(S1)] ∩

ρ(�)⊗
i=1

φ−1
2 [B(S2)]

is nontrivial. Thus condition 2 in Definition 6.3 will imply that this notion of bisimi-
larity is compatible to the one used for stochastic relations in general.

We will show that K ∼ K′ iff K and K′ are strongly bisimilar, provided the models
are based on Polish spaces. Fix the stochastic τ -Kripke models K := (S, (K�)�∈O, V )
and K′ := (S′, (K ′

�)�∈O, V
′).

It is well known that morphisms preserve theories for the Hennessy–Milner logic [6].
This is also true for stochastic relations.

Lemma 6.4. If φ : K → K′ is a strong morphism, then

ThK(s) = ThK′(φ(s))

holds for all states s ∈ S.
Proof. 1. We show by induction on the formula ϕ ∈ Mods(τ, P ) that

K, s |= ϕ ⇔ K′, φ(s) |= ϕ

holds; putting it slightly differently, we want to show that

(∗) [[ϕ]]K = [[ϕ]]K′

for all these ϕ.
2. If ϕ = p ∈ P , this follows from V (p) = φ−1 [V ′(p)]. The interesting case in

the induction step is the application of an n-ary modal operator �q with rational q.
Suppose the assertion is true for [[ϕ1]]K, . . . , [[ϕn]]K; then

K, s |= �q(ϕ1, . . . , ϕn) ⇔ K�(s)([[ϕ1]]K × · · · × [[ϕn]]K) ≥ q

⇔ K�(s)((φn)−1 [[[ϕ1]]K′ × · · · × [[ϕn]]K′ ]) ≥ q (†)
⇔ (S (φn) ◦K�) (s)([[ϕ1]]K′ × · · · × [[ϕn]]K′) ≥ q

⇔ K ′
�(φ(s))([[ϕ1]]K′ × · · · × [[ϕn]]K′) ≥ q (‡)

⇔ K′, φ(s) |= �q(ϕ1, . . . , ϕn).

In (†) we use reformulation (∗) for the induction hypothesis, and in (‡) we make use
of the defining equation of a (strong) morphism.

Define the equivalence relation α on state space S through

s1 α s2 ⇔ ThK(s1) = ThK(s2);

thus two states are α-equivalent iff they satisfy exactly the same formulas in Mods(τ, P );
in a similar way α′ is defined on S′. Because we have at most countably many for-
mulas, α and α′ are smooth equivalence relations. Define the equivalence relation β�
on Sρ(�) through

〈s1, . . . , sρ(�)〉 β� 〈t1, . . . , tρ(�)〉 ⇔ s1 α t1 ∧ · · · ∧ sρ(�) α tρ(�);

then β� is smooth, and we know that the σ-algebra of β-invariant sets can be written

in terms of the α-invariant sets, viz., INV
(
B(Sρ(�)), β�

)
=

⊗ρ(�)
i=1 INV (B(S), α)

(see Lemma 3.3). The relation β′
� is defined in the same way for α′.
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The equivalence of K and K′ makes these relations into equivalent congruences.
Lemma 6.5. If K ∼ K′ for the nondegenerate Kripke models K and K′, then

(α, β�) and (α′, β′
�) are equivalent and nontrivial congruences on the stochastic rela-

tions F�(K) and F�(K′).
Proof. 1. The equivalence relations involved are all smooth, so it first has to be

demonstrated that each pair indeed forms a congruence. Assume that s1αs2 holds;
then

K�(s1)([[ϕ1]]K × · · · × [[ϕρ(�)]]K) = K�(s2)([[ϕ1]]K × · · · × [[ϕρ(�)]]K)

follows (otherwise we could find a rational number q with K, s1 |= �q(ϕ1, . . . , ϕρ(�))
but K, s2 	|= �q(ϕ1, . . . , ϕρ(�)) or vice versa). Because

B0 := {[[ϕ1]]K × · · · × [[ϕρ(�)]]K|ϕ1, . . . , ϕρ(�) ∈ Mods(τ, P )}

forms a generator for INV
(
B(Sρ(�)), β�

)
, we see that (α, β�) is a congruence for

F�(K). The same arguments show that also (α′, β′
�) is a congruence for F�(K′).

2. A0 := {[[ϕ]]K|ϕ ∈ Mods(τ, P )} is a countable generator of the σ-algebra
INV (B(S), α), and since the logic is closed under conjunction, A0 is closed under fi-
nite intersections. Given s ∈ S there exists s′ ∈ S′ such that ThK(s) = ThK′(s′) holds;
define Υ([s]α) := [s′]α′ , and then Υ : S/α → S′/α′ is well defined, and Υ[[ϕ]]K = [[ϕ]]K′

holds. Consequently, {ΥA|A ∈ A0} generates INV (B(S′), α′), and the construction
implies that ⋂

{ΥA|s ∈ A ∈ A0} ∩
⋂

{S′ \ ΥA|s 	∈ A ∈ A0} = [s′]α′ .

Hence α spawns α′ via (Υ,A0).
3. The construction of β� implies that[

〈s1, . . . , sρ(�)〉
]
β�

= [s1]α × · · · ×
[
sρ(�)

]
α

holds. An argument very similar to that used above shows that β� spawns β′
� via

(Θ,B0), where

Θ :
[
〈s1, . . . , sρ(�)〉

]
β�

�→ Υ([s1]α) × · · · × Υ(
[
sρ(�)

]
α
),

and B0 is defined above.
4. An argumentation very close to the first part of the proof shows that ThK(s) =

ThK′(s′) for s ∈ S, s′ ∈ S′ implies for all formulas ϕ1, . . . , ϕρ(�) that

K�(s)([[ϕ1]]K × · · · × [[ϕρ(�)]]K) = K ′
�(s′)([[ϕ1]]K′ × · · · × [[ϕρ(�)]]K′)

(see part 2 of the proof of Lemma 6.4). Thus (α, β�) ∝ (α′, β′
�), and in the same

way, interchanging the roles of K and K′, we infer (α′, β′
�) ∝ (α, β�).

5. Because K is nondegenerate, the σ-algebra

INV (B(S), α) = σ({[[ϕ]]K | ϕ ∈ Mods(τ, P )})

is nontrivial. Because

INV
(
B(Sρ(�)), β�

)
=

ρ(�)⊗
i=1

INV (B(S), α) ,
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we see that INV
(
B(Sρ(�)), β�

)
contains a set of the form Bρ(�) for some B with

∅ 	= B 	= S. Thus we may conclude that β� is not the universal relation. Thus
(α, β�) is a nontrivial congruence. Replacing K by K′, this is also established for the
congruence (α′, β′

�). This completes the proof.
Accordingly, we know from Proposition 4.5 that for equivalent Kripke models K

and K′ and for each modal operator � the stochastic relations F�(K) and F�(K′)
are bisimilar. All the mediating relations can be collected to form a mediating Kripke
model. This requires, however, that we have introductory knowledge of the internal
structure of the semipullback which is constructed along the way, as we will see now
in the proof of the following main result, the Hennessy–Milner theorem for stochastic
τ -Kripke models.

Theorem 6.6. Assume that K and K′ are nondegenerate stochastic τ -Kripke
models over Polish spaces; then the following statements are equivalent:

1. K and K′ are strongly bisimilar,
2. K ∼ K′.

Proof. 1. Since “1 ⇒ 2” follows from Lemma 6.4, we may concentrate on the
proof for “2 ⇒ 1.”

2. Since K ∼ K′, we know from Lemma 6.5 that the congruences (α, β�) and
(α′, β′

�) are equivalent for each modal operator �. Let M� = (M�, N�, L�) be the
mediating stochastic relation, which exists by Proposition 4.5. Theorem 2.2 shows
that (n := ρ(�))

M� = {〈s, s′〉 ∈ S × S′| 〈s (α + α′) s′〉},
N� = {〈s1, s

′
1, . . . , sn, s

′
n〉 ∈ (S × S′)

n | si (α + α′) s′i for 1 ≤ i ≤ n}.

These may be made into Polish spaces. Note that S′′ := M� does not depend at all
on the modal operator, and that N� depends only on its arity. Furthermore, we may
infer for the P − Stoch-morphisms

F�(K) �f� M�
f′�� F�(K′)

that

f� = (π1,S , π
n
1,S), f′� = (π2,S′ , πn

2,S′)

holds, where the π denote the projections. Now define for the propositional letter
p ∈ P

W (p) := {〈s, s′〉 ∈ M�| s ∈ V (p), s′ ∈ V ′(p)}.

Then it is immediate that the equations W (p) = π−1
1 [V (p)] = π−1

2 [V ′(p)] hold.
Consequently, M := (S′′, (L�)�∈O,W ) is a stochastic τ -Kripke model with

K � π1,S M
π2,S′� K′

in pKripke.
3. Finally, we need to show that the σ-algebra π−1

1,S [B(S)] ∩ π−1
2,S′ [B(S′)] is non-

trivial. This is essentially the same argument as the one used in the third part of
the proof of Proposition 4.5. Since K is nondegenerate, we can find a formula ϕ with
∅ 	= [[ϕ]]K 	= S. The set [[ϕ]]K is an α-invariant Borel subset of S. We know from
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the proof of Lemma 6.5 that α spawns α′ via (Υ, {[[ϕ]]K | φ ∈ Mods(τ, P )}) for some
suitably chosen Υ. Thus

π−1
1,S [[[ϕ]]K] = π−1

2,S′

[
Υ[[ϕ]]K

]
.

Consequently, we see that

π−1
1,S [[[ϕ]]K] ∈ π−1

1,S [B(S)] ∩ π−1
2,S′ [B(S′)] .

Since ∅ 	= [[ϕ]]K 	= S we conclude that ∅ 	= π−1
1,S [[[ϕ]]K] 	= M�, and hence the σ-algebra

in question is indeed not trivial.
Looking back at the development, it may be noted that Theorem 6.6 is derived

from Proposition 4.5, hence from a condition that arose from the consideration of
stochastic relations alone. This is in marked contrast to the proofs proposed in [6,
9] which start from the logic and develop the properties of equivalent congruences
implicitly.

7. Related work. The investigation of congruences and their relationship to
bisimilarity is new. Factoring stochastic relations has been introduced and studied
in [11]. Special cases were considered in [6] and in [9] mainly in the realm of labeled
Markov transition systems.

The research reported in [6] takes as a basic scenario an analytic state space and
considers universally measurable transition functions. A Hennessy–Milner theorem is
proved; the proof’s idea is to produce a cospan of morphisms through injections into
a suitably factored sum. This idea has left its traces in various parts of the present
paper. But the situation considered here is structurally subtly different: universal
measurability, as assumed in [6], requires a somewhat elaborate completion process
using all finite measures on that space. The present paper requires as a measurable
structure merely the Borel sets of an analytic space. They are structurally much
simpler and do not need additional considerations, since they are given through the
morphisms of measurable spaces and nothing else (so one could work with them even
if one would want to do without the real numbers). This more general approach
has become possible through the observation that semipullbacks exist on analytic
spaces with their Borel sets (a result that was not yet available for [6]). Desharnais
and Panangaden [8] use an interplay between bisimulations (which are called here
congruences) for showing that the logic continuous time stochastic logic which is
discussed in [2] for model checking has also a property similar to the one discussed in
Theorem 6.6: two states in a Markov process for the language satisfy the same formula
from a given closed set F of formulas iff they are F -bisimilar [8, Theorem 6.3]. This
is proved directly, without the benefit of a general criterion for bisimilarity.

In [9] a generalization of [6] is established for those labeled Markov transition
systems which work over a Polish (rather than an analytic) state space and which
have a certain smallness property. Technically, this property makes sure that the
factor space is well behaved again. This technical condition is lifted in the present
paper. This is so since general analytic spaces are considered, and the technique of
factoring stochastic relations is better understood. Apart from a much wider class of
modal logics which can be dealt with now (as witnessed in section 5.1), the present
paper proposes a more general technical approach.

A stochastic relation S � S may be considered as a coalgebra for the subprob-
ability functor S on the category of analytic spaces; hence there are some ties to
coalgebras. In [20] the probability functor P is considered on measurable spaces
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that are endowed with the initial σ-algebra for the evaluation mapping μ �→ μ(E).
Given a discrete space I, final coalgebras for a functor derived from P yielding a type
space over category MeasI are discussed, where Meas is the category of measurable
spaces with measurable maps as morphisms. Besides establishing the existence of a
final coalgebra for the functor through satisfied theories, the main result states that
functors polynomial in the original type functor have final coalgebras, too. In [5] coal-
gebraic simulation is considered, and one of the application areas for the discussion is
probabilistic transition systems. They are modeled as coalgebras for the functor that
assigns each set its discrete probability measures.

8. Conclusion and further work. The main technical result of this paper is
the characterization of bisimilarity through suitable congruences, and through isomor-
phic factors. It bears fruit in establishing a Hennessy–Milner theorem for stochastic
interpretations of modal logic. This paper proposes these contributions.

1. The notion of equivalent congruences is introduced and studied. Stochastic
relations having equivalent congruences are shown to be bisimilar. As a corollary it
is shown that isomorphic factors imply bisimilarity, too. It is shown that bisimilar
relations also have isomorphic factor spaces, but this depends on a rather strong
topological condition. We conjecture that the existence of isomorphic factor spaces
and bisimilarity are equivalent for generic analytic spaces.

2. Stochastic Kripke models are introduced as a generalization of the well-known
labeled Markov transition systems for general modal logics. A refinement relation
between these models and their nondeterministic counterparts is investigated.

3. For stochastic Kripke models we propose the notion of a strong morphism,
and, correspondingly, of strong bisimulations. A stochastic version of the Hennessy–
Milner theorem of the equivalence of bisimilarity and mutually identical theories is
established.

Examples show how some popular logics are interpreted through a stochastic
Kripke model, and this opens the avenue for further research. It should be interesting
to see how other modal logics are interpreted. A prime candidate is propositional
dynamic logic (PDL) with its rich interaction among the modal operators that would
have to be reflected in a suitable structure for the stochastic relations interpreting
it. Investigating the interrelationship among a probabilistic interpretation, Kozen’s
semantics of probabilistic programs [16], and probabilistic predicate transformers [19]
is expected to give new insights into PDL as well as probabilistic program semantics
and, incidentally, the algebraic properties of stochastic relations.

As the work in [2, 8] witnesses, that there are interesting links among stochastic
relations, Markov processes, and model checking. It will be most helpful for model
checking, and for a better understanding of probabilistic processes, to study this link
closely.

Acknowledgments. The author appreciates and wants to thank the referees for
providing insightful comments and suggestions which helped improve the paper.
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Abstract. We initiate an investigation of sublinear algorithms for geometric problems in two
and three dimensions. We give optimal algorithms for intersection detection of convex polygons and
polyhedra, point location in two-dimensional triangulations and Voronoi diagrams, and ray shooting
in convex polyhedra, all of which run in expected time O(

√
n ), where n is the size of the input. We

also provide sublinear solutions for the approximate evaluation of the volume of a convex polytope
and the length of the shortest path between two points on the boundary.
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1. Introduction. As an outgrowth of the recent work on property testing, the
study of sublinear algorithms has emerged as a field unto itself, and great strides have
been made in the context of graph and combinatorial problems [30]. Large geometric
datasets often call for algorithms that examine only a small fraction of the input,
but it is fair to say that sublinear computational geometry is still largely uncharted
territory. If preprocessing is allowed, then, of course, this is an entirely different
story [3, 23]. For example, checking whether a point lies in a convex 3-polyhedron
can be done in logarithmic time with linear preprocessing. However, little of this
technology is of any use with massive datasets, since examining the whole input—
let alone preprocessing it—is out of the question. Sublinear algorithms have been
given for dynamic problems [17] or in situations where a full multidimensional data
structure is available [10]. There has also been work on geometric property testing,
both in an approximate [11, 12, 18] and exact [24] setting.

In this paper, sublinearity is understood differently. The input is taken to be in
any standard representation with no extra assumptions. For example, a planar subdi-
vision or a polyhedron is given in classical edge-based fashion (e.g., doubly connected
edge list (DCEL), winged-edge), with no extra preprocessing. This implies that we can
pick an edge at random in constant time, but we cannot sample randomly among the
neighbors of a given vertex in constant time. Our motivation is twofold: (i) we seek
the minimal set of computational assumptions under which sublinearity is achievable;
(ii) the assumptions should be realistic and nonrestrictive. Note, for example, that
sublinear separation algorithms for convex objects are known [6, 15], but all of them
require preprocessing, so they fall outside our model. Under these conditions one
might ask whether there exist any interesting “offline” problems that can be solved
in sublinear time. The answer is yes. Note that randomization is a necessity be-
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cause, in a deterministic setting, most problems in computational geometry require
looking at the entire input. There has been some (but little) previous work on sub-
linear geometric algorithms as we define them, specifically point location in two- and
three-dimensional Delaunay triangulations of sets of random points [14, 27]. As far
as we know, however, these are the only works that fall inside our model. Here is a
summary of our results. In all cases, n denotes the input size, and all polyhedra are
understood to be in R3:

• an optimal O(
√
n ) time algorithm for checking whether two convex polyhedra

intersect, reporting an intersection point if they do and a separating plane if
they do not;

• optimal O(
√
n ) time algorithms for point location in planar convex subdivi-

sions with O(1) maximum face size and two-dimensional Voronoi diagrams,
finding the nearest neighbor on a convex polyhedron, and ray shooting-type
problems in convex polyhedra.

In contrast with property testing, it is important to note that our algorithms never
err. All the algorithms are of Las Vegas type, and randomization affects the running
time but not the correctness of the output.1 Devroye, Mücke, and Zhu [14] showed
that a simple technique for point location in two-dimensional Delaunay triangulations,
namely random sampling then walking from the nearest sample to the query, has
expected running time (roughly) O(n1/3) for n random input points and a random
query. This does not contradict the optimality of our O(n1/2) bound because the
points must be chosen randomly in [14].

We also consider optimization problems for which approximate solutions are
sought. We give

• an O(ε−1
√
n ) time algorithm for approximating the volume of a convex poly-

tope with arbitrary relative error ε > 0;
• an O(ε−5/4

√
n ) + f(ε−5/4) time algorithm for approximating the length of

the shortest path between two points on the boundary of a convex polyhedron
with arbitrary relative error ε > 0. Here, f(n) denotes the complexity of the
exact version of problem. This implies that the complexity of our algorithm
is O(

√
n ) for any fixed ε > 0.

The shortest path problem for polyhedral surfaces has been extensively stud-
ied, drawing its motivation from applications in route planning, injection molding,
and computer assisted surgery [1, 21, 26]. In the convex case (the one at hand),
an O(n3 log n) algorithm was given by Sharir and Schorr [32], later improved by
Mitchell, Mount, and Papadimitriou [25] to O(n2 log n) and by Chen and Han [7] to
O(n2); therefore, it is known that f(n) = O(n2). More recently, Kapoor [22] has
announced a proof that f(n) = O(n log2 n), which would make our algorithm run in
time O(ε−5/4

√
n ). This improves on Agarwal et al.’s algorithm [2], which runs in

O(n log ε−1 + ε−3) time for any ε > 0.
Our method makes progress on an important geometric problem of independent

interest.
• Given a convex polytope P of n vertices, how many vertices must an enclosing

polytope Q have if it is to approximate any (large enough) shortest path on
∂P with relative error at most ε? We reduce to O(ε−5/4) the best previous
bound of O(ε−3/2), due to Agarwal et al. [2].

1Throughout this paper, unless specified otherwise, the running times are understood in the
expected sense.
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A Flavor of the Techniques. As a warmup exercise, consider the classical successor
searching problem: Given a sorted (doubly linked) list of n keys and a number x, find
the smallest key y ≥ x (the successor of x) in the list or report that none exists. It
is well known that this smallest key can be found in O(

√
n) expected time [19]. For

this, we choose
√
n list elements at random and find the predecessor and successor

of x among those. (Perhaps only one exists.) This provides an entry point into the
list, from which a naive search takes us to the successor. To make random sampling
possible, we may assume that the list elements are stored in consecutive locations
(say, in a table). However—and this is the key point—no assumption is made on the
ordering of the elements in the table. (Otherwise we could do a binary search.)

Lemma 1.1. Successor searching can be done in O(
√
n ) expected time per query,

which is optimal.

Proof. For i ≥ 1, let Qi be the set of all elements that are at distance at
most i away from the answer on the list (in either direction). Let P>i be the
probability of not hitting Qi after

√
n random choices of the list elements. The

expected distance of the answer to its nearest neighbor in the random sample is∑
i≥1 i(P>i−1 −P>i) =

∑
i≥0 P>i. This sum is upper bounded by

√
n
∑

c≥0 P>c
√
n ≤

√
n
∑

c≥0(1 − c/
√
n)

√
n =

√
n
∑

c≥0 2−Ω(c) = O(
√
n). This immediately implies that

the expected time of the algorithm is O(
√
n ).

For the lower bound, we use Yao’s minimax principle [33]. We fix a distribution
on the input, and we lower-bound the expected complexity of any deterministic algo-
rithm. We then have the same lower bound for randomized algorithms. The input is a
linked list containing the numbers 1 through n in sorted order. In our model, the list
is represented by a table T [1 · · ·n], with the ith element in the list stored in location
σ(i) of the table; hence, T [σ(i)] = i. The input distribution is formed by choosing the
permutation σ uniformly from the symmetric group on n elements. In other words,
all permutations are equally likely. The query is set to be n. In other words, the
problem is to locate the last element in the list. A deterministic algorithm can be
modeled as a sequence of steps of the following form: (A) pick a location T [k] already
visited and look up the next (or previous) item, i.e., T [σ(i± 1)], where k = σ(i); (B)
compute a new index k and look up T [k]. Each step may involve the consideration of
every piece of information gathered so far. In particular, in a B-step we may not con-
sult either one of the adjacent items in the list before computing k (unless, of course,
these items were visited earlier). In this way, σ−1(k) of a B-step is equally likely to
lie anywhere in the portion of the list still unvisited. For this reason, after a A-steps

and b B-steps, there is a probability at least
(
1 −

√
n+a+b
n

)b
that none of the last

√
n

elements in the list has been visited in a B-step. Right after the last B-step, either the
total number of A- and B-steps exceeds

√
n or, with constant nonzero probability, at

least
√
n A-steps (some of which may have already been taken) are required to reach

the last element in the list. This immediately implies that the expected time of any
deterministic algorithm is Ω(

√
n ).

We can generalize these ideas to polygon intersection. Given two convex polygons
P and Q, with n vertices each, determine whether they intersect or not and, if they
do, report one point in the intersection. We assume that P and Q are given by their
doubly linked lists of vertices (or edges) such that each vertex points to its predecessor
and successor in clockwise order. As in successor searching, we assume that the two
lists are stored in two tables to allow random sampling.

Choose a random sample of r vertices from each polygon, and let Rp ⊆ P and
Rq ⊆ Q denote the two corresponding convex hulls. By two-dimensional linear pro-
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Fig. 1. Intersecting two convex polygons.

gramming, we can test Rp and Rq for intersection without computing them explicitly.
This can be done probabilistically (or even deterministically) in linear time. There
are many ways of doing that (see [5] for references). It is easy to modify the algorithm
(of, say, [31]) so that in O(r) time it reports a point in the intersection of Rp and Rq

if there is one (in which case we are done) and a bitangent separating line L otherwise
(Figure 1). Let p be the vertex of Rp in L, and let p1, p2 be its two adjacent vertices
in P . We define a polygon Cp as follows. If neither p1 nor p2 is on the Rq side of L,
then Cp is the empty polygon. Otherwise, by convexity exactly one of them is (say,
p1). We walk along the boundary of P starting at p1, away from p, until we cross L
again. This portion of the boundary, clipped by the line L, forms the convex polygon
Cp. A similar construction for Q leads to Cq.

It is immediate that P ∩ Q �= ∅ if and only if P intersects Cq or Q intersects
Cp. We check the first condition and, if it fails, check the second one. We restrict
our explanation to the case of P ∩ Cq. First, we check whether Rp and Cq intersect,
again using a linear time algorithm for a linear program (LP), and return with an
intersection point if they do. Otherwise, we find a line L′ that separates Rp and
Cq and, using the same procedure as described above, we compute the part of P ,
denoted C ′

p, on the Cq side of L′. Finally, we test C ′
p and Cq for intersection in time

linear on their sizes, using an LP or any other straightforward linear-time algorithm
for intersection detection of convex polygons. Correctness is immediate. The running
time is O(r + |Cp| + |C ′

p| + |Cq| + |C ′
q|). We can prove that E |Cp| = O(n/r). (The

three-dimensional case discussed below will subsume this result, so there is no need for
a proof now.) Similarly, E |C ′

p| = E |Cq| = E |C ′
q| = O(n/r). The overall complexity

of the algorithm is O(r + n/r), and choosing r = 	
√
n 
 gives the desired bound of

O(
√
n ).

To show optimality, consider the following distributions on pairs of polygons. One
polygon is fixed, convex, and nondegenerate with one vertex in the origin and all other
vertices below the x-axis. The other polygon (also convex and nondegenerate) has
n−1 vertices above the x-axis, and one vertex, p, in the origin or in (0, δ), where δ is a
positive number small enough so that p is the lowest vertex of the polygon. Moreover,
the edges of this polygon are randomly ordered in the edge table. Clearly, these two
polygons intersect if and only if p is in the origin. Since nothing in the structure of the
input except the geometry of p reveals whether it is indeed the origin, any algorithm
that detects intersection must have access to p. Now recall that the only operations
allowed are the random sampling of edges and edge-traversing via links, which means
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that, as in Lemma 1.1, an expected time of Ω(
√
n) is needed to access p. Optimality

of subsequent results follows these lines very closely and shall not be proved again.
We have the following.

Theorem 1.2. To check whether two convex n-gons intersect can be done in
O(

√
n ) time, which is optimal.
To put Theorem 1.2 in perspective, recall that the intersection of two convex

polygons can be determined in logarithmic time if the vertices are stored in an array
in cyclic order [6]. The key point of our result is that, in fact, a linked list is sufficient
for sublinearity. Similarly, if polyhedra are preprocessed à la Dobkin and Kirkpatrick,
then fast intersection detection is possible [15]. What we show below is that sublinear-
ity is achievable even with no preprocessing at all. Again, we use a two-stage process:
In the first stage we break up the problem into r subproblems of size roughly n/r and
then identify which ones actually need to be solved; in the second stage we solve these
subproblems in standard (i.e., nonsublinear) fashion. Their number is constant, and
hence the square root complexity. What prevents us from solving these subproblems
recursively is the model’s restriction to global random sampling. In other words, one
can sample efficiently for the main problem but not for the subproblems.

2. Convex polyhedral intersections. Given two n-vertex convex polyhedra
P and Q in R3, the problem is to determine whether or not they intersect: If they
do, then we should report a point in the intersection; otherwise, we should report
a plane that separates them. We assume that a convex polyhedron is given in any
classical edge-based fashion (e.g., DCEL, winged-edge) but with no extra preprocess-
ing. The main structure is a table of edges that allows us to pick an edge at random
in constant time. There are also two tables for vertices and faces. Moreover, these
tables are interconnected via pointers to make various local operations possible. For
example, each edge points to its two vertices and two adjacent faces. It also points
to its predecessor and successor edges in its two adjacent faces. Such a structure is
a standard representation for convex polyhedra in computational geometry. It allows
us to traverse a portion of a convex polyhedron in a local fashion and in time linear
in the number of edges visited.

Choose a random sample of r = 	
√
n 
 edges from P and Q, and let Rp and Rq

denote the convex hulls of these random edges in P and Q, respectively. We do not
compute Rp and Rq explicitly but merely use their vertices to get an LP as described
in the last section for the case of polygons. We use this LP to detect the intersection
of Rp and Rq in O(r) time by invoking a linear-time algorithm for low-dimensional
linear programming. We stop with a point of intersection if there is one. Otherwise,
we find a separating plane L that is tangent to both Rp and Rq. It is important to
choose the plane L in a canonical fashion. To do that, we set up the LP so as to
maximize, say, the coefficient α in the equation2 αx + βy + γz = 1 of L.

Next, choose a plane π normal to L and consider projecting P and Q onto it. (Of
course, we do not actually do it.) Let p be a vertex of Rp in L (there could be two
of them, but not more, if we assume general position between P and Q), and let p∗

be its projection onto π. We also project the neighbors of p in P onto π and get
p∗1,p

∗
2, . . ., p∗k. In other words, they are the set of vertices adjacent to p∗ in the

projection of P onto π. We test to see if any of them is on the Rq side of L and
identify one such point, p1, if the answer is yes (more on that below). If none of them

2With perturbation techniques, we can always assume general position, and hence avoid having
a solution passing through the origin. We will also assume that the relative position of P and Q is
general.
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Fig. 2. The edges of P incident to p; the thick lines form the random sample.

is on the Rq side, then we define Cp to be the empty polyhedron. This is because
in this case, P is completely on the other side of L. Otherwise, we construct the
portion of P , denoted Cp, that lies on the Rq side of L. Note that Cp is a convex
polytope, not just the boundary of P cut off by L. We compute Cp by using a standard
flooding mechanism. Beginning at p1, we perform a depth-first search through the
facial structure of P , restricted to the relevant side of L. Because Cp is convex,
the edges form a single connected component, so we never need to leave Cp. This
allows us to build the entire facial representation of Cp in time proportional to its
number of edges. From then on, the algorithm has the same structure as its polygonal
counterpart; i.e., we compute Cp, C

′
p, Cq, C

′
q and perform the same sequence of tests.

The question is now, How do we find p1 (if it exists)? To simplify the analysis,
once we have p, we resample by picking r edges in P at random; let E be the subset
of those incident to p. To find p1, we project on π all of the edges of E. If there
exists an edge of E that is on the Rq side of L, then we identify its endpoint as p1.
Otherwise, all the edges of E lie on one side of L. We then identify the two extreme
ones (e and f in Figure 2); being extreme means that all the other projected edges
of E lie in the wedge between e and f in π. Assume that e and f are well defined
and distinct. Consider the cyclic list V of edges of P incident to p. The edges of E
break up V into blocks of consecutive edges. It is not hard to prove that pp1 lies in
a block starting or ending with e or f if such a p1 (as defined above) exists. So, we
examine each of these relevant blocks (at most four) exhaustively. If e and f are not
both distinct and well defined, we may simply search for p1 by checking every edge of
P incident to p.

Theorem 2.1. Two convex n-vertex polyhedra in R3 can be tested for intersection
in O(

√
n ) time; this is optimal.

Proof. Optimality was already discussed in the polygonal case, and correctness
follows from elementary convex geometry, so we limit our discussion to the complexity
of the algorithm. Because of the resampling, the expected sizes of the blocks next to
e and f (or, alternatively, the expected size of the neighborhood of p if the blocks are
not distinct) are O(n/r), so the running time is O(r + n/r + E (|Cp| + |Cq|)), where
|Cp| (resp., |Cq|) denotes the number of edges of Cp (resp., Cq). We may exclude the
other two terms |C ′

p| and |C ′
q|, since our upper bound on E (|Cp|+ |Cq|) will apply to

them as well. Here is how to bound E (|Cp| + |Cq|) by O(n/r).

We modify the sampling distribution a little. Then we argue that reverting back
to the original setting does not change the asymptotic value of the upper bound. The
modification is twofold: (i) we view P∪Q as a multiset M where each vertex appears as
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many times as its number of incident edges; (ii) Rp and Rq are formed by picking each
point of M independently with probability r/n and assigning points of P to Rp and
points of Q to Rq. With respect to the modified distribution, |Cp|+|Cq| is proportional
to the number of constraints in M that violate the LP P(Rp, Rq) used to define L
(with each point of Rp and Rq defining a linear constraint). For technical reasons, we
need to perturb M slightly to make it in general position. Specifically, we move each
point of M away from its corresponding vertex in P or Q by an infinitesimal random
amount, along the corresponding edge of P or Q. After this random perturbation,
the size of the violation set of P(Rp, Rq) can only increase. To see this, note that
constraints in M that violate P(Rp, Rq) before the perturbation continue to do so
because the perturbation is infinitesimal; and constraints in M that lie on L before
the perturbation may violate the LP after the perturbation.

To bound the expected size of the violation set, we apply a result proved by
Gärtner and Welzl [19] (and also by Clarkson [9]). Following the notation of the
“Sampling Lemma” in [19], we let the ground set S be the (perturbed) set M . After
sampling a set of points R from M randomly, we set up an LP αx+βy+ γz = 1 that
separates Rp and Rq. Note that in this LP, α, β, and γ are variables and (x, y, z) is
a point in R. This LP is set up so as to maximize the variable α, whose optimum
value is a function of R. We set the function φ in [19] to be α. Under this setting, the
extreme elements of Rp and Rq are their vertices on the optimum separating plane
(as implied by the above LP). Since M is in general position, any Rp and Rq have
three extreme elements. The Sampling Lemma in [19] then implies that the expected
size of the violation set is at most 3(n− r)/(r + 1) = O(n/r).

Let D be the original distribution (the one used by the actual algorithm) with r
replaced by 13r. Of course, this scaling has no asymptotic effect on the upper bound
for E (|Cp|+ |Cq|). We define an intermediate distribution D1 by going through each
edge (u, v) of P ∪Q twice, selecting it with probability r/n, and then throwing into the
sample both u and v, provided that the edge (u, v) has not yet been selected. (Note
that this implies that u and v are kept out with probability (1− r/n)2.) There are at
most 6n edges in P and Q, so the probability that a sample from D1 is of size less than
13r is overwhelmingly high. Since all equal-size subsets of edges are equally likely to be
chosen, ED (|Cp|+|Cq|) is nonincreasing with the sample size, and so ED (|Cp|+|Cq|) =
O(ED1 (|Cp|+|Cq|)). Let D2 denote the modified distribution used in the calculations.
Observe that D2 is derived from D1 by picking only u if (u, v) is chosen the first time
it is considered for selection and then only v if it is picked the second time around.
By monotonicity, we then have ED1

(|Cp|+ |Cq|) = O(ED2
(|Cp|+ |Cq|)). This proves

that the O(n/r) bound holds in the original distribution used by the algorithm.

Recall that the running time is O(r + n/r + E (|Cp|+ |Cq|)), which is O(r + n/r)
by the above analysis. For r = 	

√
n 
 it is O(

√
n).

When the two convex polyhedra intersect, the algorithm reports a point in the
intersection. On the other hand, when they are disjoint, we can report a plane that
separates them. Here is a brief description on how to do that. Note that we cannot
simply return a separating plane for Cp and C ′

q (or C ′
p and Cq) because it is not

necessarily separating for P and Q. Instead, we resort to geometric duality to compute
the desired plane in expected O(

√
n) time. In a standard geometric duality transform,

a vertex in the primal space is mapped to a plane in the dual space and vice versa.
Moreover, the upper (resp., lower) hull of a convex polyhedron is transformed to a
lower (resp., upper) envelope [13]. When P and Q are disjoint, at least one of the
following must be true: (1) there exists a plane above the upper hull of P and below
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the lower hull of Q; (2) there exists a plane below the lower hull of P and above the
upper hull of Q. Since they are symmetric, it suffices to consider the first one. By
duality, such a plane dualizes to a point in the common intersection of an upper and
a lower envelope, which is itself a convex polyhedron. Although this polyhedron is
not available explicitly, we have access to its geometric features (vertices, edges, etc.)
in constant time via the corresponding features in the primal space. Hence we can
apply the above algorithm to find, in O(

√
n) time, an intersection point which is the

dual of a separating plane for P and Q.

It is important to note that an alternative to the above approach can be found in a
general scheme to solve the constant-dimensional LP in linear time due to Clarkson [9].
Clarkson suggested a randomized algorithm that finds a set of constraints of expected
size O(

√
n) (or, in general, O(d

√
n), where d is the dimension) that contains a “basis,”

that is, a minimal set of constraints that determines the problem. Our approach is
somewhat similar to that schema. Of course, there are details to be filled as to how
exactly this set may be computed in time O(

√
n). (Clarkson’s algorithm as it is

would be a linear time algorithm.) In particular, an O(
√
n)-time method of finding

the violating subpolyhedron (like the one we proposed) must still be used in order to
implement the alternative approach of Clarkson efficiently enough.

3. Ray shooting applications. Given a convex polyhedron P with n vertices
and a directed line � in R3, the ray shooting problem asks for the point on (the
boundary of) P hit by � if it exists. We apply essentially the same techniques as in
convex polyhedral intersection to ray shooting and solve it in expected O(

√
n) time.

Choose a random sample of 	
√
n 
 edges from P , and let Rp denote the convex hull

of these edges. We first use an LP to detect intersection of Rp and � in time O(
√
n).

There are two cases. If Rp and � do not intersect, we get a plane L that separates them
and passes through a vertex q of Rp. Starting from q we construct the intersection
Cp of P with the halfspace bounded by L that contains �. We already explained
how to do that in the previous section. Finally, we solve ray shooting for Cp and �.
Now suppose that Rp and � intersect. We first find the point p on Rp hit by � in
time O(

√
n). We cannot afford to compute an explicit representation of Rp in time

Ω(
√
n log n). To find p we again use an LP. We can assume that � is the positive x-axis

by rotating the coordinate system. Of course, we do not rotate the whole polytope P .
Instead, we maintain such a rotation transform implicitly. In other words, whenever
we need a geometric feature (vertex, edge, etc.) of P after the rotation, we compute
it from its corresponding feature on the original input in constant time. Finding p
is equivalent to finding a plane L such that (1) all vertices of Rp are on one side
of L (the side that contains (+∞, 0, 0)); (2) the intersection point of L with the x-
axis has its x-coordinate as large as possible. In fact, p is that intersection point.
It is straightforward to formulate this problem as a three-dimensional LP and solve
it in time O(

√
n). In particular, to ensure (2) above we minimize the coefficient α

in the equation αx + βy + γz = 1 for L. Once we have L and p, we construct Cp

as before and solve the problem for Cp and �. Essentially the same analysis as the
proof of Theorem 2.1 shows that the expected size of Cp is O(

√
n). We thus have the

following.

Theorem 3.1. Given a convex polyhedron with n vertices and a directed line, we
can compute their intersection explicitly in optimal O(

√
n ) time.

This sublinear time algorithm for ray shooting towards a convex polyhedron gives
us useful ammunition for all sorts of location problems.

Given the Delaunay triangulation T of a set S of n points in the plane and a
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query point q, consider the problem of locating q, i.e., retrieving the triangle of T
that contains it. The Delaunay triangulation can be given in any classical edge-based
data structure (e.g., DCEL), as long as it supports O(1) time access to a triangle from
a neighboring triangle. We use the close relationship between Delaunay triangulations
and convex hulls given by the mapping h : (x, y) → (x, y, x2 + y2). As is well known,
the Delaunay triangulation of S is facially isomorphic to the lower hull of h(S) (i.e.,
the part of the convex hull that sees z = −∞). In this way, point location in T is
equivalent to ray shooting towards the convex hull, where the ray originates from the
query point q and shoots in the positive z-direction. Obviously, any facial feature of
the convex hull can be retrieved in constant time from its corresponding feature in
the Delaunay triangulation. (The one exception is the set of faces outside the lower
hull: we can simplify matters by adding a dummy vertex to the hull at z = ∞.)

The same argument can be used for point location in Voronoi diagrams. Recall
that each point (px, py) is now lifted to the plane Z = 2pxX+2pyY − (p2

x+p2
y), which

is tangent to the paraboloid Z = X2 +Y 2. The Voronoi diagram of S is isomorphic to
the lower envelope of the arrangement formed by the n tangent planes. Note that any
vertex (resp., edge) of the envelope can be derived in constant time from the three
(resp., two) faces incident to the corresponding vertex (resp., edge).

Theorem 3.2. Point location in the Delaunay triangulation or Voronoi diagram
of n points in the plane can be done in optimal O(

√
n ) time.

Observe that algorithms for computing a Delaunay triangulation or a Voronoi
diagram often supply an efficient point location data structure as a by-product, and
thus sublinear time point location in Delaunay triangulations or Voronoi diagrams
may be of lesser interest. However, our algorithm is still useful when the triangula-
tion/diagram is huge and we cannot afford to store it together with the point location
structure. Our algorithm for point location in Delaunay triangulations also has its
limitations: It works only because of the known correspondence between a Delaunay
triangulation and a special convex polyhedron. It cannot perform point location in ar-
bitrary planar triangulations. In the next section, we use a different method to achieve
sublinear time point location in arbitrary triangulations or convex subdivisions with
O(1) maximum face size.

We consider the following problem, which will arise in our subsequent discussion
of volume approximation and shortest path algorithms. Given a convex polyhedron P
with n vertices and a point q, let nP (q) denote the (unique) point of P that is closest
to q. Of course, we can assume that q does not lie inside P , which we can test by using
the previous algorithm. To compute nP (q) we extract a sample polyhedron Rp of size√
n (as we did before) and find nRp

(q). Since we just have a collection of vertices
of Rp instead of its full facial representation, it is not obvious how to find nRp(q)
in time O(

√
n). For this purpose, we express this problem as an LP-type problem

and solve it using the method in [5] (see Chapter 8). A reformulation of the problem
would be to seek the plane L that separates q from the vertices of Rp and maximizes
the distance from q to it. To apply the method in [5], we view each vertex of Rp

as a constraint. We also check that all the assumptions (i.e., monotonicity, locality,
violation test, and range space oracle) needed to solve this problem efficiently hold.
See [5] for details. Thus we get L in time O(

√
n): it is tangent to Rp at nRp

(q) and
normal to the segment qnRp

(q). Next, we compute the intersection Cp of P with the
halfspace bounded by L that contains q. Again, a similar analysis shows that the
expected size of Cp is O(

√
n). Obviously, nP (q) = nCp(q), so we can finish the work

by exhaustive search in Cp.
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Theorem 3.3. Given a convex polyhedron P with n vertices and a point q, the
nearest neighbor of q in P can be found in O(

√
n ) time.

We can compute a related function by similar means. Given a directed line �,
consider an orthogonal system of coordinates with � as one of its axes (in the positive
direction), and define ξP (�) to be any point of P with maximum �-coordinate. If we
choose a point q at infinity on �, then ξP (�) can be chosen as nP (q), and so we can
apply Theorem 3.3.

Another function we can compute in this fashion maps a plane L and a direction �
in L to the furthest point of P in L along �: in other words, ξP (L, �) = ξP∩L(�). Again,
the nonobvious part is computing ξRp(L, �) in time O(

√
n) for a sample polytope Rp.

As in the case of ray shooting, we can assume without loss of generality that L is the
xy-plane and � is the positive x-direction. Finding ξRp

(L, �) is the same as finding a
plane L′ such that (1) all vertices of Rp are on one side of L′ (the side that contains
(−∞, 0, 0)); (2) L′ is parallel to the y-axis; (3) the intersection point of L′ with
the x-axis has its x-coordinate as small as possible. We solve this problem in time
O(

√
n) by formulating it as a three-dimensional LP. Other parts of the algorithm

(e.g., constructing Cp) and its analysis are similar to other problems discussed in this
section. We summarize our results.

Theorem 3.4. Given a convex polyhedron P with n vertices, a directed line �,
and a plane π, the points ξP (�) and ξP (π, �) can be found in O(

√
n ) time.

4. Point location in convex subdivisions. Given a convex planar subdivision
S with n edges and a query point q, the point location problem asks for the face of S
that contains q. In the previous section, we provided an O(

√
n)-time point location

algorithm where S is a Delaunay triangulation or a Voronoi diagram. Devroye, Mücke,
and Zhu [14] also showed that a simple “walk-through” technique locates a query point
in the Delaunay triangulation of n random points in the plane in expected (roughly)
O(n1/3) time. Here we show that a slight variation of the walk-through technique
actually locates a query point in any planar triangulation (not necessarily Delaunay or
formed by random points) in expected O(

√
n) time, which is optimal. Our algorithm

generalizes to planar subdivisions with O(1) maximum face size. We also give a simple
argument showing an Ω(n) lower bound for point location in subdivisions with large
faces.

Theorem 4.1. Point location in an n-edge convex planar subdivision with O(1)
maximum face size can be done in optimal O(

√
n ) time.

Proof. First, we consider the case of a triangulation. For an edge e in the tri-
angulation and a query point q, we use qe to denote the nearest neighbor of q on e.
It is natural to define the Euclidean distance between q and e as |qqe|. We start by
sampling

√
n edges of the triangulation at random. Let e be the edge in the random

sample that has the smallest Euclidean distance to q. We walk from qe toward3 q by
traversing all triangles crossed by qqe one by one. Given any edge-based representa-
tion of the triangulation (such as DCEL), it takes constant time to traverse from one
triangle to the next. We stop at the triangle that contains q and output it as the
answer.

The running time (besides the sampling stage) is proportional to the number
of triangles crossed by qqe. Thus it suffices to show that the expected number of

3It is important to walk towards q from its nearest neighbor on the nearest edge. In contrast,
previous algorithms [27] either walk from an endpoint (or the midpoint) of the nearest edge or
sample by vertices and walk from the nearest sample vertex. These algorithms do not have sublinear
expected running time for arbitrary triangulations.
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triangulation edges crossed by qqe is O(
√
n). For this, we rank each edge according

to its Euclidean distance to q. Since the rank of every edge crossed by qqe is smaller
than that of e, the number of edges crossed by qqe is at most the rank of e. The
claimed time bound then follows from the fact that the smallest rank of

√
n random

edges has expectation O(
√
n). It is straightforward to generalize this algorithm to

planar subdivisions with O(1) maximum face size.
What if the subdivision has large faces: Is sublinear time point location still

possible? The answer is no.
Theorem 4.2. There exists an n-edge planar subdivision such that any random-

ized algorithm for point location in this subdivision has expected running time Ω(n).
Proof. Consider the following problem first: We are given a doubly linked list of

numbers. We know exactly one of them is nonzero and want to find out that special
number. We can use an argument similar to the proof of Lemma 1.1 to show that any
randomized algorithm has to spend Ω(n) expected time on this problem. Returning
to point location, consider a rectangle with corners (−1, 0), (−1, n + 1), (1, 0), and
(1, n+1). By breaking its two vertical sides into n+1 unit length segments, we get a
face with 2n+ 4 edges. Finally, we pick an integer i from 1 to n and add a horizontal
edge from (−1, i) to (1, i). This gives us a two-face subdivision. Given the query
point (0, (n + 1)/2), a deterministic algorithm must find the horizontal edge in the
middle to locate the query correctly, and the only way to do that is through a visit
to one of its four adjacent edges. This is similar in spirit to the list-checking problem
considered above. In other words, in both problems we try to find one of O(1) special
elements in a list4 of size Θ(n). We thus get the same lower bound of Ω(n).

5. Volume approximation. We seek to approximate the volume of a convex
polytope P . We proceed in two stages. First, we compute a large enough enclosed
ellipsoid, which we use to rescale P affinely. This is intended to make P round enough
so that good Hausdorff distance approximation yields good volume approximation.
Second, we use a standard construction of Dudley [16] to find, via the methods of
the previous section, an enclosing polytope of O(1/ε) vertices whose boundary is at
Hausdorff distance at most ε from P .

Stage 1. We begin by computing, in O(
√
n ) time, a polytope P ′ ⊆ P , such that

vol (P ′) ≥ c0 vol (P ) for some constant c0 > 0. Compute the six points ξP (�) for
� = ±x, ±y, ±z. These points come in pairs, so let w1, w2 be the pair forming the
largest distance. Given a point w on the line L passing through w1 and w2, let Pw

denote the intersection of P with the plane through w that is orthogonal to L. Let
w0 be the midpoint of w1w2 (Figure 3). We first show that if S is a set of points in
Pw0

such that

area (conv (S)) ≥ c1 area (Pw0)(1)

for some constant c1 > 0, then vol (conv (S ∪ {w1, w2})) ≥ c2vol (P ) for some other
constant c2 > 0. Therefore, we can take P ′ = conv (S ∪ {w1, w2}) to achieve our
goal. Indeed, assume we have such a set S. As a straightforward consequence of
Pythagorean theorem, we find that diam (P ) ≤

√
3 d(w1, w2); therefore, the orthogo-

nal projection of P on L is a segment v1v2 ⊇ w1w2 of length at most
√

3 d(w1, w2).
This implies that, for any w in L, area (Pw) ≤ 12 area (Pw0). To see why, observe that
if, say, w ∈ v1w0, then, by convexity, Pw is enclosed in the cone with apex w2 and base

4In the point location problem there are two lists of vertical edges instead of one. This requires
only a small modification of the argument.
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Fig. 3. Approximating P from within.

Pw0 . Therefore, Pw lies in a copy of Pw0 scaled by at most d(w,w2)/d(w0, w2) ≤ 2
√

3,
which proves our claimed upper bound on area (Pw). Of course, the same argument
can be repeated if w ∈ w0v2. Since vol (P ) =

∫ v2

v1
area (Pw) dw, we can conclude that

the four quantities

vol (P ), vol (conv (Pw0
∪ {v1, v2})),

vol (conv (Pw0
∪ {w1, w2})), vol (conv (S ∪ {w1, w2}))

are all equal up to within constant factors.
We now show how to find a set S satisfying (1). We essentially repeat in two

dimensions what we did so far in three dimensions. Specifically, we take a, b to be two
mutually orthogonal vectors both normal to L, and let π be the plane spanned by a
and b. We compute the four points (two pairs) ξP (π, �) for � = a,−a, b,−b. Let y1, y2

be the more distant pair (analogous to w1, w2 before). Let y0 be the midpoint of y1, y2,
and let segment �y0

be the intersection of P with the line in π orthogonal to y1y2. We
can find the two endpoints z1, z2 of �y0

using ray shooting. Using almost the same
argument as the one showing that conv (Pw0 ∪ {w1, w2}) has a volume proportional
to vol (P ), we get that the quadrilateral with vertex set S = {y1, y2, z1, z2} has an
area proportional to area (Pw0

), and thus satisfies (1). We comment that a similar
approach to the one we described above was used by Barequet and Har-Peled [4]. The
difference is that they approximate the volume of a convex polytope from outside by
a bounding box, whereas we approximate it from within.

Let E be the largest ellipsoid enclosed in P ′ = conv ({y1, y2, z1, z2, w1, w2}), also
known as the Löwner–John ellipsoid. It is computable in constant time within any
fixed relative error by solving a constant-size quadratic program [20]. As is well
known, its volume is at least (1/dim)2 times that of the enclosing polytope; therefore,

vol (E) ≥ 1

9
vol (P ′) ≥ c · vol (P )

for some constant c > 0. Make the center of the ellipsoid the origin of the system of
coordinates and use the ellipsoid’s positive semidefinite matrix to rescale P . To do
that, we consider the linear transformation that takes the ellipsoid into a ball of the
same volume. Specifically, if xTATAx ≤ 1 is the equation of the ellipsoid, then we
consider the transformation T = A/(detA). The polytope TP has the same volume
as P , but it is round; namely, it contains a ball B of volume Ω(vol (TP )). Thus, we
might as well assume that P has this property to begin with. Note that P is also
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enclosed in a concentric ball B′ that differs from B by only a constant-factor scaling.
(If not, then TP would contain a point p so far away from B that the convex hull
of p and B, although contained in P , would have volume much larger than vol (B),
and hence vol (P ), which would give a contradiction.) Finally, by rescaling we can
also assume that P is enclosed in the unit ball and its volume is bounded below by a
positive constant. By Theorems 3.1 and 3.4, all of the work in Stage 1 can be done
in O(

√
n ) time.

Stage 2. We implement Dudley’s construction [16] of a convex polytope Q such
that (i) Q ⊇ P ; (ii) Q ⊂ Pε, where Pε is the Minkowski sum of P with a ball of
radius ε; (iii) Q has O(1/ε) vertices. Dudley’s result was used constructively in [2].
The difference here is that our implementation is sublinear. We compute an

√
ε-net

on the unit sphere,5 and project this net down to ∂P , using the nearest neighbor
function nP as a projection map. Finally, we form Q as the intersection of the
O(1/ε) halfspaces bounded by the appropriate tangent planes passing through the
vertices of the projected net. With suitable use of the nearest neighbor algorithm
of Theorem 3.3, we can implement the entire construction in time O(ε−1

√
n ) for

the projection construction (since the facial representations of P and TP are the
same, the algorithm can use TP as though it had its full facial representation at its
disposal) and O(ε−1 log ε−1) for intersecting the halfspaces needed to form Q. Since
we can obviously assume that Q does not have more vertices than P , there is no need
for ε to be smaller than, say, 1/n2. This implies that the entire construction time
is dominated by O(ε−1

√
n ). (In fact, we can further reduce this running time to

roughly O(ε−1/2
√
n ) by exploiting the fact that the O(ε−1 ) nearest neighbor queries

can be answered in a more efficient batch mode. Similarly, we can also get a slight
improvement on the running time in Theorem 6.2.)

We now show that vol (Q) = (1 + O(ε))vol (P ). Recall that P is “sandwiched”
between two concentric balls B and B′ such that rad (B′) = 1 and rad (B) = Ω(1).
We may assume that B and B′ are centered at the origin. Since Q ⊂ Pε, we have
vol (Q−P ) ≤ vol (Pε −P ) ≤ area (Pε) · 2ε ≤ area (B1+2ε) · 2ε = O(ε), where B1+2ε

is a ball centered at the origin with radius 1 + 2ε. The upper bound on vol (Pε − P )
is obtained by integration over thin shells of increasing area from ∂P to ∂Pε. Since
vol (P ) = Ω(1), we then have vol (Q) = (1 + O(ε))vol (P ).

Theorem 5.1. Given any ε > 0, it is possible to approximate the volume of an
n-vertex convex polytope with arbitrary relative error ε > 0 in time O(ε−1

√
n ).

6. Approximate shortest paths. Given a convex polyhedron P with n vertices
and two points s and t on its boundary ∂P , the problem is to find the shortest
path between s and t outside the interior of P . It is well known that the shortest
path lies on the boundary ∂P . In fact, it is easy to construct instances where any
reasonable approximation of the shortest path on ∂P involves Ω(n) edges. This rules
out sublinear algorithms, unless we are willing to follow paths outside of P . We show
how to compute a path between s and t whose length exceeds the minimum by a
factor of at most 1 + ε for any ε > 0.

Our algorithm relies on a new result of independent interest. Let dP (s, t) denote
the length of the shortest path between s and t in ∂P . Given a point v ∈ ∂P , let Hv

be the supporting plane of P at v (or any such plane if v is a vertex), and let H+
v

denote the halfspace bounded by Hv that contains P . Given ε > 0, we say that a

5This is a collection of O(ε−1) points on the sphere such that any spherical cap of radius
√
ε

contains at least one of the points.
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convex polytope Q is an ε-wrapper of P if (c0 is an absolute constant discussed below)
(i) Q encloses P ;
(ii) the Hausdorff distance between ∂P and ∂Q is at most ε diam (P );
(iii) given any s, t ∈ ∂P such that dP (s, t) ≥ c0 diam (P ), d

Q̂
(s, t) ≤ (1+ε)dP (s, t),

where Q̂ = Q ∩H+
s ∩H+

t .
Lemma 6.1. Any convex 3-polytope has an ε-wrapper of size O(1/ε)5/4 for any

ε > 0.
This result improves on the O(1/ε)3/2 bound of Agarwal et al. [2]. The use

of a wrapper is self-evident. First, we clip the polytope to ensure that dP (s, t) ≥
c0 diam (P ) (section 6.1). Next, we compute an ε-wrapper (section 6.2) and approx-
imate the shortest path between s and t by computing the shortest path between
the two points in ∂Q̂. This can be done in quadratic time by using an algorithm by
Chen and Han [7]. The resulting path, which is of length (1 + O(ε))dP (s, t), can be
shortened to (1+ ε)dP (s, t) by rescaling ε suitably. Note that in (iii) the condition on
s and t being sufficiently far apart is essential. It is a simple exercise to show that no
variant of a wrapper can accommodate all pairs (s, t) simultaneously. If f(n) denotes
the complexity of the exact version of problem, then we have the following.

Theorem 6.2. Given any ε > 0 and two points s, t on the boundary of a convex
polytope P of n vertices, it is possible to find a path between s and t outside P of
length at most (1 + ε)dP (s, t) in time O(ε−5/4

√
n ) + f(ε−5/4).

We refer the reader back to the introduction for a discussion of the implication
of this result in view of the state-of-the-art on the function f(n).

6.1. Computing short paths. Given two points s, t ∈ ∂P , our first task is
to ensure that dP (s, t) ≥ c0 diam (P ) for some constant c0 > 0. To do this, we
first compute a value δ such that δ ≤ dP (s, t) ≤ 8δ. We will substitute for P the
intersection P ′ of P with a clipping box centered at s of side length 16δ. Obviously,
the shortest paths between s and t relative to P and P ′ are identical. The only
computational primitive we need is the nearest neighbor function of Theorem 3.3.
Note that we need only this function relative to P (not to P ′). In fact, we first use
this function to compute a few sample points on ∂P (see section 6.2). We then discard
sample points that are outside of the clipping box. The remaining points together
with the clipping box are used to compute an ε-wrapper of P ′.

To compute a constant-factor approximation for dP (s, t), we adapt an algorithm
of Har-Peled [21] to our sublinear setting. All that is needed is an implementation
of the following primitive: Given two rays r1, r2 from a fixed point p ∈ P , let H be
the plane spanned by these two rays, and let C denote the two-dimensional cone in
H wedged between r1 and r2. Given an additional query ray r ∈ H (not necessarily
emanating from p), we need to compute ξC∩P (H, r). By Theorem 3.4, this can be
done in O(

√
n ) time.

6.2. The ε-wrapper construction. Assuming without loss of generality that
diam (P ) = 1, it suffices to prove the following.

Theorem 6.3. Given any ε > 0 and a convex polytope P of n vertices with
diameter 1, there exists a convex polytope Q with O(ε−5/4) vertices such that (i)
Q ⊇ P ; (ii) the Hausdorff distance between ∂P and ∂Q is O(ε); and (iii) given any
s, t ∈ ∂P such that dP (s, t) ≥ c0 for some constant c0, dQ̂(s, t) ≤ (1 + O(ε))dP (s, t),

where Q̂ = Q ∩H+
s ∩H+

t .
We first show how to construct Q. Let S be a sphere of radius 2 centered at

some arbitrary point in P . Draw a grid G of longitudes and latitudes on S, so that
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each cell is of length
√
ε by

√
ε (with an exception made for the last latitude and

longitude if
√
ε does not divide π). All lengths in this discussion are Euclidean, except

in this case where the length of a circular arc refers to its corresponding angle. We
choose a parameter λ = ε3/4 and subdivide each side of a cell into subarcs of length
λ (Figure 4). In this way each cell has O(

√
ε/λ) vertices, and the whole construction

defines a set V of O(1/λ
√
ε ) vertices. For each point v ∈ V , we compute nP (v), its

nearest neighbor in ∂P , and define

Q =
⋂

{H+
nP (v) | v ∈ V }.(2)

It is immediate from our choice of λ that Q has O(ε−5/4) vertices.6 Every point of the
sphere S has at least one vertex of G at distance O(

√
ε ). By a result of Dudley [16],

this implies part (ii) of Theorem 6.3. Since (i) is obvious, it remains for us to prove
(iii).

Borrowing terminology from Agarwal et al. [2], we say that a pair (σ,H) forms a
supported path of P if σ = p1,q1,p2,q2,. . ., qm−1,pm is a polygonal line disjoint from
the interior of P and H = Hp1 , . . . , Hpm is a sequence of supporting planes of P , such
that qi−1pi and piqi both lie in Hpi , with q0 = p1 and qm = pm (Figure 5). For
0 < i < m, the folding angle αi at qi is the dihedral angle of the wedge between Hpi

and Hpi+1 (the one that does not contain P ). The folding angle of σ is defined as
α(σ) =

∑
0<i<m αi.

Lemma 6.4 (Agarwal et al. [2]). Given s, t ∈ ∂P , there exists a supported path
σ of P with O(1/ε) edges, joining s and t, such that

dP (s, t) ≤ |σ| ≤ (1 + ε)dP (s, t) and α(σ) = O(ε−1/2).

6To be precise, we actually want to compute an ε-wrapper for P ′ instead of P . For this, we need
to remove from the point set V all vertices whose nearest neighbors in ∂P fall outside of the clipping
box in section 6.1. We also need to clip Q by that box. We omit these minor details.
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To help build intuition for the remainder of our discussion, it is useful to sketch
the proof of the lemma. Mapping the grid G to P via the nearest neighbor function nP

creates a grid nP (G) on ∂P (with curved, possibly degenerate edges). It is convenient
to think of P as a smooth manifold by infinitesimally rounding the vertices and edges.
It does not much matter how we do that, as long as the end result endows each point
p ∈ ∂P with an (outward) unit normal vector ηp that is a continuous function of p.
Note that in this way, for any u ∈ S, the vectors unP (u) and ηnP (u) are collinear,
and the function nP is a bijection. The fundamental property of the nearest neighbor
function is that it is nonexpansive. We need only a weak version of that fact, which
follows directly from Lemmas 4.3 and 4.4 in [16].

Lemma 6.5 (Dudley [16]). Given two points p, q ∈ ∂P , |pq| and � (ηp, ηq) are
both in O( |n−1

P (p)n−1
P (q)| ).

This implies that, for any two points p, q ∈ ∂P in the same cell of the mapped grid
nP (G), both |pq| and � (ηp, ηq) are in O(

√
ε ). We shortcut the shortest path on ∂P

from s to t to form a supported path σ that passes through each cell at most once. In
this manner, we identify O(1/ε) points p1, . . . , pm on ∂P , where pi (resp., pi+1) is the
entry (resp., exit) point of the path through the ith cell in the sequence. The points
pi lie on the edges of nP (G). There are two exceptions, p1 = s and pm = t, which
might lie in the interior of the cell. Next, we connect each pair (pi, pi+1) by taking
the shortest path on Hpi

∪Hpi+1
. The path intersects Hpi

∩Hpi+1
at a point denoted

qi. (Note that qi might be infinitesimally close to pi.) This forms a supported path
σ with O(1/ε) vertices s = p1, q1, p2, q2, . . . , qm−1, pm = t. The only real difference
from the proof in [2] is that we skip the final “trimming” step and keep the points pi
unchanged. We mention two useful, immediate consequences of Lemma 6.5.

• The folding angle at qi is O(
√
ε ).

• For each 1 ≤ i ≤ m, the point pi belongs to ∂P and, for i �= 1,m, there exists
a point wi = nP (vi), where vi ∈ V , such that both |piwi| and � (ηpi , ηwi) are
in O(λ).

From σ we build a curve σ′ of length (1 + O(ε))|σ| that joins s and t outside the

interior of Q̂. The classical result below shows that the shortest path on ∂Q̂ from s
to t cannot be longer than σ′, which proves Theorem 6.3.

Theorem 6.6 (Pogorelov [29]). Given a convex body C, let γ be a curve joining
two points s, t ∈ ∂C outside the interior of C. Then the length of γ is at least that of
the shortest path joining s and t on ∂C.

We now explain how to construct σ′. For 0 < i < m, let (pi, ηpi
) and (qi, ηpi

)
be the rays emanating from pi and qi, respectively, in the direction normal to Hpi

away from P . Together with the segments piqi and qipi+1, the four rays (pi, ηpi),
(qi, ηpi), (qi, ηpi+1

), and (pi+1, ηpi+1) define a polyhedral surface Σi, which consists of
two unbounded rectangles, Σ1

i and Σ3
i , joined together at qi by an unbounded triangle,

Σ2
i (Figure 6). Note that the surface is in general nonplanar, but Σ2

i is always normal
to the line Hpi∩Hpi+1

. Out of Σi we carve a polyhedral strip Si as follows. Fix a large
enough constant c > 0, and let Ki denote the plane Hpi + cλ2ηpi . In other words, Ki

is a parallel copy of Hpi translated by cλ2 away from P . As usual, the superscripted
K+

i denotes the halfspace enclosing P . Recall that wi is the nearest neighbor of vi
defined earlier. We need to consider

Si = Σi ∩
{

(K+
i ∩K+

i+1) ∪ (H+
wi

∩H+
wi+1

)
}
.

Again, we have two exceptions for i = 1,m− 1, where we use H+
p1

instead of H+
w1

and
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H+
pm

instead of H+
wm

.
Let pip

′
i be the edge of Si incident to pi collinear with ηpi

. We denote by σ′
i

the portion of ∂Si between p′i and p′i+1 and define σ′ as
⋃

0<i<m σ′
i. To provide a

connection to s and t, we also add to σ′ the segments p1p
′
1 and pmp′m. To show that

σ′ is a connected curve outside the interior of Q̂ of length (1 + O(ε))|σ| requires a
simple technical lemma.

Lemma 6.7 (Figure 7). Given an orthogonal system of reference (O, xyz), assume
that P is tangent to the xy-plane at O and lies below it. Given a point p on ∂P , if
|n−1

P (O)n−1
P (p)| < δ, for some small enough δ > 0, then the intersection of Hp with

the xz-plane has for an equation Z = aX + b, where |a| = O(δ) and 0 ≤ b = O(δ2).
Proof. By Lemma 6.5, the normal to Hp forms a small angle θ = O(δ) with

the z-axis, so the plane Hp, being nonparallel to the z-axis, can be expressed as
Z = aX + cY + b. The cross product between the normal (a, c,−1) and the z-
axis vector is the vector (c,−a, 0). By the cross product formula, its length, which is√
a2 + c2, is also equal to

√
a2 + c2 + 1 sin θ. It follows that a2+c2 = O(a2+c2+1)δ2;

therefore,

a2 + c2 =
O(δ2)

1 −O(δ2)
= O(δ2),(3)

and hence |a| = O(δ). By convexity of P , the plane Hp intersects the nonnegative part
of the z-axis, and pz, the z-coordinate of p, is nonpositive. By (3) and |Op| = O(δ),
it follows that

0 ≤ b = pz − apx − cpy ≤
√
a2 + c2

√
p2
x + p2

y = O(δ2).

We examine each σ′
i separately, omitting the cases i = 1,m− 1, which are trivial
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modifications of the general case 1 < i < m− 1. The curve σ′
i lies outside the interior

of H+
wi

∩H+
wi+1

, and hence of Q̂. It is naturally broken up into three parts, σj
i ⊂ Σj

i

(j = 1, 2, 3), each one of them being a polygonal curve whose edges lie in any one of

four planes: Ki, Ki+1, Hwi , and Hwi+1 . Applying Lemma 6.7 with (pi,−−→piqi,
−−→
pip

′
i) in

the role of (O, x, z) and wi in the role of p, we find that Hwi
intersects the segment

pip
′
i for c large enough (note that this c is the one in the definition of Ki); similarly,

Hwi+1 intersects pi+1p
′
i+1. This shows that p′i is the intersection of the ray (pi, ηpi)

with the plane Ki; therefore, p′i is the same point in the definition of σ′
i and σ′

i−1, thus
proving that the curve σ′ is, indeed, connected. (The danger was having p′i defined
by Hwi+1 .) We now bound the length of σ′

i.

• By Lemma 6.7 the slopes of the edges of σ1
i are chosen among 0 for Ki;

O(
√
ε ) for Ki+1; O(λ) for Hwi

; and O(
√
ε ) for Hwi+1 . It follows that |σ1

i | ≤
|piqi|/ cos θ, where θ = O(

√
ε ); therefore, |σ1

i | = (1 + O(ε))|piqi|. The same
argument shows that |σ3

i | = (1 + O(ε))|qipi+1|.
• Let q′i, q

′′
i be the endpoints of the curve σ2

i (Figure 6), and let a, a′, b, b′ be
the distances along the ray (qi, ηpi) from qi to Ki, Ki+1, Hwi , and Hwi+1 ,
respectively. By definition of Si,

|qiq′i| = max
{

min{a, a′},min{b, b′}
}
.

Obviously, a = cλ2 and, by Lemma 6.7, b = O(λ|piqi| + λ2). This implies
that |qiq′i| = O(λ|piqi| + λ2) and, by the same argument,

|qiq′i| + |qiq′′i | = O(λ(|piqi| + |qipi+1|) + λ2).

Within Σ2
i , the curve σ2

i is a polygonal line consisting of at most a constant
number of edges. It is not difficult to see that for any vertex v of σ2

i (including
q′i and q′′i ), the angle between qiv and edges of σ2

i incident to v is π/2±O(
√
ε ).

This follows from a simple geometric observation: given any plane H whose
normal makes with qiv an angle at most α, the angle formed by qiv and any
line on H lies in the range [π/2 − α, π/2 + α]. Since any of the edges of σ2

i

lies on one of four planes, Ki, Ki+1, Hwi , and Hwi+1 , and the normal of each
of them makes an angle of O(

√
ε) with qiv, the claim follows. Because the

folding angle of O(
√
ε ) can be assumed to be less than, say, π/2, this implies

that the curve σ2
i lies entirely at a distance O(|qiq′i|+|qiq′′i |) from qi. It follows

that |σ2
i | = O(|qiq′i| + |qiq′′i |)

√
ε.

Putting everything together we find that

|σ′
i| = (1 + O(ε) + O(λ

√
ε ))(|piqi| + |qipi+1|) + O(λ2

√
ε ).

In view of the fact that |p1p
′
1| = |pmp′m| = cλ2, summing up over all |σ′

i|’s (there are
O(1/ε) of them),

|σ′| = (1 + O(ε) + O(λ
√
ε ))|σ| + O(λ2/

√
ε )

= (1 + O(ε))|σ| + O(ε)

= (1 + O(ε))|σ|,

which completes the proof of Theorem 6.3. Note that the setting of λ is made to
ensure that the additive term O(λ2/

√
ε ) is O(ε).
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Abstract. We answer a question of Ambos-Spies and Kučera in the affirmative. They asked
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1. Introduction. In an influential 1966 paper [9], Martin-Löf proposed an al-
gorithmic formalization of the intuitive notion of randomness for infinite sequences
of 0’s and 1’s. His formalization was based on an effectivization of a test concept
from statistics, by means of uniformly recursively enumerable (r.e.) sequences of open
sets. Martin-Löf’s proposal addressed some insufficiencies in an earlier algorithmic
concept of randomness proposed by Church [3], who had formalized a notion now
called computable stochasticity. However, Schnorr [13] criticized Martin-Löf’s notion
as too strong, because it was based on an r.e. test concept rather than a computable
notion of tests. He suggested that one should base a formalization of randomness
on computable betting strategies (also called martingales), in a way that would still
overcome the problem that Church’s concept was too weak. In present terminology, a
real Z is computably random if no computable betting strategy succeeds along Z; that
is, for each computable betting strategy there is a finite upper bound on the capital
that it reaches. The real Z is Schnorr random if no martingale succeeds effectively.
Here effective success means that the capital at Z � n exceeds f(n) infinitely often,
for some unbounded computable function f . See [1] for more on the history of these
ideas.

We recall some definitions. The Cantor space 2ω is the set of infinite binary
sequences; these are called reals and are identified with a set of integers, i.e., subsets
of ω. If σ ∈ 2<ω, that is, σ is a finite binary sequence, then we denote by [σ] the set of
reals that extend σ. These form a basis of clopen sets for the usual discrete topology
on 2ω. Write |σ| for the length of σ ∈ 2<ω. The Lebesgue measure μ on 2ω is defined
by stipulating that μ[σ] = 2−|σ|. With every set U ⊆ 2<ω we associate the open set
[U ]� =

⋃
σ∈U [σ]. The empty sequence is denoted λ. If σ, τ ∈ 2<ω and σ is a prefix

of τ , then we write σ � τ . If σ ∈ 2<ω and i ∈ {0, 1}, then σi denotes the string of
length |σ| + 1 extending σ whose final entry is i. The concatenation of two strings σ
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and τ is denoted στ . The empty set is denoted ∅, and inclusion of sets is denoted by
⊆. If A is a real and n ∈ ω, then A � n is the prefix of A consisting of the first n bits
of A. Letting A(n) denote bit n of A, we have A � n = A(0)A(1) · · ·A(n− 1).

Given α ∈ 2<ω and a measurable set C ⊆ 2ω, we let μαC = μ(C∩[α])
μ[α] . For an

open set W we let

W |σ =
⋃{

[τ ] : τ ∈ 2<ω, [στ ] ⊆ W
}
.

Note in particular that μσW = μ(W |σ) and μλW = μW .
Fixing some effective correspondence between the set of finite subsets of ω and ω,

we let De be the eth finite subset of ω under this correspondence. In other words, e is
a strong, or canonical, index for the finite set De. Similarly, we let Se be the eth finite
subset of 2<ω under a suitable correspondence. Thus Se is a finite set of strings, and
[Se]

� = ∪σ∈Se [σ] is then the clopen set coded by e ∈ ω. We use the Cantor pairing

function, namely the bijection p : ω2 → ω given by p(n, s) = (n+s)2+3n+s
2 , and write

〈n, s〉 = p(n, s).
A Martin-Löf test is a set U ⊆ ω × 2ω such that μUn ≤ 2−n, where Un denotes

the nth section of U , and Un is a Σ0
1 class, uniformly in n. If, in addition, μUn is

a computable real, uniformly in n, then U is called a Schnorr test. Z is Martin-Löf
random if for each Martin-Löf test U there is an n such that Z �∈ Un, and Schnorr
random if for each Schnorr test U there is an n such that Z �∈ Un. The notion of
Schnorr randomness is unchanged if we instead define a Schnorr test to be a Martin-
Löf test for which μUn = 2−n for each n ∈ ω.

Concepts encountered in computability theory are usually based on some notion
of computation, and therefore have relativized forms. For instance, we may relativize
the tests and randomness notions above to an oracle A. If C = {X : X is Martin-Löf
random}, then the relativization is CA = {X : X is Martin-Löf random relative to

A} (meaning that Σ0
1 classes are replaced by Σ0,A

1 classes). In general, if C is such a
relativizable class, we say that A is low for C if CA = C. If C is a randomness notion,
more computational power means a smaller class, namely CA ⊆ C for any A. Being
low for C means having small computational power (in a sense that depends on C).
In particular, the low-for-C reals are closed downward under Turing reducibility.

The randomness notions for which lowness was first considered are Martin-Löf
and Schnorr randomness. Kučera and Terwijn [8] constructed a noncomputable r.e.
set of integers A which is low for Martin-Löf randomness, answering a question of
Zambella [16]. In the paper [14] it is shown that there are continuously many reals
that are low for Schnorr randomness.

An important difference between the two randomness notions is that for Martin-
Löf randomness, but not for Schnorr randomness, there is a universal test R. Thus,
Z is not Martin-Löf random iff Z ∈

⋂
b∈ω Rb. Therefore, in the Schnorr case, an

apparently stronger lowness notion is being low for Schnorr tests, or S0-low in the
terminology of [1]: A is low for Schnorr tests if for each Schnorr test UA relative to A
there is an unrelativized Schnorr test V such that

⋂
n U

A
n ⊆

⋂
n Vn. This implies that

A is low for Schnorr randomness, or S-low in the terminology of [1]. Ambos-Spies and
Kučera asked if the two notions coincide. We answer this question in the affirmative.

Terwijn and Zambella [14] actually constructed oracles A that are low for Schnorr
tests. They first gave a characterization of this lowness property via a notion of trace-
ability, a restriction on the possible sequence of values of the functions computable
from A. They showed that A is low for Schnorr tests iff A is computably traceable
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(see formal definition in the next section). Then they constructed continuously many
computably traceable reals. We answer the question of Ambos-Spies and Kučera by
showing that each real which is low for Schnorr randomness is in fact computably
traceable.

Towards this end, it turns out to be helpful to have a more general view of lowness.
We consider lowness for any pair of randomness notions C, D with C ⊆ D.

Definition 1.1. A is in Low(C,D) if C ⊆ DA. We write Low(C) for Low(C, C).

Clearly, if C ⊆ C̃ ⊆ D̃ ⊆ D are randomness notions, and the inclusions relativize
(so D̃A ⊆ DA for each real A), then Low(C̃, D̃) ⊆ Low(C,D). That is, we make

the class Low(C̃, D̃) larger by decreasing C or increasing D. Let MR,CR, and SR
denote the classes of Martin-Löf random, computably random (defined below), and
Schnorr random reals, respectively. Thus, for instance, Low(MR,CR) is the class of
oracles A such that each Martin-Löf random real is computably random in A. We
will characterize lowness for any pair of randomness notions C ⊆ D with C,D ∈
{MR,CR,SR}.

Recall that Ω denotes the halting probability of a universal prefix machine. Ω
is a Martin-Löf random r.e. real, i.e., a real that can be effectively approximated
from below. Given D ⊇ MR, an interesting lowness notion obtained by weakening
Low(MR,D) is Low({Ω},D). That is, instead of MR ⊆ DA one merely requires that
Ω ∈ DA. We denote this class by Low(Ω,D). In [12], the case D = MR is studied.
The authors show that the class coincides with Low(MR) on the Δ0

2 reals but not in
general. In fact, a Martin-Löf random real is 2-random iff it is in Low(Ω,MR).

Here we investigate the class Low(Ω,SR). We show that A is Low(MR, SR) iff
A is r.e. traceable. Moreover, the weaker assumption Ω ∈ SRA still implies that A is
array computable (there is a function f ≤wtt ∅′ bounding all functions computable
from A, on almost all inputs). Thus for r.e. sets of integers A, A being Low(MR, SR)
is in fact equivalent to Ω ∈ SRA by Ishmukhametov [5]. We also provide an example
of a real A which is array computable but not Low(Ω,SR).

2. Main concepts.

2.1. Martingales. For our purposes, a martingale is a function M : 2<ω → Q

(where Q is the set of rational numbers) such that (i) the domain of M is 2<ω, or
2≤n = {σ ∈ 2<ω : |σ| ≤ n} for some n, (ii) M(λ) ≤ 1, and (iii) M has the martingale
property M(x0) +M(x1) = 2M(x) whenever the strings x0, x1 belong to the domain
of M . A martingale M succeeds on a sequence Z ∈ 2ω if

lim sup
n→∞

M(Z � n) = ∞.

A real is computably random if no computable martingale succeeds on it.

A martingale M effectively succeeds on a sequence Z if there is a nondecreasing
and unbounded computable function h : ω −→ ω such that

lim sup
n→∞

M(Z � n) − h(n) > 0.

Equivalently (since we are considering integer-valued functions), ∃∞n M(Z � n) >
h(n). We can now state the characterization of Schnorr randomness in terms of
martingales: a real Z is Schnorr random iff no computable martingale effectively
succeeds on Z.
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2.2. Traceability. Let We denote the eth r.e. set of integers in some standard
list. A real A is r.e. traceable if there is a computable function p, called a bound, such
that for every f ≤T A there is a computable function r such that for all x we have
|Wr(x)| ≤ p(x) and f(x) ∈ Wr(x).

The following is a stronger notion than r.e. traceability. A is computably traceable
if there is a computable p such that for every f ≤T A there is a computable r such
that for all x we have |Dr(x)| ≤ p(x) and f(x) ∈ Dr(x).

It is interesting to notice that it does not matter what bound p one chooses as a
witness for traceability; see the following.

Proposition 2.1 (see Terwijn and Zambella [14]). Let A be a real that is com-
putably traceable with bound p. Then for any monotone and unbounded computable
function p′, A is computably traceable with bound p′. The same holds for r.e. trace-
ability.

The result of Terwijn and Zambella is the following.

Theorem 2.2 (see [14]). A real A is low for Schnorr tests iff A is computably
traceable.

3. Statement of the main result.

Theorem 3.1.

(I) A is Low(MR,SR) iff A is r.e. traceable.
(II) A is Low(CR,SR) iff A is Low(SR) iff A is computably traceable.

We make some remarks about the proofs and fill in the details in the next section.
We obtain Theorem 3.1(I) by modifying the methods in [14] to the case of r.e. traces
instead of computable ones.

As for Theorem 3.1(II), by Theorem 2.2 if A is computably traceable, then A is
low for Schnorr tests. Hence A is certainly Low(SR), and therefore also Low(CR,SR).
It remains only to show that each real A ∈ Low(CR,SR) is computably traceable. To
see that this is so, take the following three steps:

1. Recall that A is hyperimmune-free if for each g ≤T A there is a computable
f such that for all x we have g(x) ≤ f(x). As a first step towards proving Theorem
3.1(II), Bedregal and Nies [2] showed that each A ∈ Low(CR,SR) is hyperimmune-free
(see Lemma 4.9 below). To see this, assume that A is not, so there is a function g ≤T A
not dominated by any computable function f . Define a martingale L ≤T A which
succeeds in the sense of Schnorr, with the computable lower bound h(n) = n/4, on
some Z ∈ CR. One uses here that g is infinitely often above the running time of each
computable martingale. (Special care has to be taken with the partial martingales,
which results in a real Z that is only Δ0

3.)

2. If A is hyperimmune-free and r.e. traceable, then A is computably traceable.
If we let g ≤T A, then the first stage where g(x) appears in a given trace for g can be
computed relative to A.

3. Now each A in Low(CR,SR) is r.e. traceable by Theorem 3.1(I), and hence by
the above is computably traceable, and Theorem 3.1(II) follows.

We discuss lowness for the remaining pairs of randomness notions. Nies has
shown that A is Low(MR,CR) iff A is Low(MR) iff A is K-trivial, where A is K-
trivial if for all n K(X � n) ≤ K(n) + O(1) (see [11]). Here K(σ) denotes the
prefix-free Kolmogorov complexity of σ ∈ 2<ω. Finally, he shows that a real A which
is Low(CR) is computable; namely, A is both K-trivial and hyperimmune-free. Since
all K-trivial reals are Δ0

2, and all hyperimmune-free Δ0
2 reals are computable, the

conclusion follows.
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4. Proof of the main result. We first need to develop a few useful facts from
measure theory.

Definition 4.1. A measurable set A has density d at a real X if

lim
n→∞

μ(X�n)A = d.

A basic result is the following.
Theorem 4.2 (Lebesgue density theorem). Let Ξ(A) = {X : A has density 1

at X}. If A is a measurable set, then so is Ξ(A), and the measure of the symmetric
difference of A and Ξ(A) is zero.

Corollary 4.3. Let C be a measurable subset of 2ω, with μC > 0. Then for
each δ < 1 there is an α ∈ 2<ω such that μαC ≥ δ.

We will use the following consequence of Corollary 4.3.
Lemma 4.4. Let 0 < ε ≤ 1. If Un, n ∈ ω, and V are open subsets of 2ω with⋂

n∈ω Un ⊆ V and μV < ε, then there exist σ and n such that μσ(Un − V ) = 0 and
μσV < ε.

Proof. Suppose otherwise; we shall obtain a contradiction by constructing a real
in

⋂
n∈ω Un −V . Let σ0 = λ and assume we have defined σn such that μσn

V < ε. By
hypothesis, μσn(Un−V ) > 0, and thus there is a [τ ] ⊆ Un such that μσn([τ ]−V ) > 0.
In particular, τ � σn and μτV < 1. Let C = 2ω − V , a closed and hence measurable
set. By Corollary 4.3 applied to C (and with 2ω replaced by [τ ]), there exists σn+1 � τ
such that μσn+1V < ε. Let X be the real that extends all σn’s constructed in this
way. Since [σn+1] ⊆ Un for all n, we have that X ∈

⋂
n∈ω Un. However, [σn] �⊆ V for

every n, so, since V is open, X �∈ V . This contradiction completes the proof.
We now get to the proof of Theorem 3.1. First we show Theorem 3.1(I), namely,

that A is Low(MR, SR) iff A is r.e. traceable. We start with the “⇐” direction.
Lemma 4.5. If A is r.e. traceable, then A is Low(MR,SR).
Proof. Assume that A is r.e. traceable and that UA is a Schnorr test relative to

A. Let UA
n,s, n, s ∈ ω, be clopen sets, UA

n,s ⊆ UA
n,s+1, U

A
n =

⋃
s∈ω UA

n,s, such that the

UA
n,s are Δ0,A

1 classes uniformly in n and s. As μUA
n = 2−n, we may assume that

μUA
n,s > 2−n(1 − 2−s). Let f be an A-computable function such that [Sf(〈n,s〉)]

� =

UA
n,s. Since A is r.e. traceable and f ≤T A, we can let T be an r.e. trace of f . By

Proposition 2.1, we may choose T such that in addition |Tx| ≤ x for each x > 0.
We now want to define a subtrace T̂ of T , i.e., T̂〈n,s〉 ⊆ T〈n,s〉 for each n, s. The

intent is that the open sets defined via T̂ are small enough to give us a Martin-Löf
test containing ∩n∈ωU

A
n , and nothing important is in T〈n,s〉 − T̂〈n,s〉. Thus let T̂〈n,s〉

be the set of e ∈ T〈n,s〉 such that 2−n(1− 2−s) ≤ μ[Se]
� ≤ 2−n and [Se]

� ⊇ [Sd]
� for

some d ∈ T̂〈n,s−1〉, where T̂〈n,−1〉 = ω. Let

Vn =
⋃{

[Se]
� : e ∈ T̂〈n,s〉, s ∈ ω

}
.

Then μVn ≤ 2−n|T̂〈n,0〉| +
∑

s∈ω 2−s2−n|T̂〈n,s〉|. Since |T̂〈n,s〉| ≤ |T〈n,s〉| ≤ 〈n, s〉
for 〈n, s〉 �= 0, and 〈n, s〉 has only polynomial growth in n and s, it is clear that∑

s∈ω 2−s2−n|T̂〈n,s〉| is finite and goes effectively to 0 as n → ∞; hence the same can
be said of μVn. Thus there is a recursive function f such that μVf(n) ≤ 2−n. Let

Ṽn = Vf(n). Then Ṽ is a Martin-Löf test and
⋂

n U
A
n ⊆

⋂
n Ṽn. That is, each Schnorr

test relative to A is contained in a Martin-Löf test. It follows that each real that is
Martin-Löf random is Schnorr random relative to A, and the proof is complete.
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Next we will show the “⇒” direction of Theorem 3.1(I). The proof is similar to
the “⇒” of Theorem 2.2.

Definition 4.6. For k, l ∈ ω define the clopen set

Bk,l =
⋃{

[τ1k] : τ ∈ 2<ω, |τ | = l
}
,

where 1k is a string of 1’s of length k.
Note that μBk,l = 2−k for all l.
Lemma 4.7. If A ∈ 2ω is Low(MR,SR), then A is r.e. traceable.
Proof. Note that A is Low(MR, SR) iff for every Schnorr test UA relative to A,⋂

n∈ω UA
n ⊆

⋂
b∈ω Rb (recall that R is a universal Martin-Löf test).

Oversimplifying a bit, one can say that the proof below goes as follows. We
code a given g ≤T A into a Schnorr test Ug relative to A. Then, by hypothesis,⋂

n U
g
n ⊆

⋂
n Rn; in fact we will use only the fact that

⋂
n U

g
n ⊆ R3. We then define

an r.e.trace T ; namely, Tk is the set of l such that Bk,l−R3 has small measure in some
sense. Since R3 has rather small measure, Bk,l − R3 will tend to have big measure,
which means that there will be only a few l for which Bk,l − R3 has small measure;
in other words, Tk has small size. Moreover, we make sure T is a trace for g so that
A is r.e. traceable.

We now give the proof details. Suppose that we want to find a trace for a given
function g ≤T A. We define the test Ug by stipulating that

Ug
n =

⋃
k>n

Bk,g(k).

It is easy to see that μUg
n can be approximated computably in A, so after taking a

subsequence of Ug
n, n ∈ ω, we may assume that Ug is a Schnorr test relative to A.

Hence, by assumption,
⋂
Ug ⊆

⋂
b∈ω Rb. Thus V = R3 contains

⋂
Ug and μV < 1

4 .
We may assume throughout that g(k) ≥ k for every k because from a trace for g(k)+k
one can obtain a trace for g with the same bound. By Lemma 4.4, there exist σ and
n such that μσ(Ug

n − V ) = 0 and μσV < 1/4. As Ug
0 ⊇ Ug

1 ⊇ · · · , we can choose
σ and n with the additional property n ≥ |σ|. Hence for each k > n, we have
g(k) ≥ k > n ≥ |σ| and hence g(k) ≥ |σ|.

Let Ṽ = V |σ, let g̃(k) = max{0, g(k) − |σ|}, and take

Tk =
{
l : μ(Bk,l − Ṽ ) < 2−(l+3)

}
.

Note that for each l ∈ ω, if l ≥ |σ|, then Bk,l|σ = Bk,l−|σ|. Thus, since g(k) ≥ |σ|,

Ug
n|σ =

⋃
k>n

Bk,g(k)|σ =
⋃
k>n

Bk,g(k)−|σ| = U g̃
n,

and so μ(U g̃
n − Ṽ ) = μσ(Ug

n − V ) = 0. Hence g̃(k) ∈ Tk for all k > n.
Since Ṽ is a Σ0

1 class, it is evident that T is an r.e. set of integers; indeed Bk,l− Ṽ
is a Π0

1 class, and thus we can enumerate the fact that certain basic open sets [σ] are
disjoint from it, until the measure remaining is as small as required. A trace for g is
obtained as follows:

Gk =

{
{l + |σ| : l ∈ Tk} if k > n,

{g(k)} if k ≤ n.
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We now show that G is a trace for g; i.e., for all k ∈ ω, g(k) ∈ Gk. If k ≤ n,
then this holds by definition of Gk; thus suppose k > n. Then g(k) > k > n > |σ|, so
g̃(k) = g(k) − |σ|, so g(k) = g̃(k) + |σ|. As k > n, g̃(k) ∈ Tk and hence g(k) ∈ Gk.

Clearly G is r.e.; thus it remains to show that |Gk| is computably bounded,
independently of g. As |Gk| = |Tk| for k > n and |Gk| = 1 for k ≤ n, this is a
consequence of Lemma 4.8 below.

Lemma 4.8. If Ṽ is a measurable set with μṼ < 1
4 , and Tk = {l : μ(Bk,l − Ṽ ) <

2−(l+3)}, then for k ≥ 1, |Tk| < 2kk.
Proof. Observe that, by definition of Tk,∑

l∈Tk

μ(Bk,l − Ṽ ) <
∑
l∈Tk

2−(l+3) ≤ 1

8

∑
l∈ω

2−l =
1

4
,

so

μ
⋃
l∈Tk

Bk,l − μṼ ≤ μ
⋃
l∈Tk

(Bk,l − Ṽ ) ≤ 1

4
.

As μṼ < 1
4 , we obtain that

μ
⋃
l∈Tk

Bk,l <
1

2
.

As observed above, μBk,l = 2−k. Moreover, for k fixed, the Bk,l’s are mutually
independent as soon as the l’s are taken sufficiently far apart. In fact, sufficiently
far here means a distance of k. So for k ≥ 1 we let T ∗

k be a subset of Tk consisting

of
⌊ |Tk|

k

⌋
elements, all of which are sufficiently far apart. (Here �a� is the greatest

integer ≤ a.) To show that such a set exists we may assume we are in the worst case,
where the elements of Tk are closest together: say, Tk = {0, . . . , |Tk| − 1}. Then let

T ∗
k = {mk : 0 ≤ m ≤

⌊ |Tk|
k

⌋
− 1}. As

(⌊ |Tk|
k

⌋
− 1

)
k ≤ |Tk| − k ≤ |Tk| − 1 ∈ Tk, this

makes T ∗
k ⊆ Tk. Write α =

⌊ |Tk|
k

⌋
. We now have

μ
⋂
l∈Tk

(2ω −Bk,l) ≤ μ
⋂
l∈T∗

k

(2ω −Bk,l) = (1 − 2−k)α

and hence

1 − (1 − 2−k)α ≤ 1 − μ
⋂
l∈Tk

(2ω −Bk,l) = μ2ω − μ
⋂
l∈Tk

(2ω −Bk,l)

≤ μ

(
2ω −

⋂
l∈Tk

(2ω −Bk,l)

)
= μ

⋃
l∈Tk

Bk,l <
1

2
.

From the inequality above we obtain, letting m = 2k − 1,(
1 − 1

m + 1

)α

= (1 − 2−k)α >
1

2

or
(
m+1
m

)α
< 2. Now suppose α ≥ m. Then

(
m+1
m

)α ≥
(
m+1
m

)m ≥ 2 as (m + 1)m ≥
mm + mm−1

(
m
1

)
= 2mm. Thus we conclude α < m = 2k − 1. Now, by the definition

of α, we have Tk

k ≤ α + 1 < 2k and so |Tk| < 2kk; this completes the proof.
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In order to prove Theorem 3.1(II), recall that, by Theorem 2.2, each computably
traceable real is Low(SR). Thus it suffices to show that each Low(CR,SR) real is com-
putably traceable. The first ingredient for showing this is the following result from
[2].

Lemma 4.9. If A is Low(CR,SR), then A is hyperimmune-free.
Proof. Suppose A is not hyperimmune-free, so that there is a function g ≤T A not

dominated by any computable function. Thus, for each computable f , ∃∞x f(x) ≤
g(x). We will define a computably random real X and an A-computable martingale
L that succeeds on X in the sense of Schnorr, so that A is not Low(CR, SR). In the
following, α, β, γ denote finite subsets of ω, and nα =

∑
i∈α 2i (here n∅ = 0).

Let {Me}e∈ω be an effective listing of all partial computable martingales with
range included in [1/2,∞). At stage t, we have a finite portion Me[t], whose domain
is a subset of some set of the form 2≤n for some n. If X is not computably random,
then limn→∞ Me(X�n) = ∞ for some total Me by [13]. Let

TMG = {e : Me is total}.

For finite sets α, β, let us in this proof say that α is a strong subset of β (denoted
α ⊆+ β) if α ⊆ β and moreover for each i ∈ ω, if i ∈ β − α, then i > max(α). Thus
the possibility that β contains an element smaller than some element of α is ruled
out.

For certain α, and all those included in TMG, we will define strings xα in such
a way that α ⊆+ β ⇒ xα � xβ . We choose the strings in such a way that Me(xα) is
bounded by a fixed constant (depending on e) for each total Me and each α containing
e. Then the set of integers

X =
⋃
e∈ω

xTMG∩[0,e]

is a computably random real. On the other hand, we are able to define an A-
computable martingale L which Schnorr succeeds on X. We give an inductive defini-
tion of the strings xα, “scaling factors” pα ∈ Q

+ (positive rationals) (we do not define
p∅), and partial computable martingales Mα such that if xα is defined, then

Mα(xα) converges in g(|xα|) steps and Mα(xα) < 2.(1)

It will be clear that A can decide if y = xα, given inputs y and α.
Let x∅ = λ, and let M∅ be the constant zero function. (We may assume that

g is such that M∅(λ) converges in g(0) steps.) Now suppose α = β ∪ {e}, where
e > max(β), and inductively suppose that (1) holds for β. Let

pα =
1

2
2−|xβ |(2 −Mβ(xβ)),

and let Mα = Mβ + pαMe. Since Me is a martingale on its domain, Me(z) ≤ 2|z| for
any z. So, writing b = Mβ(xβ), we have Mα(xβ) = b + pαMe(xβ) < b + pα2|xβ | =
b + 1

2 (2 − b) = 1 + b
2 < 1 + 2

2 = 2 if Mα(xβ) is defined.
To define xα, we look for a sufficiently long x � xβ such that Mα does not

increase from xβ to x and Mα(x) converges in g(|x|) steps. In detail, for larger and
larger m > |xβ |, m ≥ 4nα, if no string y, |y| < m, has been designated to be xα as
yet, and if Mα(z) (i.e., each Me(z), e ∈ α) converges in g(m) steps, for each string z
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of length ≤ m, then choose xα of length m, xβ ≺ xα such that Mα does not increase
anywhere from xβ to xα.

Claim 4.10. If α ⊆ TMG, then xα and pα (the latter only if α �= ∅) are defined.
Proof. The claim is trivial for α = ∅. Suppose that it holds for β, and α =

β ∪ {e} ⊆ TMG, where e > max(β). Since the function

f(m) = μs ∀e ∈ α,∀x [ |x| ≤ m ⇒ Me(x) converges in s steps ]

is computable, there is a least m ≥ 4nα, m > |xβ | such that g(m) ≥ f(m). Since
there is a path down the tree starting at xβ , where Mα does not increase, the choice
of xα can be made.

Claim 4.11. If β ⊆+ α are finite sets, then Mβ(x) ≤ Mα(x) for all x.
Proof. This is clear by induction from the case α = β ∪ {e}, i.e., the case where

α− β has only one element.
Claim 4.12. X is computably random.
Proof. Suppose that Me is total. Let α = TMG ∩ [0, e]. Suppose α ⊆ γ,

γ′ = γ ∪ {i}, max(γ) < i, and γ′ ⊆ TMG. Then α ⊆+ γ ⊆+ γ′. Hence by Claim
4.11, for each x with xγ � x � xγ′ , we have

pαMe(x) ≤ Mα(x) ≤ Mγ′(x) ≤ Mγ′(xγ) < 2,

and hence Me(x) < 2/pα for each x ≺ X, and so the capital of Me on X is
bounded.

Claim 4.13. There is a martingale L ≤T A which effectively succeeds on X. In
fact,

∃∞x ≺ X L(x) ≥
⌊
|x|
4

⌋
.

Proof. For a string z, let r(z) = �|z|/2�. We let L =
∑

α Lα, where Lα is a
martingale with initial capital Lα(λ) = 2−nα , which bets everything along xα from
xα � r(xα) on. More precisely, if xα is undefined, then Lα is constant with value
2−nα . Otherwise, for convenience we let x = xα � 2r(xα) and work with x instead of
xα; we define Lα on a string y as follows:

• If y does not contain “half of x,” i.e., if x � r(x) �� y, then just let Lα(y) =
2−nα .

• If y does contain “half of x” but y and x are incompatible, then let Lα(y) = 0.
• If y contains “half of x” and x and y are compatible, then let Lα(y) =

2−nα2min(|y|−r(x),r(x)).
Thus if y contains x, then Lα(y) = 2r(x)−nα , so we make no more bets once we

extend xα, and if x contains y, then Lα(y) = 2|y|−r(x)−nα ; i.e., we double the capital
for each correct bit of x beyond x � r(x).

Note that L(λ) =
∑

α 2−nα , and, as each k ∈ ω has a unique binary expansion
and hence is equal to nα for a unique finite set α, we have L(λ) =

∑
k∈ω 2−k = 2.

Moreover, it is clear that each Lα satisfies the martingale property Lα(x0)+Lα(x1) =
2Lα(x), and hence so does L.

L effectively succeeds on X. Indeed, as |xα| ≥ 4nα, we have Lα(xα) = 2r(xα)−nα ≥
2�|xα|/2�−�|xα|/4|� ≥ 2�|xα|/4� ≥ �|xα|/4� since 2q ≥ q for each q ∈ ω.

Finally, we show that L ≤T A. Given input y, we use g to see if some string x,
|x| ≤ 2|y|, is xα. If not, Lα(y) = 2−nα . Else we determine Lα(y) from x using the
definition of Lα.
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The second ingredient to the proof of Theorem 3.1(II) is the following fact of
independent interest.

Proposition 4.14. If A is hyperimmune-free and r.e. traceable, then A is com-
putably traceable.

Proof. Let f ≤T A, and let h be as in the definition of r.e. traceability. Let g(x) =
μs(f(x) ∈ Wh(x),s) (where We,s is the approximation at stage s to the r.e. set We).
Then g ≤T A, and so since A is hyperimmune-free, g is dominated by a computable
function r. Thus if we replace Wh(x) by Wh(x),r(x), we obtain a computable trace for
f .

Lemma 4.9 and Proposition 4.14 together establish Theorem 3.1(II): if A is
Low(CR,SR), then A is r.e. traceable by Theorem 3.1(I), and hyperimmune-free by
Lemma 4.9. Thus by Proposition 4.14, A is computably traceable.

As a corollary, we obtain an answer to the question of Ambos-Spies and Kučera.

Corollary 4.15. A real A is S-low iff it is S0-low.

Proof. This follows by Theorem 2.2 and Theorem 3.1(II), since each computably
traceable real is S0-low.

5. Lowness notions related to Chaitin’s halting probability. Recall that
A is array computable if there is a function f ≤wtt ∅′ bounding all functions com-
putable from A on almost all inputs.

Theorem 5.1. If Ω ∈ SRA, then A is array computable.

Proof. We show that the function β(x) = μs Ωs � 3x = Ω � 3x dominates each
function α ≤T A. Since β ≤wtt Ω ≤wtt 0′, this shows that A is array computable.

Given α ≤T A, consider the A-computable martingale M =
∑

p Mp, where Mp

is the martingale which has the value 2−p on all strings of length up to p and then
doubles the capital along the string y = Ωα(p) � 3p, so that Mp(y) = 2p. Note that
M(z) is rational for each z. If α(p) > β(p) for infinitely many p, then M Schnorr
succeeds on Ω, a contradiction.

Corollary 5.2. If A is r.e., then Ω ∈ SRA iff A is r.e. traceable.

Proof. For an r.e. set A, array computable implies r.e. traceable by the work of
Ishmukhametov [5].

In [6] it is shown that r.e. traceable degrees do not contain diagonally noncom-
putable functions, and hence, by a result of Kučera [7], the r.e. traceable degrees have
measure zero. On the other hand, every real A which is Martin-Löf random relative
to Ω satisfies that Ω is MRA, by van Lambalgen’s theorem [15], and hence the measure
of the set of A such that Ω is SRA is one; thus A r.e. traceable is not equivalent to
Ω ∈SRA. Also, Ω ∈SRA is not equivalent to A being array computable, as we now
show.

The following notion of forcing appears implicitly in [4].

Definition 5.3. A tree T is a set of strings σ ∈ 2<ω such that if σ ∈ T and τ
is a substring of σ, then τ ∈ T . A tree T is full on a set F ⊆ ω if whenever σ ∈ T
and |σ| ∈ F , then σ0 ∈ T and σ1 ∈ T . Let Fn, n ∈ ω, be finite sets such that each
Fn is an interval of ω, |Fn+1| > |Fn|, and

⋃
n Fn = ω. The sequence Fn, n ∈ ω, is

called a very strong array. Let P be the set of computable perfect trees T such that
T is full on Fn for infinitely many n. Order P by T1 ≤P T2 if T1 ⊆ T2. The partial
order (P,≤P ) is a notion of forcing that we call very strong array forcing.

Theorem 5.4. For each real X there is a hyperimmune-free real A such that no
real computable from X is in SRA. In particular, as hyperimmune-free implies array
computable, there is an array computable real A such that Ω �∈ SRA.
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Proof. Let A be sufficiently generic for very strong array forcing. Then A is
hyperimmune-free, as may be proved by modifying the standard construction of a
hyperimmune-free degree [10] to work with trees that are full on infinitely many Fn,
n ∈ ω.

Moreover, for each real B computable from X, there is an n (hence infinitely
many n) such that A agrees with B on Fn. Indeed, given a condition T , a condition
extending T and ensuring the existence of such an n is obtained as a full subtree of
T .

Hence no real B computable from X is Schnorr random relative to A. Indeed the
measure of the set of those oracles B that agree with A on infinitely many Fn is zero,
and it is easy to see that the measure of those B such that, for some k > n, A and B
agree on Fk, goes to zero effectively as n → ∞. Hence there is a Schnorr test relative
to A which is failed by any such B, as desired.

Question 5.5. Characterize the (r.e.) sets of integers A such that Ω is com-
putably random relative to A. Does this depend on the version of Ω used?
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AN EFFICIENT ALGORITHM FOR COMPUTING OPTIMAL
DISCRETE VOLTAGE SCHEDULES∗

MINMING LI† AND FRANCES F. YAO‡

Abstract. We consider the problem of job scheduling on a variable voltage processor with d
discrete voltage/speed levels. We give an algorithm which constructs a minimum energy schedule for
n jobs in O(dn logn) time. Previous approaches solve this problem by first computing the optimal
continuous solution in O(n3) time and then adjusting the speed to discrete levels. In our approach,
the optimal discrete solution is characterized and computed directly from the inputs. We also show
that O(n logn) time is required; hence the algorithm is optimal for fixed d.
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1. Introduction. Advances in processor, memory, and communication technolo-
gies have enabled the development and widespread use of portable electronic devices.
As such devices are typically powered by batteries, energy efficiency has become an
important issue. With dynamic voltage scaling (DVS) techniques, processors are able
to operate at a range of voltages and frequencies. Since energy consumption is at
least a quadratic function of the supply voltage (hence CPU speed), it saves energy
to execute jobs as slowly as possible while still satisfying all timing constraints.

We refer to the associated scheduling problem as the min-energy DVS scheduling
problem (or DVS problem for short); the precise formulation will be given in section 2.
The problem is different from classical scheduling on fixed-speed processors, and it has
received much attention from both theoretical and engineering communities in recent
years. One of the earliest theoretical models for DVS was introduced in [1]. They
gave a characterization of the min-energy DVS schedule and an O(n3) algorithm1 for
computing it. No special assumption was made on the power consumption function
except convexity. This optimal schedule has been referenced widely, since it provides
a main benchmark for evaluating other scheduling algorithms in both theoretical and
simulation work.

In the min-energy DVS schedule mentioned above, the processor must be able to
run at any real-valued speed s in order to achieve optimality. In practice, variable
voltage processors run only at a finite number of speed levels chosen from specific
points on the power function curve. For example, the Intel SpeedStep technology [2]
currently used in Intel’s notebooks supports only 3 speed levels, although the new
Foxon technology will soon enable Intel server chips to run at as many as 64 speed
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1The complexity of the algorithm was said to be further reducible in [1], but that claim has since

been withdrawn.
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grades. Thus, an accurate model for min-energy scheduling should capture the dis-
crete, rather than continuous, nature of the available speed scale. This consideration
has motivated our present work.

In this paper we consider the discrete version of the DVS scheduling problem.
Denote by s1 > s2 > · · · > sd the clock speeds corresponding to d given discrete
voltage levels. The goal is to find, under the restriction that only these speeds are
available for job execution, a schedule that consumes as little energy as possible. (It is
assumed that the highest speed s1 is fast enough to guarantee a feasible schedule for
the given jobs.) This problem was considered in [3] for a single job (i.e., n = 1), where
they observed that minimum energy is achieved by using the immediate neighbors
si, si+1 of the ideal speed s in appropriate proportions. It was later extended in
[4] to give an optimal discrete schedule for n jobs, obtained by first computing the
optimal continuous DVS schedule and then individually adjusting the speed of each
job appropriately to adjacent levels as done in [3].

The following question naturally arises: Is it possible to find a direct approach
for solving the optimal discrete DVS scheduling problem without first computing
the optimal continuous schedule? We answer the question in the affirmative. For
n jobs with arbitrary arrival-time/deadline constraints and d given discrete supply
voltages (speeds), we give an algorithm that finds an optimal discrete DVS schedule
in O(dn log n) time. We also show that this complexity is optimal for any fixed d.
We remark that the O(n3) algorithm for finding the continuous DVS schedule (cf.
section 2) computes the highest speed, second highest speed, etc. for execution in a
strictly sequential manner and may use up to n different speeds in the final schedule.
Therefore it is unclear a priori how to find shortcuts to solve the discrete problem.
Our approach is different from that of [4], which is based on the continuous version
and therefore requires O(n3) time.

Our algorithm for optimal discrete DVS proceeds in two stages. In stage 1, the
jobs in J are partitioned into d disjoint groups J1, J2, . . . , Jd, where Ji consists of all
jobs whose execution speeds in the continuous optimal schedule Sopt lie between si
and si+1. We show that this multilevel partition can be obtained without determining
the exact optimal execution speed of each job. In stage 2, we proceed to construct an
optimal schedule for each group Ji using two speeds si and si+1. Both the separation
of each group Ji in stage 1, and the subsequent scheduling of Ji using two speed levels
in stage 2, can be accomplished in time O(n log n) per group. Hence this two-stage
algorithm yields an optimal discrete voltage schedule for J in total time O(dn log n).
The algorithm admits a simple implementation, although its proof of correctness and
complexity analysis are nontrivial. Aside from its theoretical value, we also expect our
algorithm to be useful in generating optimal discrete DVS schedules for simulation
purposes as in the continuous case.

We briefly mention some additional theoretical results on DVS, although they
are not directly related to the problem considered in this paper. In [1], two on-line
heuristics, average rate (AVR) and optimal available (OPA), were introduced for the
case that jobs arrive one at a time. AVR was shown to have a competitive ratio of
at most 8 in [1]; recently a tight competitive ratio of 4 was proven for OPA in [5].
For jobs with fixed priority, the scheduling problem was shown to be NP-hard, and
an FPTAS was given in [6]. In addition, [7] gave efficient algorithms for computing
the optimal schedule for job sets structured as trees. (The interested reader can find
further references in these papers.)

The remainder of the paper is organized as follows. We give the problem formu-
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lation and review the optimal continuous schedule in section 2. Section 3 discusses
some mathematical properties associated with earliest deadline first (EDF) scheduling
under different speeds. Sections 4 and 5 give details of the two stages of the algo-
rithm as outlined above. The combined algorithm and a lower bound are presented
in section 6. Finally, some concluding remarks are given in section 7.

2. Problem formulation. Each job jk in a job set J over [0, 1] is characterized
by three parameters: arrival time ak, deadline bk, and required number of CPU cycles
Rk. A schedule S for J is a pair of functions (s(t), job(t)) defining the processor
speed and the job being executed at time t. Both functions are piecewise constant
with finitely many discontinuities. A feasible schedule must give each job its required
number of cycles between arrival time and deadline (with perhaps intermittent ex-
ecution). We assume that the power P , or energy consumed per unit time, is a
convex function of the processor speed. The total energy consumed by a schedule S

is E(S) =
∫ 1

0
P (s(t))dt. The goal of the min-energy scheduling problem is to find,

for any given job set J , a feasible schedule that minimizes E(S). We refer to this
problem as DVS scheduling (or sometimes continuous DVS scheduling to distinguish
it from the discrete version below).

In the discrete version of the problem, we assume d discrete voltage levels are
given, enabling the processor to run at d clock speeds s1 > s2 > · · · > sd. The
goal is to find a min-energy schedule for a job set using only these speeds. We may
assume that, in each problem instance, the highest speed s1 is always fast enough to
guarantee a feasible schedule for the given jobs. We refer to this problem as discrete
DVS scheduling.

For the continuous DVS scheduling problem, the optimal schedule Sopt can be
characterized based on the notion of a critical interval for J , which is an interval
I in which a group of jobs must be scheduled at maximum constant speed g(I) in
any optimal schedule for J . The algorithm proceeds by identifying such a critical
interval I, scheduling those “critical” jobs at speed g(I) over I and then constructing
a subproblem for the remaining jobs and solving it recursively. The optimal s(t) is in
fact unique, whereas job(t) is not always so. The details are given below.

Definition 2.1. Define the intensity of an interval I = [z, z′] to be

g(I) =

∑
Rj

z′ − z
,

where the sum is taken over all jobs j� with [a�, b�] ⊆ [z, z′].

The interval [c, d] achieving the maximum g(I) will be the critical interval chosen
for the current job set. All jobs j� ∈ J satisfying [a�, b�] ⊆ [c, d] can be feasibly
scheduled at speed g([c, d]) by the EDF principle. The interval [c, d] is then removed
from [0, 1]; all remaining intervals [aj , bj ] are updated (compressed) accordingly, and
the algorithm recurses. The complete algorithm is given in Algorithm 1.

Let CIi ⊆ [0, 1] be the ith critical interval of J . Denote by Csi the execution
speed during CIi and by CJi those jobs executed in CIi. We take note of a basic
property of critical intervals which will be useful in later discussions.

Lemma 2.2. A job j� ∈ J belongs to
⋃i

k=1 CJk if and only if the interval [a�, b�]

of j� satisfies [a�, b�] ⊆
⋃i

k=1 CIk.

Proof. The “if” direction is straightforward. For the “only if” part, it can be
proven by induction on i that j� ∈ CJi implies [a�, b�] ⊆

⋃i
k=1 CIk, based on the way

critical intervals are successively chosen.
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Algorithm 1 OS (Optimal Schedule)

Input: a job set J
Output: Optimal Voltage Schedule S

repeat
Select I∗ = [z, z′] with s = max g(I)
Schedule ji ∈ JI∗ at s over I∗ by Earliest Deadline First policy
J ← J − JI∗

for all jk ∈ J do
if bk ∈ [z, z′] then

bk ← z
else if bk ≥ z′ then
bk ← bk − (z′ − z)

end if
Reset arrival times similarly

end for
until J is empty

3. EDF with variable speeds. The EDF principle defines an ordering on the
jobs according to their deadlines. At any time t, among jobs jk that are available for
execution, that is, jk satisfying t ∈ [ak, bk) and jk not yet finished by t, it is the job
with minimum bk that will be executed during [t, t + ε]. EDF is a natural scheduling
principle, and many optimal schedules (such as the continuous min-energy schedule
described above) in fact conform to it. All schedules considered in the remainder of
this paper are EDF schedules. Hence we assume the jobs in J = {j1, . . . , jn} are
indexed by their deadlines.

We introduce an important tool for solving the discrete DVS scheduling problem:
an EDF schedule that runs at some constant speed s (except for periods of idleness).

Definition 3.1. An s-schedule for J is a schedule which conforms to the EDF
principle and uses constant speed s in executing any job of J .

As long as there are unfinished jobs available at time t, an s-schedule will select
a job by the EDF principle and execute it at speed s. An s-schedule may contain
periods of idleness when there are no jobs available for execution. An s-schedule may
also yield an unfeasible schedule for J since the speed constraint may leave some jobs
unfinished by their deadlines.

Definition 3.2. In any schedule S, a maximal subinterval of [0, 1] devoted to
executing the same job jk is called an execution interval (for jk with respect to S).
Denote by Ik(S) the collection of all execution intervals for jk with respect to S. With
respect to the s-schedule for J , any execution interval will be called an s-execution
interval, and the collection of all s-execution intervals for job jk will be denoted by
Isk.

Notice that for any EDF schedule S, it is always true that Ii(S) ⊆ [ai, bi] −
∪i−1
k=1Ik(S). For a given J , we observe some interesting monotone relations that exist

among the EDF schedules of J with respect to different speed functions. These
relations will be exploited by our algorithms later. They may also be of independent
interest in studying other types of scheduling problems.

Lemma 3.3. Let S1 and S2 be two EDF schedules whose speed functions satisfy
s1(t) > s2(t) for all t whenever S1 is not idle.

(1) For any t and any job jk, the workload of jk executed by time t under S1 is
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always no less than that under S2.
(2) ∪i

k=1Ik(S1) ⊆ ∪i
k=1Ik(S2) for any i, 1 ≤ i ≤ n.

(3) Any job of J that can be finished under S2 is always finished strictly earlier
under S1.

(4) If S2 is a feasible schedule for J , then so is S1.
Proof. We prove (1) and (2) by induction on i. When i = 1, since both S1 and S2

start executing j1 at time a1, it is easy to see that induction hypotheses (1) and (2)
are both true. Assume that they hold for jobs j1, . . . , ji−1; we will prove (1) and (2)
for ji. The time V1 available for executing ji under S1 is V1 = [ai, bi] − ∪i−1

k=1Ik(S1),
which satisfies V1 ⊇ V2 for the corresponding available time under S2 because of
induction hypothesis (2). This together with the assumption s1(t) > s2(t) proves (1);
that is, the execution of ji by S1 will always be ahead of that by S2. Assuming that
S2 finishes ji at time t, then we have Ii(S1) ⊆ [ai, t] ⊆ ∪i

k=1Ik(S2) from which (2)
follows inductively.

Note that as a special case, Lemma 3.3 holds when we substitute s1-schedule and
s2-schedule, with s1 > s2, for S1 and S2, respectively.

Lemma 3.4. The s-schedule for J contains at most 2n s-execution intervals and
can be computed in O(n log n) time if the arrival times and deadlines are already
sorted.

Proof. The end of an execution interval corresponds to the moment when either
a job is finished or a new job arrives. There can be at most 2n such endpoints, and
hence at most 2n s-execution intervals. If the arrival times and deadlines are already
sorted, then generating one s-execution interval costs O(log n) time, and the entire
schedule can be computed in O(n log n) time. This completes the proof.

4. Partition of jobs by speed level. We will consider the first stage of the
algorithm for optimal discrete DVS in this section. Clearly, to get an O(dn log n)-
time partition of J into d groups corresponding to d speed levels, it suffices to give
an O(n log n) algorithm which can properly separate J into two groups according to
any given speed s.

Definition 4.1. Given a job set J and any speed s, let J≥s and J<s denote the
subset of J consisting of jobs whose executing speeds are ≥ s and < s, respectively, in
the (continuous) optimal schedule of J . We refer to the partition 〈J≥s, J<s〉 as the
s-partition of J .

Let T≥s ⊆ [0, 1] be the union of all critical intervals CIi with Csi ≥ s. By
Lemma 2.2, a job i is in J≥s if and only if its interval [ai, bi] ⊆ T≥s. Thus J≥s

is uniquely determined by T≥s, and we can focus on computing T≥s instead. Let
T<s = [0, 1] − T≥s, and we refer to 〈T≥s, T<s〉 as the s-partition of time for J .

An example of J with 11 jobs is given in Figure 1, together with the optimal speed
function Sopt(t). The portion of Sopt(t) lying above the horizontal line Y = s projects
to T≥s on the time axis. In general, T≥s may consist of a number of connected
components.

In the remainder of this section, we will show that certain features existing in the
s-schedule of J can be used for identifying connected components of T<s. This then
leads to an efficient algorithm for computing the s-partition of time 〈T≥s, T<s〉.

Definition 4.2. In the s-schedule for J , we say a deadline bi is tight if job ji is
either unfinished at time bi or is finished just on time at bi. An idle interval g = [t, t′]
in the s-schedule is called a gap.

Figure 2 depicts the s-schedule for the sample job set J considered in Figure 1.
All tight deadlines and gaps have been marked along the time axis. By overlaying the
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Fig. 1. The s-partition for a sample J. The jobs are represented by their intervals only and
indexed according to deadline. Solid intervals represent jobs belonging to J≥s, while dashed intervals
represent jobs belonging to J<s.

Speed

s

Time
T

1 2 5 3 4 5 6 11 10 7 8 9 10

Fig. 2. The s-execution intervals for the same J in Figure 1 are illustrated, where the number
indicates which job is being executed. Shaded blocks correspond to gaps (idle time), while arrows
point to tight deadlines.

s-partition of time 〈T≥s, T<s〉 for J , we notice that (1) tight deadlines exist only in
T≥s, and (2) each connected component of T≥s ends with a tight deadline. We prove
below that these properties always hold for any job set.

Lemma 4.3. (1) Tight deadlines in an s-schedule can exist only in T≥s.

(2) The rightmost point of each connected component of T≥s must be a tight
deadline.

Proof. As observed before, the only jobs available for execution during T<s are
those from J<s. Furthermore, by property (3) of Lemma 3.3, all jobs of J<s will
be finished strictly before their deadlines under the s-schedule, thus yielding no tight
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deadlines in T<s. This proves property (1). For property (2), we argue that it is a
consequence of property (1) in Lemma 3.3. Let bi be the end of a connected component
of T≥s. Job ji, being the last executed job of a critical interval, is finished exactly on
time under Sopt (which runs at speed at least s throughout T≥s). Therefore, job ji
must have a tight deadline under the s-schedule.

Property (2) of Lemma 4.3 gives a necessary condition for identifying the right
boundary of each connected component of T≥s. The corresponding left boundary of
such a component can also be identified through left-right symmetry of the scheduling
problem with respect to time.

Definition 4.4. Given a job set J , the reverse job set Jrev consists of jobs with
the same workload but time intervals [1− bi, 1− ai]. The s-schedule for Jrev is called
the reverse s-schedule for J . We call an arrival time ai (for the original job set J)
tight if 1 − ai corresponds to a tight deadline in the reverse s-schedule for J .

One may also view the reverse s-schedule as a schedule which runs backwards:
starting from time 1 and executing jobs of J by the latest arrival time first principle at
constant speed s whenever possible. Lemma 4.5 is the symmetric analogue of Lemma
4.3.

Lemma 4.5. (1) Tight arrival times in an s-schedule can exist only in T≥s.

(2) The leftmost point of each connected component of T≥s must be a tight arrival
time.

Lemmas 4.3 and 4.5 are not sufficient by themselves to enable an efficient sepa-
ration of T≥s from T<s. Fortunately, we have an additional useful property related
to T<s. Observe that in Figure 2 all gaps of the s-schedule fall within T<s. This is
in fact true in general, and, furthermore, a gap must exist in T<s as we prove next.

Lemma 4.6. Gaps in an s-schedule can exist only in T<s; furthermore, a gap
must exist in T<s.

Proof. Suppose a gap in an s-schedule occurs at some time t ∈ T≥s; that is, all
jobs J(t) in J whose intervals overlap t have been finished. In particular, no jobs
belonging to J(t)

⋂
J≥s are available. Since the schedule sopt runs at higher speed

than s over T≥s in executing J≥s, it must also finish all jobs of J(t)
⋂
J≥s before

time t by Lemma 3.3. In other words, sopt would have a gap at time t which is not
possible. This proves that gaps can exist only in T<s. For the second part, we note
that the total workload of J<s, which is executed over T<s, is less than s · |T<s|;
hence a gap must exist.

Finally, we collect the properties that will be used by the partition algorithm in
the following theorem. We first give a definition.

Definition 4.7. Given a gap [x, y] in an s-schedule, we define the expansion
of [x, y] to be the smallest interval [b, a] satisfying (1) [b, a] ⊇ [x, y], and (2) b and a
are tight deadline and tight arrival time, respectively, of the s-schedule. (Note: we
adopt the convention that 0 is considered a tight deadline, while 1 is considered a tight
arrival time.) See Figure 3.

Theorem 4.8. (1) A gap always exists in an s-schedule if T<s �= ∅.
(2) The expansion [b, a] of a gap [x, y] defines the connected component in T<s

containing [x, y].

Proof. Property (1) comes from Lemma 4.6, while property (2) follows from
Lemmas 4.3 and 4.5.

Notice that although Theorem 4.8 guarantees that one can always find a gap and
then use it to identify a connected component C of T<s (provided T<s �= ∅), it is not
true that all connected components of T<s must contain gaps and can be identified
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Fig. 3. Gap expansion: the indicated gap will be expanded into [b, a], a connected component
of T<s.

simultaneously. However, once a component C is found, by deleting the s-execution
intervals of all jobs whose interval [ai, bi] intersects with C, gaps can surely be found
(provided T<s − C �= ∅), and the process can continue. This is true because, by
reasoning similar to that of Lemma 4.6, the total workload of the remaining jobs in
J<s over T<s − C is less than s · |T<s − C|; hence a gap must exist.

The detailed algorithm for generating the s-partition is given in Algorithm 2
below.

Theorem 4.9. Algorithm 2 finds the s-partition 〈J≥s, J<s〉 for a job set J in
O(n log n) time.

Proof. The correctness of the algorithm is based on Theorem 4.8 and the dis-
cussions following the theorem. For the complexity part, sorting and generating s-
schedules take O(n log n) time. We now analyze individual steps inside the for loop.
For step 1, finding the expansion of a gap takes only O(log n) time by binary search;
with at most n expansions (to find at most n connected components) the total cost is
O(n log n). Step 2 can be done, with standard data structures such as interval trees, in
time O(log n)+|J<s

new|, which amounts to total time O(n log n) since
∑

|J<s
new| = O(n).

It remains to consider steps 7 and 8. Since each individual gap is added to and deleted
from the sorted list Gaps only once, and since there are at most 2n s-execution inter-
vals (hence gaps), the cost is at most O(n log n). This shows that the total running
time of Algorithm 2 is O(n log n).

We next use Algorithm 2 as a subroutine to obtain Algorithm 3.

Theorem 4.10. Algorithm 3 partitions job set J into d subsets corresponding to
d speed levels in time O(dn log n).

5. Two-level schedule. After Algorithm 3 completes the multilevel partition
of J into subsets J1, . . . , Jd, we can proceed to schedule the jobs in each subset Ji
with two appropriate speed levels si and si+1. We will present a two-level scheduling
algorithm whose complexity is O(n log n) for a set of n jobs. For this purpose, it
suffices to describe how to schedule the subset J1 with two available speeds s1 and
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Algorithm 2 Bipartition

Input: job set J and speed s
Output: s-partition of J

Sort arrival times and deadlines
Generate the s-schedule and reverse s-schedule for J
J≥s ← J
J<s ← ∅
T≥s ← [0, 1]
T<s ← ∅
Gaps = sorted list of gaps in s-schedule
while Gaps �= ∅ do

1. Choose any gap [x, y] from Gaps. Find the expansion [b, a] of [x, y].
2. J<s

new = {all jobs in J≥s whose interval [aj , bj ] intersects with [b, a] }
3. J≥s ← J≥s − J<s

new

4. J<s ← J<s ∪ J<s
new

5. T≥s ← T≥s − [b, a]
6. T<s ← T<s ∪ [b, a]
7. Gaps = Gaps ∪ { s-execution intervals of jobs in J<s

new}
8. Delete all gaps that are contained in [b, a]

end while
Return J<s and J≥s

Algorithm 3 Multilevel Partition

Input:
job set J and speed s1 > · · · > sd > sd+1 = 0
Output:
Partition of J into J1, . . . , Jd corresponding to speed levels

for i = 1 to d do
Obtain J≥si+1 from J using Algorithm 2
Ji ← J≥si+1

J ← J − Ji
Update J as in Algorithm 1

end for

s2, where s1 > s2 > 0. We will schedule each connected component of J1 separately.
Thus, the two-level scheduler deals only with “eligible” input job sets, i.e., those with
a continuous optimal schedule speed sopt(t) satisfying s1 ≥ sopt(t) ≥ s2 for all t.
(Clearly, this condition is satisfied by each connected component of J1 = J≥s2 output
from Algorithm 3.) We give an alternative and equivalent definition of “eligibility” in
the following. This definition does not make reference to sopt(t), and hence is more
useful for the purpose of deriving a two-level schedule directly.

Definition 5.1. For a job set J over [0, 1], a two-level schedule with speeds s1

and s2 (or (s1, s2)-schedule for short) for J is a feasible schedule s(t) for J , which is
piecewise constant over [0, 1] with either s(t) = s1 or s(t) = s2 for any t.

In other words, an (s1, s2)-schedule for J is a schedule using only speeds s1 and
s2 which finishes every job and leaves no idle time.

Lemma 5.2. For a job set J over [0, 1], an (s1, s2)-schedule exists if and only if
(1) the s1-schedule for J is a feasible schedule, and
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(2) the s2-schedule for J contains no idle time in [0, 1].
Proof. The “only if” direction is easy to see. Suppose a two-level schedule s(t)

exists with s1 ≥ s(t) ≥ s2 for all t ∈ [0, 1]. It follows from Lemma 3.3 that with speed
s1 the processor can finish all jobs just as with speed s(t), while with speed s2 the
processor will not finish any job earlier than with speed s(t), and hence will never
be idle. This proves (1) and (2). For the “if” direction, suppose (1) and (2) both
hold. Because the s1-schedule generates a feasible schedule, the optimal continuous
schedule sopt(t) must satisfy sopt(t) ≤ s1 for all t ∈ [0, 1]. On the other hand, (2)
implies J = J≥s2 by Lemma 4.6; that is, sopt(t) ≥ s2 for all t ∈ [0, 1]. Using the result
in [4], we can first calculate the continuous optimal schedule sopt(t) for J and then
adjust the execution speed s of each job to be a combination of s1 or s2 in the right
proportion to achieve the same average speed s. This results in a two-level schedule
for J with speeds s1 and s2.

In view of the preceding lemma, we give the following definition of eligibility for
input job sets to two-level scheduling.

Definition 5.3. A job set J over [0, 1] is said to be eligible for (s1, s2)-scheduling
if

(1) the s1-schedule for J is a feasible schedule, and
(2) the s2-schedule for J contains no idle time in [0, 1].
We will consider only eligible job sets in discussing two-level scheduling in the

remainder of this section. An (s1, s2)-schedule for J is said to be optimal if it consumes
minimum energy among all (s1, s2)-schedules for J .

Lemma 5.4. All (s1, s2)-schedules for an eligible job set J consume the same
amount of energy, and hence are optimal.

Proof. The energy consumption is determined by the total amount of time the
processor runs at speeds s1 and s2, respectively. Suppose, in an optimal schedule for
J , that α time is devoted to speed s1 and β time is devoted to speed s2. An optimal
schedule will not contain any idle period; hence the following equations are satisfied:

{
αs1 + βs2 =

∑
Ri,

α + β = 1.

Clearly, any (s1, s2)-schedule for J will also satisfy the above two equations. Since
these equations uniquely determine α and β, the lemma follows.

The two-level schedule as described in the proof of Lemma 5.2, which first com-
putes the continuous optimal schedule and then rounds the execution speed of each
job up and down appropriately [4], requires O(n3) computation time. We now de-
scribe a more efficient algorithm which directly outputs a two-level schedule without
first computing the continuous optimal schedule. The algorithm runs in O(n) time
if the input jobs are already sorted by deadline (as obtained via Algorithm 3) and
O(n log n) time in general.

The two-level scheduling algorithm (Algorithm 4) proceeds as follows. It first
computes the s2-schedule for J which in general does not provide a feasible schedule.
We then transform it into a feasible schedule by suitably adjusting the execution speed
of each job from s2 to s1 and possibly extending its execution interval if necessary.
These adjustments are done in an orderly and systematic manner to ensure overall
feasibility. The algorithm needs to consult the corresponding s1-schedule of J in
making the transformation. An (s1, s2)-schedule for J is produced at the end which
by Lemma 5.4 is an optimal two-level schedule.
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Algorithm 4 Two-Level Schedule

Input:
speeds s1, s2, where s1 > s2

An eligible job set J for (s1, s2)-scheduling
Variables:
Committed: the list of allocated time intervals.
Committed(i): the time intervals allocated to job ji.

Output:
Optimal (s1, s2)-schedule for J

Compute s1-schedule for J to obtain Is1k for k = 1, . . . , n.
Compute s2-schedule for J to obtain Is2k for k = 1, . . . , n.
Committed ← ∅
for i = n downto 1 do

1. I =Is2i − Committed
2. Take I ′ ⊆ Is1i of appropriate length (possibly 0) from the right end of Is1i

to obtain an (s1, s2)-schedule for ji over I ∪ I ′

3. Committed(i) = I ∪ I ′

4. Committed ← Committed ∪ Committed(i)
end for

5.1. Correctness of two-level scheduling algorithm. Let J be an eligible
job set for (s1, s2)-scheduling. We will show that Algorithm 4 indeed outputs an
(s1, s2)-schedule for J .

The jobs in J are sorted in increasing order by their deadlines as j1, j2, . . . , jn.
After computing the s1-schedule and s2-schedule for J , the algorithm then allocates
appropriate execution time and speed for each job ji in the order i = n, . . . , 1. Step
2 of the for loop carries out the allocation for job ji. We examine this step in more
detail in the following lemma.

Lemma 5.5. In step 2 of the for loop, by choosing an appropriate interval I ′ ⊆ Is1i
(assuming Is1i ∩ Committed = ∅), an (s1, s2)-schedule for job ji over I ∪ I ′ can be
found where I = Is2i − Committed.

Proof. There are two cases to consider when step 2 is encountered. Suppose job
ji can be feasibly scheduled with speed s1 over I = Is2i − Committed. Since the
s2-schedule of ji over I clearly has no idle time, Lemma 5.2 ensures that an (s1, s2)-
schedule exists for job ji over I. Suppose ji cannot be feasibly scheduled at s1 over
I. Under the assumption Is1i ∩ Committed = ∅, we can take sufficient length of time
I ′ from Is1i so that ji can be finished at s1 over I ∪ I ′. Therefore one can always find
an (s1, s2)-schedule for job ji over I ∪ I ′.

We next prove that the assumption Is1i ∩Committed = ∅ in Lemma 5.5 is indeed
satisfied when step 2 is encountered in the ith iteration (see property (3) below). In
fact, we show by induction on i that the following induction hypotheses are maintained
by the algorithm at the start of the ith iteration for i = n, . . . , 1.

Lemma 5.6. At the beginning of the ith iteration of the for loop, the following
are true:

(1) Committed(i + 1) ⊆ Is1i+1 ∪ Is2i+1.

(2) ∪n
k=i+1I

s2
k ⊆ Committed ⊆ (∪n

k=i+1I
s1
k ) ∪ (∪n

k=i+1I
s2
k ).

(3) Committed ∩ (∪i
k=1I

s1
k ) = ∅.
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Proof. It is easy to verify that all three induction hypotheses hold initially for
i = n. Now assume that they hold for iterations i+1, . . . , n; we will prove them for the
ith iteration. Property (1) is a result of how Committed(i+1) is selected as discussed
in Lemma 5.5. For property (2), the right side follows from (1) since Committed =
∪n
k=i+1Committed(k). The left side follows from the fact that, by Lemma 5.5, each

Committed(k) always uses up all remaining time in Is2k not already committed to
previous jobs. To prove (3), let V = ∪i

k=1I
s1
k . First, note that V is disjoint from

∪n
k=i+1I

s1
k . Next, V is contained in ∪i

k=1I
s2
k by property (2) of Lemma 3.3; hence V

is disjoint from ∪n
k=i+1I

s2
k . Thus it follows from (2) that Committed ∩ V = ∅.

Theorem 5.7. Given an eligible job set J for (s1, s2)-scheduling, Algorithm 4
generates an (s1, s2)-schedule for J .

Proof. Each job ji is feasibly executed, with no idle time, over Committed(i)
at speeds {s1, s2} as specified in Lemma 5.5. By the time the algorithm terminates,
Committed = ∪n

k=1Committed(k) ⊇ ∪n
k=1I

s2
k = [0, 1] by property (2) of Lemma

5.6. Hence there is no idle time in [0, 1]. The resulting schedule thus satisfies the
requirements of an (s1, s2)-schedule for J .

5.2. Complexity of two-level scheduling algorithm. We will show that the
cost of Algorithm 4 is O(n log n). The algorithm first computes the s1-schedule and s2-
schedule for J in O(n log n) time. The resulting list Ls1 with at most 2n s1-execution
intervals is already sorted, and similarly for the list Ls2 of s2-execution intervals. A
sorted list Ls1,s2 , of size at most 4n, representing Ls1 ∩Ls2 can be obtained with cost
O(n). Using appropriate pointers from lists Ls1 , Ls2 , and Committed into Ls1,s2 ,
each step of the for loop can be carried out in constant time plus the number of
intervals visited. Execution of step 2 may cause a splitting of some interval in Ls1 (to
represent interval I ′) and corresponding splitting in Ls1 , Ls1,s2 , and Committed. As
only a single split can be introduced in each iteration, the overall effect is only O(n).
Also each subinterval in Ls1 , Ls2 , and Ls1,s2 needs to be visited only once. Hence the
total running time of the algorithm is O(n) if the input jobs are sorted (as output by
Algorithm 3). We have proved the following theorem.

Theorem 5.8. Algorithm 4 computes an optimal two-level schedule for J in
O(n log n) time.

Algorithm 5 Optimal Discrete DVS Schedule

Input:
job set J
speed levels: s1 > s2 > · · · > sd > sd+1 = 0
Output:
Optimal Discrete DVS Schedule for J

Generate J1, J2, . . . , Jd by Algorithm 3
for i = 1 to d do

Schedule jobs in Ji using Algorithm 4 with speeds si and si+1

end for
The union of the schedules give the optimal Discrete DVS schedule for J
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6. Optimal discrete voltage schedule.

Theorem 6.1. Algorithm 5 generates a min-energy discrete DVS (MDDVS)
schedule with d voltage levels in time O(dn log n) for n jobs.

Proof. This is a direct consequence of Theorems 4.10, 5.7, and 5.8.

We next show that the running time of Algorithm 5 is optimal by proving an
Ω(n log n) lower bound in the algebraic decision tree model.

Theorem 6.2. Any deterministic algorithm for computing an MDDVS schedule
with d ≥ 2 voltage levels will require Ω(n log n) time for n jobs.

Proof. The integer element uniqueness (IEU) problem is known to have Ω(n log n)
computational complexity in the algebraic decision tree model [8]. We now make a
linear reduction from IEU to MDDVS. Suppose the given instance of IEU consists of
n positive integers {x1, x2, . . . , xn}. First, compute N = max{xi} in linear time. We
construct a job set J = {j1, j2, . . . , jn} over time span [0, N ] with [ai, bi] = [xi − 1, xi]
and Ri = 1. (The time span can be normalized to [0, 1] by scaling all numbers
appropriately.) Thus the time intervals of all the jobs are disjoint if and only if the
integers xi are distinct. Set the available speed levels to be s1 = n (to guarantee
feasibility) and sd = 1, while s2, . . . , sd−1 may be any values in between. It is easy
to see that the answer to the IEU problem is yes (all integers xi are distinct) if and
only if MDDVS ≤ n (by executing every job at speed sd = 1). This completes the
reduction.

7. Conclusion. In this paper we considered the problem of job scheduling on
a variable voltage processor with d discrete voltage/speed levels. We give an algo-
rithm which constructs a minimum energy schedule for n jobs in O(dn log n) time,
which is optimal for fixed d. The min-energy discrete schedule is obtained with-
out first computing the continuous optimal solution. Our algorithm consists of two
stages: a multilevel partition of J into d disjoint groups Ji, followed by finding a
two-level schedule for each Ji using speeds si and si+1. The individual modules in
our algorithm, such as the multilevel partition and two-level scheduling, may be of
interest in and of themselves aside from the main result. Our algorithm admits a
simple implementation, although its proof of correctness and complexity analysis are
nontrivial. We have also discovered some nice fundamental properties associated with
EDF scheduling under variable speeds. Some of these properties are stated as lemmas
in section 3 for easy reference. Our results may provide some new insights and tools
for the problem of min-energy job scheduling on variable voltage processors. Aside
from the theoretical value, we also expect the algorithm to be useful in generating
optimal discrete schedules for simulation purposes as in the continuous case.
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Abstract. Consider a synchronous network of processors, modeled by directed or undirected
graph G = (V,E), in which in each round every processor is allowed to choose one of its neighbors
and to send a message to this neighbor. Given a processor s ∈ V and a subset T ⊆ V of processors,
the telephone multicast problem requires computing the shortest schedule (in terms of the number
of rounds) that delivers a message from s to all the processors of T . The particular case T = V is
called the telephone broadcast problem.

These problems have multiple applications in distributed computing. Several approximation al-
gorithms with polylogarithmic ratio, including one with logarithmic ratio, for the undirected variants
of these problems are known. However, all these algorithms involve solving large linear programs.
Devising a polylogarithmic approximation algorithm for the directed variants of these problems is an
open problem, posed by Ravi in [Proceedings of the 35th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’94), 1994, pp. 202–213].

We devise a combinatorial logarithmic approximation algorithm for these problems that applies
also for the directed broadcast problem. Our algorithm has significantly smaller running time and
seems to reveal more information about the combinatorial structure of the solution than the previous
algorithms that are based on linear programming.

We also improve the lower bounds on the approximation threshold of these problems. Both prob-
lems are known to be 3/2-inapproximable. For the undirected (resp., directed) broadcast problem
we show that it is NP-hard (resp., impossible unless NP ⊆ DTIME(nO(log n))) to approximate it
within a ratio of 3 − ε for any ε > 0 (resp., Ω(

√
logn)).
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1. Introduction. Consider a network of processors modeled by a directed or
undirected n-vertex graph G = (V,E). Assume that the communication in the net-
work is synchronous, i.e., occurs in discrete “rounds,” and in every round every pro-
cessor is allowed to pick one of its neighbors and to send a message to this neighbor.
The telephone broadcast problem requires computing a schedule with a minimal num-
ber of rounds that delivers a message from a given single processor, which generates
the message, to all the remaining processors in the network. A more general telephone
k-multicast problem accepts as input also a set of terminals T ⊆ V of size |T | = k
and requires computing the shortest schedule that delivers the message to all the
processors of T , whereas the processors of V \ T may be left uninformed.

The telephone broadcast and multicast are basic primitives in distributed com-
puting and computer communication theory, and they are used as building blocks for
various more complicated tasks in these areas (see, e.g., [HHL88]). The optimization

∗Received by the editors February 6, 2004; accepted for publication (in revised form) July 11,
2005; published electronically January 27, 2006. A preliminary version of this paper appeared in
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 438–447.

http://www.siam.org/journals/sicomp/35-3/44074.html
†Department of Computer Science, Yale University, New Haven, CT 06520-8285 (elkin@cs.yale.

edu). This author’s work was supported by the Department of Defense University Research Initiative
(URI), administered by the Office of Naval Research under grant N00014-01-1-0795. Part of this
author’s work was done at the School of Mathematics, Institute for Advanced Study, Princeton, NJ.

‡Department of Computer Science, Rutgers University, Camden, NJ (guyk@crab.rutgers.edu).

672



APPROXIMATING DIRECTED MULTICAST 673

variants of the broadcast and multicast primitives were intensively studied during the
last decade [BGN+98, KP95, R94, S00, F01].

Kortsarz and Peleg [KP95] devised the first approximation algorithm for the undi-
rected broadcast problem. Their algorithm constructs schedules that can be longer
than the optimal schedule by Θ(

√
n) for the instance at hand. In a breakthrough

paper [R94], Ravi devised an algorithm that provides an O( log2 k
log log k )-approximation

for the undirected multicast problem. This result obviously implies an O( log2 n
log log n )-

approximation for the undirected broadcast problem. Bar-Noy et al. [BGN+98] im-
proved this result and devised an algorithm that provides logarithmic approximation
guarantees for the undirected multicast and broadcast problems.

Note that all these algorithms do not apply for the directed versions of these
problems. The importance of designing algorithms for telephone broadcast on directed
graphs was realized already some 10 years ago by Ravi, who placed this problem in
the first place in the list of open problems in the Conclusion section of [R94].

Also, both known approximation algorithms that provide polylogarithmic guar-
antees for these problems [R94, BGN+98] use large linear programming ( LP). To
the best of our knowledge, the worst-case running time for solving the linear program
of [BGN+98] is no smaller than Ω(n6). The algorithm of [R94] is significantly faster
(even though it is also an LP-based algorithm) and requires Õ(|E||V |2) expected time1

or Õ(|E||V |3) deterministic time. However, its approximation guarantee is superlog-
arithmic.

In this paper we devise a deterministic combinatorial O(log n) ratio algorithm for
the telephone broadcast problem that applies to the directed broadcast problem as
well. For the undirected case, the algorithm has O(log k) ratio for the k-multicast
problem. The worst-case running time of our algorithm is Õ(|E||V |), which is a
significant improvement over the worst-case running times of [BGN+98] and [R94].

We also study the more general heterogeneous postal model (see [BGN+98]). In
this model each vertex v has a delay 0 ≤ ρ(v) ≤ 1. The vertex that sends a message
is “busy” at the first ρ time units starting from its sending time. In addition, every
arc e has a delay l(e) representing the time required to send the message over e.
The broadcast problem in the heterogeneous postal model was studied in [BGN+98],
where the authors have shown that their algorithm (based on LP) can be adapted to
this model, and provides a logarithmic approximation guarantee for the corresponding
broadcast problem. We show that our combinatorial algorithm also can be adapted to
give an O(log n) ratio broadcast algorithm for the directed case, and an O(log k) ratio
algorithm for the multicast variant on undirected graphs, within the heterogeneous
postal model. The running time of the adapted version of our algorithm is Õ(|E||V |).
In addition, we generalize the heterogeneous postal model and introduce the arc-
dependent heterogeneous postal model, in which the delay of a vertex v depends on
the arc it uses to send the message. We believe that this model captures modern
communication networks, in which the major components (links and processors) are
not homogeneous, more truthfully than the heterogeneous postal model of [BGN+98]
and than all the other models that were previously considered in the literature (such
as the postal model of [BK94] and the logP model of [CKP+96]). We adapt our
algorithm to the arc-dependent heterogeneous postal model and show that it provides
a logarithmic approximation guarantee for the directed and undirected versions of the
corresponding broadcast problem. However, this most general version of our algorithm

1We use the notation Õ(f(n)) to denote O(f(n) · polylog(f(n))).
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does use LP and has a slightly higher running time of Õ(|V |3). No approximation
algorithm was previously known for this version of the problem.

From the point of view of the hardness of approximation, the best known lower
bound on the approximation threshold for the (directed and undirected) telephone
broadcast problems is 3/2 [S00]. In this paper we show that it is NP-hard to approx-
imate the undirected broadcast problem within a ratio of 3 − ε for any ε > 0 and
that the directed telephone broadcast problem is Ω(

√
log n)-inapproximable unless

NP ⊆ DTIME(nO(log n)).
Implications for network design. A large body of research deals with network

design problems in which the objective is to optimize more than one optimization cri-
terion simultaneously (see, e.g., [MRR+01]). Such optimization problems are called
bicriteria optimization problems. Consider the problem of constructing a spanning
tree of the input graph that optimizes the maximum degree and the depth of the
tree simultaneously. We call this problem the “degree-depth problem.” Ravi [R94] has
shown that this problem is closely related to the telephone broadcast problem and has
designed the first bicriteria approximation algorithm for it that provides simultaneous
polylogarithmic approximation to both the maximum degree and the depth. Defin-
ing poise of a tree to be the sum between its maximum degree and its depth, this
result implies directly a polylogarithmic approximation guarantee for the problem
of constructing a spanning tree with minimum poise (henceforth, the poise prob-
lem). The algorithm of [BGN+98] can be adapted to provide a logarithmic bicriteria
approximation for the degree-depth problem, implying, consequently, a logarithmic
approximation algorithm for the poise problem.

Our algorithm for the telephone broadcast problem can also be adapted to the
degree-depth and poise problems, and it provides logarithmic bicriteria approxima-
tion for the former and logarithmic approximation for the latter. As in the case with
the telephone broadcast problem, our algorithm is the first to apply to the directed
versions of both problems, and it is the first combinatorial algorithm for these prob-
lems. The discussion above about the worst-case running times of the three different
approximation algorithms (those of [R94], [BGN+98], and ours) for the telephone
broadcast problem is applicable for the degree-depth and poise problems as well.

Consequent developments. After a preliminary version of this paper was published
in STOC 2002 [EK02], we published two more papers [EK03a, EK03b] on this subject.
In [EK03a] we have shown that the techniques developed in the current paper can be
employed to devise a sublogarithmic approximation algorithm for the undirected ver-
sions of the telephone broadcast and multicast problems, as well as for the undirected
degree-depth and poise problems. Specifically, the approximation guarantee that is
achieved in [EK03a] for the telephone multicast problem is O( log k

log log k ). In [EK03b]
we studied the directed multicast problem and devised an approximation algorithm
with multiplicative approximation guarantee of O(log n) and additive approximation
guarantee of O(

√
k).

2. Preliminaries.

2.1. Graphs and trees. Let G = (V,E) be a directed graph (henceforth, di-
graph). Given a subset W of V , let G(W ) = (W,E(W )), E(W ) = {〈u,w〉 ∈ E |
u,w ∈ W} denote the subgraph induced by W .

The distance dist(u, v) between u and v is the number of arcs in the shortest path
between u and v. For a pair of subsets A, B of vertices, the distance from A to B is
the minimum distance from a vertex u ∈ A to a vertex w ∈ B.

The outdegree outdeg(v) of a node v is the number of arcs leaving v.
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For a vertex u ∈ V , let N(u) = {v | 〈u, v〉 ∈ E} denote the set of neighbors of u.
For a digraph G = (V,E), let G′ = (V,E′), E′ = {(u,w) | 〈u,w〉 ∈ E} denote the

undirected underlying graph of G.
Let T be a digraph whose underlying graph is a tree, i.e., an acyclic and connected

graph.
Definition 2.1. A digraph T as above is called an arborescence if there is a

vertex r ∈ V (called root) such that for any other vertex v ∈ V there exists a unique
directed path from r to v. The vertex r is called the root of the arborescence.

The depth of an arborescence T , denoted as h(T ), is defined by h(T ) = maxv∈V ′

distT (r, v). The degree of an arborescence T , denoted deg(T ), is the maximum out-
degree of a vertex in T , i.e., maxv∈V ′ outdeg(v). The set of leaves of T , denoted L(T ),
is the set of the vertices with no outgoing arcs in the directed case and with degree 1
in the undirected case.

A collection of vertex-disjoint arborescences is called forest. The height (resp., de-
gree) of the forest F , denoted h(F ) (resp., deg(F )), is defined by h(F ) = maxT∈F h(T )
(resp., deg(F ) = maxT∈F deg(F )).

2.2. Schedules. At any given moment, the vertices are split into the set of
informed vertices I and the set of uninformed vertices U = V \ I. At the beginning,
I = {s}. Further, U ′ denotes the subset of U that contains vertices that still need
to be informed; in the broadcast case U ′ = U , while in the multicast case U ′ may be
much smaller.

The message transmission is performed in rounds, each requiring one time unit.
A round is a matching between the subsets I and U with all the arcs of the matching
oriented from a vertex in I to a vertex in U . In other words, in each round vertices
that belong to a subset of the set of informed vertices send the message through this
matching to a subset of vertices from the set U . Let Ii, Ui denote the subsets of
informed and uninformed vertices, respectively, at the beginning of round i. The ver-
tices of U that participate in the round (i.e., belong to the vertex set of the matching)
become informed and, consequently, are removed from the subset U and are added to
the subset I.

A proper schedule is a collection of matchings M1,M2,M3, . . . , such that Mi is a
matching between the subsets Ii and Ui, and I = {s} when the schedule starts and
I = V when the schedule ends.

The length of a schedule is the number of rounds it uses.

The optimum value. Let opt be the minimum number of rounds required for
broadcasting from s on the instance at hand. Since the size of I can at most double
in each round, it follows that opt ≥ 	log n
. In addition, opt ≤ n − 1 since at least
one additional vertex becomes informed in each round. (Otherwise, the instance is
infeasible.) Our algorithm is provided with a guess opt′ of the correct value of opt,
and the algorithm distinguishes between the case when no schedule of length at most
opt′ exists and the case when there exists a schedule of length at most opt′ · log n.
This enables us to figure out the correct value of opt up to a logarithmic factor via
binary search.

The optimum tree. Consider the optimum schedule. This schedule defines a di-
rected tree denoted by T ∗. The parent of u in the tree is the vertex that sent the
message to the vertex u. Without loss of generality, it can be assumed that such a
vertex is unique.

The following observation is immediate.
Observation 1. h(T ∗), deg(T ∗) ≤ opt.
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Nonlazy schedules. A schedule is called nonlazy [BGN+98] if in each round a
maximal matching Mi between I and U is used. A schedule of this type uses a simple
greedy rule that ensures that the only idle informed vertices will be those that satisfy
that each of their neighbors either is in I or is informed in the current round by some
other vertex from I.

2.3. Spiders. Spiders were shown to be useful for telephone broadcast in
[BGN+98].

A set of directed paths S = {P1, . . . , Pq} all starting at the same vertex v is called
a spider if the paths are vertex-disjoint except for sharing v. The vertex v is called
the head of the spider.

The length of the spider S, denoted �(S), is maxP∈S |P |.
The degree of the spider S, denoted deg(S), is |S| = q, i.e., the number of paths

in the spider.
The value of the spider S, denoted val(S), is deg(S) + �(S) − 1.
The following observation is immediate.
Observation 2. Using a nonlazy schedule, the head of a spider S can deliver the

message to the other spider vertices in val(S) rounds.

3. Overview of the algorithm. The algorithm is given for the more general
problem of multicasting to a subset T ⊆ V of terminals. The analysis of the upper
bound is identical, but since performance is evaluated in terms of opt, the minimum
number of rounds required for broadcast, instead of the minimum number of rounds
for multicasting to T , we obtain logarithmic upper bounds on the approximation
thresholds of the directed broadcase problem, the undirected broadcast problem, and
the undirected multicast problem but not on the threshold of the directed multicast
problem. (In the case of the undirected multicast problem, there is an easy way
to modify the analysis so that the upper bound would be obtained in terms of the
multicast optimum. Analogous modification, however, fails in the case of the directed
multicast problem.)

An important combinatorial structure that will be used in this paper is called a
fork. Informally, a fork is a pair of “short” vertex-disjoint paths starting with the same
vertex v and ending at two uninformed vertices u,w. A path is short if its length is
at most opt, the minimum number of rounds required for completing broadcast. The
vertex v is called the head of the fork. As the paths are short and there are only two
paths, it is easy to see that if v is informed, then it can quickly inform both u and w.

Our algorithm iteratively finds as many vertex-disjoint forks as possible. It main-
tains a set U corresponding to the set of vertices that are uninformed and have not
yet been covered by forks, as well as a set U ′ of uninformed terminals not covered
by forks. The set U ′ is called a packing if the graph contains no forks. A useful
property that our algorithm utilizes is that vertices of a packing can be informed very
efficiently.

We next provide a high-level description of the algorithm.
• The extraction step: Extract a maximal collection of vertex-disjoint forks

from G(U); i.e., keep extracting until G(U) contains no more forks.
• The recursion step: Recursively inform the set of the fork heads.
• The forking step: Inform the vertices of the forks, now that the heads have

been informed. Since the forks are vertex-disjoint and are short, this can be
done in parallel.

• The packing step: It remains to inform the vertices of U ′ that remain in
U , which now form a packing. This is done by a reduction to a minimal
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maximum-degree set-cover problem in a bipartite graph. The latter graph
has the set of informed vertices on one side and the set U ′ on the other side.
The cover is then found by a single computation of maximum flow.

4. Packing and short schedules.

4.1. Packing. In this section, we describe one of the main tools of our algorithm.
Let U ′ ⊆ U be a subset of the uninformed vertices. We say that the vertices of U ′ are
dispersed, or form a packing in G(U), if for any two vertices v, u ∈ U ′, every vertex
w ∈ U is of distance more than opt from either u or v in G(U).

Formally, we have the following definition.
Definition 4.1. Let G = (V,E) be a digraph, U ′ ⊆ U be a subset of vertices,

and opt be an integer. Then a (U,U ′)-fork triple is a triple (u, t1, t2) with t1, t2 ∈ U ′

and u ∈ U , such that u �= t2 and distG(U)(u, t1), distG(U)(u, t2) ≤ opt. Also, U ′ is
called a packing with respect to the set U if no (U,U ′)-fork exists.

Observe that if no (U,U ′)-fork triple exists, then for each vertex w in U there
may exist at most one descendant in the tree T ∗ that belongs to the subset U ′. If we
think of w as “covering” its descendants, then U ′ is a packing in the sense that each
vertex of U ′ is covered by a different unique vertex of U .

A straightforward way for testing the existence of a (U,U ′)-fork triple in an n-
vertex digraph G = (V,E) is to examine all breadth-first-search (BFS) trees in G(U).
Such an examination requires O(|E||V |) time.

4.2. Mentor vertices. Consider a packing U ′ with respect to the subset U . We
assign to each vertex u of U ′ a mentor vertex m(u), which is the last vertex along the
directed path between s and u in T ∗ belonging to I. The definition is valid since such
a path starts with s ∈ I and ends at u ∈ U . Observe that the path in T ∗ from m(u)
to u contains only vertices from the subset U (except m(u).) Intuitively, the mentors
aid in fast transmission of the message to the vertices of the subset U ′.

Let P ∗(m(u), u) denote the arcs of the path from m(u) to u in T ∗. Then the
following lemma holds.

Lemma 4.2. The graph induced by the set
⋃

u∈U ′ P ∗(m(u), u) is a collection of
vertex-disjoint spiders. The spider heads belong to I, while other spider vertices belong
to U . The value of the forest is at most 2 · opt.

Proof. By the definition of m(u), all the vertices that belong to the unique path
in T ∗ from m(u) to u, except m(u), belong to the set U . We show that no two paths
P ∗(m(z), z) and P ∗(m(u), u), z �= u, can intersect unless m(z) = m(u). In the latter
case, m(u) = m(z) is the only vertex common to the two paths.

For the sake of contradiction, suppose that some v ∈ U is contained in paths
P ∗(m(u), u) and P ∗(m(z), z). By the definition of a mentor, the path from v to u
and the path from v to z both belong to G(U). In addition, the paths P ∗(m(u), u),
P ∗(m(z), z) are of length at most opt (see Observation 1). It follows that the distance
to u from v in G(U), and also the distance from v to z in G(U), is at most opt. This
contradicts the assumption that U ′ is a packing.

Finally, note that both the depth and the maximum degree of the tree T ∗ are at
most opt. Hence, |P ∗(m(u), u)| ≤ opt for every vertex u ∈ U ′, and the degree of each
spider (which is a subgraph of T ∗) is, consequently, at most opt. Hence, the value of
this forest of spiders is at most 2 · opt.

It can now be seen that if U ′ is a packing, not too many vertices can have v as
their mentor. Let ν(v) = {u | v = m(u)} denote the number of vertices with v as a
mentor for v ∈ I.
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Fig. 1. Computing a cover with minimal maximum degree via maximum flow.

Lemma 4.3. If U ′ is a packing, then ν(v) ≤ opt for all v ∈ I.

Proof. Observe that ν(v) is precisely the degree of the appropriate spider from
the forest

⋃
u∈U ′ P ∗(m(u), u). Hence, by Lemma 4.2, ν(v) ≤ opt.

4.3. Informing a packing.

Set covers of low degree. Let B = (V1, V2, A) be a bipartite graph. We say that
S ⊆ V1 covers V2 if every vertex v2 ∈ V2 has a neighbor in S.

Definition 4.4. We say that a cover S of V2 has degree d if there exists a
mapping ψ : V2 �→ S so that for every v2 ∈ V2, ψ(v2) ∈ S ∩ N(v2) and so that each
vertex in S is assigned at most d vertices of V2, namely, for each v ∈ S, |{v2 ∈ V2 |
ψ(v2) = v}| ≤ d.

We next present a reduction from the problem of determining whether there exists
a cover for V2 of degree at most L to the maximum flow problem. Orient the edges of
the bipartite graph B from V1 to V2 and assign unit capacity to each of them. Add
a source s with arcs of capacity L to each vertex of V1 and a sink t with an arc of
unit capacity from each vertex of V2. There exists a cover for V2 of degree at most L
if and only if there exists a flow of capacity |V2|. By the integrality of the maximum
flow, this flow directly translates to a cover (see Figure 1).

To find a cover of minimum degree, we perform binary search for the value
of L. Thus, a cover for V2 with minimal maximum degree can be found in time
O(log |V |)T (|E|, |V |), where T (|E|, |V |) = O(|E| · |V | · log |V |) is the time complexity
of computing the maximum flow [GT88].

The graph H. Consider the graph H(I, U ′, Ê) that describes all pairs v ∈ I and
u ∈ U ′, with v being a potential mentor for u. Formally, we have the following
definition.

Definition 4.5. The bipartite graph H(I, U ′, Ê) has I∪U ′ as its vertex set. Two
vertices v ∈ I and u ∈ U ′ are connected by an undirected edge in Ê if distG(U∪{v})(v, u)
≤ opt. In other words, this condition means that there exists a path of length at most
opt from v to u that uses only vertices from the set U (except v).

Low-degree covers for H. Our goal is to show that every packing U ′ has a low-
degree cover in H. Consider the assignment ψ from U ′ to I defined by ψ(u) = m(u),
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where m(u) is the mentor of the vertex u. Note that the arc 〈u,m(u)〉 belongs to Ê,
and thus the assignment ψ defines a cover. In other words, M = {m(u) | u ∈ U ′} is a
subset of I so that each u ∈ U ′ has a neighbor in M (where the neighborhood is with
respect to the graph H). By Lemma 4.3, ν(v) = |{u | ψ(u) = v}| ≤ opt. We have
proven the following corollary.

Corollary 4.6. There exists a cover of U ′ in H(I, U ′, Ê) of maximum degree
at most opt, and such a cover can be found in time O(log |V | · T (|E|, |V |)), where
T (|E|, |V |) = O(|E| · |V | · log |V |) is the time required for computing a maximum
flow.

Using a low-degree cover to inform U ′. Given a cover S of U ′ with maximum
degree at most opt, consider the shortest path P (ψ(u), u) from ψ(u) to u in the graph
G({ψ(u)}∪U). The proof of the following lemma is similar to the one of Lemma 4.2.

Lemma 4.7. The union of the paths P (ψ(u), u) induces a collection of vertex-
disjoint spiders, whose heads belong to the cover S and whose values are at most
2 · opt.

Proof. The paths P (ψ(u), u) can only intersect at their start vertices, as otherwise
a fork triple can be extracted (see the proof of Lemma 4.2). The number of paths
in each spider is at most the degree of the cover, which is at most opt. In addition,
the length of each path in the spider is at most opt, by the definition of the graph
H(I, U ′, Ê). Hence, the value of each spider is at most 2 · opt.

Since all the spiders have small values, the following procedure informs a packing
U ′ using a small number of rounds.

Algorithm 1. Inform-Packing(I,U,U’)
1. Construct the graph H(I, U ′, Ê).
2. Find an assignment ψ : U ′ �→ I of degree at most opt that covers H using

flow computation.
3. For each u ∈ U , let P (ψ(u), u) be the shortest path from ψ(u) to u in

G({ψ(u)} ∪ U).
4. Each spider head informs all the vertices that belong to the spider using a

nonlazy schedule.
Lemma 4.8. Let P be the spider collection induced by the union of the paths

P (ψ(u), u), u ∈ U ′. Any nonlazy schedule broadcasts over P in at most 2 ·opt rounds,
informing all the remaining vertices of the set U ′.

Proof. By Lemma 4.7, P is a union of vertex-disjoint spiders, each of value at most
2 · opt. Since the spiders are vertex-disjoint, the lemma now follows from Observation
2.

4.4. Transforming U ′ into a packing: The extraction step. The following
algorithm accepts as input a subset U of V and the subset U ′ and deletes vertices
from U , so that for the resulting set U at the end of the extraction, no fork triple
is left; U ′ is a packing. The collection of extracted forks is denoted by F and their
heads by R.

In the following algorithm, it is assumed for simplicity that when a fork is found
from u ∈ U to t1, t2 in U ′, the two paths used from u to t1 and from u to t2 are found
by the BFS procedure (i.e., they are shortest paths). These two paths may intersect.

Algorithm 2. Extract-forks (G,U,U ′)
1. F ← ∅.
2. While there exists a (U,U ′)-fork triple F do:

3. Add F into F .
4. U ← U \V (F ), U ′ ← U ′ \V (F ), where V (F ) is the set of vertices in F .

5. return (U,U ′,F).
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It is easy to see that the resulting forks in F are vertex-disjoint and that the
returned set U ′ is a packing with respect to the returned set U .

Say that we establish (via a BFS computation) that no two distinct terminals
have a short distance from u in G(U). In such a case the vertex u cannot serve as a
head of a fork triple. Therefore, the number of BFS explorations is at most |V |, and
hence extracting the fork triples can be accomplished in time Õ(|E| · |V |).

5. The algorithm: Combining the pieces. The input to the algorithm is the
directed graph G, source vertex s, and a set U ′ of terminals. The algorithm accepts
a guess of opt as part of its input.

5.1. The algorithm. Initially invoked as ApproximateBroadcast(G,s,V ), then
the algorithm invokes itself recursively with different subsets serving as third param-
eter. The sequence of these subsets is a monotone decreasing one with respect to
containment.

Algorithm 3. ApproximateBroadcast(G(V,E), s, U ′)
1. U ← V \ s, I ← {s}.
2. /* Transforming U ′ into a packing */

If U ′ is not a (U,U ′)-packing then
(a) /* The extraction step */

Let (U,U ′,F) ← Extract-forks(G,U).
Let R be the set of heads of F .

(b) /* The recursive step */
Recursively invoke ApproximateBroadcast(G, s,R).

(c) /* The forking step */
Use a nonlazy schedule to inform the forks in F.
Let I ← I ∪ V (F).

3. /* The packing step */
Invoke Inform-Packing(I, U, U ′).

5.2. Analysis of the number of rounds. The following observation follows
from the fact that each fork triple contains at most 2 · opt + 1 vertices.

Observation 3. Each invocation of the forking step (line 2(c) in Algorithm Ap-
proximateBroadcast) requires at most 2 · opt rounds.

Lemma 5.1. The number of rounds used by Algorithm ApproximateBroadcast for
broadcasting to an arbitrary set U ′ is at most 4 · (log2(|U ′|) + 1) · opt.

Proof. We first show that each time lines 2 and 3 of Algorithm Approximate-
Broadcast are executed, the number of rounds required is at most 4opt. The two
steps that perform the actual broadcast are the fork-extracting and packing steps.
The bound of 4 · opt per iteration follows from Lemma 4.8 and Observation 3.

We now analyze the depth of the recursion. Let U ′
i (resp., Ri) be the set of

terminals (resp., roots of the forks) on iteration i. Since the forks are vertex-disjoint,
and since |U ′

i+1| ≤ |Ri|, the depth of the recursion is at most log2 |U ′| + 1. Hence,
overall, the number of rounds of the constructed broadcast is at most 4 · (log2(|U ′|) +
1) · opt.

To summarize, we have the following theorem.
Theorem 5.2. Algorithm ApproximateBroadcast is an O(log n)-approximation

algorithm for the directed telephone broadcast problem.
Note that the main obstacle to generalizing Algorithm ApproximateBroadcast

to the multicast problem is the fact that the set R is not necessarily contained in
the set U ′. In the undirected case this obstacle can be overcome by using fork pairs
instead of fork triples. Intuitively, a fork pair is a pair of nearby terminals of U ′ that
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are still not used for other fork pairs. From each fork pair, precisely one terminal
is inserted to R, guaranteeing both |R| ≤ |U ′|/2 and R ⊆ U ′. This results in an
O(log k)-approximation for the undirected k-multicast problem.

5.3. The running time of the algorithm. The most time-consuming com-
putational tasks in each iteration are extractions of forks and computations of max-
imum flow. Recall that the extraction step can be completed with at most |V | BFS
computations, in time O(|V ||E|), while the time for finding a low-degree cover is
O(|V ||E| log |V |) [GT88]. Since each iteration reduces the number of target terminals
by a factor of at least 2, the depth of the recursion is O(log n). Hence, the time
complexity of the algorithm is O(|V ||E| log2 |V |). Finding the optimal value of opt
via binary search adds one more logarithmic factor.

5.4. The postal and arc-dependent postal models. In this section we con-
sider some generalized versions of telephone communication.

The heterogeneous postal model. We start with the heterogeneous postal model,
introduced in [BGN+98], in which each vertex v has a delay 0 ≤ ρ(v) ≤ 1. The vertex
that sends a message is “busy” at the first ρ time units starting from its sending time.
In addition, every arc e has a delay l(e) representing the time required to send the
message over e. (Note that in the context of these generalized models one has to
consider a continuous time scale instead of a discrete one, and hence the notion of
“round” becomes obsolete.)

To adapt Algorithm ApproximateBroadcast to the heterogeneous postal model,
the paths in forks should be weighted (with weight function determined by the delay
function l). In addition, when computing a low-degree cover of U ′, the delay ρ(v) for
v ∈ I has to be taken into account. A vertex v can have up to �opt/ρ(v)� children in
the tree T ∗ (that is, possibly more than opt). Hence, the capacities of the arcs that
are adjacent to the source s1 in the flow graph H(I, U ′, Ê) (see section 4.3) should
be set as opt/ρ(v). Finally, when constructing the arc set Ê, the distances between
v ∈ I and u ∈ U ′ in the graph G({v} ∪ U) should take into account the length of the
arcs (i.e., they are weighted distances).

The rest of the proof can be carried out in an analogous way. Particularly, the
cover with bounded degree gives rise to a collection of “narrow” spiders. A vertex
v that heads one of these spiders and has degree at most opt/ρ(v) in the spider can
deliver the message to all its children in the spider in at most opt time units.

The arc-dependent postal model. We next generalize our algorithm even further.
Consider the arc-dependent heterogeneous postal model, in which the delay of a vertex
v depends on the arc through which it chooses to send the message.

Consider again the construction of the flow graph H(I, U ′, Ê). Observe that
despite the assumption that the set U ′ is a packing, even in the standard telephone
model for a given pair of vertices v ∈ I, u ∈ U ′, there might be more than one shortest
path from v to u in the graph G(U ∪ {v}). Let N(v) denote the set of neighbors of
v. For each vertex z ∈ N(v), let Pz denote the shortest path from v to u that passes
through the vertex z. Let ω(Pz) =

∑
e∈Pz

l(e) denote the weight of the path Pz. The

edge (v, u) is added to the flow graph H(I, U ′, Ê) if for some z ∈ N(v), the weight of
the path Pz plus the delay ρ(〈v, z〉) incurred by the vertex v while sending a message
through the arc 〈v, z〉 is at most opt. (Observe that this is a direct generalization of
the construction for the heterogeneous postal model.)

Let Cu(v) ⊆ N(v) be the subset of N(v) that contains only those neighbors z of
N(v) for which ω(Pz) + ρ(v, z) ≤ opt. Suppose that for every vertex u ∈ U ′ that is
connected to v in Ê we would pick an arbitrary vertex zu ∈ Cu(v) for serving as a relay
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station for broadcasting the message from v to u. (This is exactly what is implicitly
done in the telephone and heterogeneous postal models.) The weighted degree of the
vertex v in the spider

⋃
{Pzu | u ∈ U ′, (v, u) ∈ Ê} would be deg(v) =

∑
{ρ(〈v, zu〉) |

u ∈ U ′, (v, u) ∈ Ê}. Note that unlike the telephone and heterogeneous postal models,
in the arc-dependent model deg(v) depends on the choice of the vertices zu. To tackle
this difficulty, we assign to each edge (v, u) ∈ Ê capacity ρ(〈v, zu〉), where zu is the
vertex of Cu(v) that minimizes ρ(〈v, zu〉). We need to choose a cover S ⊆ I and an
assignment ψ : U ′ → I that minimizes maxv∈S{degψ(v)}, where degψ(v) is given by∑

{ρ(〈v, zu〉) | u such that ψ(u) = v}.
We claim that the set S = {ψ(u) | u ∈ U ′}, for ψ(u) = m(u), is a cover of U ′ of

weighted degree at most opt. Indeed, let v = m(u). Consider the path P ∗(v, u) from
v to u in T ∗. Let w be the neighbor of v in this path.

Note that w ∈ Cu(v). Hence the delay in sending the message from v to w is
ρ(v, w) ≥ ρ(v, zu). Therefore, the weighted degree of the assignment defined by T ∗ is
a lower bound on the optimum broadcast time. Thus, this weighted degree cannot be
larger than opt. It follows that the assignment ψ(u) = m(u) yields a cover assignment
for U ′ with maximum weighted degree at most opt.

We want to find a cover S and an assignment ψ that minimizes (or almost min-
imizes) maxv∈S{degψ(v)}. The problem of finding the best weighted degree assign-
ment is known in the literature as the problem of scheduling of independent parallel
machines. This problem is NP -hard and, in fact, is 3/2-inapproximable [LST90].

For our purposes, any constant approximation for this problem is sufficient. Un-
fortunately, we are not aware of a combinatorial algorithm that provides a constant ap-
proximation ratio for this problem. We use the 2-approximation algorithm of [LST90]
that formulates the problem as an integer linear program, relaxes it to allow fractional
solutions, finds a basic feasible solution, and uses a standard rounding technique.

Hence, this way we find a (weighted) cover for the set U ′ of degree at most 2 ·opt.
It follows that the value of the resulting spiders is at most 3 · opt. The rest of the
analysis can be carried through in a straightforward way. To summarize, our algorithm
can be adapted to provide a logarithmic approximation guarantee for the directed
and undirected versions of broadcast problem in the arc-dependent heterogeneous
postal model. The approximation guarantee of the generalized algorithm is only by
a constant factor greater than the approximation guarantee of our algorithm for the
telephone broadcast problem; i.e., it is O(log n). Note, however, that for this most
general version of our algorithm we do use LP. The particular linear programs that are
used in the algorithm are solvable via Lagrangian relaxation in time Õ(|V |3) [LST90],
and so the overall running time of the generalized algorithm is at most Õ(|V |3) as well.

5.5. Implications for network design.

A bicriteria approximation for depth and outdegree. Our algorithm provides a bi-
criteria approximation for the depth-degree problem. In other words, given a digraph
for which there exists a spanning arborescence of height h and maximum degree d,
our algorithm constructs a spanning arborescence of maximum depth O(log n) ·h and
maximum degree O(log n) · d.

The tree is built “backwards” (from the leaves to the root). Throughout the
algorithm we maintain a forest. The number of trees in the forest gradually decreases
until they merge into a single spanning arborescence.

We show how to build this arborescence recursively. The collection of forks F
that is computed by our algorithm on the first level of the recursion forms the initial
forest. The heads R need now to be recursively connected to the root s. Let T ′ be the
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arborescence connecting s to R that was computed by the recursion. By the inductive
hypothesis, the set T ′ is indeed an arborescence, and, in particular, each arc appears
in T ′ at most once. However, observe that T ′ may not be arc- or vertex-disjoint with
the forest F . We need to unite T ′ and F in order get a single spanning arborescence.
This is done by taking the graph induced by F ∪T ′ and computing the shortest path
arborescence from s to all the vertices v �= s in G(F ∪ T ′).

Clearly, the resulting shortest path arborescence T ′′ has depth O(log n)·h, because
each recursive iteration can add at most h to the depth of the arborescence. Similarly,
on each recursive invocation, for every vertex v at most d arcs that are adjacent to v
are added to the arborescence. Hence, the upper bound of O(log n)·d on the maximum
degree follows.

Hence, our algorithm provides an (O(log n), O(log n))-bicriteria approximation for
both the directed and undirected versions of the degree-depth problem. The algorithm
is combinatorial, and its running time is Õ(|E| · |V |). Note that the same algorithm
provides a logarithmic approximation for the directed and undirected poise problems.

6. Hardness results. In this section we present some lower bounds on the
approximation thresholds of the (undirected and directed) telephone broadcast prob-
lems.

Definition 6.1. Given an undirected bipartite graph G = (V1, V2, E), a subset
of vertices S ⊆ V1 is a set cover for G if for any v2 ∈ V2 there exists v1 ∈ S such that
(v1, v2) ∈ E.

Let V = V1 ∪ V2. Let |V | = n.
Given a constant 0 < c ≤ 1 and an integer-valued function t = t(n), the YES-

instance of the set-cover (t(n), c)-promise problem is an undirected bipartite graph G
for which there exists a set cover S of size |S| ≤ t(n). The NO-instance of the set-
cover (t(n), c)-promise problem is an undirected bipartite graph G for which any set
cover S has size |S| ≥ c log n · t(n).

The set-cover (t(n), c)-promise problem is given either a YES-instance or a NO-
instance of the problem, and the goal is to determine whether it is a YES-instance or
a NO-instance.

It is known [LY95] that there exists a constant c such that the set-cover (t(n), c)-
promise problem is NP-hard for t(n) = 	

√
n
.

Given an instance of the set-cover (t(n), c)-promise problem, an undirected bipar-
tite n-vertex graph G = (V1, V2, E), |V1| = |V2| = n/2, we construct a graph Ḡ in the
following way. Insert into Ḡ an isomorphic copy of G. For j = 1, 2, let V̄j be the image
of Vj under the isomorphism, and, more generally, for a subset X ⊆ V of vertices,
let X̄ be the image of X under the isomorphism. Add a new vertex s and connect
it with all the vertices of V̄1 via outgoing arcs. In addition, add a directed path of
length 	(c/2)t(n) log n
 that starts in s and contains 	(c/2)t(n) log n
 new vertices.
Denote by s′ the tail of the path. Construct a complete binary arborescence T of
depth 	log n
, rooted at s′, with the set of leaves that contains V̄1 and (maybe) some
new vertices, and such that all the remaining vertices of T are new vertices. Finally,
replace each star (V̄1, V̄

1
2 ), (V̄1, V̄

2
2 ), . . . , (V̄1, V̄

r
2 ), with V̄1 ∈ V̄1, V̄

1
2 , V̄

2
2 , . . . , V̄

r
2 ∈ V̄2,

by a complete binary arborescence of depth 	log r
 rooted at V̄1 and whose set of
leaves L(T ) contains the set {V̄ 1

2 , V̄
2
2 , . . . , V̄

r
2 } and (maybe) some new vertices. All

the other vertices of the tree T are new vertices.
This completes the description of Ḡ (see Figure 2). Its construction is very similar

to the reduction of [S00] that proves the hardness of 3/2 for the problem. We next
use Ḡ as a building block in our reduction that shows the hardness of Ω(

√
log n) for
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Fig. 2. The first level of the graph Ḡi. The path from s to s′ is of length Θ(t(n) · logn). The
vertex s′ is connected via a complete binary arborescence to the vertex set V̄1. The vertices of V̄1

are connected via complete binary arborescences to their neighbors in V̄2. In turn, the vertices of
the set V̄2 serve as sources of the next level of the recursive construction.

the directed broadcast problem and then, via a similar reduction, a hardness of 3− ε
for any ε > 0 for the undirected broadcast problem.

We first analyze the properties of the graph Ḡ.

Lemma 6.2. If G is a YES-instance of the set-cover (t(n), c)-promise problem,
then there exists an ({s}, V̄2)-schedule Π of length |Π| = O(t(n)) for the instance
(Ḡ, s) of the directed telephone broadcast problem.

Proof. We describe the schedule Π that satisfies the assertion of the lemma. Let
S ⊆ V1 be an optimal set cover of the instance G. The schedule starts with delivering
the message from the vertex s to all the vertices of the set S̄. Note that as s is
connected via outgoing arcs to all the vertices of V̄1, it follows that all the vertices of
the set S̄ will be informed within |S| rounds. By assumption, G is a YES-instance
of the set-cover (t(n), c)-promise problem, and hence |S| ≤ t(n). Hence, this step
requires at most t(n) rounds.

Next, the schedule delivers the message from S̄ to all the vertices of the set V̄2.
Observe that since the set S is a set cover for the set V2, only O(log n) rounds will
be required to deliver the message to all the vertices of V̄2 through the auxiliary
arborescences that connect the sets V̄1 and V̄2. Hence, altogether, the length of this
schedule is at most t(n) + logn = O(t(n)) (since t(n) = 	

√
n
), and it informs all the

vertices of the set V̄2.
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Lemma 6.3. If G is a NO-instance of the set-cover (t(n), c)-promise problem,
then any ({s}, V̄2)-schedule Π for the instance (Ḡ, s) of the directed telephone broadcast
problem has length |Π| = Ω(t(n) log n).

Proof. By construction, the only way to inform the vertices of the set V̄2 is to
inform all the vertices of a subset S̄ ⊆ V̄1 for some set cover S of V1.

There are two possible ways to inform such a subset S̄: either using the arcs that
connect s to the vertices of V̄1, or through the path between s and s′, and via the
complete binary arborescence T (or by combining these two ways).

Note that as G is a NO-instance, it follows that |S| = |S̄| = Ω(t(n) · log n).
Therefore, the first way requires Ω(t(n) · log n) rounds of telephone broadcast. Also,
recall that the length of the path from s to s′ is Ω(t(n) · log n), and hence informing
even a single vertex v ∈ V̄1 using the second way would require Ω(t(n) · log n) rounds.
Hence, any schedule that informs a subset S̄ ⊆ V̄1 of size Ω(t(n) · log n) requires
Ω(t(n) · log n) rounds of telephone broadcast, proving the claim.

Note that Lemmata 6.2 and 6.3 imply Ω(logn)-inapproximability of the directed
multicast problem, that was known [F01].

However, since for both the YES and NO-instance of the set cover, informing
V̄1 requires Ω(t(n) log n) rounds, this reduction by itself may provide only a constant
hardness of approximation for the broadcast problems. Indeed, by a careful choice
of parameters and some modifications to Ḡ, it is shown in [S00] that this reduction
yields a hardness of 3/2 for the undirected broadcast problem.

Consider the following recursive construction of a triple (Ḡi = (V̄ i, Ēi), si, V̄ i
2 ),

where (Ḡi, si) is an instance of the directed broadcast problem, and V̄ i
2 ⊆ V̄ i. Let

(Ḡ1, s1, V̄ 1
2 ) = (Ḡ, s, V̄2). Let also Z(Ḡ1) denote the set V̄ 1

2 . Given a construction of
(Ḡi, si, V̄ i

2 ), the triple (Ḡi+1, si+1, V̄ i+1
2 ) is constructed in the following way.

Insert an isomorphic copy of Ḡ1 into Ḡi+1. Set si+1 = s1. For j = 1, 2, let V̄ 1
j be

an image of V̄j under the isomorphism. Insert the set V̄ 1
2 into V̄ i+1

2 . For every vertex
V̄ 1

2 ∈ V̄ 1
2 , construct a triple (Ḡi(V̄ 1

2 ), V̄ 1
2 , V̄

i
2 (V̄ 1

2 )), where Ḡi(V̄ 1
2 ) is an isomorphic copy

of Ḡi such that the isomorphism takes si to V̄ 1
2 . All the other vertices of Ḡi(V̄ 1

2 ) are
new vertices. Insert the set V̄ i

2 (V̄ 1
2 ) into V̄ i+1

2 . Form the set Z(Ḡi+1) to be the union
of the isomorphic copies of the sets Z(Ḡi(V̄ 1

2 )) for all the different vertices V̄ 1
2 ∈ V̄2.

This completes the construction of (Ḡi+1 = (V̄ i+1, Ēi+1), si+1, V̄ i+1
2 ).

First, we provide an estimate of the number of vertices of the graph Ḡi.

Lemma 6.4. |V̄ i| = nO(i), i = 1, 2, . . . .

Proof. The proof follows by a straightforward induction on the number of levels
i.

Next, we analyze the graph Ḡi that is obtained by the reduction that was de-
scribed above from a YES-instance G of the set-cover (t(n), c)-promise problem.

Lemma 6.5. If G is a YES-instance of the set-cover (t(n), c)-promise problem,
then for any i = 1, 2, . . . , there exists an ({si}, V̄ i

2 )-schedule Π for the instance (Ḡi, si)
of the directed broadcast problem of length |Π| = O(i · t(n)).

Proof. The proof is by induction on i. The induction base follows from Lemma
6.2.

For the induction step consider the instance (Ḡi+1, si+1). Note that by Lemma
6.2, all the vertices of the set V̄ 1

2 can be informed within O(t(n)) rounds. After that
point every vertex V̄ 1

2 ∈ V̄ 1
2 needs to relay the message to all the vertices of the

set V̄ i
2 (V̄ 1

2 ) through an isomorphic copy of the graph Ḡi. Since the different copies
share no vertices, these broadcasts can be conducted in parallel and, by the induction
hypothesis, can be completed within O(i · t(n)) rounds.
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Lemma 6.6. For any i = 1, 2, . . . , there exists a ({si} ∪ V̄ i
2 , V̄

i \ V̄ i
2 )-schedule Π

of length O(t(n) · log n).

Proof. Consider the graph Ḡi, and suppose that for every isomorphic copy of the
graph Ḡ that is contained in Ḡi, the vertex that corresponds to s is informed.

Consider some single copy of the graph Ḡ. Observe that delivering the message
from s to all the vertices of the set V̄1 through the path from s to s′ and from s′

through the complete binary arborescence to all the vertices of the set V̄1 requires only
O(t(n) · log n) rounds. This is because the distance between s and s′ is O(t(n) · log n),
and after s′ gets the message only O(log n) additional rounds are required to relay
the message from s′ to the vertices of the set V̄1.

Since once V̄1 are informed only O(log n) more rounds are required to inform V̄2,
altogether O(t(n) · log n) rounds are required to deliver the message from s to all the
other vertices of the copy Ḡ, and, furthermore, these deliveries can be conducted in
parallel in different copies.

Corollary 6.7. If G is a YES-instance of the set-cover (t(n), c)-promise prob-
lem, then for any i = 1, 2, . . . , there exists an ({si}, V̄ i)-schedule of length O(t(n) ·
(i + log n)).

Next, we turn to analyzing the graph Ḡi that is obtained by the reduction that
was described above from a NO-instance G of the set-cover (t(n), c)-promise problem.

Lemma 6.8. If G is a NO-instance of the set-cover (t(n), c)-promise problem,
then for any i = 1, 2, . . . , any ({si}, V̄ i)-schedule Π for the instance (Ḡi, si) of the
directed broadcast problem is of length |Π| = Ω(t(n) · log n · i).

Proof. The proof is by induction on i. The induction base follows directly from
Lemma 6.3.

For the induction step, consider the graph Ḡi+1, and consider the isomorphic copy
of Ḡ1 that has the vertex si+1 as the image of the vertex s1 under the isomorphism.
For every schedule Π, by Lemma 6.3, there exists a vertex V̄ 1

2 ∈ V̄ 1
2 in this copy that

is informed only after Ω(t(n) · log n) rounds. Consider the copy Ḡi(V̄ 1
2 ) of the graph

Ḡi. Recall that by construction, this copy of Ḡi is a subgraph of the graph Ḡi+1.
Also, no vertex of this copy Ḡi(V̄ 1

2 ) can be informed before the vertex V̄ 1
2 is informed.

By the induction hypothesis, delivering the message from the vertex V̄ 1
2 to all the

other vertices of the copy Ḡi(V̄ 1
2 ) requires Ω(i · t(n) · log n) rounds. The assertion of

the lemma follows.

Substituting i = log n into Corollary 6.7 we get a broadcast time of O(log n) · t(n)
for a YES-instance. By substituting i = log n into Lemma 6.8 we get a broadcast
time of Ω(log2 n · t(n)) for a NO-instance. Hence the gap is Θ(logn).

We now compare the gap to the number of vertices in the broadcast instance. For
i = log n, the number N of vertices in the broadcast instance is N = nlogn. Hence,
log n =

√
logN . Hence, we get a gap which equals the square of the log of the size of

the instance.

Theorem 6.9. The directed broadcast problem is Ω(
√

log n)-inapproximable un-
less NP ⊆ DTIME(nO(log n)).

Next, we establish inapproximability of 3 − ε for any ε > 0 for the undirected
broadcast problem. This is done via a similar reduction.

Specifically, the graph Ḡ is modified in the following way. The distance between
s and s′ vertices is changed to c · t(n) · log n. (In the directed construction it was

half this value.) Insert into ¯̄G an isomorphic copy of Ḡ, with all the directed arcs

replaced by undirected edges. For j = 1, 2 let ¯̄V j be the image of V̄j under the

isomorphism, and, more generally, for a subset X ⊆ V , let ¯̄X denote its image under
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the isomorphism. Second, for every star (v1, v
1
2), (v1, v

2
2), . . . , (v1, v

r
2) in G with v1 ∈

V1, v
1
2 , v

2
2 , . . . , v

r
2 ∈ V2 (or, in other words, for every complete binary tree rooted at

V̄1 and with the set of leaves that contains the set {V̄ 1
2 , . . . , V̄

r
2 } in Ḡ), insert a path

of length 	log n · c/2 · t(n)
 that connects V̄1 with a vertex V̄ ′
1 , where all the vertices

of this path except of V̄1 are new. Now construct a complete binary tree rooted in
V̄ ′

1 and with the set of leaves that contains {V̄ 1
2 , . . . , V̄

r
2 }, and all the other vertices of

the tree are new. This completes the construction of ¯̄G.
Now the construction of the graph ¯̄Gi for i = 1, 2, . . . , given the graph ¯̄G, is

identical to the construction of Ḡi out of Ḡ.
Lemma 6.10. If G is a YES-instance of the set-cover (t(n), c)-promise problem,

then there exists an ({s}, ¯̄V 2)-schedule Π of length |Π| ≤ (c/2 + o(1))t(n) log n for the

instance ( ¯̄G, s) of the undirected telephone broadcast problem.
Proof. As G is a YES-instance of the set-cover problem, there exists a set cover

S ⊆ V1 for V2 of size at most t(n). Using the edges of the star that connect between

the copy of the vertex s in ¯̄G and the copies of the vertices of S, it is possible to inform
the latter vertices using |S| ≤ t(n) rounds. Since S is a set cover for V2, and since

the distance between the sets ¯̄S and ¯̄V 2 in the graph ¯̄G is c
2 · log n · t(n) + O(log n),

it follows that it is possible to relay the message from the vertices of the set ¯̄S to all
the vertices of the set ¯̄V 2 in ( c

2 + o(1)) · log n · t(n) rounds.
Lemma 6.11. If G is a NO-instance of the set-cover (t(n), c)-promise prob-

lem, then any ({s}, ¯̄V 2)-schedule Π for the instance ( ¯̄G, s) of the undirected telephone
broadcast problem has length |Π| ≥ 3/2 · c · t(n) log n.

Proof. The proof of this lemma is analogous to that of Lemma 6.3. As in that
proof, it is easy to see that for informing all the vertices of the set ¯̄V 2 it is necessary to
inform a subset ¯̄S ⊆ ¯̄V 1 that satisfies that the subset S is a set cover for V2. Informing
the set ¯̄S via the edges that connect the vertex s to the vertices of ¯̄V 1 requires at
least | ¯̄S| ≥ c · t(n) · log n rounds (because G is a NO-instance). Informing a single

vertex from the set ¯̄V 2 using the path that connects s to s′ and using the complete
binary tree T rooted in s′ requires at least c · t(n) · log n rounds, because the length
of this path between s and s′ is c · t(n) · log n. Hence, at least c · t(n) · log n rounds are

required to inform a set ¯̄S, where S is a set cover for V2. Finally, since the distance
between the sets ¯̄V 1 and ¯̄V 2 in the graph ¯̄G is at least c

2 · t(n) · log n, it follows that

informing the vertices of the set ¯̄V 2 once all the vertices of the subset ¯̄S are informed
would require at least c

2 · t(n) · log n additional rounds. Hence, altogether, at least
3
2c · t(n) · log n rounds are required to relay the message from s to all the vertices of

the set ¯̄V 2.
Note that Lemmata 6.10 and 6.11 imply that (3− o(1))-inapproximability of the

undirected multicast problem with the multicast task is informing V2. However, since
for both the YES and NO-instance of the set-cover problem, informing the subset
¯̄V 1 in the instance ( ¯̄G, s) of the undirected telephone broadcast problem requires
t(n) · log n(c + o(1)) rounds, the reduction that uses only Ḡ yields only (3/2 − o(1))-
inapproximability for the undirected broadcast problem. This is, essentially, the re-
duction of [S00].

In the following lemmata we show that the construction of ¯̄Gi yields the desired
(3 − ε)-inapproximability.

Lemma 6.12. | ¯̄V i| = nO(i), i = 1, 2, . . . .
Proof. Similarly to Lemma 6.4, the proof can be derived by a straightforward

induction on i.



688 MICHAEL ELKIN AND GUY KORTSARZ

The proof of the following lemma is analogous to the proofs of Lemmata 6.5 and
6.6.

Lemma 6.13.

1. If G is a YES-instance of the set-cover (t(n), c)-promise problem, then for any

i = 1, 2, . . . , there exists an ({si}, ¯̄V
i

2)-schedule Π for the instance ( ¯̄Gi, si) of
the undirected broadcast problem of length |Π| ≤ i · t(n)(c/2 + o(1)) logn.

2. For any i = 1, 2, . . . , there exists a ({si} ∪ ¯̄V
i

2,
¯̄V \ ¯̄V

i

2)-schedule Π of length
|Π| ≤ t(n) log n(c/2 + o(1)).

The following corollary is immediate, given Lemma 6.13.

Corollary 6.14. If G is a YES-instance of the set-cover (t(n), c)-promise prob-

lem, then for any i = 1, 2, . . . , there exists an ({si}, ¯̄V
i
)-schedule Π for the instance

( ¯̄Gi, si) of the undirected broadcast problem of length |Π| ≤ (i+1)t(n) log n(c/2+o(1)).

We next turn to the analysis of the NO-instance.

Lemma 6.15. If G is a NO-instance of the set-cover (t(n), c)-promise problem,

for any i = 1, 2, . . . , any ({si}, ¯̄V
i
)-schedule for the instance ( ¯̄Gi, si) of the undirected

broadcast problem is of length |Π| ≥ 3 · t(n) log n(c/2 + o(1)) · i.
Proof. The proof of this lemma is analogous to that of Lemma 6.8. The only

difference is that Lemma 6.11 is used instead of Lemma 6.3.

It follows that the undirected broadcast problem is (3 −O(1/i))-inapproximable
unless NP ⊆ DTIME(nO(i)).

Theorem 6.16. For any ε > 0, it is NP-hard to approximate the undirected
broadcast problem within a ratio of 3 − ε.

7. Discussion. We demonstrated that the approximation threshold of the di-
rected telephone broadcast problem is between O(log n) and Ω(

√
log n). Bridging this

gap is a challenging open problem. Determining the approximation threshold of the
directed multicast problem is another important open problem. Here the gap is be-
tween an additive approximation of O(

√
k) (that comes together with a logarithmic

multiplicative factor) [EK03b] and a lower bound of Ω(logn) [F01].
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Abstract. For each pair of algebraic numbers (x, y), the complexity of computing the Tutte
polynomial T (G;x, y) of a planar graph G is determined. This computation is found to be #P-
complete except when (x − 1)(y − 1) = 1, 2 or when (x, y) is one of (1, 1), (−1,−1), (j, j2), or
(j2, j), where j = e2πi/3, in which case it is polynomial time computable. A corollary gives the
computational complexity of various enumeration problems for planar graphs.
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1. Introduction. The main result of this paper is Theorem 5.1, which states
the complexity of computing the Tutte polynomial T (G;x, y) of a planar graph G
at any fixed algebraic point or algebraic curve in the (x, y)-plane. It is #P-complete
(“computationally hard”) almost everywhere, that is, except when (x−1)(y−1) = 1, 2
or when (x, y) is one of (1, 1), (−1,−1), (j, j2), or (j2, j), where j = e2πi/3, in which
case it is polynomial time computable (“computationally easy”).

The corresponding result was done for the input class of general graphs in Propo-
sition 1 of [8], where the complexity differed only on the curve (x − 1)(y − 1) = 2.
Strengthening the result to the smaller input class of planar graphs requires that some
novel, and more intricate, techniques be combined with those already used in [8].

One motivation for examining the planar graph case is that many interesting
graph invariants are obtained as evaluations of the Tutte polynomial, giving the com-
plexity of computing these invariants for planar graphs as an immediate corollary.
For instance, for the input class of planar graphs, it is #P-complete to count any one
of the following: k-colorings, k-flows (for any fixed k ∈ {3, 4, . . . }), independent sets
(forests), spanning sets, or acyclic orientations. And there is an equivalent complex-
ity for one-variable polynomials such as the (all terminal) connectedness reliability
polynomial, the percolation probability polynomial, the q-state Potts model polyno-
mial (for any fixed q ∈ {3, 4, . . . }), as well as, of course, the full two-variable Tutte
polynomial, and almost all specializations of these.

Another motivation is that the planar graph result is an important step toward
answering the analogous question for the Homfly and Kauffman polynomials for knots
and links; see [19].

The paper is arranged with the following sections, some of which have self-
explanatory titles: 1. Introduction, 2. The Tutte polynomial, 3. Computational com-
plexity, 4. Tutte invariants, 5. The main results, 6. Pointed Tutte polynomials, 7. The
radial construction, 8. Some 4 · k-tiles, 9. The radial construction using just T)( and

∗Received by the editors December 31, 2004; accepted for publication (in revised form) August
30, 2005; published electronically January 27, 2006.
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†Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803–4918 (vertigan
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T�, 10. Some useful combinatorial identities, 11. The main constructions, 12. The
remainder of the proofs, and 13. Conclusions.

As a historical note, this work was done in 1989 and appeared in the author’s
DPhil thesis [17].

2. The Tutte polynomial. For graph and matroid theory terminology and
notation, we follow [21] or [12]. The Tutte polynomial is a two-variable polynomial
invariant defined originally for graphs [15, 23] but later extended to matroids [2, 3].

A matroid M consists of a pair M = (E, ρ) with finite ground set E and rank
function ρ : 2E → Z satisfying certain axioms; see [21]. With any graph G we associate
its cycle matroid M(G) = (E(G), ρG) as follows.

Let G = (V,E) be a graph. For A ⊆ E let V (A) be the set of vertices incident
with edges in A. Let G|A (respectively, G‖A) be the subgraph of G consisting of
the edges in A and the vertices in V (A) (respectively, V ). (Thus G‖A may contain
isolated vertices which are deleted to obtain G|A.) Let c(G) denote the number of
components of G. The rank, ρ(G), of G is given by

ρ(G) = |V (G)| − c(G).(2.1)

The cycle matroid, M(G), of G is defined to be M(G) = (E(G), ρG), where for
A ⊆ E,

ρG(A) = ρ(G|A) = |V (A)| − c(G|A) = ρ(G||A) = |V | − c(G||A).(2.2)

If the graph is directed, then the associated matroid is independent of the orientation
of edges. A matroid of the form M(G) is a graphic matroid. Let G and PG denote
the classes of (cycle matroids of) graphs and planar graphs, respectively.

The Tutte polynomial of a matroid M = (E, ρ), with ground set E and rank
function ρ : 2E → Z, is defined to be

T (M ;x, y) =
∑
A⊆E

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A).(2.3)

The Tutte polynomial of a graph G is the same as that of the matroid M(G). We
sometimes abuse notation by writing G instead of M(G).

A matroid has a unique partition into connected components, and for a graph G
the components of M(G) are the edge sets of blocks. In particular, G is 2-connected
if and only if M(G) is connected. If a matroid M = (E, ρ) has connected components
(Ei : i ∈ I), then

T (M ;x, y) =
∏
i∈I

T (M |Ei;x, y);(2.4)

see [21] for more information. In particular, for a graph, its Tutte polynomial is simply
the product of the Tutte polynomial of its blocks. Because of this simple formula we
can almost always restrict attention to 2-connected graphs.

3. Computational complexity. For terminology and notation in computa-
tional complexity, we follow [5, 16]; see also [6, 17, 22]. Every complexity class we
consider will be a class of functions f : {0, 1}∗ → {0, 1}∗, where {0, 1}∗ is the set of
binary strings. Denote the size (or length) of a string w ∈ {0, 1}∗ by ‖w‖. We assume
that the objects we consider, such as graphs, matrices, rationals, polynomials, etc.,
are all encoded as binary strings in a standard way.
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Let FP denote the class of polynomial time computable functions. Thus f ∈ FP
means there is a deterministic algorithm such that for every w ∈ {0, 1}∗, the algorithm
outputs f(w) with the number of steps taken bounded by a polynomial in ‖w‖.

For functions f , g, we let f �
T
g denote that the function f is polynomial time

Turing reducible to g. That is, there is a deterministic g-oracle algorithm to compute
f in polynomial time. A g-oracle algorithm is an algorithm which is allowed to use
the function g at a cost of only one step per use. Loosely speaking, if f �

T
g, then f

being (computationally) hard implies g is hard, while g being (computationally) easy
implies f is easy.

For a class of functions F, we let FPF denote {f : f �
T
g for some g ∈ F}. Also

g is F-complete if g ∈ F and FPF = FP{g}; that is, f �
T
g for every f ∈ F.

The class #P was first defined in [16]. A function g : A × B → {0, 1} is poly-
nomially balanced if, for any (a, b) ∈ A × B such that g(a, b) �= 0, the size of b is
polynomially bounded in the size of a (in particular, for each a ∈ A, there are only
finitely many such b). A function f : A → N is in #P if there exists a function

g : A×B → {0, 1}(3.1)

which is polynomially balanced and polynomial time computable, and is such that for
any a ∈ A,

f(a) = |{b : b ∈ B, g(a, b) = 1}| =
∑
b∈B

g(a, b);(3.2)

that is, on input a, f counts the number of b’s such that g(a, b) = 1. For example,
counting the number of circuits in a graph is in #P since, given a graph a and a
subset of its edges b, it is easy to check in polynomial time whether the set of edges
is a circuit.

The two main classes we consider are FP and #P. Actually, since most evaluations
of the Tutte polynomial are not literally counting problems, we often use the class
FP#P, the class of functions polynomial time Turing reducible to a function in #P.
We abbreviate FP#P to #P.

The relation �
T

is a quasi order; that is, it is reflexive and transitive. Within #P,
the �

T
-minimal elements are the functions in FP, while the �

T
-maximal elements

are the #P-complete functions. All the functions considered in this paper are shown
either to be #P-complete or to be in FP.

Note that #P-complete functions are NP-hard but are in Pspace.

4. Tutte invariants. Let C be a class of matroids. Assume that any matroid
M in C can be encoded as a string in such a way that the size of the encoding of
M = (E, ρ) ∈ C is polynomially bounded in |E| (so that the input size can be taken
to be |E|) and that the rank of any A ⊆ E can be determined in time polynomially
bounded in |E|. This assumption applies to all the classes of matroids mentioned in
this paper (but not to the class of all matroids since there are too many of any given
size).

Define the function

τ2(C) : C → Z[x, y], where M �→ T (M ;x, y).(4.1)

This function determines the Tutte polynomial of each matroid M ∈ C on the whole
(x, y)-plane.
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Let A denote the set of algebraic numbers. For any algebraic point (x0, y0) ∈ A
2

define the function

τ0(C, x0, y0) : C → Q(x0, y0), where M �→ T (M ;x0, y0).(4.2)

This function determines the Tutte polynomial of each matroid M ∈ C at a single
point (x0, y0).

It is also of interest to consider the Tutte polynomial of a matroid “along” an
algebraic curve in the (x, y)-plane. Here is a formal definition (which will soon be
made less formal). Let p ∈ Q[x, y] be an irreducible polynomial, let (p(x, y)) be the
ideal generated by p(x, y), and let K = 〈(x, y) : p(x, y) = 0〉 be the corresponding
algebraic curve. Define the function

τ1(C,K) : C → Q[x, y]/(p(x, y)), where M �→ T (M ;x, y) + (p(x, y)).(4.3)

This function gives T (M ;x, y) reduced modulo p(x, y) (in some predetermined canon-
ical form). If the curve is expressed as a rational curve 〈(x(s), y(s)) : s ∈ A〉, where x
and y are rational functions of s, we can alternatively state

τ1(C,K) sends M ∈ C to T (M ;x(s), y(s)),(4.4)

the latter being a rational function of s. Thus, strictly speaking, the definition of
τ1(C,K) depends on the representation of the curve K. However, it is easily shown
that one can translate between any two of these representations in polynomial time,
so that the computational complexity of τ1(C,K) is independent of the representation
of K.

The polynomial time bounds on the algorithms and reductions presented in this
paper will be fairly evident to those readers familar with computational complexity
except possibly for algebraic manipulations with the outputs of the Tutte invariants.
But note, for example, that the outputs of τ0(C, x0, y0) are not arbitrary algebraic
numbers but are elements of Q(x0, y0), which is a finite degree extension of Q and
whose elements can be represented as rational vectors of a fixed finite dimension.
More generally, outputs of τ1(C,K) and τ2(C) can be expressed as rational vectors
of a dimension that is polynomially bounded in input size. In all cases, the rationals
themselves have a polynomially bounded encoding as strings. And finally, considering
the types of issues addressed in [6], these bounds remain true with all the algebraic
manipulations done, primarily solving linear equations, as is needed for Lagrange
interpolation.

Observe that if (x0, y0) is an algebraic point and K is an algebraic curve containing
(x0, y0), then trivially,

τ0(C, x0, y0) �
T
τ1(C,K) �

T
τ2(C).(4.5)

In certain cases (see Theorems 4.2 and 4.3 below) these reducibilities can be reversed,
motivating the following definitions and terminology.

Definition 4.1. For each q ∈ A define the curves Hq = 〈(x, y) : (x−1)(y−1) =
q〉 and define Hx

0 = 〈(x, y) : x = 1〉 and Hy
0 = 〈(x, y) : y = 1〉. The curves Hx

0 ,
Hy

0 , and Hq for q ∈ A − {0} are called special curves. Let j = e2πi/3. The points
(1, 1), (0, 0), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i), (j, j2), (j2, j) are called special
points.

The following results come from [8]. It is assumed that the class of matroids C

satisfies certain natural technical conditions given in [8] and addressed in detail in
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[17]. All the classes of matroids in this paper easily satisfy these conditions, allowing
the use of Theorems 4.2 and 4.3 below.

The following is Theorem 1 from [8]. (This was proved only when the curve is
expressed as a rational curve, but it is straightforward to extend this, though this
extension is not used here.)

Theorem 4.2. If K is an algebraic curve, then τ2(C) �
T
τ1(C,K) unless K is

a special curve.
The following is Theorem 2 from [8].
Theorem 4.3. If K is a special curve and (x, y) ∈ K, then τ1(C,K) �

T

τ0(C, x, y) unless (x, y) is a special point.
The following is Proposition 1 of [8]. The above two theorems are very useful for

proving this proposition, as well as the main Theorem 5.1. But while Proposition 4.4
and Theorem 5.1 look quite similar—in changing the input class from G to PG, the
computational complexity changes only on the special curve H2—the proofs have
significant differences, and Theorem 5.1 makes essentially no use of Proposition 4.4.

Proposition 4.4.

(i) The function τ2(G) is #P-complete.
(ii) If K is an algebraic curve, then τ1(G,K) is #P-complete unless K = H1, in

which case τ1(G,K) is in FP.
(iii) If (x, y) ∈ A

2 is an algebraic point, then τ0(G, x, y) is #P-complete unless
(x, y) ∈ H1 or (x, y) is a special point, in which case τ0(G, x, y) is in FP.

Note that for a graph G the Ising partition function of G (see [4, 11, 9, 22]) is
given (up to an easily computable factor) by the Tutte polynomial of M(G) along the
curve H2 (see, for example, [22]). By [9], this is #P-complete for graphs, whereas by
[4, 11], this is polynomial time computable for planar graphs.

5. The main results. The main computational complexity result, proved in
section 12, is the following.

Theorem 5.1.

(i) The function τ2(PG) is #P-complete.
(ii) If K is an algebraic curve, then τ1(PG,K) is #P-complete unless K = H1

or K = H2, in which case τ1(PG,K) is in FP.
(iii) If (x, y) ∈ A

2 is an algebraic point, then τ0(PG, x, y) is #P-complete unless
(x, y) ∈ H1 ∪H2 or (x, y) is a special point, in which case τ0(PG, x, y) is in
FP.

Observe that the only special points not on H1 or H2 are (1, 1), (−1,−1), (j, j2),
and (j2, j).

The paper [8] and the book [22] list many well-known quantities associated with
graphs which are obtained (up to an easily computable factor) by evaluating the Tutte
polynomial at certain points and curves. The above theorem shows that most of these
calculations are #P-complete even for planar graphs. Some examples are given in the
following corollary.

Corollary 5.2. The following evaluations are #P-complete.
τ0(PG, 1 − k, 0): counting the number of k-colorings of a planar graph for any

fixed k ∈ {3, 4, . . . }. Note that, by the four-color theorem, the corresponding decision
problem is trivial for k ≥ 4.

τ0(PG, 0, 1 − k): counting the number of k-flows of a planar graph for any fixed
k ∈ {3, 4, . . . }. As above, the corresponding decision problem is trivial for k ≥ 4.

τ0(PG, 2, 1) or τ0(PG, 1, 2): counting the number of independent sets (forests) or
spanning sets in a planar graph (shown independently by Jerrum [10]).
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τ1(PG, Hx
0 ) or τ0(PG, 1, (1 − p)−1): “(all terminal) connectedness reliability” or

“percolation probability” for planar graphs for any fixed p ∈ A−{0, 1}. (Compare this
to the “two-terminal connectedness reliability,” which is given (up to an easily com-
putable factor) by the pointed Tutte polynomial TL along the curve H1 (see section 6
and (6.9)). This was shown to be #P-complete in [13].)

τ0(PG, 2, 0): counting the number of acyclic orientations of a planar graph.
τ1(PG, Hq) or τ0(PG, 1 + q

x−1 , x): the “q-state Potts model” for planar graphs,

for any fixed q ∈ {3, 4, . . . }, x ∈ A−{1}, (q, x) �∈ {(3, j), (3, j2), (4,−1)} (j = e2πi/3).
Moreover, Theorem 5.1 yields some immediate corollaries about the computa-

tional complexity of certain knot and link invariants (using connections in [7, 14]),
while more comprehensive results are obtained with extra work which nevertheless
has Theorem 5.1 as an essential foundation; see [19].

6. Pointed Tutte polynomials. The pointed Tutte polynomials [1] have im-
portant uses in [8, 18, 17]. In those works they appear in conjunction with the matroid
tensor product operation [1], which we do not define here, although we note that it is
crucial for Theorems 4.2 and 4.3, which we certainly use.

We primarily need pointed Tutte polynomials, and the sets defined in (6.1) below,
in various places such as Lemmas 9.1, 11.2, 12.1, and 12.6. They are needed to fill
what would otherwise be a “gap” as discussed preceding Lemma 11.2.

For M = (E, ρ) and g ∈ E define

C(M, g) = {A : g ∈ A,A ⊆ E, ρ(A) = ρ(A− {g}) + 1},
L(M, g) = {A : A ⊆ E − {g}, ρ(A ∪ {g}) = ρ(A)}.(6.1)

The pointed Tutte polynomials [1] are defined by

TC(M, g;x, y) =
∑

A∈C(M,g)

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A),(6.2)

TL(M, g;x, y) =
∑

A∈L(M,g)

(x− 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A).(6.3)

Let C be a class of matroids, and let C = {(M, g) : M = (E, ρ) ∈ C, g ∈ E}. Let
(x, y) be an algebraic point and let K be an algebraic curve. Define the function

τ2
L(C) : C → Z[x, y], where (M, g) �→ TL(M, g;x, y),(6.4)

and define the functions τ1
L(C,K), τ0

L(C, x, y), τ2
C(C), τ1

C(C,K), τ0
C(C, x, y) in the

obvious way (analogous to (4.1)–(4.4)).
When x, y, M , g are known from the context, it is convenient to abbreviate

T (M ;x, y), T (M\g;x, y), T (M/g;x, y), TC(M, g;x, y), and TL(M, g;x, y) to T , T ′,
T ′′, TC , and TL, respectively. These are related by various identities [1] (or [17]). For
instance, if g is not a loop or coloop, then(

T ′

T ′′

)
=

(
(x− 1) 1

1 (y − 1)

)(
TC

TL

)
.(6.5)

Note that the 2 × 2 matrix in (6.5) is nonsingular if and only if (x, y) �= 1, that is,
(x, y) �∈ H1. Using this and sundry other facts, it is easily shown that if (x, y) �∈ H1 and



696 DIRK VERTIGAN

C is closed under minors (see [21]), then τ0
L(C, x, y) and τ0

C(C, x, y) are computationally
equivalent to τ0(C, x, y), and similarly for τ1 and τ2.

However, if (x, y) ∈ H1, then τ0(C, x, y) is in FP since for M = (E, ρ) ∈ C,
T (M ;x, y) is simply (x− 1)ρ(E)y|E|. But, for example, if (x, y) ∈ H1 − {(0, 0)}, then
τ0
L(PG, x, y) and τ0

C(PG, x, y) are #P-complete by the following reasoning. It is clear
from (6.3) that

TL(M, g; 2, 2) = |L(M, g)|.(6.6)

Consider a graph G = (V,E), edge g ∈ E, and subset A ⊆ E − {g}. Now
A ∈ L(M(G), g) if and only if G|A contains a path between the ends of g, by the
equivalence (1) ⇐⇒ (4) in Lemma 9.1. Provan [13] shows that, given a planar graph
G and edge g, determining the number of such subsets is #P-complete. Since this
number is TL(M(G), g; 2, 2), it follows that

τ0
L(PG, 2, 2) is #P-complete.(6.7)

Also τ0
C(PG, 2, 2) is #P-complete since TC(M(G), g; 2, 2) = 2|E|−1 −TL(M(G), g; 2, 2).

Using an argument similar to that in the proof of Theorem 4.3, it follows that
τ0
L(PG, x, y) and τ0

C(PG, x, y) are #P-complete whenever (x, y) ∈ H1 − {(0, 0)}.
The following polynomial, related to the 2-terminal connectedness reliability, is

defined in [13] (where s and t are the ends of edge g):

R(G, s, t; p) =
∑

A∈L(M(G),g)

p|A|(1 − p)|E−A|.(6.8)

Using (6.3), it follows that

R(G, s, t; p) = pρ(E)(1 − p)|E|−ρ(E)TL(M(G), g; p−1, (1 − p)−1).(6.9)

Observe that (p−1, (1 − p)−1) ∈ H1 for all p ∈ A − {0, 1}. Thus finding 2-terminal
connectedness reliability is #P-complete even for any fixed p ∈ A − {0, 1}.

Finally note that since τ2
L(PG) �

T
τ2(PG) (see comments following (6.5)) and

τ0
L(PG, 2, 2) �

T
τ2
L(PG) (similarly to (4.5)), it follows that

τ0
L(PG, 2, 2) �

T
τ2(PG).(6.10)

7. The radial construction. In what follows we regard plane graphs as being
drawn on the 2-sphere. We describe a construction to piece together pieces of plane
graphs. This construction is also important in [19].

Let G be a 2-connected directed plane graph, with vertex, edge, and face sets
V = V (G), E = E(G), and F = F (G). The radial graph of G, denoted G�, is a
simple bipartite plane graph constructed as follows. It is instructive to regard the two
graphs as being drawn simultaneously on the same 2-sphere. The vertex set of G� is
V ∪F , with each vertex f ∈ F of G� drawn in the face f ∈ F of G. There is an edge,
drawn in the obvious way, of G� between vertices v ∈ V and f ∈ F of G� if and only
if vertex v ∈ V is incident with face f ∈ F in graph G. Note that every face of G� is a
square, that is, it is bounded by four edges (regardless of actual shape in a drawing),
and we identify the face set F (G�) of G� with the edge set E = E(G) of G.

Figure 7.1 depicts a particular four-edge graph G (thick directed edges) and its
radial graph G� (thin edges) with its corresponding four square faces. The three
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Fig. 7.1. Graph G (thick edges) and radial graph G� (thin edges).

vertices and three faces of G correspond to the six vertices of G�, which are depicted,
respectively, as triangular and square dots.

We use the orientation of G to add some extra labelling. Define functions h, t :
E → V , where h(e) and t(e) are, respectively, the head and tail of the directed edge
e ∈ E. Also define functions r, l : E → F , where r(e) and l(e) are, respectively, the
right(face) and left(face) of the directed edge e ∈ E, when viewing e as pointing up
(toward the head). Thus, the vertices of G� incident with face e ∈ F (G�) are h(e),
r(e), t(e), l(e) in clockwise order.

When G and G� are drawn simultaneously on the same 2-sphere, then edge e ∈ E
of G appears as the diagonal of face e ∈ F (G�), which connects h(e) and t(e) (see
Figure 7.1 again). Observe that we can also draw simultaneously the plane dual G∗

of G with vertex, edge, and face sets V (G∗) = F (G), E(G∗) = E(G), F (G∗) = V (G),
and with each edge e ∈ E(G∗) = E(G) appearing as the diagonal of face e ∈ F (G�),
which connects l(e) and r(e).

A disk graph H with boundary vertex set B ⊆ V (H) is a plane graph drawn on
a (closed) disk D, such that the drawing intersects the boundary of D precisely in
vertex set B. The vertices in V (H) − B are called the internal vertices. We wish to
glue disk graphs together into larger disk graphs or plane graphs; for this purpose the
labelling of the boundary vertices is important, and we do not equate a disk graph
with its rotations or reflections.

For a positive integer k, a 4 · k-tile is a disk graph with B, D as above, together
with a distinguished set of four boundary points P (that is |P | = 4) on the boundary of
D, with P ∩B = ∅, where there are exactly |B| = 4k boundary vertices in four groups
of k separated by the four points in P . We will typically label the four boundary
points h, r, t, l in clockwise order, or use related names. We treat the disk as a square
with corner points h, r, t, l and call the sides hr, rt, tl, lh in the natural way. The 4k
boundary vertices are labelled hri, rti, tli, lhi for i = 1, . . . , k, and they appear with
the four boundary points h, r, t, l in clockwise order as follows:

h, hr1, · · ·, hrk, r, rtk, · · ·, rt1, t, tl1, · · ·, tlk, l, lhk, · · ·, lh1.(7.1)

For each i = 1, . . . , k, the boundary vertices hri, rti, tli, lhi are said to be of type i.
Observe that boundary vertices of type 1 are consecutive with boundary points h and
t, while boundary vertices of type k are consecutive with boundary points r and l.

Figure 7.2 depicts the boundary labelling in the k = 3 case. Boundary vertices are
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depicted as round dots, while boundary points are depicted as triangular dots (h and t)
and square dots (r and l). Figures 8.1, 8.2, and 11.1(a), with k = 3, 3, 2, respectively,
depict 4 · k-tiles with boundary labels and boundary “diamond” omitted from the
drawing, with the understanding that these omitted features are to be deduced in the
obvious way.

he

hre
1

hre
2

hre
3

rt1
e

rt2
e

rt3
e

tl1
e

tl3
e

tl2
e

lhe
1

lhe
2

lh3
e

e

e

e

t

l r
e

Fig. 7.2. Boundary labelling for a 4 · k-tile (k = 3).

In the radial construction we place a 4 · k-tile in each face of a radial graph and
join them as we now detail. For visualization one may refer to Figures 7.1 and 7.2.
Let G be a plane graph. Let k be a positive integer. For each e ∈ E(G) = F (G�) let
Te be a 4 · k-tile drawn on a disk De with boundary points he, re, te, le in clockwise
order. Other features of the 4·k-tile Te also have an “e” incorporated into the notation
where necessary.

Definition 7.1. Given plane graph G, k, and (Te : e ∈ E) as above, where
E = E(G) = F (G�), the radial construction produces a plane graph denoted

ΘG(Te : e ∈ E)(7.2)

by gluing the graphs Te as follows. For each e ∈ E, place tile Te in face e ∈ F (G�)
of G� so that the boundary of disk De coincides with the boundary of face e ∈ F (G�).
The boundary points he, re, te, le of Te are identified with vertices h(e), r(e), t(e),
l(e) of G�. For each edge of G� incident with faces e, g ∈ F (G�), the appropriate k
vertices of Te are identified with the appropriate k vertices of Tg in the natural way.

Observe that only boundary vertices of the same type are identified.
We emphasize that ΘG(Te : e ∈ E) consists only of graphs (Te : e ∈ E) joined

together as specified and does not include G�, or G or G∗, but instead these graphs
determine how the Te’s are joined together. Nevertheless, it is instructive to visualize
all four graphs as superimposed on the same 2-sphere.

This construction was called the medial construction in [17], but it is exactly the
same construction. (The medial graph is the plane dual of the radial graph.) We
remark that the vertices that are called hrie, rt

i
e, tl

i
e, lh

i
e in this paper are denoted in

[17, 19] as (e, h, a, i), (e, t, c, i), (e, t, a, i), (e, h, c, i), respectively.
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(b) (c)

(a)

Fig. 8.1. (a) Tk
#, (b) Tk

)( , (c) Tk
� (k = 3).

8. Some 4 · k-tiles. We now describe some 4 · k-tiles, which we shall need in
various constructions and arguments. For convenience we initially define some as being
drawn in the coordinate (X,Y )-plane with the X- and Y -axes being, respectively,
horizontal and vertical. Let k be a positive integer. Let the disk Dk be the �-shaped
region of the (X,Y )-plane:

Dk = {(X,Y ) : |X| + |Y | � 2k}.(8.1)

The four distinguished boundary points of Dk are called h, r, t, l and have (X,Y )-
coordinates (0, 2k), (2k, 0), (0,−2k), (−2k, 0), respectively.

Let G∞
� be the infinite square grid in the (X,Y )-plane such that the vertices have

coordinates (X,Y ), where X and Y are odd integers. The edges are parallel to the
axes and have length 2. Call the edges horizontal and vertical in the obvious way.

Let T k
# be the 4 · k-tile on disk Dk with boundary points as above, where T k

#

is the intersection of G∞
� with Dk. See Figure 8.1(a) for the k = 3 case. The 4k

boundary vertices are those which lie on the boundary of Dk, that is, the vertices
with coordinates (X,Y ), where X and Y are odd integers and |X| + |Y | = 2k. For
example, vertex hri has coordinates (2i− 1, 2k − 2i + 1) for i = 1, . . . , k.
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Observe that T k
# has 4k2 edges and 2k(k+1) vertices, namely, 4k degree-2 bound-

ary vertices and 2k(k − 1) degree-4 internal vertices.

Definition 8.1. Let T k
)( be the 4 · k-tile obtained from T k

# by restricting to the

vertical edges. That is, T k
)( consists purely of vertex disjoint paths connecting boundary

vertices hri to rti and tli to lhi for i = 1, . . . , k.

Let T k
� be the 4 · k-tile obtained from T k

# by restricting to the horizontal edges.

That is, T k
� consists purely of vertex disjoint paths connecting boundary vertices hri

to lhi and tli to rti for i = 1, . . . , k.

For our purposes the path lengths will generally not matter and we may use the
notations T k

)( and T k
� as long as boundary vertices are joined pairwise as above, re-

gardless of (nonzero) path lengths. Figure 8.1(b)–(c) depicts T k
)( and T k

� with k = 3
and with (internal) degree-2 vertices supressed.

For a graph G, a decontraction at vertex v by new edge e yields a graph G′ such
that G′/e = G and edge e in G′ has endpoints, say v1 and v2, in G′ that are shrunk to
v when contracting e. To uniquely specify G′ we need to specify G, v, e together with
a partition of the edges incident with v into two parts, specifying which of these edges
are to be incident with v1 or v2 in G′. A degree d vertex can be decontracted into
vertices of degree d1 and d2 provided d = d1 +d2−2. If G is drawn on a surface, then
we can locally modify this drawing to obtain a drawing of G′ on the surface provided
the abovementioned partition is appropriately compatible with the cyclic ordering of
edges around v. Thus there are three ways to decontract a degree-4 vertex into two
degree-3 vertices, but only two are compatible with a surface drawing.

Definition 8.2. We obtain a 4 ·k-tile T̃ k
# by decontracting at all of the 2k(k+1)

vertices of T k
#, as follows. For future reference we will color the edges of T k

# blue,

while the new edges in T̃ k
# arising from decontraction are colored red. We require that

the following hold.

(a) Each of the 4k degree-2 boundary vertices of T k
# is decontracted into a degree-1

boundary vertex and a degree-3 internal vertex in a unique way.
(b) Each of the 2k(k−1) degree-4 internal vertices of T k

# is decontracted into two
degree-3 internal vertices in one of the two ways compatible with the plane
drawing.

(c) The decontractions in (b) are chosen such that the 4k2 blue edges form a
single circuit.

Readers can verify that (c) can be satisfied in many ways, for instance, by doing
one way of decontracting at the degree-4 internal vertices with coordinates (X,Y )
satisfying Y −X = 2k − 2 (so that the corresponding red edges are roughly parallel
to sides hr and tl), and the other way of decontracting at the rest (so that the

corresponding red edges are roughly parallel to sides rt and lh). See Figure 8.2 for T̃ k
#

with k = 3, and with this choice of decontraction. A fully explicit description of T̃ k
#

(under a different name) is given in [17]. For the purposes of this paper, any choice
in (b) that satisfies (c) will work for the constructions in which it appears. The blue
edges retain the “vertical” or “horizontal” labelling they inherit from T k

#. (The red
edges are just red.)

The (X,Y )-coordinates were convenient for the above definitions but we now no
longer need them. We now ignore these coordinates and treat our graphs and tiles
topologically or combinatorially.
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RED

BLUE

Fig. 8.2. T̃k
# with k = 3, and with a valid choice of decontractions as described in the text.

Thick edges are blue. Thin edges are red. See Definition 8.2.

9. The radial construction using just T)( and T�. We first consider the
radial construction when all tiles are of the form T k

)( and T k
�. Let G be a directed

plane graph, as above. For A ⊆ E and a positive integer k, construct the plane graph
Gk

A as follows. Suppose

Gk
A = ΘG(Te : e ∈ E), where Te =

{
T k

)( for e ∈ A,
T k
� for e ∈ E −A.

(9.1)

Actually this means each Te is a copy of T k
)( or T k

�.

Let Ek
A be the edge set of Gk

A, and for g ∈ E let Ek
A,g be the set of edges in Tg.

Clearly Gk
A consists of some number, say mG(A, k) or m(A, k), of vertex disjoint

circuits. Moreover, for any g ∈ E, the boundary vertices of 4 · k-tile Tg will be
pairwise joined by vertex disjoint paths outside its disk in a way that can be specified
depending on A. The next lemma provides more detail of this. This lemma highlights
one crucial idea toward the main theorem, as well as in the connection between the
Tutte polynomial for planar graphs and various invariants of link diagrams [19]; see
also [7, 14].

Let c(A) denote c(G||A), which need not equal c(G|A). For statements (4), (5),
(6), (4′), (5′), (6′) in Lemma 9.1 below, it does not matter whether we use “|” or “||”.
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Lemma 9.1. Let G be a 2-connected plane graph, and let M(G) = (E, ρ) be its
cycle matroid. Let k be a positive integer. Let A ⊆ E. Let

Gk
A = ΘG(Te : e ∈ E), where Te =

{
T k

)( for e ∈ A,
T k
� for e ∈ E −A.

(9.2)

Then Gk
A consists of mG(A, k) = m(A, k) vertex disjoint circuits, where

mG(A, k) = m(A, k) = k(|V | − 2ρ(A) + |A|).(9.3)

Moreover, if g ∈ E and A ⊆ E − {g}, then the following conditions (1)–(7) are
equivalent:

(1) A ∈ L(M(G), g).
(2) ρ(A ∪ {g}) = ρ(A).
(3) c(A ∪ {g}) = c(A).
(4) The ends of g are joined by a path in G|A.
(5) The ends of g are not joined by a path in G∗|A.
(6) In Gk

A|(Ek
A − Ek

A,g) there are vertex disjoint paths between hrig and rtig and

between tlig and lhi
g for i = 1, . . . , k.

(7) m(A ∪ {g}, k) −m(A, k) = k.
If g ∈ E and A ⊆ E − {g}, then the following conditions (1′)–(7′) are equivalent and
are the negation of (1)–(7):

(1′) A ∈ 2E−{g} − L(M(G), g) = {A ∈ 2E−{g} : A ∪ {g} ∈ C(M(G), g)}.
(2′) ρ(A ∪ {g}) = ρ(A) + 1.
(3′) c(A ∪ {g}) = c(A) − 1.
(4′) The ends of g are not joined by a path in G|A.
(5′) The ends of g are joined by a path in G∗|A.
(6′) In Gk

A|(Ek
A − Ek

A,g) there are vertex disjoint paths between hrig and lhi
g and

between tlig and rtig for i = 1, . . . , k.
(7′) m(A ∪ {g}, k) −m(A, k) = −k.
Proof. As noted in section 7, only vertices of the same type are joined, and thus

Gk
A consists of k disjoint subgraphs (one corresponding to each i = 1, . . . , k), each

isomorphic to G1
A. Therefore m(A, k) = k×m(A, 1), and it suffices to prove the case

k = 1.
Clearly m(∅, 1) = |V |, since ΘG(T�) consists of one circuit per vertex of G. Then

(9.3) will follow by induction on |A| once we have shown that (2) ⇐⇒ (7) and
(2′) ⇐⇒ (7′).

Now (1) ⇐⇒ (2) by (6.1) and (2) ⇐⇒ (3) by (2.2). Clearly (3) ⇐⇒ (4),
since they hold exactly when the ends of g are in the same connected component of
G|A. Similarly (1′) ⇐⇒ (2′) ⇐⇒ (3′) ⇐⇒ (4′). We show (3) ⇐⇒ (5) and
(3′) ⇐⇒ (5′) by negating, dualizing, and changing A to E −A− g in (3′) ⇐⇒ (4′)
and (3) ⇐⇒ (4), respectively. Clearly (1′) is the negation of (1).

Now (6) and (6′) give the only ways that the boundary vertices of Tg can be
joined by paths outside the disk for Tg, given that we are using only tiles T k

)( and T k
�.

If we regard Gk
A, G�, G, and G∗ as being drawn simultaneously on the same 2-sphere,

then by drawing edges e ∈ E of G and G∗ as “diagonals” of squares as discussed in
section 7, we may easily arrange that edges e ∈ A of G and edges e ∈ E − A of G∗

miss all the edges of Gk
A. Since exactly one of (4) or (5′) must hold, then to miss these

paths, this forces the connections as in (6) or (6′), respectively. Thus (4) ⇐⇒ (6)
and (5′) ⇐⇒ (6′).
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Fig. 9.1. How path routing relates to number of circuits.

To understand the remaining equivalences, with the help of Figure 9.1, first con-
sider the special case where graph G = GU12 consists of two parallel edges E = {e, g}
and k = 1. In that case, we can easily verify that (9.3) holds, that is,

mGU12
(A, 1) =

{
2 for |A| = 0, 2,
1 for |A| = 1,

(9.4)

by considering all the appropriate ways of joining Te and Tg, where each is either T)(

or T�. Since, for the special case for G = GU12 , e ∈ A ⇐⇒ (1)−(6), we easily check
that (6) ⇐⇒ (7) and (6′) ⇐⇒ (7′). These equivalences follow for general G, since
we need only consider path routings exactly as for the special case G = GU12; that
is, we need only consider how the boundary vertices of Tg are pairwise connected by
vertex disjoint paths internally depending on whether Tg is T)( or T�, and how they
are pairwise connected externally depending on whether (6) or (6′) holds.

Figure 9.1 depicts the simple concept relating path routing to number of circuits.
The same picture works for G = GU12 (where dashed curves depict Te being T)( or
T�) and for general G (where dashed curves depict the paths referred to in (6) or
(6′)).
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The general k case merely introduces a factor of k as noted above, and the proof
is complete.

Remark 1. The above results hold regardless of the path lengths appearing in the
T)( and T�. Conditions (1)–(6) and (1′)–(6′) apply just as well when Tg is allowed
to be an arbitrary 4 · k-tile. The above results can also be restated for mathematical
objects represented by curves in the plane such as tangles and links of topology; see
[19].

10. Some useful combinatorial identities. We consider some useful combi-
natorial identities.

Lemma 10.1 below is central in the proof of Theorem 5.1. Let M = (E, ρ) and
A ⊆ E. The matroid M restricted to A, denoted M |A, is defined by M |A = (A, ρA),
where ρA(B) = ρ(B) for all B ⊆ A.

Lemma 10.1. The following identity holds:

(10.1)
∑
A⊆E

z|A|(x− 1)ρ(E)−ρ(A)T (M |A;x, y)

= (1 + z)|E|−ρ(E)zρ(E)T

(
M ; 1 + (x− 1)

1 + z

z
, 1 + (y − 1)

z

1 + z

)
.

Proof. By (2.3) the left-hand side of (10.1) is∑
A⊆E

z|A|(x− 1)ρ(E)−ρ(A)
∑
B⊆A

(x− 1)ρ(A)−ρ(B)(y − 1)|B|−ρ(B).(10.2)

Rearranging the summation signs gives∑
B⊆E

(x− 1)ρ(E)−ρ(B)(y − 1)|B|−ρ(B)
∑
A

B⊆A⊆E

z|A|,(10.3)

which equals ∑
B⊆E

(x− 1)ρ(E)−ρ(B)(y − 1)|B|−ρ(B)z|B|(1 + z)|E|−|B|.(10.4)

Rearranging terms yields

(1 + z)|E|−ρ(E)zρ(E)
∑
B⊆E

(
(x− 1)

1 + z

z

)ρ(E)−ρ(B) (
(y − 1)

z

1 + z

)|B|−ρ(B)

,(10.5)

which, by (2.3), gives the right-hand side of (10.1), as required.
Observe that for fixed (x, y) �= (1, 1) and variable z �∈ {0,−1}, the right-hand

side of (10.1) gives an expression for the Tutte polynomial along the special curve
containing (x, y). Equation (10.1) is used in sections 11 and 12 in the case x = 0.

Now the flow polynomial [21] of a matroid N = (E, μ) is defined to be

Flow(N ; q) = (−1)|E|−μ(E)T (N ; 0, 1 − q).(10.6)

So the left-hand side of (10.1), with (x, y) = (0, 1 − q), can be rewritten as∑
A⊆E

z|A|(−1)ρ(E)−|A| Flow(M |A; q).(10.7)
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Substituting v = −z and multiplying by (−1)ρ(E) gives

∑
A⊆E

v|A| Flow(M |A; q) = vρ(E)(1 − v)|E|−ρ(E)T

(
M ;

1

v
, 1 +

qv

1 − v

)
,(10.8)

so that the Tutte polynomial of M along the special curve Hq (or Hy
0 for q = 0) is

given, up to an easily computable factor, by the left-hand side of (10.8).
For a positive integer q and a graph G with N = M(G), the flow polynomial

counts the number of nowhere-zero Zq-flows of G, but here we actually need only a
few very basic facts. First, e ∈ E is a coloop of N if it is contained in no circuit. In the
graph case, e is also called a bridge or cut-edge. An edge with a degree-1 endpoint is
certainly a coloop. If loop and coloop are single edge graphs (or matroids) consisting
of a loop and coloop, respectively, then

Flow(loop; q) = q − 1, Flow(coloop; q) = 0.(10.9)

As a consequence of (2.4) and (10.6), if a matroid N = (E, μ) has connected
components (Ei : i ∈ I), then

Flow(N ;x, y) =
∏
i∈I

Flow(N |Ei;x, y).(10.10)

Hence by (10.9) and (10.10), the following holds:

If N has a coloop, then for all q, Flow(N ; q) = 0.(10.11)

Two graphs G, H are homeomorphic, denoted G � H, if one can be obtained
from the other, up to isomorphism, by subdividing edges and suppressing degree-2
vertices. Another basic property is the following:

If G � H, then Flow(G; q) = Flow(H; q).(10.12)

Hence by (10.9), (10.10), (10.12), if ∪̇p
i=1Ci denotes a graph that is a vertex disjoint

union of p circuits (of any length), then

Flow(∪̇p
i=1Ci; q) = (q − 1)p.(10.13)

Another type of useful identity arises from the radial construction and the results
in Lemma 9.1. In some constructions and computations in sections 11 and 12, we will
produce the quantity on the left-hand side of the equation

∑
A⊆E

a|A|b|E|−|A|dmG(A,k) = aρ(E)b|E|−ρ(E)dk(|V |−ρ(E))T

(
G; 1 +

b

a
dk, 1 +

a

b
dk

)
,

(10.14)

which readers can verify by using (2.3) and (9.3). Setting a = b = 1, a simpler useful
identity is ∑

A⊆E

dmG(A,k) = dk(|V |−ρ(E))T (G; 1 + dk, 1 + dk).(10.15)
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11. The main constructions. In this section we examine two constructions
and related combinatorial quantities that form the bulk of the proofs of Lemmas 12.3
and 12.6, which in turn are the largest steps toward proving Theorem 5.1.

Let k be a positive integer, and recall the 4 · k-tile T̃ k
# with its blue and red edges

as in Definition 8.2. For a positive integer m, we obtain a 4·k-tile T̃ k,m
# by subdividing

every red edge of T̃ k
# into a path of m edges. The blue edges are not subdivided. See

Figure 8.2 again, now viewing red (thin) lines as paths of m edges.
Let G = (V,E) be a 2-connected plane directed graph with n = |E| edges. Let k

be a positive integer and let m = 4k2|E| = 4k2n. Construct the graph

Gk
# = ΘG(Te : e ∈ E), where Te = T̃ k,m

# .(11.1)

As with (9.1), this actually means each Te is a copy of T̃ k,m
# .

Let Ek
# be the edge set of Gk

#. The edges of Gk
# are colored red and blue just

as they are in each Te. Recalling the discussion in section 8, we note that Gk
# has

2k(k + 1)nm red edges and m = 4k2n blue edges, so that

|Ek
#| = 2k(k + 1)nm + 4k2n = 2k(k + 1)nm + m.(11.2)

For a polynomial p(v) let coeffvδ(f(v)) denote the coefficient of vδ in p(v).
We will show that, for q ∈ A, if we find the Tutte polynomial of Gk

# along curve
Hq as per (10.8) and extract a particular coefficient, we will be able to use Lemma 9.1
and (10.15) to find T (G; 1 + (q − 1)k, 1 + (q − 1)k). This is the key construction and
computation for the reducibilities (12.1) and (12.2) in Lemma 12.3.

Lemma 11.1. Let q ∈ A. Let k be a positive integer. Let G = (V,E) and
n = |E| be as above. Let m = 4k2|E| = 4k2n. Construct Gk

# as above. Let δ =

2k(k + 1)nm + 2k2n = 2k(k + 1)nm + m/2 = |Ek
#| −m/2. Then

(11.3) coeffvδ

⎛
⎝ ∑

B⊆Ek
#

v|B| Flow(Gk
#|B; q)

⎞
⎠

= (q − 1)k(|V |−ρG(E))T (G; 1 + (q − 1)k, 1 + (q − 1)k).

Proof. The vertices in Gk
# all have degree 2 or 3. Consider the paths in Gk

#

which join degree-3 vertices without going through any other degree-3 vertex. There
are m = 4k2n degree-3 vertices and hence 6k2n such paths, namely 4k2n paths of
length 1, 2k(k− 1)n paths of length m, and 2kn paths of length 2m. (The length-2m

paths arise from joining two length-m paths when “gluing” the T̃ k,m
# ’s together using

the radial construction. These length-2m paths could have been replaced by length-m
paths, but it is not necessary and would be more inconvenient to define.) Any mention
of length-1, length-m, or length-2m paths during this proof refers only to the paths
mentioned here. Note also that the length-1 paths are colored blue while the others
are colored red.

Of course, the left-hand side of (11.3) can be written as∑
B⊆Ek

#

|B|=δ

Flow(Gk
#|B; q),(11.4)



COMPLEXITY OF TUTTE INVARIANTS FOR PLANAR GRAPHS 707

and we can further eliminate terms for which Flow(Gk
#|B; q) = 0, which by (10.11)

certainly holds if Gk
#|B has a coloop, or in particular, a degree-1 vertex. Call B

essential if B ⊆ Ek
#, |B| = δ, and Gk

#|B has no degree-1 vertex.

The graph Gk
# has been constructed so that any essential B must take a special

form, as we now argue. Suppose B is essential. The choice of m and δ ensures that
B must contain all the (red) paths of length m and 2m and exactly 2k2n of the 4k2n
(blue) length-1 paths, since otherwise Gk

#|B would have a degree-1 vertex. In other

words, B must contain all of the red edges and exactly half of the blue edges of Gk
#.

In Gk
# every degree-3 vertex is an end of exactly two length-1 paths, and each

length-1 path joins two degree-3 vertices. Since B contains all the length-m and
length-2m paths, each vertex with degree 3 in Gk

# has degree at least 1, and hence at

least 2, in Gk
#|B. Thus, each vertex with degree 3 in Gk

# is adjacent to at least one,

and hence by the choice of δ, exactly one length-1 path in Gk
#|B.

For each e ∈ E, in each copy Te of T̃ k,m
# the 4k2 blue edges form a single circuit

by condition (c) of Definition 8.2, and this condition will be crucial in what follows.
Thus there are n = |E| vertex disjoint blue circuits, one in each Te. By the above
discussion, every second edge of each blue circuit must be in an essential B. Thus
for each e ∈ E there are two choices, namely, the blue edges of Te that are in B
are precisely all the vertical edges or precisely all the horizontal edges. Therefore B
must be of the form B(A) for some A ⊆ E, where B(A) contains all the red edges,
B(A) contains all the vertical blue edges in Te for e ∈ A, and B(A) contains all the
horizontal blue edges in Te for e �∈ A.

Thus the quantity in (11.4) can now be written as∑
A⊆E

Flow(Gk
#|B(A); q).(11.5)

Each Gk
#|B(A) simply consists of some number of vertex disjoint circuits that

together meet every vertex of Gk
#. If we examine the intersection (Gk

#|B(A)) ∩ Te

regarded as a 4 ·k-tile, we find that each is essentially T k
)( or T k

� (according to whether
the vertical or horizontal blue edges are used), except that the paths in these 4 ·k-tiles
are lengthened by the red edges. These lengthenings are inconsequential here, due to
(10.12). For each e ∈ E, A ⊆ E,

(Gk
#|B(A)) ∩ Te �

{
T k

)( for e ∈ A,
T k
� for e ∈ E −A,

(11.6)

where the � signifies that the red edges merely lengthen the paths in each T k
)( or T k

�.
Thus, recalling (9.2),

Gk
#|B(A) � Gk

A = ΘG(Te : e ∈ E), where Te =

{
T k

)( for e ∈ A,
T k
� for e ∈ E −A.

(11.7)

Considering Remark 1 we can apply Lemma 9.1 to find that Gk
#|B(A) consists of

exactly mG(A, k) = k(|V | − 2ρG(A) + |A|) vertex disjoint circuits. Using (10.13), the
quantity in (11.5) is ∑

A⊆E

(q − 1)mG(A,k),(11.8)
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and using (10.15) with d = q − 1 gives

(q − 1)k(|V |−ρG(E))T (G; 1 + (q − 1)k, 1 + (q − 1)k)(11.9)

as required.
The above is the key to proving Lemma 12.3, which is the major new idea beyond

Theorems 4.2 and 4.3 that is needed to prove Theorem 5.1. However, the above
idea still leaves a gap. Lemmas 12.2–12.5 deal with all points (x, y) except where
q = (x − 1)(y − 1) = 0, leaving a gap, namely the special curves Hy

0 and Hx
0 (that

is, the curves y = 1 and x = 1, respectively; see section 4). This gap requires
an additional new idea which we now describe, leading to Lemma 11.2 below. A
corresponding situation is also encountered in [19].

Recall the comments after (10.8). In this case, with q = 0, (12.1) in Lemma 12.3
gives only the useless reducibilities τ0(PG, 0, 0) �

T
τ1(PG, Hy

0 ) and τ0(PG, 2, 2) �
T

τ1(PG, Hy
0 ), depending on whether we use k odd or even. They are useless since the

left-hand sides are functions in FP, giving no information about the right-hand sides.
Recall section 6. The trick is to modify the above ideas to show instead that

τ0
L(PG, 2, 2) �

T
τ1(PG, Hy

0 ), considering (6.7). The modification is simply to use
the construction similar to (11.1) except that one 4 · k-tile, say Tg, will be chosen
differently.

Let G = (V,E) be a 2-connected plane directed graph with n = |E| edges. Let
g ∈ E. Fix k = 2 and let m = 4k2(n− 1) = 16(n− 1).

Define a 4 · 2-tile T� (see Figure 11.1(a)) with the eight boundary vertices named
as in section 7 (see also (7.1)), two internal vertices called vh and vt, and nine edges:
one from vh to vt called the central edge, one each from vh to hri and lhi, i = 1, 2,
and one each from vt to rti and tli, i = 1, 2. Color these nine edges red.

Obtain the 4 ·2-tile Tm
� (see Figure 11.1(a) again) by subdividing each of the nine

edges of T� into a path of m edges, so that Tm
� has 9m edges. Again these 9m edges

are red.

(c)(b)(a)
Fig. 11.1. (a) T� or Tm

� where, respectively, each thin line depicts a red edge or a path of m
red edges. (b) and (c) are graphs appearing in the proof of Lemma 11.2; see text.

Instead of Gk
# we will construct the graph G2gm

�# :

G2gm
�# = ΘG(Te : e ∈ E), where Te =

{
T̃ 2,m

# for e �= g,

Tm
� for e = g.

(11.10)
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Let E2gm
�# be the edge set of G2gm

�# . The edges of G2gm
�# are colored red and blue

just as they are in each Te. This time we note that G2gm
�# has (9+2k(k+1)(n−1))m =

(9 + 12(n− 1))m red edges and m = 4k2(n− 1) = 16(n− 1) blue edges, so that

|E2gm
�# | = (9 + 12(n− 1))m + 16(n− 1) = (9 + 12(n− 1))m + m.(11.11)

In place of Lemma 11.1, we have Lemma 11.2 below.
Lemma 11.2. Set q = 0 and k = 2. Let G = (V,E) and n = |E| be as above. Let

g ∈ E. Let m = 16(n − 1). Construct G2gm
�# as above. Let δ = (9 + 12(n − 1))m +

8(n− 1) = (9 + 12(n− 1))m + m/2 = |E2gm
�# | −m/2. Then

coeffvδ

⎛
⎜⎝ ∑

B⊆E2gm
�#

v|B| Flow(G2gm
�# |B; 0)

⎞
⎟⎠ = 4TL(G; 2, 2).(11.12)

Proof. There are many similarities to the previous proof. Call B essential if
B ⊆ E2gm

�# , |B| = δ, and G2gm
�# |B has no degree-1 vertex. By the choice of δ and the

construction of G2gm
�# we find similarly as before that an essential B must be of the

form B(A) for some A ⊆ E − g, where B(A) contains all the red edges (including all
of Tg), B(A) contains all the vertical blue edges in Te for e ∈ A, and B(A) contains
all the horizontal blue edges in Te for e ∈ E −A− g.

Similarly as before, the left-hand side of (11.12) can be written as∑
A⊆E−g

Flow(G2gm
�# |B(A); 0).(11.13)

Also, similarly as before,

G2gm
�# |B(A) � ΘG(Te : e ∈ E), where Te =

⎧⎨
⎩

T k
)( for e ∈ A,

T k
� for e ∈ E −A− g,

Tm
� for e = g.

(11.14)

Recall Lemma 9.1 and Remark 1. Either (1)–(7) all hold or (1′)–(7′) all hold, but
not both. The graph G2gm

�# |B(A) will consist of the 4 · 2-tile Tg = Tm
� with its eight

boundary vertices pairwise joined by paths as in (6) or (6′), together with an even
number p = mG(A, 2) − 2 of vertex disjoint circuits. Considering (10.10) and (10.13)
with q = 0 and p even, these vertex disjoint circuits contribute a factor of (q−1)p = 1
to Flow(G2gm

�# |B(A); 0) and can be ignored.

If A ∈ L(M(G), g), then in G2gm
�# |B(A) the boundary vertices of Tg = Tm

� are
joined as in (6) of Lemma 9.1, giving a graph that is a subdivision of a graph consisting
of just five parallel edges; see Figure 11.1(b). This graph has flow polynomial at q = 0
equaling 4.

If A �∈ L(M(G), g), then in G2gm
�# |B(A) the boundary vertices of Tg = Tm

� are
joined as in (6′) of Lemma 9.1, giving a graph that has coloops, namely, those edges
in the subdivided central edge; see Figure 11.1(c). This graph has flow polynomial at
q = 0 equaling 0.

In summary, for A ⊆ E − g,

Flow(G2gm
�# |B(A); 0) =

{
4 for A ∈ L(M(G), g),
0 for A �∈ L(M(G), g).

(11.15)

Combining (6.6), (11.13), and (11.15), the result follows.
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12. The remainder of the proofs. Theorem 5.1 is proved in a series of lemmas.
Of course, significant portions of the proof are already presented in earlier sections.

Since by (2.4) any Tutte invariant of a graph is simply the product of that Tutte
invariant of each of its blocks, we may restrict attention without further comment to
2-connected graphs.

Lemma 12.1. All of the functions mentioned in Theorem 5.1 are in #P. The
function τ2(PG) is #P-complete.

Proof. By a simple observation in [17], τ2(PG) ∈ #P. Therefore all of the

functions mentioned in Theorem 5.1 are in #P, by (4.5). Combining this with (6.7)
and (6.10), the function τ2(PG) is #P-complete.

Lemma 12.2. The functions claimed in Theorem 5.1 to be in FP are indeed so.
Proof. If (x − 1)(y − 1) = 1 and M = (E, ρ), then T (M ;x, y) = (x − 1)ρ(E)y|E|

(in particular T (M ; 0, 0) = 0) so that τ1(PG, H1) is in FP as are τ0(PG, x, y) for all
(x, y) ∈ H1.

For a graph G the Ising partition function of G (see [4, 11, 9, 22]) is given (up
to an easily computable factor) by the Tutte polynomial of M(G) along the curve
H2 (see, for example, [22]). By [4, 11], this is polynomial time computable for planar
graphs so that τ1(PG, H2) is in FP as are τ0(PG, x, y) for all (x, y) ∈ H2.

If (x, y) ∈ {(−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i), (j, j2), (j2, j)}, then as shown
in [18], τ0(Mq, x, y) is in FP, where Mq is the class of matroids representable over
the field of q = (x− 1)(y − 1) = 4, 2, 2, 2, 2, 3, 3 elements, respectively. Each of these
classes contains PG (and there is a polynomial time function sending each directed
plane graph G to the appropriate representation of M(G) for the above classes) so that
τ0(PG, x, y) is in FP for these (x, y). Also τ0(PG, 1, 1) is in FP since for any graph
G, T (M(G); 1, 1) is the number of spanning trees of G, and this can be computed in
polynomial time using Kirchoff’s determinantal formula.

By (4.5), it now suffices to show that τ0(PG, x, y) is #P-complete for every al-
gebraic point (x, y) which is not special or on H1 or H2 (since every algebraic curve
other than H1 and H2 contains such a point).

Lemma 12.3. If q ∈ A, q �= 1, and k is a positive integer, then

τ0(PG, 1 + (q − 1)k, 1 + (q − 1)k) �
T
τ1(PG, Hq).(12.1)

If q ∈ A and q − 1 is not zero or a root of unity and “x = y” is the nonspecial curve
〈(x, y)|x, y ∈ A, x = y〉, then

τ1(PG, x = y) �
T
τ1(PG, Hq).(12.2)

Proof. For fixed k, the reduction of τ0(PG, 1+(q−1)k, 1+(q−1)k) to τ1(PG, Hq)
is as follows. Suppose the input is the directed plane graph G with edge set E
and n = |E|. Construct Gk

#. Apply τ1(PG, Hq) to Gk
# and multiply by a simple

factor to get v
ρ
Gk

#
(Ek

#)
(1 − v)

|Ek
#|−ρ

Gk
#

(Ek
#)
T (Gk

#; 1
v , 1 + qv

1−v ), which by (10.8) equals∑
B⊆Ek

#
v|B| Flow(Gk

#|B; q). With δ as in Lemma 11.1, take the coefficient of vδ and

divide by (q − 1)k(|V |−ρG(E)) (which is nonzero since q �= 1) to obtain T (G; 1 + (q −
1)k, 1 + (q − 1)k) by Lemma 11.1, as required.

Note that all of the above can be done in time polynomial in both n and k. Note
also that the degree of T (G;x, x) is at most 2n. For the second reducibility (12.2)
do as above for k = 1, . . . , 2n + 1 (in time polynomial in n) to obtain T (G;x, x) at
2n + 1 distinct points, namely, x = 1 + (q − 1)k for k = 1, . . . , 2n + 1. Here we
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have used the assumption that q − 1 is not zero or a root of unity. This one variable
polynomial, with degree at most 2n, can then be obtained in polynomial time by
Lagrange interpolation.

Lemma 12.4. If q, x, y ∈ A, q − 1 is not zero or a root of unity and (x, y) ∈ Hq,
where (x, y) is not special, then τ0(PG, x, y) is #P-complete.

Proof. By Lemma 12.1 τ2(PG) is #P-complete. By Theorem 4.2, τ2(PG) �
T

τ1(PG, x = y). By Lemma 12.3, τ1(PG, x = y) �
T

τ1(PG, Hq). By Theorem 4.3,
τ1(PG, Hq) �

T
τ0(PG, x, y). Therefore τ0(PG, x, y) is #P-complete.

Lemma 12.5. If q, x, y ∈ A, q �∈ {0, 1, 2}, q−1 is a root of unity, and (x, y) ∈ Hq,
where (x, y) is not special, then τ(PG, x, y) is #P-complete.

Proof. Since q− 1 �= 0, then by Lemma 12.3 τ0(PG, 1 + (q− 1)k, 1 + (q− 1)k) �
T

τ1(PG, Hq) for each fixed k ∈ {1, 2, . . . } and by Lemma 12.4, the left-hand side is
#P-complete unless [i] (q− 1)2k − 1 is zero or a root of unity (since (1 + (q− 1)k, 1 +
(q − 1)k) ∈ H(q−1)2k), or [ii] (1 + (q − 1)k, 1 + (q − 1)k) is a special point. In case [ii],

(q−1)k = 0,−1,−2. Now (q−1)k = 0,−2 contradicts q−1 being a root of unity, and
(q−1)k = −1 implies (q−1)2k−1 is zero, so that both cases [i] and [ii] are covered by
the following assumption. Suppose that (q − 1)2k − 1 is zero or a root of unity for all
k ∈ {1, 2, . . . }. Since (q−1)2k is a root of unity, (q−1)2k must be one of 1,−j,−j2 for
all k ∈ {1, 2, . . . }. But if (q−1)2 ∈ {−j,−j2}, then (q−1)6 = −1 �∈ {1,−j,−j2}, and
if (q−1)2 = 1, then q ∈ {0, 2}, a contradiction. Thus τ0(PG, 1+(q−1)k, 1+(q−1)k),
and hence τ1(PG, Hq), is #P-complete. By Theorem 4.3, τ1(PG, Hq) �

T
τ0(PG, x, y)

and since the left-hand side is #P-complete, so is the right-hand side.

Only the case (x, y) ∈ H0 remains.

Lemma 12.6. τ0
L(PG, 2, 2) �

T
τ1(PG, Hy

0 ).

Proof. The reduction of τ0
L(PG, 2, 2) to τ1(PG, Hy

0 ) is as follows. Suppose the

input is the directed plane graph G with edge set E and n = |E|. Construct G2gm
�# .

Abbreviate G2gm
�# and E2gm

�# to G′ and E′, respectively.

Apply τ1(PG, Hy
0 ) to G′, and multiply by a simple factor to get vρG′ (E′)(1 −

v)|E
′|−ρG′ (E′)T (G′; 1

v , 1), which by (10.8) with q = 0 equals
∑

B⊆E′ v|B| Flow(G′|B; q).

With δ as in Lemma 11.2, take the coefficient of vδ and divide by 4 to obtain
TL(G; 2, 2) by Lemma 11.2, as required.

Lemma 12.7. If x, y ∈ A, (x, y) ∈ H0 − {(1, 1)} (so that x = 1 or y = 1 but
(x, y) �= (1, 1)), then τ0(PG, x, y) is #P-complete.

Proof. By Lemma 12.6, τ0
L(PG, 2, 2) �

T
τ(PG, Hy

0 ). By Theorem 4.3, τ(PG, Hy
0 )

�
T
τ(PG, x, 1) for all x ∈ A − {1}. Since τ0

L(PG, 2, 2) is #P-complete by (6.7), so is
τ0(PG, x, 1). Also τ0(PG, x, 1) �

T
τ0(PG, 1, x) (and vice versa) since for any plane

graph G, its plane dual G∗ can be constructed in polynomial time and T (M(G∗);x, y)
= T (M(G); y, x) (see [21]). Hence τ0(PG, 1, y) is #P-complete for all y ∈ A −
{1}.

We are finally in a position to prove Theorem 5.1.

Proof. All the cases have been covered, and Theorem 5.1 is proved.

13. Conclusions. For evaluations of the Tutte polynomial at a fixed algebraic
point or curve, the computational complexity is the same for planar graphs (The-
orem 5.1) as for graphs (Proposition 4.4), except along the curve H2 (the “Ising
model”) and at the nonspecial points on H2. It is natural to consider the computa-
tional complexity of these evaluations for smaller (interesting) classes of graphs. For
the class 3PG, say, of planar graphs with vertex degree at most 3, the result is the
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same as Theorem 5.1 (substituting 3PG for PG) except that τ0(3PG, 0,−2) (which
counts 3-flows) is polynomial time computable [20].

It is also natural to examine the computational complexity of Tutte invariants
for larger classes of matroids. This examination leads to connections between com-
putational complexity, representability over finite fields, and uniqueness of bicycle
dimension; see [18].

The Tutte polynomial of planar graphs is closely related to the Homfly and Kauff-
man polynomials for knots and links. Theorem 5.1 forms part of the argument deter-
mining the complexity of computing Homfly and Kauffman invariants; see [19].
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A POLYNOMIAL TIME APPROXIMATION SCHEME FOR THE
MULTIPLE KNAPSACK PROBLEM∗

CHANDRA CHEKURI† AND SANJEEV KHANNA‡

Abstract. The multiple knapsack problem (MKP) is a natural and well-known generalization
of the single knapsack problem and is defined as follows. We are given a set of n items and m bins
(knapsacks) such that each item i has a profit p(i) and a size s(i), and each bin j has a capacity c(j).
The goal is to find a subset of items of maximum profit such that they have a feasible packing in the
bins. MKP is a special case of the generalized assignment problem (GAP) where the profit and the
size of an item can vary based on the specific bin that it is assigned to. GAP is APX-hard and a
2-approximation, for it is implicit in the work of Shmoys and Tardos [Math. Program. A, 62 (1993),
pp. 461–474], and thus far, this was also the best known approximation for MKP. The main result
of this paper is a polynomial time approximation scheme (PTAS) for MKP.

Apart from its inherent theoretical interest as a common generalization of the well-studied knap-
sack and bin packing problems, it appears to be the strongest special case of GAP that is not
APX-hard. We substantiate this by showing that slight generalizations of MKP are APX-hard.
Thus our results help demarcate the boundary at which instances of GAP become APX-hard. An
interesting aspect of our approach is a PTAS-preserving reduction from an arbitrary instance of MKP
to an instance with O(logn) distinct sizes and profits.

Key words. multiple knapsack problem, generalized assignment problem, polynomial time
approximation scheme, approximation algorithm
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1. Introduction. We study the following natural generalization of the classical
knapsack problem.

Multiple knapsack problem (MKP).
Instance: A pair (B,S) where B is a set of m bins (knapsacks) and S is a set

of n items. Each bin j ∈ B has a capacity c(j), and each item i has a size s(i) and a
profit p(i).

Objective: Find a subset U ⊆ S of maximum profit such that U has a feasible
packing in B.

The decision version of MKP is a generalization of the decision versions of both
the knapsack and bin packing problems and is strongly NP-complete. Moreover, it is
an important special case of the generalized assignment problem where both the size
and the profit of an item are a function of the bin.

Generalized assignment problem (GAP).1

Instance: A pair (B,S) where B is a set of m bins (knapsacks) and S is a set
of n items. Each bin j ∈ B has a capacity c(j), and for each item i and bin j, we are
given a size s(i, j) and a profit p(i, j).
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2005; published electronically February 3, 2006. A preliminary version of this paper appeared in
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 213–222.
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1GAP has also been defined in the literature as a (closely related) minimization problem (see [28]).

In this paper, following [26], we refer to the maximization version of the problem as GAP and to the
minimization version as Min GAP.

713



714 CHANDRA CHEKURI AND SANJEEV KHANNA

Objective: Find a subset U ⊆ S that has a feasible packing in B and maximizes
the profit of the packing.

GAP and its restrictions capture several fundamental optimization problems and
have many practical applications in computer science, operations research, and related
disciplines. The special case of MKP with uniform sizes and profits is also important;
the book on knapsack variants by Martello and Toth [26] has a chapter devoted to
MKP. Also referred to as the loading problem in operations research, it models the
problem of loading items into containers of different capacities such that container
capacities are not violated. In many practical settings items could be more complex
geometric objects; however, the one-dimensional case (MKP) is useful in its own right
and has been investigated extensively [14, 11, 12, 23, 24, 25, 4].

Knapsack, bin packing, and related problems have attracted much theoretical
attention for their simplicity and elegance, and their study has been instrumental in
the development of the theory of approximation algorithms. Though knapsack and
bin packing have a fully polynomial-time approximation scheme (FPTAS; asymptotic
for bin packing), GAP, a strong generalization of both, is APX-hard, and only a 2-
approximation exists. In fact, some very special cases of GAP can be shown to be
APX-hard. In particular we can show that for arbitrarily small δ > 0 (which can even
be a function of n) the problem remains APX-hard on the following very restricted
set of instances: bin capacities are identical, and for each item i and machine j,
p(i, j) = 1, and s(i, j) = 1 or s(i, j) = 1 + δ. The complementary case, where item
sizes do not vary across bins but profits do, can also be shown to be APX-hard for a
similar restricted setting. In light of this, it is particularly interesting to understand
the complexity of MKP where profits and sizes of an item are independent of the
bin, but the item sizes and profits as well as bin capacities may take arbitrary values.
Establishing a PTAS shows a very fine separation between cases that are APX-hard
and those that have a PTAS. Until now, the best known approximation ratio for
MKP was a factor of 2 derived from the approximation for GAP.

Results. In this paper we resolve the approximability of MKP by obtaining a
PTAS for it. It can be easily shown via a reduction from the Partition problem that
MKP does not admit an FPTAS even if m = 2 (see Proposition 2.1). A special
case of MKP is when all bin capacities are equal. It is relatively straightforward to
obtain a PTAS for this case using ideas from approximation schemes for knapsack and
bin packing [13, 3, 17]. However, the problem with different bin capacities is more
challenging. Our paper contains two new technical ideas. Our first idea concerns
the set of items to be packed in a knapsack instance. We show how to guess, in
polynomial time, almost all the items that are packed by an optimal solution. More
precisely, we can identify a polynomial number of subsets such that one of the subsets
has a feasible packing and profit at least (1 − ε)opt. This is in contrast to earlier
schemes for variants of knapsack [13, 1, 7], where only the 1/ε most profitable items
are guessed. An easy corollary of our strategy is a PTAS for the identical bin capacity
case, the details of which we point out later. Even with the knowledge of the right
subsets, the problem remains nontrivial since we need to verify for each subset if it
has a feasible packing. Checking for feasibility is of course at least as hard as bin
packing. To get around this difficulty we make crucial use of additional properties
satisfied by the subsets that we guess. In particular, we show that each subset can
be transformed such that the number of distinct size values of the items in the subset
is O(ε−2 log n). An immediate consequence of this is a dynamic programming–based
quasi-polynomial time algorithm to pack all of the items into bins. Our second set
of ideas shows that we can exploit the restriction on the number of distinct sizes
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only 2 distinct profits

Maximization GAP

Multiple non-identical capacity bins

Multiple identical capacity bins

Both size and profit
vary with bins.

Item size varies with bins

However, it is polynomial time solvable

2-approximable

if all sizes are identical.

PTAS
MKP

APX-hard even when each item takes

Knapsack
FPTAS

PTAS

Item profit varies with bins

No FPTAS even with 2 bins

Uniform MKP

sizes and all profits are identical.
each item takes only 2 distinct

APX-hard even when

Fig. 1.1. Complexity of various restrictions of GAP.

to pack, in polynomial time, a subset of the item set that has at least a (1 − ε)
fraction of the profit. Approximation schemes for number problems are usually based
on rounding instances to have a fixed number of distinct values. In contrast, MKP
appears to require a logarithmic number of values. We believe that our techniques to
handle logarithmic number of distinct values will find other applications. Figure 1.1
summarizes the approximability of various restrictions of GAP.

Related work. MKP is closely related to knapsack, bin packing, and GAP. A
very efficient FPTAS exists for the knapsack problem; Lawler’s [19], based on ideas
from [13], achieves a running time of O(n log 1/ε+1/ε4) for a (1+ε) approximation. An
asymptotic FPTAS is known for bin packing [3, 17]. Kellerer [18] has independently
developed a PTAS for the special case of the MKP where all bins have identical
capacity. As mentioned earlier, this case is much simpler than the general case and
falls out as a consequence of our first idea. We defined the generalized assignment
problem as a maximization problem. This is natural when we relate it to the knapsack
problem (see [26]). There is also a minimization version, which we refer to as Min GAP
(also known as the cost assignment problem), where the objective is to assign all the
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items while minimizing the sum of the costs of assigning items to bins. In this version,
item i when assigned to bin j incurs a cost w(i, j) instead of obtaining a profit p(i, j).
Even without costs, deciding the feasibility of assigning all items without violating
the capacity constraints is an NP-complete problem; therefore, capacity constraints
need to be relaxed. An (α, β) bicriteria approximation algorithm for Min GAP is
one that gives a solution with cost at most αC and with bin capacities violated by a
factor of at most β, where C is the cost of an optimal solution that does not violate
any capacity constraints. The work of Lin and Vitter [22] yields a (1 + ε, 2 + 1/ε)
bicriteria approximation for Min GAP. Shmoys and Tardos [28], building on the work
of Lenstra, Shmoys, and Tardos [21], give an improved (1, 2) bicriteria approximation.
Implicit in this approximation is also a 2-approximation for the profit maximization
version which we sketch later. Lenstra, Shmoys, and Tardos [21] also show that it
is NP-hard to obtain a bicriteria approximation of the form (1, β) for any β < 3/2.
The hardness relies on an NP-completeness reduction from the decision version of the
3-dimensional matching problem. Our APX-hardness for the maximization version,
mentioned earlier, is based on a similar reduction but instead relies on APX-hardness
of the optimization version of the 3-dimensional matching problem [16].

MKP is also related to two variants of variable-size bin packing. In the first variant
we are given a set of items and set of bin capacities C. The objective is to find a feasible
packing of items using bins with capacities restricted to be from C so as to minimize
the sum of the capacities of the bins used. A PTAS for this problem was provided
by Murgolo [27]. The second variant is based on a connection to multiprocessor
scheduling on uniformly related machines [20]. The objective is to assign a set of
jobs with given processing times to machines with different speeds so as to minimize
the makespan of the schedule. Hochbaum and Shmoys [10] gave a PTAS for this
problem using a dual -based approach where they convert the scheduling problem into
the following bin packing problem. Given items of different sizes and bins of different
capacities, find a packing of all the items into the bins such that maximum relative
violation of the capacity of any bin is minimized. Bicriteria approximations, where
both capacity and profit can be approximated simultaneously, have been studied for
several problems (Min GAP being an example mentioned above), and it is usually
the case that relaxing both makes the task of approximation somewhat easier. In
particular, relaxing the capacity constraints allows rounding of item sizes into a small
number of distinct size values. In MKP, the constraint on the bin capacities and the
constraint on the number of bins are both inviolable, and this makes the problem
harder.

Organization. Section 2 describes our PTAS for MKP. In section 3, we show
that GAP is APX-hard on very restricted classes of instances. We also indicate here
a 2-approximation for GAP. In section 4, we discuss a natural greedy algorithm for
MKP and show that it gives a (2 + ε)-approximation even when item sizes vary with
bins.

2. A PTAS for the multiple knapsack problem. We first show that MKP
does not admit an FPTAS even for m = 2.

Proposition 2.1. If MKP with two identical bins has an FPTAS, then the
Partition problem can be solved in polynomial time. Hence there is no FPTAS for
MKP even with m = 2 unless P = NP .

Proof. An instance of the Partition problem consists of 2n numbers a1, a2, . . . , a2n,
and the goal is to decide if the numbers can be partitioned into two sets S1 and S2

such that the sum of numbers in each set add up to exactly A = 1
2

∑2n
i=1 ai. We can
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reduce the Partition problem to MKP with two bins as follows. We set the capacity
of the bins to be A. We have 2n items, one for each number in the Partition problem:
the size of item i is ai and the profit of item i is 1. If the Partition problem has a
solution, the profit of an optimum solution to the corresponding MKP problem is 2n;
otherwise it is at most 2n− 1. Thus, an FPTAS for MKP can be used to distinguish
between these two situations in polynomial time.

We start with a remark on guessing. When we guess a quantity in polynomial
time, we mean that we can identify, in polynomial time, a polynomial size set of values
among which the correct value of the desired quantity resides. Coupled with the
guessing procedure is a polynomial time checking procedure which can verify whether
a feasible solution with a given value exists. We can run the checking procedure with
each of the values in the guessed set and will be guaranteed to obtain a solution with
the correct value. We will be using this standard idea several times in this section
and implicitly assume that the above procedure is invoked to complete the algorithm.

We denote by opt the value of an optimal solution to the given instance. Given
a set Y of items, we use p(Y ) to denote

∑
y∈Y p(y). The set of integers 0, 1, . . . , k is

denoted by [k]. We will assume throughout this section that ε < 1; when ε ≥ 1 we can
use the 2-approximation for GAP from section 3. In the rest of the paper we assume,
for simplicity of notation, that 1/ε and lnn are integers. Further, we also assume that
ε > 1/n, for otherwise we can use an exponential time algorithm to solve the problem
exactly. In several places in the paper, to simplify expressions, we use the inequality
ln(1 + ε) ≥ ε− ε2/2 ≥ ε/2.

Our problem is related to both the knapsack problem and the bin packing prob-
lem, and some ideas used in approximation schemes for those problems will be useful
to us. Our approximation scheme conceptually has the following two steps.

1. Guessing Items: Identify a set of items U ⊆ S such that p(U) ≥ (1 − ε)opt

and U has a feasible packing in B.
2. Packing Items: Given a set U of items that has a feasible packing in B, find

a feasible packing for a set U ′ ⊆ U such that p(U ′) ≥ (1 − ε)p(U).

The overall scheme is more involved since there is interaction between the two
steps. The guessed items have some additional properties that are exploited in the
packing step. We observe that both of the above steps require new ideas. For the
regular single knapsack problem, the second step is trivial once we accomplish the first
step. This is, however, not the case for MKP. Before we proceed with the details we
show how our guessing step immediately gives a PTAS for the identical bin capacity
case.

2.1. MKP with identical bin capacities. Suppose we can guess an item set
as in our first step above. We show that the packing step is very simple if the bin
capacities are identical. There are two cases to consider, depending on whether m, the
number of bins, is less than or equal to 1/ε or not. If m ≤ 1/ε, the number of bins can
be treated as a constant, and a PTAS for this case exists even for instances of GAP
(implicit in earlier work [7]). Now suppose m > 1/ε. Bin packing has an asymptotic
PTAS. In particular, there is an algorithm [3] that packs the items into (1+ε)opt+1
bins in polynomial time for any fixed ε > 0. We can thus use this algorithm to pack
all the guessed items using at most (1 + ε)m + 1 bins. We find a feasible solution
by simply picking the m largest profit bins and discarding the rest along with their
items. Here we use the fact that mε ≥ 1 and that the bins are identical. It is easily
seen that we get a (1+O(ε)) approximation. We note that a different PTAS, one that
does not rely on our guessing step, can be obtained for this case by directly adapting
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the ideas used in approximation schemes for bin packing. The trick of using extra
bins does not have a simple analogue when bin capacities are different and we need
more sophisticated ideas for the general case.

2.2. Guessing items. Consider the case when all items have the same profit;
without loss of generality assume it is 1. Thus the objective is to pack as many items
as possible. For this case, it is easily seen that opt is an integer in [n]. Further, given
a guess O for opt, we can pick the smallest (in size) O items to pack. Thus knowing
O allowed us to fix the item set as well. Therefore there are only a polynomial number
of guesses for the set of items to pack. In the following we build on this useful insight.

Let pmax denote the largest value among item profits. For the general case the
first step involves massaging the given instance into a more structured one that has
few distinct profits. This is accomplished as follows.

1. Guess a value O such that max{pmax, (1 − ε)opt} ≤ O ≤ opt and discard
all items y where p(y) < εO/n.

2. Divide all profits by εO/n such that after scaling each profit is at most n/ε.
3. Round down the profits of items to the nearest power of (1 + ε).

It is easily seen that only an O(ε) fraction of the optimal profit is lost by our trans-
formation. Since we do not know opt, we need to establish an upper bound on the
number of values of O that we will try out. We make use of the following easy bounds
on opt: pmax ≤ opt ≤ n · pmax.

Therefore, one of the values in {pmax · (1 + ε)i | 0 ≤ i ≤ 2ε−1 lnn)} is guaranteed
to satisfy the desired properties for O. Summarizing, we obtain the following lemma.

Lemma 2.2. Given an instance I = (B,S) with n items and a value O such
that (1− ε)opt(I) ≤ O ≤ opt(I), we can obtain in polynomial time another instance
I ′ = (B,S ′) such that

• S ′ ⊆ S;
• for every y ∈ S ′, p(y) = (1 + ε)i for some i ∈ [4ε−1 lnn];
• (1 − ε)opt(I) ≤ n

εOopt(I ′) ≤ opt(I).

For the bound in the second item above we upper bound n/ε by n2. The above
lemma allows us to work with instances with O(ε−1 lnn) distinct profits. We now show
how we can use this information to guess the items to pack. Let h ≤ 4ε−1 lnn + 1
be the number of distinct profits in our new instance. We partition S into h sets
S1, . . . , Sh with items in each set having the same profit. Let U be the items chosen
in some optimal solution and let Ui = Si ∩ U . Recall that we have an estimate O of
the optimal value. If p(Ui) ≤ εO/h for some i, we ignore the set Si; no significant
profit is lost. Hence we can assume that εO/h ≤ p(Ui) ≤ O and approximately guess
the value p(Ui) for 1 ≤ i ≤ h. More precisely, for each i we guess a value ki ∈ [h/ε2]
such that ki(ε

2O/h) ≤ p(Ui) ≤ (ki + 1)(ε2O/h).

A naive way of guessing the values k1, . . . , kh requires nΩ(lnn/ε2) time. We first
show how the numbers ki enable us to identify the items to pack and then show how
the values k1, . . . , kh can in fact be guessed in polynomial time. Let ai denote the
profit of an item in Si. Consider an index i such that ai ≤ εO/h. Given the value
ki we order the items in Si in increasing size values and pick the largest number of
items from this ordered set whose cumulative profit does not exceed ki(ε

2O/h). If
ai > εO/h we pick the smallest number of items, again in order of increasing size,
whose cumulative profit exceeds ki(ε

2O/h). The asymmetry is for technical reasons.
The choice of items is thus completely determined by the choice of the ki. For a tuple
of values k1, . . . , kh, let U(k1, . . . , kh) denote the set of items picked as described above.
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Lemma 2.3. There exists a valid tuple (k1, . . . , kh) with each ki ∈ [h/ε2] such
that U(k1, . . . , kh) has a feasible packing in B and p(U(k1, . . . , kh)) ≥ (1 − ε)O.

Proof. Let U be the items in some optimal solution and let Ui = Si∩U . Define ki
to be �p(Ui)h/(ε

2O)�. The tuple so obtained satisfies the required properties.
As remarked earlier, a naive enumeration of all integer h-tuples takes quasi-

polynomial time. The crucial observation is that the ki’s are not independent. They
must satisfy the additional constraint that

∑
i ki ≤ h/ε2 since the total profit from all

the sets S1, . . . , Sh cannot exceed opt. This constraint limits the number of tuples of
relevance. We make use of the following claims.

Claim 2.4. Let f be the number of g-tuples of nonnegative integers such that
the sum of tuple coordinates is equal to d. Then f =

(
d+g−1
g−1

)
. If d + g < αg, then

f = O(eαg).
Proof. The first part of the claim is elementary counting. If d + g < αg, then

f ≤
(

αg
g−1

)
≤ (αg)g−1/(g − 1)!. Using Stirling’s formula we can approximate (g − 1)!

by
√

2π(g − 1)((g − 1)/e)g−1. Thus f = O((eα)g−1) = O(eαg).
Claim 2.5. Let h ∈ [4ε−1 lnn]. Then the number of h-tuples (k1, . . . , kh) such

that ki ∈ [h/ε2] and
∑

i ki ≤ h/ε2 is O(nO(1/ε3)).

Proof. The number of tuples satisfying the claim is easily seen to be
(
h/ε2+h

h

)
. We

now apply the bound from Claim 2.4; we have α = (1 + 1/ε2) and g = 4ε−1 lnn + 1

and hence we get an upper bound of e(4ε−3 lnn+1+ε−2). The claim follows.
Using the restricted number of distinct profit values we can also reduce the number

of distinct sizes in the given instance to O(lnn). This property will be crucial in
packing the items. The basic idea is shifting, an idea that is used in approximation
schemes for bin packing [3]. Let A be a set of g items with identical profit but perhaps
differing sizes. We order items in A in nondecreasing order of sizes and divide them
into t = (1+1/ε) groups A1, . . . , At with A1, . . . , At−1 containing �g/t� items each and
At containing (g mod t) items. We discard the items in At−1, and for each i < t− 1
we increase the size of every item in Ai to the size of the smallest item in Ai+1. Since
A is ordered by size, no item in Ai is larger than the smallest item in Ai+1 for each
1 ≤ i < t. It is easy to see that if A has a feasible packing, then the modified instance
also has a feasible packing. We discard at most an ε fraction of the profit and the
modified sizes have at most 2/ε distinct values. Applying this to each profit class we
obtain an instance with O(ε−2 lnn) distinct size values.

Lemma 2.6. Given an instance I = (B,S) with n items we can obtain in polyno-

mial time v = nO(1/ε3) instances I1, . . . , Iv such that
• for 1 ≤ j ≤ v, Ij = (B,Sj);
• for 1 ≤ j ≤ v, items in Sj have O(ε−1 lnn) distinct profit values;
• for 1 ≤ j ≤ v, items in Sj have O(ε−2 lnn) distinct size values;
• there is an index �, 1 ≤ � ≤ v, such that S� has a feasible packing in B and
p(S�) ≥ (1 −O(ε))opt(I).

Proof. As indicated earlier, we can guess a value O such that (1 − ε)opt ≤
O ≤ opt from O(ε−1 lnn) values. For each guess for O we round profits of items
to geometric powers (see Lemma 2.2) and guess the partition of O among the profit

classes. The number of guesses for the partition is nO(1/ε3). Therefore the distinct
number of instances is nO(1/ε3). Each instance is modified to reduce the number of
distinct sizes. Each step potentially loses a (1−ε) factor, so overall we lose a (1−O(ε))
factor in the profit.

We will assume for the next section that we have guessed the correct set of items
and that they are partitioned into O(ε−2 lnn) sets, with each set containing items
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of the same size. We denote by Ui the items of the ith size value and by ni the
quantity |Ui|.

2.3. Packing items. From Lemma 2.6 we obtain a restricted set of instances in
terms of item profits and sizes. We also need some structure in the bins and we start
by describing the necessary transformations.

2.3.1. Structuring the bins. Assume without loss of generality that the small-
est bin capacity is 1. We order the bins in increasing order of their capacity and
partition them into blocks B0, B1, . . . , B� such that block Bi consists of all bins x with
(1 + ε)i ≤ c(x) < (1 + ε)i+1. Let mi denote the number of bins in block Bi.

Definition 2.7 (small and large blocks). A block Bi of bins is called a small
bin block if mi ≤ 1/ε; it is called large otherwise.

Let Q be the set of indices i such that Bi is small. Define Q′ to be the set of
t = 1/ε+ 	4ε−1 ln 1/ε
 largest indices in the set Q. Note that we are choosing from Q
the blocks with the largest indices and not the blocks with the most number of bins.
Let BQ and BQ′ be the sets of all bins in the blocks specified by the index sets Q
and Q′, respectively. The following lemma makes use of the property of geometrically
increasing bin capacities.

Lemma 2.8. Let U be a set of items that can be packed in the bins BQ. There
exists a set U ′ ⊆ U such that U ′ can be packed into the bins BQ′ , and p(U ′) ≥
(1 − ε) · p(U).

Proof. Fix some packing of U in the bins BQ. Consider the largest 1/ε bins in BQ.
One of these bins has a profit less than εp(U). Without loss of generality, assume its
capacity is 1. We will remove the items packed in this bin and use it to pack items from
smaller bins. Let Bi be the block containing this bin. Let j be the largest index in Q
such that j < i−4ε−1 ln 1/ε. If no such j exists, Q′ = Q and there is nothing to prove.
For any k ≤ j, a bin in block Bk has capacity at most 1/(1 + ε)i−k since the bin from
Bi had capacity 1 and the bin capacities decrease geometrically with index. Thus the
bin capacity in Bk is at most (1 + ε)j−i+1/(1 + ε)j−k+1 ≤ ε2/(1 + ε)j−k+1. The latter

inequality follows from the fact that j−i+1 ≤ −4ε−1 ln 1/ε and (1+ε)−4ε−1 ln 1/ε ≤ ε2.
Since Bk is a small bin block, it has no more than 1/ε bins; therefore the total capacity
of all bins in Bk is at most ε/(1+ε)j−k+1. Hence, the total capacity of bins in small bin
blocks with indices less than or equal to j is

∑
k≤j ε/(1+ ε)j−k+1, which is at most 1.

Therefore, we can pack all the items in blocks Bk with k ∈ BQ, k ≤ j in the bin we
picked. The total number of blocks in Q between i and j is 4ε−1 ln 1/ε. Each of the
1/ε largest bins in BQ could be in their own blocks. Hence the largest t indices from Q
would contain all these blocks. From the above, we conclude that bins of blocks with
indices in Q′ are sufficient to pack a set U ′ ⊆ U such that p(U ′) ≥ (1− ε) ·p(U).

Therefore we can retain the t small bin blocks from Q′ and discard the blocks
with indices in Q \ Q′. Hence from here on we assume that the given instance is
modified to satisfy |Q| ≤ t, and it follows that the total number of bins in small bin
blocks is at most t/ε. When the number of bins is fixed, a PTAS is known (implicit
in earlier work) even for the GAP. The basic idea in this PTAS will be useful to us in
handling small bin blocks. For large bin blocks, the advantage, as we shall see later,
is that we can exceed the number of bins used by an ε fraction. The main task is to
integrate the allocation and packing of items between the different sets of bins. We
do this in three steps that are outlined below.

For the rest of the section we assume that we have a set of items that can be
feasibly packed in the given set of bins. We implicitly refer to some fixed feasible
packing as the optimal solution.
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2.3.2. Packing the most profitable items into small bin blocks. We guess,
for each bin b in BQ, the 1/ε most profitable items that are packed in b in the optimal

solution. The number of guesses needed is nO(ln(1/ε)/ε3).

2.3.3. Packing large items into large bin blocks. The second step is to
select items and pack them in large bin blocks. We say that an item is packed as a
large item if its size is at least ε times the capacity of the bin in which it is packed.
Since the capacities of the blocks are increasing geometrically, an item can be packed
as a large item in at most f = 	2ε−1 ln 1/ε
 different blocks. Our goal is to guess all
the items that are packed as large and also to which blocks they are assigned. We do
this approximately as follows.

Let ni be the number of items of the ith size class Ui, and let �i be the number
packed as large in some optimal solution. Let fi ≤ f be the number of blocks in which
items of Ui can be packed as large. Let �ji , 1 ≤ j ≤ fi, be the number of items packed

in each of those blocks. If �ji ≤ ε
fi
ni, we can discard those items, overall losing at most

an ε fraction of the profit from Ui. Our objective is to guess a number hj
i such that

(1− ε)�ji ≤ hj
i ≤ �ji . The number of guesses required to obtain a single hj

i is bounded

by g = 2ε−1 ln fi/ε, and therefore the total number of guesses for all hj
i is bounded

by gf . Using f as an upper bound for fi and simplifying we claim an upper bound
of 2O(1/ε3). Therefore the total number of guesses required for all the O(ε−2 lnn) size

classes is bounded by nO(1/ε5). Here is where we take advantage of the fact that the
number of distinct sizes is small (logarithmic).

Suppose we have correctly assigned all large items to their respective bin blocks.
We describe now a procedure for finding a feasible packing of these items. Here we
ignore the potential interaction between items that are packed as large and those
packed as small. We can focus on a specific block since the large items are now parti-
tioned between the blocks. Note that even within a single block the large items could
contain Ω(lnn) distinct sizes. The abstract problem that we have is the following.
Given a collection of m bins with capacities in the range [1, 1 + ε), and a set of n
items with sizes in the range (ε, 1 + ε), decide if there is a feasible packing for them.
We do not know if this problem can be solved in polynomial time when the number
of distinct sizes is O(lnn). Here we take a different approach. We obtain a relaxation
by allowing use of extra bins to pack the items. However, we restrict the capacity of
the extra bins to be 1. We give an algorithm that either decides that the instance is
infeasible or gives a packing with at most an additional εm bins of capacity 1.

The first step in the algorithm is to pack the items of size strictly greater than 1.
Let L be these set of items. Consider items of L in nondecreasing order of their
sizes. When considering an item of size s, find the smallest size bin available that can
accommodate it. If no such bin exists we declare that the items cannot be packed.
Otherwise we pack the item into the bin and remove the bin from the available set of
bins.

Lemma 2.9. If the algorithm fails, then there is no feasible packing for L. Further,
if there is a feasible packing for all the items, then there is one that respects the packing
of L produced by the above algorithm.

Proof. In our instance, each bin’s capacity is at most 1 + ε and every item is of
size strictly larger than ε. Therefore each item of L is packed in a bin by itself.

Suppose there are two bins x and y and an item from L of size s such that
c(x) > c(y) ≥ s. Consider any feasible packing of the items into the bins in which s is
packed into x, and y does not contain any item from L. Then it is easy to see that we
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can swap s to y and the items in y into x without affecting feasibility. Similarly, we
can argue that if s1 and s2 are two items from L such that s1 > s2, then s1 occupies
a larger bin than s2. Using these swapping arguments we can see that the properties
described in the lemma are satisfied.

From the above lemma, we can restrict ourselves to packing items with sizes in
(ε, 1] into the bins that remain after packing L. Let m′ be the number of bins that
remain. If a feasible packing exists, the shifting technique for bin packing [3] can be
adapted in a direct fashion to pack the items using εm′ additional bins of size 1 each.
We briefly describe the algorithm. Let n′ be the number of items to be packed. We
observe that each bin can accommodate at most 1/ε + 1 items. Thus m′(1/ε + 1) ≥
n′. If m′ ≤ 1/ε we can check for a feasible packing by brute force enumeration.
Otherwise let t = 2/ε2. The items are arranged in nonincreasing order of their sizes
and grouped into sets H1, H2, . . . , Ht, Ht+1 such that |H1| = |H2| = · · · = |Ht| = n′/t
and H ′

t+1 = n′(mod)t. Items in the first group H1 that contains the largest items are
each assigned to a separate bin of size 1. For 2 ≤ i ≤ t + 1, the sizes of the items in
Hi are uniformly set to be the size of the smallest item in Hi−1. It is clear that the
rounded up items have a packing in the m′ bins if the original items had a packing.
The rounded up items have only t distinct sizes, and dynamic programming can be
applied to test the feasibility of packing these items in the given m′ bins in O(nO(t))
time. Note that the number of extra bins we use is |H1| = n′/t = ε2n′/2 ≤ εm′ since
m′(1/ε + 1) ≥ n′. Thus we obtain the following lemma.

Lemma 2.10. Given m ≥ 1/ε bins of capacities in the range [1, 1 + ε) and items

of sizes in the range (ε, 1 + ε), there is an nO(1/ε2)-time algorithm that either decides
that there is no feasible packing for the items or returns a feasible packing using at
most εm extra bins of capacity 1.

We eliminate the extra bins later by picking the m most profitable among them
and discarding the items packed in the rest. The restriction on the size and number
of extra bins is motivated by the elimination procedure. In order to use extra bins the
quantity εm needs to be at least 1. This is the reason to distinguish between small
and large bin blocks. For a large bin block Bi let Ei be the extra bins used in packing
the large items. We note that |Ei| ≤ εm′ ≤ εmi.

2.3.4. Packing the remaining items. The third and last step of the algorithm
is to pack the remaining items, which we denote by R. At this stage we have a packing
of the 1/ε most profitable items in each of the bins in BQ (bins in small bin blocks)
and a feasible packing of the large items in the rest of the bins. For each bin bj ∈ B
let Yj denote the set of items already packed into bj in the first two steps. The item
set R is packed via a linear programming (LP) approach. In particular, we use the
generalized assignment formulation with the following constraints.

1. Each remaining item must be assigned to some bin.
2. An item y can be assigned to a bin bj in a large bin block Bi only if s(y) ≤

ε · (1 + ε)i. In other words, y should be small for all bins in Bi.
3. An item y can be assigned to a bin bj in a small bin block only if p(y) ≤

ε
1+εp(Yj) and |Yj | ≥ 1/ε.

Constraints 2 and 3 are based on the assumption that we have correctly guessed
in the first two steps of the packing procedure. We make the formulation more precise
now. Note that we only check for feasibility. The variable xij denotes the fraction of
item i that is assigned to bin j. Let V be the set of item-bin pairs (i, j) such that i
cannot be packed into bj due to constraints 2 and 3. The precise LP formulation is
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given below: ∑
j

xij = 1, item i,

∑
i

s(yi) · xij ≤ c(bj), bin j,

xij = 0, (i, j) ∈ V,

xij = 1, i ∈ Yj ,

xij ≥ 0, (i, j) ∈ V.

Lemma 2.11. The LP formulation above has a feasible solution if the guesses
for the item set, the items packed as large, and those packed in small bin blocks are
correct.

Proof. Consider a feasible integral packing of the items in the bins (which by
assumption exists) and let x̄ denote that solution. We will use x̄ to construct a
feasible fractional solution x for the LP above. Note that x̄ need not satisfy the
constraints imposed by V and the Yj ’s in the LP above.

Let blk(j) denote the block that contains the bin bj . We ensure the following
constraint: if x̄ij = 1, then

∑
{l|blk(�)=blk(j)} xi� = 1. In other words, we fractionally

assign each item to the same block that the optimal solution does. We treat the small
and large bin blocks separately.

For a j where blk(j) is small we set xij = x̄ij . If we had correctly guessed the
largest profit items in small bin blocks, this assignment is consistent with V and Yj .

Consider a large bin block Bk. By our assumption, we already have an integral
assignment for the set of large items that x̄ assigns to Bk. Let Sk be the small items
that are assigned by x̄ to Bk. We claim that Sk can be packed fractionally in Bk

irrespective of the assignment of the large items. Clearly, there is enough fractional
capacity. Since the sizes of the items do not change with the bins, any greedy fractional
packing that does not waste capacity gives a feasible packing.

Let xij be a feasible fractional solution to the above formulation. Lenstra,
Shmoys, and Tardos [21] and Shmoys and Tardos [28] show how a basic feasible
solution to the linear program for GAP can be transformed into an integral solution
that violates the capacities only slightly. We apply their transformation to xij and
obtain a 0-1 solution x̄ij with the following properties.

1. If xij = 0, then x̄ij = 0, and if xij = 1, then x̄ij = 1.
2. For each bin bj , either

∑
i x̄ij ≤ c(bj) or there is an item k(j) such that∑

i �=k(j) x̄ij ≤ c(bj) and xik(j) < 1. We call this item k(j) the violating item
for bin bj .

Thus we can find an integral solution where each bin’s capacity is exceeded by at
most one item. Further the items assigned to the bins satisfy the constraints specified
by V ; that is, x̄ij = 0 if (i, j) ∈ V . The integral solution to the LP also defines
an allocation of items to each block. Let Pi be the total profit associated with all
items assigned to bins in block Bi. Then clearly O =

∑
i≥0 Pi. However, we have an

infeasible solution since bin capacities are violated in the rounded solution x̄ij . We
modify this solution to create a feasible solution such that in each block we obtain a
profit of at least (1 − 3ε)Pi.

Large bin blocks. Let Bi be a large bin block, and without loss of generality
assume that bin capacities in Bi are in the range [1, 1 + ε). By constraint 2 on the
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assignment, the size of any violating item in Bi is less than ε and there are at most
mi of them. For all ε < 1/2 we conclude that at most 2εmi extra bins of capacity 1
each are sufficient to pack all the violating items of Bi. Recall from Lemma 2.10
that we may have used εmi extra bins in packing the large items as well. Thus the
total number of extra bins of capacity 1, denoted by E′

i, is at most 3εmi. Thus all
items assigned to bins in Bi have a feasible integral assignment in the set E′

i ∪ Bi.
Now clearly the mi most profitable bins in the collection E′

i ∪ Bi must have a total
associated profit of at least Pi/(1 + 3ε). Moreover, it is easy to verify that all the
items in these mi bins can be packed in the bins of Bi itself.

Small bin blocks. Consider now a small bin block Bi. By constraint 3 on the
assignment, we know that the profit associated with the violating item in any bin bj
of Bi is at most ε

(1+ε)p(Yj). Thus we can simply discard all the violating items assigned

to bins in Bi, and we obtain a feasible solution of profit value at least Pi/(1 + ε).
This gives a feasible integral solution with total profit value at least∑

i≥0 Pi/(1 + 3ε). Putting together the guessing and packing steps we obtain our
main result.

Theorem 2.12. There is a PTAS for the multiple knapsack problem.

3. Generalized assignment problem (GAP). We start by showing that even
highly restricted cases of GAP are APX-hard. Then we sketch a 2-approximation
algorithm for GAP that easily follows from the work of Shmoys and Tardos [28] on
the Min GAP problem.

3.1. APX-hardness of restricted instances. We reduce the maximum 3-
bounded 3-dimensional matching (3DM) problem [8, 16] (defined formally below) in
an approximation-preserving manner to highly restricted instances of GAP.

Definition 3.1 (3-bounded 3DM (3DM-3)). We are given a set T ⊆ X×Y ×Z,
where |X| = |Y | = |Z| = n. A matching in T is a subset M ⊆ T such that no
elements in M agree in any coordinate. The goal is to find a matching in T of largest
cardinality. A 3-bounded instance is one in which the number of occurrences of any
element of X ∪ Y ∪ Z in T is at most 3.

Kann [16] showed that 3DM-3 is APX-hard; that is, there exists an ε0 > 0 such
that it is NP-hard to decide whether an instance has a matching of size n or if every
matching has size at most (1 − ε0)n. In what follows, we denote by m the number of
hyperedges in the set T .

Theorem 3.2. GAP is APX-hard even on instances of the following form for all
positive δ.

• p(i, j) = 1 for all items i and bins j.
• s(i, j) = 1 or s(i, j) = 1 + δ for all items i and bins j.
• c(j) = 3 for all bins j.

Proof. Given an instance I of 3DM-3, we create an instance I ′ = (B,S) of GAP
as follows. In I ′ we have m bins b1, . . . , bm of capacity 3 each, one for each of the
edges e1, . . . , em in T . For each element i of X we have an item xi in I ′ and similarly
yj for j ∈ Y and zk for k ∈ Z. We also have an additional 2(m − n) items in I ′,
u1, . . . , u2(m−n). We set all profits to be 1. It remains to set up the sizes. For each
item uh and bin b� we set s(uh, b�) = (1 + δ). For an item xi and bin b� we set
s(xi, b�) = 1 if i ∈ e� and (1 + δ) otherwise. The sizes of items yj and zk are set
similarly.

We claim that 3 items can fit in a bin b� if and only if they are the elements of the
edge e�. Thus bins with 3 items correspond to a matching in T . It then follows that if
I has a matching of size n, then I ′ has a solution of value 3n+ 2(m− n). Otherwise,
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every solution to I ′ has value at most 3n− ε0 ·n+ 2(m−n). The APX-hardness now
follows from the fact that m = O(n) for bounded instances.

A similar result can be stated if only profits are allowed to vary.
Theorem 3.3. GAP is APX-hard even on instances of the following form:
• each item takes only two distinct profit values,
• each item has an identical size across all bins and there are only two distinct

item sizes, and
• all bin capacities are identical.

Proof. The reduction is once again from 3DM-3. Given an instance I of 3DM-3,
we create an instance I ′ = (B,S) of GAP as follows. In I ′ we have m bins b1, . . . , bm
of capacity 3 each, one for each of the edges e1, . . . , em in T . For each element i of X
we have an item xi in I ′ and similarly yj for j ∈ Y and zk for k ∈ Z. We also have
an additional m− n items u1, . . . , um−n where s(uh, b�) = 3 and p(uh, b�) = 4 for any
additional item uh and a bin b�. Fix a positive constant δ < 1/3. For an item xi and
bin b� we set p(xi, b�) = 1 + δ if i ∈ e� and 1 otherwise. The profits of items yj and
zk are set similarly. The sizes of items xi, yj , and zk are all set to 1 each.

It is now easy to verify that if I has a matching of size n, there exists a solution
to I ′ of value 4(m−n) + 3n(1 + δ). Otherwise, every solution to I ′ has value at most
4(m−n)+3n(1+ δ)−nε0 · δ. As above, the APX-hardness now follows from the fact
that m = O(n).

Notice that Theorem 3.3 is not a symmetric analogue of Theorem 3.2. In par-
ticular, we use items of two different sizes in Theorem 3.3. This is necessary as the
special case of GAP where all item sizes are identical across the bins (but the profits
can vary from bin to bin) is equivalent to minimum cost bipartite matching.

Proposition 3.4. There is a polynomial time algorithm to solve GAP instances
where all items have identical sizes across the bins.

3.2. A 2-approximation for GAP. Shmoys and Tardos [28] give a (1, 2) bi-
criteria approximation for Min GAP. A paraphrased statement of their precise result
is as follows.

Theorem 3.5 (Shmoys and Tardos [28]). Given a feasible instance for the cost
assignment problem, there is a polynomial time algorithm that produces an integral
assignment such that

• cost of solution is no more than opt,
• each item i assigned to a bin j satisfies s(i, j) ≤ c(j), and
• if a bin’s capacity is violated, then there exists a single item that is assigned

to the bin whose removal ensures feasibility.
We now indicate how the above theorem implies a 2-approximation for GAP.

The idea is to simply convert the maximization problem to a minimization problem
by turning profits into costs by setting w(i, j) = L− p(i, j), where L > maxi,j p(i, j)
is a large enough number to make all costs positive. To create a feasible instance we
have an additional bin bm+1 of capacity 0 and for all items i we set s(i,m+1) = 0 and
w(i,m+ 1) = L (in other words p(i,m+ 1) = 0). We then use the algorithm for cost
assignment and obtain a solution with the guarantees provided in Theorem 3.5. It is
easily seen that the profit obtained by the assignment is at least the optimal profit.
Now we show how to obtain a feasible solution of at least half the profit. Let j be any
bin whose capacity is violated by the assignment, and let ij be the item guaranteed in
Theorem 3.5. If p(ij , j) is at least half the profit of bin j, then we retain ij and leave
out the rest of the items in j. In the other case we leave out ij . This results in a feasible
solution of at least half the profit given by the LP solution. We get the following result.
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Proposition 3.6. There is a 2-approximation for GAP.

The algorithm in [28] is based on rounding an LP relaxation. For MKP an optimal
solution to the linear program can be easily constructed in O(n log n) time by first
sorting items by their profit to size ratio and then greedily filling them in the bins.
Rounding takes O(n2 log n) time. It is an easy observation that the integrality gap of
the natural LP relaxation for GAP is 2 even on instances of MKP with identical bin
capacities.

4. A greedy algorithm. We now analyze a natural greedy strategy: pack bins
one at a time by applying the FPTAS for the single knapsack problem on the remaining
items. Greedy(ε) refers to this algorithm with ε parameterizing the error tolerance
used in the knapsack FPTAS.

Claim 4.1. For instances of MKP with bins of identical capacity, the algorithm
Greedy(ε) gives a ( e−1

e −O(ε))-approximation.

Proof. Let X be the set of items packed by some optimal solution. Let Xj denote
the set of items in X that remain after Greedy packs the first (j − 1) bins, and let Yj

be the items packed by Greedy in the jth bin. Since the bin capacities are identical,
by a simple averaging argument it is easy to see that p(Yj) ≥ (1− ε)p(Xj)/m. Simple
algebra gives the result.

Claim 4.2. For MKP, the algorithm Greedy(ε) gives a (2 + ε)-approximation.

Proof. Let Xj denote the set of items that some fixed optimal solution assigns
to the jth bin and which do not appear anywhere in Greedy’s solution. Also, let
Yj denote the items that Greedy packs in the jth bin. Then we claim that p(Yj) ≥
(1− ε)p(Xj) since Xj was available to be packed when Greedy processed bin j. This
follows from the greedy packing. Thus we obtain

∑m
j=1 p(Yj) ≥ (1 − ε)

∑m
j=1 p(Xj).

If
∑m

j=1 p(Xj) ≥ opt/2 we are done. Otherwise by definition of the Xj ’s, Greedy
must have packed the other half of the profit. This implies the claimed (2 + ε)-
approximation.

Claim 4.2 is valid even if the item sizes (but not profits) are a function of the bins,
an important special case of GAP that is already APX-hard. The running time of
Greedy(ε) is O(mn log 1/ε+m/ε4) using the algorithm of Lawler [19] for the knapsack
problem. Claim 4.2 has been independently observed in [2, 15].

We show an instance on which Greedy’s performance is no better than 2. There
are two items with sizes 1 and α < 1 and each has a profit of 1. There are two bins with
capacities 1 and α each. Greedy packs the smaller item in the big bin and obtains
a profit of 1 while opt = 2. This also shows that ordering bins in nonincreasing
capacities does not help improve the performance of Greedy.

5. Conclusions. An interesting aspect of our guessing strategy is that it is
completely independent of the number of bins and their capacities. This might prove
to be useful in other variants of the knapsack problem. One application is in obtaining
a PTAS for the stochastic knapsack problem with Bernoulli variables [9].

The Min GAP problem has a (1, 2) bicriteria approximation, and it is NP-hard
to obtain a (1, 3/2− ε)-approximation. In contrast, GAP has a 2-approximation, but
the known hardness of approximation is (1+ ε0) for a very small but fixed ε0. Closing
this gap is an interesting open problem. An e/(e− 1) + ε � 1.582 + ε approximation
for GAP has been obtained recently using an LP formulation [5]. Also in recent
work, it has been observed that GAP is a special case of constrained submodular
set function maximization, and using the results in [6], a greedy algorithm yields a
(2 + ε)-approximation algorithm.
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Another interesting problem is to obtain a PTAS for MKP with an improved
running time. Though an FPTAS is ruled out even for the case of two identical bins,
a PTAS with a running time of the form f(1/ε)poly(n) might be achievable. Such an
algorithm is not known even for instances in which all bins have the same capacity.
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THE RECTILINEAR STEINER ARBORESCENCE PROBLEM IS
NP-COMPLETE∗

WEIPING SHI† AND CHEN SU‡

Abstract. Given a set of points in the first quadrant, a rectilinear Steiner arborescence (RSA)
is a directed tree rooted at the origin, containing all points, and composed solely of horizontal and
vertical edges oriented from left to right, or from bottom to top. The complexity of finding an
RSA with the minimum total edge length for general planar point sets has been a well-known open
problem in algorithm design and VLSI routing. In this paper, we prove the problem is NP-complete
in the strong sense.

Key words. Steiner tree, computational complexity, NP-complete
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1. Introduction. Let P = {p1, p2, . . . , pn} be a set of points in the first quadrant
of E2, where pi = (xi, yi). A rectilinear Steiner arborescence (RSA) for P is a directed
Steiner tree T rooted at the origin, containing all points in P , and composed solely
of horizontal and vertical line segments oriented from left to right, or from bottom
to top. A rectilinear Steiner minimum arborescence (RSMA) for P is an RSA for P
that has the shortest possible total edge length.

The difference between an RSA and the traditional rectilinear Steiner tree is that
an RSA is also a shortest distance tree with respect to the origin. Figure 1.1 shows
a Steiner minimum arborescence, a Steiner minimum tree, and a minimum spanning
tree for the same set of points with p1 being the origin. For an introduction on Steiner
trees, see the book by Hwang, Richards, and Winter [9].
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Fig. 1.1. A rectilinear Steiner arborescence (a), a rectilinear Steiner tree (b), and a rectilinear
spanning tree (c).

The rectilinear Steiner arborescence problem was first studied by Nastansky,
Selkow, and Stewart [13] in 1974. They proposed an integer programming formula-
tion, which has exponential time complexity. In 1979 Laderia de Matos [10] proposed
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an exponential time dynamic programming algorithm. In 1985, Trubin [15] claimed
the RSA problem can be solved in polynomial time. In 1992, Rao, Sadayappan,
Hwang, and Shor [14] showed that Trubin’s algorithm is incorrect and presented an
O(n log n) time approximation algorithm that produces an RSA of length at most
2 times the optimal [14]. In 1994, Córdova and Lee [6] extended the heuristic to
points in all four quadrants with the same time complexity. In 1997, Cho [3] again
claimed that the RSA problem can be solved in polynomial time using a min-cost
max-flow approach. Soon after, Erzin and Kahng showed Cho’s claim is wrong [7].
In 2000, Lu and Ruan [12], motivated by the polynomial time approximation scheme
(PTAS) of Arora [2], designed a PTAS for the RSA problem. Their PTAS runs in
time O(nO(c) log n) and produces an RSA of length at most (1 + 1/c) times the opti-
mal. However, whether there exists a polynomial time algorithm for the RSA problem
remains open.

Because an RSMA is a shortest distance tree of minimum total length, it has
important applications in VLSI routing. Cong, Leung, and Zhou [5] showed that
routing trees based on RSMAs may have significantly less delay than those based
on the traditional Steiner trees. Many researchers proposed efficient heuristics and
exponential time exact algorithms for the RSA problem [1, 4].

2. NP-completeness.

2.1. Overall strategy. We assume that readers have the general knowledge of
NP-completeness [8]. The decision version of the RSA problem is as follows:

Instance: A set of points P = {p1, p2, . . . , pn} in the plane, and
a positive integer k.

Question: Is there an RSA of total edge length k or less?
The proof is a reduction from planar 3SAT, which was proven to be NP-complete

in the strong sense by Lichtenstein [11]:
Instance: A set of variables V = {v1, v2, . . . , vn} and a set of

clauses C = {c1, c2, . . . , cm}. Each clause contains at most 3 literals.
Furthermore, the bipartite graph G = (V ∪ C,E) is planar, where
E = {(vi, cj) | vi ∈ cj or vi ∈ cj}.

Question: Is there an assignment for the variables so that all
clauses are satisfied?

For example, Figure 2.1 is the graph of a planar 3SAT instance c1 = v1 ∨ v2 ∨ v3

and c2 = v1 ∨ v4. We will use this example throughout the paper.

� � � �v1 v2 v3 v4

�

�

c1

c2

������

������

���������

���������

Fig. 2.1. Graph G of a planar 3SAT instance.

The reduction is through component design. For a given planar 3SAT instance,
we first convert its planar graph G to a planar graph H. Then we embed H in a grid
and let the embedded graph be R. Finally we replace each vertex of R by a tile. We



RECTILINEAR STEINER ARBORESCENCE 731

will use basic tiles to represent variables, NOT tiles to negate variables, OR tiles to
compute the OR of two variables, and clause tiles to check if the clauses are satisfied.
The length of the RSMA for the set of points so constructed will tell us whether the
planar 3SAT has a satisfying solution.

2.2. Embedding. We first convert G of the given planar 3SAT instance to a
planar graph H with maximum degree 3.

For each variable vi in G, let d(vi) be the degree of vi. Replace vi by a path of d(vi)
variable vertices for vi in H: ui1, . . . , uid(vi) and edges (ui1, ui2), . . . , (uid(vi)−1, uid(vi)).
See Figure 2.2 for an example. Each variable vertex will be connected to a clause
vertex defined next.

��
�

��

vi
�

����

�

ui1

ui2 ui3

ui4

Fig. 2.2. Vertex vi of degree 4 is replaced by a path of 4 vertices.

For each clause cj in G that contains two variables, if cj = vi ∨ vk, then H will
contain a clause vertex cj and two edges (cj , ui) and (cj , uk), where ui and uk are
variable vertices for vi and vk, respectively. Since the transformation in Figure 2.2
produced d(vi) variable vertices for each vi, we make each edge connect to a unique
variable vertex. If cj is not in the right form, say, cj = vi ∨ vk, then in H we insert
a NOT vertex wij between cj and the variable vertex for vi. In other words, we will
have a new vertex wij and edges (cj , wij), (wij , ui), and (cj , uk).

For each clause cj in G that contains three variables, let cj = vi ∨ vk ∨ vl =
(vi ∨ vk)∨ vl = c′j ∨ vl. In H, there will be an OR vertex c′j that connects the variable
vertices for vi and vk, and a clause vertex cj that connects c′j and the variable vertex
for vl. Similarly, if cj is not in the right form, we will insert NOT vertices as needed.

Now H is a planar graph with maximum degree 3. Figure 2.3 shows the converted
planar graph H.

�u12

�u11

� u21

�w21

�c′1

� u31 � u41

� c1

� c2

�

w12

�
�

�

�
�

�

�
�

�
��

���������

�����
�����

Fig. 2.3. Planar graph H converted from G.

Valiant [16] showed that any planar graph G = (V,E) of maximum degree 3 has
a planar embedding in a rectilinear grid of area O(|V |2). Therefore, graph H can be
embedded in a rectilinear grid of area of O((n+m)2), where n and m are the number
of variables and clauses. We further require the following in the grid embedding.

(1) Vertices share an edge if and only if they are distance 1 apart.
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(2) For each clause vertex cj = vi ∨ vk, or cj = c′j ∨ vk, the path from vi, or c′j ,
enters from the left, and the path from vk enters from below.

(3) Each OR vertex c′j = vi ∨ vk occupies two horizontally adjacent vertices in
the embedding, the path from vi enters from the left, the path from vk enters from
below, and the path leading to cj exits to the right.

These requirements can be satisfied by locally rearranging the grid embedding,
increasing the size of the grid by a constant factor, and adding additional vertices
and edges. For requirement (2), since vi, cj , and vk is a path with no connection
to other vertices in planar graph H, it is always possible to swirl the path to any
direction. Figure 2.4 shows the embedding of an example clause vertex cj = vi ∨ vk.
For requirement (3), the same idea can be used. For an OR vertex c′j = vi ∨ vk, we
first swirl the path to cj to the right. Then if vk and vi are in clockwise order from
the path to cj , then vk and vi can be swirled into proper positions. If vk and vi are in
counterclockwise order from the path to cj , then a crossing may occur. To avoid the
crossing, note that vi ∨ vk = vk ∨ vi. Therefore we can add NOT vertices to paths for
vi and vk and then route vk to enter from the left and vi to enter from below, thereby
maintaining the planarity.

� � � � � � �

�

�

� � �
cj

�

�

�� vi

�

�

�

�

� �

� �	

vk

cj
�
	

vk

� vi

(a) (b)

Fig. 2.4. A clause vertex with incoming paths (a). Requirement (2) is satisfied by swirling (b).

Figure 2.5 shows the grid embedding R. There are two auxiliary vertices t1 and
t2 introduced in order to meet the above requirements.

2.3. Component design. The most important building block of our design is
the quadruped in Figure 2.6. A quadruped consists of 4 white points q1, . . . , q4, and
4 black points b1, . . . , b4. The distances between the points are given in Figure 2.6,
where α, β, δ1, δ2 > 0. In addition, β + δ1 > α, meaning that the Y-coordinate of
q3 is less than the Y-coordinate of q4, and α > δ1 + δ2, meaning that the rectilinear
distance between q2 and q4 is β − δ2 + α − δ1 > β. There is no other point on or
inside the region enclosed by the solid, dashed, and dotted lines, i.e., three triangles
and one rectangle. We call the region the forbidden region.

Definition 2.1. For a set of points Q that contains white points and black
points, a minimum forest of Q is a set of RSAs that contains all white points in Q.
Furthermore, the root of each RSA is a black point in Q, and the total edge length is
minimum.

Lemma 2.2. For a quadruped, there are only two minimum forests, shown as
solid edges and dashed edges in Figure 2.6. The edge length of both minimum forests
is 2(α + β).
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Fig. 2.5. Embedded graph R.
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Fig. 2.6. A quadruped and its forbidden region. The two minimum forests both have total edge
length 2α + 2β.

Proof. To connect q4, we need a path of length at least α. To connect q1, we
also need a path of length at least α, even with the help of the path for q4. Similarly,
to connect q2 and q3, we need two paths each of length at least β. Hence, the lower
bound is 2(α + β).

On the other hand, to connect q1, q2, . . . , q4 with the minimum edge length 2(α+
β), each point must use a path that equals the lower bound. Starting with q2, we can
use either the horizontal edge or the vertical edge, both of length β. If we use the
vertical edge, then we must connect q3 with the horizontal edge, q4 with the vertical
edge, and q1 with the horizontal edge. This gives a total length of 2(α+ β) shown as
the solid edges. If we use the horizontal edge for q2, we will end up with the dashed
edges, also of length 2(α + β).

We are now ready to define the tiles. The height and width of all tiles, except for
the OR tile, are both 96. The height of the OR tile is 96, and the width is 192, twice
the width of other tiles.

A basic tile is made of overlapping quadrupeds as shown in Figure 2.7.
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Fig. 2.7. A basic tile made of overlapping quadrupeds, where α = β = 20 and δ1 = δ2 = 4.

Lemma 2.3. There are only two minimum forests for a basic tile, one shown as
dashed edges and one shown as solid edges.

Proof. Since the basic tile consists of overlapping quadrupeds, from Lemma 2.2,
the minimum forest for one quadruped will force the minimum forests for the rest of
the quadrupeds.

Define the parity π of a minimum forest of a basic tile to be 1 if the rightmost
white point is connected by a horizontal edge, and 0 otherwise. In Figure 2.7, since
the rightmost white point q is connected by a solid horizontal edge, the minimum
forest that uses all solid edges has parity 1, and the minimum forest that uses all
dashed edges has parity 0.

A set of overlapping quadrupeds such as a basic tile has the important property
that once we choose the connection of any point to be solid or dashed, then the entire
minimum forest must be solid or dashed. Therefore, if we insist on the connection
being a minimum forest, then our choice of any point is propagated left, right, top,
and bottom, by overlapping quadrupeds such as basic tiles.

Figure 2.8 shows how to place two horizontally adjacent basic tiles by deleting b1
and b2 of the right tile. To place two vertically adjacent basic tiles, we delete b3 and
b4 of the top tile. Clearly, we have the following result.

Lemma 2.4. For two horizontally or vertically adjacent basic tiles, their minimum
forests must have the same parity.

Now we explain the NOT tile, which is used to change the parity. A horizontal
NOT tile is shown in Figure 2.9. It is easy to check that a horizontal NOT tile can be
placed between two basic tiles, according to the dimension specified in the figure. A
vertical NOT tile is symmetric and can be obtained by reflecting a horizontal NOT tile
with respect to line y = x. The parity of a minimum forest of a horizontal (vertical,
respectively) NOT tile is 1 if the rightmost white point is connected by a horizontal
(vertical, respectively) edge, and 0 otherwise. In Figure 2.9, since the rightmost white
point q is connected by a solid vertical edge, the minimum forest that uses all solid
edges has parity 0.

Lemma 2.5. If a horizontal NOT tile is placed between two basic tiles in a row
(see Figure 2.10), then in the minimum forest, the parities of the two basic tiles must
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Fig. 2.8. Two adjacent basic tiles have the same parity.
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Fig. 2.9. A horizontal NOT tile, where α = β = 25, δ1 = 5, and δ2 = 4.

be different. The same is true for the vertical case.
Proof. By observation, see Figures 2.9 and 2.10. It is easy to check that the

interfaces between the basic tiles and the NOT tile satisfy the requirements of the
quadruped.

A clause tile is shown in Figure 2.11. It has the same interface to the left and
below as a basic tile.

Lemma 2.6. The length of the minimum forest of a clause tile is 108, which is
achievable only if the tile to the left has parity 1, or the tile below has parity 0.

Proof. Note that q1, q2, q3, and q4 each requires an edge of length α = 20. There
are two ways to connect q5 and q6: through edge (q2, q5) and edge (q3, q6) of length
20 + 20 = 40 (shown as dashed edges in Figure 2.11) or through a Steiner point of
length 24 + 4 = 28 (shown as solid edges in Figure 2.11).
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Fig. 2.10. The parity of the left basic tile is different from the parity of the right basic tile due
to the NOT tile in the middle.
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Fig. 2.11. A clause tile, where α = β = 20 and δ1 = δ2 = 4, unless marked otherwise.

Therefore, the minimum forest has length 108, which is achievable only if q2 or
q3 is connected by a solid edge. This in turn requires q1 or q4 to be connected by a
solid edge. In order for q1 to be connected by a solid edge, the parity of the forest on
the left must be 1. In order for q4 to be connected by a solid edge, the parity of the
forest below must be 0.

Finally, we show the OR tile in Figure 2.12. There are two parts in the OR tile:
The left part acts like a clause tile, and the right part adjusts the total width to 192.
The parity of a minimum forest of a OR tile is 1 if the rightmost white point q is
connected by a horizontal edge, and 0 otherwise.

Note that an OR tile can always have a minimum forest of parity 0. In Figure 2.12,
all white points starting with q5 and q6 to the right can be connected by dashed edges,
regardless of what happens to the left and below. However, for the OR tile to have
a minimum forest of parity 1, either q1 or q4 must be connected by the solid edge.
Since the right side of an OR tile is always a clause tile, the OR tile will try to have
parity 1 if possible in order to reduce the cost of the clause tile on the right.
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Fig. 2.12. An OR tile, where α = β = 20, δ1 = 1, and δ2 = 4, unless marked otherwise.

Lemma 2.7. If the parity of a minimum forest of an OR tile is 1, then either the
minimum forest to the left has parity 1 or the minimum forest below has parity 0. On
the other hand, if either the minimum forest to the left has parity 1 or the minimum
forest below has parity 0, then the parity of the OR tile can be 1.

Proof. The proof is similar to the proof for the clause tile. In order for the OR tile
to have parity 1, q5 and q6 cannot be connected by the dashed edges, which requires
q1 or q4 to be connected by solid edges. Therefore, the minimum forest on the left
must have parity 1 or the minimum forest below must have parity 0.

2.4. Main theorem. We construct an RSA instance from the 3SAT instance
as follows. Each variable vertex and auxiliary vertex is replaced by a basic tile, each
NOT vertex is replaced by a NOT tile, each pair of OR vertices is replaced by an OR
tile, and each clause vertex is replaced by a clause tile.

To connect the black points without affecting any minimum forests for the white
points, we need to add additional points. From Definition 2.1 and Lemma 2.2, if there
is no point in the forbidden regions, then the properties of all tiles discussed above
will not be affected. Therefore we add additional black points as follows: For each
black point bi in a basic, NOT, OR, or clause tile, we add a trial of additional black
points distance 1 apart to connect bi to the nearest black/white points to the left or
below, provided that the trial does not enter any forbidden region. Such a trial always
exists since any forbidden region must have a white point at the upper right corner.
Figure 2.13 shows how to add trials of black points to connect some black points in a
basic tile.

Since the newly added black points are not in any forbidden region, these black
points will not affect the minimum forests for the quadrupeds. Furthermore, since the
black points have exactly one closest neighbor to the left and below, of distance 1, all
black points will be connected with a fixed edge length independent of how the white
points are connected. Figure 2.14 shows the RSA instance from Figure 2.5.
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Fig. 2.13. Trials of additional black points are added. The additional points are distance 1
apart and are not in any forbidden region. Therefore the black points will not affect how white points
are connected.

Some readers may wonder if graph G, H, or R contains a cycle, then whether the
corresponding construction and connection will also contain a cycle. From Figure 2.13,
it is easy to see that a cycle in G, H, or R does not correspond to a cycle in the
connection. In the figure, the effect of the connection for q is propagated to b1, but q
is not directly connected to b1 in the Steiner tree in this tile.

Theorem 2.8. The RSA problem is NP-complete in the strong sense.
Proof. It was shown in [14] that the RSA problem has the Hanan property; hence

it is in NP.
For the transformed RSA instance, let L be the sum of minimum edge lengths for

connecting all black points, and for the minimum forest of each basic tile, OR tile,
and NOT tile. Then we claim that the set of points has an RSA of length L + 108m
if and only if the planar 3SAT instance has a satisfying assignment, where m is the
number of clauses.

If the 3SAT is satisfiable, then for each variable vi we make the minimum forest
for the basic tiles corresponding to vi have parity 1 if vi = 1, or parity 0 if vi = 0.
From Lemmas 2.3 and 2.4, the parities of the basic tiles will force the parity of other
tiles. Since all clauses are satisfied, from Lemmas 2.5 and 2.6, we can use the correct
minimum forest for each OR tile and clause tile. Since every clause tile has edge
length 108, we will have an RSA of total edge length L + 108m.

On the other hand, assume there is an RSA of total edge length L+108m. From
Lemmas 2.2, 2.3, 2.4, and 2.5, each tile must use either the dashed edges or the
solid edges, the parities of adjacent tiles must match, and all clause tiles must have
length 108. From Lemma 2.6, at least one variable in each clause is true. Therefore
the RSA corresponds to a true assignment.

The RSA problem is strongly NP-complete because the planar 3SAT problem is
strongly NP-complete, and the coordinates used in our construction are of polynomial
size.
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Fig. 2.14. The transformed RSA instance, its solution, and parities of the tiles.
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MAPPING CYCLES AND TREES ON WRAP-AROUND
BUTTERFLY GRAPHS∗

MEGHANAD D. WAGH† AND OSMAN GUZIDE‡

Abstract. We give a new algebraic representation for the wrap-around butterfly interconnection
network. This new representation is based on the direct product of groups and finite fields and
allows an algebraic expression of the network connectivity. The abstract algebraic tools may then be
employed to explore the structural properties of the butterfly. In this paper we exploit this model
to map guest graphs on the butterfly. In particular, we provide designs of unit dilation mappings of
all possible length cycles on butterflies. We also map the largest possible binary trees on butterfly
networks with a dilation 2 if the network degree is less than 16, 3 if it is less than 32, and 4 if it is
less than 64. This is a great improvement over previous results.

Key words. butterfly graphs, mathematical model, finite field, mapping, cycles, trees

AMS subject classifications. 68M07, 05C62, 68M10, 05C38
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1. Introduction. Distributed memory parallel architectures rely upon intercon-
nection networks to communicate data and intermediate results between processors.
With the rapid advances in semiconductor technology, the computational speeds of
processors have far surpassed the improvements in communication speeds. Conse-
quently, communication between processors is threatening to become a bottleneck in
parallel processing.

Improving the communication characteristics of a parallel machine is a challenging
problem because of the many conflicting demands on the interconnection networks.
For example, scalability and cost issues force one to have a small (and, if possible,
fixed) node degree and a small number of total edges. On the other hand, performance
demands a large number of processors, a small network diameter, symmetry, and the
possibility of mapping of common parallel algorithm skeletons on the architecture.

The wrap-around butterfly network represents a good trade-off between the cost
and the performance of a parallel machine. It has a large number of processors, fixed
node degree, low diameter, symmetry, and ability to support a variety of parallel
algorithms. A wrap-around butterfly network of degree n ≥ 3, Bn, is a graph with
node set Zn ×{0, 1}n [7]. A node (m, V ) of Bn is connected to the four nodes shown
in Figure 1.1. Note that in this figure, since m ∈ Zn, m + 1 and m− 1 are evaluated
modulo n. V is an n-bit binary vector vn−1, vn−2, . . . , v0, and 2m refers to a length n
vector with 1 in position m and 0’s everywhere else. Thus an exclusive OR operation
with 2m alters exactly the mth bit of vector V . Bn is often visualized as an n × 2n

array of nodes with node (m,V ) located in the mth row and V th column of the array.
Each node is connected only to nodes in the neighboring rows (except for the wrap-
around links between the nodes of the 0th and the (n−1)th rows). The edges between
nodes in the same row (same m) are often called straight edges, and those between
nodes in different rows are the diagonal edges.
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(m+1, V)

(m-1, V)
(m, V)

(m-1, V 

m
2(m+1, V )

)m-1
2

Fig. 1.1. Connections from node (m, V ) in the butterfly network.

The edges in a butterfly network are bidirectional, i.e., corresponding to an edge
from (m1, V1) to (m2, V2), there is also an edge from (m2, V2) to (m1, V1). Bn is
node symmetric and has n2n nodes and n2n+1 edges. Its node degree is 4 and its
diameter is �3n/2�. The degree 4 Cayley graph, proposed recently [13], is identical
to Bn [3]. Cube connected cycles are a subgraph of Bn [4]. Bn supports many parallel
algorithms well [7, 5, 8, 9, 10, 12]. It is shown that one can map cycles and trees on
Bn with relatively low dilation [11, 6, 2].

This paper provides a new model for the wrap-around butterfly graph using a
direct product of groups and finite fields. In this model, node connectivity can be
expressed as an algebraic relationship between the node labels. This allows one to
explore the structural properties of the butterfly network in much more direct fashion
using powerful algebraic techniques. This paper investigates the mapping of guest
graphs of cycles and trees to the butterfly host graph with the help of this new model.
All our mappings have unit load; i.e., each vertex of a guest graph is mapped to
a unique butterfly node. Our mappings also have a low dilation; i.e., neighboring
vertices of the guest graphs are mapped either to neighboring butterfly nodes (unit
dilation) or on nodes between whom paths of relatively small length exists. Unit load
and low dilation characterize an efficient mapping. In the case of constant node degree
networks such as the wrap-around butterflies, unit load and constant dilation imply
a constant congestion. Further, a unit load and unit dilation mapping is a subgraph
of the host graph of butterfly.

The rest of this paper is organized as follows. In section 2, we provide the details
of our new representation of Bn and prove its isomorphism to the binary node labels.
Section 3 is devoted to mapping of cycles to Bn. We enumerate cycles which can never
be subgraphs of a wrap-around butterfly graph and then provide simple procedures
to design all the remaining cycle subgraphs. In particular, we show that barring a
few exceptions, it is possible to map (with unit dilation) an arbitrary length cycle to
Bn when n is odd, and any even length cycle when n is even. Section 4 deals with
mapping trees to Bn. We show that when n is less than 16, one can map the maximal
binary balanced tree to Bn with a dilation of 2. Results for larger size networks are
also provided. Finally, section 5 presents our conclusions.

2. Alternate representation of the butterfly. This section presents a new
model of the wrap-around butterfly using the direct product of finite groups and fields.
We show that in this model, network connectivity is expressed as a simple algebraic
relationship (Theorem 2.1), thereby providing powerful algebraic tools to investigate
its structural properties.



MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 743

In the proposed representation, nodes of Bn are labeled with the elements of
Zn × GF (2n).1 Thus the new node labels would be (m, X), where m ∈ Zn and
X ∈ GF (2n). Integer m and the field element X would be referred to as the first
and second indices of the node, respectively. We will provide the exact equivalence
between the new node labels and the ones using the binary notation later, but first we
summarize important properties of finite fields used in this paper. Reader is referred
to [1] for detailed description of the algebraic notions used here.

The finite field GF (2n) is an extension of GF (2). Similar to GF (2), it uses
modulo 2 addition; i.e., for any X ∈ GF (2n), X + X = 0. Elements of GF (2n)
may be enumerated as {0, 1, α, α2, . . . , α2n−2}, where the element α is known as the
primitive element. α2n−1 = 1 and thus the elements of GF (2n) are closed under
multiplication. The minimum degree polynomial (over GF (2)) of which α is a root,
is called the primitive polynomial. Primitive polynomial has degree n and plays a
central role in the design of GF (2n). Because α is a root of this degree n polynomial,
elements of GF (2n) may also be expressed as polynomials (of degree at most n − 1)
in α over GF (2). One can therefore view GF (2n) as a vector space over GF (2) with
basis 〈αn−1, αn−2, . . . , α, 1〉.

Fields GF (24) and GF (25) are illustrated in Tables 2.1 and 2.2, respectively.
Expressing each element of GF (2n) in basis 〈αn−1, αn−2, . . . , α, 1〉 is fairly straight-
forward. For example, in Table 2.1, elements 1, α, α2, and α3 are already the basis
elements. α4 can be expressed using lower powers of α using the fact that α is the
root of the primitive polynomial x4 + x + 1. Thus α4 + α + 1 = 0, or α4 = α + 1.
(Recall that GF (2n) uses modulo 2 additions.) The expressions for successive higher
powers of α are obtained by multiplying the expressions for lower powers by α and
replacing any α4, thus created, by α+1. Tables 2.1 and 2.2 are important to simplify
additions between field elements. For example, using Table 2.1, one may easily add
α10 and α11 in GF (24) as α10 + α11 = (α2 + α + 1) + (α3 + α2 + α) = α3 + α = α14.

Alternately, the elements of GF (2n) can be expressed over GF (2) using the dual
basis 〈βn−1, βn−2, . . . , β0〉. The dual basis is unique and its component βi is defined
as that element of GF (2n) which satisfies

Tr(αjβi) =

{
1 if j = i,
0 otherwise,

(2.1)

where the Trace function Tr(·) : GF (2n) → GF (2) is computed as [1]

Tr(x) = x + x2 + x22

+ x23

+ · · · + x2n−1

.

Tr(.) is a linear function over GF (2), i.e.,

Tr(aX + bY ) = aTr(X) + bTr(Y ), a, b ∈ GF (2), X, Y ∈ GF (2n).

Structure of the primitive polynomial governs the relationships between the dual basis
elements. For the purposes of this paper, we will need only the relationship

βn−1 = αβ0.(2.2)

1Here, Zn denotes the set of integers {0, 1, . . . , n− 1} under the operation of addition modulo n
and GF (2n) denotes the finite field of 2n elements with characteristic 2.
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Table 2.1

Structure of GF (24).

Primitive polynomial: x4 + x + 1
Elements and their relationships:

0 α7 = α3 + α + 1
1 α8 = α2 + 1
α α9 = α3 + α
α2 α10 = α2 + α + 1
α3 α11 = α3 + α2 + α
α4 = α + 1 α12 = α3 + α2 + α + 1
α5 = α2 + α α13 = α3 + α2 + 1
α6 = α3 + α2 α14 = α3 + 1

Dual base 〈β3, β2, β1, β0〉 = 〈1, α, α2, α14〉

Table 2.2

Structure of GF (25).

Primitive polynomial: x5 + x4 + x3 + x2 + 1
Elements and their relationships:

0 α15 = α4 + α3 + α + 1
1 α16 = α3 + α + 1
α α17 = α4 + α2 + α
α2 α18 = α4 + 1
α3 α19 = α4 + α3 + α2 + α + 1
α4 α20 = α + 1
α5 = α4 + α3 + α2 + 1 α21 = α2 + α
α6 = α2 + α + 1 α22 = α3 + α2

α7 = α3 + α2 + α α23 = α4 + α3

α8 = α4 + α3 + α2 α24 = α3 + α2 + 1
α9 = α2 + 1 α25 = α4 + α3 + α
α10 = α3 + α α26 = α3 + 1
α11 = α4 + α2 α27 = α4 + α
α12 = α4 + α2 + 1 α28 = α4 + α3 + 1
α13 = α4 + α2 + α + 1 α29 = α3 + α2 + α + 1
α14 = α4 + α + 1 α30 = α4 + α3 + α2 + α

Dual base 〈β4, β3, β2, β1, β0〉 = 〈α20, α9, α26, α18, α19〉

In order to establish the equivalence between the binary labels used in section 1
and the new labels, we use the mapping ψ : Zn × {0, 1}n → Zn ×GF (2n),

ψ(m, vn−1vn−2 . . . v1v0) =

(
m,

n−1∑
i=0

v(i+m) mod n βi

)
.(2.3)

Mapping ψ is one-to-one and onto because 〈βn−1, βn−2, . . . , β0〉 is a basis of GF (2n).
We will show in Theorem 2.1 that ψ also preserves the connectivity of Bn.

Further, using the properties of βi’s one can show the inverse of ψ to be

ψ−1(m,X) = (m, vn−1vn−2 . . . v1v0),

where

vi = Tr(α(i−m) mod nX).(2.4)
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Table 2.3

Equivalence between the nodes of B5 and graph Z5 ×GF (25).

Label (m, x)

(0, 00000) (0, 0)
(0, 00001) (0, α19)
(0, 00010) (0, α18)
(0, 00011) (0, α7)
(0, 00100) (0, α26)
(0, 00101) (0, α17)
(0, 00110) (0, α23)
(0, 00111) (0, α6)
(0, 01000) (0, α9)
(0, 01001) (0, α25)
(0, 01010) (0, α11)
(0, 01011) (0, α16)
(0, 01100) (0, α22)
(0, 01101) (0, α14)
(0, 01110) (0, α5)
(0, 01111) (0, α)
(0, 10000) (0, α20)
(0, 10001) (0, α8)
(0, 10010) (0, α27)
(0, 10011) (0, α24)
(0, 10100) (0, α10)
(0, 10101) (0, α12)
(0, 10110) (0, α15)
(0, 10111) (0, α2)
(0, 11000) (0, α21)
(0, 11001) (0, α28)
(0, 11010) (0, α13)
(0, 11011) (0, α3)
(0, 11100) (0, α29)
(0, 11101) (0, α4)
(0, 11110) (0, α30)
(0, 11111) (0, 1)
(1, 00000) (1, 0)
(1, 00001) (1, α20)
(1, 00010) (1, α19)
(1, 00011) (1, α8)
(1, 00100) (1, α18)
(1, 00101) (1, α27)
(1, 00110) (1, α7)
(1, 00111) (1, α24)
(1, 01000) (1, α26)
(1, 01001) (1, α10)
(1, 01010) (1, α17)
(1, 01011) (1, α12)
(1, 01100) (1, α23)
(1, 01101) (1, α15)
(1, 01110) (1, α6)
(1, 01111) (1, α2)
(1, 10000) (1, α9)
(1, 10001) (1, α21)
(1, 10010) (1, α25)
(1, 10011) (1, α28)
(1, 10100) (1, α11)
(1, 10101) (1, α13)

Label (m, x)

(1, 10110) (1, α16)
(1, 10111) (1, α3)
(1, 11000) (1, α22)
(1, 11001) (1, α29)
(1, 11010) (1, α14)
(1, 11011) (1, α4)
(1, 11100) (1, α5)
(1, 11101) (1, α30)
(1, 11110) (1, α)
(1, 11111) (1, 1)
(2, 00000) (2, 0)
(2, 00001) (2, α9)
(2, 00010) (2, α20)
(2, 00011) (2, α21)
(2, 00100) (2, α19)
(2, 00101) (2, α25)
(2, 00110) (2, α8)
(2, 00111) (2, α28)
(2, 01000) (2, α18)
(2, 01001) (2, α11)
(2, 01010) (2, α27)
(2, 01011) (2, α13)
(2, 01100) (2, α7)
(2, 01101) (2, α16)
(2, 01110) (2, α24)
(2, 01111) (2, α3)
(2, 10000) (2, α26)
(2, 10001) (2, α22)
(2, 10010) (2, α10)
(2, 10011) (2, α29)
(2, 10100) (2, α17)
(2, 10101) (2, α14)
(2, 10110) (2, α12)
(2, 10111) (2, α4)
(2, 11000) (2, α23)
(2, 11001) (2, α5)
(2, 11010) (2, α15)
(2, 11011) (2, α30)
(2, 11100) (2, α6)
(2, 11101) (2, α)
(2, 11110) (2, α2)
(2, 11111) (2, 1)
(3, 00000) (3, 0)
(3, 00001) (3, α26)
(3, 00010) (3, α9)
(3, 00011) (3, α22)
(3, 00100) (3, α20)
(3, 00101) (3, α10)
(3, 00110) (3, α21)
(3, 00111) (3, α29)
(3, 01000) (3, α19)
(3, 01001) (3, α17)
(3, 01010) (3, α25)
(3, 01011) (3, α14)

Label (m, x)

(3, 01100) (3, α8)
(3, 01101) (3, α12)
(3, 01110) (3, α28)
(3, 01111) (3, α4)
(3, 10000) (3, α18)
(3, 10001) (3, α23)
(3, 10010) (3, α11)
(3, 10011) (3, α5)
(3, 10100) (3, α27)
(3, 10101) (3, α15)
(3, 10110) (3, α13)
(3, 10111) (3, α30)
(3, 11000) (3, α7)
(3, 11001) (3, α6)
(3, 11010) (3, α16)
(3, 11011) (3, α)
(3, 11100) (3, α24)
(3, 11101) (3, α2)
(3, 11110) (3, α3)
(3, 11111) (3, 1)
(4, 00000) (4, 0)
(4, 00001) (4, α18)
(4, 00010) (4, α26)
(4, 00011) (4, α23)
(4, 00100) (4, α9)
(4, 00101) (4, α11)
(4, 00110) (4, α22)
(4, 00111) (4, α5)
(4, 01000) (4, α20)
(4, 01001) (4, α27)
(4, 01010) (4, α10)
(4, 01011) (4, α15)
(4, 01100) (4, α21)
(4, 01101) (4, α13)
(4, 01110) (4, α29)
(4, 01111) (4, α30)
(4, 10000) (4, α19)
(4, 10001) (4, α7)
(4, 10010) (4, α17)
(4, 10011) (4, α6)
(4, 10100) (4, α25)
(4, 10101) (4, α16)
(4, 10110) (4, α14)
(4, 10111) (4, α)
(4, 11000) (4, α8)
(4, 11001) (4, α24)
(4, 11010) (4, α12)
(4, 11011) (4, α2)
(4, 11100) (4, α28)
(4, 11101) (4, α3)
(4, 11110) (4, α4)
(4, 11111) (4, 1)

Table 2.3 provides the mapping ψ between the two representations of B5. In
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order to illustrate the entries in this table, consider mapping of a butterfly node
(0, 01011) ∈ Zn × {0, 1}n to its new algebraic setting. The dual basis of GF (25)
given in Table 2.2 is 〈α20, α9, α26, α18, α19〉. Thus

ψ(0, 01011) = (0, α9 + α18 + α19)

= (0, (α2 + 1) + (α4 + 1) + (α4 + α3 + α2 + α + 1))

= (0, α3 + α + 1) = (0, α16).

Thus the butterfly node with binary label (0, 01011) is renamed in the new algebraic
notation as (0, α16).

We now state the central result of this section which expresses the connectivity
of Bn through algebraic relationships between node labels.

Theorem 2.1 (connectivity). In Bn, a graph node (m,X) is connected to the
four nodes (m+1, αX), (m−1, α−1X), (m+1, αX+βn−1), and (m−1, α−1X+β0).

Proof. Let

ψ(m, vn−1vn−2 . . . v1v0) = (m, X) and

ψ(m + 1, v′n−1v
′
n−2 . . . v

′
1v

′
0) = (m + 1, αX).

Components vi of the binary vector are related to m and X as in (2.4). Similar
equation for v′i gives

v′i = Tr(α(i−m−1) mod nαX).(2.5)

Now, if i 	= m, then (i−m−1)mod n < n−1 and consequently α(i−m−1) mod nα =
α(i−m) mod n. On the other hand, if i = m, then α(i−m−1) mod nα = αn. Using this
in (2.5) gives the values of v′i as

v′i =

{
Tr(α(i−m) mod nX) if i 	= m,
Tr(αnX) if i = m.

(2.6)

Comparing (2.4) and (2.6) one now gets

v′i =

{
vi if i 	= m,
vm or vm ⊕ 1 if i = m.

(2.7)

The second line of (2.7) is obtained by noting that the Tr(αnX) is either 0 or 1, and
therefore equals either vm or vm⊕1. Since the binary vectors (vn−1vn−2 . . . v1v0) and
(v′n−1v

′
n−2 . . . v

′
1v

′
0) are equal, except possibly in the mth bit, Figure 1.1 shows that

nodes (m, vn−1vn−2 . . . v1v0) and (m + 1, v′n−1v
′
n−2 . . . v

′
1v

′
0) are connected. Thus

(m, X) is connected to (m, αX).
To show that (m + 1, αX + βn−1) is connected to (m, X), suppose

ψ(m + 1, v′n−1v
′
n−2 . . . v

′
1v

′
0) = (m + 1, αX + βn−1).

In this case, v′i is obtained as

v′i = Tr(α(i−m−1) mod n(αX + βn−1)).(2.8)

As before, if i 	= m, (i−m− 1) mod n < n− 1. Using this and the linearity of the
trace function in (2.8) gives

v′i =

{
Tr(α(i−m) mod nX) + Tr(αi−m−1 mod nβn−1) if i 	= m,
Tr(αnX) + Tr(αn−1βn−1) if i = m.

(2.9)



MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 747

(m+1,   X)

(m, X)

α

(m-1,        X + 

(m-1,        X )

)

(m+1,   X + )α

-1α

-1α

n-1β

β 0

Fig. 2.1. Connections from node (m, X) ∈ Zn ×GF (2n) in the butterfly network.

Employing the definition of βn−1, (see (2.1)), this becomes

v′i =

{
vi if i 	= m,
vm or vm ⊕ 1 if i = m.

As before, Tr(αnX) + 1 in the second line of (2.9) is replaced by vm or vm ⊕
1 because it is either 0 or 1. Therefore from Figure 1.1, (m, X) is connected to
(m, αX + βn−1).

The other two connections specified in the theorem can be proved similarly by
substituting α−1 and β0 in place of α and βn−1, respectively.

The four edges from (m, X) ∈ Zn ×GF (2n) are shown in Figure 2.1. Because of
(2.2), these edges are bidirectional. It should be pointed out here that even though the
four edges in Figure 2.1 map to the four edges in Figure 1.1, the exact correspondence
between them is dependent upon the source node (m, X) and, in particular, on the
equality of Tr(αnX) and the bit vm of binary vector V . An edge from node (m, X) to
(m+1, αX) is sometimes a straight edge and sometimes a diagonal edge. For example,
as can be seen from Table 2.3, the edge between nodes (1, α22) and (2, α23) in B5 is
a straight edge since the binary labels of these nodes are (0, 01100) and (1, 01100),
respectively. On the other hand, the edge between nodes (1, α23) and (2, α24) is a
diagonal edge since the binary labels of these nodes are (1, 01100) and (2, 01110),
respectively. Thus the correspondence between the binary labels and their algebraic
counterparts is more intricate than one might initially suppose.

Redefining Bn in the new algebraic notation allows use of simple but powerful
algebraic techniques to study its structure. Also, unlike the binary representation
(Figure 1.1), in the new algebraic notation (Figure 2.1) the two indices of a node
change independently between connected nodes. This independence further simplifies
our investigation.

3. Mapping cycles on the butterfly. This section provides comprehensive
results about cycles as subgraphs of Bn. We first prove exactly which cycles are not
subgraphs of Bn (Theorem 3.1). Then we provide simple procedures to map to Bn all
the permissible cycles, i.e., those that are not enumerated in Theorem 3.1 (Theorems
3.3, 3.6, and 3.7). Earlier, Rosenberg [11] has given mappings of cycles of lengths
L = n or L = n2n − (n − 2)c, 1 ≤ k ≤ n, 0 ≤ c ≤ 2k, on Bn. His results map
at most n + 2n+1 − 1 cycles of different lengths on Bn when n is even and exactly
n + 2n+1 − 1 cycles when n is odd. On the other hand, we give constructions of all
the cycle subgraphs of Bn that are ever possible. Thus our methods map as many as
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n2n−(n+5)/2 cycles of different lengths on Bn when n is odd and at least n2n−1−3,
when n is even.

We begin by specifying which cycles can never be subgraphs of Bn.
Theorem 3.1 (impossible cycles). Simple cycles (i.e., cycles with distinct nodes)

of the following lengths L are never subgraphs of Bn:
(a) odd L when n is even,
(b) odd L less than n,
(c) L = 6 when n = 5 or n ≥ 7,
(d) L = 10 when n = 7, n = 9, or n ≥ 11.
Proof. (a). From Figure 2.1, if n is even and (m, X) is connected to (m′, X ′),

then exactly one of m and m′ is odd and the other is even. This implies that for even
n, Bn is a bipartite graph, and therefore an odd-length cycle cannot be its subgraph.

(b). Note that because of the connectivity described in Figure 2.1, the first indices
of all the nodes in the cycle may be translated by the same amount to get another
equivalent cycle. Thus when L < n, the solution can be embedded on a butterfly
without using any wrap-around edges. But an unwrapped butterfly is a bipartite
graph and therefore cannot have an odd-length cycle subgraph.

(c) and (d). These cases may be proved by enumerating all possibilities of mapping
the cycle and then illustrating contradictions in each case. First note that it is impos-
sible to have the first indices of any five consecutive nodes in a cycle to be m, m+1, m,
m+1, and m. Because if (m,X) → (m+1, X1) → (m,X2) → (m+1, X3) → (m,X4)
are the five connected nodes, then from Figure 2.1, X1 = αX + cβn−1, c ∈ {0, 1}.
This gives X2 = X + β0. Clearly, the only choices for X3 are αX + βn−1 and αX,
giving X4 equal to X + β0 or X. Thus node (m,X4) is not distinct and the assumed
chain of five nodes does not exist.

We can now demonstrate the impossibility of cycle mapping for L = 6. The case
of L = 10 can be proved similarly. Let, if possible,

(m0, X0) → (m1, X1) → (m2, X2) → (m3, X3) → (m4, X4) → (m5, X5) → (m0, X0)

denote the length 6 cycle which is a subgraph of Bn, n ≥ 7. Clearly, the first index of
all cycle nodes can be increased or decreased by the same amount, or the direction of
the cycle traversal may be reversed without disturbing the connectivity. Therefore,
without loss of generality, one may choose m0 = 0 and m1 = 1. Clearly m5 = 1 as
well, because one cannot go from m1 = 1 to m5 = n − 1 in only 4 hops since n ≥ 7.
Indices m2, m3, and m4 should satisfy two conditions: (1) cyclically successive values
in the sequence (m0,m1,m2,m3,m4,m5) change only by 1; (2) no five cyclically
consecutive values in the sequence are (m,m + 1,m,m + 1,m). It can be verified
that under these conditions, the only possible set of values for m0 through m5 are
(0, 1, 2, 3, 2, 1). Without loss of generality, let X0 = X, X1 = αX, and X5 = αX +
βn−1. Then for ci ∈ {0, 1}, following successive links, one gets X2 = α2X + c1βn−1,
X3 = α3X + c1αβn−1 + c2βn−1, X4 = α2X + c1βn−1 + c2α

−1βn−1 + c3β0, and
X5 = αX + c1α

−1βn−1 + c2α
−2βn−1 + c3α

−1β0 + c4β0. Equating the two values of
X5 and then using βn−1 = αβ0 give

α2 + (c1 + c4)α + (c2 + c3) = 0.

But this is impossible since α cannot satisfy an equation of degree smaller than n.
When L = 6 and n = 5, the only possible set of values of m0 through m5 that need

to be considered are (0, 1, 2, 3, 2, 1), (0, 1, 0, 4, 3, 4), (0, 1, 2, 1, 0, 4), and (0, 4, 3, 2, 3, 4).
Note that if all the indices in any set are increased by a constant amount, then the
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set transforms into a rotated version of the first set. For example, by adding 2 to
each index of the second set, one gets set (2, 3, 2, 1, 0, 1), which is simply the first set
rotated left twice. Thus by dealing with only the first set, no generality is lost. But
we demonstrated earlier that this first set does not produce a valid cycle of length 6.
Therefore it is impossible to have a length 6 cycle as a subgraph of Bn when n ≥ 7
or n = 5.

To obtain cycle mappings for lengths not specified in Theorem 3.1 we proceed as
follows. Theorem 3.3 gives the mappings when the cycle length L is divisible by n.2

This also includes the Hamiltonian cycle. For other lengths that may be expressed as
L = Kn+ 2t ≤ n2n, for some K > 0 and 0 ≤ t < n, Theorem 3.6 shows that one can
first design a cycle of length Kn and then attach t pairs of new nodes to it. Finally,
an alternate procedure to map cycles of lengths less than 4n (except 6 and 10) is
provided in Theorem 3.7.

In order to prove the existence of cycles in butterfly networks, we need the fol-
lowing lemma.

Lemma 3.2. n � (2n − 1) for any integer n > 1.
Proof. The lemma is obvious when n is an even integer. Further, when n is an

odd prime, according to Fermat’s little theorem, 2n = 2 mod n which shows that
for prime n, n � (2n − 1). If possible, let n be the smallest odd integer such that
n | (2n − 1). Clearly n must be composite. Let p denote the largest odd prime in n,
i.e., n = ptpt11 pt22 · · · , where p, p1, p2, . . . are distinct primes, p > p1, p2, . . . . Consider
the group G of integers less than n and relatively prime to n under the operation of
multiplication modulo n. The Euler phi-function φ(n) which represents the number
of elements in G is given by

φ(n) = (p− 1)pt−1(p1 − 1)pt1−1
1 (p2 − 1)pt2−1

2 · · · .(3.1)

As 2 ∈ G, it satisfies

2φ(n) = 1 mod n.(3.2)

Now, if n | (2n − 1), then

2n = 1 mod n.(3.3)

Equations (3.2) and (3.3) imply that

2gcd(φ(n),n) = 1 mod n.(3.4)

Since p is the largest prime in n, the power of p in φ(n) according to (3.1) is t − 1.
Therefore

gcd(φ(n), n) | (n/p).(3.5)

From (3.4) and (3.5) one gets

2(n/p) = 1 mod n,

and consequently,

2(n/p) = 1 mod (n/p).(3.6)

2We use the notation n|L to indicate that L is a multiple of n, and n � L to indicate that L is
not a multiple of n.
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But this is contradictory to the assumption that n is the smallest integer satisfying
n | (2n − 1). Hence there is no such n.

We can now state the theorems on cycles in butterfly networks.
Theorem 3.3 (cycles of length divisible by n). Suppose L is an arbitrary multiple

of n and L ≤ n2n. Then cycle of length L can be mapped to Bn with dilation 1.
Proof. Let g = gcd(n, 2n − 1). From Lemma 3.2, one gets n/g ≥ 2. We consider

the following two cases based on the magnitude of L.
Case 1. L ≤ n(2n − 1)/g. If L = n(2n − 1)/g, choose any nonzero X ∈ GF (2n).

Otherwise, αL 	= 1 in GF (2n); choose X as

X = βn−1(1 + αL)−1.(3.7)

The required cycle may then be constructed as

(0, X) → (1, αX) → (2, α2X) → · · · → ((L− 1) mod n, αL−1X) → (0, X).(3.8)

From the graph connectivity described earlier, each node on this cycle is connected to
the next. Observe that (3.7) implies that αLX = X + βn−1, so the last edge in (3.8)
also is valid. Further, the first component of the node label repeats with periodicity
of n and the second, with periodicity (2n − 1). Therefore the same label will repeat
only with a periodicity of n(2n− 1)/g. Thus for L ≤ n(2n− 1)/g, all the nodes in the
cycle are distinct.

Case 2. L > n(2n − 1)/g. Partition L as

L = n + L1 + L2 + · · · + Lt, where (2n − 1) ≤ Li ≤ n(2n − 1)/g and n|Li.(3.9)

One way to achieve this partition is to choose

t =

⌈
g(L− n)

n(2n − 1)

⌉
,(3.10)

set Li = n(2n − 1)/g for 1 ≤ i < t, and adjust Lt to make up the total to L. If this
Lt < 2n − 1, then reduce Lt−1 by some amount and increase Lt by the same amount.
Since n/g ≥ 2, Lt−1 ≥ 2(2n − 1). Therefore, one can always find an appropriate
amount to shift from Lt−1 to Lt so as to make both Lt−1, Lt ≥ 2n − 1.

To build the required cycle, first obtain t disjoint cycles Ci of lengths Li as in
Case 1. Cycles of length n(2n − 1)/g may be constructed by starting from arbitrary
nonzero nodes not used in previous cycles and always going from (m, x) to (m+1, αx).
To create cycles of length less than n(2n − 1)/g, compute the second index X of the
starting node according to (3.7). Use a first index such that the node has not appeared
in previous cycles. Note that this is possible because a node with the same second
index repeats in a cycle only with a period of 2n− 1. In each cycle of length less than
or equal to n(2n − 1)/g, such labels occur at most n/g times. Since the number of
cycles, t, is at most g (see (3.10)), unused labels (m,X) will be available to start new
cycles.

Finally, build a cycle C0 of length n as

(0, 0) → (1, 0) → (2, 0) → · · · → (n− 1, 0) → (0, 0).

It is easy to see that the neighboring nodes in C0 are connected and are distinct from
those in the previous t cycles.

These t + 1 cycles can be merged together to form a single cycle as follows.
Since each Li ≥ 2n − 1, each cycle Ci, 1 ≤ i ≤ t, contains consecutive elements
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C

Fig. 3.1. Merging C0 and Ci’s into a single cycle.

(mi, β0) and (mi + 1, βn−1) for some 0 ≤ mi < n. To combine Ci and C0, add
edges (mi, β0) → (mi + 1, 0) and (mi + 1, βn−1) → (mi, 0) and remove edges
(mi, β0) → (mi + 1, βn−1) and (mi, 0) → (mi + 1, 0). Since the mi for each
Ci is different, each Ci can be joined with C0 at a different place. This process of
cycle merging is sketched in Figure 3.1. The resultant cycle thus has the desired
length L.

Note that for most values of n, we have g = 1. In fact, for n ≤ 20, the only values
of n for which g > 1 are 6, 12, and 18. Case 2 of Theorem 3.3 is mostly useful for
these n’s. Using techniques similar to those of Theorem 3.3, it is also possible to map
many disjoint cycles to Bn simultaneously. This is shown in the following corollary.

Corollary 3.4 (multiple cycles). If n|L and L ≤ t(2n − 1) for some t, 0 < t <
(n/g), one can map g�n/(gt)� disjoint cycles of length L to Bn with dilation 1.

Proof. Obtain X from (3.7) corresponding to the given L. Let h represent (2n −
1) mod n. Begin the required cycles from

(hti1 + i2, X), 0 ≤ i1 < �n/(tg)�, 0 ≤ i2 < g,(3.11)

and use the edges (m, x) → (m + 1, αx) repeatedly until each cycle is complete.
From Theorem 3.3, it is clear that length of each cycle is L. We need only to

prove that the nodes used in each cycle are distinct. Assume that, if possible, the ith
node of the cycle beginning at (hti1 + i2, X) is the same as the i′th node of the cycle
beginning at (hti′1 + i′2, X), i.e.,

(hti1 + i2 + i, αiX) = (hti′1 + i′2 + i′, αi′X).(3.12)

We will show that this implies that the two starting nodes are identical, i.e., i1 = i′1 and
i2 = i′2. This being contradictory to the construction described above, we conclude
that the cycles are disjoint.

By comparing the second indices of the nodes in (3.12) we get

i− i′ = q(2n − 1) for some integer q.(3.13)

Note that since 0 ≤ i, i′ < L = t(2n − 1), one has q < t. Comparison of the first
indices in (3.12) yields

ht(i1 − i′1) + (i2 − i′2) + q(2n − 1) ≡ 0 (mod n)
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or

h(t(i1 − i′1) + q) + (i2 − i′2) ≡ 0 (mod n).(3.14)

Note now from the definition of h that

g = gcd(2n − 1, n) = gcd((2n − 1) mod n, n) = gcd(h, n).(3.15)

By reducing each term in (3.14) modulo g (a factor of n and h), one gets

i2 ≡ i′2 (mod g).

But since each i2, i′2 < g,

i2 = i′2.(3.16)

Combining this with (3.14) and using (3.15) give

i1t + q ≡ i′1t (mod (n/g)).(3.17)

However, because of the bounds on i1, i
′
1, t, and q, one can verify that i1t+ q < (n/g)

as well as i′1t < (n/g). Therefore,

i1t + q = i′1t.

Since q < t, this gives

i1 = i′1.

Corollary 3.4 allows one to efficiently utilize the butterfly architectures for concur-
rent computation of multiple algorithms, each having a cyclic communication struc-
ture. Thus, for example, in the case of B6, one can have 6 disjoint cycles of any length
(divisible by 6) up to 60, or 3 disjoint cycles of any length (divisible by 6) up to 126.

We illustrate the construction by mapping four length 12 cycles to B4. To do
this, we compute X from (3.7) in field GF (24) as (refer to Table 2.1)

X = 1 · (1 + α12)−1 = α4.

The four disjoint cycles are then directly given by

(0, α4) → (1, α5) → (2, α6) → (3, α7) → (0, α8) → (1, α9) → (2, α10)

→ (3, α11) → (0, α12) → (1, α13) → (2, α14) → (3, 1) → (0, α4).

(3, α4) → (0, α5) → (1, α6) → (2, α7) → (3, α8) → (0, α9) → (1, α10)

→ (2, α11) → (3, α12) → (0, α13) → (1, α14) → (2, 1) → (3, α4).

(2, α4) → (3, α5) → (0, α6) → (1, α7) → (2, α8) → (3, α9) → (0, α10)

→ (1, α11) → (2, α12) → (3, α13) → (0, α14) → (1, 1) → (2, α4).

(1, α4) → (2, α5) → (3, α6) → (0, α7) → (1, α8) → (2, α9) → (3, α10)

→ (0, α11) → (1, α12) → (2, α13) → (3, α14) → (0, 1) → (1, α4).

There is also another simple configuration of multiple cycles on Bn when g = 1.
A cycle of length L < n(2n − 1), n|L, is given by

(0, X) → (1, αX) → (2, α2X) → · · · → ((L− 1), αL−1X) → (0, X),



MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 753

(m, x+      )β 0

(m+1,    x)α

(m, x) (m, x)

βα n-1(m+1,    x+         )(m+1,    x)α

β 0(m, x+      )

βα n-1(m+1,    x+         )

Fig. 3.2. Two cases of adding a pair of outside nodes to a cycle.

where

X = βn−1(1 + αL)−1.

It is easy to verify that all but n of the remaining nodes in Bn are also linked as a
cycle. This complementary cycle of length n2n − n− L is given by

(L, αLX) → (L + 1, αL+1X) → (L + 2, αL+2X) → · · ·

→ (n(2n − 1) − 1, αn(2n−1)−1X) → (L, αLX).

One should also note that the only nodes which are not part of either the cycle
of length L or its complementary cycle form a third cycle C0 described earlier in
Figure 3.1. Thus, when g = 1, the nodes of Bn can be partitioned into three cycles
of lengths n, L, and n2n − L − n with the only condition on L being that it should
be a multiple of n.

When g > 1 and cycle length L ≤ (2n−1)n/g is a multiple of n, one can similarly
show that the nodes of Bn may be partitioned into g cycles of length L, g cycles of
length (2n − 1)n/g − L, and one cycle of length n.

We now present the result about mapping cycles of lengths that are not multiples
of n. Our methodology is rather simple. We first form a cycle of a smaller length
which is a multiple of n. Then we attach appropriately chosen pairs of outside nodes
to this cycle. This process is illustrated in Figure 3.2. As shown in the figure, if
the cycle link shown by the dashed line is removed and three new links are added,
then the outside pair of nodes can be incorporated in the cycle. We will refer to
this process as attaching a node pair at (m,x). Further, the pair of nodes, (m, x)
and (m, x + β0), which plays a crucial role in this process, will be called the pair of
companion nodes. Note that the companion node labels have the same first index,
and their second indices differ by β0.

For this method to succeed, it is necessary to find enough nodes in the cycle with
their companion nodes outside the cycle. Lemma 3.5, to be presented later, will help
us count (or in some cases, bound) the number of companion node pairs. This lemma
will then be used to prove Theorem 3.6, which guarantees that there are, indeed, the
required number of companion node pairs to construct cycles of any length.

For any (m,X) ∈ Zn × GF (2n), X 	= 0, define a chain starting from (m,X) to
mean a set of distinct nodes

{(m,X), (m + 1, αX), (m + 2, α2X), . . . , (m + T − 1, αT−1X)}.

The number of nodes in the chain, T , will be called the length of the chain. The
maximum value of T is (2n − 1)n/g. Butterfly connectivity described in Figure 2.1
shows that the consecutive nodes in a chain are connected.
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Let (m, αi) be any node of Bn. We refer to the quantity (i −m) mod g as the
partition index of that node. Clearly, all the nodes (mi, α

i) of a chain have the same
partition index. This is because from one node to the next, mi increases by 1 mod n
and the power of α, by 1 mod (2n − 1). The n(2n − 1) nodes of Bn with nonzero
second index may be separated into g partitions based on their partition index. Each
partition has exactly n(2n − 1)/g nodes. Each chain is confined to a single partition.
Chains of length n(2n − 1)/g occupy a complete partition.

In the light of this new terminology, one can see that when g = 1, a cycle formed
as in (3.8) is also a chain. Further, for g 	= 1, cycles C1, C2, . . . , Ct described in
Theorem 3.3 can also be viewed as chains in distinct partitions. Therefore, the number
of companion node pairs that may be used to extend the cycle length can be obtained
by studying companion node pairs in relation to chains. We call a companion node
pair to be within a chain if both its nodes are in the same chain. If the two nodes
are in different chains, we call that companion node pair to be across chains. The
following lemma explores the bounds on these numbers.

Lemma 3.5 (companion node pairs within and across chains).
(a) The number of companion node pairs, Γ(T ), confined to a chain of length T

satisfies

Γ(T ) ≤
{

�(T − 1)/n� if T ≤ 2n − 1,
�(T − 1)/n� + Γ(T − (2n − 1)) otherwise.

(3.18)

(b) The number of companion node pairs across two disjoint chains of lengths
T1, T2 ≤ 2n − 1 is at most �(T1 + T2)/n� + 1.

(c) The number of companion pairs across the two chains (not necessarily dis-
joint) of lengths T1 = 2n − 1 and T2 = (2n − 1)n/g, is exactly (2n − 1)/g or
[(2n − 1)/g] − 1.

Proof. (a) Let the chain begin at (m,X). Consider a companion pair (m+i, αiX)
and (m + j, αjX), i < j. By distance between the nodes of a companion pair we will
mean the quantity j − i. Because these nodes are companions,

i ≡ j (mod n)(3.19)

and

αiX + αjX = β0.(3.20)

From (3.20) one gets

αj−iX + X = α−iβ0.(3.21)

Consider now another distinct companion node pair (m+i′, αi′X) and (m+j′, αj′X),
i′ < j′. For this pair, one could similarly show that

αj′−i′X + X = α−i′β0.(3.22)

If i, i′ < 2n−1, then (3.21) and (3.22) imply that the distance j′− i′ must be different
from j − i; or else αi would equal αi′ , which is impossible for i, i′ < 2n − 1. Further,
from (3.19), the distances must always take values that are multiples of n. Therefore
there are at most �(T − 1)/n� companion node pairs when T ≤ 2n − 1.

For larger values of T , either the first node of the pair is within the first 2n − 1
nodes of the chain, or the pair is entirely confined to the last T − (2n − 1) elements of
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the chain. Since the number of companion node pairs of these two kinds are at most
�(T − 1)/n�) and Γ(T − (2n − 1)), respectively, we get the stated bound.

(b) Let the two chains begin at (m,X) and (m′, X ′). Consider a companion pair
(m+ i, αiX) and (m′ + j, αjX ′) across the chains. By arguments similar to part (a),
j − i must be a multiple of n. Since −T1 ≤ j − i ≤ T2, we get the specified bound on
the number of pairs.

(c) Let T1 = 2n − 1 and T2 = (2n − 1)n/g. Denote by g1 and g2, the partition
indices of the nodes in the two chains. Let (m,αi) be a typical node of the first chain,
0 ≤ i ≤ 2n − 2. We want to determine if its companion (m,αj) is in the second
chain. Since the second chain occupies a whole partition, the companion will belong
to it if its partition index is g2. When αi = β0, the companion, (m, 0), is clearly
not a member of the second chain. When αi 	= β0, from the companion relationship
between nodes (m, αi) and (m, αj), one gets αj−i = 1+α−iβ0. Thus for each of the
2n − 2 values of i (excluding the one corresponding to αi = β0), j − i mod (2n − 1)
takes a different value. Consequently it assumes all the values from 0 to 2n−2 except
one. Now, one has

partition index of (m,αj) = j −m mod g

= ((j − i) mod (2n − 1) + g1) mod g.

Since (j − i) mod (2n − 1) takes all values from 0 to 2n − 2 except one, the partition
index of (m,αj) will assume value g2 exactly (2n − 1)/g or [(2n − 1)/g] − 1 times,
showing that there exist exactly these many companion node pairs between the two
chains.

Note that the two chains of part (c) of Lemma 3.5 may overlap, unlike those of
part (b).

We now state Theorem 3.6 relating to mapping cycles of all allowed lengths larger
than 2n to Bn. (Actually, odd lengths between n and 2n are also covered by this
result.) Because of Lemma 3.5, this theorem only needs to prove the existence of
sufficient number of external node pairs to attach to the cycle constructed as per
Theorem 3.3.

Theorem 3.6 (arbitrary length cycles of lengths ≥ n).

(a) For odd n, a cycle of any length L, n ≤ L ≤ n2n, excluding even values of L
less than 2n, can be mapped to Bn with dilation 1.

(b) For even n, a cycle of any even length L, n ≤ L ≤ n2n, can be mapped to Bn

with dilation 1.
Proof. If n|L, the desired cycle is already addressed in Theorem 3.3. For other

L values, first form a cycle of length Kn using Theorem 3.3, where K is the largest
possible number such that Kn < L and L −Kn is even. We will call this cycle the
primary cycle. By adding up to n− 1 pairs of outside nodes to the primary cycle we
get the required cycle of length L. (If K = 2n − 1, one needs to add only up to �n/2�
pairs to get the largest required length.)

We will show that there are sufficient number of nodes in the primary cycle
without their companion nodes. Following the method of Figure 3.2, one can attach a
pair of external nodes at each of these nodes. We first prove the theorem when g = 1
(Case 1). Cases 2, 3, and 4 deal with g > 1, and assume n ≥ 6 since it is the smallest
n for which g 	= 1. The parameter that distinguishes these cases is t, the number of
smaller cycles C1, C2, . . . , Ct that are merged as in Theorem 3.3 to obtain the primary
cycle.
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Case 1. g = 1. If K = 1, then each node of the primary cycle is without its
companion node, and each new added node pair is distinct. The first part of this is
true because companion node pairs must have a distance of at least n. To see the
second part, compare the pairs added at two consecutive cycle nodes, say, (m,X) and
(m+1, αX). The outside pair added at the first node is (m,X +β0) → (m+1, αX +
βn−1), and the one added at the second node is (m+1, αX+β0) → (m+2, α2X+βn−1).
Clearly all these four new nodes are distinct. In a similar fashion, one can show that
up to n− 1 new distinct pairs of nodes may be added to the cycle.

When K = 2n−1, the primary cycle consists of all the nodes (m,X), 0 ≤ m < n,
X ∈ GF (2n), X 	= 0. In this case, at each node (m,β0) in the cycle, one can attach
an outside pair (m, 0) → (m + 1, 0). Distinctness of the new pairs can be ensured by
using only even values of m. In this manner, up to �n/2� pairs of outside nodes may
be attached to the cycle to achieve the required length.

Unfortunately, when 2 ≤ K ≤ 2n − 2, the second node of a pair may, at times,
turn out to be the same as the first node of another pair. We therefore would not
be able to add both these pairs to the cycle at the same time. However, if we have
2(n− 1) nodes without their companion nodes, we can guarantee adding at least half
of the outside node pairs, i.e., (n−1) pairs. We will now show that the primary cycle,
indeed, contains 2(n−1) nodes without their companion nodes. We will prove this for
Kn ≤ n(2n − 1)/2 only. For larger Kn values, one may consider the complementary
cycle of length n(2n − 1) −Kn and prove similarly the existence of at least 2(n− 1)
nodes therein, which have their companion nodes outside, i.e., in the original cycle of
length Kn.

Using Lemma 3.5(a) we can find the maximum number of companion node pairs
within the cycle of length Kn. Subtracting these nodes from the total number of
nodes in the cycle, we find that at least

Kn− 2Γ(Kn)(3.23)

cycle nodes have companion nodes outside the cycle. For Kn ≤ 2n−1, use of Lemma
3.5(a) in (3.23) gives

number of nodes with external companions ≥ Kn− 2(K − 1)

= (2n− 2) + (n− 2)(K − 2)

> 2n− 2.

This proves that there are sufficient number of companion node pairs in the primary
cycle where new node pairs may be attached.

To prove the result for Kn > 2n− 1 by mathematical induction, assume its truth
for length Kn− (2n − 1); i.e., assume that

[Kn− (2n − 1)] − 2Γ(Kn− (2n − 1)) ≥ 2n− 2.

Recall that we need only to prove the result for Kn ≤ n(2n − 1)/2. One now gets for
the primary cycle of length Kn,

no. of nodes with external companions ≥ Kn− 2[�(Kn− 1)/n� + Γ(Kn− (2n − 1))]

≥ (2n− 2) + (2n − 1) − 2(K − 1)

≥ (2n− 2) + 2

> 2n− 2.
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Case 2. g > 1 and t < g. If the primary cycle length Kn ≤ 2n − 1, the situation
is similar to that of Case 1. For Kn > 2n − 1, we proceed as follows. Since t < g,
at least one partition representing a chain of length n(2n − 1)/g is not used in the
primary cycle. Consider this chain and a chain of length 2n−1 in C1 of nodes used in
the primary cycle. From Lemma 3.5(c), there are at least [(2n − 1)/g]− 1 companion
node pairs across them. But note that for n ≥ 6, 2n − 1 > n2. Further, g ≤ n/2.
Therefore [(2n−1)/g]−1 > 2n−2 showing that at least 2n−2 companion node pairs
exist between the primary cycle and the remaining nodes.

Case 3. g > 1, t = g and cycles C1, C2, . . . , Ct−1 have lengths n(2n − 1)/g. If the
number of nodes left out of the primary cycle is less than or equal to 2n− 1, then one
can prove this case in a manner similar to Case 1 except that the focus will now be
on the nodes that are not in the cycle rather than those that are part of the cycle.
But the final consequence is the same: there are enough companion pairs between
the nodes in the cycle and those outside. If the number of nodes outside the primary
cycle is more than 2n − 1, then a chain of length 2n − 1 of these outside elements
will have at least [(2n − 1)/g]− 1 companion nodes within C1. (Lemma 3.5(c)). This
number is greater than 2n− 2 (for n ≥ 6) showing that there are enough companion
node pairs between the primary cycle and the outside nodes.

Case 4. g > 1, t = g and cycles C1, C2, . . . , Ct−2 have lengths n(2n − 1)/g. First
note that because g is odd, when g 	= 1, g ≥ 3. Thus, in this case, cycle C1 of
n(2n − 1)/g nodes is part of the primary cycle. Further, from the construction in
Theorem 3.3, for this case to exist, the number of unused nodes in partitions of Ct−1

and Ct—call them R1 and R2, respectively—must satisfy

R1 + R2 > (2n − 1)(n/g − 1).(3.24)

Without loss of generality, let R1 ≤ R2. Clearly, both these sets of unused elements
form chains. If either of these chains has at least 2n − 1 elements, then at least
(2n − 1)/g of them will have companion nodes in C1. Thus as in Case 3, there are
enough companion node pairs between the nodes of the companion cycle and those
outside. On the other hand, if both R1, R2 < 2n−1, then from Lemma 3.5(a) and (b),
one can see that there are at most �(R1−1)/n� and �(R2−1)/n� companion node pairs
within these chains and �(R1+R2)/n�+1 across the two chains. Since there are a total
of R1 +R2 nodes in these two chains, the rest of their nodes must have companions in
the primary cycle. Since R1 and R2 are multiples of n, �(R1−1)/n� = (R1/n)−1 and
�(R2−1)/n� = (R2/n)−1. Using (3.24) one thus gets that the number of companion
node pairs between the primary cycle and those outside to be at least

(R1 + R2) − 2[R1/n− 1 + R2/n− 1 + (R1 + R2)/n + 1] = (R1 + R2)(1 − 4/n) + 2

> (2n − 1)(n/g − 1)(1 − 4/n) + 2

≥ (2n − 1)/3 + 2

> (2n− 2).(3.25)

The simplification in the third line of (3.25) is based on the fact that (n/g) ≥ 2 and
(1 − 4/n) ≥ 1/3 for n ≥ 6, while last line of (3.25) is true for any n ≥ 6.

Theorem 3.6 proves that there are sufficient number of nodes in the primary cycle
where one can attach outside node pairs to obtain any desired length cycle as long
as this length can be expressed as Kn + 2t. Construction of such a cycle is rather
straightforward; once the primary cycle is obtained as per Theorem 3.3, one only
needs to identify the required number of cycle nodes whose companions are outside
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Fig. 3.3. A length 12 cycle mapped to Z5 ×GF (25) with dilation 1.
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Fig. 3.4. A length 21 cycle mapped to Z5 ×GF (25) with dilation 1.

(0, 11101) → (1, 11100) → (2, 11100) → (3, 00011) →
(4, 11000) → (0, 01000) → (1, 01000) → (0, 01001) →
(1, 01001) → (2, 01001) → (3, 01101) → (4, 01101) → (0, 11101)

(0, 00100) → (1, 00101) → (2, 00111) → (3, 00111) → (4, 01111) →
(0, 11111) → (1, 11110) → (2, 11110) → (3, 11110) → (4, 11110) →
(0, 01110) → (1, 01110) → (2, 01110) → (1, 01100) → (2, 01100) →
(3, 01000) → (2, 01000) → (3, 01100) → (4, 01100) → (3, 00100) →
(4, 00100) → (0, 00100)

Fig. 3.5. Cycles of length 12 and 21 in B5.

the cycle. Finding a small number of these nodes is a relatively simple process. New
node pairs may be attached at these nodes as in Figure 3.2 to get the desired cycle.

We illustrate this process by constructing length 12 and 21 cycles in B5. The final
construction is shown in Figures 3.3 and 3.4. To construct the cycle of length 12, one
first uses Theorem 3.3 to create a primary cycle of length 10 (beginning at (0, α4)).
Since (0, α9) belongs to the cycle, but not its companion (0, α9 + β0) = (0, α25), we
add the indicated pair to get length 12 cycle. (Note that companions of none of the
nodes in this length 10 cycle are present in it. Thus one could have added a new node
pair at any of these nodes.) Similarly, a length 21 cycle is obtained by first creating
a primary cycle of length 15 (beginning at (0, α26)) and then adding pairs of new
nodes at (1, α6), (2, α7), and (3, α8). These cycles translated to binary notation
using Table 2.3 are shown in Figure 3.5.
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(0, 0) → (1, 0) · · · → (K, 0) →

(K − 1, β0) → (K − 2, β0(α
−1 + 1)) · · · → (0, β0

∑K−1
i=0 α−i) →

(1, β0

∑K−2
i=−1 α

−i) → (2, β0

∑K−3
i=−2 α

−i) · · · → (K,β0

∑−1
i=−K α−i) →

(K − 1, β0

∑−1
i=−(K−1) α

−i)→ (K − 2, β0

∑−1
i=−(K−2) α

−i) · · · → (1, β0

∑−1
i=−1 α

−i) → (0, 0)

Fig. 3.6. Length 4K cycle mapping to Bn (K < n).

Unfortunately, Theorem 3.6 does not cover all the cycles that can possibly be
mapped to Bn. Particularly, when n is odd, Theorem 3.6 does not provide construc-
tions of cycles of even lengths less than 2n and when n is even, it excludes even lengths
less than n. We now illustrate a technique to cover these cases. Using this technique,
one can easily map cycles of even lengths less than 4n (except possibly lengths 6
and 10) to Bn with dilation 1. This implies that all the cycles that are not proved to
be impossible in Theorem 3.1 can indeed be mapped to Bn. This final result about
cycles is stated in Theorem 3.7.

Theorem 3.7 (comprehensive cycle mapping). One can map to Bn all cycles,
except those identified in Theorem 3.1, with dilation 1.

Proof. Because of Theorem 3.6, the only cycles we need to map to Bn are those
with even lengths less than 2n. We can use the following construction for even lengths
less than 4n.

If L = 4K, K < n, construct the cycle as follows.
Start from node (0, 0). Let (m,X) denote the current node on the cycle. Use K

times link (m,X) → (m+1, αX). Then use K times link (m,X) → (m−1, α−1X+β0).
Follow it K times with link (m,X) → (m + 1, αX). Finally, K times, travel along
(m,X) → (m − 1, α−1X + β0). This will bring you back to the starting node 0, 0).
Figure 3.6 shows this length 4K cycle.

One can see from the connectivity of Bn, shown in Figure 2.1, that the consecutive
nodes in the cycle above are indeed connected. We need only to show that they are dis-
tinct. The only two nodes in the cycle with the first index of the label 0 are (0, 0) and

(0, β0

∑K−1
i=0 α−i). Clearly these are not the same since K < n. For the same reason,

the two nodes with the first index of label being K, (K, 0) and (K,β0

∑−1
i=−K α−i) are

distinct. The four cycle nodes with the same first index m, 0 < m < K, are (m, 0),

(m,β0

∑K−1−m
i=0 α−i), (m,β0

∑K−1−m
i=−m α−i), and (m,β0

∑−1
i=−m α−i). One can see

that the second indices of these four nodes are distinct because K < n and α, being a
primitive element of GF (2n), cannot satisfy any equation of degree less than n. Thus
one can map all cycles of length 4K, K < n, to Bn with dilation 1.

If L = 4K + 2 and K > 2, one can add a pair (2, βn−1) → (1, β0) of new nodes
between the cycle nodes (1, 0) → (2, 0) as in Figure 3.2. Thus, replacing the first three
elements in the cycle of Figure 3.6 by the five elements: (0, 0) → (1, 0) → (2, βn−1) →
(1, β0) → (2, 0), one gets a new cycle of length 4K+2. It is easy to verify that the new
elements were indeed absent from the original cycle when K > 2. Thus one can map
all cycles of length 4K + 2, 2 < K < n, to Bn with dilation 1. The only even-length
cycles less than 4n excluded by this procedure have lengths 6 and 10.

The construction of Theorem 3.7 may be illustrated by mapping a cycle of length 14
to B5. Since 14 = 12 + 2, we first construct a cycle of length 12 and then add a new
pair to it. The final cycle and its binary translation are shown in Figures 3.7 and 3.8.
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Fig. 3.7. A length 14 cycle mapped to Z5 ×GF (25).

(0, 00000) → (1, 00000) → (2, 00010) → (1, 00010) → (2, 00000) →
(3, 00000) → (2, 00100) → (1, 00110) → (0, 00110) → (1, 00111) →
(2, 00101) → (3, 00001) → (2, 00001) → (1, 00001) → (0, 00000)

Fig. 3.8. A length 14 cycle in B5.

4. Mapping binary trees on the butterfly. This section presents two results
about mapping trees to Bn. We first show that it is possible to map multiple nonover-
lapping balanced binary trees with dilation 1 to this network (Theorem 4.1). Next,
by combining these trees, we show that one can map the largest possible binary tree
to Bn with a slightly higher dilation (Theorem 4.3). With the new model for Bn,
both these tasks are relatively simple.

In the discussion that follows, we restrict ourselves to balanced binary trees. By
level of a node in the tree we will mean its distance from the root. An m-level tree
has nodes in levels 0, 1, . . . ,m − 1. Each parent has exactly two children. Thus the
m-level tree has 2m−1 leaves and 2m − 1 total nodes. All the logarithms are assumed
to be base 2.

Theorem 4.1 (multiple trees). One can map n nonoverlapping n-level binary
trees to Bn with dilation 1.

Proof. Choose node (i, βn−1) to be the root of the ith tree, 0 ≤ i < n. Construct
each tree by the simple rule that the children of any node (j, x) are nodes (j+1, αx)
and (j + 1, αx + βn−1).

Clearly, both the children in each tree node are connected to the parent by a
direct edge (see Figure 2.1). We need only to prove that all the nodes in these trees
are distinct. Note that, because of the way the trees are constructed, the nodes in
level j of ith tree have labels ((i + j)mod n, βn−1f(α)) where f(α) are distinct
binary polynomials of α of degree j. Clearly, nodes on different levels of a tree are
distinct since their first indices are unequal. Similarly, all nodes on the same level
of a tree are also distinct; otherwise, their second indices, βn−1f1(α) and βn−1f2(α)
will be equal, implying that f1(α) − f2(α), a polynomial in α of degree less than n,
equals zero. This is impossible since α is a primitive element of GF (2n). Finally,
suppose a node ((i1 + j1)mod n, βn−1f1(α)) of tree i1 is identical to the node ((i2 +
j2)mod n, βn−1f2(α)) of a different tree i2. Since the first indices of the two nodes
are the same, j1 	= j2. Thus, equality of the second index implies two polynomials
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Fig. 4.1. Four nonoverlapping 4-level trees mapped to B4 with dilation 1.

f1(α) and f2(α) of unequal degrees (and each less than n) are equal. This is again
impossible in GF (2n). Therefore all nodes in all trees are distinct.

Bhatt et al. [2] have previously proved the same result stated in Theorem 4.1.
However, our construction is based on the butterfly modeled as Zn ×GF (2n) and is
necessary to obtain the mapping of the largest tree as given in Theorem 4.3.

Note that the mapping given in Theorem 4.1 is optimum in the sense that it
describes the maximum number of nonoverlapping n-level binary trees that may be
mapped to Bn. Clearly the unused n nodes, {(i, 0) | 0 ≤ i < n}, do not support
another n-level tree. Figure 4.1 shows mapping of four disjoint trees to B4.

We now focus on mapping the single largest binary tree to Bn. Such a tree would
have n + �log n� levels and would use 2�logn�2n − 1 nodes of Bn. For n values which
are powers of 2, such a tree would span all but one node of Bn. For other values of
n, this is the largest tree that may be mapped to Bn, because increasing the number
of tree levels even by 1 will imply more nodes than the number of nodes of Bn.

We create this tree by first designing the top �log n� levels using nodes unused in
Theorem 4.1. Then two n-level trees generated as in Theorem 4.1 are attached at each
leaf of this tree. Since a �log n�-level tree has at most n/2 leaves, the n nonoverlapping
trees obtained in Theorem 4.1 suffice. The top tree, however, needs to be designed
carefully since its leaves should be able to connect (with low dilation) to the roots of
the lower n-level trees which are very specific. Recall that the only nodes unused in
Theorem 4.1 are (i, 0), 0 ≤ i < n. Lemma 4.2 provides the required mapping of the
�log n�-level tree to these nodes.

Lemma 4.2. One can map a �log n�-level binary tree to nodes (i, 0), 0 ≤ i < n,
of Bn such that all its leaves are mapped to (i, 0) with odd i. Further, the dilation of
this mapping is 2�log n�/4.

Proof. Let n′ denote �log n�. Number the tree levels 0 through �log n� − 1 with
the root at level 0. Map the tree root to node (2n

′−1, 0). Map the children of a parent
(i, 0) at level l of the tree to nodes (i− 2n

′−2−l, 0) and (i + 2n
′−2−l, 0).

One can verify that this procedure maps 2l tree vertices at level l to nodes
(2n

′−1−lp, 0), with odd p, 1 ≤ p ≤ 2l+1 − 1. Thus all tree nodes are mapped to
distinct nodes of Bn. The leaves of this tree are mapped to (p, 0) as specified.
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Fig. 4.2. The top of the tree in Bn, 8 ≤ n < 16 (with dilation marked on each edge). The last
row contains the roots of n-level trees. (For brevity, a root (i, βn−1) is shown only as (i). Further,
(8)∗ denotes root (0, βn−1) when n = 8.)

Further, the paths from the image of a parent at level l to images of its children
are of length 2n

′−2−l. The longest of these paths gives the specified dilation of the
mapping.

The mapping of Lemma 4.2 exhibits a congestion of (n′ − 1); i.e., (n′ − 1) paths
corresponding to tree edges pass through a single edge Bn. To see this, first note that
all the paths in Bn corresponding to edges of any single tree level are disjoint. Thus
the congestion cannot exceed (n′ − 1). One can also show that the Bn edge between
nodes (�2n′

/3�, 0) and (�2n′
/3�+ 1, 0) carries paths corresponding to a tree edge at

every level. Thus this Bn edge has a congestion of (n′ − 1).
We now combine Theorem 4.1 and Lemma 4.2 to derive the central result of this

section.
Theorem 4.3 (tree mapping). One can map a binary tree of n + �log n� levels

to Bn with dilation 2 if n < 16, 3 if 16 ≤ n < 32, 4 if 32 ≤ n < 64, and 2�log n�/4 if
n ≥ 64.

Proof. We map the top �log n� levels of the tree as in Lemma 4.2. Note that the
leaves of this �log n�-level tree are mapped to (i, 0) for odd i. At each leaf (i, 0) we
attach two n-level trees generated according to Theorem 4.1 with roots at (i, βn−1)
and (i + 1, βn−1). Obviously all the nodes in the resultant (n + �log n�)-level tree
are distinct.

Further, the roots of the n-level tree are at distances 2 and 1 from the corre-
sponding leaves of the �log n�-level tree. The dilation within the lower n-level trees
is 1. Therefore the overall dilation of the tree is dictated by the dilation within the
top �log n� levels which, according to Lemma 4.2, is 2�log n�/4.

As an example, the �log n�-level tree for 8 ≤ n < 16 is shown in Figure 4.2. The
top three levels of this tree are generated from Lemma 4.2, and the fourth level shows
the roots of n-level trees. When 16 ≤ n < 64, one can use the top trees shown in
Figures 4.3 and 4.4 rather than the ones obtained from Lemma 4.2. These trees are
obtained by shuffling certain nodes of the tree obtained from Lemma 4.2 to reduce the
dilation. Since in the new �log n�-level trees the leaves are not necessarily at (i, 0)
with odd i’s, the choice of the n-level trees attached to each leaf is also different. The
last rows of these figures specify the roots of the n-level trees to be attached to each
leaf.

The tree mapping strategy presented here is interesting because of its extreme
simplicity. The bottom n levels of the tree using 2�log n�(2n−1) nodes are mapped in
a very systematic manner. The top �log n� levels of the tree using fewer than n nodes
may also be algorithmically created using Lemma 4.2. The overall dilation is decided
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Fig. 4.4. A better top for a tree in Bn, 32 ≤ n < 64 (with dilation marked on each edge). The
last row contains the roots of the n-level trees. (For brevity, a root (i, βn−1) is shown only as (i).
Further, (32)∗ denotes root (0, βn−1) when n = 32.)

by the dilation within these top levels. The dilation may be reduced by modifying the
top tree. Fortunately, for every set of n values between two consecutive powers of 2,
one needs to design a single top tree. We have altered the top tree to limit dilation
to 3 when 16 ≤ n < 32 and to 4 when 16 ≤ n < 32. Such alterations may sometimes
increase the congestion. The congestions of the top trees of Figures 4.2 and 4.3 are 2
and 3, respectively. These values are identical to the congestions of the same size top
trees built using Lemma 4.2. But for the range 16 ≤ n < 32, the congestion of the
top tree in Figure 4.4 is 6 as against the congestion of 4 for the top tree built using
Lemma 4.2. Note that this increase in congestion yields a decrease of dilation from 8
to 4.

5. Conclusion. This paper has given a new model for the wrap-around butterfly
networks and has demonstrated its utility to obtain mappings of cycles and trees.

Our results about cycle mappings are presented in Table 5.1. We have identified
all cycles that could be subgraphs of butterfly networks and have provided their
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Table 5.1

The existence of cycles as subgraphs of Bn.

Cycle length L 3 ≤ L < n n ≤ L < 2n 2n ≤ L ≤ n2n

n odd L even Theorem 3.7* Theorem 3.7 * Theorem 3.6
n odd L odd Impossible Theorem 3.6 Theorem 3.6
n even L even Theorem 3.7* Theorem 3.6 Theorem 3.6
n even L odd Impossible Impossible Impossible

* When n = 5 or n ≥ 7, cycle of length 6 is not possible.
When n = 7, 9 or n ≥ 11, cycle of length 10 is not possible.

Table 5.2

Mapping a tree of 2n+�log n� − 1 nodes to a butterfly architecture.

Reference Architecture size Dilation Conditions

Bhatt et al. [2] (n + 3)2n+3 4
Gupta et al. [6] (n + 1)2n+1 4 even n
Gupta et al. [6] (n + 2)2n+2 2 even n

This paper n2n 2 n < 16
This paper n2n 3 16 ≤ n < 32
This paper n2n 4 32 ≤ n < 64

This paper n2n 2�log n�/4

mappings. We give two procedures for mapping cycles to Bn: one that is applicable
to cycles of even lengths less than 4n and the other for larger lengths. In the first
case, the cycle is established directly. In the second, one sets up a cycle of length
divisible by n and then augments it with a small number of node pairs to make up
the required length. Earlier results [11] about cycle mappings on Bn had identified
O(2n) cycle subgraphs each with a different length, whereas we provide O(n2n) cycle
subgraphs of different lengths.

Our results about tree mappings are listed in Table 5.2. Using our methods
one can map the largest possible balanced binary tree to Bn, n < 16, with a small
dilation of 2. One may note that B15, the biggest butterfly network to which this
result applies, has almost half a million nodes. We also give maximal tree mappings
in larger butterflies with bounded dilation. For 16 ≤ n < 32, the dilation is 3, and for
32 ≤ n < 64, it is 4. Thus even though the tree mapping results presented here are
asymptotically poor as compared to the earlier work [2, 6] (dilation and congestion
O(n) as against O(1)), for practical network sizes of up to n = 64, they have low
dilation and congestion. Further, unlike the earlier mappings, ours does not require
a larger size butterfly to ensure the one-to-one (load = 1) mapping. Thus to map the
same tree, we use a butterfly with at most half the nodes as before. Our trees have
unit dilation in their lower n levels. A larger dilation may be present only within the
top �log n� + 1 levels that employ fewer than n nodes.

The simplicity of the mappings obtained here is essentially due to our identifi-
cation of the butterfly network with the direct product of a group and a finite field.
We have shown that in the context of this model, the network connectivity may be
expressed as an algebraic relationship between the node labels. One may then em-
ploy the powerful tools of abstract algebra to explore the structural properties of the
network. Even though we have limited our investigation here to certain mappings, we
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believe that these methods hold a lot of promise for other aspects of these networks
as well.

Acknowledgment. The authors wish to thank anonymous referees for com-
ments and suggestions that improved the paper tremendously.
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Abstract. We propose a framework to analyze and compare wavelength division multiplexed
(WDM) switching networks qualitatively and quantitatively. The framework not only helps analyze
and compare the complexity of WDM switching networks but also explains interesting properties
of different designs. Then several important problems arising from this idea are addressed, and
complexity bounds are derived. We also give several applications of the proposed model, including
explicit constructions of nonblocking WDM switching fabrics.
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1. Introduction. With the advances in dense wavelength division multiplexing
(DWDM) technology [21, 32, 38], the number of wavelengths in a wavelength division
multiplexed (WDM) network increases to hundreds or more per fiber, and each wave-
length operates at 10Gbps (OC-192) or higher [17, 18, 19]. While raw bandwidth has
increased by more than four orders of magnitude over the last decade or so, capacity
of switches has only been up by a factor of ten. Switching speed is the bottleneck at
the core of optical network infrastructure [37]. Consequently, a challenge is to design
cost-effective WDM cross-connects (WXCs) that can scale in size beyond one hundred
inputs and outputs and, at the same time, switch fast (e.g., tens of nanoseconds or
less).

The notion of “cost-effectiveness” is difficult to capture. One can analyze and
compare WDM switches both qualitatively and quantitatively.

Qualitatively, we need to know if a design is strictly nonblocking (SNB), rear-
rangeably nonblocking (RNB), and/or widesense nonblocking (WSNB) under differ-
ent request models [20, 24, 25, 31, 33, 34, 39, 41, 42] and different traffic patterns
(unicast [24, 25, 42], multicast [22, 26, 43]). A design can also be blocking as long as
its blocking probability is below a certain threshold [15, 31]. There are various other
qualitative features, such as small cross-talk [39], small number of limited-range wave-
length converters [42], or fault tolerance [4]. Presumably each new design is guided
by a particular qualitative feature. For example, one might come up with an RNB
design under one request model, which may or may not be SNB under another request
model. One might also have an intuitively good design, and hence need to know what
qualitative feature the design possesses. This question is challenging in general. We
will see later that the graph models introduced in this paper help, in several ways,
answer these types of questions.

Quantitatively, comparing different designs, or asking how close to be optimal a
new design is, are very important questions. This is a multidimensional problem, as
there are many factors affecting the “cost” of a switch. Some factors, such as actual
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cost in dollars, are business matters. Other factors include the numbers of different
types of switching components, such as (de)multiplexors (MUXs/DEMUXs), full and
limited wavelength converters (FWCs and LWCs), semiconductor optical amplifiers
(SOAs), optical add-drop multiplexors (OADMs), directional couplers (DCs), etc;
or signal and switch quality parameters, such as cross-talk, power consumption and
attenuation, integratability and scalability, blocking probabilities, etc.

It should be apparent that we cannot hope to have a cost model that fits all needs.
However, one can devise cost models which give good approximated measures on how
“complex” a construction is. The notion of complexity should roughly capture as
many practical parameters as possible.

In this paper, we outline an intriguing approach to model switch complexity
which not only helps analyze WDM switches quantitatively and qualitatively but also
suggests interesting generalizations of classical switching network theory [2, 29]. Then
we address several important problems arising from the framework.

We consider two dominant request models in this paper. The following phenomena
are samples of what our model suggests:

(a) Designing WXCs in the so-called (λ, F, λ′, F ′)-request model is basically the
same as designing a circuit switch. Hence, many old ideas on circuit switching
can be readily reused (section 4.1).

(b) Two SNB switches in two models are equivalent topologically, even though
one request model is much less restrictive than the other (section 5.1).

(c) There is an inherent trade-off between a WXC’s “depth” (which is propor-
tional to signal attenuation, cross-talk) and its “size” (which approximates
the WXC’s complexity) (section 5.2).

(d) Different designs of WXCs which make use of different optical components
can now be viewed in a unified manner. We can tell if two different-looking
designs are equivalent topologically, for example (section 7).

We will also derive several complexity bounds and give a generic construction which
can be used to construct RNB switches (section 6).

The framework proposed here gives rise to interesting mathematical and net-
working problems, many of which are generalized versions of the well-studied circuit
switching problems. We address several of these problems in later sections of the
paper.

The rest of the paper is organized as follows. Section 2 introduces basic settings
of WXCs, request models, and nonblocking concepts. Section 3 motivates the graph
models which will be rigorously defined in section 4. Section 5 addresses several
key complexity problems arising from the framework. Section 6 explicitly constructs
graphs with low complexity. The ideas in this section can be used to construct WXCs
of low cost. Section 7 discusses several applications of our framework. Last, section 8
concludes the paper with a few remarks and discussions on future works.

2. WXCs, request models, and nonblockingness. A general WXC consists
of f input fibers, each of which can carry a set Λ = {λ1, . . . , λw} of w wavelengths, and
f ′ output fibers, each of which can carry a set Λ′ = {λ′

1, . . . , λ
′
w′} of w′ wavelengths,

where fw = f ′w′ (See Figure 1). This setting is referred to as the heterogeneous case
[34], which is needed to connect subnetworks from different manufacturers. Hence-
forth, let n = fw = f ′w′, unless specified otherwise.

Let F = {F1, . . . , Ff} and F ′ = {F ′
1, . . . , F

′
f ′} denote the set of input and output

fibers, respectively. There are two common types of request models [24, 41]. In the
(λ, F, F ′)-request model, a connection request is of the form (λ, F, F ′), where λ ∈ Λ,
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Fig. 1. Heterogeneous WXC.

F ∈ F , and F ′ ∈ F ′. The request asks to establish a connection from wavelength λ
in input fiber F to any free wavelength in output fiber F ′. In the (λ, F, λ′, F ′)-request
model, the difference is that the output wavelength λ′ in F ′ is also specified.

In the next sections, we will define the concepts of SNB, WSNB, and RNB for both
request models. We will be somewhat informal in our definitions. However, the idea
should be clear to readers who have been exposed to switching theory [2, 13, 29, 23].

Consider a WXC with a few connections already established. Under the (λ,F, F
′)-

model, a new request (λ, F, F ′) is said to be valid iff λ is a free wavelength in fiber F ,
and there are at most w′−1 existing connections to F ′. Under the (λ, F, λ′, F ′)-model,
a new request (λ, F, λ′, F ′) is valid iff λ is free in F and λ′ is free in F ′.

A request frame under the (λ, F, F ′)-model is a set of requests such that no two
requests are from the same wavelength in the same input fiber and that there are at
most w′ requests to any output fiber. A request frame under the (λ, F, λ′, F ′)-model is
a set of requests such that no two requests are from the same input wavelength/fiber
pair or to the same output wavelength/fiber pair.

The following definitions hold for both request models. A request frame is realiz-
able by a WXC if all requests in the frame can be routed simultaneously. A WXC is
RNB iff any request frame is realizable by the WXC. A WXC is SNB iff a new valid
request can always be routed through the WXC without disturbing existing connec-
tions. A WXC is WSNB iff a new valid request can always be routed through the
WXC without disturbing existing connections, provided that new requests are routed
according to some routing algorithm. When the routing algorithm is known, we say
that the WXC is WSNB with respect to the algorithm.

Henceforth, for any positive integer p, let [p] denote the set {1, . . . , p} and Sp

denote the set of all permutations on [p]. The graph theoretic terminologies and
notation we use here are fairly standard (see [40], for instance).

3. Motivations. Main known results on the constructions of (different types of)
nonblocking WXCs can be found in [20, 22, 24, 25, 26, 31, 33, 34, 39, 41, 42]. (Note
that we are not discussing multicast switching in this paper.) The constructions from
these references made use of various different types of optical components, such as
arrayed waveguide grating routers (AWGRs) and LWCs in [24], SOAs and LWCs
in [42], OADMs and FWCs in [41], wavelength selective cross-connects (WSCs) and
wavelength interchangers (WIs) in [33, 34], and DCs in [39]. It is clear that the task of
comparing different designs is not easy. Different designs make use of different optical
switching components which oftentimes are trade-offs. For instance, the designs in
[42] made use of SOAs and LWCs which have a lower wavelength conversion cost than
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a fiber
AWG
3 × 3

λw−1

λ1

λ0

FWC

MUX

Fig. 2. Turning optical components into parts of a graph. A fiber is replaced by a set of
vertices representing the wavelengths it can carry. Other components define edges connecting input
wavelengths to output wavelengths. For the AWGR, MUX, and FWC, we illustrate with w = 3.
Edges are directed from left to right.

2 × 2

2 × 2

AWG

AWG

Fig. 3. A WDM switch design and its corresponding DAG.

those in [24]. On the other hand, the ones in [24] preferred AWGRs over SOAs since
AWGRs consume virtually no power.

We now propose an approach to uniformly model all designs by graphs and then
discuss switch complexity from the graphs’ standpoint.

We classify optical switching components into fibers and other switching compo-
nents. For any switch design, we apply the following procedure to construct a directed
acyclic graph (DAG) from the design: (a) each fiber is replaced by a set of vertices
Λ ∪ Λ′, which represents all possible wavelengths which can be carried on the fiber;
(b) the edges of the DAG are defined according to the capacity of switching compo-
nents in the design. The edges connect wavelengths (i.e., vertices) on the inputs of
each switching component to the wavelengths on the outputs in accordance with the
functionality of the switching component.

We shall be somewhat brief on this construction. However, the reader will un-
doubtedly understand the basic idea. As an example, Figure 2 shows how to turn an
AWGR, an FWC, and a MUX into edges. Figure 3 shows a complete construction of
the DAG from the design on the left.

The key point is that a set of compatible routes from input wavelengths to output
wavelengths correspond to a set of vertex disjoint paths from the inputs to the outputs
of the DAG.

There are two main parameters of the DAG, which capture the notion of “switch
complexity” discussed earlier. The number of edges of the DAG, called the size of the
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DAG, is roughly proportional to the total cost of various components in the design.
For example, an FWC corresponds to 3w edges, while an WI [34] corresponds to
w2 edges; a w × w AWGR corresponds to w2 edges, while a w × w WDM crossbar
corresponds to w4 edges; etc. As WIs and WDM crossbars are more expensive than
FWCs and AWGRs, this model makes sense. Other components follow the same trend.

The reader might have noticed that different components contribute different
“weights” to the total cost; hence summing up the number of edges may not give the
“right” cost. To answer this doubt, we make three points. First, as argued earlier one
cannot hope to have a perfect model which fits all needs, and part of the notion of
cost is a business matter. Our first aim is at a more theoretical level. Second, this is
the first step toward a good cost model. One certainly can envision weighted graphs
as the next step. Third, we surely can and should still use more traditional cost
functions, such as the direct counts of the number of each components, and compare
them individually.

The second measure on the DAG is its depth, i.e., the length of a longest path
from any input to any output. As signals pass through different components of a
design, they lose some power. The depth of the DAG hence reflects power loss or in
some cases even the signal delay. Again, different components impose different power
loss factors. Hence, other information needs to be taken into account to estimate
power loss. However, it is clear that network depth is an important measure.

Last but not least, this DAG model provides a nice bridge between classical
switching theory and WDM switching theory. As we shall see in later sections, this
model helps us tremendously in answering qualitative questions about a particular
construction. For example, if an wf -input wf -output DAG must have size Ω(f2w2)
to be SNB, then we know for certain that a construction of cost o(f2w2) (reflected
by the DAG’s size) cannot be SNB (for sufficiently large values of fw.)

4. Rigorous settings. An (n1, n2)-network is a DAG N = (V,E;A,B), where
V is the set of vertices, E is the set of edges, A is a set of n1 nodes called inputs, and
B, disjoint from A, is a set of n2 nodes called outputs. The vertices in V −A∪B are
internal vertices. The indegrees of the inputs and the outdegrees of the outputs are 0.
The size of a network is its number of edges. The depth of a network is the maximum
length of a path from an input to an output. An n-network is an (n, n)-network.

An n-network is meant to represent the DAG from the previous section under
the (λ, F, λ′, F ′)-request model. (Recall n = wf = w′f ′.) Later on, we shall define
[w, f ]-networks which represent the DAG under the (λ, F, F ′)-request model.

4.1. The (λ, F, λ′, F ′)-request model. Given an n-network N = (V,E;A,B),
a pair D = (a, b) in A×B is called a request (or demand) for N . A set D of requests
is called a request frame iff no two requests share an input or an output. A request
D = (a, b) is compatible with a request frame D iff D ∪ {D} is also a request frame.
A route R for a request D = (a, b) is a (directed) path from a to b. We also say R
realizes D. A state of N is a set R of vertex disjoint routes. Each state of N realizes
a request frame, one route per request in the frame. A request frame D is realizable
iff there is a network state realizing it.

An RNB n-connector (or just n-connector for short) is an n-network in which the
request frame D = {(a, π(a)) | a ∈ A} is realizable for any one-to-one correspondence
π : A → B.

An SNB n-connector is an n-network N in which given any network state R
realizing a request set D, and given a new request D compatible with D, there exists
a route R such that R∪ {R} is a network state realizing D ∪ {D}.
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As requests come and go, a strategy to pick new routes for new requests is called
a routing algorithm. An n-network N is called a WSNB n-connector with respect to
a routing algorithm A if A can always pick a new route for a new request compatible
with the current network state. We can also replace A by a class of algorithms A. In
general, an n-network N is WSNB iff it is WSNB with respect to some algorithm.

We often consider two classes of functions on each network type: (a) the minimum
size of a network and (b) the minimum size of a network with a given depth. The
main theme of research on classical switching networks is to investigate the trade-off
between size and depth [23, 29].

Let rc(n), wc(n), and sc(n) denote the minimum size of an RNB, WSNB, and SNB
n-connector, respectively. Let rc(n, k), wc(n, k), and sc(n, k) denote the minimum
size of an RNB, WSNB, and SNB n-connector with depth k, respectively. Note that
rc(n) ≤ wc(n) ≤ sc(n), and rc(n, k) ≤ wc(n, k) ≤ sc(n, k). These classes of functions
are well studied in the context of circuit switching networks (see, e.g., [23, 29] for nice
surveys).

Two key conclusions arise from this formulation:
• Studying WDM switches under the (λ, F, λ′, F ′)-request model is in a sense

the same as studying classical switching networks. A lot of results can be
readily reused. For example, using our DAG construction, it is easy to see
that all of the constructions (under this request model) in [24, 33, 34, 42]
made use of various forms of the Clos network [5, 27], banyan, butterfly, and
base line networks [11, 12], Cantor network [3], etc. In fact, under this request
model, we do not know of any design which is not topologically isomorphic
to some classical circuit design.

• The situation under the (λ, F, F ′)-model is different, however. The RNB
design in [24] and the designs presented in this paper require several new
themes. Particularly, this is because the (λ, F, F ′)-model is not equivalent to
the classical switching case, as we shall see in the next section.

4.2. The (λ, F, F ′)-request model. In this request model, each pair (λ, F )
with λ ∈ Λ, F ∈ F can still be thought of as an “input” to our graphs as in the
previous request model. However, on the output side we do have to indicate the
number f of fibers and the number of wavelengths w on each fiber.

Set n = wf . A [w, f ]-network is an n-network N = (V,E;A,B) in which the set
B of outputs is further partitioned into f subsets B1, . . . , Bf of size w each. Each set
Bi represents an output fiber in the WDM switch. We implicitly assume the existence
of the partition in a [w, f ]-network, in order to simplify notation. (There is a slightly
subtle point to be noticed here. The inputs are not distinguishable in this request
model, while we do care which fiber an output wavelength is from. The parameters
w and f in the above sentence and henceforth should be thought of as w′ and f ′ in
the original discussion.)

Given a [w, f ]-network N , a pair D = (a, k) ∈ A × [f ] is called a (connection)
request for N . The number k is called the output fiber number of D. A set D of
requests is called a request frame iff no two requests share an input, and for any
k ∈ [f ], we have |{a | (a, k) ∈ D}| ≤ w. A request D = (a, k) is compatible with a
request frame D iff D ∪ {D} is also a request frame.

A route R for a request D = (a, k) is a path from a to some vertex b in Bk. We
also say R realizes D. A state of N is a set R of vertex disjoint routes. Each state
of N realizes a request frame. A request frame D is realizable iff there is a network
state realizing it.
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We are interested in (WSNB, SNB, RNB) connectors under this request model.
A (rearrangeable) [w, f ]-connector is a [w, f ]-network in which the request frame

D = {(a, σ(a)) | a ∈ A}

is realizable for any mapping σ : A → [f ] such that

|{a | σ(a) = k}| = w ∀k ∈ [f ].

A SNB [w, f ]-connector is an [w, f ]-network N in which given any network state R
realizing a request set D, and given a new request D compatible with D, there exists
a route R such that R ∪ {R} realizes D ∪ {D}. As requests come and go, a strategy
to pick new routes for new requests is called a routing algorithm. An [w, f ]-network
N is called a WSNB [w, f ]-connector with respect to a routing algorithm A if A can
always pick a new route for a new request compatible with the current network state.
We can also replace A by a class of algorithms A. In general, an [w, f ]-network N is
WSNB iff it is WSNB with respect to some algorithm.

The different [w, f ]-networks are generalized versions of the corresponding n-
networks.

Proposition 4.1. A network is an SNB, WSNB, RNB [1, f ]-connector iff it is
an SNB, WSNB, RNB f-connector, respectively.

Let rc(w, f), wc(w, f), and sc(w, f) denote the minimum sizes of an RNB, WSNB,
and SNB [w, f ]-connector, respectively. Similarly, for a fixed depth k, we define
rc(w, f, k), wc(w, f, k), and sc(w, f, k). These functions have not been studied before.
Some trivial bounds can be summarized as follows.

Proposition 4.2. Let n = wf ; then the following hold:
(i) rc(w, f) ≤ wc(w, f) ≤ sc(w, f).
(ii) rc(w, f, k) ≤ wc(w, f, k) ≤ sc(w, f, k).
(iii) An RNB, WSNB, SNB n-connector is also an RNB, WSNB, SNB [w, f ]-

connector, respectively. Consequently, rc(·) ≤ rc(·), wc(·) ≤ wc(·), and
sc(·) ≤ sc(·), where the dots on the left-hand sides can be replaced by (w, f) or
(w, f, k) and the dots on the right-hand sides by (n) or (n, k), correspondingly.

5. Complexity bounds.

5.1. SNB [w, f ]-connectors. We study SNB [w, f ]-connectors in this section.
For f = 1, it is easy to see that sc(w, 1, k) = w + k − 1. We assume f ≥ 2 from here
on.

Intuitively, an optimal SNB [w, f ]-connector might have (strictly) smaller size
than an optimal SNB wf -connector, since the (λ, F, λ′, F ′)-request model is more
restrictive than the (λ, F, F ′)-request model. However, the following theorem shows
a somewhat surprising result: we can do no better than an SNB wf -connector when
f ≥ 2. This theorem explains rigorously why the authors in [24] could not construct
SNB designs under the (λ, F, F ′)-model with a lower cost than the ones under the
other model.

Theorem 5.1. Let n = wf , where n,w, f are positive integers, and f ≥ 2. An
n-network N = (V,E;A,B) is an SNB n-connector iff it is an SNB [w, f ]-connector.

Proof. An SNB n-connector is also an SNB [w, f ]-connector, no matter how the
fiber partitioning is done. For the converse, let N be an SNB [w, f ]-connector. Let
B = B1 ∪ · · · ∪Bf be the partition of B. (Recall, by definition, that |Bi| = w ∀i ∈ [f ]
and that |A| = wf .)
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Consider a state R of this network. We shall show that if a is a free input and
b is a free output, then there exists a route R from a to b such that R ∪ {R} is a
network state.

Let X be the set of free inputs and Y the set of free outputs. Note that a ∈ X,
b ∈ Y , and |X| = |Y |.

Suppose b ∈ Bk for some k ∈ [f ]. Without loss of generality, we assume that
there is no free output in any Bj for j �= k. This can be accomplished by creating
as many requests of the form (x, j) as possible, where x ∈ X − {a} and j �= k, until
there is no more free outputs at the Bj with j �= k. Then let R be the new network
state (which satisfies all new requests and also contains the old network state). An
(a, b)-route compatible with R is certainly compatible with the old network state.

We can now assume Y ⊆ Bk. Create |X| requests of the form (x, k), one for
each x ∈ X. Since N is a [w, f ]-connector, there is a route Rx for each x in X
satisfying the following: (i) Rx starts from x and ends at some vertex in Bk, and (ii)
R∪ {Rx | x ∈ X} is a network state.

If Ra is an (a, b)-route, then we are done. Moreover, if |X| = |Y | = 1, then Ra

must be an (a, b)-route. Consequently, we can assume the following:
• |X| = |Y | ≥ 2.
• Ra goes from a to some vertex y ∈ Bk − {b}.
• There is some x ∈ X − {a} such that Rx ends at b.
• There is some vertex a′ /∈ X and a route

R′ = (a′, v1, . . . , vp, b
′) ∈ R

which goes from a′ to a vertex b′ ∈ Bj , where j �= k. (The route R′ ∈ R
exists since we assumed that the vertices in Bj , j �= k, are all busy.)

To this end, let

R′ = R∪ {Rt | t ∈ X} − {Ra, Rx, R
′}.

We shall show that there exists an (a, b)-route R for which R′ ∪ {R′, R} is a state.
The route R is then the route we are looking for, because R ⊆ R′ ∪ {R′}.

We first claim that there exists an (x, y)-route Rxy compatible with R′. Consider
the state R′ ∪ {Ra}. The request (a′, k) is valid (i.e., compatible with the request
frame realized by R′ ∪ {Ra}), and b is the only free output in Bk; hence, there is an
(a′, b)-route Ra′b such that R′∪{Ra, Ra′b} is a state. Now in the state R′∪{Ra′b} the
request (x, k) is valid, and y is the only free output in Bk. Hence, there is an (x, y)-
route Rxy such that R′∪{Ra′b, Rxy} is a state. Consequently, there is an (x, y)-route
Rxy compatible with R′ as claimed.

Now consider two cases as follows.
Case 1. Among all the (x, y)-routes which are compatible with R′, there is some

Rxy which is also vertex disjoint from R′. Then in the state R′∪{R′, Rxy} the request
(a, k) is valid, and b is the only free output in Bk. Hence, there is an (a, b)-path
compatible with R′ ∪ {R′} as desired.

Case 2. Every (x, y)-route compatible with R′ intersects R′ at some point. Let
Rxy be such an (x, y)-route whose last intersection vertex on (v1, . . . , vp) has the
largest index, say vj , for some j ∈ [p]. Then Rxy is composed of two parts: the part
from x to vj and the part from vj to y.

Let Ra′y be an (a′, y)-path consisting of the part (a′, v1, . . . , vj) of R′ and the
(vj , y)-part of Rxy. Then certainly Ra′y is compatible with R′. In the state R′∪{Ra′y}
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the request (a, k) is valid, and b is the only free output in Bk. Hence, there is an (a, b)-
path Rab compatible with R′ ∪ {Ra′y}.

If Rab does not intersect R′, then we are done. Otherwise, Rab must intersect
R′ at some vj′ for which j′ > j. Similar to the previous paragraph, we can form
an (a′, b)-path Ra′b compatible with R′ consisting of (a′, v1, . . . , vj′) and the part of
Rab from vj′ to b. Now consider the state R′ ∪ {Ra′b} in which y is the only free
vertex in Bk. The request (x, k) is valid; hence there is some (x, y)-path compatible
with R′ ∪ {Ra′b}. This (x, y)-path must then intersect R′ (since we are in Case 2) at
some vertex after vj′ (for compatibility with Ra′b), contradicting our choice of Rxy

earlier.
Corollary 5.2. The following hold for f ≥ 2:
(i) sc(w, f, 1) = w2f2.

(ii) sc(w, f, k) = Ω
(
(wf)1+1/(k−1)

)
and sc(w, f, k) = O((wf)1+1/� k+1

2 �).
(iii) sc(w, f) = Θ(wf lg(wf)).
Proof. Let n = wf ; then sc(w, f, k) = sc(n, k) by Theorem 5.1. The first equality

is obvious. The fact that sc(n, k) = O(n1+1/� k+1
2 �) can be seen from the constructions

in [3, 5, 27]. The lower bound Ω
(
(wf)1+1/(k−1)

)
was shown in [8]. The fact that

sc(n) = Θ(n lg n) can be found in [1, 36]. The reader is referred to the surveys
[23, 29] for more details on what is known about these functions.

5.2. Rearrangeable [w, f ]-connectors. In this section, we first devise lower
bounds for the optimal size of RNB [w, f ]-connectors and connectors of a fixed depth.
The upper bounds follow from explicit constructions presented in section 6.

An idea of Pippenger [28] can be used to show the following theorem.
Theorem 5.3. Every rearrangeable [w, f ]-connector must have size at least

45

7
wf log6 f + O(f) −O(f lgw).

In particular, rc(w, f) = Ω(wf lg f).
Proof. The proof is completely similar to that of Pippenger’s theorem and thus

will not be repeated here. The only difference is that the number of valid request
frames is no longer n!, as in the case of an n-connector. In our case, the total number
of different request frames for N is the multinomial coefficient(

wf

w, . . . , w︸ ︷︷ ︸
f times

)
=

(wf)!

(w!)f
≥

√
2πwf(wf/e)wf

e
f

12w (2πw)f/2(w/e)wf
= (2πw)1−

f
2 e−

f
12w fwf+ 1

2 ,(1)

where the inequality follows from Stirling’s approximation [35].
The bound Ω(wf lg f) implies that for w ≤ f , [w, f ]-connectors must have size

at least Ω(wf lg(wf)), which is asymptotically no better than a wf -connector. This
confirms our intuition that for small values of w, [w, f ]-connectors are almost the
same as wf -connectors.

Fortunately, in WDM networks it is often the case that w ≥ f ; i.e., the number
of wavelengths per fiber (in the hundreds) is often much larger than the number of
fibers (in the tens). The next section shows that we can construct [w, f ]-connectors
that are asymptotically less expansive than all known constructions of wf -connectors.

We next give lower bounds for fixed depth [w, f ]-connectors.
Theorem 5.4. The optimal size of a depth-1 [w, f ]-connector is wf(wf−w+1),

namely rc(w, f, 1) = wf(wf − w + 1).
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Proof. In the next section, we shall construct depth-1 [w, f ]-connectors of size
wf(wf − w + 1), which proves the upper bound rc(w, f, 1) ≤ wf(wf − w + 1).

For the lower bound, let N = (A∪B,E;A,B) be a depth-1 [w, f ]-connector. Then
N is a (directed) bipartite graph where |A| = wf , |B| = wf , and B has a partition
into B1 ∪ · · · ∪ Bf , such that |Bi| = w ∀i. The network N is a [w, f ]-connector iff
for every partition of A into A1, . . . , Af with |Ai| = w ∀i, there exist f complete
matchings from each Ai to each Bi.

It follows that each vertex b ∈ B must have a neighbor in every w-subset of A.
Consequently, each vertex b ∈ B must be of degree at least |A| − w + 1. Hence, the
number of edges of N is at least |B|(|A| − w + 1) = wf(wf − w + 1).

For k ≥ 2, we can use an idea by Pippenger and Yao [30] on n-shifters to find
a lower bound for depth-k [w, f ]-connectors. The proof is similar and is left as an
exercise.

Theorem 5.5. Let k ≥ 2 be an integer; then a depth-k [w, f ]-connector must
have size at least kwf1+1/k. Specifically, rc(w, f, k) = Ω(kwf1+1/k).

Noting that the function kwf1+1/k is minimized at k = ln f , we get the result
rc(w, f) = Ω(wf lg f) from the previous theorem (with a worse constant than 45/7).

Corollary 5.6. For k ≥ 2, rc2(w, f) ≥ ewf ln f , where e is the base of the
natural log.

6. Explicit constructions. For any network N , let A(N ) and B(N ) denote
the set of inputs and outputs of N , respectively. For any [w, f ]-network N , we shall
always use B1(N ), . . . , Bf (N ) to denote the partition of B(N ). An important fact to
notice is that all presumably “theoretic” constructions presented in this section can
easily be converted to practical constructions. We shall not elaborate on this point
due to space limitation.

6.1. Atomic networks. Let B(x, y) = (A ∪ B;E) denote the complete x × y
directed bipartite graph; i.e., |A| = x, |B| = y, and E = A × B. The (x, y)-network
B(x, y) is called an (x, y)-crossbar. When x = y, we use the shorter notation B(x)
and call it the x-crossbar. For any positive integer m, let M(m) = (A∪B;E) denote
a perfect matching of size m from A into B. (Therefore, |A| = |B| = m.) An (n,m)-
concentrator is an (n,m)-network where n ≥ m, such that for any subset S of m
inputs there exists a set of m vertex disjoint paths connecting S to the outputs.

6.2. Union networks and optimal depth-1 connectors. Let N1, . . . ,Nf be
(wf,w)-networks with input sets A1, . . . , Af and output sets B1, . . . , Bf , respectively.
For each i = 1, . . . , f − 1, let φi : Ai → Ai+1 be some one-to-one mapping. A left
union or �-union of N1, . . . ,Nf is a [w, f ]-network N constructed by identifying each
vertex a ∈ A1 with all vertices φ1(a), φ2 ◦ φ1(a), . . . , φf−1 ◦ · · · ◦ φ1(a) (to become an
input of N ), and let B1, . . . , Bf be, naturally, the partition of the outputs of N (see
Figure 4.) We denote N as N = �(N1, . . . ,Nf ).

Let N1, . . . ,Nk be (m,n)-networks. An (mk, n)-network N = �(N1, . . . ,Nk) con-
structed by identifying outputs of the Ni in some one-to-one manner is called a right
union (or �-union) of the Ni. The picture is virtually symmetrical to the left union
picture.

The next theorem summarizes a few important properties of the union construc-
tions. The proof is simple and thus omitted. Note that part (iii) completes the proof
of Theorem 5.4.

Theorem 6.1 (optimal depth-1 construction). Let w, f be positive integers; then
the following hold:
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N1

N2

Nf

N = �(N1,N2, . . . ,Nf )

B1(N ) = B(N1)

B2(N ) = B(N2)

Bf (N ) = B(Nf )

Fig. 4. The left union N of f (wf,w)-networks is a [w, f ]-network.

(i) Suppose N1, . . . ,Nf are (wf,w)-concentrators; then the network �(N1, . . . ,Nf )
is a [w, f ]-connector.

(ii) The network C1(w, f) = �(B(wf − w,w),M(w)) is a depth-1 (wf,w)-
concentrator of size w(wf − w + 1).

(iii) Let S1(w, f) be a left union of f copies of C1(w, f). Then S1(w, f) is a depth-1
[w, f ]-connector of size wf(wf − w + 1), which is optimal.

6.3. Constructions of product networks and [w, f ]-connectors of depth
2.

Definition 6.2 (the ××-product). Let N1 be an m-network and N2 be a [w, f ]-
network; then define the ordered product (for lack of a better term) N = N1××N2 as

follows. We shall “connect” wf copies of N1, denoted by N (1)
1 , . . . ,N (wf)

1 , to m copies

N (1)
2 , . . . ,N (m)

2 of N2. For each i ∈ {1, . . . , wf} and j ∈ {1, . . . ,m}, we identify the

jth output of N (i)
1 with the ith input of N (j)

2 . The output partition for N is defined
by

Bk(N ) =

m⋃
j=1

Bk(N (j)
2 ).

Naturally, A(N ) = ∪wf
i=1A(N (i)

1 ). Figure 5 illustrates the construction.

The following proposition summarizes a few trivial properties of the product net-
work.

Proposition 6.3. Let N1 be an m-network of size s1 and depth d1 and N2

a [w, f ]-network of size s2 and depth d2. Then the network N = N1 × ×N2 is an
[mw, f ]-network of size s = wfs1 + ms2 and depth d = d1 + d2.

Before proving a crucial property of this construction, we need a simple yet im-
portant lemma.

Lemma 6.4. Let G = (X ∪ Y ;E) be a bipartite multigraph where the degree of
each vertex x ∈ X is m and the degree of each vertex y ∈ Y is mw. Then there is
an edge coloring for G with exactly m colors such that vertices in X are incident to
different colors, and vertices in Y are incident to exactly w edges of each color.

Proof. Split each vertex y ∈ Y into w copies y(1), . . . , y(w) such that each copy
has degree m. The resulting graph is an m-regular bipartite graph, which can be
m-edge-colored, by König’s line coloring theorem [16]. This induces a coloring of G
as desired.

The following lemma is the point of the ordered-product construction.
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m×m
wf × wf

m×m

m×m

wf × wf

wf × wf

N (1)
1

N (2)
1

N (wf)
1

N (1)
2

N (2)
2

N (m)
2

The dashed line
means “identify
these 2 vertices”

Each copy of N2

has w vertices in
each Bi

Hence, in the product-
network each Bi is
of size mw

Fig. 5. Product of two networks: N1 is an m-network and N2 is a [w, f ]-network.

Lemma 6.5. If N2 is a rearrangeable [w, f ]-connector and N1 is a rearrangeable
m-connector, then N = N1 ××N2 is a rearrangeable [mw, f ]-connector.

Proof. Consider a request frame D for N . We use (a(i), k) to denote a request

(a, k) ∈ D if a ∈ A(N (i)
1 ). This is to signify the fact that the request was from the ath

input of N (i)
1 to Bk. By definition of a request frame, |{(a(i), k) | (a(i), k) ∈ D}| = m

for a fixed i. We shall find vertex disjoint routes realizing requests in D.

Construct a bipartite graph G = (X ∪ Y ;E), where X = {N (1)
1 , . . . ,N (wf)

1 } is
the set of all copies of N1, and Y = {B1, . . . , Bf}. There is (a copy of) an edge of

G between N (i)
1 and Bk for each request (a(i), k). Clearly, G is a bipartite graph

satisfying the conditions of Lemma 6.4.
As each edge of G represents a request D ∈ D, Lemma 6.4 implies that there is

an m-coloring of all the requests such that, for a fixed i, requests of the form (a(i), k)
get different colors. Moreover, for a fixed k, requests of the form (a(i), k) can be
partitioned into m classes, where each class consists of exactly w requests of the same
color.

Let C = {1, . . . ,m} be the set of colors. Let c(a, k) denote the color of request

(a, k) ∈ D. Without loss of generality, we number the m outputs of N (i)
1 with numbers

from 1 to m, i.e., B(N (i)
1 ) = C, ∀ i ∈ {1, . . . , wf}.

Fix an i ∈ {1, . . . , wf}. As the m requests coming out of N (i)
1 have different

colors, the correspondence a(i) ↔ c(a(i), k), where (a(i), k) ∈ D, is a one-to-one

correspondence between the inputs and the outputs of N (i)
1 . Hence, for the m re-

quests (a(i), k), there exist m vertex disjoint routes R1(a
(i), k) connecting input a(i)

to the output numbered c(a(i), k) of N (i)
1 .

Fix a j ∈ {1, . . . ,m}. The ith input of N (j)
2 is the jth output of N (i)

1 , which is the
endpoint of some route R1(a

(i), k) for which c(a(i), k) = j. Let k(i, j) be the number
k such that the request (a(i), k) ∈ D has color c(a(i), k) = j. Then, for the fixed j and
any k ∈ {1, . . . , f}, Lemma 6.4 ensures that there are exactly w of the k(i, j) with
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value k, namely |{i : k(i, j) = k}| = w. Thus, D′ = {(i, k(i, j)) | 1 ≤ i ≤ wf} is a

valid request frame for the rearrangeable [w, f ]-connector N (j)
2 . Consequently, we can

find vertex disjoint routes R2(i, k(i, j)) connecting input i to some output in Bk(i,j)

of N (j)
2 .
The concatenation of R1(a

(i), k) and R2(i, k) completes a route realizing request
(a(i), k). These routes are vertex disjoint as desired.

We now illustrate the use of the Lemma 6.5 by a simple construction of depth-2
[w, f ]-connectors.

Theorem 6.6 (depth-2 constructions). Let w, f be positive integers; then
(i) for w ≤ f − 1, we can construct depth-2 [w, f ]-connectors of size wf(w + f);
(ii) for w ≥ f , we can construct depth-2 [w, f ]-connectors of size wf(2

√
w(f − 1)+

1).
Proof. We ignore the issue of integrality for the sake of a clean presentation.
Write w = mx. By Theorem 6.1, S1(x, f) is an [x, f ]-connector of depth 1 and

size xf(xf−x+1). By Proposition 6.3 and Lemma 6.5, the network B(m)××S1(x, f)
is a [w, f ]-connector of depth-2 and size

s(x) = xfm2 + mxf(xf − x + 1) = wf(w/x + (f − 1)x + 1).

Minimizing s(x) as a function of x, with 1 ≤ x ≤ w, we get the desired results. We
pick x = 1 in case (i) and x =

√
w/(f − 1) in case (ii).

6.4. Recursive constructions. Toward the constructions of [w, f ]-connectors,
we need a few more definitions and properties.

Definition 6.7. Let w0, w1, . . . , wk and f be positive integers and G be any
[w0, f ]-network. Let N (wk, . . . , w1;G) denote the recursively constructed network de-
fined as follows:

N (·;G) = G,

N (wk, . . . , w1;G) = B(wk) ××N (wk−1, . . . , w1;G).

Lemma 6.8. Given positive integers w0, w1, . . . , wk and f , let w =
∏k

i=0 wi and
G be any [w0, f ]-connector of size s(G) and depth d(G). Then the network N =
N (wk, . . . , w1;G) is a [w, f ]-connector of size

s(N ) = w0 . . . wkf · (w1 + · · · + wk) + w1 . . . wk · s(G)

and depth d(N ) = (k + d(G)). (We set s(N ) = s(G) when k = 0.)
Proof. This follows from Proposition 6.3 and Lemma 6.5.
Proposition 6.9. For any positive integers w and f , the following hold:
(i) Let N be any wf-connector. The [w, f ]-network N ′ obtained by partitioning

the outputs of N arbitrarily into f subsets of size w is a [w, f ]-connector.
(ii) B(f) is an f-connector and also a [1, f ]-connector.
Basically, Proposition 6.9 implies that one can use good w0f -networks to serve

as the network G in Lemma 6.8. A general [w, f ]-network can then be constructed
by decomposing w = w0, . . . , wk with the right set of divisors w0, . . . , wk. As [w, f ]-
networks of depth 2 have been constructed, we shall attempt to construct good net-
works of general depth and networks of a fixed depth at least 3.

Pippenger [27] has constructed a rearrangeable n-network, which we shall call
P(n), of size 6n log3 n+O(n). He also constructed rearrangeable n-networks of depth

2i+1, i ≥ 1, and size 2(i+1)n
(
n
2

)1/(i+1)
+O(n). An n-connector of depth 2i+2 can be
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constructed by concatenating an n-matching with a depth-(2i+1) n-connector. Hence,

we can construct an n-connector of depth j ≥ 3 and size 2j/2�n
(
n
2

)1/�j/2�
+ O(n).

We denote this network by Pj(n). For j = 2, a construction of size O(n5/3) was given
in [7] and [14]. Abusing notation, we shall also use P2(n) to denote an n-connector
of depth 2 and size O(n5/3).

In the following results, we ignore the issue of integrality for the sake of clarity.
We first address the general depth case.

Theorem 6.10. We can construct rearrangeable [w, f ]-connectors of size

e · wf lnw +
6

ln 3
wf ln f + O(fw).

Proof. Let w = xw1 . . . wk. By Lemma 6.8 the network

N = N (wk, . . . , w1;P(xf))

is a [w, f ]-connector of size

s(N ) = wf(w1 + · · · + wk) + 6fx log3(fx) + O(fx)

≥ wf · k ·
(w
x

)1/k

+ 6fx log3(fx) + O(fx).

The right-hand side is minimized at x = 1 and k = lnw. Equality can be obtained
by setting wi = w1/k ∀ i.

We now consider the fixed depth case. The networks Pj(n) are to be used. The
following three theorems apply Lemma 6.8 with G = P1,P2, or Pj with j ≥ 3.
Depending on the relative values between f, w, and k, one theorem may be better
than the others.

Theorem 6.11. Let w, f , and k ≥ 3 be positive integers.
(i) If w < (f − 1)k−1, then we can construct a [w, f ]-connector of depth k and

size

(k − 1)fw1+ 1
k−1 + wf2 = O(kwf2).(2)

(ii) If w ≥ (f − 1)k−1, then we can construct a [w, f ]-connector of depth k and
size

wf(k − 1)[w(f − 1)]
1
k + w1+ 1

k f(f − 1)
1
k + wfΘ

(
k(wf)1+

1
k

)
.(3)

Proof. Write w = xw1 . . . wk−1. Then Lemma 6.8 implies that

N (wk−1, . . . , w1;S1(x, f))

is a [w, f ]-network of depth k and size

s = wf(w1 + · · · + wk−1) + w1 . . . wk−1 · xf(xf − x + 1)

≥ wf(k − 1)(w/x)1/(k−1) + wf(x(f − 1) + 1).(4)

Minimizing the right-hand side with respect to x, we get the desired results.
In case (i), equality can be obtained when wi = w1/(k−1) ∀i, and x = 1. In case

(ii), equality can be obtained when wi = w1/(k−1) ∀i, and x = ( w
(f−1)k−1 )1/k.

We omit the proofs of the next two theorems due to the similarity to the above
proof.
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Theorem 6.12. Let w, f , and k ≥ 3 be positive integers. Then there are positive
real constants c1, c2, and c3 such that the following hold:

(i) If w < c1f
2
3 (k−2), then we can construct a [w, f ]-connector of depth k and

size

(k − 2)f · w1+ 1
k−2 + c2wf

5
3 = O

(
kwf

5
3

)
.(5)

(ii) If w ≥ c1f
2
3 (k−2), then we can construct a [w, f ]-connector of depth k and

size

(k − 2) · (wf)1+
1

k−3/2 + c3w
1+ 1

k−3/2 f
6k−7
6k−9 = O

(
k(wf)1+

1
k−3/2

)
.(6)

The following result can be improved by finer analysis. We give a somewhat
“cleaner” version.

Theorem 6.13. Let w, f , and k ≥ 4 be positive integers.
(i) If w < f , then we can construct a [w, f ]-connector of depth k and size

O
(
kw1+ 1

(k+1) f1+ 2
(k+1)

)
.(7)

(ii) If w ≥ f , then we can construct a [w, f ]-connector of depth k and size

O
(
k(wf)1+

3
2(k+1)

)
.(8)

7. Applications of our framework. In this section, we outline several prac-
tical applications coming from our theoretical formulation presented earlier. We will
present only representative results. The reader should be able to see the main line of
thoughts, nevertheless.

The applications fall into two main categories: (a) explicit constructions of WXCs
and (b) complexity comparisons of known constructions.

7.1. Explicit constructions of WXCs. The ideas for explicit constructions
come from the physical realizations of atomic networks (section 6.1), the union of
networks (section 6.2), the ××-product of networks (section 6.3), and the recursive
construction (section 6.4).

There are several ways to physically realize an (x, y)-crossbar B(x, y). Figure 6(a)
shows one possibility, and it is self-explanatory. The one thing to notice is that each
fiber is aimed to carry one wavelength only. Another possibility to realize B(x, y) is
to use a combination of an AWGR of dimension max{x, y} and the same number of
LWCs as was done in [24]. The advantage of using AWGRs over SOAs is that AWGRs
consume virtually no power.

Our second atomic component is a depth-1 (wf,w)-concentrator C1(w, f), which
can be constructed by taking the left union of a B(wf −w,w) and a perfect matching
M(w) as illustrated in Figure 6(b).

Given the aforementioned two atomic networks, we readily have a construction of
a one-stage RNB WXC as shown in Figure 7. There is one column of tunable input—
fixed output LWCs at the end to ensure no wavelength conflict. This one column of
LWCs is needed in all realizations of the theoretical constructions shown in section 6.

This construction has a cost a little higher than that of Theorem 6.1 because of the
LWCs, which are of total cost w2f . Asymptotically, however, w2f � wf(wf−w+1);
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Fig. 6. Sample realizations of atomic networks.
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Fig. 7. A realization of the one-stage construction S1(2, 3). The LWCs are wavelength con-
verters with tunable inputs and a fixed output.

hence we did not create too much of a gap between the theoretical construction and
the physical realization. Another interesting point to notice is that the WXC RNB-1
construction of [24] is a special case of this idea. The only difference is that they use
AWGRs and LWCs to realize the crossbars.

The same idea can be used to realize the generic product network of Lemma 6.5.
The proof of the lemma also gives an efficient routing algorithm. (Efficient algorithms
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Table 1

Cost comparisons of different constructions under the two request models. SNB/RNB-1 refers
to the (λ, F, F ′)-request model. SNB/RNB-2 refers to the (λ, F, λ′, F ′)-request model.

Type Depth Size Cond

[41]/CBC SNB-1 2 lg f Θ(wf(w + lg f) lg f) -

Corollary 5.2(ii) SNB-1 k O((wf)1+1/� k+1
2

�) -

Corollary 5.2(iii) SNB-1 lg(wf) Θ(wf lg(wf)) -

[41]/WI-Cantor RNB-1 2 lg f Θ(wf(w + lg2 f)) -

[41]/WI-Beneš RNB-1 2 lg f Θ(wf(w + lg f)) -

[24]/WXC-RNB-1 RNB-1 2 2(wf)3/2 f < w

Theorem 6.6(i) RNB-1 2 wf(w + f) f > w

Theorem 6.6(ii) RNB-1 2 2(wf)3/2 f ≤ w

Theorem 6.10 RNB-1 lg(wf) ewf lnw + 6
ln 3

wf ln f + O(wf) -

Theorem 6.11 RNB-1 k ≥ 3 (k − 1)fw
1+ 1

k−1 + wf2 w < (f − 1)k−1

Theorem 6.11 RNB-1 k ≥ 3 Θ
(

k(wf)1+
1
k

)

w ≥ (f − 1)k−1

Theorem 6.12 RNB-1 k ≥ 3 (k − 2)f · w1+ 1
k−2 + c2wf5/3 w < c1f

2
3
(k−2)

Theorem 6.12 RNB-1 k ≥ 3 O

(

k(wf)
1+ 1

k−3/2

)

w ≥ c1f
2
3
(k−2)

Theorem 6.13 RNB-1 k ≥ 4 O

(

kw
1+ 1

(k+1) f
1+ 2

(k+1)

)

w < f

Theorem 6.13 RNB-1 k ≥ 4 O

(

k(wf)
1+ 3

2(k+1)

)

w < f

[33, 34] SNB-2 3 2w2(2f + w) -

[24]/WXC-SNB-2 SNB-2 3 4
√

2(wf)3/2 f < w

[42]/2S/P/N SNB-2 3 4(wf)3/2 f < w

[42]/3S/P/N SNB-2 4 4
√

2(wf)3/2 -

[24]/WXC-RNB-2 RNB-2 3 2(wf)3/2 f < w

[42]/2S/P/R RNB-2 3 2(wf)3/2 f < w

[42]/3S/P/R RNB-2 4 2
√

2(wf)3/2 -

[42]/B/P/R RNB-2 Θ(lg(wf)) Θ(wf lgwf) f < w

for bipartite graph edge coloring can be found in [6, 9, 10].) Thus, we readily have
constructions of a depth-2 RNB WXC as in Theorem 6.6 and several different recursive
constructions as reported in Theorems 6.10, 6.11, 6.12, and 6.13. Depending on the
relationship between w and f , we pick the best one to use.

7.2. Complexity comparisons of known constructions. Table 1 summa-
rizes the costs of various recent constructions (including some of the ones in this
paper). The costs are assessed in terms of architectural depths and sizes. From the
table, we see the following:

• For the (λ, F, λ′, F ′)-request model (SNB-1, RNB-1), the various construc-
tions have costs asymptotically the same as those of their circuit switching
counterparts. This was expected, since our formulation in section 4.1 has in-
dicated that the WXC under this request model and the corresponding circuit
switches are equivalent topologically.
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(This is not to say that there is nothing to study in this request model. Our
cost model does not capture precisely more practical criteria such as cross-
talks, attenuation, and wavelength conversion costs.)

• For the (λ, F, F ′)-request model (SNB-1, RNB-1), there is much room for
improvement.
In the SNB case, our construction of Corollary 5.2 is already better than the
existing construction CBC. However, since SNB in this request model is the
same as the other, we cannot expect much more improvement.
In the RNB case, our constructions of Theorems 6.10, 6.11, 6.12, and 6.13 are
better than all known constructions. However, there are still gaps between
the constructions and theoretical lower bounds of Theorems 5.3 and 5.5. We
expect that both the lower bounds and the constructions can be improved
until they are asymptotically equal.

8. Conclusions and future works. There are several benefits of the proposed
graph models: they help analyze the switches qualitatively and quantitatively, they
can be used to compare switch complexity, and they give rise to interesting math-
ematical problems relating to many areas, such as classical switching theory, graph
theory, and algebraic graph theory. Some of these points were not discussed in the
paper. It would be interesting, for instance, to investigate the use of expanders for
constructing [w, f ]-connectors.

We have addressed several important problems arising from this framework, in-
cluding studying optimal networks and their constructions, the trade-off between net-
work depth and size, and the equivalence of networks under different request models.
Some practical applications have also been pointed out.

Many problems remain open. In particular, we have not touched upon the WSNB
case much. The multicast switch complexity was not considered. The asymptotic
bounds of various complexity functions are still not optimal.
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APPROXIMATING THE CUT-NORM VIA
GROTHENDIECK’S INEQUALITY∗

NOGA ALON† AND ASSAF NAOR‡

Abstract. The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S is the maximum, over all
I ⊂ R, J ⊂ S, of the quantity |

∑
i∈I,j∈J aij |. This concept plays a major role in the design of

efficient approximation algorithms for dense graph and matrix problems. Here we show that the
problem of approximating the cut-norm of a given real matrix is MAX SNP hard, and we provide an
efficient approximation algorithm. This algorithm finds, for a given matrix A = (aij)i∈R,j∈S , two
subsets I ⊂ R and J ⊂ S, such that |

∑
i∈I,j∈J aij | ≥ ρ||A||C , where ρ > 0 is an absolute constant

satisfying ρ > 0.56. The algorithm combines semidefinite programming with a rounding technique
based on Grothendieck’s inequality. We present three known proofs of Grothendieck’s inequality,
with the necessary modifications which emphasize their algorithmic aspects. These proofs contain
rounding techniques which go beyond the random hyperplane rounding of Goemans and Williamson
[J. ACM, 42 (1995), pp. 1115–1145], allowing us to transfer various algorithms for dense graph and
matrix problems to the sparse case.

Key words. cut-norm, Grothendieck’s inequality, semidefinite programming, approximation
algorithms, Szemerédi partitions
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1. Introduction. The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S with a
set of rows indexed by R and a set of columns indexed by S is the maximum, over all
I ⊂ R, J ⊂ S, of the quantity |

∑
i∈I,j∈J aij |. This concept plays a major role in the

work of Frieze and Kannan [8] on efficient approximation algorithms for dense graph
and matrix problems (see also [2] and the references therein). The techniques in [8]
enabled the authors to approximate efficiently the cut-norm of an n by m matrix with
entries in [−1, 1] up to an additive error of εnm. However, prior to the present paper
no polynomial time algorithm was known for approximating the cut-norm of a general
real matrix within a constant multiplicative factor.

Let CUT NORM denote the computational problem of computing the cut-norm
of a given real matrix. Here we first observe that the CUT NORM problem is MAX
SNP hard, and then provide an efficient approximation algorithm for the problem.
This algorithm finds, for a given matrix A = (aij)i∈R,j∈S , two subsets I ⊂ R and
J ⊂ S, such that |

∑
i∈I,j∈J aij | ≥ ρ||A||C , where ρ > 0 is an absolute constant. We

first describe a deterministic algorithm that supplies a rather poor value of ρ, and then
describe a randomized algorithm that provides a solution of expected value greater
than 0.56 times the optimum.

The algorithm combines semidefinite programming with a rounding technique
based on (the proofs of) Grothendieck’s inequality. This inequality, first proved in [11],
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is a fundamental tool in functional analysis and has several interesting applications
in this area. We will actually use the matrix version of Grothendieck’s inequality,
formulated in [20]. In order to apply semidefinite programming to the study of the
cut-norm of an n by m matrix A = (aij), it is convenient to first study another norm,

||A||∞�→1 = max

n∑
i=1

m∑
j=1

aijxiyj ,

where the maximum is taken over all xi, yj ∈ {−1, 1}.
It is not difficult to show (see section 3) that for every matrix A,

4||A||C ≥ ||A||∞�→1 ≥ ||A||C ,

and hence a constant approximation of any of these norms provides a constant ap-
proximation of the other.

The value of ||A||∞�→1 is given by the following quadratic integer program:

Maximize
∑
ij

aijxiyj(1.1)

subject to xi, yj ∈ {−1, 1} for all i, j.

The obvious semidefinite relaxation of this program is

Maximize
∑
ij

aijui · vj(1.2)

subject to ||ui|| = ||vj || = 1,

where here ui · vj denotes the inner product of ui and vj , which are now vectors of
(Euclidean) norm 1 that lie in an arbitrary Hilbert space. Clearly we may assume,
without loss of generality, that they lie in an (n + m)-dimensional space.

This semidefinite program can be solved, using well-known techniques (see [10])
within an additive error of ε, in polynomial time (in the length of the input and in
the logarithm of 1/ε). The main problem is the task of rounding this solution into
an integral one. A first possible attempt is to imitate the technique of Goemans and
Williamson in [12]; that is, given a solution ui, vj to the above program, pick a random
vector z and define xi = sign(ui · z) and yj = sign(vj · z). It is easy to check that the
expected value of xiyj satisfies E(xiyj) = 2

π arcsin(ui ·vj), and as arcsin(t) and t differ
only in constant factors for all −1 ≤ t ≤ 1, one could hope that this will provide an
integral solution whose value is at least some absolute constant fraction of the value of
the optimal solution. This reasoning is, unfortunately, incorrect, as some of the entries
aij may be positive and some may be negative. (In fact, the problem is interesting
only if this is the case, since otherwise either xi = yj = 1 or xi = −yj = 1 for all
i, j supplies the required maximum.) Therefore, even if each single term aijui · vj is
approximated well by its integral rounding aijxiyj , there is no reason to expect the
sum to be well approximated, due to cancellations. We thus have to compare the
value of the rounded solution to that of the semidefinite program on a global basis.
Nesterov [22] obtained a result of this form for the problem of approximating the
maximum value of a quadratic form

∑
ij bijxixj , where xi ∈ {−1, 1}, but only for the

special case in which the matrix B = (bij) is positive semidefinite. While his estimate
is global, his rounding is the same simple rounding technique of [12] described above.
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As explained before, some new ideas are required in our case in order to get any
nontrivial result.

Luckily, there is a well-known inequality of Grothendieck, which asserts that the
value of the semidefinite program (1.2) and that of the integer program (1.1) can differ
only by a constant factor. The precise value of this constant, called Grothendieck’s
constant and denoted by KG, is not known, but it is known that its value is at
most π

2 ln(1+
√

2)
= 1.782 . . . (see [18]) and at least π

2 = 1.570 . . . (see [11]). Stated in

other words, the integrability gap of the problem is at most KG. (Krivine mentions
in [18] that he can improve the lower bound, but such an improvement has never been
published.)

It follows that the value of the semidefinite program (1.2) provides an approxi-
mation of ||A||∞�→1 up to a constant factor. This, however, still does not tell us how
to round the solution of the semidefinite program into an integral one with a compa-
rable value. Indeed, this task requires more work and is carried out in the following
sections.

We describe three rounding techniques. The first one is a deterministic pro-
cedure, which combines Grothendieck’s inequality with some facts about four-wise
independent random variables in a manner that resembles the technique used in [4]
to approximate the second frequency moment of a stream of data under severe space
constraints. The second rounding method is based on Rietz’s proof of Grothendieck’s
inequality [24]. This proof supplies a better approximation guarantee for the special
case of positive semidefinite matrices A, where the integrality gap can be shown to
be precisely π/2, and implies that Nesterov’s analysis for the problem he considers
in [22] is tight.

The third technique, which supplies the best approximation guarantee, is based
on Krivine’s proof of Grothendieck’s inequality. Here we use the vectors ui, vj which
form a solution of the semidefinite program (1.2) to construct some other unit vectors
u′
i, v

′
j , which are first shown to exist in an infinite-dimensional Hilbert space and

are then found, using another instance of semidefinite programming, in an (n + m)-
dimensional space. These vectors can now be rounded to {−1, 1} in order to provide
an integral solution for the original problem (1.1) in a rather simple way. We note
that there are several known techniques for modifying the solution of a semidefinite
program before rounding it; see [28], [19], [9]. Here, however, the modification seems
more substantial.

We believe that the techniques presented here will have further applications, as
they provide a method for handling problems in which there is a possible cancellation
between positive and negative terms. It seems that there are additional interesting
problems of this type. Approximation algorithms based on semidefinite programming
for MAX CUT, MAX 2SAT, and related problems have been initiated in the semi-
nal paper of Goemans and Williamson [12] and further developed in many subsequent
papers. Unlike these problems, prior to the present paper there was no known polyno-
mial time constant approximation algorithm for the problem considered here. Indeed,
in this case, the semidefinite programming and its rounding appear to be essential
in order to obtain any constant approximation guarantee, and not only in order to
improve the constants ensured by appropriate combinatorial algorithms.

The rest of this paper is organized as follows. In section 2 we present the (rela-
tively simple) proof that the problem of approximating the cut-norm ||A||C , as well as
the related problem of approximating ||A||∞�→1, are both MAX SNP hard. In section
3 we describe a deterministic procedure that approximates the cut-norm of a given
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matrix up to a constant factor. Two other methods, providing better constants, are
described in section 4, where we also consider the special case of positive semidefinite
matrices. Section 5 presents some examples which illustrate the relevance of the cut-
norm to certain graph and matrix problems and shows how the results of this paper
improve various known algorithms. We conclude with section 6, which includes some
concluding remarks and open problems.

2. Hardness of approximation. As usual, we say that an approximation al-
gorithm for a maximization problem has performance ratio or performance guarantee
ρ for some real ρ ≤ 1, if it always delivers a solution with objective function value
at least ρ times the optimum value. Such an approximation algorithm is then called
a ρ-approximation algorithm. Similarly, a randomized approximation algorithm is a
ρ-approximation algorithm if it always produces a solution with expected value at
least ρ times the optimum.

In this section we observe that the problem of approximating the cut-norm ||A||C
of a given input matrix is MAX SNP hard, and so is the related problem of approx-
imating ||A||∞�→1. This implies, by the results in [23], [6], that there exists some
ρ < 1 such that the existence of a ρ-approximation, polynomial time algorithm for
any of these problems would imply that P = NP . The proof is by a reduction of the
MAX CUT problem to the CUT NORM problem, and to the problem of computing
||A||∞�→1. We need the following simple observation.

Lemma 2.1. For any real matrix A = (aij),

||A||C ≤ ||A||∞�→1 ≤ 4||A||C .

Moreover, if the sum of each row and the sum of each column of A is zero, then
||A||∞�→1 = 4||A||C .

Proof. For any xi, yj ∈ {−1, 1},∑
i,j

aijxiyj =
∑

i: xi=1
j: xj=1

aij −
∑

i: xi=1
j: xj=−1

aij −
∑

i: xi=−1
j: xj=1

aij +
∑

i: xi=−1
j: xj=−1

aij .

The absolute value of each of the four terms in the right-hand side is at most ||A||C ,
implying, by the triangle inequality, that

||A||∞�→1 ≤ 4||A||C .(2.1)

Suppose, say, that ||A||C =
∑

i∈I,j∈J aij (the computation in the case where it
equals −

∑
i∈I,j∈J aij is essentially the same). Define xi = 1 for i ∈ I and xi = −1

otherwise, and similarly, yj = 1 if j ∈ J and yj = −1 otherwise. Then

||A||C =
∑
i,j

aij
1 + xi

2

1 + yj
2

=
1

4

∑
i,j

aij +
1

4

∑
i,j

aijxi · 1 +
1

4

∑
i,j

aij1 · yj +
1

4

∑
i,j

aijxiyj .

The absolute value of each of the four terms in the right-hand side is at most
||A||∞�→1/4, implying that ||A||∞�→1 ≥ ||A||C . If the sum of each row and the sum of
each column of A is zero, then the right-hand side is precisely 1

4

∑
i,j aijxiyj , implying

that in this case |A||∞�→1 ≥ 4||A||C , which, in view of (2.1), shows that the above
holds as an equality.
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Proposition 2.2. Given a (weighted or unweighted) graph G = (V,E), there is
an efficient way to construct a real 2|E| by |V | matrix A, such that

MAXCUT (G) = ||A||C = ||A||∞�→1/4.

Therefore, the CUT NORM problem and the problem of computing ||A||∞�→1 are both
MAX SNP hard.

Proof. We describe the construction for the unweighted case. The weighted case is
similar. Given G = (V,E), orient it in an arbitrary manner. Let V = {v1, v2, . . . , vn}
and E = {e1, e2, . . . , em}, and let A = (aij) be the 2m by n matrix defined as follows.
For each 1 ≤ i ≤ m, if ei is oriented from vj to vk, then a2i−1,j = a2i,k = 1 and
a2i−1,k = a2i,j = −1. The rest of the entries of A are all 0. It is not difficult to check
that MAXCUT (G) = ||A||C . In addition, since the sum of entries in each row and
in each column of A is zero, it follows by Lemma 2.1 that ||A||∞�→1 = 4||A||C . As it
is known [23], [14] that the MAX CUT problem is MAX SNP hard, the desired result
follows.

H̊astad [14] has shown that if P �= NP , then there is no polynomial-time approx-
imation algorithm for the MAX CUT problem with approximation ratio exceeding
16/17. Thus, this is an upper bound for the best possible approximation guarantee of
a polynomial algorithm for approximating ||A||C or ||A||∞�→1. Similarly, our reduction
above can be easily modified to construct, for any given directed graph D, a matrix
B with vanishing row sums and column sums, so that the value of the maximum
directed cut of D is equal to ||B||C . H̊astad [14] has shown that if P �= NP , then
there is no polynomial-time approximation algorithm for the MAX DICUT problem
with approximation ratio exceeding 12/13. Thus, this is an upper bound for the best
possible approximation guarantee of a polynomial approximation algorithm for ||B||C
or ||B||∞�→1.

3. Approximating the cut-norm. In this section we describe an efficient,
deterministic, ρ-approximation algorithm for the CUT NORM problem, where ρ > 0
is an absolute constant. We make no attempt here to optimize the value of ρ: this
will be done (in a different way) in section 4. We believe, however, that although the
value of ρ obtained in this section is rather poor, the method, which is motivated by
the proof of Grothendieck’s inequality in [7, p. 15] and [16, p. 68], is interesting and
may lead to similar results for related problems.

Given a real n by m matrix A = (aij), our objective is to find xi, yj ∈ {−1, 1},
such that ∑

i,j

aijxiyj ≥ ρ||A||∞�→1,

where ρ is an absolute positive constant. The discussion in section 1 and the proof
of Lemma 2.1 imply that this will yield a similar procedure for finding I and J such
that |

∑
i∈I,j∈J aij | ≥ ρ′||A||C .

We start by solving the semidefinite program (1.2). We can thus compute, for any
positive δ, unit vectors ui, vj ∈ Rp, where p = n+m, such that the sum

∑
i,j aijui ·vj

is at least the maximum value of the program (1.2) (which is clearly at least ||A||∞�→1)
minus δ. Since the value of the above norm of A is at least the maximum absolute
value of an entry of A, we can make sure that the δ term is negligible. The main part
of the algorithm is the rounding phase, that is, the phase of finding, using the vectors
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ui, vj , reals xi, yj ∈ {−1, 1}, such that∑
i,j

aijxiyj ≥ ρ
∑
i,j

aijui · vj .

This is done as follows. Let V be an explicit set of t = O(p2) vectors ε =
(ε1, ε2, . . . , εp) ∈ {−1, 1}p in which the values εj are four-wise independent and each of
them attains the two values −1 and 1 with equal probability. This means that for every
four distinct coordinates 1 ≤ i1 < · · · < i4 ≤ n and every choice of ε1, . . . , ε4 ∈ {−1, 1},
exactly a (1/16)-fraction of the vectors have εj in their coordinate number ij for
j = 1, . . . , 4. As described, for example, in [1] or [5] such sets (also known as orthogonal
arrays of strength 4) can be constructed efficiently using the parity check matrices of
BCH codes.

Let M > 0 be a fixed real, to be chosen later. Consider V as a sample space in
which all t points ε have the same probability. For any unit vector q = (q1, q2, . . . , qp) ∈
Rp, let H(q) denote the random variable defined on the sample space V by putting
[H(q)](ε) =

∑p
j=1 εjqj . Since the entries εj are four-wise (and hence pairwise) in-

dependent, it follows that for any two vectors q, q′, the expectation of H(q)H(q′) is
precisely the inner product q · q′. In particular, the expectation of [H(q)]2 is q · q = 1.
Similarly, four-wise independence implies that the expectation of [H(q)]4 satisfies

E([H(q)]4) =

p∑
j=1

q4
j + 6

∑
1≤j<j′≤p

q2
j q

2
j′ ≤ 3

⎛
⎝∑

j

q2
j

⎞
⎠

2

= 3.

The M -truncation of H(q), denoted HM (q), is defined as follows: [HM (q)](ε) =
[H(q)](ε) if |[H(q)](ε)| ≤ M , [HM (q)](ε) = M if [H(q)](ε) > M , and [HM (q)](ε) =
−M if [H(q)](ε) < −M .

By Markov’s inequality, for every positive real m,

Prob[ |H(q)| ≥ m] ·m4 ≤ E([H(q)]4) ≤ 3,

implying that Prob[ |H(q)| ≥ m] ≤ 3
m4 . This implies the following.

Claim 3.1. The expectation E(|H(q) −HM (q)|2) satisfies

E(|H(q) −HM (q)|2) ≤ 1

M2
.

Proof. For every nonnegative random variable X we have that EX2 = 2
∫ ∞
0

u ·
Prob(X ≥ u)du. Hence,

E(|H(q) −HM (q)|2) = 2

∫ ∞

0

u · Prob(|H(q)| ≥ M + u)du

≤
∫ ∞

0

6u

(M + u)4
du =

1

M2
.

Each random variable H(q) can be associated with a vector h(q) ∈ Rt by defining
[h(q)](ε) = 1√

t
[H(q)](ε). The truncation hM (q) = HM (q)/

√
t is defined analogously.

The above discussion thus implies the following.
Lemma 3.2. For each unit vector q ∈ Rp, h(q) ∈ Rt is a unit vector. The norm

of hM (q) is at most 1, and that of h(q)−hM (q) is at most 1/M . If q′ ∈ Rp is another
vector, then h(q) · h(q′) = q · q′.
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Returning to our semidefinite program (1.2) and its solution (up to δ) given by
the vectors ui, vj ∈ Rp, let B denote the value of the program. Since h(q)·h(q′) = q ·q′
for all unit vectors q, q′, it follows that

B − δ ≤
∑
ij

aijui · vj

=
∑
ij

aijh(ui) · h(vj)

=
∑
ij

aijh
M (ui) · hM (vj) +

∑
ij

aij(h(ui) − hM (ui)) · hM (vj)

+
∑
ij

aijh(ui) · (h(vj) − hM (vj)).

By the convexity of the program, and since the norm of each vector hM (vj), h(ui) is
at most 1 and the norm of each vector h(ui)−hM (ui) and each vector h(vj)−hM (vj)
is at most 1/M , it follows that∑

ij

aij(h(ui) − hM (ui)) · hM (vj) +
∑
ij

aijh(ui) · (h(vj) − hM (vj)) ≤
2

M
B.

Here we have used, crucially, the fact that as B is the maximum value of the semidef-
inite program, its value on the vectors h(ui)− hM (ui) and the vectors h(vj) does not
exceed B 1

M , and so does its value on the vectors h(ui) and h(vj)−hM (vj). Therefore,

B

(
1 − 2

M

)
− δ ≤

∑
ij

aijh
M (ui) · hM (vj).

It follows that there is a coordinate ε ∈ V such that∑
ij

aijh
M (ui)(ε) · hM (vj)(ε) ≥

1

t

(
B

(
1 − 2

M

)
− δ

)
.

By the definition of the vectors h, this implies∑
ij

aijH
M (ui)(ε) ·HM (vj)(ε) ≥ B

(
1 − 2

M

)
− δ.

Choose M = 3 and define xi = HM (ui)(ε)
M , yj =

HM (vj)(ε)
M . Then xi, yj are reals, each

having an absolute value at most 1, and∑
ij

aijxiyj ≥ B

(
M − 2

M3

)
− δ

M2
=

B

27
− δ

9
.

Fixing all xi, yj but, say, x1, the left-hand side is a linear form in x1, and thus we can
shift x1 to either −1 or 1, without any decrease in the value of the sum. Proceeding
in this way with the other variables, each one in its turn, we obtain xi, yj ∈ {−1, 1}
such that the value of the sum

∑
ij aijxiyj is at least B

27 −
δ
9 . As δ is arbitrarily small,

we have thus proved the following.
Theorem 3.3. There is a deterministic polynomial-time algorithm that finds, for

a given real matrix A = (aij), integers xi, yj ∈ {−1, 1} such that the value of the sum∑
ij aijxiyj is at least 0.03 B, where B is the value of the semidefinite program (1.2)

(which is at least ||A||∞�→1).
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4. Improving the constant. The constant obtained in the previous section can
be improved by replacing the space V of four-wise independent {−1, 1} variables with
a space of 2k-wise independent {−1, 1} variables (or with a space of independent stan-
dard normal random variables). This, however, will not provide a ρ-approximation
algorithm with ρ > 1

5 .
In fact, we can do much better. In this section we describe two randomized

ρ-approximation algorithms for approximating ||A||∞�→1. For the first algorithm,

ρ = 4
π − 1 > 0.27, while for the second ρ = 2 ln(1+

√
2)

π > 0.56. We further show that
these yield randomized ρ-approximation algorithms for the CUT NORM problem,
with the same values of ρ (without losing the factor of 4 that appears in Lemma 2.1).
It should be possible to derandomize these algorithms using the techniques of [21].

4.1. Averaging with a Gaussian measure: Rietz’s method. The main idea
here, based on [24], is to round the solution ui, vj ∈ Rp of the semidefinite program
(1.2) by averaging over Rp with normalized Gaussian measure. We proceed with the
details.

Let g1, g2, . . . , gp be standard, independent, Gaussian random variables, and con-
sider the random Gaussian vector G = (g1, . . . , gp). The following identity holds for
every two unit vectors b, c ∈ �p2:

(4.1)
π

2
E [sign(b ·G) · sign(c ·G)]

= b · c + E

{[
b ·G−

√
π

2
sign(b ·G)

]
·
[
c ·G−

√
π

2
sign(c ·G)

]}
.

This is a simple exercise, using rotation invariance. Indeed, the fact that

E [(b ·G)(c ·G)] = b · c(4.2)

follows from the fact that the random variables gi are uncorrelated; if b = (b1, . . . , bp)
and c = (c1, . . . , cp), then

E [(b ·G)(c ·G)] = E

[
p∑

i=1

bigi

p∑
i=1

cigi

]
=

∑
i,j

bicjE[gigj ] =

p∑
i=1

bici = b · c.

To compute E [(b ·G)sign(c ·G)] we may assume, by rotation invariance, that c =
(1, 0, . . . , 0) and b = (b1, b2, 0, . . . , 0). Hence b · c = b1 and

E [(b ·G)sign(c ·G)] = E [(b1g1 + b2g2)sign(g1)]

= E [b1g1sign(g1)] + E[b2g2]E[sign(g1)]

= E [b1g1sign(g1)]

= 2

∫ ∞

0

1√
2π

b1xe
−x2/2dx =

√
2

π
b1.

Thus

E [(b ·G)sign(c ·G)] =

√
2

π
b · c.(4.3)

The identity above follows from (4.2) and (4.3) by linearity of expectation.
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Suppose now that the vectors ui, vj ∈ Rp supply a solution of (1.2), which can
be found efficiently. (We assume, for simplicity, that this is a precise solution.) Let
B denote the value of the solution. By (4.1),

(4.4)
π

2
E

⎧⎨
⎩

∑
i,j

aij [sign(ui ·G) · sign(vj ·G)]

⎫⎬
⎭

= B +
∑
i,j

aijE

{[
ui ·G−

√
π

2
· sign(ui ·G)

]
·
[
vj ·G−

√
π

2
· sign(vj ·G)

]}
.

Note that each term of the form

E

{[
ui ·G−

√
π

2
· sign(ui ·G)

]
·
[
vj ·G−

√
π

2
· sign(vj ·G)

]}
,

which multiplies aij in (4.4), is the inner product of two vectors in a Hilbert space.
Moreover, the square of the norm of each of these vectors is easily seen to be π

2 − 1
by substituting b = c = ui (or b = c = vj) in (4.1). Therefore, as B is the maximum
possible value of the program (1.2), it follows that the last sum in (4.4) is bounded,
in absolute value, by (π2 − 1)B. Thus, by (4.4),

π

2
E

⎧⎨
⎩

∑
i,j

aij [sign(ui ·G) · sign(vj ·G)]

⎫⎬
⎭ ≥

(
2 − π

2

)
B,

implying that by choosing the normal random variables gi randomly and by defining

xi = sign(ui ·G), yj = sign(vj ·G)

we get a solution for (1.1) whose expected value is at least 2
π (2 − π

2 )B = ( 4
π − 1)B.

As B is at least the value of the optimal solution of (1.1), this supplies a randomized
ρ-approximation algorithm for estimating ||A||∞�→1, where ρ = 4

π − 1.
Remark. The above algorithm is based only on the basic idea in the proof of [24],

and it is in fact possible to improve its performance guarantee by modifying it ac-
cording to the full proof. This suggests rounding ui · G to xi = sign(ui · G) if it is
“large” and rounding it to some multiple of ui · G if it is not, where the definition
of “large” and the precise multiple are chosen optimally. We can then further round
the fractional values of xi to integral ones with no loss. This resembles some of the
ideas used in several recent papers, including [28], [19], and [9]. We do not include
the details here, as we can get a better approximation guarantee by using another
method described in subsection 4.3.

4.2. Positive semidefinite matrices. In this section we observe that when
A = (aij) is positive semidefinite, then the approximation ratio can be improved
to 2/π. This follows from the work of Nesterov [22], but the short argument we de-
scribe here is based on Rietz’s proof that for such an A the constant in Grothendieck’s
inequality can be improved to π/2. Grothendieck himself showed in [11] (in a some-
what different language) that π/2 is a lower bound for the constant in this case; we
sketch a proof of this fact below.

We first show that if A = (aij) is a positive semidefinite n by n matrix, then
the maximum of the semidefinite program (1.2) is obtained for some vectors ui, vj
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satisfying ui = vi for all i (though, of course, it may also be obtained for some vectors
that do not satisfy this property). This is not really required for getting the 2/π-
approximation algorithm, but we include this proof as it shows that the integrality
gap of the problem is at most π/2.

Suppose thus that the maximum value of (1.2), denoted by B, is obtained by
some p-dimensional vectors, where p ≤ 2n and A is positive semidefinite. Let D =
A ⊗ I be the tensor product of A with a p by p identity matrix. This is simply
the np by np matrix consisting of p blocks along the diagonal, each being a copy of
A, so that, in particular, D is positive semidefinite. Given u1, . . . , un ∈ �p2, where
ui = (ui1, ui2, . . . , uip), let u(j) = (u1j , u2j , . . . , unj) be the vector consisting of the
jth coordinates of all vectors ui (1 ≤ j ≤ p). Let u = (u(1), u(2), . . . , u(p)) ∈ �np2 and
note that Du = (Au(1), Au(2), . . . , Au(p)). Thus D is positive semidefinite and for
u1, . . . , un, v1, . . . , vn ∈ �p2, with v defined analogously to u,∑

i,j

aijui · vj = Du · v = D1/2u ·D1/2v ≤ ‖D1/2u‖ · ‖D1/2v‖,

with equality when u = v.
Therefore, if the maximum B of the quantity

∑
i,j aijui · vj is obtained for

the unit vectors ui, vj ∈ �p2, then, as ‖D1/2u‖ cannot exceed B1/2, it follows that
‖D1/2u‖ = ‖D1/2v‖ = B1/2. Thus the maximum is also equal to

∑
i,j aijui · uj (and

to
∑

i,j aijvi · vj).
The fact that for positive semidefinite matrices A we can get a ρ-approximation

algorithm with ρ = 2
π is now an easy consequence of (4.4). We first solve the semidef-

inite program (1.2) to get vectors ui, vj optimizing it. By the above discussion, the
vectors ui = vi for all i also give an optimal solution. (Alternatively, we can solve the
variant of (1.2) in which ui = vi for all i directly, and proceed from there.) By (4.4),

π

2
E

⎧⎨
⎩

∑
i,j

aij [sign(ui ·G) · sign(uj ·G)]

⎫⎬
⎭

= B+
∑
i,j

aijE

{[
ui ·G−

√
π

2
· sign(ui ·G)

]
·
[
uj ·G−

√
π

2
· sign(uj ·G)

]}
≥ B,

where here we have used the fact that A is positive semidefinite. The algorithm now
simply chooses G at random, and computes xi = yi = sign(ui ·G).

We conclude this subsection with a sketch of (a modified version of) the argu-
ment of Grothendieck that shows that the integrality gap of (1.1) for the positive
semidefinite case is indeed precisely π/2. We need the following.

Fact. If b and c are two random, independent vectors on the unit sphere in Rp,
then

E[(b · c)2] =
1

p
(4.5)

and

E[|b · c|] =

(√
2

π
+ o(1)

)
1
√
p
,(4.6)

where the o(1) term tends to zero as p tends to infinity.
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Indeed, the computation of the first expectation is very simple; by rotation invariance
we may assume that c = (1, 0, 0, . . . , 0) and then E[(b · c)2] = E[b21], where we write
b = (b1, b2, . . . , bp). However, by symmetry E[b21] = 1

pE[b21 + b22 + · · · + b2p] = 1
p ,

implying (4.5). By the same reasoning, E[|b · c|] = E[|b1|] which can now either be
computed directly by integrating along the sphere or be estimated by noticing that
it is well approximated by E[| g√

p |], where g is a standard Gaussian random variable.

The simple computation for this case appears before the derivation of (4.3).
Armed with the above fact, we now define an n by n positive semidefinite ma-

trix A = (aij) for which the ratio between the value of (1.1) and that of (1.2) is
(nearly) π/2. Fix a large integer p, and let n be much larger. Let v1, v2, . . . , vn be
n independent random vectors chosen uniformly in the unit sphere in Rp. Let A be
the Gram matrix of the vectors vi

n , that is, aij = 1
n2 vi · vj . Obviously A is positive

semidefinite. Moreover, if we substitute the unit vectors vi in the program (1.2) we
get

∑
i,j

aijvi · vj =
1

n2

∑
ij

(vi · vj)2.

When n tends to infinity, this converges to the average value of the square of the inner
product between two random vectors on the unit sphere of Rp, which is, by (4.5), 1/p.
Therefore, the optimal value of the program (1.2) for A is at least 1/p.

Consider, now, the optimal value of the integer program (1.1) for A. Let xi ∈
{−1, 1} be a sign vector. Then

∑
i,j

aijxi · xj =

∥∥∥∥∥ 1

n

n∑
i=1

xivi

∥∥∥∥∥
2

.

Therefore, the value of the integer program is the square of the maximum possible
norm of a vector 1

n

∑n
i=1 xivi, where xi ∈ {−1, 1} for all i. If the direction of this

optimal vector is given by the unit vector c, then, knowing c, it is clear how to choose
xi for each i; it simply has to be sign(vi · c). With this choice of the signs xi, the
quantity

1

n

n∑
i=1

xivi · c =

∥∥∥∥∥ 1

n

n∑
i=1

xivi

∥∥∥∥∥
converges, when n tends to infinity, to the average value of |v · c|, where v is a random
vector on the sphere. By (4.6) this value is (

√
2/π + o(1)) 1√

p , where the o(1) term

tends to zero as p tends to infinity. Since n can be chosen to be arbitrarily large
with respect to p, and as we do not have to consider all the infinitely many possible
directions c but can consider an appropriate ε-net of directions on the sphere, we
conclude that if p is large and n is huge, then, with high probability, the value of the
integer program (1.1) for A is at most

[(√
2

π
+ o(1)

)
1
√
p

]2

=

(
2

π
+ o(1)

)
1

p
.

It follows that the integrality gap is at least π/2 − o(1), implying, by the discussion
in the beginning of this subsection, that it is π/2 + o(1).
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4.3. Constructing new vectors: Krivine’s argument. The approach in this
subsection is based on a simplified version of Krivine’s proof, presented in [18], of
Grothendieck’s inequality as described in [15]. We need the following simple lemma,
which has already been mentioned briefly in the introduction, and which has been
applied in Grothendieck’s original proof as well.

Lemma 4.1 (Grothendieck’s identity). For every two unit vectors u, v in a finite-
dimensional Euclidean space, if z is chosen randomly and uniformly from the unit
sphere of the space, then

π

2
· E([sign (u · z)] · [sign (v · z)]) = arcsin (u · v) .

Using this lemma, we prove the following.
Lemma 4.2. For any set {ui : 1 ≤ i ≤ n} ∪ {vj : 1 ≤ j ≤ m} of unit

vectors in a Hilbert space H, and for c = sinh−1(1) = ln(1 +
√

2), there is a set
{u′

i : 1 ≤ i ≤ n} ∪ {v′j : 1 ≤ j ≤ m} of unit vectors in a finite-dimensional Hilbert
space H ′, such that if z is chosen randomly and uniformly in the unit sphere of H ′,
then

π

2
· E

(
[sign (u′

i · z)] ·
[
sign

(
v′j · z

)])
= c ui · vj

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Proof. Fix c as above, a Hilbert space H, and u, v ∈ H. By Taylor’s expansion,

sin (c u · v) =

∞∑
k=0

(−1)k
c2k+1

(2k + 1)!
(u · v)2k+1

.

For every vector w and integer j denote by w⊗j the jth tensor power w⊗w⊗ · · ·⊗w
(j terms). Then the above expansion becomes

sin (c u · v) =

∞∑
k=0

(−1)k
c2k+1

(2k + 1)!
u⊗(2k+1) · v⊗(2k+1).

Consider the following vectors in the direct sum ⊕∞
k=0H

⊗(2k+1), whose kth “coordi-
nates” are given by

T (u)k = (−1)k

√
c2k+1

(2k + 1)!
· u⊗(2k+1) and S(y)k =

√
c2k+1

(2k + 1)!
· v⊗(2k+1).

Then the above expansion boils down to sin (c u · v) = T (u) · S(v), or

c u · v = arcsin (T (u) · S(v)) .

Moreover,

‖T (u)‖2 = sinh
(
c · ‖u‖2

)
and ‖S(v)‖2 = sinh

(
c · ‖v‖2

)
.

Given the unit vectors ui, vj , recall that c = sinh−1(1) and define u′
i = T (ui) and

v′j = S(vi). Note that all the vectors u′
i, v

′
j are unit vectors (in the huge direct sum

of tensor products we constructed). Let H ′ be the span of u′
i, v

′
j . It is an (m + n)-

dimensional Hilbert space. Let z be a random vector chosen uniformly on its unit
sphere. By Grothendieck’s identity (Lemma 4.1), for every i, j,

π

2
· E([sign (T (ui) · z)] · [sign (S(vj) · z)]) = arcsin (T (ui) · S(vj)) = c ui · vj

as needed.
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Theorem 4.3. There is a randomized polynomial-time algorithm that, given an
input n by m matrix A = (aij) and unit vectors ui, vj in Rn+m, finds xi, yj ∈ {−1, 1}
such that the expected value of the sum

∑
ij aijxiyj is

2 ln(1 +
√

2)

π

∑
ij

aijui · vj .

Therefore, there is a polynomial randomized ρ-approximation algorithm for computing

||A||∞�→1, where ρ = 2 ln(1+
√

2)
π > 0.56.

Proof. By Lemma 4.2 there are vectors u′
i, v

′
j satisfying the conclusion of the

lemma. We can thus find such vectors in an (m+n)-dimensional space, using semidef-
inite programming. (This step can in fact be performed in a more efficient way either
by using enough coordinates of the infinite-dimensional vectors T (ui), S(vj) defined in
the proof of Lemma 4.2 or by finding a root of the Gram matrix of the vectors u′

i, v
′
j

whose terms can be computed by the same proof. This, however, will not change
the total running time by more than a constant factor, as we still have to solve one
semidefinite programming problem for finding the vectors ui, vj .) By linearity of
expectation, with c = sinh−1(1) as above,

c ·
∑
i,j

aijui · vj =
π

2
· E

⎛
⎝∑

i,j

aij [sign (u′
i · z)] ·

[
sign

(
v′j · z

)]⎞⎠ .

We can now simply pick a random z and define xi = sign(u′
i · z) and yj = sign(vj ·

z).

4.4. The cut-norm. In this short subsection we observe that the same approxi-
mation ratio guaranteed in any approximation algorithm for ||A||∞�→1 can be obtained
for the CUT NORM problem as well. Given an n by m matrix A = aij , augment it
to an (n + 1) by (m + 1) matrix A′ = (a′ij) by defining a′ij = aij for all 1 ≤ i ≤ n,

1 ≤ j ≤ m, a′i,m+1 = −
∑m

j=1 aij for all 1 ≤ i ≤ n, a′n+1,j = −
∑n

i=1 aij for all
1 ≤ j ≤ m, and a′n+1,m+1 = 0. We claim that ||A′||C = ||A||C . Indeed, obviously
||A′||C ≥ ||A||C , as A is a submatrix of A′. Conversely, let I ⊂ {1, 2, . . . , n + 1},
J ⊂ {1, 2, . . . ,m + 1} satisfy ||A′||C = |

∑
i∈I,j∈J a′ij |. If n + 1 ∈ I, replace it by

its complement {1, 2, . . . , n + 1} \ I, and similarly, if m + 1 ∈ J , replace it by its
complement {1, 2, . . . ,m+1}\J . As the sum of each row and the sum of each column
of A′ is zero, the absolute value of the sum

∑
i∈I,j∈J a′ij with the new sets I, J is still

equal to ||A′||C . This is, however, the sum of elements of a submatrix of A, implying
that in fact ||A′||C = ||A||C as claimed.

By the last part of Lemma 2.1, ||A′||∞�→1 = 4||A′||C , and thus we can simply apply
any algorithm for ρ-approximating ||A′||∞�→1 to obtain a similar ρ-approximation of
||A′||C = ||A||C .

5. Examples and motivation. In order to explain the motivation for finding
approximation algorithms for the cut-norm, in this section we present a few illustrative
examples showing how the cut-norm occurs naturally in algorithmic contexts.

Let G = (V,E) be an undirected graph, and let A and B be two disjoint nonempty
subsets of V . Let e(A,B) denote the number of edges of G with an endpoint in A
and an endpoint in B, and define the density of edges between A and B by d(A,B) =
e(A,B)
|A||B| . For ε > 0, the pair (A,B) is called ε-regular if for every X ⊂ A and Y ⊂ B
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satisfying |X| ≥ ε|A| and |Y | ≥ ε|B|, we have

|d(A,B) − d(X,Y )| < ε.

The regularity lemma of Szemerédi [25] is a fundamental result that asserts that
any graph can be partitioned in a certain regular way. An algorithmic version of this
lemma appears in [3], together with several algorithmic applications. The main step
in [3] is a polynomial-time algorithm that, given two disjoint subsets A,B ⊂ V in a
graph G, where |A| = |B| = n and given ε > 0, either decides that the pair (A,B)

is ε-regular or finds two subsets X ⊂ A and Y ⊂ B, each of size at least ε4

16n, such
that |d(A,B) − d(X,Y )| ≥ ε4. Given G = (V,E), ε > 0, and A,B as above, denote
d = d(A,B). Let F = (fab)a∈A,b∈B be the n by n matrix defined by fab = 1 − d if
ab ∈ E and fab = −d if ab �∈ E. Note that if (A,B) is not ε-regular, then there are
I ⊂ A, J ⊂ B satisfying |I| ≥ εn, |J | ≥ εn such that∣∣∣∣∣∣

∑
a∈I,b∈J

fab

∣∣∣∣∣∣ ≥ ε|I||J | ≥ ε3n2,

that is, the cut-norm of F is at least ε3n2. Therefore, in this case the algorithm
presented in this paper will find efficiently X ⊂ A, Y ⊂ B such that∣∣∣∣∣∣

∑
a∈X,b∈Y

fab

∣∣∣∣∣∣ ≥ 0.56ε3n2.

Obviously this implies, say, that |X| ≥ 0.5ε3n, |Y | ≥ 0.5ε3n, and |d(X,Y )−d(A,B)| ≥
0.5ε3.

If the algorithm does not find such sets, it can report that the pair (A,B) is
ε-regular. This can be used instead of Corollary 3.3 in [3] to obtain efficiently a
regular partition of any given graph with less parts than the ones ensured by the
algorithm in [3]. (But the number will still be huge; a tower of height polynomial
in 1/ε, the degree of this polynomial will be smaller than the one in [3]. By being
a bit careful this height can be shown to be O(1/ε7), whereas the height obtained
in [3] is Θ(1/ε20).) Moreover, our algorithm actually finds subsets I ⊂ A, J ⊂ B
maximizing (approximately) the value of ‖e(I, J)|A| · |B| − e(A,B)|I| · |J |‖, while the
algorithm in [3] relies on the fact that this maximum is of order n2 (i.e., that the
problem is “dense”).

The rounding techniques described in section 3 or in subsection 4.1 (but not
the one described in subsection 4.3) can be used to find efficiently, for any given
square n by n matrix A = (aij), a vector (x1, . . . , xn) ∈ {−1, 1}, such that the
value of |

∑
ij aijxixj | is at least a ρ-fraction of the maximum possible value of this

quantity (or even the quantity |
∑

ij aijui ·uj |, where ui, uj are unit vectors in a Hilbert
space). Note that here we do not assume that A is positive semidefinite (but we try to
maximize the absolute value of the quadratic form, not the quadratic form itself). By
applying this approximation algorithm to a matrix defined from a graph G as above,
we can find an induced subgraph that approximates the maximum possible deviation
of the total number of edges from its expected value among all induced subgraphs of
the graph.

In [8] Frieze and Kannan describe an efficient algorithm for finding what they call
a cut-decomposition of a given n by m real matrix A, and apply it to obtain efficient
approximation algorithms for various dense graph and matrix problems.
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Consider matrices with a set of rows indexed by R and a set of columns indexed
by S. For I ⊂ R and J ⊂ S, and for a real d, the cut matrix D = CUT (I, J, d) is
the matrix (dij)i∈R,j∈S defined by dij = d if i ∈ I, j ∈ J and dij = 0 otherwise. A
cut-decomposition of A expresses it in the form

A = D(1) + · · · + D(s) + W,

where the matrices D(i) are cut matrices, and the matrix W = (wkl) has a relatively
small cut-norm.

The authors of [8] describe an efficient algorithm that produces, for any given n
by m matrix A with entries in [−1, 1], a cut-decomposition in which the number of cut
matrices is O(1/ε2), and the cut-norm of the matrix W is at most εnm. This is done as
follows. Starting with W (0) = A, suppose that the first i cut matrices D(1), . . . , D(i)

have already been defined, and consider the difference W (i) = A−
∑i

j=1 D
(j). If the

cut-norm of this difference is already smaller than εnm, we are done. Otherwise, let
I, J be sets of rows and columns such that∣∣∣∣∣∣

∑
k∈I,l∈J

w
(i)
kl

∣∣∣∣∣∣ ≥ ρεnm,(5.1)

where ρ > 0 is an absolute positive constant. Let d be the average value of the entries

w
(i)
kl for k ∈ I, l ∈ J , and define D(i+1) = CUT (I, J, d), W (i+1) = W (i) −D(i+1). A

simple computation, described in [8], shows that the sum of squares of the entries of
the new matrix W (i+1) is at most the sum of squares of the entries of the matrix W (i)

minus ρ2ε2nm. Therefore, this process must terminate after at most 1
ρ2ε2 steps. The

main step in the algorithm is clearly that of finding the sets I, J that satisfy (5.1), and
the authors are able to do it efficiently only when the cut-norm is at least a constant
fraction of nm. Our algorithm here enables us to perform this task efficiently (even if
ε is, say, 1/n0.001, which is not feasible using the approach of [8], as the running time
of their algorithm is exponential in 1/ε2).

Another possible application of our approximation algorithm appears in compu-
tational molecular biology. While trying to identify groups of genes with statistically
significant correlated behavior across diverse experiments, it is desirable to solve a
certain biclustering problem; see [27], [26]. The basic computational problem here
is to find efficiently, in a given matrix whose entries are the logarithms of certain
probabilities, a submatrix of (approximately) maximum total sum. Our algorithm
supplies such a procedure in case the sum of entries in every row (or every column)
of the given matrix is zero.

6. Concluding remarks.
• There is a lot known about Grothendieck’s inequality in the case of complex

scalars [13], [17], and it may be interesting to find algorithmic or combinatorial
applications of these results.

• We believe that the methods described in this paper will find further appli-
cations, as they provide a rounding technique that can, at least in the cases
considered here, handle cancellations between positive and negative terms.

• It will be interesting to improve the approximation guarantee of the algo-
rithms presented here. It will also be interesting to find a ρ-approximation
algorithm for the CUT NORM problem (for any positive absolute constant
ρ) which does not apply semidefinite programming and/or can be analyzed
without relying on Grothendieck’s inequality.
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Abstract. The problem of finding a local minimum of a black-box function is central for
understanding local search as well as quantum adiabatic algorithms. For functions on the Boolean
hypercube {0, 1}n, we show a lower bound of Ω

(
2n/4/n

)
on the number of queries needed by a

quantum computer to solve this problem. More surprisingly, our approach, based on Ambainis’s
quantum adversary method, also yields a lower bound of Ω

(
2n/2/n2

)
on the problem’s classical

randomized query complexity. This improves and simplifies a 1983 result of Aldous. Finally, in both
the randomized and quantum cases, we give the first nontrivial lower bounds for finding local minima
on grids of constant dimension d ≥ 3.

Key words. quantum computing, query complexity, decision trees, local search, local optima,
polynomial local search, random walks
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1. Introduction. This paper deals with the following problem.
Local Search. Given an undirected graph G = (V,E) and a function f : V →

N, find a local minimum of f—that is, a vertex v such that f (v) ≤ f (w) for all
neighbors w of v.

We are interested in the number of queries that an algorithm needs to solve
this problem, where a query just returns f (v) given v. We consider deterministic,
randomized, and quantum algorithms. Section 2 motivates the problem theoretically
and practically; this section explains our results.

We start with some simple observations. If G is the complete graph of size N ,
then clearly Ω (N) queries are needed to find a local minimum (or Ω(

√
N) with a

quantum computer [8]). At the other extreme, if G is a line of length N , then even a
deterministic algorithm can find a local minimum in O (logN) queries, using binary
search: query the middle two vertices, v and w. If f (v) ≤ f (w), then search the
line of length (N − 2) /2 connected to v; otherwise search the line connected to w.
Continue recursively in this manner until a local minimum is found.

So the interesting case is when G is a graph of “intermediate” connectedness: for
example, the Boolean hypercube {0, 1}n, with two vertices adjacent if and only if they
have Hamming distance 1. For this graph, Llewellyn, Tovey, and Trick [18, 19] showed
an Ω (2n/

√
n) lower bound on the number of queries needed by any deterministic

algorithm, using a simple adversary argument. Intuitively, until the set of vertices
queried so far comprises a vertex cut (that is, splits the graph into two or more
connected components), an adversary is free to return a descending sequence of f
values: f (v1) = 2n for the first vertex v1 queried by the algorithm, f (v2) = 2n − 1
for the second vertex queried, and so on. Moreover, once the set of queried vertices
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student at UC Berkeley and during visits to the Hebrew University in Jerusalem and the Perimeter
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does comprise a cut, the adversary can choose the largest connected component of
unqueried vertices and restrict the problem recursively to that component. So to
lower-bound the deterministic query complexity, it suffices to lower-bound the size of
any cut that splits the graph into two reasonably large components.1 For the Boolean
hypercube, Llewellyn, Tovey, and Trick showed that the best one can do is essentially
to query all Ω (2n/

√
n) vertices of Hamming weight n/2.

The argument of Llewellyn, Tovey, and Trick fails completely in the case of ran-
domized algorithms. By Yao’s minimax principle, what we want here is a fixed distri-
bution D over functions f : {0, 1}n → N, such that any deterministic algorithm needs
many queries to find a local minimum of f , with high probability if f is drawn from
D. Taking D to be uniform will not do, since a local minimum of a uniform random
function is easily found. However, Aldous [3] had the idea of defining D via a random
walk, as follows. Choose a vertex v0 ∈ {0, 1}n uniformly at random; then perform an
unbiased walk2 v0, v1, v2, . . . starting from v0. For each vertex v, set f (v) equal to the
first hitting time of the walk at v—that is, f (v) = min {t : vt = v}. Clearly any f pro-
duced in this way has a unique local minimum at v0, since for all t > 0, if vertex vt is
visited for the first time at step t, then f (vt) > f (vt−1). Using sophisticated random
walk analysis, Aldous managed to show a lower bound of 2n/2−o(n) on the expected
number of queries needed by any randomized algorithm to find v0.

3 (As we will see
in section 3, this lower bound is close to tight.) Intuitively, since a random walk on
the hypercube mixes in O (n log n) steps, an algorithm that has not queried a v with
f (v) < 2n/2 has almost no useful information about where the unique minimum v0

is, so its next query will just be a “stab in the dark.”

However, Aldous’s result leaves several questions about Local Search unan-
swered. What if the graph G is a three-dimensional (3-D) cube, on which a random
walk does not mix very rapidly? Can we still lower-bound the randomized query
complexity of finding a local minimum? More generally, what parameters of G make
the problem hard or easy? Also, what is the quantum query complexity of Local

Search?

This paper presents a new approach to Local Search, which we believe points
the way to a complete understanding of its complexity. Our approach is based on
the quantum adversary method, introduced by Ambainis [4] to prove lower bounds
on quantum query complexity. Surprisingly, our approach yields new and simpler
lower bounds for the problem’s classical randomized query complexity, in addition to
quantum lower bounds. Thus, along with recent work by Kerenidis and de Wolf [15]
and Aharonov and Regev [2] among others, this paper illustrates how quantum ideas
can help to resolve classical open problems.

Our results are as follows. For the Boolean hypercube G = {0, 1}n, we show
that any quantum algorithm needs Ω

(
2n/4/n

)
queries to find a local minimum on G,

and any randomized algorithm needs Ω
(
2n/2/n2

)
queries (improving the 2n/2−o(n)

lower bound of Aldous [3]). Our proofs are elementary and do not require random
walk analysis. By comparison, the best known upper bounds are O

(
2n/3n1/6

)
for

a quantum algorithm and O
(
2n/2

√
n
)

for a randomized algorithm. If G is a d-

1Llewellyn, Tovey, and Trick actually give a tight characterization of deterministic query com-
plexity in terms of vertex cuts.

2Actually, Aldous used a continuous-time random walk, so the functions would be from {0, 1}n
to R.

3Independently and much later, Droste, Jansen, and Wegener [11] showed the weaker bound
2g(n) for any g (n) = o (n).
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dimensional grid of size N1/d × · · · × N1/d, where d ≥ 3 is a constant, then we
show that any quantum algorithm needs Ω(

√
N1/2−1/d/ logN) queries to find a local

minimum on G, and any randomized algorithm needs Ω
(
N1/2−1/d/ logN

)
queries.

No nontrivial lower bounds (randomized or quantum) were previously known in this
case.4 For any graph with N vertices and degree δ, we also show an upper bound of
O
(
N1/3δ1/6

)
on the quantum query complexity.

The paper is organized as follows. Section 2 motivates lower bounds on Local

Search, pointing out connections to simulated annealing, quantum adiabatic algo-
rithms, and the complexity class TFNP of total function problems. Section 3 defines
notation and reviews basic facts about Local Search, including the O

(
N1/3δ1/6

)
upper bound. In section 4 we give an intuitive explanation of Ambainis’s quantum
adversary method, then state and prove a classical analogue of Ambainis’s main lower
bound theorem. Section 5 introduces snakes, a construction by which we apply the
two adversary methods to Local Search. We show there that to prove lower bounds
for any graph G, it suffices to upper-bound a combinatorial parameter ε of a “snake
distribution” on G. Section 6 applies this framework to specific examples of graphs:
the Boolean hypercube in section 6.1 and the d-dimensional grid in section 6.2.

1.1. Current status. In an earlier version of this paper, we raised as our “most
ambitious” conjecture that the deterministic and quantum query complexities of Lo-

cal Search are polynomially related for every family of graphs. At the time, it
was not even known whether deterministic and randomized query complexities were
polynomially related, not even for simple examples such as the two-dimensional (2-D)
square grid. Subsequently Santha and Szegedy [23] spectacularly resolved our con-
jecture, by showing that for every family of graphs, the quantum query complexity
of Local Search is at least the 19th root (!) of the deterministic query complexity.
They also showed that the quantum query complexity is Ω

(
N1/8

)
for the 2-D square

grid.
So, like the King in the story of Rumpelstiltskin, we now feel emboldened to

make a stronger conjecture: for every family of graphs, the randomized query com-
plexity of Local Search is at least the square root of the deterministic query com-
plexity, the quantum query complexity is at least the square root of the randomized
query complexity, and the quantum query complexity is at least the cube root of the
deterministic query complexity. Intuitively, there is “never anything better to do”
than some combination of Grover’s algorithm with the classical steepest descent and
divide-and-conquer heuristics.

Recent progress on specific graph families lends some support to our conjecture.
For the Boolean hypercube {0, 1}n, Zhang [27] has shown that the known algorithms
are exactly optimal—that is, the randomized query complexity of Local Search

is Θ
(
2n/2

√
n
)
, and the quantum query complexity is Θ

(
2n/3n1/6

)
. Zhang has also

shown the following lower bounds for the d-dimensional grid of size N1/d×· · ·×N1/d:

Dimension Randomized Quantum

d = 2 Ω
(
N1/3

)
Ω
(
N1/6

)
d = 3 Ω

(
(N/ logN)

1/2
)

Ω
(
N1/4

)
d = 4 Ω

(
N1/2

)
Ω
(
N3/10

)
d = 5 Ω

(
N1/2

)
Ω
(
(N/ logN)

1/3
)

d ≥ 6 Ω
(
N1/2

)
Ω
(
N1/3

)
4A lower bound on deterministic query complexity was known for such graphs [17].
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Note that Zhang’s randomized lower bound is tight when d ≥ 4, and his quan-
tum lower bound is tight when d ≥ 6. Finally, in the d = 2 case, Zhang has given a
quantum upper bound of O(N1/4 (log logN)

2
), which Verhoeven [25] very recently im-

proved to O
(
N1/4 log logN

)
and generalized to all planar and bounded-genus graphs.

Currently, no randomized upper bound better than O(
√
N) is known when d ≥ 2,

and no quantum upper bound better than O(N1/3) is known when d ≥ 3.
In a different direction, Laplante and Magniez [16] proposed a variant of Am-

bainis’s adversary method based on Kolmogorov complexity and showed that their
variant also allows randomized and quantum query complexity to be lower-bounded
in a unified way. Subsequently, Špalek and Szegedy [26] showed that Laplante and
Magniez’s variant is equivalent to a weighted generalization of Ambainis’s original
adversary method.

2. Motivation. Local search is the most effective weapon ever devised against
hard optimization problems. For many real applications, neither backtrack search, nor
approximation algorithms, nor even Grover’s algorithm (assuming we had a quantum
computer) can compare. Furthermore, along with quantum computing, local search
(broadly defined) is one of the most interesting links between computer science and
Nature. It is related to evolutionary biology via genetic algorithms and to the physics
of materials via simulated annealing. Thus it is both practically and scientifically
important to understand its performance.

The conventional wisdom is that, although local search performs well in practice,
its central (indeed defining) flaw is a tendency to get stuck at local optima. If this
were correct, one corollary would be that the reason local search performs so well is
that the problem it really solves—finding a local optimum—is intrinsically easy. It
would thus be unnecessary to seek further explanations for its performance. Another
corollary would be that, for unimodal functions (which have no local optima besides
the global optimum), the global optimum would be easily found.

However, the conventional wisdom is false. The results of Llewellyn, Tovey, and
Trick [18, 19] and Aldous [3] show that even if f is unimodal, any classical algorithm
that treats f as a black box needs exponential time to find the global minimum of f
in general. Our results extend this conclusion to quantum algorithms. In our view,
the practical upshot of these results is that they force us to confront the question,
what is it about “real-world” problems that makes it easy to find a local optimum?
That is, why do exponentially long chains of descending values, such as those used
for lower bounds, almost never occur in practice (even in functions with large range
sizes)? One possibility is that the functions that occur in practice look “globally” like
random functions, but we do not know whether that is true in any meaningful sense.

Our results are also relevant for physics. Many physical systems, including folding
proteins and networks of springs and pulleys, can be understood as performing “local
search” through an energy landscape to reach a locally minimal energy configuration.
A key question is, how long will the system take to reach its ground state (that is,
a globally minimal configuration)? Of course, if there are local optima, the system
might never reach its ground state, just as a rock in a mountain crevice does not roll
to the bottom by going up first. But what if the energy landscape is unimodal? And
moreover, what if the physical system is quantum? Our results show that, for certain
energy landscapes, even a quantum system would take exponential time to reach its
ground state, regardless of what Hamiltonian is applied to it. So, in particular, the
quantum adiabatic algorithm proposed by Farhi et al. [13], which can be seen as
a quantum analogue of simulated annealing, needs exponential time to find a local
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minimum in the worst case.

Finally, our results have implications for so-called total function problems in com-
plexity theory. Megiddo and Papadimitriou [20] defined a complexity class5 TFNP,
consisting (informally) of those NP search problems for which a solution always ex-

ists. For example, we might be given a function f : {0, 1}n → {0, 1}n−1
as a Boolean

circuit and asked to find any distinct x, y pair such that f (x) = f (y). This particular
problem belongs to a subclass of TFNP called PPP (Polynomial Pigeonhole Princi-
ple). Notice that no promise is involved: the combinatorial nature of the problem
itself forces a solution to exist, even if we have no idea how to find it. In a recent
talk, Papadimitriou [22] asked broadly whether such “nonconstructive existence prob-
lems” might be good candidates for efficient quantum algorithms. In the case of PPP
problems, the collision lower bound of Aaronson [1] (improved by Shi [24] and others)
implies a negative answer in the black-box setting. For other subclasses of TFNP, such
as PODN (polynomial odd-degree node), a quantum black-box lower bound follows
easily from the optimality of Grover’s search algorithm.

However, there is one important subclass of TFNP for which no quantum lower
bound was previously known. This is PLS (polynomial local search), defined by
Johnson, Papadimitriou, and Yannakakis [14] as a class of optimization problems
whose cost function f and neighborhood function η (that is, the set of neighbors of a
given point) are both computable in polynomial time. Given such a problem, the task
is to output any local minimum of the cost function: that is, a v such that f (v) ≤ f (w)
for all w ∈ η (v). The lower bound of Llewellyn, Tovey, and Trick [18, 19] yields an
oracle A relative to which FPA �= PLSA, by a standard diagonalization argument along
the lines of Baker, Gill, and Solovay [6]. Likewise, the lower bound of Aldous [3] yields
an oracle relative to which PLS � FBPP, where FBPP is simply the function version
of BPP. Our results yield the first oracle relative to which PLS �⊂ FBQP. In light
of this oracle separation, we raise an admittedly vague question, is there a nontrivial
“combinatorial” subclass of TFNP that we can show is contained in FBQP?

3. Preliminaries. In the Local Search problem, we are given an undirected
graph G = (V,E) with N = |V | and oracle access to a function f : V → N. The goal
is to find any local minimum of f , defined as a vertex v ∈ V such that f (v) ≤ f (w)
for all neighbors w of v. Clearly such a local minimum exists. We want to find
one using as few queries as possible, where a query returns f (v) given v. Queries
can be adaptive; that is, they can depend on the outcomes of previous queries. We
assume G is known in advance, so that only f needs to be queried. Since we care only
about query complexity, not computation time, there is no difficulty in dealing with
an infinite range for f—though for our lower bounds, it will turn out that a range of
size O (|V |) suffices.

Our model of query algorithms is the standard one; see [9] for a survey. Given a
graph G, the deterministic query complexity of Local Search on G, which we denote
DLS (G), is minΓ maxf T (Γ, f,G) where the minimum ranges over all deterministic
algorithms Γ, the maximum ranges over all f , and T (Γ, f,G) is the number of queries
made to f by Γ before it halts and outputs a local minimum of f (or ∞ if Γ fails to
do so). The randomized query complexity RLS (G) is defined similarly, except that
now the algorithm has access to an infinite random string R and must only output a
local minimum with probability at least 2/3 over R. For simplicity, we assume that
the number of queries T is the same for all R; clearly this assumption changes the

5See www.complexityzoo.com for details about the complexity classes mentioned in this paper.
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complexity by at most a constant factor.
In the quantum model, an algorithm’s state has the form

∑
v,z,s αv,z,s |v, z, s〉,

where v is the label of a vertex in G, and z and s are strings representing the answer
register and workspace, respectively. The αv,z,s’s are complex amplitudes satisfying∑

v,z,s |αv,z,s|2 = 1. Starting from an arbitrary (fixed) initial state, the algorithm
proceeds by an alternating sequence of queries and algorithm steps. A query maps
each |v, z, s〉 to |v, z ⊕ f (v) , s〉, where ⊕ denotes bitwise exclusive-OR. An algorithm
step multiplies the vector of αv,z,s’s by an arbitrary unitary matrix that does not
depend on f . Letting Mf denote the set of local minima of f , the algorithm succeeds

if at the end
∑

v,z,s : v∈Mf
|αv,z,s|2 ≥ 2

3 . Then the bounded-error quantum query

complexity, or QLS (G), is defined as the minimum number of queries used by a
quantum algorithm that succeeds on every f .

It is immediate that QLS (G) ≤ RLS (G) ≤ DLS (G) ≤ N . Also, letting δ be the
maximum degree of G, we have the following trivial lower bound.

Proposition 3.1. RLS (G) = Ω (δ) and QLS (G) = Ω(
√
δ).

Proof. Let v be a vertex of G with degree δ. Choose a neighbor w of v uniformly
at random, and let f (w) = 1. Let f (v) = 2, and f (u) = 3 for all neighbors u of v
other than w. Let S be the neighbor set of v (including v itself); then for all x /∈ S, let
f (x) = 3 + Δ (x, S), where Δ (x, S) is the minimum distance from x to a vertex in S.
Clearly f has a unique local minimum at w. However, finding y requires exhaustive
search among the δ neighbors of v, which takes Ω(

√
δ) quantum queries by Bennett

et al. [8].
A corollary of Proposition 3.1 is that classically, zero-error randomized query com-

plexity is equivalent to bounded-error up to a constant factor. For given a candidate
local minimum v, one can check using O (δ) queries that v is indeed a local minimum.
Since Ω (δ) queries are needed anyway, this verification step does not affect the overall
complexity.

As pointed out by Aldous [3], a classical randomized algorithm can find a local
minimum of f with high probability in O(

√
Nδ) queries. The algorithm just queries√

Nδ vertices uniformly at random, and lets v0 be a queried vertex for which f (v)
is minimal. It then follows v0 to a local minimum by steepest descent. That is,
for t = 0, 1, 2, . . . , it queries all neighbors of vt, halts if vt is a local minimum, and
otherwise sets vt+1 to be the neighbor w of vt for which f (w) is minimal (breaking
ties by lexicographic ordering). A similar idea yields an improved quantum upper
bound.

Theorem 3.2. For any G, QLS (G) = O
(
N1/3δ1/6

)
.

Proof. The algorithm first chooses N2/3δ1/3 vertices of G uniformly at random,
then uses Grover search to find a chosen vertex v0 for which f (v) is minimal. By a
result of Dürr and Høyer [12], this can be done with high probability in O

(
N1/3δ1/6

)
queries. Next, for t = 0, 1, 2, . . . , the algorithm performs Grover search over all
neighbors of vt, looking for a neighbor w such that f (w) < f (vt). If it finds such a w,
then it sets vt+1 := w and continues to the next iteration. Otherwise, it repeats the
Grover search log (N/δ) times before finally giving up and returning vt as a claimed
local minimum.

The expected number of u such that f (u) < f (v0) is at most N/
(
N2/3δ1/3

)
=

(N/δ)
1/3

. Since f (vt+1) < f (vt) for all t, clearly the number of such u provides an
upper bound on t. Furthermore, assuming there exists a w such that f (w) < f (vt),
the expected number of repetitions of Grover’s algorithm until such a w is found is
O (1). Since each repetition takes O(

√
δ) queries, by linearity of expectation the total
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expected number of queries used by the algorithm is therefore

O
(
N1/3δ1/6 + (N/δ)

1/3
√
δ + log (N/δ)

√
δ
)

or O
(
N1/3δ1/6

)
. To see that the algorithm finds a local minimum with high probabil-

ity, observe that for each t the probability of not finding a w such that f (w) < f (vt),

given that one exists, is at most c− log(N/δ) ≤ (δ/N)
1/3

/10 for a suitable constant c.
So by the union bound, the probability that the algorithm returns a “false positive”

is at most (N/δ)
1/3 · (δ/N)

1/3
/10 = 1/10.

4. Relational adversary method. We know essentially two methods for prov-
ing lower bounds on quantum query complexity: the polynomial method of Beals
et al. [7], and the quantum adversary method of Ambainis [4].6 For a few problems,
such as the collision problem [1, 24], the polynomial method succeeded where the ad-
versary method failed. However, for problems that lack permutation symmetry (such
as Local Search), the adversary method has proven more effective.7

How could a quantum lower bound method possibly be applied classically? When
proving randomized lower bounds, the tendency is to attack “bare-handed”: fix a
distribution over inputs, and let x1, . . . , xt be the locations queried so far by the
algorithm. Show that for small t, the posterior distribution over inputs, conditioned
on x1, . . . , xt, is still “hard” with high probability—so that the algorithm knows almost
nothing even about which location xt+1 to query next. This is essentially the approach
taken by Aldous [3] to prove a 2n/2−o(n) lower bound on RLS ({0, 1}n).

In the quantum case, however, it is unclear how to specify what an algorithm
“knows” after a given number of queries. So we are almost forced to step back and
identify general combinatorial properties of input sets that make them hard to distin-
guish. Once we have such properties, we can then try to exhibit them in functions of
interest.

We will see, somewhat surprisingly, that this “gloved” approach is useful for
classical lower bounds as well as quantum ones. In our relational adversary method,
we assume there exists a T -query randomized algorithm for function F . We consider
a set A of 0-inputs of F , a set B of 1-inputs, and an arbitrary real-valued relation
function R (A,B) ≥ 0 for A ∈ A and B ∈ B. Intuitively, R (A,B) should be large if
A and B differ in only a few locations. We then fix a probability distribution D over
inputs; by Yao’s minimax principle, there exists a T -query deterministic algorithm Γ∗

that succeeds with high probability on inputs drawn from D. Let WA be the set of
0-inputs and WB the set of 1-inputs on which Γ∗ succeeds. Using the relation function
R, we define a separation measure S between WA and WB and show that (1) initially
S = 0, (2) by the end of the computation S must be large, and (3) S increases by
only a small amount as the result of each query. It follows that T must be large.

The advantage of the relational method is that it converts a “dynamic” opponent
—an algorithm that queries adaptively—into a relatively static one. It thereby makes
it easier to focus on what is unique about a problem and ignore aspects of query
complexity that are common to all problems. Furthermore, one does not need to
know anything about quantum computing to understand and apply the method. On
the other hand, it is not clear how one would come up with it in the first place, without

6We are thinking here of the hybrid method [8] as a cousin of the adversary method.
7Indeed, Ambainis [5] has given problems for which the adversary method provably yields a

better lower bound than the polynomial method.
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Ambainis’s quantum adversary method [4] and the reasoning about entanglement that
led to it.

Our starting point is the “most general” adversary theorem in Ambainis’s original
paper (Theorem 6 in [4]), which he introduced to prove a quantum lower bound for the
problem of inverting a permutation. Here the input is a permutation σ (1) , . . . , σ (N),
and the task is to output 0 if σ−1 (1) ≤ N/2 and 1 otherwise. To lower-bound this
problem’s query complexity, what we would like to say is the following.

Given any 0-input σ and any location x, if we choose a random 1-input τ that
is “related” to σ, then the probability θ (σ, x) over τ that σ (x) does not equal τ (x)
is small. In other words, the algorithm is unlikely to distinguish σ from a random
neighbor τ of σ by querying x.

Unfortunately, the above claim is false. Letting x = σ−1 (1), we have that σ (x) �=
τ (x) for every 1-input τ , and thus θ (σ, x) = 1. Ambainis resolves this difficulty by
letting us take the maximum, over all 0-inputs σ and 1-inputs τ that are related and
differ at x, of the geometric mean

√
θ (σ, x) θ (τ, x). Even if θ (σ, x) = 1, the geometric

mean is still small provided that θ (τ, x) is small. More formally, we have the following
theorem.

Theorem 4.1 (Ambainis). Let A ⊆ F−1 (0) and B ⊆ F−1 (1) be sets of inputs
to function F . Let R (A,B) ≥ 0 be a real-valued function, and for A ∈ A, B ∈ B,
and location x, let

θ (A, x) =

∑
B∗∈B : A(x) �=B∗(x) R (A,B∗)∑

B∗∈B R (A,B∗)
,

θ (B, x) =

∑
A∗∈A : A∗(x) �=B(x) R (A∗, B)∑

A∗∈A R (A∗, B)
,

where the denominators are all nonzero. Then the number of quantum queries needed
to evaluate F with at least 9/10 probability is Ω (1/υgeom), where

υgeom = max
A∈A, B∈B, x :R(A,B)>0, A(x) �=B(x)

√
θ (A, x) θ (B, x).

The best way to understand Theorem 4.1 is to see it used in an example.
Proposition 4.2 (Ambainis). The quantum query complexity of inverting a

permutation is Ω(
√
N).

Proof. Let A be the set of all permutations σ such that σ−1 (1) ≤ N/2, and B
be the set of permutations τ such that τ−1 (1) > N/2. Given σ ∈ A and τ ∈ B, let
R (σ, τ) = 1 if σ and τ differ only at locations σ−1 (1) and τ−1 (1), and R (σ, τ) = 0
otherwise. Then given σ, τ with R (σ, τ) = 1, if x ≤ N/2 then θ (τ, x) ≤ 2/N , and if
x > N/2 then θ (σ, x) ≤ 2/N . So maxx : σ(x) �=τ(x)

√
θ (σ, x) θ (τ, x) ≤

√
2/N .

The only difference between Theorem 4.1 and our relational adversary theorem
is that in the latter, we take the minimum of θ (A, x) and θ (B, x) instead of the
geometric mean. Taking the reciprocal then gives up to a quadratically better lower
bound: for example, we obtain that the randomized query complexity of inverting a
permutation is Ω (N). However, the proofs of the two theorems are quite different.

Theorem 4.3. Let A,B, R, θ be as in Theorem 4.1. Then the number of ran-
domized queries needed to evaluate F with at least 9/10 probability is Ω (1/υmin),
where

υmin = max
A∈A, B∈B, x :R(A,B)>0, A(x) �=B(x)

min {θ (A, x) , θ (B, x)} .
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Proof. Let Γ be a randomized algorithm that, given an input A, returns F (A)
with at least 9/10 probability. Let T be the number of queries made by Γ. For all
A ∈ A, B ∈ B, define

M (A) =
∑
B∗∈B

R (A,B∗) ,

M (B) =
∑

A∗∈A
R (A∗, B) ,

M =
∑

A∗∈A
M (A∗) =

∑
B∗∈B

M (B∗) .

Now let DA be the distribution over A ∈ A in which each A is chosen with probability
M (A) /M ; and let DB be the distribution over B ∈ B in which each B is chosen with
probability M (B) /M . Let D be an equal mixture of DA and DB . By Yao’s minimax
principle, there exists a deterministic algorithm Γ∗ that makes T queries and succeeds
with at least 9/10 probability given an input drawn from D. Therefore Γ∗ succeeds
with at least 4/5 probability given an input drawn from DA alone or from DB alone.
In other words, letting WA be the set of A ∈ A and WB the set of B ∈ B on which
Γ∗ succeeds, we have ∑

A∈WA

M (A) ≥ 4

5
M,

∑
B∈WB

M (B) ≥ 4

5
M.

Define a predicate P (t) (A,B), which is true if Γ∗ has distinguished A ∈ A from B ∈ B
by the tth query and false otherwise. (To distinguish A from B means to query an
index x for which A (x) �= B (x), given either A or B as input.) Also, for all A ∈ A,
define a score function

S(t) (A) =
∑

B∗∈B : P (t)(A,B∗)

R (A,B∗) .

This function measures how much “progress” has been made so far in separating A
from B inputs, where the B inputs are weighted by R (A,B). Similarly, for all B ∈ B
define

S(t) (B) =
∑

A∗∈A : P (t)(A∗,B)

R (A∗, B) .

It is clear that for all t, ∑
A∈A

S(t) (A) =
∑
B∈B

S(t) (B) .

So we can denote the above sum by S(t) and think of it as a global progress measure.
We will show the following about S(t):

(i) S(0) = 0 initially.
(ii) S(T ) ≥ 3M/5 by the end.
(iii) ΔS(t) ≤ 3υminM for all t, where ΔS(t) = S(t)−S(t−1) is the amount by which

S(t) increases as the result of a single query.
It follows from (i)–(iii) that

T ≥ 3M/5

3υminM
=

1

5υmin
,
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which establishes the theorem. Part (i) is obvious. For part (ii), observe that for
every pair (A,B) with A ∈ WA and B ∈ WB , the algorithm Γ∗ must query an x such
that A (x) �= B (x). Thus

S(T ) ≥
∑

A∈WA, B∈WB

R (A,B)

≥
∑

A∈WA

M (A) −
∑

B/∈WB

M (B)

≥ 4

5
M − 1

5
M.

It remains only to show part (iii). Suppose ΔS(t) > 3υminM for some t; we will obtain
a contradiction. Let

ΔS(t) (A) = S(t) (A) − S(t−1) (A) ,

and let CA be the set of A ∈ A for which ΔS(t) (A) > υminM (A). Since

∑
A∈A

ΔS(t) (A) = ΔS(t) > 3υminM,

it follows by Markov’s inequality that

∑
A∈CA

ΔS(t) (A) ≥ 2

3
ΔS(t).

Similarly, if we let CB be the set of B ∈ B for which ΔS(t) (B) > υminM (B), we have

∑
B∈CB

ΔS(t) (B) ≥ 2

3
ΔS(t).

In other words, at least 2/3 of the increase in S(t) comes from (A,B) pairs such that
A ∈ CA, and at least 2/3 comes from (A,B) pairs such that B ∈ CB . Hence, by a
“pigeonhole” argument, there exists an A ∈ CA and B ∈ CB with R (A,B) > 0 that
are distinguished by the tth query. In other words, there exists an x with A (x) �=
B (x), such that the tth index queried by Γ∗ is x whether the input is A or B. Then
since A ∈ CA, we have υminM (A) < ΔS(t) (A), and hence

υmin <
ΔS(t) (A)

M (A)

≤
∑

B∗∈B : A(x) �=B∗(x) R (A,B∗)∑
B∗∈B R (A,B∗)

,

which equals θ (A, x). Similarly υmin < θ (B, x) since B ∈ CB . This contradicts the
definition

υmin = max
A∈A, B∈B, x :R(A,B)>0, A(x) �=B(x)

min {θ (A, x) , θ (B, x)} ,

and we are done.



814 SCOTT AARONSON

5. Snakes. For our lower bounds, it will be convenient to generalize random
walks to arbitrary distributions over paths, which we call snakes.

Definition 5.1. Given a vertex h in G and a positive integer L, a snake dis-
tribution Dh,L (parameterized by h and L) is a probability distribution over paths
(x0, . . . , xL−1) in G, such that each xt is either equal or adjacent to xt+1, and xL−1 =
h. Let Dh,L be the support of Dh,L. Then an element of Dh,L is called a snake; the
part near xL−1 = h is the head and the part near x0 is the tail.

Given a snake X and integer t, we use X [t] as shorthand for {x0, . . . , xt}.
Definition 5.2. We say a snake X ∈ Dh,L is ε-good if the following holds.

Choose j uniformly at random from {0, . . . , L− 1}, and let Y = (y0, . . . , yL−1) be a
snake drawn from Dh,L conditioned on xt = yt for all t > j. Then

(i) letting SX,Y be the set of vertices v in X ∩ Y such that min {t : xt = v} =
min {t : yt = v}, we have

Pr
j,Y

[X ∩ Y = SX,Y ] ≥ 9

10
;

(ii) for all vertices v,

Pr
j,Y

[v ∈ Y [j]] ≤ ε.

The procedure above—wherein we choose a j uniformly at random and then draw
a Y from Dh,L consistent with X on all steps later than j—will be important in what
follows. We call it the snake X flicking its tail. Intuitively, a snake is good if it is
spread out fairly evenly in G—so that when it flicks its tail, (1) with high probability
the old and new tails do not intersect, and (2) any particular vertex is hit by the new
tail with probability at most ε.

We now explain our “snake method” for proving lower bounds for Local Search.
Given a snake X, we define an input fX with a unique local minimum at x0, and f
values that decrease along X from head to tail. Then, given inputs fX and fY
with X ∩ Y = SX,Y , we let the relation function R (fX , fY ) be proportional to the
probability that snake Y is obtained by X flicking its tail. (If X ∩ Y �= SX,Y we let
R = 0.) Let fX and gY be inputs with R (fX , gY ) > 0, and let v be a vertex such that
fX (v) �= gY (v). Then if all snakes were good, there would be two mutually exclusive
cases: (1) v belongs to the tail of X or (2) v belongs to the tail of Y . In case (1), v is
hit with small probability when Y flicks its tail, so θ (fY , v) is small. In case (2), v is
hit with small probability when X flicks its tail, so θ (fX , v) is small. In either case,
then, the geometric mean

√
θ (fX , v) θ (fY , v) and minimum min {θ (fX , v) , θ (fY , v)}

are small. So even though θ (fX , v) or θ (fY , v) could be large individually, Theorems
4.1 and 4.3 yield a good lower bound, as in the case of inverting a permutation (see
Figure 1).

One difficulty is that not all snakes are good; at best, a large fraction of them
are. We could try deleting all inputs fX such that X is not good, but that might ruin
some remaining inputs, which would then have fewer neighbors. So we would have to
delete those inputs as well, and so on ad infinitum. What we need is basically a way
to replace “all inputs” by “most inputs” in Theorems 4.1 and 4.3.

Fortunately, a simple graph-theoretic lemma can accomplish this. The lemma
(see Diestel [10, p. 6], for example) says that any graph with average degree at least
k contains an induced subgraph with minimum degree at least k/2. Here we prove a
weighted analogue of the lemma.
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Large θ(fX,v) 
but small θ(fY,v)

Large θ(fY,v) 
but small θ(fX,v)

xL-1=yL-1

Fig. 1. For every vertex v such that fX (v) �= fY (v), either when snake X flicks its tail v is
not hit with high probability, or when snake Y flicks its tail v is not hit with high probability.

Lemma 5.3. Let p (1) , . . . , p (m) be positive reals summing to 1. Also let w (i, j)
for i, j ∈ {1, . . . ,m} be nonnegative reals satisfying w (i, j) = w (j, i) and

∑
i,j w (i, j)

≥ r. Then there exists a nonempty subset U ⊆ {1, . . . ,m} such that for all i ∈ U ,∑
j∈U w (i, j) ≥ rp (i) /2.

Proof. If r = 0, then the lemma trivially holds, so assume r > 0. We construct U
via an iterative procedure. Let U (0) = {1, . . . ,m}. Then for all t, if there exists an
i∗ ∈ U (t) for which ∑

j∈U(t)

w (i∗, j) <
r

2
p (i∗) ,

then set U (t + 1) = U (t)\{i∗}. Otherwise halt and return U = U (t). To see that the
U so constructed is nonempty, observe that when we remove i∗, the sum

∑
i∈U(t) p (i)

decreases by p (i∗), while
∑

i,j∈U(t) w (i, j) decreases by at most

∑
j∈U(t)

w (i∗, j) +
∑

j∈U(t)

w (j, i∗) < rp (i∗) .

So since
∑

i,j∈U(t) w (i, j) was positive to begin with, it must still be positive at the
end of the procedure; hence U must be nonempty.

We can now prove the main result of the section.
Theorem 5.4. Suppose a snake drawn from Dh,L is ε-good with probability at

least 9/10. Then

RLS (G) = Ω (1/ε) , QLS (G) = Ω
(√

1/ε
)
.

Proof. Given a snake X ∈ Dh,L, we construct an input function fX as follows. For
each v ∈ X, let fX (v) = min {t : xt = v}; and for each v /∈ X, let fX (v) = Δ (v, h)+L,
where Δ (v, h) is the distance from v to h in G. Clearly fX so defined has a unique
local minimum at x0. To obtain a decision problem, we stipulate that querying x0

reveals an answer bit (0 or 1) in addition to fX (x1); the algorithm’s goal is then to
return the answer bit. Obviously a lower bound for the decision problem implies a
corresponding lower bound for the search problem.
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Let us first prove the theorem in the case that all snakes in Dh,L are ε-good. Let
p (X) be the probability of drawing snake X from Dh,L. Also, given snakes X,Y and
j ∈ {0, . . . , L− 1}, let qj (X,Y ) be the probability that X∗ = Y , if X∗ is drawn from
Dh,L conditioned on agreeing with X on all steps later than j. Then define

w (X,Y ) =
p (X)

L

L−1∑
j=0

qj (X,Y ) .

Our first claim is that w is symmetric; that is, w (X,Y ) = w (Y,X). It suffices to
show that

p (X) qj (X,Y ) = p (Y ) qj (Y,X)

for all j. We can assume X agrees with Y on all steps later than j, since otherwise
qj (X,Y ) = qj (Y,X) = 0. Given an X∗ ∈ Dh,L, let A denote the event that X∗

agrees with X (or equivalently Y ) on all steps later than j, and let BX (resp., BY )
denote the event that X∗ agrees with X (resp., Y ) on steps 1 to j. Then

p (X) qj (X,Y ) = Pr [A] Pr [BX |A] · Pr [BY |A]

= p (Y ) qj (Y,X) .

Now let E (X,Y ) denote the event that X ∩ Y = SX,Y , where SX,Y is as in
Definition 5.2. Also, let fX be the input obtained from X that has answer bit 0,
and gX be the input that has answer bit 1. To apply Theorems 4.1 and 4.3, take
A = {fX : X ∈ Dh,L} and B = {gX : X ∈ Dh,L}. Then take R (fX , gY ) = w (X,Y )
if E (X,Y ) holds, and R (fX , gY ) = 0 otherwise. Given fX ∈ A and gY ∈ B with
R (fX , gY ) > 0, and letting v be a vertex such that fX (v) �= gY (v), we must then
have either v /∈ Y or v /∈ X. Suppose the former case; then

∑
fX∗∈A : fX∗ (v) �=gY (v)

R (fX∗ , gY ) ≤
∑

fX∗∈A : fX∗ (v) �=gY (v)

p (Y )

L

L−1∑
j=0

qj (Y,X∗) ≤ εp (Y ) ,

since Y is ε-good. Thus θ (gY , v) equals∑
fX∗∈A : fX∗ (v) �=gY (v) R (fX∗ , gY )∑

fX∗∈A R (fX∗ , gY )
≤ εp (Y )

9p (Y ) /10
.

Similarly, if v /∈ X, then θ (fX , v) ≤ 10ε/9 by symmetry. Hence

υmin = max
fX∈A, gY ∈B, v : R(fX ,gY )>0, fX(v) �=gY (v)

min {θ (fX , v) , θ (gY , v)} ≤ ε

9/10
,

υgeom = max
fX∈A, gY ∈B, v : R(fX ,gY )>0, fX(v) �=gY (v)

√
θ (fX , v) θ (gY , v) ≤

√
ε

9/10
,

the latter since θ (fX , v) ≤ 1 and θ (gY , v) ≤ 1 for all fX , gY , and v.
We now turn to the general case, in which a snake drawn from Dh,L is ε-good

with probability at least 9/10. Let G (X) denote the event that X is ε-good. Take
A∗ = {fX ∈ A : G (X)} and B∗ = {gY ∈ B : G (Y )}, and take R (fX , gY ) as before.
Now note that ∑

X,Y

w (X,Y ) =
∑
X,Y

p (X) p (Y ) = 1,
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so we can consider a distribution W over (X,Y ) pairs, in which Pr [(X,Y )] = w (X,Y ).
Then by the assumption of the theorem and the definition of ε-goodness,

Pr
(X,Y )∈W

[G (X)] ≥ 9

10
,

Pr
(X,Y )∈W

[G (Y )] ≥ 9

10
,

Pr
(X,Y )∈W

[E (X,Y ) | G (X)] ≥ 9

10
.

Hence ∑
fX∈A∗, gY ∈B∗

R (fX , gY )

=
∑

X,Y : G(X)∧G(Y )∧E(X,Y )

w (X,Y )

= Pr
(X,Y )∈W

[G (X) ∧G (Y ) ∧ E (X,Y )]

≥ 1 − Pr
(X,Y )∈W

[�G (X)] − Pr
(X,Y )∈W

[�G (Y )] − Pr
(X,Y )∈W

[�E (X,Y ) ∧G (X)]

≥ 1 − Pr
(X,Y )∈W

[�G (X)] − Pr
(X,Y )∈W

[�G (Y )] − Pr
(X,Y )∈W

[�E (X,Y ) | G (X)]

≥ 1 − 1

10
− 1

10
− 1

10

=
7

10
,

where the third line follows from the union bound.
So by Lemma 5.3, there exist subsets Ã ⊆ A∗ and B̃ ⊆ B∗ such that for all

fX ∈ Ã and gY ∈ B̃,

∑
gY ∗∈B̃

R (fX , gY ∗) ≥ 7p (X)

20
,

∑
fX∗∈Ã

R (fX∗ , gY ) ≥ 7p (Y )

20
.

It follows that for all fX , gY with R (fX , gY ) > 0, and all v such that fX (v) �= gY (v),
either θ (fX , v) ≤ 20ε/7 or θ (gY , v) ≤ 20ε/7. Hence υmin ≤ 20ε/7 and υgeom ≤√

20ε/7.

6. Specific graphs. In this section we apply the “snake method” developed in
section 5 to specific examples of graphs: the Boolean hypercube in section 6.1, and
the d-dimensional cubic grid (for d ≥ 3) in section 6.2.

6.1. Boolean hypercube. Abusing notation, we let {0, 1}n denote the n-di-
mensional Boolean hypercube—that is, the graph whose vertices are n-bit strings,
with two vertices adjacent if and only if they have Hamming distance 1. Given a
vertex v ∈ {0, 1}n, we let v [0] , . . . , v [n− 1] denote the n bits of v, and let v(i)

denote the neighbor obtained by flipping bit v [i]. In this section we lower-bound
RLS ({0, 1}n) and QLS ({0, 1}n).
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Fix a “snake head” h ∈ {0, 1}n and take L = 2n/2/100. We define the snake
distribution Dh,L via what we call a coordinate loop, which starts at the head xL−1 =
h, and works backward to the tail x0 as follows. For each t ∈ {L− 2, . . . , 0}, we

set xt := xt+1 with 1/2 probability, and xt := x
(tmodn)
t+1 with 1/2 probability. The

following is a basic fact about this distribution.
Proposition 6.1. The coordinate loop mixes completely in n steps, in the sense

that if t∗ ≤ t− n, then xt∗ is a uniform random vertex conditioned on xt.
Proof. Once we reach xt∗ , each of the n coordinates of xt has been replaced by a

uniform random coordinate.
We could also use the random walk distribution, following Aldous [3]. However,

not only is the coordinate loop distribution easier to work with (since it produces
fewer self-intersections), it also yields a better lower bound (since it mixes completely
in n steps, as opposed to approximately in n log n steps).

We first upper-bound the probability, over X, j, and Y [j], that X ∩ Y �= SX,Y

(where SX,Y is as in Definition 5.2).
Lemma 6.2. Suppose X is drawn from Dh,L, j is drawn uniformly at random

from {0, . . . , L− 1}, and Y [j] is drawn from Dxj ,j. Then

Pr
X,j,Y [j]

[X ∩ Y = SX,Y ] ≥ 0.9999.

Proof. We claim that for all indices t, t∗ ∈ {0, . . . , L− 1} with t �= t∗, we have

Pr
X,j,Y [j]

[xt = yt∗ ] ≤
1

2n
.

Let us first see why the lemma follows from this claim. If there are no “collisions” of
the form xt = yt∗ with t �= t∗, then clearly

min {t : xt = v} = min {t∗ : yt∗ = v}
for all vertices v, and hence X ∩ Y = SX,Y . It follows by the union bound that

Pr
X,j,Y [j]

[X ∩ Y �= SX,Y ] ≤
∑
t�=t∗

Pr
X,j,Y [j]

[xt = yt∗ ]

≤
∑
t�=t∗

1

2n

≤ L2

2n

= 0.0001.

It remains only to prove the claim. There are two cases. First, if t > j − n and
t∗ > j − n, then xt �= yt∗ for all t �= t∗, and hence PrX,j,Y [j] [xt = yt∗ ] = 0. This
follows from the definition of the coordinate loop Dh,L. Second, if t ≤ j − n or
t∗ ≤ j − n, then Proposition 6.1 implies that for all vertices v, w ∈ {0, 1}n,

Pr
X,j,Y [j]

[xt = v ∧ yt∗ = w] =
1

22n
.

In other words, yt∗ is uniformly random conditioned on xt, and xt is uniformly random
conditioned on yt∗ . Therefore

Pr
X,j,Y [j]

[xt = yt∗ ] =
1

2n
,

and we are done.
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We now argue that, unless X spends a “pathological” amount of time in one part
of the hypercube, the probability of any vertex v being hit when X flicks its tail is
small. To prove this, we define a notion of sparseness, and then show that (1) almost
all snakes drawn from Dh,L are sparse (Lemma 6.4), and (2) sparse snakes are unlikely
to hit any given vertex v (Lemma 6.5).

Definition 6.3. Given vertices v, w and i ∈ {0, . . . , n− 1}, let Δ (x, v, i) be the
number of steps needed to reach v from x by first setting x [i] := v [i], then setting
x [i− 1] := v [i− 1], and so on. (After we set x [0] we wrap around to x [n− 1].)
Then X is sparse if there exists a constant c such that for all v ∈ {0, 1}n and all k,

|{t : Δ (xt, v, tmodn) = k}| ≤ cn

(
n +

L

2n−k

)
.

Lemma 6.4. If X is drawn from Dh,L, then X is sparse with probability 1−o (1).
Proof. For each i ∈ {0, . . . , n− 1}, the number of t ∈ {0, . . . , L− 1} such that

t ≡ i (modn) is at most L/n. For such a t, let E
(v,i,k)
t be the event that Δ (xt, v, i) ≤ k;

then E
(v,i,k)
t holds if and only if

xt [i + 1] = v [i + 1] , . . . , xt [i− k] = v [i− k]

(where we wrap around to xt [0] after reaching xt [n− 1]). This occurs with probability
1/2n−k over X. So let

μk =
L

n
· 1

2n−k
.

Then for fixed v, i, k, the expected number of t’s for which E
(v,i,k)
t holds is at most μk.

Furthermore, by Proposition 6.1, the E
(v,i,k)
t events for different t’s are independent.

Thus by a Chernoff bound (see Motwani and Raghavan [21], for example), if μk ≥ 1,
then

Pr
X

[∣∣∣{t : E
(v,i,k)
t

}∣∣∣ > cn · μk

]
<

(
ecn−1

(cn)
cn

)μk

<
1

22n

for sufficiently large c. Similarly, if μk < 1, then

Pr
X

[∣∣∣{t : E
(v,i,k)
t

}∣∣∣ > cn
]
<

(
ecn/μk−1

(cn/μk)
cn/μk

)μk

<
1

22n

for sufficiently large c. By the union bound, then,∣∣∣{t : E
(v,i,k)
t

}∣∣∣ ≤ cn · (1 + μk)

= c

(
n +

L

2n−k

)

for every v, i, k triple simultaneously with probability at least 1−n22n/22n = 1−o (1).
Summing over all i’s produces the additional factor of n.

Lemma 6.5. Let X be sparse. Suppose j is drawn uniformly from {0, . . . , L− 1},
and then Y [j] is drawn from Dxj ,j. Then for every v ∈ {0, 1}n,

Pr
j,Y

[v ∈ Y [j]] = O

(
n2

L

)
.
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Proof. By assumption, for every k ∈ {0, . . . , n},

Pr
j

[Δ (xj , v, j modn) = k] ≤ |{t : Δ (xt, v, tmodn) = k}|
L

≤ cn

L

(
n +

L

2n−k

)
.

Consider the probability that v ∈ Y [j] in the event that Δ (xj , v, j modn) = k.
Clearly

Pr
Y

[v ∈ {yj−n+1, . . . , yj}] =
1

2k
.

Also, Proposition 6.1 implies that for every t ≤ j − n, the probability that yt = v
is 2−n. So by the union bound,

Pr
Y

[v ∈ {y0, . . . , yj−n}] ≤
L

2n
.

Then Prj,Y [v ∈ Y [j]] equals

n∑
k=0

Pr
j

[Δ (xj , v, j modn) = k] · Pr
Y

[v ∈ Y [j] | Δ (xj , v, j modn) = k] ,

which is at most
n∑

k=0

cn

L

(
n +

L

2n−k

)(
1

2k
+

L

2n

)
= O

(
cn2

L

)
,

as can be verified by breaking the sum into cases and doing some manipulations.
The main result follows easily.
Theorem 6.6.

RLS ({0, 1}n) = Ω

(
2n/2

n2

)
,

QLS ({0, 1}n) = Ω

(
2n/4

n

)
.

Proof. Take ε = n2/2n/2. Then by Theorem 5.4, it suffices to show that a snake
X drawn from Dh,L is O (ε)-good with probability at least 9/10. First, since

Pr
X,j,Y [j]

[X ∩ Y = SX,Y ] ≥ 0.9999

by Lemma 6.2, Markov’s inequality shows that

Pr
X

[
Pr

j,Y [j]
[X ∩ Y = SX,Y ] ≥ 9

10

]
≥ 19

20
.

Second, by Lemma 6.4, X is sparse with probability 1 − o (1), and by Lemma 6.5, if
X is sparse, then

Pr
j,Y

[v ∈ Y [j]] = O

(
n2

L

)
= O (ε)

for every v. So both requirements of Definition 5.2 hold simultaneously with proba-
bility at least 9/10.
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Fig. 2. In d = 3 dimensions, a snake drawn from Dh,L moves a random distance left or right,
then a random distance up or down, then a random distance inward or outward, etc.

6.2. Constant-dimensional grid graph. In the Boolean hypercube case, we
defined Dh,L by a “coordinate loop” instead of the usual random walk mainly for
convenience. When we move to the d-dimensional grid, though, the drawbacks of
random walks become more serious: first, the mixing time is too long, and second,
there are too many self-intersections, particularly if d ≤ 4. Our snake distribution
will instead use straight lines of randomly chosen lengths attached at the endpoints,
as in Figure 2. Let Gd,N be a d-dimensional grid graph with d ≥ 3. That is, Gd,N has
N vertices of the form v = (v [0] , . . . , v [d− 1]), where each v [i] is in

{
1, . . . , N1/d

}
(we assume for simplicity that N is a dth power). Vertices v and w are adjacent if
and only if |v [i] − w [i]| = 1 for some i ∈ {0, . . . , d− 1}, and v [j] = w [j] for all j �= i
(so Gd,N does not wrap around at the boundaries).

We take L =
√
N/100, and define the snake distribution Dh,L as follows. We

start from the head xL−1 = h. Then for all t of the form L− 1− τN1/d, where τ is a
positive integer, we set xt identical to xt+N1/d , but with the (τ mod d)th coordinate

xt [τ mod d] replaced by a uniform random value in
{
1, . . . , N1/d

}
. We then take the

vertices xt+N1/d−1, . . . , xt to lie along the shortest path from xt+N1/d to xt, “stalling”
at xt once that vertex has been reached. We call

Φτ =
(
xt+N1/d , . . . , xt

)
a line of vertices, whose direction is τ mod d. As in the Boolean hypercube case, we
have the following proposition.

Proposition 6.7. Dh,L mixes completely in dN1/d steps, in the sense that if
t∗ ≤ t− d, then xt∗N1/d is a uniform random vertex conditioned on xtN1/d .

Proof. Once we reach xt∗N1/d , each of the d coordinates of xtN1/d has been
replaced by a uniform random coordinate.

Lemma 6.2 in section 6.1 goes through essentially without change.
Definition 6.8. Let Δ (x, v, i) be the number of steps needed to reach v from x

by first setting x [i] := v [i], then setting x [i + 1] := v [i + 1], and so on. (After we set
x [d− 1] we wrap around to x [0].) Also, let τ (t) =

⌈
(L− 1 − t) /N1/d

⌉
be the value

of τ corresponding to t. Then we say X is sparse if there exists a constant c (possibly
dependent on d) such that for all vertices v and all k,

|{t : Δ (xt, v, τ (t) mod d) = k}| ≤ (c logN)

(
N1/d +

L

N1−k/d

)
.

Lemma 6.9. If X is drawn from Dh,L, then X is sparse with probability 1−o (1).
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Proof. The proof is similar to Lemma 6.4. Let Φτ be a line of vertices with
direction i = τ mod d, and notice that Δ (xt, v, i) is the same for every vertex xt in

Φτ . Let E
(v,i,k)
τ denote the event that Δ (xt, v, i) ≤ k for the xt’s in Φτ . Then E

(v,i,k)
τ

occurs with probability Nk/d/N over X. Thus, let

μk =
L

N1/d
· N

k/d

N
.

Then for fixed v, i, k, the expected number of lines for which E
(v,i,k)
τ holds is at most

μk. Furthermore, if |τ − τ∗| ≥ d, then E
(v,i,k)
τ and E

(v,i,k)
τ∗ are independent events.

Thus, by a Chernoff bound, if μk ≥ 1, then

Pr
X

[∣∣∣{τ : E(v,i,k)
τ

}∣∣∣ > c logN · μk

]
<

(
ec logN−1

(c logN)
c logN

)μk

which is at most 1/N2 for sufficiently large c. Similarly, if μk < 1, then letting
m = (c logN) /μk,

Pr
X

[∣∣∣{τ : E(v,i,k)
τ

}∣∣∣ > c logN
]
<

(
em−1

mm

)μk

<
1

N2

for sufficiently large c. So if we let τ (t) =
⌈
(L− 1 − t) /N1/d

⌉
as before, then with

probability 1 − o (1) it holds that for all v, k,

|{t : Δ (xt, v, τ (t) mod d) = k}| ≤ c logN · (1 + μk) ·N1/d

= (c logN)

(
N1/d +

L

N1−k/d

)
.

Lemma 6.10. If X is sparse, then for every v ∈ Gd,N ,

Pr
j,Y

[v ∈ Y [j]] = O

(
N1/d logN

L

)
,

where the big O hides a constant dependent on d.

Proof. As in Lemma 6.5, setting τ (j) =
⌈
(L− 1 − j) /N1/d

⌉
we obtain that

Pr
j,Y

[v ∈ Y [j]]

=

d∑
k=1

Pr
j

[Δ (xj , v, τ (j) mod d) = k] Pr
Y

[v ∈ Y [j] | Δ (xj , v, τ (j) mod d) = k]

≤
d∑

k=1

c logN

L

(
N1/d +

L

N1−k/d

)(
1

N (k−1)/d
+

L

N

)

= O

(
N1/d logN

L

)
.

Taking ε = (logN) /N1/2−1/d we get, by the same proof as for Theorem 6.6, the
following theorem.
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Theorem 6.11. Neglecting a constant dependent on d, for all d ≥ 3,

RLS (Gd,N ) = Ω

(
N1/2−1/d

logN

)
,

QLS (Gd,N ) = Ω

⎛
⎝
√

N1/2−1/d

logN

⎞
⎠ .
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APPROXIMATING FRACTIONAL PACKINGS AND COVERINGS
IN O(1/ε) ITERATIONS∗

D. BIENSTOCK† AND G. IYENGAR†

Abstract. We adapt a method proposed by Nesterov [Math. Program. Ser. A, 103 (2005),
pp. 127–152] to design an algorithm that computes ε-optimal solutions to fractional packing prob-
lems by solving O(ε−1

√
Kn ln(m)) separable convex quadratic programs, where n is the number of

variables, m is the number of constraints, and K is the maximum number of nonzero elements in
any constraint. We show that the quadratic program can be approximated to any degree of accu-
racy by an appropriately defined piecewise-linear program. For the special case of the maximum
concurrent flow problem on a graph G = (V,E) with rational capacities and demands, we obtain
an algorithm that computes an ε-optimal flow by solving shortest path problems, i.e., problems in
which the number of shortest paths computed grows as O(ε−1 log(ε−1)) in ε and polynomially in the
size of the problem. In contrast, previous algorithms required Ω(ε−2) iterations. We also describe
extensions to the maximum multicommodity flow problem, the pure covering problem, and mixed
packing-covering problem.

Key words. approximation algorithms, packing problems, multicommodity flows

AMS subject classifications. 68W25, 68W40, 90C59, 90C47, 90C05, 90C06
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1. Packing problems. The prototypical example of the problems considered in
this paper is the maximum concurrent flow problem defined as follows. Given a graph
G = (V,E), where each edge e ∈ E has a positive capacity ue, and K commodities
with associated demands dk ∈ R|V |, k = 1, . . . ,K, solve

min maxe∈E

⎧⎨
⎩

k∑
k=1

fk,e

ue

⎫⎬
⎭

s.t. Nfk = dk, k = 1, . . . ,K,

fk ≥ 0, k = 1, . . . ,K,

where N ∈ R|V |×|E| is the node-arc incidence of the graph. Here and below we
will assume that commodities are grouped by source; i.e., for each k there is one
vertex s(k) with dk,s(k) > 0. We will call a nonnegative vector fk ∈ R|E| a flow
vector for commodity k if Nfk = dk, i.e., it routes the corresponding demand dk. A
nonnegative vector f = (f1, f2, . . . , fK) ∈ RK|E| is called a flow if fk is a flow vector
for commodity k, k = 1, . . . ,K. For a given flow f , the quantity (

∑
k fk,e)/ue is

called the load or congestion on the edge e ∈ E. Thus, the maximum concurrent flow
problem computes a flow that minimizes the maximum congestion. Problems of this
nature arise in the context of routing in capacitated networks. Furthermore, many
network design algorithms solve maximum concurrent flow problems as subroutines
in order to find a feasible routing.
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The maximum concurrent flow problem is a special case of the fractional packing
problem. Let A ∈ [a1, . . . , a

T
m]T ∈ {0, 1}m×n, and let Q ⊆ Rn

+ be a polyhedron. For

x ∈ Q, let λ(x)
Δ
= max1≤i≤m{aTi x}. Then the fractional packing problem Pack(A,Q)

is given by

λ∗
A,Q

Δ
= min

x∈Q
λ(x).(1)

The fractional packing problem is itself a special case of the generalized packing prob-
lem, where each entry aij of the matrix A is assumed to be nonnegative, rather than
aij ∈ {0, 1}.

A special case of the generalized packing problem of particular interest is the
so-called block-angular problem. In such problems, there exist positive integers k > 0,
and ni, i = 1, . . . , k, with

∑
i ni = n, such that the set Q = Q1 × Q2 × · · · × Qk,

Qi ⊆ Rni , i = 1, . . . , k. When Q is a polyhedron this simply says that the nonzeros
in the constraint matrix defining Q are arranged, without loss of generality, into a
block-diagonal structure with k blocks. The maximum concurrent flow problem is
clearly a block-angular problem with each block corresponding to a commodity; the
constraints in a given block describe flow conservation and nonnegativity of the flow
variables for the corresponding commodity.

Generalized packing problems are linear programs, and therefore can be solved to
optimality in polynomial time. Nevertheless, these problems—and in particular the
maximum concurrent flow problem—have long been recognized as extremely chal-
lenging. State-of-the-art implementations of the simplex method and also of interior
point methods, running on fast machines, can require an inordinate amount of time
to solve maximum concurrent flow problems on networks with a few thousand nodes,
even when physical memory is adequate. Frequently, these codes can also consume
an extremely large amount of memory. Consequently, they often prove unusable. For
more background see [3].

It is not clear, from a theoretical standpoint, why traditional linear programming
methods tend to require a large number of iterations to solve maximum concurrent flow
problems. However, it is fairly clear why such methods tend to require a large running
time. This is due to very expensive matrix computations, e.g., matrix inversions or
Cholesky factorizations, that must be repeatedly carried out. As an example, consider
a maximum concurrent flow problem on a network with |V | vertices, |E| edges, and K
commodities. The overall constraint matrix for the linear program will have |E|+K|V |
rows and K|E| variables. Even when the graph is very sparse (|E| = θ(|V |)), if we
have K = θ(|V |) the numerical linear algebra will be over matrices of dimension
θ(|V |2). Further, even though the constraint matrix may be very sparse, the matrix
computations will usually experience “fill-in.”

These facts were recognized early on, in the context of block-angular linear pro-
grams, and were a motivating factor for some of the earliest decomposition ideas
in mathematical programming, such as the Dantzig–Wolfe decomposition and La-
grangian relaxation. See [15, 3] for further background. The goal of these methods
was to try to reduce the solution of the linear program min{cTx : Ax ≤ b, x ∈ Q}
to a set of linear programs over Q. For a block-angular problem, a linear program
over Q reduces to a set of linear programs over the blocks; therefore, when there are
many blocks and each block is small relative to the overall Q, each iteration becomes
cheap, while direct solution of the complete problem using a standard method may
be impossible. For the concurrent flow problem, a linear program over Q reduces to
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a set of shortest path problems for each commodity. In essence, this approach leads
to a model of computation in which optimization over Q is viewed as the building
block of more complex algorithms; the critical theoretical issue then becomes that of
minimizing the number of iterations needed to achieve convergence.

This model of computation is perhaps not as precise as one would like it to
be—we need to clearly state what can be done in addition to optimization over Q.
Nevertheless, the model does capture the notion that we want to avoid matrix algebra
over large matrices. In this paper we will adopt this model (an algorithm that fits the
model will be called a decomposition method), and achieving low iteration counts will
be a central goal in the design of our algorithms.

1.1. Modern results. The difficulty of the maximum concurrent flow problem,
and its practical relevance, have long provided strong motivation for developing fast
algorithms that can provide provably good, if not optimal, solutions.

Shahrokhi and Matula [26] developed the first approximation algorithm for the
maximum concurrent flow problem. They considered the special case in which the
capacity on all edges are equal. The method in [26] considers an exponential potential
function of the form ∑

e∈E

eα
(∑

k fk,e

)
.

We will call a flow f with maximum load at most (1+ ε) times the optimal maximum
load an ε-optimal flow. It is shown in [26] that, given ε ∈ (0, 1), one can choose
α = α(ε) such that ε-optimal flow can be computed by minimizing the potential
function to within an appropriate absolute error. The algorithm employed in [26] is,
roughly, a first-order procedure to minimize the potential function, i.e., a procedure
that approximates the potential function by its gradient, and the number of iterations
required is O(ε−3) times a polynomial in the number of nodes and edges. In addition,
the algorithm maintains a list of O(ε−2) paths so that the dependence of the running
time on ε is O(ε−5). Each iteration consists of a shortest path computation or a
single-commodity minimum-cost flow problem; thus, this algorithm is a decomposition
method.

The Shahrokhi–Matula result spurred a great deal of research that generalized
the techniques to broader packing and covering problems, gradually reducing the
dependence of the iteration count on ε to finally obtain ε−2, reducing the overall
complexity to O(ε−2) times a polynomial in the size of the graph, and also simplifying
the overall approach. See [15, 19, 9, 10, 24, 25, 8, 5] for details; [25, 8, 5] attain the
best bounds for the maximum concurrent flow problem. All of these algorithms rely,
sometimes implicitly, on the exponential potential function, and can be viewed as
first-order methods. Villavicencio and Grigoriadis [30] use a logarithmic potential
function. Bienstock and Raskin [4] show that the “flow deviation” algorithm for the
maximum concurrent flow problem in [7] yields an O(ε−2) algorithm—this time using
a rational barrier function.

A natural issue is that of proving lower bounds on the number of iterations needed
to obtain an ε-optimal solution to a packing problem, and, in particular, the depen-
dence of the iteration count on ε. Klein and Young [16] studied the complexity of
Pack(A,Q), assuming that there exists an oracle that, given c ∈ Rn, returns an
optimal extreme point for the linear program min{cTx : x ∈ Q}. The main result in
[16] is that (under appropriate assumptions) the number of oracle calls needed to find
an ε-optimal solution to a packing problem can be as large as Ω(ρε−2 logm). Here
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ρ = maxx∈Q max1≤i≤m aTi x (known as the width of the problem). This result applies
when ρε−2 = O(m0.5−δ) for some δ > 0. Thus, in essence, the result amounts to an
Ω(m0.5) lower bound on the iteration count. The dependence on ε implied by the
bound is striking, and it raises the question of whether ε−2 is indeed a lower bound
on the dependence on ε for the number of iterations required by a decomposition
method. We note here that the assumption that the optimization oracle returns an
extreme point of Q is critical in the proof in [16].

For some time, a parallel line of research has been followed in the nondifferentiable
optimization community. Roughly stated, the focus of the work has been to produce
solutions with small absolute error, rather than a small relative error as has been
the focus of the algorithms community. This line of work has produced a number of
interesting ideas and results (see [3] for references). Among them are decomposition
algorithms that solve the generalized packing problem within an additive error of ε in
O(ε−2) iterations; however, these are not polynomial-time algorithms, even for fixed
ε, in that the O() notation hides constants that depend on the matrix A and the set
Q. Recently Nesterov [22] (also see [21]) obtained a major result: a decomposition
algorithm that solves min-max problems to within an additive error of ε in O(ε−1)
iterations. Again, this algorithm is, in general, not a polynomial-time algorithm,
even for fixed ε. The algorithm combines, in a novel way, the (essentially folkloric)
idea of making use of old iterate information with that of an approximate second-
order approximation of the exponential potential function. In section 2.2 we present
a streamlined analysis of the key ideas in [22].

1.2. New results. We show how to adapt the technique in [22] to obtain an
ε-optimal solution (i.e., a solution with a relative error ε) to Pack(A,Q) by solving
at most

O
(
ε−1

√
Kn logm

)
convex, separable quadratic programs (QPs) over sets of the form

Q(λu)
Δ
= {x ∈ Q : 0 ≤ xj ≤ λu, 1 ≤ j ≤ n},(2)

where λu > 0, and K denotes the maximum number of nonzero terms in any row
of A. While some of the key ideas in this paper are derived from those in [22], our
paper is self-contained. We also adapt a binary search technique from [9]. It is quite
possible that in our iteration bound some of the constants and the dependency on
m, n, and K can be improved with a somewhat more complex analysis. Also note
that in the block-angular case each optimization over Q(λ) breaks up into a separate
problem over each block.

It is known that convex QPs can be solved in polynomial time (for some of the
earliest references, see [17, 18]). But there is more that can be said here. Let S
be a closed convex body in Rn. Given c ∈ Rn, the linear optimization problem
over S consists of finding x̂ ∈ S such that cT x̂ = min

{
cTx : x ∈ S

}
. Also, given

y ∈ Rn, the separation problem over S consists of either showing that y ∈ S or
finding a violated inequality, e.g., a vector d ∈ Rn and a scalar d0 such that dT y <
d0 but dTx ≥ d0 for all x ∈ S. It is well known (see [12, 13]) that the linear
optimization problem and the separation problem over S are polynomially equivalent
under appropriate (technical) assumptions regarding S; i.e., any instance of the linear
optimization (resp., separation) problem can be reduced to a polynomial number of
instances of the separation (resp., linear optimization) problem.
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Returning to our problem, suppose that Q is given by a (linear) optimization
oracle, i.e., a subroutine that solves the linear optimization problem over Q for any
objective vector c. For example, if Q describes the set of feasible flows in a network
that correspond to sending one unit of flow from a certain vertex s to another vertex
t, the subroutine would consist of an s-t shortest path algorithm. It follows that
the separation problem over Q(λ) can be solved by performing at most a polynomial
number of oracle calls: the conditions 0 ≤ xj ≤ λu can be checked directly, producing a
violated inequality when not satisfied, and the condition x ∈ Q is handled by using the
aforementioned polynomial equivalence between linear optimization and separation.
Under appropriate assumptions [27] (see also [17], which was also published as [18])
this implies that a convex QP over Q(λ) can be solved by making a polynomial number
of calls to the (linear) optimization oracle for Q.

The generalized packing problem can be reduced to a fractional packing problem
as follows. Let N be the number of nonzeros in A. For each entry aij > 0, introduce
a new variable yij and a new constraint

yij − aijxij = 0.(3)

Let

P =
{
y ∈ RN : ∃x ∈ Q such that (3) holds ∀ aij > 0

}
.

It follows that

λ∗
A,Q = min

y∈P
max

1≤i≤m

∑
j :aij>0

yij .(4)

Furthermore, P is closed convex, and because of (3), a convex separable QP over P
reduces to one over Q. Hence, our result for fractional packing problems implies that,
for any ε ∈ (0, 1), the number of iterations required to compute an ε-optimal solution
for the generalized packing problem is

O
(
ε−1

√
KN logm

)
.

Using ideas derived from [20], we show how the QPs can be approximated by
piecewise-linear programs. For the special case of maximum concurrent flows, this
leads to an algorithm that computes ε-optimal flow by solving

O∗
(
ε−1K2E

1
2

(
LU + |E|�logD	 + |E| log

(
1

ε

))
+ ε−1|V ||E|

)

shortest path problems, where LU denotes the number of bits needed to store the
capacities, D is the sum of all demands, and K is the number of commodities grouped
by source.

This paper is organized as follows. Section 2 presents our results on packing
problems. Section 3 specializes our results to the maximum concurrent flow problem
with rational capacities and demands. Section 4 describes the application of our
techniques to the maximum multicommodity flow algorithms. Section 5 considers
covering problems, and section 6 considers mixed packing and covering problems.
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1.3. Comparison with previous results. First, we note that our results ap-
pear to violate the Klein–Young lower bound of Ω(ε−2). This is not a contradiction
since our algorithms bypass the requirements needed for the analysis in [16] to hold;
in particular, we dynamically change the bounds on the variables. This feature will,
in general, result in iterates in the interior of the set Q. In addition, some of our
algorithms solve QPs over Q, again leading to interior solutions.

The previous fastest algorithms for finding ε-optimal solutions to generalized pack-
ing problems have a worst-case complexity that grows in proportion to ε−2. Our
methods improve on this, but at the cost of increasing the dependence on n and
m. Hence, for ε fixed or moderately small, our algorithms are not the fastest. Note
that, for example, the algorithm for maximum concurrent flows in [5] has complexity
O∗(ε−2|E|(K + |E|)), where K is the number of origin-destination commodity pairs.
See also [25, 8] for similar bounds.

Another class of algorithms worthy of comparison consists of the standard interior
point polynomial-time algorithms for linear programming. Even though these are cer-
tainly not decomposition methods, their respective running times have a dependence
on ε that grows like log(ε−1), and hence for very small ε these algorithms are certainly
faster than ours. Within this class, the algorithms proposed by Kapoor and Vaidya
[14] and Vaidya [28, 29] deserve special attention. These algorithms are not decompo-
sition algorithms, and when applied to a packing problem, Vaidya [29] computes, as a
subroutine, the inverse of n×n matrices ([15] restates this as m×m). In spite of this, it
is possible that the algorithms in [14, 28, 29] are faster than ours even for moderate ε.

In summary, the primary contribution of this paper is to show that there exist de-
composition methods for which the iteration count for computing ε-optimal solutions
to generalized packing problems (among others) grows like O(ε−1) and is polynomial
in n and m. We expect that the actual running time of our algorithms can be im-
proved by using ideas such as those in [25, 8, 5] and, possibly, by using randomization
as in [15].

1.4. Notation. In this paper, an ε-optimal solution will denote a solution that
has a relative error at most ε. We also compute solutions with a given absolute error.
We use the O(·) notation to denote the leading term in ε and the O∗(·) notation to
suppress polylog factors in parameters such as m, n, and K. Also, since our focus in
this paper is on designing decomposition algorithms with improved dependence on ε,
we will occasionally state O(·) and O∗(·) bounds in terms of their dependence on ε,
while suppressing polynomial factors in m, n, and K.

2. Fractional packing problems PACK(A, Q). In this section we present
our algorithm for Pack(A,Q). As with many of the previous algorithms, our algo-
rithm consists of an outer binary search procedure for refining an estimate for λ∗

A,Q

and an inner procedure that is a potential reduction algorithm.

2.1. Outer loop: Binary search. In this section we abbreviate λ∗
A,Q as λ∗.

We assume that λ∗ > 0 and that we are given bounds 0 < λl ≤ λ∗ ≤ λu such that
λu ≤ O(min {m,K})λl. Such bounds can be computed by solving a polynomial (and
independent of ε) number of linear programs over sets Q(λ); see [3, 9] for details. Next,
these bounds are refined using a binary search procedure introduced in [9] (see [3] for
an alternate derivation). In the binary search procedure below, absolute(Q,A,λu, δ)
denotes any algorithm that returns an x ∈ Q such that λ(x) ≤ λ∗ + δ, i.e., an x that
has an absolute error less than δ.
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binary search

Input: values (λl, λu) with λl ≤ λ∗ ≤ λu ≤ 2 min{m,K})λl

Output: ŷ ∈ Q such that λ(y) ≤ (1 + ε)λ∗

while (λu − λl) ≥ ελl do
set δ = 1

3 (λu − λl)
set x̂ ← absolute(Q,A, λu, δ)
if λ(x̂) ≥ 1

3λl + 2
3λu, set λl ← 2

3λl + 1
3λu

else set λu ← 1
3λl + 2

3λu

return x̂

In section 2.2 we construct an algorithm absolute with the following properties.
Theorem 1. There exists an algorithm absolute(A,Q, λu, δ) that computes, for

any δ ∈ (0, λu), an x̂ ∈ Q with λ(x̂) ≤ λ∗ + δ by solving O
(√

Kn logmλu

δ

)
separable

convex QPs over Q(λu).
As a consequence, we have the following complexity bound for the above binary

search procedure.
Corollary 2. The complexity of the binary search procedure is

O
(
ε−1Cq

√
Kn logm

)
,

where Cq is the cost of solving a convex separable QP over Q(λu).
Proof of Corollary 2. Consider first the iterations, where λu > 2λl. Since initially

λu ≤ O(min {m,K})λl,

there are at most O(log min {m,K}) iterations of this sort. In each such iteration we
have λu

δ < 6; thus by Theorem 1 the total number of QPs over sets Q(λu) that are
solved during these iterations is polynomial in K, n, and m.

Now consider the remaining iterations, i.e., those where λu ≤ 2λl. Denoting by
H the number of such iterations, we have H = O(log(1/ε)). Further, it is easy to
check that in each iteration the ratio λu/δ increases by at most a factor of 3/2. Now,
again by Theorem 1, the number of QPs solved during the remaining iterations is, up
to constants,

√
Kn logm

H∑
h=0

(
3

2

)h

= 2
√
Kn logm

((
3

2

)H

− 1

)
.

Thus, the result follows.

2.2. Inner loop: ABSOLUTE(A, Q, λu, δ). In this section we describe the
absolute(A,Q, λu, δ) algorithm. We construct this algorithm using techniques from
[22].

Define Q̄ ∈ R2n as

Q̄
Δ
=

{
(x, y) ∈ R2n : x ∈ Q, xj = λuyj , yj ≤ 1, j = 1, . . . , n

}
.

Since λ∗ ≤ λu, Q̄ �= ∅. Let P denote the projection of Q̄ onto the space of the y
variables, i.e.,

P =
{
y ∈ Rn : ∃x s.t. (x, y) ∈ Q̄

}
.

If the feasible set Q in (1) is a polyhedron, so are Q̄ and P . Moreover, P ⊆ [0, 1]n.
Define

λ∗
P

Δ
= min

{
λ(y) = max

1≤i≤m
{aTi y} : y ∈ P

}
.
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Then it follows that λ∗
P = λ∗/λu ≤ 1.

In this section we describe an algorithm that, for any γ ∈ (0, 1), computes ŷ ∈ P ,
with λ(ŷ) ≤ λ∗

P + γ, by solving O(γ−1
√
Kn logm) separable convex QPs over P . Note

that these programs reduce to separable convex QPs over Q(λu), and, in the case of
multicommodity flow problems, break up into separable convex quadratic min-cost
flow problems over each commodity. Choosing γ = δ

λu
will accomplish the objective

of this section.

2.2.1. Potential reduction algorithm. For the purposes of this section, we
assume that we are given a matrix A ∈ {0, 1}m×n with at most K nonzeros per row,
a (nonempty) closed convex set P ⊆ [0, 1]n, and a constant γ ∈ (0, 1). Furthermore,
it is known that λ∗

P ≤ 1.
Define the potential function Φ(x) as follows [9, 24]:

Φ(x)
Δ
=

1

|α| ln

(∑
i

eαa
T
i x

)
, α �= 0.

It is easy to show (see [9] for details) that for α > 0,

λ(x) ≤ Φ(x) ≤ λ(x) +
lnm

α
∀x ∈ P.(5)

Let Φ∗ Δ
= min{Φ(x) : x ∈ P} and choose α = 2 lnm

γ . Then, for all x ∈ P such that

φ(x) ≤ Φ∗ + γ/2, the bound (5) implies that

λ(x) ≤ Φ(x) ≤ Φ∗ +
γ

2
≤ Φ(x∗) +

γ

2
≤ λ∗ +

lnm

α
+

γ

2
= λ∗ + γ.

Thus, our task reduces to computing x ∈ P satisfying Φ(x) ≤ Φ∗ + γ/2.
In what follows, the notation 〈x, y〉 will denote the usual Euclidean inner product

xT y.
Algorithm QP

Input: P ⊆ [0, 1]n, 0
1 matrix A, α = lnm

γ , L = γ−1
√

8Knln(m)

Output: ŷ ∈ P such that λ(ŷ) ≤ λ∗
P + γ

choose x(0) ∈ P . set t ← 0.
while (t ≤ L) do

g(t) ← ∇Φ(x(t))

y(t) ← argminx∈P

{
K|α|

2

n∑
j=1

(xj − x
(t)
j )2 +

〈
g(t), x− x(t)

〉}

St(x) ← 2

(t + 1)(t + 2)

{
K|α|

n∑
j=1

(xj − x0
j )

2+

t∑
h=0

(h + 1)
[
Φ(x(h))+

〈
g(h), x− x(h)

〉]}

z(t) ← argminx∈P

{
St(x)

}
x(t+1) ←

( 2

t + 3

)
z(t) +

( t + 1

t + 3

)
y(t)

t ← t + 1

return y(L)
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The following result is established in section 2.2.2.
Theorem 3. For any t ≥ 0, Φ(y(t)) ≤ St(z

(t)).
Theorem 3 implies the following corollary.
Corollary 4. Φ(y(L)) ≤ Φ∗ + γ/2.
Proof. Fix t ≥ 0. Let x∗ = argminx∈P {Φ(x)}. By definition,

St(z
t) ≤ St(x

∗),

=
2

(t + 1)(t + 2)

⎧⎨
⎩Kα

n∑
j=1

(x∗
j − x

(0)
j )2 +

t∑
h=0

(h + 1)
[
Φ(x(h)) +

〈
g(h), x∗ − x(h)

〉]⎫⎬⎭
≤ 2Knα

(t + 1)(t + 2)
+ Φ∗,(6)

where (6) follows from the following facts:

0 ≤ x∗
i , x

(0)
i ≤ 1 ⇒ (x∗

i − x
(0)
i ) ≤ 1,

Φ convex ⇒ Φ(x(h)) +
〈
g(h), x∗ − x(h)

〉
≤ Φ(x∗).

Theorem 3 implies that Φ(y(t)) ≤ St(z
(t)). Thus,

Φ(y(t)) − Φ∗ ≤ γ

2m
, t ≥ L =

√
8Kn lnm

γ
.

2.2.2. Proof of Theorem 3. The following result is a refinement of the Taylor
series bound in [9] (see also [3, 23]). The proof is provided in section 7.1.

Lemma 5. For all x, y ∈ P , we have Φ(y) ≤ Φ(x)+
〈
∇Φ(x), y−x

〉
+ K|α|

2

∑
j(yj−

xj)
2.
The rest of the proof of Theorem 3 closely mirrors the development in section 3

of [22]. The proof is by induction on t. To establish the base case t = 0, note that

S0(z
(0)) = K|α|

n∑
j=1

(z
(0)
j − x0

j )
2 + Φ(x0) +

〈
g0, z

(0) − x0
〉

≥ K|α|
2

n∑
j=1

(z
(0)
j − x0

j )
2 + Φ(x0) +

〈
g0, z

(0) − x0
〉

≥ K|α|
2

n∑
j=1

(y
(0)
j − x0

j )
2 + Φ(x0) +

〈
g0, y

(0) − x0
〉

(7)

≥ Φ(y(0)),(8)

where (7) follows from the definition of y(0) and (8) follows from Lemma 5.
To establish the induction step, assume that Φ(y(t)) ≤ St(z

(t)). By definition, we
have

St+1(x) =
( t + 1

t + 3

)
St(x)

+
( 2

t + 3

)[
Φ(xt+1) +

〈
g(t+1), x− x(t+1)

〉]
.
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Since ∇2St = 4K|α|
(t+1)(t+2)I, and St is minimized at zt, we obtain

St+1(x) ≥
( t + 1

t + 3

)
St(z

(t)) +
2K|α|

(t + 2)(t + 3)

∑
j

(xj − z
(t)
j )2

+
2

t + 3

[
Φ(x(t+1)) +

〈
g(t+1), x− x(t+1)

〉]
.(9)

By the induction hypothesis and the convexity of Φ, it follows that St(z
(t)) ≥ Φ(y(t)) ≥

Φ(x(t+1))+
〈
g(t+1), y(t)−x(t+1)

〉
. Substituting this bound in (9) and rearranging terms,

we get

St+1(x) ≥ Φ(x(t+1)) +
2K|α|

(t + 2)(t + 3)

∑
j

(xj − z
(t)
j )2

+
〈
g(t+1),

( 2

t + 3

)
x +

( t + 1

t + 3

)
y(t) − x(t+1)

〉
≥ Φ(x(t+1)) +

2K|α|
(t + 3)2

∑
j

(xj − z
(t)
j )2

+
〈
g(t+1),

( 2

t + 3

)
x +

( t + 1

t + 3

)
y(t) − x(t+1)

〉
= Φ(x(t+1))

+
K|α|

2

∑
j

(( 2

t + 3

)
xj +

( t + 1

t + 3

)
y
(t)
j − x

(t+1)
j

)2

+
〈
g(t+1),

( 2

t + 3

)
x +

( t + 1

t + 3

)
y(t) − x(t+1)

〉
,(10)

where (10) is obtained by substituting
(

2
t+3

)
z(t) = x(t+1) −

(
t+1
t+3

)
y(t). Note that

for x ∈ P ,
(

2
t+3

)
x +

(
t+1
t+3

)
y(t) ∈ P as well. Thus, the expression in (10) is lower

bounded by

St+1(x) ≥ Φ(x(t+1)) + min
y∈P

⎧⎨
⎩K|α|

2

∑
j

(
yj − x

(t+1)
j

)2
+

〈
g(t+1), y − x(t+1)

〉⎫⎬⎭
= Φ(x(t+1)) +

K|α|
2

∑
j

(
yt+1
j − x

(t+1)
j

)2
+

〈
g(t+1), yt+1 − x(t+1)

〉
(11)

≥ Φ(y(t+1)),(12)

where (11) follows from the definition of y(t+1) and (12) follows from Lemma 5.
Remark. Note that the proofs of Corollary 4, Lemma 5, and Theorem 3 do not

require α > 0.

2.2.3. Notes on Algorithm QP. Having proved the correctness of Algorithm
QP, we now give an intuitive motivation for the main algorithmic ideas behind it.
The first step is to approximate the piecewise-linear function λ(x) by the smooth
potential function Φ(x). In all previous work on fractional packing problems, the
next steps have been to construct the first-order Taylor series approximation to Φ(x)
and minimize this linear approximation over the feasible set Q. The main bottleneck
with the first-order methods is that the approximation is a lower bound; therefore,
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one has to tightly control the step size to ensure that the improvement in the linear
approximation is close to that in the potential function itself. As a direct consequence,
the first-order methods yield algorithms whose complexity is O( 1

ε2 ).
The obvious next step is to consider the second-order approximation to Φ(x).

Unfortunately, the Hessian of Φ(x) is dense and, therefore, the associated QP is rela-
tively expensive. In [22], Nesterov proposed approximating the Hessian by its largest
eigenvalue, i.e., replacing the Hessian with an identity matrix scaled by the largest
eigenvalue. This immediately yields a second-order upper bound for Φ(x) that is easy
to optimize. (An upper bound is superior to the lower bound since the improvement
in Φ(x) is guaranteed to be more than the upper bound; consequently, one can set
an aggressive step length.) Unfortunately, approximating the Hessian by its largest
eigenvalue yields a very weak approximation, particularly when the iterate x(t) is far
from the global minimum x∗. Algorithm QP corrects for this by computing two iter-
ates: y(t) is a “local” iterate that uses only the “local” gradient information, i.e., the
gradient at the current iterate x(t), and z(t) is a “global” iterate that uses a suitably
weighted combination of the gradients at all the previous iterates. The next iterate,
x(t+1), is a convex combination of the iterates y(t) and z(t). As iteration count t in-
creases, the weight on the “local” iterate y(t) increases to 1, i.e., the algorithm becomes
a Newton method, where the Hessian is approximated by its largest eigenvalue. The
intuition of combining gradients at previous iterates to improve the approximation has
also been previously proposed in the literature—Nesterov’s contribution showed that
a particular combination leads to a worst-case bound on the complexity. It should
be mentioned that this idea was also employed by Nemirovski [21] in a very different
manner so as to obtain similar results.

Directly applying the technique proposed in [22] to the maximum concurrent flow
problem does not yield a polynomial-time algorithm. Next, we discuss a particular
scaling that we introduced in section 2.2 to construct a polynomial-time algorithm.
When defining the set Q̄ in section 2.2 we impose the bounds yj ≤ 1 for all j.
This bounding technique is essential in that it effectively reduces the width to at
most n. This technique can be read in the approach used in [9] and [15]. More
recent algorithms, such as those in [8] and [5], do not directly rely on this technique
(arguably, their method for controlling width is similar in that they directly control
the magnitudes of the solution variables) and potentially our overall scheme could be
improved along the lines of [8] and [5]. The scaling technique in section 2.2 is essential
for the analysis of Algorithm QP to go through; the scaling methods implicit in [9]
and [15] will not work in this context.

2.3. Piecewise-linear approximation. Algorithm QP requires one to solve a
sequence of separable QPs over P . In this section we describe a general method for
approximating the separable convex quadratic function by piecewise-linear function
with arbitrarily small error. This method is derived from one given in Minoux [20].

Fix σ > 0 and w ≥ 0. Define a continuous convex piecewise-linear approximation
Lσ,w(v) to the quadratic function 1

2 (v − w)2 : R+ �→ R+ as

Lσ,w(v)
Δ
=

1

2
q2σ2 +

w2

2
− wv +

(
q +

1

2

)
σ(v − qσ), v ∈ [qσ, (q + 1)σ), q ∈ Z+.

For q ∈ Z+, the derivative L′
σ,w(qσ) is not defined. The left-derivative L−

σ,w(qσ) =(
q − 1

2

)
σ−w and the right-derivative L+

σ,w(qσ) =
(
q + 1

2

)
σ−w. For v ∈ (qσ, (q+1)σ),

q ∈ Z, the derivative L′
σ,w(v) exists and L′

σ,w(v) = L+
σ,w(v) = L−

σ,w(v) =
(
q + 1

2

)
σ−w.

The following properties are easy to obtain.
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Lemma 6. The following hold for any σ > 0 and w ∈ R+.
(i) For q ∈ Z+, Lσ,w(qσ) = 1

2 (qσ − w)2.

(ii) For v ∈ R+, 1
2 (v − w)2 ≤ Lσ,w(v) ≤ 1

2 (v − w)2 + σ2

8 .
(iii) For v ∈ R+, v − w − σ

2 ≤ L−
σ,w(v) ≤ v − w ≤ L+

σ,w(v) ≤ v − w + σ
2 .

2.4. Algorithm QPσ. Algorithm QPσ approximates each convex quadratic
term 1

2 (xj − x̄j)
2 by the piecewise-linear Lσj ,x̄j

(xj) with possibly different σj ∈ (0, 1)
for each variable xj . Thus, each optimization problem in the course of Algorithm
QPσ minimizes a piecewise-linear function over the convex set P .

Algorithm QPσ

Input: P ⊆ [0, 1]n, A, α = lnm
γ , L = γ−1

√
16Kn ln(m), σj ≤ 2−p, p =

�3 ln(L)	 =
⌈

3
2 ln(16Kn ln(m)) + 3 ln( 1

γ )
⌉

Output: ŷ ∈ P such that λ(ŷ) ≤ λ∗
P + γ

choose x̂0 ∈ P . set t ← 0.
while (t ≤ L) do

g(t) = ∇Φ(x̂(t))

ŷ(t) ← argminx∈P

{
K|α|

n∑
j=1

L
σj ,x̂

(t)
j

(xj) +
〈
g(t), x− x̂(t)

〉}

Ŝt(x) ← 2

t2 + 3t + 2

{
2K|α|

n∑
j=1

L
σj ,x̂

(0)
j

(xj) +

t∑
h=0

(h + 1)
[
Φ(x̂h) +

〈
gh, x− x̂h

〉]}

ẑ(t) ← argminx∈P

{
Ŝt(x)

}
x̂(t+1) ←

( 2

t + 3

)
ẑ(t) +

( t + 1

t + 3

)
ŷ(t)

t ← t + 1

return y(L)

In view of Lemma 6, we would expect that Algorithm QPσ successfully emulates
Algorithm QP if the σj are small enough. In section 7.2 we provide a proof of the
following fact.

Theorem 7. For any t ≥ 0,

Φ(ŷ(t)) ≤ Ŝt(ẑ
(t)) +

(
5K|α|

2

)(
t∑

h=1

1

h2
+ t

)(∑
k

σj

)
.

This theorem implies the correctness of Algorithm QPσ.
Corollary 8. The output y(L) of Algorithm QPσ satisfies Φ(y(L)) ≤ Φ∗ + γ/2.
Proof. Suppose σj ≤ 2−p. Using Theorem 7 and Lemma 6(ii), we obtain

Φ(ŷ(t)) − Φ∗ ≤ 2Kn|α|
(t + 1)(t + 2)

(
1 +

1

4
(2−2p)

)

+

(
5K|α|n

2

)(
t∑

h=1

1

h2
+ t

)
2−p

< K|α|n
(

2 + 2−(2p+1)

t2
+

5

2
(2 + t)2−p

)
.
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Suppose t ≥ 2 and choose p ≥ 3 ln t. Then Φ(ŷ(t))−Φ∗ ≤ 8K|α|n
t2 . A simple calculation

now establishes the result.

3. Concurrent flows with rational capacities and demands. In this section
we discuss the special case of maximum concurrent flow with rational capacities and
show that the piecewise-linear approximation introduced in section 2.3 can be solved
efficiently for this special case.

Suppose we have a network G = (V,E) with |V | nodes, |E| edges, and K com-
modities. We assume that the capacity ue of every edge e is a positive rational. The
demand vector dk of every commodity k is also assumed to be a rational vector. Since
scaling capacities and demands by a common positive constant does not change the
value of the problem, we assume that all capacities and demands are integers. Let
fk,e denote the flow associated with commodity k on edge e and let fk denote the
|E|-vector with entries fk,e. Then the maximum concurrent flow problem is given by

λ∗ = min λ

s.t.
K∑

k=1

fk,e ≤ λue ∀k, e,

Nfk = dk, fk ≥ 0, k = 1, . . . ,K,

where N denotes the node-edge incidence matrix of the network. Let F = {f : Nfk =
dk, fk ≥ 0, k = 1, . . . ,K} denote the polyhedron of feasible flows.

In order to describe our piecewise-linear approach, in the following steps we review
how the procedures we described in the prior sections would apply to the concurrent
flow problem.

Step 1. Define new, scaled variables gk,e = fk,e/ue. This scaling leaves the
objective unchanged, and the constraints are transformed into∑

k

gk,e ≤ λ, e = 1, . . . , |E|,

g ∈ Q = {g ∈ RK×|E| : ∃f ∈ F with gk,e = fk,e/ue ∀k, e}.

The problem is now in the canonical form (1), with m = |E| and n = K|E|.
Step 2. After i iterations of binary search (see section 2.1), we get lower and

upper bounds λl and λu with

λu − λl

λl
≤

(
2

3

)i

O(min{m,K}).(13)

Let δ = 1
3 (λu−λl). We seek a vector g with maxe

∑
k gk,e ≤ λ∗ + δ. Upon computing

g, we reset either λl ← λl + δ or λu ← λu − δ.

Step 3. Let P (λu)
Δ
= {z : ∃g ∈ Q with z = g/λu, 0 ≤ z ≤ 1}. Procedure

absolute computes the vector g needed in Step 2 by approximately solving the
scaled optimization problem

min λ

s.t.
K∑

k=1

xk,e ≤ λ, e = 1, . . . , |E|,

x ∈ P (λu).
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The value of this problem is λ∗/λu ≤ 1, and absolute computes a feasible x with
maxe

∑
k xk,e ≤ λ∗/λu + γ, where γ = δ/λu.

In section 2.2.1 we showed that in order to achieve the goal of procedure absolute

it is sufficient that x satisfy Φ(x) ≤ Φ∗ + γ/2. Corollary 8 in section 2.4 establishes
that the output ŷ(t) produced by Algorithm QPσ will satisfy this condition, provided

(a) σk,e ≤ 2−p ∀k,∀e,
(b) p ≥ p̄

Δ
=

⌈
3
2 ln(16Kn ln(m)) + 3 ln( 1

γ )
⌉
,

(c) t ≥
√

16Kn lnm
γ .

Next we describe how to achieve (a)–(c) in the particular framework of the maximum
concurrent flow problem. Note that in terms of the initial flow variables fk,e, we have
xk,e = 1

λuue
fk,e. We apply the framework developed in section 2.3 to the concurrent

flow problem as follows:
(i) We set p = p̄ + �logD	, where D is the sum of all demands, and

σk,e =
2−p

ue
∀k, e.(14)

This satisfies requirement (a) of Step 3.
(ii) We modify binary search as follows. Every time a new upper bound λu

is computed, we replace it with a relaxed bound λ̂u ≥ λu, chosen so that
2p

λ̂u
=

⌊
2p

λu

⌋
. Note that λu ≤ D, and so λ̂u ≤ λu

1−λu2−p ≤ λu

(
1 + O(2−p̄)

)
.

Since p̄ = 3
2 ln(Kn ln(m)) + 3 ln( 1

γ ), where γ = δ
λu

, we have that

λ̂U − λl

λu − λl
≤ 1 +

λuO (2−p̄)

λu − λl
≤ 1 + O

(
2−p̄

3γ

)
= 1 + o(1).

Thus, up to constants, the complexity bound in Corollary 2 remains un-
changed. For simplicity, in what follows we will use the notation λu to refer
to the relaxed upper bound.

3.1. Solving the piecewise-linear problems. In this section we show how
the modifications (i) and (ii) above allow one to efficiently solve the piecewise-linear
problems encountered in Algorithm QPσ.

The generic piecewise-linear problem that we need to solve is of the form

min
∑

k,e L̄k,e(xk,e)

s.t. x ∈ P (λu),
(15)

where L̄k,e(·) = Lσk,e,x̄k,e
(·) is a continuous convex piecewise-linear function with

breakpoints at the integer multiples of 2−p

ue
and with pieces of strictly increasing

slope.
For every k and e, define rk,e = 2puexk,e. In terms of the initial flow variables

fk,e, we have rk,e = 2p

λu
fk,e. Thus, after the change of variables the optimization

problem is of the form

min
∑

k,e Lk,e(rk,e)

s.t. Nrk = 2p

λu
dk ∀k,

rk,e ≤ 2pue ∀k, e,
(16)
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where Lk,e is a continuous convex piecewise-linear function with breakpoints at the
integers and pieces of strictly increasing slope. The optimization problem (16) is
just a min-cost flow problem, with integral demands and capacities. In summary, as
discussed in the previous section, given λu we will have to solve 2t problems of the
form (16), where t is as in Step 3(c).

We solve each such problem using an approach similar to that described in [20] and
in [1, Chap. 14]. This approach is reminiscent of the cost-scaling (or capacity-scaling)
method for solving standard (linear) minimum-cost flow problems. Our algorithm is
described in section 7.3. The algorithm assumes that a feasible, integral solution to
(16) has been already computed (we will account for this work separately). Given
such a solution, the algorithm solves problem (16) by performing

O

(∑
k

∑
e

(p + log ue)

)
= O(K|E|p + KLU )

shortest path computations, where LU is the number of bits needed to represent the
largest capacity. Since p = p̄+ �logD	, over all iterations of Algorithm QPσ the total
number of shortest path computations incurred in calls to the algorithm in section
7.3 is

O

(√
Kn ln(m)

ε
(K|E|(p̄ + �logD	) + KLU )

)

= O∗
(
ε−1K2|E| 12

(
LU + |E|�logD	 + |E| log

(
1

ε

)))
,

plus lower-order complexity terms.
Finally, we account for the complexity of computing a feasible integral solution

to (16). Note that all the problems of the form (16) arising in a given call to Algo-
rithm QPσ make use of the same value of λu and p; consequently, the feasible integral
flows need to be computed once per commodity, per call to QPσ. In total, there
will be O∗(ε−1) feasible flow computations per commodity. Each such computation
essentially amounts to a maximum flow problem. We can solve such a problem using,
e.g., any augmenting path algorithm (which essentially relies on shortest path com-
putations). The simplest such algorithm (see [1]) peforms O(|V ||E|) shortest path
computations.

In summary, we now have the following result.
Theorem 9. An ε-optimal solution to a maximum concurrent flow problem, on

a graph G = (V,E) with |V | nodes, |E| edges, and K commodities, can be computed
by solving

O∗
(
ε−1K2E

1
2

(
LU + |E|�logD	 + |E| log

(
1

ε

))
+ ε−1|V ||E|

)

shortest path problems, plus lower complexity steps, where LUdenotes the number of
bits needed to store the capacities and D is the sum of demands.

4. Maximum multicommodity flows. In this section we extend the tech-
niques developed in the previous section to the maximum multicommodity flow prob-
lem (see [2]; see also [8, 5]).

Let (sk, tk), k = 1, . . . ,K, denote a set of source-sink node pairs. The goal of the
maximum multicommodity flow problem is to find a feasible multicommodity flow
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(one that satisfies the capacity constraints on any edge) that maximizes the sum, over
all k, of the amount of flow sent from sk to tk. Our approach will be to reduce this
problem into an equivalent maximum concurrent flow problem.

Given a multicommodity flow, we will denote the total flow sent from sk to tk by
Fk, k = 1, . . . ,K. We denote by F ∗ the optimal value of the maximum multicom-
modity flow problem. Finally, let

FL = max
k=1,...,K

{maxflow for commodity k alone}.(17)

Then FL ≤ F ∗ ≤ FU = KFL. Moreover, for any feasible flow and any k, we have
Fk ≤ FL. Suppose we introduce new variables Gk = FL−Fk ≥ 0. Then the maximum
multicommodity flow problem is equivalent to

G∗ Δ
= min

K∑
k=1

Gk

s.t. Fk + Gk = FL, k = 1, . . . ,K,(18)
K∑

k=1

fk,e ≤ ue, e ∈ E,

fk nonnegative and satisfies flow conservation, k = 1, . . . ,K.(19)

Clearly,
∑

k Gk ≤ GU Δ
= (K − 1)FL, and F ∗ + G∗ = FU . We assume that FL > 0,

or else the problem is trivial. Further, let δ = min
{

ε
K , 1

2

}
, and suppose (f̂k, F̂k, Ĝk),

k = 1, . . . ,K, is a vector satisfying
(i)

∑K
k=1 fk,e ≤ (1 + δ)ue ∀e,

(ii) constraints (18) and (19), and
(iii)

∑
k Ĝk ≤ (1 + δ)G∗.

Then
∑

k F̂k = FU −
∑

k Ĝk = F ∗ + G∗ −
∑

k Ĝk, and consequently,∑
k F̂k

F ∗ ≥ 1 − δ
G∗

F ∗ ≥ 1 − δ
GU

FL
= 1 − (K − 1)δ.

As a result, the vector ((1 + δ)−1f̂k), k = 1, . . . ,K, is an ε-optimal solution to the
maximum multicommodity flow problem.

In order to find a vector satisfying conditions (i)–(iii), we first establish a nonzero
lower bound for G∗. Consider the packing problem

min maxe∈E

⎧⎨
⎩

K∑
k=1

fk,e

ue

⎫⎬
⎭

s.t. Fk = (1 − δ/2)FL ∀k,
fk satisfies flow conservation ∀k.

(20)

Note that (20) is a maximum concurrent flow problem. Let λ(f) denote the maximum

load of a flow f , and let f̂ denote any (δ/4)-optimal solution for (20). Consider the
following two cases:

(a) λ(f̂) ≤ 1 + δ/2. In this case, f̂/(1 + δ/2) is a feasible flow with total flow

(
∑

k Fk)/(1+δ/2) ≥ (1−δ)KFL = (1−δ)FU ; i.e., f̂/(1+δ/2) is a δ-optimal
multicommodity flow.
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(b) λ(f̂) > 1+ δ/2. In this case, the packing problem (20) is infeasible. Thus, for
any multicommodity flow satisfying the capacity constraints and flow con-
servation, we have Fk < (1 − δ/2)FL, i.e., Gk > δFL/2 for at least one k.

Hence, GL Δ
= δFL/2 is a valid lower bound for G∗.

We next describe the procedure that computes a vector satisfying (i)–(iii). The proce-

dure maintains two bounds, 0 < GL ≤ G∗ ≤ GU , and a flow vector, f̂ . The bound GL

is initialized as indicated above and GU = (K−1)FL. The flow vector f̂ is initialized

as follows. Let k̄ denote the commodity attaining the maximum in (17). Then f̂k̄ is
set equal to any flow vector sending FL units from sk̄ to tk̄, while for all other k, the

flow vector f̂k is the zero vector. Thus, the flow f̂ attains GU .

In any iteration of the procedure, we set G = GL+GU

2 and compute a (δ/8)-
approximate solution to the packing problem

λ∗
G = min max

{
maxe∈E

{∑K
k=1 fk,e

ue

}
,
∑

k Gk

G

}
s.t. Fk + Gk = FL ∀k,

fk satisfies flow conservation ∀k.

(21)

Note that (21) is a concurrent flow problem in the graph G′ = (V ′, E′), V ′ = V ∪
{S, T}, E′ = E∪{(S, T )}∪{(sk, S), (T, tk) : k = 1, . . . ,K}, u(sk,S) = u(T,tk) = ∞, and
u(S,T ) = G (the flows on edges (sk, S) and (T, tk) are both equal to Gk). Consequently,

this task can be accomplished in O∗( 1
δ log( 1

δ )) iterations of Algorithm QPσ, where each
iteration solves a piecewise-linear program that reduces to a sequence of shortest path
problems.

Let λG denote the congestion of any (δ/8)-optimal solution. There are two cases
as follows:

(a) λG > (1 + δ/8). Then we reset to GL ← G.

(b) λG ≤ (1 + δ/8). In this case we reset GU ← (1 + δ/8)G and update f̂ to be
the solution we computed to the packing problem.

The above procedure is repeated until GU −GL ≤ (δ/2)GL. At the start of the pro-
cedure, GL = δFL/2 ≥ δGU/2K, and thus the number of bisection steps is bounded
above by O(log( 1

δ )) (neglecting polynomial factors in n, m, and K). To validate the
procedure, note that each time that GL is reset, i.e., case (a) holds, we have that
λ∗
G > 1, which implies that G ≤ G∗, and thus GL is always a lower bound for G∗.

When case (b) applies, the flow vector obtained in that iteration satisfies (i), (ii), and∑
k Ĝk ≤ (1 + δ)G ≤ (1 + δ/8)GU . We conclude that at termination the vector f̂ is

as desired.
In summary, the number of iterations of Algorithm QPσ needed to find an ε-

optimal maximum multicommodity flow is bounded above by O
(

1
ε log2( 1

ε )
)
, again

neglecting polynomial factors in n, m, and K.

5. Pure covering problems. The basic covering problem has the following
structure:

μ∗ = max
x∈Q

min
1≤i≤m

{aTi x},(22)

where Q ⊆ Rn
+ is a compact, convex set, A = [a1, . . . , am]T ∈ Rm×n

+ , and each
positive aij has value at least 1. For a given x ∈ Q, let μ(x) = min1≤i≤m{aTi x}. As
in the packing problems, we will let K denote the maximum number of nonzero terms
in any row of the A matrix.
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5.1. Upper and lower bounds. In order to start our procedure, we need poly-
nomially separated upper and lower bounds for μ∗. The following technique is used
in [24]. For i = 1, . . . ,m, define

μi = max
x∈Q

{aTi x}, x̄i = argmaxx∈Q{aTi x}.(23)

Then, it is clear that

μ∗ ≤ μu
Δ
= min

1≤i≤m
{μi}.(24)

Let x̄ = 1
m

∑m
k=1 x̄k. Then

μ(x̄) = min
1≤i≤m

{aTi x̄} =
1

m
min

1≤i≤m

{
m∑

k=1

aTi x̄k

}
≥ 1

m
min

1≤i≤m

{
aTi x̄i

}
=

1

m
μu,

μl
Δ
=

1

m
μu ≤ μ∗ ≤ μu.(25)

5.2. Refinement of bounds. In order to approximately compute μ∗, we would
like to use a binary search procedure similar to that described in section 2.1. In the
covering case, however, we need further elaboration. Given any μu > 0, define

C(μu)
Δ
= {y ∈ [0, 1]n : ∃x ∈ Q s.t. x ≥ μuy}(26)

and

μ∗
u = max

y∈C(μu)
min

1≤i≤m
{aTi y}.(27)

Then we have the following result.
Lemma 10. For any upper bound μu ≥ μ∗, we have that μ∗

u = μ∗

μu
.

Proof. Let y∗ = argmax{μ(y) : y ∈ C(μu)}. Since y ∈ C(μu), there exists x̂ ∈ Q
such that x̂ ≥ μuy

∗. Thus,

μ∗
u = μ(y∗) ≤ μ(x̂)

μu
≤ μ∗

μu
.

To prove the bound in the other direction, let x∗ = argmaxx∈Q μ(x). Define

ŷj =
min{x∗

j , μu}
μu

, j = 1, . . . , n.

Then ŷ ∈ C(μu), and to complete the proof it will suffice to show that, for any

1 ≤ i ≤ m,
∑

j aij ŷj ≥
μ∗

μu
. To see that this is the case, fix i, and note that if x∗

h > μu

for some h with aih > 0, then by the assumption on A,
∑

j aij ŷj ≥ ŷh = 1 ≥ μ∗

μu

(since μu ≥ μ∗). If, on the other hand, x∗
j ≤ μu for all j with aij > 0, then

∑
j

aij ŷj =

∑
j aijx

∗
j

μu
≥ μ∗

μu
,

as desired.
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The rest of the algorithm mirrors that for the packing case, in that we will use
a potential function method to implement each step of the binary search. However,
unlike in the packing case, the QPs solved in the course of approximately minimizing
the potential function are defined over the sets C(μu), rather than over Q itself. At
the end of this section we comment on why our approach needs the sets C(μu).

Consider a typical step of the binary search. We are given a lower bound μl and
an upper bound μu on μ∗. Setting δ = μu−μl

3 , the outcome of the binary search step
is an x ∈ Q with μ(x) ≥ μ∗ − δ; if μ(x) ≥ μl + 2δ, then we reset μl ← μl + δ, while
in the other case we reset μu ← μl + 2δ, thereby improving the gap between the two
bounds by a factor of 2

3 . In view of Lemma 10, we equivalently seek a y ∈ C(μu) with

μ(y) ≥ μ∗
P (μu) − γ, where γ = δ

μu
, and we will compare μ(y) with μl

μu
+ 2γ.

The computation of such a y is accomplished through the use of a potential
function. For the covering case, we now use

Φ(x) =
1

β
ln

(
m∑
i=1

e−βaT
i x

)

for a suitably chosen β > 0. We have the following analogue of (5):

−μ(x) ≤ Φ(x) ≤ −μ(x) +
lnm

β
.(28)

Thus, given γ > 0, in order to compute y ∈ C(μu) with μ(y) ≥ μ∗
u − γ, we set

β = 2 lnm
γ and compute y ∈ C(μu) with Φ(y) ≤ Φ∗ + γ

2 , where Φ∗ Δ
= miny∈P (μu) Φ(y).

For this purpose we can use Algorithm QP, given in section 2, verbatim. To see that
this is a valid approach, recall that the proofs in section 2 that involve α and that of
Lemma 5 are all valid for negative values of α. Thus, we have the following result.

Theorem 11. An ε-optimal solution to the covering problem can be computed by
solving O

(
ε−1

√
Kn lnm

)
convex separable QPs over the set C(μu) defined in (26).

We conclude this section by listing some special cases, where convex separable QPs
over the set C(μu) reduce to an optimization problem over Q or a simple modification
of Q.

(a) Q block angular: It is clear that C(μu) is also block angular. Moreover,
y ∈ C(μu) if and only if there exists s ≥ 0 such that μuy + s ∈ Q. In other
words, if we are given a linear inequality description of Q, then we obtain one
for C(μu) with twice as many variables but with the same general structure.

(b) Q “downwards closed”: Q is said to be “downwards closed” if x ∈ Q implies
that {x′ : 0 ≤ x′ ≤ x} ⊆ Q. Therefore, it follows that C(μ) = {x ∈ Q : 0 ≤
xj ≤ μ for all j}.

(c) Q described by a linear optimization oracle: In this case, under appropriate
assumptions, a convex QP over C(μu) reduces to a polynomial number of
linear programs over Q [27]. The key ingredient here is that the separation
problem over C(μu) can be solved by making a polynomial number of calls
to the optimization oracle over Q. To see that this is the case, recall that we
assumed Q ⊆ Rn

+. Let

Q≤(μu) = {y ≥ 0 : ∃x ∈ Q s.t. x ≥ μuy} .
Then, for any c ∈ Rn, we have that

max

⎧⎨
⎩
∑
j

cjyj : y ∈ Q≤(μu)

⎫⎬
⎭ = max

⎧⎨
⎩
∑
j

c+j yj : y ∈ Q≤(μu)

⎫⎬
⎭ ,(29)



844 D. BIENSTOCK AND G. IYENGAR

where r+ Δ
= max{r, 0}. Since the objective vector on the right-hand side of

(29) is nonnegative, it follows that this term is equal to

(μu)−1 max

⎧⎨
⎩
∑
j

c+j yj : y ∈ Q

⎫⎬
⎭ .

Thus, a linear optimization problem over Q≤(μu) reduces to an equivalent
linear optimization problem over Q. Consequently, the separation problem
over Q≤(μu) requires a polynomial number of oracle calls (to the optimization
oracle over Q). Since

C(μu) = Q≤(μu) ∩ {y ∈ Rn : yj ≤ 1 ∀j} ,

we can conclude that the same holds for C(μu), as desired.

5.3. Why do covering problems require solving QPs over C(μu)? In or-
der to motivate our use of the sets C(μu), it is worth revisiting some of our techniques
used for packing problems, in particular, the use of the potential function, which we
adapted from the packing case in a straightforward manner in order to handle covering
problems (essentially, by changing the sign of the exponent).

To understand the difference between packing and covering problems, let us ex-
amine the role of the sets P in packing problems. In the context of a fractional
packing problem Pack(A,Q) with A ∈ {0, 1}m×n, the critical observation is that
λ∗ ≤ λu implies that xj ≤ λu for all j = 1, . . . , n. In this setting, the set P is given by
P = λ−1

u Q∩ [0, 1]n. Next, consider a generalized packing problem with a nonnegative
matrix A. We show that by introducing new variables this problem can be reduced to
a packing problem Pack(A,Q) with A ∈ {0, 1}m×n. The combined effect of adding
variables and of scaling by λ−1

u is the following: If aij > 0, then we generate a new
variable of the form

aij

λu
xj . The fact λ∗ ≤ λu implies that, without loss of generality,

we can place an upper bound of 1 on this new variable; equivalently, λ∗ ≤ λu implies
that the set Q̄ = {x ∈ Q :

aij

λu
xj ≤ 1 for all aij > 0} is nonempty, and λ(x) ≤ λu

if and only if x ∈ Q̄. For any A ∈ {0, 1}m×n and x ∈ P , we have
∑

j aijxj ≤ K for
all i, where K denotes the maximum number of nonzero terms in any row of A. This
bound is instrumental in the proofs of Corollary 4 and Lemma 5, both of which are
critical in the analysis of the algorithm. In particular, the iteration count depends on
K and not on the “width” [24] of the problem.

However, when dealing with a covering problem, this approach fails. Given an
upper bound μu on μ∗, and a coefficient aij > 0, we cannot assume that μu

aij
is an

upper bound on xj . The reason for this is that there might be a different row i′

with 0 < ai′j < aij . Instead, we can assume only that xj ≤ μu

akj
, where akj is the

smallest positive coefficient in column j of A. However, when we use this bound, the
arguments in Corollary 4 and Lemma 5 do not follow through—instead of obtaining
a dependence on K we obtain a dependence on the maximum ratio between positive
entries in any given column j of A. Finally, we may be unable to place a (simple)
upper bound on some xj , even when A ∈ {0, 1}m×n and there is a known upper bound
μu ≥ μ∗, because the structure of the set Q may simply prevent us from doing so—in
other words, a set of the form Q ∩ {xj ≤ μu} may be empty, in contrast with what
happens in the packing case.
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6. Algorithms for mixed packing and covering. In this section we consider
the mixed packing-covering problem

λ∗ Δ
= min λ(x)

Δ
= max1≤i≤mp{pTi x}

s.t. min1≤i≤mc
{cTi x} ≥ 1,

x ≥ 0,

(30)

where x ∈ Rn, and the vectors pi ∈ Rn, i = 1, . . . ,mp, and ci ∈ Rn, i = 1, . . . ,mc,
are all assumed to be nonnegative. We present an algorithm that computes, for any
ε > 0, an ε-approximation to λ∗ in O∗( 1

ε ) steps. As before, each basic step consists
of solving a separable, convex QP. As we will show, in this instance the QPs are
particularly simple and can be solved in O(nKp) time.

6.1. Computing initial polynomially separated upper and lower bounds.
The analysis in this section is identical to the one in [31]. Define p = 1

mp

∑mp

i=1 pi. For

each k = 1, . . . ,mc, let

λk = min
{
pTx : cTk x ≥ 1, x ≥ 0

}
= min

1≤j≤n

{
pj
ckj

}
.(31)

Let x(k) denote the vector that achieves the minimum in (31), i.e.,

x
(k)
j =

{
1

ckj
, j = argmin1≤j′≤n

{
pj′

ckj′

}
,

0 otherwise.

Then, it is clear that

λ∗ ≥ λl = max
1≤k≤mc

{λk} .

Let x̄ =
∑mc

k=1 x
(k). Then, for all i = 1, . . . ,mc,

cTi x̄ =

mc∑
k=1

cTi x
(k) ≥ cTi x

(i) ≥ 1,

i.e., x̄ is feasible for (30), and

max
1≤i≤mp

{pTi x̄} ≤
mp∑
i=1

pTi x̄ = mpp
T x̄ = mp

mc∑
k=1

λk ≤ mcmpλl
Δ
= λu.

Thus, we have a lower bound λl and an upper bound λu such that λu ≤ mcmpλl.

6.2. Binary search to refine bounds. As with all other problems considered
in this paper, we next refine the bounds using a binary search technique. In the
general step of the binary search, we have the bounds 0 < λl ≤ λu. As before, set
δ = λu − λl and γ = δ/λu.

For i = 1, . . . ,mp, define Si = {j : pij > 0}. Since λ∗ ≤ λu, it follows that for
all j ∈ Si we can restrict xj ≤ λu/pij without any loss in optimality. Thus, (30) is
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equivalent to

λ∗

λu
= min max1≤i≤mp

{ ∑
j∈Si

yij

}

s.t.
∑
j

cijxj ≥ 1, i = 1, . . . ,mc,

yij −
pij
λu

xj = 0, j ∈ Si, i = 1, . . . ,mp,

yij ≤ 1, j ∈ Si, i = 1, . . . ,mp,

x ≥ 0.

(32)

To refine the bounds we change variables by setting zij = 1−yij (j ∈ Si, i = 1, . . . ,mp)
and solve the following pure covering problem:

μ∗ = max μ
s.t.

∑
j∈Si

zij ≥ μ(|Si| − (1 − 0.5γ)), i = 1, . . . ,mp,

∑
j

cijxj ≥ μ, i = 1, . . . ,mc,

(x, z) ∈ Q,

(33)

where the set Q consist of all pairs (x, z) satisfying

zij +
pij
λu

xj = 1, j ∈ Si, i = 1, . . . ,mp,

zij ≥ 0, j ∈ Si, i = 1, . . . ,mp,
x ≥ 0.

(34)

Let Kp = max1≤i≤mp

{
|Si|

}
, and let (x̄, z̄) denote any

(
γ

3Kp

)
-optimal solution for

the pure covering problem (33). Consider the following two cases:
(a) μ(x̄, z̄) <

(
1− γ

6Kp

)
. In this case we claim that 1−0.5γ is a lower bound on λ∗

λu
.

Otherwise, there exists (x̂, ŷ) feasible for (32) with
∑

j∈Si
ŷij ≤ 1 − 0.5γ for

each 1 ≤ i ≤ mp. Then it follows that μ∗ ≥ 1, and a
(

γ
6Kp

)
-optimal solution

to (33) must have μ ≥
(
1− γ

6Kp

)
, a contradiction. Therefore λl ← (1−0.5γ)λu

is a valid lower bound for λ∗, and the gap δ = λu − λl decreases by half.
(b) μ(x̄, z̄) ≥

(
1 − γ

6Kp

)
. Then

∑
j cij x̄ij ≥ 1 − γ

6Kp
, and

∑
j∈Si

z̄ij ≥
(

1 − γ

6Kp

)
(|Si| − (1 − 0.5γ)) ≥ |Si| − (1 − γ/3), i = 1, . . . ,mp.

Define ȳij = 1 − z̄ij , j ∈ Si, i = 1, . . . ,mp, and (x̃, ỹ) = 1
1− γ

6Kp

(x̄, ȳ). Then

it follows that
∑

j cij x̃ij ≥ 1 for all i = 1, . . . ,mc. Thus, (x̃, ỹ) is feasible for

(32). Further, for each i = 1, . . . ,mp, we have
∑

j∈Si
ỹij ≤ 1− γ

3

1− γ
6Kp

≤ 1 − γ
6 ,

or equivalently,
∑

j∈Si
pij x̃ij ≤ (1−γ/6)λu. Consequently, λ∗ ← (1−γ/6)λu

is a valid upper bound, and the gap δ = λu − λl decreases by a factor of 5/6.
In conclusion, in either case the gap is decreased by at least a factor of 5/6. Therefore,
it follows that we can compute an ε-optimal solution for the mixed packing-covering
problem by solving O

(
ln(ε−1mcmp)

)
covering problems of the form (33).
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6.3. Overall complexity bound. In this section we compute a complexity
bound for the pure covering problem (33) by exploiting the special structure of the
set Q defined in (34).

Let Kc = maxmc
i=1

∣∣{j : cij > 0}
∣∣) denote the maximum number of nonzero entries

in the covering constraints in the mixed packing-covering problem (30). Since the
number of variables in the pure covering problem (33) is at most n(1 + Kp), the
number of constraints is mp + mc and the maximum number of nonzero elements in
the covering constraints is max{Kp,Kc}, and γ/Kp ≥ ε/n. The results in section 5
imply that we can compute an

(
γ
3S

)
-optimal solution for (33) in

O
(n
ε

√
max{Kc,Kp}(1 + Kp)n log(mc + mp)

)

iterations, where each iteration involves solving a convex separable QP over the set

C(μ) =
{

(v, w) ∈ [0, 1]n+Kp : ∃(x, z) ∈ Q s.t. x ≥ μv, z ≥ μw
}
.

See (26) for details. For Q defined in (34), the set C(μ) is given by

C(μ) =
{

(v, w)∈ [0, 1]n+Kp : μvj

≤ min
{

min{p−1
ij λu : j ∈ Si}, 1

}
, μwij ≤ (1 − λuμvj/pij)

}
.

A separable convex QP over C(μ) can be decomposed into n convex QPs in the
variables (v, w) of the form

min αv − 1

2
βv2 +

∑
i:j∈S

(
ηiwi −

1

2
κiw

2
i

)
s.t. 0 ≤ μwi ≤ (1 − λuμv/pi), i ∈ S,

0 ≤ μv ≤ v̄.

(35)

Fix v. Let w̄i = ηi

κi
. If w̄i ≤ 0, the optimal solution w∗

i of the one-dimensional QP
in wi variable is w∗

i = 0 and this variable can be removed from further consideration.
When w̄i > 0, the optimal solution w∗

i = min{w̄i, 1 − λuμv
pi

}. Thus, each index

i ∈ S partitions the interval [0, v̄/μ] into two subintervals, one where w∗
i = w̄i and

the other where w∗ = 1 − λuμv
pi

. Thus, the optimal value of the variable v can be

computed in solving at most |S|(≤ n) one-dimensional QPs. Thus, the computational
effort required to compute an optimal solution of a convex separable QP over C(μ) is
O(nKp). Combining this with our bound on the iteration count, we have the following
result.

Theorem 12. The complexity of computing an ε-approximate solution for the
mixed packing-covering problem (30) is

O

((
n2Kp

√
max{Kc,Kp}(1 + Kp)n log(mc + mp)

)
1

ε
ln

(mcmp

ε

))
,

where Kp (resp., Kc) denote the maximum number of nonzeros in the packing (resp.,
covering) constraints.
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7. Technical proofs.

7.1. Improved Taylor expansion. The derivative of ∇Φ(x) = ATπ(x), where

πi(x) =
eαa

T
i x∑m

j=1 e
αaT

i x
, i = 1, . . . ,m.

We want to show that ‖AT (π(x) − π(y))‖2 ≤ K|α|‖x− y‖2.
The construction of the bound will proceed in two steps as follows.
(a) L1-bound on AT : Since π(x) ≥ 0 and

∑m
i=1 πi(x) = 1 for all x, we endow the

π-space with the L1-norm. Define ‖A‖1,2 as

‖A‖1,2 = max
{
‖ATπ‖2 : ‖π‖1 = 1

}
= max

{∥∥∥∥
m∑
i=1

πiai

∥∥∥∥
2

: ‖π‖1 = 1

}

= max
1≤i≤m

{‖ai‖2} =
√
K,

where the first equality in the last step follows from the fact that ‖a‖2 is
a convex function and achieves its maximum at the extreme points of the
feasible set, and the final bound follows from the fact that number of 1’s in
the vectors ai is bounded above by K. Thus, we have that

‖AT (π(x) − π(y))‖2
2 ≤ ‖A‖2

1,2‖π(x) − π(y)‖2

≤ K‖π(x) − π(y)‖2
1.(36)

(b) Strong convexity of the entropy function: The next step is to show an upper
bound of the form ‖π(x) − π(y)‖1 ≤ C‖x− y‖2 for an appropriate C. Since
we need an upper bound on a norm, one way to achieve this is to bound it
above by a strongly convex function.

Define H(π) =
∑m

i=1 πi log(πi) for π such that π ≥ 0 and
∑m

i=1 πi = 1.
Then, ∇2H = diag(1/πi), and

yT (∇2H)y =

m∑
i=1

y2
i

πi
.

The right-hand side is a convex function and, on minimizing this function
over π in the simplex, we obtain that

yT (∇2H)y ≥
(

m∑
i=1

|yi|
)2

.(37)

Thus, we have that

(∇H(π(x)) −∇H(π(y)))T (π(x) − π(y))

=
(
∇2H(πθ)(π(x) − π(y))

)T
(π(x) − π(y)) ≥ ‖π(x) − π(y)‖2

1,

where πθ = θπ(x) + (1 − θ)π(y), θ ∈ [0, 1], the first equality follows from the
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mean value theorem, and the second inequality follows from (37). Substitut-
ing the values of ∇H(π(x)) and ∇H(π(x)), it follows that

‖π(x) − π(y)‖2
1 ≤

m∑
i=1

(log(πi(x)) − log(πi(y))) (πi(x) − πi(y))

=

m∑
i=1

⎛
⎝α(aTi x) − log

⎛
⎝∑

j

eαa
T
j x

⎞
⎠
⎞
⎠(

πi(x) − πi(y)
)

−
m∑
i=1

⎛
⎝α(aTi y) + log

⎛
⎝∑

j

eαa
T
j y

⎞
⎠
⎞
⎠(

πi(x) − πi(y)
)

= α

m∑
i=1

(
aTi (x− y)

)(
πi(x) − πi(y)

)

− log

⎛
⎝∑

j

eαa
T
j y

⎞
⎠ m∑

i=1

(
πi(x) − πi(y)

)

+ log

⎛
⎝∑

j

eαa
T
j y

⎞
⎠ m∑

i=1

(
πi(x) − πi(y)

)
(38)

= α

m∑
i=1

(
aTi (x− y)

)(
πi(x) − πi(y)

)
= α(x− y)T (AT (π(x) − π(y)))

≤ |α|‖x− y‖2‖AT (π(x) − π(y))‖2,(39)

where (38) follows from the fact that π(x), π(y) are both elements of the
simplex, and (39) follows from the Cauchy–Schwartz inequality.

Combining (36) and (39) we get

‖AT (π(x) − π(y))‖2 ≤ |α|‖A‖2
1,2‖x− y‖2,

≤ K|α|‖x− y‖2.

7.2. Proof of Theorem 7. We begin with the approximate version of the Taylor
expansion (see Lemma 5).

Lemma 13. At any iteration t of Algorithm QPσ, we have that for any x ∈ P ,

Ŝt(x) − Ŝt(ẑ
(t)) ≥ 2K|α|

(t + 1)(t + 2)

⎧⎨
⎩

n∑
j=1

(xj − ẑ
(t)
j )2 −

n∑
j=1

(
σj +

1

4
σ2
j

)⎫⎬
⎭ .

Proof. Fix x ∈ P . Recall that the function Ŝt(x) is defined as

Ŝt(x) =
2

(t + 1)(t + 2)

⎧⎨
⎩2K|α|

n∑
j=1

L
σj ,x̂

(0)
j

(xj) +

t∑
h=0

(h + 1)
[
Φ(x̂h) +

〈
gh, x− x̂h

〉]⎫⎬⎭ .

Define

S̄t(x) =
2

(t + 1)(t + 2)

⎧⎨
⎩K|α|

n∑
j=1

(xj − x̂
(0)
j )2+

t∑
h=0

(h + 1)
[
Φ(x̂(h)) +

〈
ĝ(h), x− x̂(h)

〉]⎫⎬⎭.
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Then, by Lemma 6(ii),

Ŝt(x) − Ŝt(ẑ
(t)) ≥ S̄t(x) − S̄t(ẑ

(t)) − 2K|α|
(t + 1)(t + 2)

⎧⎨
⎩

n∑
j=1

1

4
σ2
j

⎫⎬
⎭ .(40)

Since S̄t is a quadratic function, it follows that

S̄t(x) − S̄t(ẑ
(t)) =

2K|α|
(t + 1)(t + 2)

n∑
j=1

(xj − ẑ
(t)
j )2 +

〈
∇S̄t(ẑ

(t)), x− ẑ(t)
〉
.(41)

Consider the function Ŝt restricted to the one-dimensional segment between ẑ(t) and
x. Ŝt is convex, piecewise-linear, and minimized at ẑ(t) (by definition of ẑ(t)). Hence,
as we traverse the segment from ẑ(t) to x, the slope of the first piece of the piecewise-
linear function must be nonnegative. In other words,

2

(t + 1)(t + 2)

⎧⎨
⎩

n∑
j=1

[
K|α|λj +

t∑
h=0

(h + 1)g
(h)
j

]
(xj − ẑ

(t)
j )

⎫⎬
⎭ ≥ 0,(42)

where for 1 ≤ j ≤ n,

λj =

⎧⎨
⎩

L+

σj ,x̂
(0)
j

(ẑ
(t)
j ), xj ≥ ẑ

(t)
j ,

L−
σj ,x̂

(0)
j

(ẑ
(t)
j ), otherwise,

and g
(h)
j is the jth coordinate of g(h), j = 0, . . . , t. Since P ⊆ [0, 1]n, by Lemma

6(iii) the second term in the right-hand side of (41) is at least − 2K|α|
(t+1)(t+2)

∑n
j=1 σj ;

consequently,

S̄t(x) − S̄t(ẑ
(t)) ≥ 2K|α|

(t + 1)(t + 2)

⎧⎨
⎩

n∑
j=1

(xj − ẑ
(t)
j )2 −

n∑
j=1

σj

⎫⎬
⎭ .

Together with equation (40) this implies the desired result.
Theorem 7 is established by induction on t. By definition, we have that

Ŝ0(ẑ
(0)) = 2K|α|

n∑
j=1

L
σj ,x̂

(0)
j

(ẑ
(0)
j ) + Φ(x̂0) +

〈
ĝ(0), z(0) − x0

〉

≥ K|α|
n∑

j=1

Lσj ,x̂0
j
(ẑ

(0)
j ) + Φ(x̂0) +

〈
ĝ(0), z(0) − x0

〉

≥ K|α|
n∑

j=1

Lσj ,x̂0
j
(ŷ

(0)
j ) + Φ(x̂0) +

〈
ĝ(0), y(0) − x0

〉

≥ K|α|
2

n∑
j=1

(y
(0)
j − x0

j )
2 + Φ(x0) +

〈
g(0), y(0) − x0

〉
(43)

≥ Φ(y(0)),(44)

where (43) follows from Lemma 6(ii) and (44) follows from the definition of y(0).
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Next, we establish the inductive step. Let x ∈ P . By Lemma 13, we have

Ŝt(x) ≥ Ŝt(ẑ
(t)) +

2K|α|
(t + 1)(t + 2)

⎧⎨
⎩

n∑
j=1

(ẑ
(t)
j − x̂0

j )
2 −

n∑
j=1

(
σj +

1

4
σ2
j

)⎫⎬
⎭

≥ Ŝt(ẑ
(t)) +

2K|α|
(t + 1)(t + 2)

n∑
j=1

(ẑ
(t)
j − x̂0

j )
2 − 5K|α|

2(t + 1)2

⎛
⎝ n∑

j=1

σj

⎞
⎠ .

Applying the induction hypothesis, and continuing as in the proof of Theorem 3, we
obtain the following analogue of the inequality following (11):

Ŝt+1(x) ≥ Φ(x̂(t+1))

+ min
y∈P

⎧⎨
⎩K|α|

2

∑
j

(
yj − x̂

(t+1)
j

)2

+
〈
ĝ(t+1), y − x̂(t+1)

〉⎫⎬⎭
−

(
5K|α|

2

)(
t+1∑
h=1

1

h2
+ t

)⎛
⎝ n∑

j=1

σj

⎞
⎠ .

Applying Lemma 6 again, we obtain

Ŝt+1(x) ≥ Φ(x̂(t+1)) + K|α|
∑
j

L
σj ,x̂

(t+1)
j

(
ŷt+1
j

)
+

〈
ĝ(t+1), ŷt+1 − x̂(t+1)

〉

−
(

5K|α|
2

)(
t+1∑
h=1

1

h2
+ t + 1

)⎛
⎝ n∑

j=1

σj

⎞
⎠

≥ Φ(x̂(t+1)) +
K|α|

2

∑
j

(
ŷt+1
j − x̂

(t+1)
j

)2

+
〈
ĝ(t+1), ŷt+1 − x̂(t+1)

〉

−
(

5K|α|
2

)(
t+1∑
h=1

1

h2
+ t + 1

)⎛
⎝ n∑

j=1

σj

⎞
⎠

≥ Φ(ŷt+1) −
(

5K|α|
2

)(
t+1∑
h=1

1

h2
+ t + 1

)⎛
⎝ n∑

j=1

σj

⎞
⎠ ,

where the last inequality follows from Lemma 5.

7.3. Piecewise-linear min-cost flow problems. We are given an optimiza-
tion problem of the form described in section 3.1,

min
∑

k,e Lk,e(rk,e)

s.t. Nrk = d̂k, 0 ≤ rk ≤ ûk, k = 1, . . . ,K,
(45)

where, for every k and e, Lk,e is a continuous, convex, piecewise-linear function with

breakpoints at the integers and with pieces of strictly increasing slope; d̂k and ûk are
integral; and uk,e ≤ 2q for an appropriate integer q > 0. For each k and each vertex

i, denote by d̂k,i the ith component of d̂k.
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We assume that for each k we have an integral flow that satisfies the constraints
of (45). Thus, we can convert (45) into an equivalent circulation form. Then we will
have a problem of the form

min
∑

k,e Lk,e(rk,e)

s.t. Nrk = 0, −ak ≤ rk ≤ bk, k = 1, . . . ,K,
(46)

where, for every k and e, the parameters ak,e and bk,e are integral and satisfy 0 ≤
ak,e, bk,e ≤ 2q, and again Lk,e is a convex, continuous, piecewise-linear function with
breakpoints at the integers (the Lk,e in (46) equal those in (45), shifted by appropriate
amounts).

We solve (46) by solving a sequence of circulation problems—our approach is

similar to [20]. For all integers h ∈ [0, q], k = 1, . . . ,K, and e ∈ E, let L(h)
k,e denote

the continuous, convex, piecewise-linear function that has breakpoints at the integer
multiples of 2h and that agrees with Lk,e at each breakpoint.

Further, define a
(h)
k,e = �2−hak,e	 and b

(h)
k,e = �2−hbk,e	. Then, the level-h problem

is

min
∑
k,e

L(h)
k,e(rk,e)

s.t. Nrk = 0,−b
(h)
k ≤ rk ≤ a

(h)
k ∀k.

(47)

Thus, the level-0 problem is (46). We solve it by first solving the level-q problem,

then the level-(q − 1) problem, and so on. Note that for 0 ≤ h ≤ q, the function L(h)
k,e

has 2q−h breakpoints in the range of the level-h problem. Hence, the level-h problem
can be seen as an ordinary (e.g., linear) minimum-cost circulation problem, on the
graph Ĝ(h) obtained from the original graph G, by replacing each edge e with 2q−h

parallel arcs, each with capacity 2h and appropriate cost. (To avoid confusion, we use
the term arc, rather than edge, which we reserve for G.) We stress that our algorithm
will only implicitly work with Ĝh.

Inductively, suppose we have solved the level-h problem. We can assume, without

loss of generality, that all the entries of optimal circulation r
(h)
k are integer multiples

of 2h. Let πh
k denote the node potentials (see [20] or [1] for details). Our task is to

refine r
(h)
k into an optimal circulation for the level-(h− 1) problem.

Note that by definition, for any k and e,

(a) the functions L(h)
k,e and L(h−1)

k,e agree at integer multiples of 2h−1,

(b) we let q ∈ Z+. Then the slope of L(h−1)
k,e is less (resp., more) than the slope

of L(h)
k,e in the interval

[
2hq, 2hq + 2h−1

)
(resp., in the interval

[
2hq + 2h−1,

2h(q + 1)
)
),

(c) either a
(h−1)
k,e = a

(h)
k,e or a

(h−1)
k,e = a

(h)
k,e − 2h−1, and similarly with the pair

(b
(h−1)
k,e , bhk,e).

Thus, it is easy to see that r
(h)
k , together with the potentials π

(h)
k , nearly satisfies

the optimality conditions for the level-(h − 1) problem. More precisely, suppose we
convert rhk,e into a circulation on the graph Ĝ(h−1) by following the “greedy” rule: for
any k and e, we “fill” the parallel arcs corresponding to k, e in increasing order of cost
(and thus, at most one arc will have flows strictly between bounds). We may need an

additional, “overflow” arc, also of capacity 2h−1, in the case that r
(h)
k,e = a

(h)
k,e > a

(h−1)
k,e

and similarly for the case when r
(h)
k,e = b

(h)
k,e .
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Denote by r̂
(h)
k,e the resulting circulation in Ĝh−1. Then by properties (a)–(c)

above, it follows that at most one of the parallel arcs corresponding to a pair (k, e)

either fails to satisfy the optimality conditions with respect to the potentials π
(h)
k or

is an overflow arc. Consequently, we can obtain an optimal circulation in Ĝ(h−1) in
at most O(|E|) flow pushes (each pushing 2(h−1) units of flow) or computations of
node potentials, and each such step requires the solution of a shortest path problem.
It is clear that (again because of (a)–(c) above) all of this can be done without
explicitly considering the graph Ĝ(h−1): instead, we always keep a single flow value
for commodity k on any edge e, which is always an integral multiple of 2(h−1); if we
wish to use one of the parallel arcs corresponding to k, e in a push (or when searching
for an augmenting path), then it takes O(1) time to determine which of the arcs we
will use. This completes the description of the inductive step.

In summary, we have the following.
Lemma 14. Problem (45) can be solved by performing O(

∑
k

∑
e log uk,e) shortest

path computations.
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TYPICAL PROPERTIES OF WINNERS AND LOSERS

IN DISCRETE OPTIMIZATION∗

RENE BEIER† AND BERTHOLD VÖCKING‡

Abstract. We present a probabilistic analysis of a large class of combinatorial optimization
problems containing all binary optimization problems defined by linear constraints and a linear
objective function over {0, 1}n. Our analysis is based on a semirandom input model that preserves
the combinatorial structure of the underlying optimization problem by parameterizing which input
numbers are of a stochastic and which are of an adversarial nature. This input model covers various
probability distributions for the choice of the stochastic numbers and includes smoothed analysis
with Gaussian and other kinds of perturbation models as a special case. In fact, we can exactly
characterize the smoothed complexity of binary optimization problems in terms of their worst-case
complexity: A binary optimization problem has polynomial smoothed complexity if and only if it
admits a (possibly randomized) algorithm with pseudo-polynomial worst-case complexity.

Our analysis is centered around structural properties of binary optimization problems, called
winner, loser, and feasibility gap. We show that if the coefficients of the objective function are
stochastic, then the gap between the best and second best solution is likely to be of order Ω(1/n).
Furthermore, we show that if the coefficients of the constraints are stochastic, then the slack of
the optimal solution with respect to this constraint is typically of order Ω(1/n2). We exploit these
properties in an adaptive rounding scheme that increases the accuracy of calculation until the optimal
solution is found. The strength of our techniques is illustrated by applications to various NP-hard
optimization problems from mathematical programming, network design, and scheduling for which
we obtain the first algorithms with polynomial smoothed/average-case complexity.

Key words. optimization problems, average-case analysis, smoothed analysis
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1. Introduction. Many combinatorial optimization problems have an objec-
tive function or constraints specified in terms of real numbers representing natural
quantities such as time, weight, distance, or utility. This includes some well-studied
optimization problems such as traveling salesperson, shortest path, minimum span-
ning tree as well as various scheduling and packing problems. When analyzing the
complexity of algorithms for such problems, we usually assume that these numbers
are integers or rational numbers with a finite length representation. The hope is that
it suffices to measure and compute with some bounded precision in order to identify
an optimal or close to optimal solution. In fact, if real numbers occur only in the
objective function and if this objective function is well behaved (e.g., a linear func-
tion), then calculating with reasonable approximations of the input numbers yields a
feasible solution whose objective value is at least close to the optimal objective value.
More problematically, however, if the constraints are defined by real numbers, then
calculating with rounded input numbers might miss relevant solutions or might even
produce infeasible solutions.
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How can one solve optimization problems (efficiently) on a computer when not
even the input numbers can be specified exactly? In practice, optimization problems
in which real numbers occur in the input are solved by simply rounding the real
numbers more or less carefully. Fortunately, this approach seems to yield reasonable
results. We seek a theoretically founded explanation why this rounding approach
usually works. Studying this issue under worst case assumptions does not make very
much sense as, in the worst case, the smallest inaccuracy might lead to an infeasible or
utterly suboptimal solution. This question needs to be studied in a stochastic model.
In the following probabilistic analysis, we will show that, under some reasonable and
quite general stochastic assumptions, one can usually round real-valued input num-
bers after only a logarithmic number of bits without changing the optimal solution.
In fact, our probabilistic analysis goes far beyond the point of explaining phenomena
occurring in practice. We are able to provide algorithms with polynomial average-case
complexity (more precisely, polynomial smoothed complexity) for a quite general class
of discrete optimization problems. Our analysis covers various well-studied NP-hard
discrete optimization problems from mathematical programming, network design, and
scheduling such as multidimensional knapsack, constrained spanning tree, or schedul-
ing to minimize the weighted number of tardy jobs.

1.1. A semirandom input model for discrete optimization problems.
We consider optimization problems defined over a vector of n binary variables x =
(x1, . . . , xn). The set of feasible solutions is described by the intersection of a ground
set of solutions S ⊆ {0, 1}n and solutions that satisfy linear constraints of the form
wTx ≤ t or wTx ≥ t. The ground set S of solutions can be specified arbitrarily.
While the part that specifies S is adversarial, we assume that the coefficients in the
additional linear constraints are random or randomly perturbed real numbers. The
reason for distinguishing a stochastic and an adversarial part of the input is that we do
not want the randomization destroying the combinatorial structure of the underlying
optimization problem. A similar choice between stochastic and adversarial applies to
the objective function. If it is chosen to be adversarial, then our model covers arbitrary
functions f : S → R. Our probabilistic analysis, however, can also handle stochastic
objective functions that are linear, that is, the objective is of the form minimize (or
maximize) cTx, where c is a vector of random or randomly perturbed real valued
coefficients c1, . . . , cn. In the following, we use the phrase stochastic expression as a
generic term for the linear expressions cTx and wTx occurring in the objective function
and the constraints, respectively. The number of stochastic expressions is denoted by
k ≥ 1 and the number of stochastic constraints by k′ ∈ {k − 1, k}, depending on
whether or not the objective function is stochastic. For k′ ≥ 1 let Bj denote the set
of solutions that satisfy the jth constraint for all j ∈ [k′]. The set of feasible solutions
for a given problem instance is then S ∩ B1 ∩ · · · ∩ Bk′ .

The coefficients in the stochastic expressions are specified by independent contin-
uous probability distributions with domain R. Different coefficients might be drawn
according to different distributions. The only restriction on these distributions is that
their density is bounded from above. Assuming bounded densities is necessary, as
otherwise worst-case instances could be approximated arbitrarily well by specifying
distributions with very high density. At this point, let us remark that the density of
a continuous random variable is not uniquely defined. In fact, the density function
can be changed on any set of points of measure 0 without affecting the distribution
function. As usual, we ignore this trifling indeterminacy; that is, when saying that
the density of a variable is bounded we mean that the variable admits a bounded
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density function. For a given variable, the supremum of its density function is called
its density parameter. We will see that the maximum density parameter over the
distributions of the different coefficients plays an important role in our analysis. This
parameter is denoted by φ. Intuitively, φ can be seen as a measure specifying the con-
centration of random instances around the worst case. A worst-case instance can be
interpreted as a stochastic instance in which the probability measure for each stochas-
tic number is mapped to a single point. Thus, the larger φ, the closer we are to a
worst-case analysis.

In our probabilistic analysis we assume that the objective function defines a unique
ranking among all solutions in {0, 1}n according to the objective function. Observe
that, if the objective function is stochastic, then the coefficients are continuous random
variables. Hence, the probability that there exist solutions with the same objective
function value is 0. In other words, a unique ranking is given with probability 1. Recall
that the objective function does not have to be linear if it is adversarial, but if it is
linear, i.e., of the form cTx, c ∈ Q

n, then a unique ranking can always be enforced
by encoding the lexicographical order among the solutions into the less significant
bits of the objective function without changing the computational complexity of the
underlying optimization problem by more than a polynomial factor. In fact, most of
the algorithmic problems that we will study have algorithms that implicitly realize
a unique ranking. In this case, one does not even need an explicit encoding. Given
a unique ranking, we aim at finding the winner, i.e., the highest ranked solution in
S ∩B1∩· · ·∩Bk′ . In the following, optimization problems satisfying all the conditions
above are called binary optimization problems with stochastic expressions or, for short,
binary optimization problems.

Smoothed analysis. The framework of smoothed analysis was introduced by
Spielman and Teng in [29]. They assume that first an adversary specifies all coefficients
w in the constraint matrix such that the norm of each row vector is at most 1. Then
these adversarial numbers are slightly perturbed by adding an independent random
number drawn according to a Gaussian distribution with mean 0 and a specified
standard deviation σ > 0. Spielman and Teng prove a running time for the simplex
algorithm under the shadow vertex pivot rule that is polynomial in the number of
variables and constraints as well as in 1

σ . Similar results have been obtained for other
problems [2, 4, 5, 7, 30]. Our probabilistic analysis is not restricted to the model of
smoothed analysis, but we use this nice framework to illustrate our results.

We generalize smoothed analysis as follows. At first, we do not necessarily perturb
all input numbers but only the coefficients in the stochastic expressions. Initially, an
adversary chooses all input numbers. The adversarial choice for the coefficients that
shall be stochastic is restricted to real numbers from [0, 1] or [−1, 1], depending on
whether the domain should be nonnegative or also include negative numbers. Then
a random perturbation slightly changes the coefficients in the stochastic constraints
by adding an independent random number to each of them. These random numbers
are drawn according to a specified family of probability distributions satisfying the
following conditions. Let f : R → R≥0 be any density function such that sups(f(s)) =
1 and

∫
|s|f(s)ds is finite, that is, the random variable described by f has a finite

expected absolute value. Function f is called the perturbation model. For φ ≥ 1,
we define fφ by scaling f , that is, fφ(s) = φf(sφ), for every s ∈ R. This way, the
density parameter of fφ is φ. We obtain a φ-perturbation according to the perturbation
model f by adding an independent random variable with density function fφ to each
stochastic input number. For example, one obtains the Gaussian perturbation model
from [29] by choosing f to be the Gaussian density with standard deviation (2π)−1/2.



858 RENE BEIER AND BERTHOLD VÖCKING

A nonnegative domain can be obtained, e.g., by choosing f to be the density of the
uniform distribution over [0, 1]. In [29] the running time is described in terms of the
standard deviation σ. In contrast, we describe the running time in terms of the density
parameter φ. For the Gaussian and the uniform distribution these two parameters
are closely related; in both cases, φ is proportional to 1

σ .

Let us illustrate our semirandom input model by an example. The minimum
spanning tree problem is to find a spanning tree in a given graph that has minimum
weight. In the binary program formulation of this problem there is a variable xe

for each edge e ∈ E. Thus, n corresponds to the number of edges. A 0/1 solution
x is feasible if the edges in the set {e ∈ E |xe = 1} form a spanning tree. Let S
denote the set of all solutions satisfying this condition. The combinatorial structure
described by S should not be touched by our randomization. It makes sense, however,
to assume that the objective function is stochastic as its coefficients describe measured
quantities. So we may assume that these coefficients are perturbed with uniform φ-
perturbations, that is, each of these coefficients correspond to the sum of an adversarial
number from [0, 1] and an independent random number drawn uniformly from [0, φ−1].
In the constrained minimum spanning tree problem [12], each edge does not only have
weights but additionally a cost ce. Now one seeks for the minimum weight spanning
tree satisfying the linear cost constraint

∑
e cex ≤ T . This additional constraint

corresponds to a subset B1 ⊆ {0, 1}|E| so that B1 ∩ S is the set of feasible solutions.
Due to the additional constraint, the problem becomes NP-hard. We will see, however,
that the problem has “polynomial smoothed complexity” assuming that either the
objective function or the additional constraint is stochastic.

1.2. How accurately do we need to calculate?. More precisely, we ask how
many bits of each stochastic input number do we need to reveal in order to determine
the winner? We say that the winner is determined by revealing some number of
the bits, when there is only one possible candidate for the winner regardless of the
outcomes of the unrevealed bits.

Theorem 1. Consider any instance of a binary optimization problem Π. Let
n ≥ 1 denote the number of binary variables and k ≥ 1 the number of stochastic
expressions.

(a) Suppose the expected absolute value E [|w|] of every stochastic coefficient w
is bounded from above by μ > 0. The number of bits in front of the floating
point of any stochastic coefficient w is bounded by O(max{1, log(kμn/p)}),
with probability at least 1 − p, for any 0 < p < 1.

(b) Let φ ≥ 1 denote the maximum density parameter, that is, all density func-
tions are upper-bounded by φ. The winner is determined when revealing
O(log(kφn/p)) bits after the binary point of each stochastic coefficient, with
probability at least 1 − p, for any 0 < p < 1.

One can always decrease φ or μ without changing the problem by scaling the
appropriate stochastic expression (and the respective bound, where applicable) by
some factor γ > 0. As the corresponding distribution has mean γμ and density
parameter φ/γ, this kind of scaling does not change the overall number of bits that
need to be revealed as log(μnk) + log(φnk) = log(γμnk) + log( 1

γφnk). The scaling
transfers only significant bits from positions before the binary points to a position after
the binary point. One can eliminate one parameter by normalizing the distributions
such that one parameter becomes 1. In case of a smoothed analysis, the right way to
scale the input numbers is already built into the model. According to our definitions,
the density function f specifying the perturbation model has to have a finite expected
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absolute value. For any fixed model of perturbation,
∫
|s|f(s)ds = O(1). In particular,

the expected absolute value of the density function fφ is O(φ−1). Taking into account
that the domain of the initial adversarial choices for the stochastic coefficients is
[−1, 1] or [0, 1], we observe that φ-perturbations yield coefficients with an expected
absolute value of at most μ = O(1 + 1

φ ). In order to simplify the notation, our model
of smoothed analysis is restricted to density parameters φ ≥ 1. This leads to the
following result on the overall number of bits that need to be revealed per stochastic
input number.

Corollary 2. For any fixed perturbation model f and any density parameter
φ > 1, the winner is determined when revealing O(log(kφn/p)) bits of each stochastic
coefficient, with probability at least 1 − p, for any 0 < p < 1.

Let us explain the concepts and ideas behind the analysis for Theorem 1. Part
(a) of the theorem follows simply by applying the Markov inequality to the expected
absolute values of the individual coefficients. The interesting part of the theorem is
stated in (b). In order to identify the winner one needs to isolate the winner from other
feasible solutions having a worse objective value. Furthermore, one needs to separate
the winner from those infeasible solutions that have a better objective value than the
winner. Our analysis is based on a generalized isolating lemma—i.e., a generalization
of the well-known isolating iemma by Mulmuley, Vazirani, and Vazirani [22]—and a
novel separating lemma.

The isolating lemma was originally presented in an article about RNC algorithms
for perfect matchings [22]. It is known, however, that the lemma does not only
apply to the matching problem but to general binary optimization problems with a
linear objective function. The lemma states that the optimal solution of a binary
optimization problem is unique with a probability of at least 1

2 when choosing the
coefficients of the objective function independently, uniformly at random from the set
{1, 2, . . . , 2n}. This is a very surprising and counterintuitive result as there might
be an exponential number of feasible solutions whose objective values all fall into a
polynomially large set, namely the set {1, 2, . . . , 2n2}, so that one can expect that
an exponential number of solutions are mapped to the same objective value. The
reason why the winner nevertheless is isolated is that the objective values of different
solutions are not independent but the solutions represent subsets over a ground set
of only n random numbers, and one of these numbers will be part of the best but
not the second best solution. We adapt the isolating lemma toward our continuous
setting and generalize it toward continuous probability distributions with bounded
density as described in section 1.1. In particular, different coefficients may follow
different continuous probability distributions. Suppose only the objective function is
stochastic, and the feasible region is fixed arbitrarily. Let φ denote the maximum
density parameter over all coefficients in the objective functions. Define the winner
gap to be the difference between the objective value of the best and the second-best
feasible solution, provided there are at least two feasible solutions. The generalized
isolating lemma states that, for every ε ∈ [0, 1], the winner gap is lower bounded by
ε

2φn with probability at least 1 − ε, and this bound is tight. As a consequence, it

suffices to reveal only O(log(φn)) bits of each coefficient of the objective function in
order to identify the winner, with high probability.

We accompany the isolating lemma with a novel separating lemma, enabling us
to separate the winner from infeasible solutions with better objective value than the
winner. For the time being, consider any binary optimization problem in which a
single constraint is stochastic. The difficulty in checking the feasibility with respect
to this constraint is that it might be likely that there are many solutions that are
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exponentially close to the constraint hyperplane. Nevertheless, we will see that the
optimal solution can be identified by inspecting only a logarithmic number of bits per
input number, with high probability. The reason is that we do not need to check the
feasibility of all solutions but only of some particular solutions. The losers are those
solutions that have a rank higher than the winner, but they are infeasible because
of the stochastic constraint. The loser gap is defined to be the minimal amount
by which a loser (except for the solution 0n) exceeds the constraint threshold. The
separating lemma shows that, for every ε ∈ [0, 1], the loser gap is larger than ε

φn2

with a probability of at least 1− ε. Let us try to give some intuition about this result.
If there are only a few losers, then one can imagine that none of them comes very
close to a random or randomly perturbed hyperplane. However, there might be an
exponential number of losers. In this case, however, the winner has a relatively low
rank as there is an exponential number of solutions better than the winner; but this
is very unlikely if the constraint hyperplane is likely to come very close to the good
solutions which correspond to the losers. Seeing it the other way around, if there are
many losers, then the hyperplane is likely to be relatively far away from the losers,
which might intuitively explain the phenomenon described by the separating lemma.
Besides the loser gap, we study the so-called feasibility gap corresponding to the slack
of the optimal solution with respect to the stochastic constraint. We can show that
the lower bound for the loser gap holds also for the feasibility gap. In fact, our analysis
for loser and feasibility gaps is heavily based on symmetry properties between them.

When analyzing the winner gap, we assume that the objective function is random
and the feasible region is fixed. In contrast, when we study the loser and feasibility
gaps, we assume that the feasible region is determined by random constraints and that
the objective function is fixed. In other words, the random expressions defining the
objective function and the constraints are assumed to be stochastically independent.
In fact, if the feasible region and the objective function are correlated, then winner,
loser, and feasibility cannot be lower bounded by the reciprocal of a polynomial. The
optimization variant of the subset-sum problem (i.e., knapsack with profits equal to
weights) is a simple counterexample. Lueker [19] proved that random instances of the
subset-sum problem have usually exponentially small gaps.

2. Analysis of the gap properties. In this section, we formally define the
winner, loser, and feasibility gap and prove lower bounds for their size. We begin
with an analysis of the winner gap. Afterwards we study the loser and the feasibility
gap; first for a single constraint and then for multiple constraints. Finally, we apply
these results to prove Theorem 1.

2.1. The winner gap. We consider an instance of a discrete optimization prob-
lem whose solutions are described by n binary variables x1, . . . , xn. The set of feasible
solutions (ground set intersected with the constraints) is now denoted by S ⊆ {0, 1}n.
Fix some arbitrary set S with at least two solutions. The objective function is denoted
by cTx. The numbers ci ∈ R, i = 1, . . . , n, are assumed to be stochastic, that is, they
are treated as independent random variables following possibly different continuous
probability distributions with bounded density. Without loss of generality, we con-
sider a maximization problem. Let x∗ = argmax{cTx |x ∈ S} denote the winner and
x∗∗ = argmax{cTx |x ∈ S \ {x∗}} the second best solution. The winner gap Δ is
defined to be the difference between the objective values of a best and second best
solution, that is, Δ = cTx∗ − cTx∗∗.

Lemma 3 (generalized isolating lemma). Fix the feasible region S. Let φi denote
the density parameter of ci, for 1 ≤ i ≤ n, and φ = maxi φi. For every ε ≥ 0,



WINNERS AND LOSERS IN DISCRETE OPTIMIZATION 861

Pr [Δ < ε] ≤ 2ε
∑

i∈[n] φi ≤ 2εφn.
Proof. At first we observe, if there is a variable xi that takes the same value

in all feasible solutions, then this variable does not affect the winner gap and it can
be ignored. Thus, without loss of generality, for every i ∈ [n], there are at least
two feasible solutions whose vectors differ in the ith bit, i.e., with respect to the ith
variable. Under this assumption, we can define the winner gap with respect to bit
position i ∈ [n] by

Δi = cTx∗ − cT y,(1)

where x∗ = argmax{cTx |x ∈ S}, y = argmax{cTx |x ∈ S, xi �= x∗
i }. In other

words, Δi is the difference between the objective value of the winner x∗ and the value
of a solution y that is best among those solutions that differ in the ith bit from x∗,
i.e., the best solution in {x ∈ S |xi �= x∗

i }.
Clearly, the best solution, x∗ = (x∗

1, . . . , x
∗
n), and the second best solution, x∗∗ =

(x∗∗
1 , . . . , x∗∗

n ), differ in at least one bit, that is, there exists i ∈ [n] such that x∗
i �= x∗∗

i .
If the best and second best solution differ in the ith bit, then Δ = Δi. Thus, Δ is
guaranteed to take a value also taken by at least one of the variables Δ1, . . . ,Δn. In
the following, we will prove Pr [Δi < ε] ≤ 2εφi, for 1 ≤ i ≤ n. Thus,

Pr [Δ < ε] ≤ Pr [∃i ∈ [n] : Δi < ε] ≤
∑
i∈[n]

Pr [Δi < ε] ≤ 2ε
∑
i∈[n]

φi,

which implies the lemma.
Let us fix an index i ∈ [n]. It remains to show Pr [Δi < ε] ≤ 2εφi. We partition

S, the set of feasible solutions, into two disjoint subsets S0 = {x ∈ S |xi = 0} and
S1 = {x ∈ S |xi = 1}. Now suppose all random variables ck, k �= i are fixed arbitrarily.
Under this assumption, we can identify a winner among the solutions in S0 as the
objective values of the solutions in S0 do not depend on ci. Although the objective
values of the solutions in S1 are not fixed, we can nevertheless identify a winner of
S1 because the unknown outcome of the random variable ci does not affect the order
among the solutions in S1. For j ∈ {0, 1}, let x(j) denote a winner among the solutions
in Sj . We observe Δi = |cTx(1)−cTx(0)| because the solutions x∗ and y as defined in
(1) cannot be contained in the same set Sj , j ∈ {0, 1}. Consider the random variable
Z = cTx(1) − cTx(0). We have shown Δi = |Z|. Observe that the random variable ci
appears as a simple additive term in Z. Hence, the density function of Z is a shifted
variant of the density function of ci. In particular, φi is an upper bound for the density
of Z, as it is for the density of ci. Hence, Pr [Δi < ε] = Pr [Z ∈ (−ε, ε)] ≤ 2εφi. This
completes the proof of the generalized isolating lemma.

Next we show that the given bound in the generalized isolating lemma is tight.
Lemma 4. Suppose S = {0, 1}n. Let φ1, . . . , φn > 0 denote an arbitrary collec-

tion of density parameters. Fix any α <
∑

i∈[n] φi. There is a way to define con-
tinuous probability distributions for the coefficients c1, . . . , cn with density parameters
φ1, . . . , φn, respectively, such that there exists ε > 0 with Pr [Δ < ε] > 2αε.

Proof. As S = {0, 1}n, the optimal solution x∗ satisfies x∗
i = 1 ⇔ ci > 0. Let

k = argmini(|ci|). The second best solution x∗∗ satisfies x∗∗
i = x∗

i , for all i �= k,
and x∗∗

k = 1 − x∗
k. Thus, Δ = mini(|ci|). Assume the density functions of c1, . . . , cn

are continuous and take their maximum value φi at 0. We study the density of the
random variable Δ at 0,

lim
ε→0
ε>0

Pr [Δ < ε]

ε
= lim

ε→0
ε>0

Pr [∃i ∈ [n] : |ci| < ε]

ε
=

∑
i∈[n]

lim
ε→0
ε>0

Pr [|ci| < ε]

ε
,
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where the last equality is due to the fact that for any S ⊂ S with |S| > 1,

lim
ε→0
ε>0

Pr
[∧

i∈S |ci| < ε
]

ε
= 0.

Now

lim
ε→0
ε>0

Pr [|ci| < ε]

ε
= lim

ε→0
ε>0

Pr [ci ∈ (−ε, ε)]

ε
= 2φi.

As a consequence,

lim
ε→0
ε>0

Pr [Δ < ε]

ε
= 2

∑
i∈[n]

φi,

so that, for any α <
∑

i∈[n] φi, there exists ε > 0 with Pr [Δ < ε] > 2αε.

2.2. Loser and feasibility gaps for a single constraint. We consider an
instance of an optimization problem over n binary variables. The objective function
can be fixed arbitrarily; we rank all solutions (feasible and infeasible) according to
their objective value in nonimproving order. Solutions with the same objective values
are ranked in an arbitrary but fixed fashion. The feasible region is described by a
subset S ⊆ {0, 1}n intersected with the half space B described by an additional linear
constraint. Without loss of generality, the constraint is of the form wTx ≤ t. The set
S and the threshold t are assumed to be fixed. The coefficients w1, . . . , wn correspond
to independent random variables following possibly different continuous probability
distributions with bounded density. The winner, denoted by x∗, is the solution with
highest rank in S ∩ B. The feasibility gap is defined by

Γ =

{
t− wTx∗ if S ∩ B �= ∅, and
⊥ otherwise.

In other words, Γ corresponds to the slack of the winner with respect to the constraint
wTx ≤ t. Observe that x∗ might be undefined if there is no feasible solution. In this
case, the random variable Γ takes the value ⊥ (undefined).

A solution in S is called a loser if it has a higher rank than x∗, that is, the losers
are those solutions from S that have a better rank than the winner, but they are cut
off by the constraint wTx ≤ t. The set of losers is denoted by L. If there is no winner,
as there is no feasible solution, then we define L = S. The loser gap is defined by

Λ =

{
min{wTx− t | x ∈ L} if L �= ∅, and
⊥ otherwise.

In case L �= ∅, the loser that determines Λ, i.e., argminx∈L{wTx}, is called minimal
loser. Figure 1 illustrates these definitions.

Our goal is to lower bound Γ and Λ. Observe that the solution 0n is different
from all other solutions in S, as its feasibility does not depend on the outcome of the
random coefficients w1, . . . , wn. Suppose 0n ∈ S and 0n has the highest rank among
all solutions in S. Then one can enforce Γ = 0 by setting t = 0. Similarly, one can
enforce Λ → 0 for t → 0. For this reason, we need to exclude the solution 0n from
our analysis.
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t

weight

x

Λ Γ

x(1) (2)

winner

losers

Fig. 1. Loser and feasibility gap: Solutions are listed from left to right according to the ranking.
The height of the bars correspond to the weight wT x. The winner is the first solution whose weight
satisfies the threshold t. The feasibility gap Γ is the slack of the winner with respect to the constraint
wT x ≤ t. All solutions left of the winner are losers. The loser gap Λ is the smallest amount by
which any loser violates the threshold t.

Lemma 5 (separating lemma). Let φi denote the density parameter of wi, for all
i ∈ [n], and define φ = maxi∈[n] φi. Suppose 0n �∈ S. For every ε ≥ 0, Pr [Γ < ε] ≤
εn

∑
i∈[n] φi ≤ εφn2 and Pr [Λ < ε] ≤ εn

∑
i∈[n] φi ≤ εφn2.

Proof. We will heavily use symmetry properties between the two gaps. First, we
will prove Pr [Λ < ε] ≤ ε

∑
i∈[n] φi under the assumption that the ranking satisfies a

certain monotonicity property. Next, we will show that any probabilistic lower bound
of this kind that holds for the loser gap with respect to any given threshold t ∈ R

transfers to the feasibility gap and vice versa. Because of this symmetry property,
the probability that the loser gap is smaller than ε is also at most ε

∑
i∈[n] φi under

the same monotonicity assumption. Afterwards, we will show that the monotonicity
assumption for the feasibility gap can be dropped at the cost of an extra factor n,
thereby achieving an upper bound of εn

∑
i∈[n] φi on the probability that the feasibility

gap is smaller than ε. Finally, by applying the symmetry argument in the other
direction, we obtain the same result for the loser gap.

A ranking of the solutions is called monotone if all pairs of solutions x, y ∈ S,
x having a higher rank than y, satisfy that there exists i ∈ [n] with xi > yi. When
considering the binary solution vector as subsets of [n], a ranking is monotone if each
subset S is ranked higher than all its proper subsets T ⊂ S. This property is naturally
satisfied for maximization problems having a linear objective function with positive
coefficients, but also if all solutions in S have the same number of ones.

Lemma 6. Suppose 0n �∈ S and the ranking is monotone. Then Pr [Λ < ε] ≤
ε
∑

i∈[n] φi.
Proof. Fix t ∈ R arbitrarily. As in the proof for the winner gap, we define n

random variables Λ1, . . . ,Λn with maximum densities φ1, . . . , φn such that at least one
of them takes the value of Λ. For i ∈ [n], define Si = {x ∈ S | xi = 1} and S̄i = S\Si.
Let x̄(i) denote the winner from S̄i, i.e., the solution with the highest rank in S̄i ∩ B.
Now let Li denote the set of losers from Si when assuming that x̄(i) is the winner,
that is, Li = {x ∈ Si |x has a higher rank than x̄(i)}. If x̄(i) does not exist, then we

set Li = Si. Now define the minimal loser of Li, x
(i)
min = argmin{wTx |x ∈ Li}, and

Λi =

{
wTx

(i)
min − t if Li �= ∅, and

⊥ otherwise.

Observe that Li is not necessarily a subset of L, as x̄(i) can have a lower rank than x∗.
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In fact, x
(i)
min can be feasible so that Λi can take negative values. The reason for this

“wasteful” definition is that it yields some kind of independence that we will exploit
in the following arguments.

Claim A. Pr [Λi ∈ [0, ε)] ≤ εφi. This claim can be seen as follows. The definitions
above ensure Li ⊆ Si while x̄(i) ∈ S̄i. Suppose all variables wj , j �= i are fixed
arbitrarily. The winner x̄(i) can be determined without knowing the outcome of wi

as x̄(i) ∈ S̄i and for all solutions in S̄i the ith entry is zero. Observe that Li is

fixed as soon as x̄(i) is fixed, and so is x
(i)
min, as the ith bit of all losers in Li is one.

Hence, wi is not affected by fixing x
(i)
min. As the ith bit of x

(i)
min is one, the random

variable Λi can be rewritten as Λi = wTx
(i)
min − t = κ + wi, where κ depends on only

the fixed coefficients wj , j �= i, and wi is a random variable with density at most φi.
Consequently, the density of Λi is bounded from above by φi. (The same is true if x̄(i)

does not exist so that Li = Si.) This upper bound on the density of Λi immediately
implies Pr [Λi ∈ [0, ε)] ≤ εφi.

Claim B. If Λ �=⊥, then there exists i ∈ [n] such that Λ takes the value of Λi. To
prove this claim, let us first assume that x∗ exists and L �= ∅. Let xmin ∈ L denote
the minimal loser, i.e., xmin = argmin{wTx |x ∈ L}. By definition, xmin has a higher
rank than x∗. Because of the monotonicity of the ranking, there exists i ∈ [n] such
that x∗ ∈ S̄i and xmin ∈ Si. From x∗ ∈ S̄i, we conclude x∗ = x̄(i). Consequently,

xmin ∈ L ∩ Si = Li so that xmin = x
(i)
min. Hence, Λ = Λi. Now suppose x∗ does

not exist. Then L = S and Li = Si, for all i ∈ [n]. Thus, there exists i ∈ [n] with

xmin = x
(i)
min because S =

⋃
i∈[n] Si as 0n �∈ S. Finally, if L = ∅, then the claim follows

immediately as Λ =⊥.

Combining the claims with the union bound gives

Pr [Λ < ε] ≤ Pr [∃i ∈ [n] : Λi ∈ [0, ε)] ≤
∑
i∈[n]

Pr [Λi < ε] ≤
∑
i∈[n]

εφi.

Next we present a symmetry property that allows the transfer of lower bounds
on the loser gap to the feasibility gap and vice versa. Observe that the lower bound
above holds for any given threshold t ∈ R. This is important for the application of our
symmetry argument. In the following, let Λ(t) and Γ(t) denote loser and feasibility
gap with respect to threshold t, respectively.

Lemma 7. Suppose 0n �∈ S. For any t ∈ R and ε ≥ 0,

Pr [Γ(t) < ε] = Pr [Λ(t− ε) < ε] .

Proof. We take an alternative view on the given optimization problem. We
interpret the problem as a bicriteria problem. The feasible region is then the whole
set S. The first criterion is the rank which is to be minimized (high ranks are small
numbers). The second criterion is the weight, defined by the linear function wTx,
which is to be minimized as well. A solution x ∈ S is called Pareto-optimal if there
is no higher ranked solution y ∈ S with smaller (or equal) weight. For simplicity
assume that no two solutions have the same weight. This assumption is justified as
the probability that there are two solutions with the same weight is 0.

Next we show that winners and minimal losers of the original optimization prob-
lem correspond to Pareto-optimal solutions of the bicriteria problem. First, let us
observe that the winner x∗ with respect to any given weight threshold t is a Pareto-
optimal solution for the bicriteria problem because there is no other solution with
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a higher rank and weight at most t ≥ wTx∗. Moreover, for every Pareto-optimal
solution x there is also a threshold t such that x is a winner, i.e., t = wTx.

The same kind of characterization holds for minimal losers as well. Recall, for a
given threshold t, the minimal loser is defined to be xmin = argmin{wTx |x ∈ L}. We
claim that there is no other solution y ∈ S that simultaneously achieves a higher rank
and smaller weight than xmin. This can be seen as follows. Suppose y ∈ S is a solution
with higher rank than xmin. If wT y ≤ t, then y ∈ B and, hence, xmin would not be
a loser. However, if wT y ∈ (t, wTxmin), then y and xmin would both be losers, but y
instead of xmin would be minimal. Furthermore, for every Pareto-optimal solution x
there is also a threshold t such that x is a loser. This threshold can be obtained by
setting t → wTx, t < wTx.

Now let us describe winner and loser gap in terms of Pareto-optimal solutions.
Let P ⊆ S denote the set of Pareto-optimal solutions with respect to the fixed ranking
and the random weight function wTx. Then feasibility and loser gaps for any given
threshold t ∈ R satisfy

Γ(t) = min{t− wTx | x ∈ P, wTx ≤ t},
Λ(t) = min{wTx− t | x ∈ P, wTx > t}.

For a better intuition, we can imagine that all Pareto-optimal solutions are mapped
onto a horizontal line such that x ∈ P is mapped to the point wTx. Then Γ(t) is the
distance from the point t on this line to the closest Pareto point left of t (i.e., less
than or equal to t), and Λ(t) is the distance from t to the closest Pareto point strictly
right of t (i.e., larger than t). As a consequence, Γ(t) < ε if and only if Λ(t − ε) ≤ ε
and, hence,

Pr [Γ(t) < ε] = Pr [Λ(t− ε) ≤ ε] = Pr [Λ(t− ε) < ε] .

Combining Lemmas 6 and 7 yields that the probability that the feasibility gap
is smaller than ε is at most ε

∑
i∈[n] φi as well, provided that the ranking is mono-

tone and 0n �∈ S. Next we extend this result toward general rankings by break-
ing the original problem into suitable subproblems. We partition S into the sets
S(k) = {x ∈ S |

∑
ixi = k}, for 1 ≤ k ≤ n. Observe that each of these sets con-

tains only solutions with the same number of ones, and hence, satisfies the mono-
tonicity condition. Let Γ(k)(t) denote the feasibility gap over the set S(k). By our
arguments above, Pr

[
Γ(k)(t) < ε

]
≤ ε

∑
i∈[n] φi. Furthermore, Γ(t) takes the value

of one of the variables Γ(k)(t), 1 ≤ k ≤ n, because the winner of one of the sub-
problems is the winner of the original problem. Applying the union bound gives
Pr [Γ(t) < ε] ≤ εn

∑
i∈[n] φi. Let us remark that such a kind of argument cannot

be applied directly to the loser gap. By applying Lemma 7, however, the bound for
the feasibility gap holds for the loser gap as well. This completes the proof of the
separating lemma.

2.3. Loser and feasibility gap for multiple constraints. Assume there are
k ≥ 2 stochastic constraints. Without loss of generality, these constraints are of the
form wT

j x ≤ tj , for j ∈ [k], and the sets of solutions satisfying these constraints are
B1, . . . ,Bk, respectively. We generalize the definition of feasibility and loser gap as
follows. Given a set of solutions S ⊆ {0, 1}n and a ranking, the winner x∗ is the highest
ranked solution in S ∩B1 ∩ · · · ∩Bk. The feasibility gap for multiple constraints is the
minimal slack of x∗ over all stochastic constraints, that is, Γ = minj∈[k]{tj − wT

j x
∗},

if x∗ exists, and Γ =⊥, otherwise.
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Fig. 2. Loser and feasibility gap for three constraints: Solutions are listed from left to right
according to the ranking. For each solution three bars are shown representing three different weight
functions. The thresholds t1, t2, and t3 apply to the first, second, and third weight function (bar),
respectively. The winner is the first solution satisfying all three thresholds. The feasibility gap Γ
is the smallest slack of the winner over the different constraints. All solutions left of the winner
are losers. The loser gap for an individual loser is the largest amount by which this loser violates
a threshold (given in black). The loser gap Λ is the minimum of the individual loser gaps over all
losers.

A solution in L is called a loser if it has a higher rank than x∗. Observe that a
loser needs only to be infeasible with respect to one of the k constraints. In particular,
it is not true that the weight values of each loser are likely to be far away from the
corresponding thresholds tj , j ∈ [k]; not even if we consider only those constraints for
which the respective loser is infeasible. Fortunately, however, we do not need such a
property in the application of the loser gap. For every loser, one needs only a single
constraint that renders the loser infeasible. Therefore, we define the loser gap for k
constraints by

Λ =

{
minx∈L maxj∈[k]{wT

j x− tj} if L �= ∅, and
⊥ otherwise.

Figure 2 illustrates this definition.
Lemma 8. Let φ denote the maximum density parameter of all coefficients in the

stochastic constraints. Suppose 0n �∈ S. For every ε ≥ 0, Pr [Γ < ε] ≤ εkφn2 and
Pr [Λ < ε] ≤ εkφn2.

Proof. First we show the bound for the feasibility gap. Let x∗ denote the winner
and suppose Γ ≤ ε, for some ε ∈ R≥0. Then there exists j ∈ [k] with tj − wT

j x
∗ ≤ ε.

Thus,

Pr [Γ ≤ ε] ≤
∑
j∈[k]

Pr
[
tj − wT

j x
∗ ≤ ε

]
.

For each individual j ∈ [k], we can apply the separating lemma assuming that the set
of feasible solutions with respect to all other constraints is fixed, as the coefficients in
this constraint are stochastically independent from the other constraints. This way,
we obtain Pr [Γ ≤ ε] ≤ k · εφn2.

Next, we turn our attention to the loser gap. Unfortunately, we cannot generalize
the bound on the loser gap from one to multiple constraints in the same way as
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we generalized the feasibility gap, as the loser gap for multiple constraints does not
correspond to the minimal loser gap over the individual constraints. Instead we will
make use of the result for the feasibility gap established above. Assume Λ ≤ ε, for
some ε ∈ R≥0. Then there exists a loser x satisfying for all j ∈ [k] : wT

j x − tj ≤ ε.
Let xL denote the loser with this property that is ranked highest. Consider a relaxed
variant Π′ of the given optimization problem Π where the thresholds of all stochastic
constraints are increased by ε, i.e., we have constraints wT

j x ≤ tj + ε, j ∈ [k]. Observe
that xL is feasible in the relaxed problem Π′ and, by the definition of xL, no higher
ranked solution is feasible. Thus, xL is the winner of Π′. Since tj < wT

j xL ≤ tj + ε for
some j ∈ [k], the feasibility gap Γ′ of the relaxed problem is smaller than ε. Hence,
Λ ≤ ε implies Γ′ ≤ ε. Finally, applying the bound Pr [Γ′ ≤ ε] ≤ εkφn2 derived in the
first part of the proof yields Pr [Λ ≤ ε] ≤ εkφn2.

2.4. Proof of Theorem 1. First we prove part (a) of the theorem. The
probability that the absolute value of any of the kn stochastic coefficients wi,j ,
(i ∈ [k], j ∈ [n]), is larger than μnk/p, for any 0 < p < 1, is

Pr

[
∃(i, j) : |wi,j | >

μnk

p

]
≤

∑
i,j

Pr

[
|wi,j | >

μkn

p

]
≤

∑
i,j

p

kn
= p.

Hence, the maximum number of bits in front of the floating point over all stochastic
coefficients is O(max{1, log(μkn/p)}), with a probability of at least 1 − p.

Next we prove part (b) of the theorem. First, suppose that the objective function
is the only stochastic expression. We reveal b bits after the binary point of each
coefficient ci (1 ≤ i ≤ n). Then we know the value of each ci up to a absolute error of
2−b. We will deal with this lack of precise information in terms of rounding, that is,
we will think of rounding down all ci to the next multiple of 2−b causing a “rounding
error” of less than 2−b for each number.

Lemma 9. Let φ denote the maximum density parameter over the coefficients
c1, . . . , cn in the objective function. When revealing b bits after the binary point of
each coefficient then the winner is determined with a probability of at least 1−2n2φ/2b.

Proof. Let �c� be the vector that is obtained by rounding each entry ci of vector
c down to the next multiple of 2−b. Consider any two solutions x, x′ ∈ S. Rounding
changes the difference of the objective values of x and x′ by

|(cTx− cTx′) − (�c�Tx− �c�Tx′)| = |(c− �c�)T (x− x′)| < n2−b,

as ci − �ci� < 2−b, for all i ∈ [n]. Hence, if the winner gap Δ (with respect to the
exact coefficients c1, . . . , cn) is at least n2−b, then the winner is sufficiently isolated
and the rounding cannot affect the optimality of the winner. In this case the winner
is determined by revealing only b bits of each coefficient ci. Applying the generalized

isolating lemma with ε = n2−b we obtain Pr
[
Δ < n2−b

]
≤ 2n2φ

2b and the lemma
follows.

Next suppose only some of the constraints are stochastic and the objective func-
tion is fixed arbitrarily. Let k′ denote the number of stochastic constraints. Without
loss of generality, the constraints are of the form wT

j x ≤ tj , j ∈ [k′]. Assume we reveal
b bits after the binary point of each coefficient in the k′ constraints. We will think of
it as rounding down each coefficient to the next multiple of 2−b.

Lemma 10. Let φ denote the maximum density parameter over all coefficients
in the stochastic constraints. When revealing b bits after the binary point of each
coefficient, the winner is determined with a probability of at least 1 − k′n3φ/2b.
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Proof. As we round down, infeasible solutions might become feasible whereas
feasible solutions stay feasible. (For constraints of the form wT

j x ≥ tj one would need

to round up to the next multiple of 2−b.) To ensure that the winner is determined it
suffices to upper bound the maximum possible error in each constraint caused by the
rounding of the coefficients. If this error is smaller than the loser gap, then rounding
cannot change the feasibility status of any loser, i.e., all infeasible solutions that have
rank higher than the winner stay infeasible.

In order to apply the bound on the loser gap given in Lemma 8, let us first assume
0n �∈ S. The rounding error in each expression is at most n2−b. The definition of
the loser gap for multiple stochastic constraints states that for every loser x there is
a constraint j ∈ [k′] such that wT

j x − tj ≥ Γ. Therefore, if Γ > n2−b, then every
loser stays infeasible with respect to at least one constraint after rounding. Applying
Lemma 8, the probability for this event is at least 1 − k′φn3/2b.

Including 0n to the set of solutions S can influence our analysis in two ways.
First, 0n can be a loser and might decrease the loser gap. However, rounding the
coefficients wi does not change the feasibility of this solution and the winner is not
affected by 0n. Second, 0n can become the winner and might thereby change the set
of losers. In this case, adding 0n to S can only remove solutions from L and, hence,
can only increase the loser gap. Thus, the above bound holds even if 0n ∈ S.

Now suppose some constraints as well as the objective function are stochastic. We
can combine the results for the winner gap and the feasibility gap as the coefficients
of the objective function and the random constraints are assumed to be independent.
Let k = k′ + 1 denote the number of stochastic expressions. The probability that
the winner and loser gap are sufficiently large, as described in the proofs of the two
lemmas above, is 1 − k′φn3/2b − 2φn2/2b ≥ 1 − kφn3/2b, for n ≥ 2.

This implies that the winner is determined when revealing b = O(log(kφn/p))
bits, with a probability of at least 1− p, for any 0 < p < 1. This completes the proof
of Theorem 1.

3. Characterizing polynomial smoothed complexity. Based on the gap
properties, we aim at characterizing which discrete optimization problems have poly-
nomial time algorithms under random perturbations. We formalize this as follows.
Fix any binary optimization problem Π and any perturbation model f . Let IN de-
note the set of all unperturbed instances of length N that an adversary may specify.
The definition of the input length N needs some clarification as the coefficients in
the stochastic expressions are assumed to be real numbers. We define that each of
these numbers has a virtual length of one. (This way, we ensure N ≥ kn.) The bits
of the stochastic numbers can be accessed by asking an oracle in time O(1) per bit.
The bits after the binary point of each coefficient are revealed one by one from left
to right. The deterministic part of the input can be encoded in an arbitrary fashion.
For an instance I ∈ IN , let I + fφ denote the random instance that is obtained by a
φ-perturbation of I. We say that Π has smoothed polynomial complexity if and only
if it admits an algorithm A whose running time T satisfies

∃α, β > 0 : for all φ ≥ 1 : for all N ∈ N : max
I∈IN

E [(T (I + fφ))
α
] ≤ β φN.

This definition of polynomial smoothed complexity follows more or less the way in
which polynomial complexity is defined in average-case complexity theory, adding the
requirement that the running time should be polynomially bounded not only in N but
also in φ. It is not difficult to show that the assumption on the running time of A is
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equivalent to requiring that there exists a polynomial P (N,φ, 1
ε ) such that for every

N ∈ N, φ ≥ 1, ε ∈ [0, 1], the probability that the running time of A exceeds P (N,φ, 1
ε )

is at most ε. Observe that this does not imply that the expected running time is
polynomially bounded. To enforce expected polynomial running time, the exponent
α in the definition of polynomial smoothed complexity should have been placed outside
instead of inside the expectation. The reason for not defining polynomial smoothed
complexity based on the expected running time is that this is not a sufficiently robust
notion. For example, an algorithm with expected polynomial running time on one
machine model might have expected exponential running time on another machine
model. In contrast, the above definition yields a notion of polynomial smoothed
complexity that does not vary among classes of machines admitting polynomial time
simulations among each other. Although polynomial smoothed complexity does not
always imply polynomial bounds on the expected running time, we will show that
several of our algorithmic results yield expected polynomial running time on a random
access machine (RAM).

We show that the smoothed complexity of a binary optimization problem Π can
be characterized in terms of the worst-case complexity of Π. Theorem 1 shows that
one usually needs to reveal only a logarithmic number of bits per real-valued input
number. This suggests a connection between pseudo-polynomial worst-case running
time and polynomial average-case complexity. For a binary optimization problem Π,
let Πu denote the corresponding optimization problem in which all numbers in the
stochastic expression are assumed to be integers in unary representation instead of
randomly chosen real-valued numbers. The following theorem holds for any fixed
perturbation model f .

Theorem 11. A binary optimization problem Π has polynomial smoothed com-
plexity if and only if Πu ∈ ZPP.

In other words, Π has polynomial smoothed complexity if it admits a (possibly
randomized) algorithm whose (expected) running time for all instances is pseudo-
polynomial in the stochastic constraints and polynomial in the remaining input. No-
tice that the expectation is over the randomization of the algorithm, not over the
instances. This characterization immediately shows that strongly NP-hard optimiza-
tion problems do not have polynomial smoothed complexity, unless ZPP=NP. This
observation might not sound very surprising, as the hardness of strongly NP-hard
problems does not rely on large or precisely specified input numbers. Observe, how-
ever, that the strong NP-hardness of a problem does not immediately rule out the
possibility of a polynomial average-case complexity. For example, the TSP prob-
lem (on a complete graph) with edge lengths drawn uniformly at random from [0, 1]
might have a polynomial average-case complexity. Our theorem, however, shows that
it does not have a polynomial smoothed complexity, unless ZPP = NP. The more
sophisticated part of the theorem is the other direction stating that every binary
optimization problem admitting a pseudo-polynomial time algorithm has polynomial
smoothed complexity. This result is based on the generalized isolating lemma and
the separating lemma. The idea is as follows. We design efficient verifiers checking
whether a solution computed with a certain precision is actually the optimal solution
of Π. The success probability of these verifiers is analyzed with the help of the gap
properties. Using an adaptive rounding procedure, we increase the precision until
we can certify that the computed solution is optimal. The overall running time of
this meta-algorithm is polynomial if the algorithm computing solutions with bounded
precision has pseudo-polynomial running time.
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Proof. At first, we prove that the existence of a randomized pseudo-polynomial
time algorithm for a binary optimization problem Π implies polynomial smoothed
complexity for Π. We design an algorithm with polynomial smoothed complexity
calling the pseudo-polynomial algorithm with higher and higher precision until the
solution found is certified to be optimal. We describe verifiers that, based on the first
b bits after the binary point of each coefficient in the stochastic expressions, either
certify optimality or report Failure, stating that they have not sufficient information
to ensure optimality. So the algorithm has access to the first b bits only, which
corresponds to rounding down the numbers to the next multiple of 2−b. Again we
will interpret the lack of precise information as a rounding error. In the following,
�w� denotes the value of w rounded down to the next multiple of 2−b.

Certifying optimality. For a moment assume that only the objective function
is stochastic. Without loss of generality, consider a maximization problem with an ob-
jective function cTx. At first, we compute an optimal solution x′ for the problem with
the rounded coefficients �c1�, . . . , �cn�. To check whether x′ is optimal with respect to
the original cost vector c, we generate another vector c̄ of rounded coefficients. This
time the rounding depends on the computed solution x′. For all i with x′

i = 1, we
set c̄i := �ci� and for all i with x′

i = 0, we set c̄i := �ci� = �ci� + 2−b. Observe that
the function δ(x) = cTx − c̄Tx is maximal for x = x′. Next we compute an optimal
solution x′′ for the problem with the vector c̄. If x′ = x′′, then x′ simultaneously
maximizes δ(x) and c̄Tx. Consequently, it maximizes c̄Tx + δ(x) = cTx as well and,
hence, x′ corresponds to the true winner x∗. Thus, the algorithm outputs x′ as a
certified winner if x′ = x′′ and reports Failure otherwise. If the winner gap is large
enough so that the winner is determined in the sense of Lemma 9, then the algorithm
will always compute a certified winner. Hence, the probability that the algorithm
is successful is at least 1 − 2n2φ/2b, corresponding to the bound given in Lemma 9.
Observe that Γ ≥ n2−b is a sufficient but not a necessary condition to certify the
optimality of the winner with b revealed bits per coefficient. So the verifier might
verify optimality of the computed solution even if Γ < n2−b.

Certifying feasibility. Now we show how to deal with stochastic constraints.
Without loss of generality, we assume that all stochastic constraints are of the form
wT

j x ≤ tj , 1 ≤ j ≤ k′. For constraints of the form wTx ≥ t, we would need to
round up instead of round down. First, we compute a certified winner, denoted by x′,
using the rounded coefficients in the stochastic constraints. If the objective function
is not stochastic, then there is no need to certify the winner. As we round down
all coefficients in the stochastic constraints, we ensure that feasible solutions stay
feasible. However, we have to detect infeasible solutions that become feasible due to
the rounding and displace the true winner. Hence, we need to check whether x′ is
indeed feasible with respect to the original constraints. This would be trivial if the
exact values of all constraint vectors w1, . . . , wk were available. However, we want
to check the feasibility using only the knowledge of the first b bits after the binary
point of each coefficient. Assume the solution x is infeasible with respect to the jth
constraint and becomes feasible due to rounding. Then �wj�Tx ≤ tj < wT

j x and hence

tj − �wj�Tx < wT
j x− �wj�Tx ≤ n2−b, i.e., the slack of x in the jth constraint is less

than n2−b with respect to the rounded vector �wj�. Our verifier will use this property
and classifies x′ as possibly infeasible if it has slack less than n2−b for any of the k
constraints with respect to the rounded coefficients. This way, we have two failure
sources. First, there might be a loser that becomes feasible because of rounding.
As seen in the proof of Lemma 10, this can happen only if the loser gap is smaller
than n2−b. Second, the true winner can be rejected since its slack is less than n2−b.
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This happens only if the feasibility gap is smaller than n2−b. Due to Lemma 8, the
probability that one of these events happens is at most 2k′φn3/2b.

Adaptive rounding procedure. Consider a binary optimization problem Π
with n binary variables and k stochastic expressions. Assume there exists an algorithm
A for the special variant of Π, where the domain of the coefficients in the stochastic
expressions is restricted to Z. Furthermore, assume that the worst-case running time
of A is bounded by some polynomial in W,n, k, and N , where W denotes the largest
absolute value of any coefficient in the stochastic expressions. Recall that N specifies
the size of the deterministic part of the input. We use the following adaptive rounding
scheme. We start by revealing b = log(kφn3) bits of each coefficient in the stochastic
expressions. We obtain integer coefficients by scaling these numbers by 2b. Now we
use the algorithm A to obtain a solution and use the verifiers to test for optimality.
In case of Failure we increment b by one and iterate until the verifiers conclude
optimality of the computed solution.

To analyze the running time of A we need to estimate W , the largest absolute
value of any integer in the stochastic expressions. It is the product of two factors. The
first factor, W1 = 2b, is due to the scaling and depends on the number of revealed bits
after the binary point of each coefficient. The second factor, W2, corresponds to the
integer part of the largest absolute value of any coefficient. This way, W = W1W2.
We have to show that there exists a polynomial P (N,φ, 1

p ) such that for every N ∈
N, φ > 0, p ∈ [0, 1] : Pr

[
T > P (N,φ, 1

p )
]
≤ p. The running time of A is polynomial

in W,n, k, and N . As n, k, and N do not depend on the random choice for the
coefficients, it suffices to show such a polynomial bound for W . Let us first prove an
upper bound on W2. Let rj,i be the random variable that is added to the ith coefficient
in the jth stochastic expression when perturbing the instance. Recall that the mean
of the absolute values of the probability distribution that defines the perturbation
model is a constant, denoted by E. It then holds that W2 ≤ maxj∈[k],i∈[n] |rj,i| + 1.
For every α ≥ 1,

Pr

[
max
j,i

|rj,i| > αE

]
≤

∑
j,i

Pr [|rj,i| > αE] ≤ nk

α
,

where the last inequality uses the Markov inequality. Thus, Pr [W2 > αE + 1] ≤
nk/α. Setting α = 2nk/p, it holds that W2 ≤ 2nkE

p + 1 with a probability of at

least 1 − p/2, for every 0 < p < 1. Next consider the term W1 = 2b. There are
two reasons the certifier can declare the computed solutions suboptimal or infeasible.
First, the random instance happens to have a small winner gap or a small loser
gap such that the winner is not uniquely determined. By Theorems 9 and 10, the
probability for this event is at most kφn3/2b. Second, the feasibility checker reports
false negatives due to a small feasibility gap. This happens with a probability of
at most k′φn3/2b. Allowing a failure probability of p/4 for each event, we obtain

W1 = 2b = kφn34
p . Therefore, with a probability of at least 1 − p, none of these bad

events occur and it holds that W = W1W2 ≤
(

2nkE
p + 1

)
kφn34

p . As E is assumed

to be constant and kn ≤ N , there exists a polynomial P (N,φ, 1
p ) such that for all

N ∈ N, φ > 0, p ∈ [0, 1] : Pr
[
W > P (N,φ, 1

p )
]
≤ p.

From polynomial smoothed complexity to pseudo-polynomial running
time. Finally, we need to show that polynomial smoothed complexity of a binary
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optimization problem Π implies the existence of a randomized pseudo-polynomial
algorithm for Π. Since we are aiming for a pseudo-polynomial time algorithm, we
can assume that all numbers in the stochastic expressions are integers. Let M denote
the largest absolute value of these numbers. The idea is to perturb all numbers only
slightly such that the perturbation changes the value of each expression by at most
1
2 . To ensure that the set of feasible solutions is not changed by the perturbation, we
relax all constraints by 1

2 , i.e., we replace wTx ≤ t by wTx ≤ t + 1
2 for all stochastic

constraints. We then use an algorithm with polynomial smoothed complexity to
compute an optimal solution x∗ for the perturbed problem. By bounding the error
due to the random perturbation, x∗ can be shown to be optimal for the original
problem as well.

Let us describe the proof in more detail. Our smoothed analysis framework
assumes that all numbers in the stochastic expressions fall into the interval [−1, 1]
(or [0, 1]) before they are perturbed. To adapt our problem to this framework, we
first scale all input numbers in the stochastic expressions by M−1 and adapt the
thresholds accordingly, i.e., w1x1 +w2x2 + · · ·+wnxn ≤ t is replaced by (w1/M)x1 +
(w2/M)x2 + · · · + (wn/M)xn ≤ t/M . Consequently, we have to ensure that the
perturbation changes the value of an expression by at most 1/(2M). In particular, we
will allow only perturbations that change each individual number by at most 1/(2Mn).
We call such a perturbation proper. For the uniform distribution, we could simply
set φ = 2Mn. However, we have to deal with arbitrary families of distributions, as
defined in our smoothed analysis framework, and they do not necessarily have a finite
domain. The idea is to choose φ large enough so that a random perturbation is proper
with a probability of at least 1/2. Recall that the perturbation model is described
by the density function f with density parameter φ = 1. For other values of φ, we
scale f appropriately. By our assumptions on f , it holds that

∫
|t|fφ(t)dt = E/φ for

some fixed E ∈ R. Let r be a random variable following fφ. Setting φ = 4n2kEM

and applying the Markov inequality yields Pr
[
|t| > 1

2nM

]
= Pr

[
|t| > 2nkE

φ

]
≤ 1

2nk .

Our perturbation draws kn of these random variables. The probability that the
perturbation is proper, i.e., the probability that their absolute values are at most

1
2nM , is 1/2.

Consider any binary optimization problem Π with polynomial smoothed complex-
ity. Polynomial smoothed complexity implies that the problem admits an algorithm
A whose running time can be bounded polynomially in n and φ, with arbitrary large
constant probability strictly less than 1. In particular, there exists a polynomial
P (n, φ) such that the probability that the running time exceeds P (n, φ) is at most
1
4 . We use A as a subroutine in order to obtain a pseudo-polynomial algorithm. This
algorithm works as follows. At first, it generates a perturbation and checks whether
it is proper. If it is proper, then it runs A for at most P (n, φ) time steps. If A has
not finished within this time bound, the algorithm returns Failure. Let Q be the
event that the perturbation is proper. Observe that for every two events A and B it
holds that Pr [A ∧B] ≥ Pr [A]+Pr [B]−1. Therefore, the success probability of our
algorithm is

Pr [Q ∧ (T ≤ P (n, φ))] ≥ Pr [Q] − Pr [T > P (n, φ)] ≥ 1

4
.

The running time of this algorithm is pseudo-polynomial because φ = O(Mn2k).
Hence, Πu ∈ ZPP. This completes the proof of Theorem 11.
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4. Algorithmic applications. Let us illustrate the strength of Theorem 11 by
giving algorithmic applications to some well-known optimization problems and com-
paring these results with previous work on the probabilistic analysis of optimization
problems. There has been substantial effort to analyze random instances of the knap-
sack problem; see, e.g., [5, 6, 13, 17, 18]. The knapsack problem can be seen as the
simplest nontrivial binary optimization problem as its feasible region is described by
only a single linear constraint. The problem belongs to the class of packing problems,
that is, the constraint is of the form wTx ≤ t and the coefficients are assumed to be
nonnegative. To our knowledge, the knapsack problem is the only NP-hard optimiza-
tion problem that was previously known to have polynomial smoothed complexity [5].
The multidimensional knapsack problem is a natural generalization in which there
are multiple packing constraints instead of only one. Dyer and Frieze [10] proved
that, with constant probability, this problem can be solved in polynomial time if the
number of constraints is constant and the coefficients in the constraints as well as
in the objective function are chosen uniformly at random from [0, 1]. Their result,
however, does not yield polynomial average-case complexity as the dependence of
the running time on the failure probability is not bounded by a polynomial. The
multiple knapsack problem with a constant number of constraints admits a pseudo-
polynomial algorithm [15]. Hence, Theorem 11 implies polynomial smoothed and,
therefore, also polynomial average-case complexity for this problem. Moreover, the
pseudo-polynomial algorithm also works for general 0/1 integer programming with
any fixed number of constraints, i.e., when extending the domain of the coefficients to
negative numbers. Therefore, this class of problems has polynomial smoothed com-
plexity as well. This holds even if one constraint or the objective function is assumed
to be adversarial. Furthermore, it follows from Theorem 11 that, unless ZPP = NP,
general 0/1 integer programming as well as the multiple knapsack problem with an
unbounded number of constraints have no polynomial smoothed complexity as they
are strongly NP-hard.

It is important to interpret this result in the right way. It does not prove that all
problems that can be formulated as a 0/1-integer program (with a constant number
of constraints) have polynomial smoothed complexity. When expressing a problem as
a 0/1 integer program, some numbers of the input usually appear in more than one
constraint. Furthermore, the constraint matrix is usually sparse, containing many
zero entries. Perturbing the constraints independently, as assumed by our smoothed
analysis framework, destroys the structure of the problem. So instead of averaging
over “similar” instances of the given problem, we would average over instances of
some more general problem that might be easier to solve on average. We will see in
section 6 how to strengthen our analysis by allowing zero entries in the constraints
which are explicitly not perturbed. This way we are able to extend our analysis to
problems with sparse constraint vectors.

4.1. Scheduling problems. The problem of scheduling to minimize the weight-
ed number of tardy jobs is defined by n jobs each of which has a processing time pi,
a due date di, and a penalty ci, which has to be paid if job i has not been finished
at due date di. The jobs shall be scheduled on a single machine such that the sum
of the penalties is minimized. In terms of n binary variables x1, . . . , xn, the objective
is to minimize cTx, where xi = 1 if job i is not finished in time. Observe that the
problem is essentially solved once these binary variables are determined as we can
assume without loss of generality that an optimal schedule executes the selected jobs
in the order of nondecreasing due dates. Notice that the feasible region is completely
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determined by the processing times and the due dates. The objective, however, is a
linear function cTx. Using dynamic programming, the problem can be solved in time
O(n2C), where C denotes the largest penalty for any job [24]. Hence, the problem
has polynomial smoothed complexity for stochastic penalties.

4.2. Multicriteria optimization problems. If several criteria shall be opti-
mized simultaneously, then usually one of them is declared to be the objective func-
tion, and the others are formulated in the form of a constraint with a given threshold.
Often when a single-criteria optimization problem is polynomial, the problem becomes
NP-hard when adding another criteria in the form of a linear constraint; examples for
such problems are shortest path, spanning tree, or matching [21, 12, 23]. Theorem 11
enables us to prove polynomial smoothed complexity for such multicriteria problems as
follows. The problems listed above have algorithms with pseudo-polynomial running
time [23, 3, 22] solving the “exact version” of these problems, i.e., given an integer k
and an instance of these problems, one can compute a solution with objective value ex-
actly k in pseudo-polynomial time. Using standard coding techniques (see, e.g., [28])
a pseudo-polynomial algorithm for the exact single-criteria decision problem implies
a pseudo-polynomial algorithm for its multicriteria optimization variant. Combining
this observation with Theorem 11 yields the following result.

Corollary 12. Let Π be a binary optimization problem with a single linear
objective function. Suppose the exact version of Π admits an algorithm with pseudo-
polynomial running time. Assume we deal with multicriteria variants of Π by choosing
one criterion as the objective function and bounding the remaining criteria by appro-
priate thresholds. Then any multicriteria variant of Π with a constant number of
criteria has polynomial smoothed complexity, provided that all criteria are stochas-
tic.

A similar approach was used in [23] to derive approximation schemes for multiob-
jective optimizations problems. The corollary implies polynomial smoothed complex-
ity for the multicriteria variants of shortest path, spanning tree, and matching. One
does not always need to assume that all criteria are of stochastic nature. For exam-
ple, the bicriteria variant of the shortest path problem, i.e., the constrained shortest
path problem, can be solved in pseudo-polynomial time with respect to the objective
function or with respect to the additional constraint. By Theorem 11, the constrained
shortest path problem has polynomial smoothed complexity even if only the objective
function or only the additional constraint is stochastic.

5. Expected polynomial running time. The main advantage of our defini-
tion of polynomial smoothed complexity is its robustness under different machine
models. Besides, it allows a nice characterization of binary optimization problems
under random inputs in terms of the problems’ worst-case complexity. However, the
guarantee on the running time provided by polynomial smoothed/average-case com-
plexity is weaker than the guarantee that the expected running time is polynomial.
Making additional assumptions, we can use our analysis to conclude expected poly-
nomial running time for certain binary optimization problems.

We use again our adaptive rounding scheme, which increases the precision of the
stochastic input numbers until the computed solution is certified to be optimal. We
assume that the running time of the last iteration of this meta-algorithm dominates
the cumulative running time of all previous iterations. In fact, it suffices if all previous
iterations have cumulative running time of at most a factor nl larger than the running
time of the last iteration, for some constant l ∈ R. In order to obtain expected
polynomial running time under random perturbations, one needs an algorithm whose
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running time is “pseudo-linear” instead of only pseudo-polynomial with respect to the
stochastic coefficients, i.e., the running time must be bounded linearly in the size of the
unary encoding length of the integer coefficients. The only parameter in our running
time bound that depends on the random perturbations is W , the largest absolute
value of any (rounded and scaled) coefficient appearing in a stochastic expression.

We use the notation from the proof of Theorem 11. We divide W into two parts
W = W1W2, where W1 is due to the scaling by factor 2b = W1 and depends on b, the
number of revealed bits after the binary point of each coefficient. The second factor
W2 corresponds to the integer part of the largest absolute value of any coefficient. In
the proof of Theorem 11 we have shown the following bounds on the random variables
W1 and W2:

Pr
[
W1 > 2b

]
≤ 2kφn3/2b, for any b ∈ N, and

Pr [W2 > αE + 1] ≤ nk/α , for any α ∈ R>0.

Since 2b as well as α can grow linearly with the reciprocal of the failure probability,
W ≈ 2bαE can grow quadratically. Hence, these bounds do not allow one to conclude
a polynomial expected running time. Therefore, we will restrict the choice for the
perturbation model by allowing only probability distributions whose tail function
exhibits an exponential decay. More precisely, we assume that if X is drawn according
to perturbation model f , then there exists some E ∈ R≥0, such that Pr [|X| > αE] ≤
2−α, for every α ≥ 2. For example, the Gaussian and exponential distribution have
this property as well as all distributions with finite domain.

In the following analysis we exploit the fact that it is very unlikely that any of
the coefficients in the stochastic expressions is much larger than E. Define event
E by (W2 ≤ n log(nk)E + 1) ∧ (W1 ≤ 2n). As Pr [W1 > 2n] ≤ 2kφn3/2n and
Pr [W2 > nlog(nk)E + 1] ≤ knPr [maxj,i |ri,j | > n log(nk)E] ≤ 2−n, it follows that
Pr [¬E ] ≤ O(kφn3/2n). Assume that there exists an algorithm with pseudo-linear
running time bound of T ≤ N lW , for some constant l ∈ R. In case of ¬E , we use
a brute force enumeration of all 2n possible 0/1-vectors which takes time 2nP (N)
for some polynomial P (N). Additionally, we contribute the time for the unsuccessful
adaptive rounding scheme, which is at most N l2n(n log(nk)E + 1), to the enumera-
tion process. Hence, the total running time is O(2nP (N)) for some other polynomial
P (N). Next define random variable

W ′
1 =

{
W1 in case of E ,
0 otherwise.

The expectation of W ′
1 is

E [W ′
1] =

n∑
i=0

Pr
[
W ′

1 = 2i
]
2i ≤

n∑
i=0

Pr
[
W1 ≥ 2i

]
2i ≤

n∑
i=0

4φkn3

2i
2i = O(φkn4).

Let T denote the running time of our algorithm. As E [W ′
1] = Pr [E ] E [W ′

1 | E ],

E [T ] ≤ Pr [E ] · E
[
N lW1W2 | E

]
+ Pr [¬E ] · 2nP (N)

≤ N l(n log(nk)E + 1) · Pr [E ] E [W ′
1 | E ] + Pr [¬E ] · 2nP (N)

≤ N l(n log(nk)E + 1)E [W ′
1] + O(kφn3/2n) · 2nP (N)

= O(N l(n log(nk)E + 1)φkn4 + kφn3P (N)).
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Corollary 13. Assume the perturbation model f satisfies Pr [|X| > αE] ≤ 2−α,
for some E ∈ R≥0 and all α ≥ 2. If a binary optimization problem has pseudo-
polynomial running time O(poly(N)W ), then this problem allows an algorithm with
expected polynomial running time.

Such pseudo-linear algorithms exist on a uniform RAM, e.g., for the knapsack
problem [8], the problem of scheduling to minimize weighted tardiness [24] or the con-
strained shortest path problem [16]. Hence, assuming the uniform RAM model, all
these problems admit algorithms with expected polynomial running time under ran-
dom perturbations. Observe, however, that the requirement of a pseudolinear running
time is a strong restriction for binary optimization problems with k > 1 stochastic
constraints, as standard approaches usually exhibit a running time of poly(n)W k.
In case of dynamic programming, for example, every additional constraint will add
another dimension to the dynamic programming table.

6. Zero-preserving perturbations. One criticism of the smoothed analysis of
the simplex algorithm is that the additive perturbations destroy the zero structure of
an optimization problem, as it replaces zeros with small values; see also the discussion
in [29]. The same criticism applies to the zero structure in binary programs. It turns
out, however, that our probabilistic analysis in section 2 is robust enough to allow the
preservation of zero entries. In particular, we can extend our semirandom input model
introduced in section 1.1 by allowing the coefficients in the stochastic expressions to be
fixed to zero instead of being a random variable. In the model of smoothed analysis,
this corresponds to strengthening the adversary by avoiding the perturbation of these
zero coefficients.

Consider the expression wTx and let Z be the set of indices i with wi fixed to zero.
We call two solutions x, x′ ∈ S ⊆ {0, 1}n equivalent if they differ only in positions
contained in Z, e.g., if xi �= x′

i ⇒ i ∈ Z holds. This way, Z defines equivalence classes
on S with respect to the expression wTx. Clearly, wTx evaluates to the same value
for all solutions within the same equivalence class.

First we consider the separation lemma. Observe that only the highest ranked
solution in each equivalence class is relevant for the loser and feasibility gap. This
is because the winner and the minimal loser are Pareto optimal solutions. As all
solutions within an equivalence class have the same weight, only the highest ranked
solution of this class can become Pareto optimal. For the purpose of analysis, we can
remove virtually all solutions from S that are not ranked highest within its equivalence
class. This way, we can ignore variables xi with i ∈ Z and apply the separation lemma
as before.

A similar argument can be used to show that the generalized isolating lemma stays
valid with respect to equivalence classes, that is, the winner gap is defined to be the
difference in objective value between the best and the second best equivalence class.
However, it might be very likely that there are many optimal solutions, as the winning
equivalence class might have many solutions. Notice that this affects the procedure
that certifies optimality for stochastic objective functions which is described in the
proof of Theorem 11. In particular, the two solutions x′ and x′′, which are optimal
with respect to the rounded cost vectors �c� and c̄, only have to be in the same
equivalence class to certify optimality, which can be checked easily.

6.1. Algorithmic application. Using zero-preserving perturbations, we can
apply our analysis to the general assignment problem (GAP), which is defined as
follows:
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max (
∑k

i=1

∑n
j=1 pijxij) subject to

∑n
j=1 wijxij ≤ ci, i = 1, . . . , k,∑k
i=1 xij = 1, j = 1, . . . , n,

xij ∈ {0, 1} for all i ∈ [k], j ∈ [n].

Intuitively, the goal is to pack n items into k bins with capacities c1, . . . , ck.
Packing item j ∈ [n] into bin i ∈ [k] occupies wij units of the capacity of bin i
and yields a profit of pij . Even for two bins, the GAP problem does not allow a
fully polynomial time approximation scheme (FPTAS), unless P = NP [20]. In fact,
the problem is strongly NP-hard for an unbounded number of bins. If, however, the
number of bins is a constant, then the GAP can be solved in pseudo-polynomial time
using standard dynamic programming as follows. Let T (j,W1, . . . ,Wk) denote the
maximum profit over solutions that use only items {1, . . . , j} such that the cumulative
weight of all items in bin i is exactly Wi, for all i ∈ [k]. All nontrivial entries can be
computed by the following recursion:

T (j,W1, . . . ,Wk) = max
i∈[k]

{T (j − 1, V1, . . . , Vk) + pij | Vi = Wi − wij , Vl = Wl ∀ l �= i}.

Let W denote the largest weight of the instance, i.e., W = maxj∈[n] maxi∈[k] wij .

Then the size of the dynamic programming table is at most n(nW )k. Hence, the
running time is at most kn(nW )k.

How does the GAP problem fit into our framework? We have a vector of kn bi-
nary variables (x11, x12, . . . , x1n, x21, x22, . . . , x2n, . . . , xk1, xk2, . . . , xkn) and the cor-
responding vector of profits. The weight constraint for bin l ∈ [k] uses the weight
vector with all entries wij , i �= l, set to zero. These entries are declared to be fixed
to zero, so they are not touched by the perturbation. This way, each wij appears in
just one constraint and a perturbation of the profit and the constraint vectors has
the same effect as perturbing each pij and wij individually. This yields the following
corollary.

Corollary 14. The general assignment problem with a constant number of con-
straints/bins has polynomial smoothed complexity if weights and profits are randomly
perturbed.

The discussion above reveals a limitation of our analysis. For this purpose, con-
sider the multiple knapsack problem, a special case of the GAP problem, where the
weight of an item is the same for all bins, i.e., wij = wj for all i ∈ [k]. Using the
program formulation of the GAP problem, the weights wj reoccur in the different
constraints for the different knapsacks. The perturbation of the constraints, however,
have to be independent such that the perturbed instance is, in general, not a multiple
knapsack instance any more. We observe that for a sensible application of our analy-
sis, each variable that describes the problem instance must appear at most once in the
stochastic constraints of the linear program formulation. Or, seeing it another way,
the coefficients in the stochastic constraints must allow independent perturbations
without destroying the structure of the problem.

7. Other aspects.

7.1. Smoothed complexity and approximation schemes. If a binary opti-
mization problem Π has polynomial smoothed complexity when perturbing only the
coefficients in the objective function, then Π also admits an absolute fully polynomial
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randomized approximation scheme. The idea is to perturb the instance only slightly,
resulting in a very similar optimal objective function value. The set of feasible so-
lutions is not affected by the perturbation. In order to bound the running time, we
can exploit the positive influence of the added randomness. Let us give some more
details.

Given a (worst-case) instance of Π, the coefficients in the objective function are
normalized such that the largest absolute value is 1. Subsequently, the normalized
coefficients are perturbed using the uniform perturbation model with parameter φ.
As each coefficient changes by at most 1/φ, the difference in the objective value
of any two solutions can change by at most n/φ due to this perturbation. Hence,
the optimal solution of the perturbed instance is, with respect to the unperturbed
objective function, at most n/φ away from the optimum. According to the definition
of polynomial smoothed complexity, we can fix some polynomial bound B such that
the running time of the algorithm is smaller than B with a probability of at least
1/2. In order to obtain polynomial expected running time we generate perturbations
and run the algorithm for at most B time steps. If the algorithm has not finished, we
generate a new perturbation and try again. As the perturbations are independent, one
needs 2 iterations on average until a solution is found. Hence, the expected running
time is 2B.

The approximation scheme allows only one to bound the absolute error. If, how-
ever, the optimum of the normalized instance can be lower bounded by some polyno-
mial in 1/n, then we obtain a randomized FPTAS.

The opposite direction works as well. Suppose Π is a binary optimization problem
admitting a fully polynomial approximation scheme. It is well known that such an
approximation scheme can be transformed into a pseudo-polynomial algorithm [11].
The running time of this algorithm is pseudo-polynomial only with respect to the
coefficients in the objective function. Thus, Theorem 11 shows that Π has polynomial
smoothed complexity when perturbing only the objective function.

This shows that for the class of problems considered, there exists a correlation
between problems that allow an FPTAS and problems with polynomial smoothed
complexity for stochastic linear objective functions.

Observe that these results rely solely on the analysis of the winner gap. The
results based on the loser and feasibility gaps yield polynomial smoothed complexity
for problems for which no fully polynomial approximation scheme is known, such as
the constrained spanning tree problem, or even for problems that cannot be approxi-
mated within any polynomial-time computable factor, such as 0/1 programming with
a constant number of constraints. In fact, the problems to which these gaps apply are
exactly those problems admitting a bicriteria approximation scheme. In other words,
our results show that the impact of randomly perturbing the objective function and/or
the constraints on the computational complexity of a problem is comparable with the
impact of relaxing the same set of expressions. The advantage of smoothed analysis
over (bicriteria) approximation schemes, however, is that it yields optimal and feasible
instead of almost optimal and almost feasible solutions.

7.2. Euclidean optimization problems. Upon first view, the Euclidean vari-
ants of TSP and Steiner tree might look like interesting candidates for problems with
polynomial smoothed complexity. Karp [14], in a seminal work on the probabilistic
analysis of algorithms, studied the TSP problem in a model in which n points are
drawn uniformly and independently from the unit square. A natural extension of this
model would be to assume that first an adversary chooses points in the unit cube
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or ball, and then one applies a multidimensional Gaussian perturbation. We claim,
however, that neither Euclidean TSP nor Steiner tree do have polynomial smoothed
complexity, since the perturbation does not change the set of feasible solutions. The
change in the objective function due to the perturbation depends at most linearly
on the magnitude of the perturbation. Since the optimal objective value is Ω(1),
we could obtain a fully polynomial randomized approximation scheme for worst-case
instances, which is widely believed not to exist. Thus, one needs to give up either
the requirement that the running time is polynomial in 1/ε or the requirement that
the running time is polynomial in φ. Under the first relaxation the problem has been
solved by Arora [1]. The question whether there exist polynomial time algorithms for
Euclidean TSP or the Steiner tree under perturbations with a fixed density parameter
φ or in the uniform input model of Karp [14] is open.

7.3. Relationship to condition numbers. In order to obtain a finer analysis
of algorithms than that provided by worst-case complexity, one might seek to find a
way for distinguishing hard problem instances from easy ones. A natural approach
is to find a quantity indicating the difficulty of solving a problem instance. In nu-
merical analysis and operations research it is common to bound the running time of
an algorithm in terms of a condition number of its input. The condition number is
typically defined to be the sensitivity of the solution for a problem instance to slight
perturbations of the input. For example, Renegar [25, 26, 27] presents a variant of the
primal interior point method and describes its running time as a function of the con-
dition number. Remarkably, his running time bound depends only logarithmically on
the condition number. Dunagan, Spielman, and Teng [9] study this condition number
in the smoothed analysis framework. Assuming Gaussian φ-perturbations, Renegar’s
condition number can be bounded by a function that is polynomial in φ. Thus, the
running time of Renegar’s interior point method depends only logarithmically on the
density parameter φ. In contrast, the running time bound of the simplex algorithm
presented by Spielman and Teng in [29] is polynomial in φ.

In [30], Spielman and Teng propose to extend the condition number concept to-
ward discrete optimization problems in order to assist the smoothed analysis of such
problems. As a natural definition for the condition number of a discrete function,
they suggest the reciprocal of the minimum distance of an input to one on which the
function has a different value. In fact, the minimum of winner, loser, and feasibility
gap is a lower bound on the amount by which the coefficients of a binary optimization
problem need to be altered so that the winner, i.e., the solution taking the optimal
value, changes. Let us define the reciprocal of this minimum to be the condition
number for binary optimization problems. This allows us to summarize our analysis
in an alternative way. Our probabilistic analysis in section 2 shows that the condition
number is bounded polynomially in the density parameter φ. Furthermore, in section
3, we proved that a problem with pseudo-polynomial worst-case complexity admits
an algorithm whose running time is bounded polynomially in the condition number.
Combining these results, we obtained algorithms whose smoothed complexity depends
upon a polynomial fashioned on the density parameter φ. Let us remark that this
kind of dependence on φ is best possible for NP-hard optimization problems, unless
there is a subexponential time algorithm for NP-complete problems. In particular, a
running time bound logarithmic in φ for an NP-hard optimization problem such as the
knapsack problem would imply a randomized algorithm with polynomial worst-case
complexity: Perturb all input numbers using a suitable distribution with sufficiently
small density such that the identity of the optimal solution is not affected and com-
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pute the optimal solution for the perturbed instance. For example, perturbing the
profit values of the knapsack problem with a uniform distribution with exponentially
small density parameter φ, the optimal solution of the perturbed instance is opti-
mal for the original instance as well. Obviously, a smoothed analysis with running
time logarithmic in φ would thus imply a polynomial running time for the NP-hard
knapsack problem.
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SPECTRAL PARTITIONING, EIGENVALUE BOUNDS, AND
CIRCLE PACKINGS FOR GRAPHS OF BOUNDED GENUS∗
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Abstract. In this paper, we address two long-standing questions about finding good separators
in graphs of bounded genus and degree:

1. It is a classical result of Gilbert, Hutchinson, and Tarjan [J. Algorithms, 5 (1984), pp. 391–
407] that one can find asymptotically optimal separators on these graphs if given both the
graph and an embedding of it onto a low genus surface. Does there exist a simple, efficient
algorithm to find these separators, given only the graph and not the embedding?

2. In practice, spectral partitioning heuristics work extremely well on these graphs. Is there
a theoretical reason why this should be the case?

We resolve these two questions by showing that a simple spectral algorithm finds separators of cut
ratio O(

√
g/n) and vertex bisectors of size O(

√
gn) in these graphs, both of which are optimal. As our

main technical lemma, we prove an O(g/n) bound on the second smallest eigenvalue of the Laplacian
of such graphs and show that this is tight, thereby resolving a conjecture of Spielman and Teng. While
this lemma is essentially combinatorial in nature, its proof comes from continuous mathematics,
drawing on the theory of circle packings and the geometry of compact Riemann surfaces.

Key words. bounded genus, circle packing, graph separators, Laplacian, partitioning, spectral
partitioning
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1. Introduction. Spectral methods have long been used as a heuristic in graph
partitioning. They have had tremendous experimental and practical success in a wide
variety of scientific and numerical applications, including mapping finite element cal-
culations on parallel machines [24, 29], solving sparse linear systems [7, 8], partitioning
for domain decomposition [8], and VLSI circuit design and simulation [6, 16, 3]. How-
ever, it is only recently that people have begun to supply formal justification for the
efficacy of these methods [15, 25]. In [25], Spielman and Teng used the results of
Mihail [22] to show that the quality of the partition produced by the application of a
certain spectral algorithm to a graph can be established by proving an upper bound
on the Fiedler value of the graph (i.e., the second smallest eigenvalue of its Laplacian).
They then provided an O(1/n) bound on the Fielder value of a planar graph with
n vertices and bounded maximum degree. This showed that spectral methods can
produce a cut of ratio O(

√
1/n) and a vertex bisector of size O(

√
n) in a bounded

degree planar graph.
In this paper, we use the theory of circle packings and conformal mappings of

compact Riemann surfaces to generalize these results to graphs of positive genus.
We prove that the Fiedler value of a genus g graph of bounded degree is O(g/n)
and demonstrate that this is asymptotically tight, thereby resolving a conjecture of
Spielman and Teng. We then apply this result to obtain a spectral partitioning
algorithm that finds separators whose cut ratios are O(

√
g/n) and vertex bisectors

of size O(
√
gn), both of which are optimal. To our knowledge, this provides the only
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truly practical algorithm for finding such separators and vertex bisectors for graphs
of bounded genus and degree. While there exist other asymptotically fast algorithms
for this, they all rely on being given an embedding of the graph in a genus g surface
(e.g., [14]). It is not always the case that we are given such an embedding, and
computing one is quite difficult. (In particular, computing the genus of a graph is
NP-hard [27], and the best known algorithms for constructing such an embedding
are either nO(g) [12] or polynomial in n but doubly exponential in g [11]. Mohar has
found an algorithm that depends only linearly on n [21], but it has an uncalculated
and very large dependence on g.) The excluded minor algorithm of Alon, Seymour,
and Thomas [2] does not require an embedding of the graph, but the separators that
it produces are not asymptotically optimal.

The question of whether there exists an efficient algorithm for providing asymp-
totically optimal cuts without such an embedding was first posed twenty years ago by
Gilbert, Hutchinson, and Tarjan [14].1 We resolve this question here, as our algorithm
proceeds without any knowledge of an embedding of the graph, instead relying only
on simple matrix manipulations of the adjacency matrix of the graph. While the anal-
ysis of the algorithm requires some somewhat involved mathematics, the algorithm
itself is quite simple, and it can be implemented in just a few lines of Matlab code.
In fact, the algorithm is only a slight modification of the spectral heuristics for graph
partitioning that are widely deployed in practice without any theoretical guarantees.

We believe that the techniques that we employ to obtain our eigenvalue bounds
are of independent interest. To prove these bounds, we make what is perhaps the
first real use of the theory of circle packings and conformal mappings of positive
genus Riemann surfaces in the computer science literature. This is a powerful theory,
and we believe that it will be useful for addressing other questions in spectral and
topological graph theory.

The structure of the paper is as follows. In section 2, we provide the necessary
background in graph theory and spectral partitioning, and we state our main results.
In section 3, we provide a brief outline of our proof techniques. In section 4, we review
the basic theory of circle packings on compact Riemann surfaces. We then use this
theory in sections 5 and 6 to prove our main results.

2. Background in graph theory and spectral partitioning. In this section
we provide the basic definitions and results from graph theory and spectral partition-
ing that we shall require in what follows.

2.1. Graph theory definitions. Throughout the remainder of this paper, let
G = (V,E) be a finite, connected, undirected graph with n vertices, m edges, and no
loops. In this section, we shall define two objects associated with G: its Laplacian
and its genus.

Let the adjacency matrix A(G) be the n × n matrix whose (i, j)th entry equals
1 if (i, j) ∈ E and equals 0 otherwise. Let D(G) be the n× n diagonal matrix whose
ith diagonal entry equals the degree of the ith vertex of G.

Definition 2.1. The Laplacian L(G) is the n× n matrix given by

L(G) = D(G) −A(G).

Since L(G) is symmetric, it is guaranteed to have an orthonormal basis of real
eigenvectors and exclusively real eigenvalues. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenval-

1Djidjev claimed in a brief note to have such an algorithm [10], but it has never appeared in the
literature.



884 JONATHAN A. KELNER

ues of L(G), and let v1, . . . , vn be a corresponding orthonormal basis of eigenvectors.
For any G, the all-ones vector will be an eigenvector of eigenvalue 0. It is not dif-
ficult to see that all of the other eigenvalues will always be nonnegative, so that
v1 = (1, . . . , 1)T and λ1 = 0.

There has been a great deal of work relating the eigenvalues of L(G) to the
structure of G. In the present paper, we shall concern ourselves exclusively with λ2,
also known as the algebraic connectivity or Fiedler value of G. We call the vector v2

the Fiedler vector of G. As we shall see in section 2.2, the Fiedler value of a graph is
closely related to how well connected the graph is.

A different measure of the connectivity of a graph is provided by its genus, which
measures the complexity of the simplest orientable surface on which the graph can
be embedded so that none of its edges cross. Standard elementary topology provides
a full classification of the orientable surfaces without boundary. Informally, they are
all obtained by attaching finitely many “handles” to the sphere, and they are fully
topologically classified (i.e., up to homeomorphism) by the number of such handles.
This number is called the genus of the surface. The genus 0, 1, 2, and 3 surfaces are
shown in Figure 2.1.

Fig. 2.1. The surfaces of genus 0, 1, 2, and 3.

Definition 2.2. The genus g of a graph G is the smallest integer such that G can
be embedded on a surface of genus g without any of its edges crossing one another.

In particular, a planar graph has genus 0. By making a separate handle for each
edge, it is easy to see that g = O(m), where m is the number of edges in G.

Using these definitions, we can now state our main technical result, as follows.
Theorem 2.3. Let G be a graph of genus g and bounded degree. Its Fiedler value

obeys the inequality

λ2 ≤ O
( g

n

)
,

and this is asymptotically tight.
The constant in this bound depends on the degree of the graph. The proof that

we provide yields a polynomial dependence on the degree, but no effort is made to
optimize this polynomial. Finding the optimal such dependence is an interesting open
question.

2.2. Spectral partitioning. We recall that a partition of a graph G is a de-
composition V = A ∪ A of the vertices of G into two disjoint subsets. For such a
partition, we let δ(A) be the set of edges (i, j) such that i ∈ A and j ∈ A, and we call
|δ(A)| the cut size of our partition. The ratio of our partition is defined to be

φ(A) =
|δ(A)|

min(|A|, |A|)
.

If our partition splits the graph into two sets that differ in size by at most one, we
call it a bisection.
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Spectral methods aim to use the Fiedler vector to find a partition of the graph
with a good ratio. A theorem that begins to address why these work was proven by
Mihail and restated in a more applicable form by Spielman and Teng, as follows.

Theorem 2.4 (see [22, 25]). Let G have maximum degree Δ. For any vector x
that is orthogonal to the all-ones vector, there is a value s so that the partition of G
into {i : xi ≤ s} and {i : xi > s} has ratio at most√

2Δ
xTL(G)x

xTx
.

If x is an eigenvector of L(G), the fraction xTL(G)x
xT x

is equal to its eigenvalue. So,
if we find the eigenvector with eigenvalue λ2, we will thus quickly be able to find
a partition of ratio

√
2Δλ2. By Theorem 2.3, finding the second eigenvector of the

Laplacian thus allows us to find a partition of ratio O(
√
g/n) for a graph of bounded

degree. There is no guarantee that this partition has a similar number of vertices in
each of the two sets. However, a theorem of Lipton and Tarjan [19] implies that a
simple method based on repeated application of this algorithm can be used to give a
bisector of size O(

√
gn).

For every g, Gilbert, Hutchinson, and Tarjan exhibited a class of bounded de-
gree graphs that have no bisectors smaller than O(

√
gn) [14]. This implies that our

algorithm gives the best results possible, in general. Furthermore, it establishes the
asymptotic tightness of our eigenvalue bound, as a smaller bound would show that
every genus g graph has a partition of size o(

√
gn).

Putting all of this together yields our main algorithmic result, the following.
Theorem 2.5. Let G be a genus g graph of bounded maximum degree. There is

a polynomial time algorithm that produces cuts of ratio O(
√
g/n) and vertex bisectors

of size O(
√
gn) in G, and both of these values are optimal.

All that remains of the proof of Theorem 2.5 is the eigenvalue bound set forth in
Theorem 2.3, which is the goal of the remainder of this paper.

3. Outline of the proof of Theorem 2.3. The proof of Theorem 2.3 neces-
sitates the introduction of a good deal of technical machinery. Before launching into
several pages of definitions and background theorems, we feel that a brief roadmap of
where we’re going will be helpful.

The basic motivation for our approach comes from an observation made by Spiel-
man and Teng [25]. They noted that one can obtain bounds on the eigenvalues of a
graph G from a nice representation of G on the unit sphere in R

3, known as a circle
packing for G. This is a presentation of the graph on the sphere so that the vertices
are the centers of a collection of circles, and the edges between vertices correspond to
tangencies of their respective circles, as shown in Figure 4.1. Only planar graphs can
be embedded as such if we require that the circles have disjoint interiors. However,
if we allow the circles to overlap, as shown in Figure 4.2, we can represent nonplanar
graphs as well. This will give rise to a weaker bound in which the eigenvalue bound
is multiplied by the maximum number of circles containing a given point (i.e., the
number of layers of circles on the sphere).

There is a well developed theory of circle packings, both on the sphere and on
higher genus surfaces. The portions of it that we shall use will tell us two main things:

1. We can realize our graph as a circle packing of circles with disjoint interiors
on some genus g surface.

2. The theory of discrete circle packings can be thought of as a discrete analogue
of classical complex function theory, and many of the results of the latter carry
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over to the former.
In classical complex analysis, you can put a complex analytic structure on a genus

g surface to obtain a Riemann surface. Any genus g Riemann surface has a map to the
sphere that is almost everywhere k-to-one for k = O(g), with only O(g) bad points
at which this fails. With this as motivation, we shall try to use the representation of
G as a circle packing on a genus g surface to obtain a representation of it as a circle
packing on the sphere with O(g) layers.

Unfortunately, the discrete theory is more rigid than the continuous one, and
finding such a representation will turn out to be impossible. Instead, we shall actually
pass to the continuous theory to prove our result. To do this, we shall provide a
subdivision lemma that shows that it suffices to prove Theorem 2.3 for graphs that
have circle packings with very small circles. We shall then show that the smooth map
that we have from the Riemann surface to the sphere will take almost all of the circles
of our circle packing to curves on the sphere that are almost circles. We will then
show that this representation of our graph as an approximate circle packing is enough
to provide our desired bounds.

4. Introduction to circle packings. Our proof of Theorem 2.3 operates by
obtaining a nice geometric realization of G. We obtain this realization using the theory
of circle packings. In this section, we shall review the basics of circle packing theory
and quote the main results that our proof will employ. For a more comprehensive
treatment of this theory and a historical account of its origins, see [26].

Loosely speaking, a circle packing is a collection of circles on a surface with a
given pattern of tangencies. We remark at the outset that the theory that we are
discussing is not the same as the classical theory of sphere packing. Our theory is
concerned with the combinatorics of the tangency patterns, not with the maximum
number of circles that one can fit in a small region. The coincidence of nomenclature
is just an unfortunate historical accident.

Fig. 4.1. A univalent circle packing with its associated graph.

4.1. Planar circle packings. For simplicity, we begin by discussing circle pack-
ings in the plane.

Definition 4.1. A planar circle packing P is a finite collection of (possibly
overlapping) circles C1, . . . , Cn of respective radii r1, . . . , rn in the complex plane C.
If all of the Ci have disjoint interiors, we say that P is univalent.

The associated graph A(P) of P is the graph obtained by assigning a vertex vi
to each circle Ci and connecting vi and vj by an edge if and only if Ci and Cj are
mutually tangent.

This is illustrated in Figures 4.1 and 4.2.
We thus associate a graph with every circle packing. It is clear that every graph
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Fig. 4.2. A nonunivalent circle packing with its associated graph.

associated with a univalent planar circle packing is planar. A natural question to ask
is whether every planar graph can be realized as the associated graph of some planar
circle packing. This is answered in the affirmative by the Koebe–Andreev–Thurston
theorem [18, 1, 28].

Theorem 4.2 (Koebe–Andreev–Thurston). Let G be a planar graph. There
exists a planar circle packing P such that A(P) = G.

This theorem also contains a uniqueness result, but we have not yet developed the
machinery to state it. We shall generalize this theorem in section 4.3, at which point
we shall have the proper terminology to state the uniqueness part of the theorem.

We note that if we map the plane onto the sphere by stereographic projection,
circles in the plane will be sent to circles on the sphere, so this theorem can be
interpreted as saying that every genus 0 graph can be represented as a circle packing
on the surface of a genus 0 surface. This suggests that we attempt to generalize
this theorem to surfaces of higher genus. The theory of circle packings on surfaces
of arbitrary genus acts in many ways like a discrete analogue of classical Riemann
surface theory. As such, a basic background in Riemann surfaces is necessary to state
or motivate many of its results. It is to this that we devote the next section.

4.2. A very brief introduction to Riemann surface theory. In this section,
we provide an informal introduction to Riemann surface theory. Our goal is to provide
geometric intuition, not mathematical rigor. We assume some familiarity with the
basic concept of a manifold, as well as with the basic definitions of complex analysis.
For a more complete exposition of the theory, see [13].

We recall that an n-dimensional manifold is a structure that looks locally like
R

n. More formally, we write our manifold M as a topological union of open sets Si,
each endowed with a homeomorphism ϕi : Si → Bn, where Bn is the ball {|x| < 1 |
x ∈ R

n}. Furthermore, we require a compatibility among these maps to avoid cusps
and such. To this end, we mandate that the compositions ϕj ◦ ϕ−1

i : ϕi(Si ∩ Sj) →
ϕj(Si∩Sj) be diffeomorphisms. The orientable 2-dimensional manifolds are precisely
the genus g surfaces described above.

An n-dimensional complex manifold is the natural complex analytic generalization
of this. We write our manifold M as a union of open sets Si and endow each such
set with a homeomorphism ϕi : Si → BCn , where BCn is the complex unit ball
{|x| < 1 | x ∈ C

n}. Now, instead of requiring that the compositions of these functions
obey a smooth compatibility condition, we require that they obey an analytic one:
we demand that the compositions ϕi ◦ ϕ−1

j be biholomorphic maps.
As such, an n-dimensional complex manifold M is a 2n-dimensional real manifold

with additional complex analytic structure. This structure allows us to transfer over
many of the definitions from standard complex analysis. The basic idea is that we
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define these notions as before on the Si, and the compatibility condition allows them
to make sense as global definitions. In particular, if M = (SM

i , φM
i ) and N = (SN

j , φn
j )

are complex manifolds of the same dimension, we say that a function f : M → N is
holomorphic if its restriction to a map fij : SM

i → SN
j is holomorphic for all i and j.

Since the compositions ϕM
i ◦ (ϕM

j )−1 and ϕN
i ◦ (ϕN

j )−1 are holomorphic, this notion
makes sense where the regions overlap.

Definition 4.3. A Riemann surface is a 1-dimensional complex manifold.
In this paper, we shall take all of our Riemann surfaces to be compact. Since there

is a natural way to orient the complex plane, we note that the complex structure can
be used to define an orientation on the manifold. As such, all complex manifolds, and
in particular all Riemann surfaces, are orientable. Compact Riemann surfaces are
thus, topologically, 2-dimensional orientable real manifolds. Every compact Riemann
surface is therefore topologically one of the genus g surfaces discussed above. The
complex structure imposed by the ϕi, however, varies much more widely, and there
are many different such structures that have the same underlying topological space.

Nothing in the definition of a Riemann surface supplies a metric on the surface.
Indeed, there is no requirement that the different φi agree in any way about the
distance between two points in their intersection. One can assign many different
metrics to the surface. However, it turns out that there is way to single out a unique
metric on the surface, called the metric of constant curvature. This allows us to supply
an intrinsic notion of distance on any Riemann surface. In particular, this allows us to
define a circle on our Riemann surface to be a simple closed curve that is contractible
on the surface and all of whose points lie at a fixed distance from some center.

One particularly important Riemann surface that we shall consider is the Riemann
sphere, which we denote Ĉ. It is topologically a sphere. It should be thought of as
being obtained by taking the complex plane and adjoining a single point called ∞.
One way of visualizing its relation to C is to consider the stereographic projection
away from the North Pole of a sphere onto a plane. The North Pole corresponds to
∞, and the rest of the sphere corresponds to C.

We recall from single variable complex analysis that the requirement that a map
be analytic is quite a stringent one, and that it imposes a significant amount of local
structure on the map. Let f : C → C be nonconstant and analytic in a neighborhood
of the origin, and assume without loss of generality that f(0) = 0. There is some
neighborhood of the origin in which f can be expressed as a power series f(z) =
a1z+a2z

2 +a3z
3 + · · · . If a1 
= 0, f(z) is analytically invertible in some neighborhood

of the origin, and thus it is locally an isomorphism. In particular, it is conformal—it
preserves the angles between intersecting curves, and the image of an infinitesimal
circle is another infinitesimal circle.

If a1 = 0 and an is the first nonzero coefficient in its power series, f has a
branch point of order n at the origin. In this case, f operates, up to a scale factor
and lower order terms, like the function f(z) = zn. This function is n-to-one on a
small neighborhood of the origin, excluding the origin itself. It sends only 0 to 0,
however. The preimages of the points in this small neighborhood thus trace out n
different “sheets” that all intersect at 0. This confluence of sheets is the only sort
of singularity that can appear in an analytic map. We note that the angles between
curves intersecting at the branch point are not preserved, but they are instead divided
by n.

This local behavior is identical for Riemann surfaces. From this, we can deduce
that if f : M → N is an analytic map of Riemann surfaces, it has some well-defined



GRAPH THEORY AND SPECTRAL PARTITIONING BACKGROUND 889

degree k. For all but finitely many points p in N , #f−1(p) = k. The preimage of
each of these points looks like a collection of k sheets, and f has nonzero derivative
at all of them. There exist some points q ∈ M at which f ′(q) = 0. At each such point
there is a branch point, so the sheets intersect, and f(q) has fewer than k preimages.

However, the global structure of Riemann surfaces provides further constraints on
maps between them, and there are, generally speaking, very few functions f : M → N
of a given degree. For example, topological arguments, using the local form of analytic
maps described above, show that there are no degree 1 maps from the torus to the
sphere, and no degree 2 maps from the genus 2 surface to the sphere.

There is a deep theory of maps of Riemann surfaces that describes rather precisely
when a map of a given degree exists between two Riemann surfaces, and, if it exists,
where and how such a map must branch. Of this theory we shall require only one
main result, which is a direct corollary of the celebrated Riemann–Roch theorem.

Theorem 4.4. Let M be a Riemann surface of genus g. There exists an analytic
map f : M → Ĉ of degree O(g) and with O(g) branch points.

4.3. Circle packings on surfaces of arbitrary genus. We now have the
machinery in place to deal with general circle packings. Throughout this section, let
G be a graph of genus g, and suppose that it is embedded on a genus g surface S so
that none of its edges cross. The graph G divides S into faces. We say that G is a
fully triangulated graph if all of these faces are triangles, in which case we say that it
gives a triangulation of S. If G is not fully triangulated, one can clearly add edges to
it to make it so. It will follow immediately from (5.2) in section 5 that this will only
increase λ2(G), so we shall assume for convenience that G gives a triangulation of S.
We are now ready to define our primary objects of study, as follows.

Definition 4.5. Let S be a compact Riemann surface endowed with its metric
of constant curvature. A circle packing P on S is a finite collection of (possibly
overlapping) circles C1, . . . , Cn of respective radii r1, . . . , rn on the surface of S. If all
of the Ci have disjoint interiors, we say that P is univalent.

The associated graph A(P) of P is the graph obtained by assigning a vertex vi
to each circle Ci and connecting vi and vj by an edge if and only if Ci and Cj are
mutually tangent. Alternatively, we say that P is a circle packing for A(P) on S.

The main result on circle packings that we shall use is the circle packing theo-
rem, which is the natural extension of the Koebe–Andreev–Thurston theorem to this
more general setting. It was originally proven in a restricted form by Beardon and
Stephenson [4] and then proven in full generality by He and Schramm [17].

Theorem 4.6 (circle packing theorem). Let G be a triangulation of a surface
of genus g. There exists a Riemann surface S of genus g and a univalent circle
packing P such that P is a circle packing for G on S. This packing is unique up to
automorphisms of S.

If G is embedded in a surface of genus g but is not fully triangulated, the Riemann
surface and circle packing guaranteed by the theorem still exist, but they need not be
unique.

The complex structure on the Riemann surface allows us to define the angle at
which two edges of a face meet. If the points u, v, and w are the vertices of a face, we
denote the angle between the edges uv and vw at v by 〈uvw〉. We can thus define the
angle sum at a vertex to be

∑
〈uvw〉, where the sum is taken over all faces containing

v. If P is a univalent sphere packing, the angle sum at any vertex of A(P) is clearly 2π.
In a nonunivalent circle packing, it is possible for the circles at a point to wrap

around the point more than once. In the case of a nonunivalent circle packing, the
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edges of its associated graph may intersect, but we can still define an associated
triangulation of the surface—there just may be more than one triangle covering a
given point. We can therefore compute the angle sum at a point. In this case, it need
not be 2π. However, the circles must wrap around the vertex an integral number of
times, so it must be some multiple 2πk. (See Figure 4.2.) We then say that the vertex
is a discrete branch point of order k.

These discrete branch points behave very much like the continuous branch points
present on Riemann surfaces. In fact, there is an extensive theory that shows that a
large portion of the theory of Riemann surfaces has an analogue in the discrete realm
of circle packing. One can define maps of circle packings, just as one can define maps
of Riemann surfaces. They consist of a correspondence of the circles on one surface to
those on another in a way that commutes with tangency. While analytic maps send
infinitesimal circles to infinitesimal circles, maps of circle packings send finite circles
to finite circles. The analogue of branched covering maps in Riemannian geometry
takes univalent circle packings and places them as nonunivalent circle packings on
other surfaces. Unfortunately, these maps are somewhat rarer than their continuous
analogues.

In particular, if we have a circle packing on a genus g surface S, there is no known
analogue of the Riemann–Roch theorem, and thus no analogue of Theorem 4.4. We
are therefore not guaranteed that there is a nonunivalent circle packing on the sphere
carrying the same associated graph. Intuitively, this comes from the fact that the
analytic maps from S to Ĉ are required to be branched over a very restricted locus of
points. The discrete maps, however, can only be branched over the centers of circles.
If there does not exist an admissible set of branch points among the centers of the
circles, we will have difficulty constructing a discrete analytic map. This will lie at
the root of many of the technical difficulties that we shall face in the remainder of
this paper.

5. An eigenvalue bound. In this section, we prove Theorem 2.3. The proof
will assume a technical lemma whose proof we shall postpone until section 6.

We begin by recalling the expression of the Fiedler value of G as a so-called
Rayleigh quotient :

λ2 = min
x⊥(1,...,1)T

xTL(G)x

xTx
.(5.1)

A straightforward calculation shows that for x = (x1, . . . , xn)T ∈ R
n,

xTL(G)x =
∑

(i,j)∈E

(xi − xj)
2,

so that (5.1) becomes

λ2 = min
x⊥(1,...,1)T

∑
(i,j)∈E(xi − xj)

2

xTx
.(5.2)

As noted by Spielman and Teng [25], it follows easily from (5.2) that we can replace
the scalar values xi with vectors vi ∈ R

k, so that

λ2 = min

∑
(i,j)∈E ‖vi − vj‖2∑n

i=1 ‖vi‖2
,(5.3)
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where the minimum is taken over all sets of n-vectors such that
∑

vi = (0, . . . , 0)T

and such that at least one of the vi is nonzero.
The general goal is thus to find a set of vi that gives a small value for this quotient.

The vi that we use will almost be the centers of a nonunivalent circle packing on the
unit sphere S2 ⊆ R

3. The efficacy of this follows from the following theorem, which
follows easily from the work of Spielman and Teng [25].

Theorem 5.1. Let P be a circle packing on the sphere S2 = {x ∈ R
3 | ‖x‖2 = 1}

so that the graph A(P) has no vertex of degree greater than Δ. Suppose further that
the packing is of degree k, so that no point on the sphere is contained in the interior
of more than k circles, and that the centroid of the centers of the circles is the origin.
Then the Fiedler value

λ2(A(P)) ≤ O

(
Δk

n

)
.

Proof. The proof follows from (5.3). Let the circles be C1, . . . , Cn, and let the
corresponding radii be r1, . . . , rn. Let vi ∈ R

3 be the x, y, and z coordinates of the
center of the ith circle. The sum

∑
vi = 0 by assumption, so λ2 is less than or equal to

the fraction in (5.3). Since all of the vi are on the unit sphere, we have
∑

‖vi‖2 = n,
so it just remains to bound the numerator. If there is an edge (i, j), the two circles
Ci and Cj must be mutually tangent, so that ‖vi − vj‖2 ≤ (ri + rj)

2 ≤ 2(r2
i + r2

j ). It
thus follows that

∑
(i,j)∈E

‖vi − vj‖2 ≤
∑

(i,j)∈E

2(r2
i + r2

j ) ≤ 2Δ

n∑
i=1

r2
i .

However, the total area of all of the circles is less than or equal to k times the area of
the sphere, since the circle packing is of degree k. We thus have that

∑n
i=1 r

2
i ≤ O(k),

from which the desired result follows.
This suggests that we use the circle packing theorem (Theorem 4.6) to embed

our graph on a genus g surface and then try to use some analogue of Theorem 4.4
to obtain a branched circle packing on the sphere of degree O(g). Unfortunately, as
previously noted, such a circle packing need not exist, due to the restrictiveness of
the discrete theory. Thus, we shall instead show that a certain subdivision process on
our graph does not significantly decrease nλ2. We shall then show that performing
this subdivision enough times causes our discrete circle packing to approximate a
continuous structure on the Riemann surface, at which point we can use the continuous
theory in addition to the discrete one.

The refinement procedure that we shall use is called “hexagonal refinement.” It
operates on a triangulation of a surface by replacing each triangle with four smaller
triangles, as shown in Figure 5.1. This process produces another triangulation of the
same surface, so we can iterate it arbitrarily many times.

Lemma 5.2. Let G be a graph with n vertices, m edges, and maximum degree
Δ that triangulates some surface without boundary, and let G′ be the graph with n′

vertices and m′ edges obtained by performing k successive hexagonal refinements on
G. Then

nλ2(G) ≤ C(Δ)n′λ2(G
′).

For the sake of continuity, we defer this proof to section 6.
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Fig. 5.1. The hexagonal subdivision procedure applied to a triangulation with two triangles.

The refinement process replaces each triangle in our graph with four smaller
triangles. If all of the original triangles remained the same size and shape, this
would imply that performing enough hexagonal refinements would give rise to a circle
packing whose circles have arbitrarily small radii. However, it is possible for the
original triangles to change size and shape as we refine, so this is no longer obvious.
Nevertheless, it remains true, as shown by the following lemma.

Lemma 5.3. Let G be a graph that triangulates a genus g Riemann surface without
boundary, and let G(k) be the graph obtained by performing k hexagonal refinements
on G. For every ε > 0, there exists some kε so that for all � ≥ kε every circle in G(�)

has radius less than ε.
Proof. This was essentially proven by Rodin and Sullivan [23]; their proof, how-

ever, was stated for only the genus 0 case. The precise statement above was proven
by Bowers and Stephenson [5].

We get a new Riemann surface for each iteration of the refinement procedure.
It is intuitive that, as the number of iterations grows and the circles in the refined
graph get arbitrarily small, the Riemann surfaces will somehow converge, and the
embedding of the graph on these Riemann surfaces will somehow stabilize. This can
be made formal by the following lemma.

Lemma 5.4. Let G be a graph that triangulates a genus g compact Riemann
surface without boundary, let G(k) be the result of performing k hexagonal refinements
on G, and let S(k) be the Riemann surface on which G(k) is realized as a circle packing.
Further, let hk : S(k) → S(k+1) be the map that takes a triangle to its image under the
subdivision procedure by the obvious piecewise-linear map. The sequence of surfaces
{S(k)} converges in the moduli space of genus g surfaces, and the sequence of maps
{hk} converges to the identity.

Proof. This has been shown by Bowers and Stephenson [5].
We shall also require one last definition, as follows.
Definition 5.5. Let f : X → Y be a map between two locally Euclidean metric

spaces. The quantity

Hf (x, r) =
max|x−y|=r |f(x) − f(y)|
min|x−y|=r |f(x) − f(y)| − 1

is called the radius r distortion of f at x.
We are now finally ready to prove Theorem 2.3.
Proof of Theorem 2.3. Using the circle packing theorem (Theorem 4.6), realize

the graph G = G(0) as a circle packing on some Riemann surface S of genus g. Let
G(k) be the result of performing k hexagonal refinements on G, and let S(k) be the
Riemann surface on which it can be realized as a circle packing. By Theorem 4.4,
there exists an analytic map f (k) from S(k) to the Riemann sphere of degree O(g)
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and with O(g) branch points. Embed the Riemann sphere as the unit sphere in R
3

using the conformal map given by inverse stereographic projection. By the work of
Spielman and Teng (Theorem 9 of [25]), postcomposing with a Möbius transformation
allows us to assume, without loss of generality, that the centroid of the images of the
vertices of each G(k) under f (k) is the origin. By Lemma 5.4, the S(k) converge to
some surface S(∞), and the f (k) can be chosen so as to converge to some continuous
limit map f (∞).

By Lemma 5.2, it suffices to the prove the theorem for an arbitrarily fine hexagonal
refinement of the original graph. Away from its branch points, a map of Riemann
surfaces is conformal, meaning it sends infinitesimal circles to infinitesimal circles. In
particular, given a map f : S → Ĉ, the compactness of S guarantees that for every
ε, κ > 0 there exists a δ > 0 so that the radius δ′ distortion Hf (x, δ′) is less than ε
for every x that is at least distance κ from any branch point and any δ′ ≤ δ. In fact,
by the convergence results of the last paragraph, there exist some N and δ such that
this holds for every f (k) with k > N . Fix ε and κ, and let δ and N be chosen so that
this is true. By possibly increasing N if necessary, we can assume by Lemma 5.3 that
all of the circles on S(k) have radius at most δ for all k > N .

Let k be at least N . We shall break S(k) into two parts, S(k) = S
(k)
1 ∪ S

(k)
2 , as

follows. Construct a ball of radius κ around each branch point of f (k), and let S
(k)
2

be the union of these balls. Let S
(k)
1 be the complement S(k) \ S(k)

2 .
We can now use (5.3) to bound λ2, just as in the proof of Theorem 5.1. Let G(k)

have nk vertices. The denominator of (5.3) is equal to nk, so it suffices to bound the

numerator. We shall separately consider the circles contained entirely in S
(k)
1 and

those that intersect S
(k)
2 .

We begin with the circles contained in S
(k)
1 . Every circle of the packing gets

mapped by f to some connected region on Ĉ, and there are at most O(g) such regions

covering any point of the sphere. Let C be a circle in S
(k)
1 , let D be the diameter

function, which takes a region to the length of the longest geodesic it contains, and

let A be the area function. Since the radius δ distortion of f inside of S
(k)
1 is at most

ε, and the radius of C is at most δ, the ratio D2(f(C))/A(f(C)) is at most O(1 + ε).
Using the same argument as in the proof of Theorem 5.1, the vertex at the center of a
circle C cannot contribute more than O(dD2(f(C))) to the sum, and the total area of

the regions from S
(k)
1 cannot exceed O(g), so the total contribution to the numerator

of the vertices in S
(k)
1 cannot be more than O(dg(1 + ε)).

If this were the only term in the numerator, we could complete the proof by
setting ε to be a constant. It thus remains to show that the contribution from the

circles intersecting S
(k)
2 can be made small. To do this, we need only show that the

contribution θ(k)(x) to the numerator per unit area at a point x from these circles

remains bounded as we subdivide, since we can make the area of S
(k)
2 arbitrarily small

by sending κ to zero, and thus the area of the circles intersecting S
(k)
2 will go to zero

as k goes to infinity and the circles get arbitrarily small. Our argument is similar to
one used by McCaughan to analyze the recurrence of random walks on circle packings
[20].

Let xi, i = 1, . . . , 3, be the coordinate functions on R
3, and let f (k)∗xi be their

pullbacks along f (k) to S(k). (That is, if y is a point on S(k), f (k)∗xi(y) = xi(f
(k)(y)).)

In addition, let C
(k)
1 and C

(k)
2 be a pair of adjacent circles in S

(k)
2 with respective radii

r
(k)
1 and r

(k)
2 and respective centers c

(k)
1 and c

(k)
2 . The contribution of the correspond-
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ing edge in G(k) to the numerator of (5.3) will be

∥∥∥∥(f (k)∗xi(c
(k)
1 )

)3

i=1
−
(
f (k)∗xi(c

(k)
2 )

)3

i=1

∥∥∥∥
2

(5.4)

=
3∑

i=1

(
f (k)∗xi(c

(k)
1 ) − f (k)∗xi(c

(k)
2 )

)2

.

The distance between c
(k)
1 and c

(k)
2 equals r

(k)
1 + r

(k)
2 . As k goes to infinity, the

radii r
(k)
1 and r

(k)
2 both go to zero, by Lemma 5.3. By the smoothness of the f (k), their

convergence to f (∞), and the compactness of their domains, we can approximate each
term on the right-hand side of (5.4) arbitrarily well by its first order approximation,
so that (

f (k)∗xi(c
(k)
1 ) − f (k)∗xi(c

(k)
2 )

)2

(5.5)

≤ (1 + o(1))(r
(k)
1 + r

(k)
2 )2‖∇f (k)∗xi(c

(k)
1 )‖2

as k goes to infinity and the distance between c
(k)
1 and c

(k)
2 shrinks to zero.

The right-hand side of (5.5) is bounded above by

(2 + o(1))[(r
(k)
1 )2 + (r

(k)
2 )2]‖∇f (k)∗xi(c

(k)
1 )‖2(5.6)

= O(1)[(r
(k)
1 )2‖∇f (k)∗xi(c

(k)
1 )‖2 + (r

(k)
2 )2‖∇f (k)∗xi(c

(k)
2 )‖2].

The degree of our graph is bounded, so every vertex appears in at most a constant
number of edges. If we sum the right-hand side of (5.6) over all of the edges in our
graph, the total contribution of terms involving a fixed circle of radius r centered at
c is thus bounded above by

O(1)r2‖∇f (k)∗xi(c)‖2,

so the contribution per unit area is bounded above by

O(1)‖∇f (k)∗xi(c)‖2.

This clearly remains bounded as k goes to infinity and f (k) approaches f (∞). It thus

follows that the contribution to the numerator of (5.3) of the vertices in S
(k)
2 tends

to zero as k goes to infinity and κ is made arbitrarily small. By setting ε to be a
constant and sending κ to zero, Theorem 2.3 follows.

6. The proof of Lemma 5.2. In this section, we shall prove Lemma 5.2. In
proving this bound, it will be convenient to consider the following weighted form of
the Laplacian.

Definition 6.1. The weighted Laplacian LW (G) of a graph G is the matrix

LW (G) = W−1/2L(G)W−1/2,

where L(G) is the Laplacian of G, and W is a diagonal matrix whose ith diagonal
entry wi is strictly positive for all i.

We shall denote the eigenvalues of LW (G) by λ̃W
1 (G) ≤ · · · ≤ λ̃W

n (G) and the
corresponding eigenvectors by ṽW1 (G) . . . ṽWn (G). A straightforward calculation shows
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that the weighted Laplacian has λ̃W
1 = 0 and ṽW1 = W 1/21. Our main quantity

of interest will be λ̃W
2 (G), which we can compute using a weighted analogue of the

Rayleigh quotient:

λ̃W
2 = min

x⊥W1

∑
(i,j)∈E(xi − xj)

2∑
i x

2
iwi

.(6.1)

The second eigenvector ṽW2 (G) equals W 1/2x, where x is the vector that achieves the
minimum in (6.1).

If all of the weights are Θ(1), standard linear algebra shows that λ2(G) and λ̃W
2 (G)

differ by at most a constant factor, so proving a bound on one implies a bound on
the other. (See Chung’s book [9] for detailed proofs of the above facts and for other
foundational information about the weighted Laplacian.)

Before we can proceed to the body of the proof of Lemma 5.2, we require two
fairly general technical lemmas about independent random variables.

Lemma 6.2. Let a1, . . . , an be independent real-valued random variables, possibly
drawn from different probability distributions. Let w1, . . . , wn ∈ R

+ be strictly positive
constants. If the expectation E[

∑
i wiai] = 0, then

E

⎡
⎢⎣
⎛
⎝∑

j

wjaj

⎞
⎠

2
⎤
⎥⎦ ≤ E

⎡
⎣∑

j

w2
ja

2
j

⎤
⎦ .

Proof. This follows by expanding the left-hand side:

E

⎡
⎢⎣
⎛
⎝∑

j

wjaj

⎞
⎠

2
⎤
⎥⎦ = E

[∑
i

w2
i a

2
i

]
+ E

⎡
⎣∑

i

wiai

⎛
⎝∑

j �=i

wjaj

⎞
⎠
⎤
⎦

= E

[∑
i

w2
i a

2
i

]
+
∑
i

− (E[wiai])
2

≤ E

⎡
⎣∑

j

w2
ja

2
j

⎤
⎦ ,

where the second equality follows from the independence of the variables and the fact
that the sum of their expectations is zero.

We shall now use this lemma to establish our second lemma, which is the one
that will actually appear in our main proof.

Lemma 6.3. Let a1, . . . , an be independent real-valued random variables, possibly
drawn from different probability distributions, and let w1, . . . , wn ∈ R

+ be strictly
positive constants such that E[

∑
i wiai] = 0. Let a = (a1, . . . , an), and let wmax =

maxi wi. Further let

b =

(
1∑
i wi

∑
i

wiai

)
1 and c = a− b.

Then

E

[∑
i

wic
2
i

]
≥

(
1 − wmax∑

i wi

)
E

[∑
i

wia
2
i

]
.
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Proof. This follows by direct calculation:

E

[∑
i

wic
2
i

]
= E

⎡
⎢⎣∑

i

wi

⎛
⎝ai −

1∑
j wj

⎛
⎝∑

j

wjaj

⎞
⎠
⎞
⎠

2
⎤
⎥⎦

= E

[∑
i

wia
2
i

]
+

1

(
∑

i wi)
2 E

⎡
⎢⎣∑

i

wi

⎛
⎝∑

j

wjaj

⎞
⎠

2
⎤
⎥⎦

− 2∑
i wi

E

⎡
⎣∑

i

wiai

⎛
⎝∑

j

wjaj

⎞
⎠
⎤
⎦

= E

[∑
i

wia
2
i

]
+

1∑
i wi

E

⎡
⎢⎣
⎛
⎝∑

j

wjaj

⎞
⎠

2
⎤
⎥⎦− 2∑

i wi
E

⎡
⎢⎣
⎛
⎝∑

j

wjaj

⎞
⎠

2
⎤
⎥⎦

= E

[∑
i

wia
2
i

]
− 1∑

i wi
E

⎡
⎢⎣
⎛
⎝∑

j

wjaj

⎞
⎠

2
⎤
⎥⎦

≥ E

[∑
i

wia
2
i

]
− 1∑

i wi
E

⎡
⎣∑

j

w2
ja

2
j

⎤
⎦

= E

[∑
i

(
1 − wi∑

j wj

)
wia

2
i

]

≥
(

1 − wmax∑
i wi

)
E

[∑
i

wia
2
i

]
,

where second-to-last inequality follows from Lemma 6.2.
We are now prepared to prove Lemma 5.2.
Proof of Lemma 5.2. Let G = (VG, EG) be the original graph, and let G′ =

(VG′ , EG′) be the graph that results from performing k successive hexagonal refine-
ments on G. The embeddings into surfaces endow both G and G′ with triangulations;
let TG and TG′ be the respective sets of triangles in these triangulations. There is a
natural inclusion ι : VG ↪→ VG′ , since the subdivision procedure only adds vertices to
the original set. There is also a map η : TG′ → TG that takes a triangle from the
subdivided graph to the one in the original graph from which it arose. For a vertex v
in either graph, let N(v) be the set of triangles containing it. For a vertex w ∈ VG, let
P (w) = η−1(N(w)) be the set of triangles in T (G′) taken by η to elements of N(w).
(See Figure 6.1.)

Our proof will proceed by producing a randomized construction of a subgraph H
of G′. Given a vector that assigns a value to every vertex of G′, we can obtain such
a vector on H by restriction. We shall also show how to use such a vector on H to
construct such a vector on G. The vectors on the different graphs will give rise to
Rayleigh quotients on the graphs (some of which will be weighted), where the Rayleigh
quotients for G and H will depend on the random choices made in the construction of
H. By relating the terms in the different Rayleigh quotients, we shall then provide a
probabilistic proof that there exists an H that gives rise to a small Rayleigh quotient
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Fig. 6.1. A subdivided graph, with P (w) and N(w) shaded for a vertex w.

on G, which will suffice to prove our desired bound.
H will be produced by randomly choosing a representative in VG′ for each vertex

in VG and representing every edge in EG by a randomly chosen path in G′ between
the representatives of its endpoints.

We first construct the map πV : VG → VG′ that chooses the representatives of
the vertices. For each v ∈ VG we choose πV (v) uniformly at random from the vertices
contained in P (v) that are at least as close to ι(v) as to ι(w) for any other w ∈ VG.
Vertices in P (v) that are equally close to ι(v) and ι(w) should be arbitrarily assigned
to either v or w, but not both.

We now construct πE , which maps edges in EG to paths in G′. Let e = (v1, v2)
be an edge in G, and let w1 and w2 equal πV (v1) and πV (v2), respectively. The two
neighborhoods in G, N(v1) and N(v2), share exactly two triangles, t1 and t2. Let x
be a vertex randomly chosen from the vertices in η−1(t1 ∪ t2). We shall construct a
path from each wi (i = 1, 2) to x, so that their composition gives a path from w1 to
w2. We shall use the same construction for each, so, without loss of generality, we
shall just construct the path from w1 to x.

Both w1 and x are in P (v1), and we give a general procedure for constructing a
path between any two such vertices. The images under the inclusion ι of the triangles
in N(v1) encircle ι(v1). Suppose w1 is contained in T1, and x is contained in T2.
Traversing the triangles in a clockwise order from T1 to T2 gives one list of triangles,
and traversing in a counterclockwise order gives another. Let T1, Q1, . . . , Q�, T2 be
the shorter of these two lists, with a random choice made if the two lists are the same
length. Choose a random vertex ai in each Qi, and let a0 = w1 and a�+1 = x. We
thus have a vertex representing each triangle in the list. Our path will consist of a
sequence of segments from each representative to the next.

Note that all of the triangles are distinct, except if T1 = T2 and the list is of
length 2. We suppose for now that we have two vertices ai and ai+1 in distinct
triangles, and we deal with the degenerate case later. The two triangles in question
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Fig. 6.2. An illustration of how the grid graph exists as a subgraph of the union of two adjacent
subdivided triangles.

Fig. 6.3. The entire construction illustrated for a given edge of the original graph.

are adjacent, and their union contains a grid graph as a subgraph. (See Figure 6.2.)
Given two vertices in a grid, there is a unique path between them that one obtains by
first moving horizontally and then vertically, and another that one obtains by moving
vertically and then horizontally. (These two coincide if there is a line connecting the
two points.) Randomly choose one of these two paths. This is the path connecting
ai to ai+1. If ai and ai+1 lie in the same triangle, randomly choose one of the two
adjacent triangles to form a grid, and then use the above construction. Composing
the paths between each ai and ai+1 completes the construction of πE . The entire
construction is illustrated in Figure 6.3.

We now consider the Rayleigh quotients for the three graphs that we have con-
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structed. After k hexagonal refinements, every edge in G is split into r = 2k pieces,
every triangle gets replaced with r2 smaller triangles, and the number of vertices
grows quadratically in r. A vector y ∈ R

|VG′ | that assigns a value to each vertex in
G′ gives the Rayleigh quotient

R(G′) =

∑
(i,j)∈EG′ (yi − yj)

2

yT y
.

This induces a vector on the vertices of H by restriction. The probability, taken
over the random choices in the construction of πV and πE , that a given edge of G′

appears on the path representing a given edge e of G is zero if it is not in P (α)
with α equal to one of the endpoints of e, and at most O(1/r) otherwise. Since the
maximum degree of a vertex in G is assumed constant, the expected number of times
that a given edge of G′ occurs in H is O(1/r). Every vertex in G′ is selected as a
representative of a vertex in G with probability Θ(1/r2). It thus follows that

E

⎡
⎣ ∑

(i,j)∈EH

(yi − yj)
2

⎤
⎦ ≤ O

(
1

r

) ∑
(i,j)∈EG′

(yi − yj)
2(6.2)

and

E

[∑
i∈VG

wiy
2
πV (i)

]
= Θ

(
1

r2

) ∑
i∈VG′

y2
i ,(6.3)

where the expectations are taken over the random choices in the construction of
(πV , πE), and the wi are any weights that are bounded above and below by positive
constants.

Let y be the vector in R
|VG| whose ith coordinate is yπV (i). Each coordinate yi

of y is chosen independently from a distinct set Si of the coordinates of y, and every
coordinate is contained in one of these sets. Let si = |Si|, let smin = mini si, and
take W to be the diagonal matrix whose ith diagonal entry wi equals si/smin. The
probability that a given vertex in Si is selected equals 1/si, so we have that

E

⎡
⎣ ∑
j∈VG

wjyj

⎤
⎦ =

∑
k∈VG′

yk = 0.

(The need to weight the terms on the left-hand side of this expression by the wi is
what will necessitate the use of the weighted Laplacian in our proof.) The size of
each Si is approximately proportional to the degree of the ith vertex of G, so the wi

are all bounded above by a constant, and they are all at least one by definition. The
eigenvalue λ̃W

2 (G) of the weighted Laplacian is thus within a constant factor of the
standard Fiedler value λ2(G).

Let z be the vector

z = y −
(∑

i wiyi∑
i wi

)
1,

so that z differs from y by a multiple of the all-ones vector and is orthogonal to W1.
By applying Lemma 6.3 to (6.3), we obtain

E

[∑
i∈VG

wiz
2
i

]
≥

(
1 − wmax∑

i wi

)
E

[∑
i∈VG

wiy
2
i

]
= Θ

(
1

r2

) ∑
i∈VG′

y2
i .(6.4)
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Multiplying the inequalities in (6.2) and (6.4) by the appropriate factors and combin-
ing them yields

O(r)

⎛
⎝ ∑

(i,j)∈EG′

(yi − yj)
2

⎞
⎠ · E

[∑
i∈VG

wiz
2
i

]
≥

⎛
⎝ ∑

i∈VG′

y2
i

⎞
⎠ · E

⎡
⎣ ∑

(i,j)∈EH

(yi − yj)
2

⎤
⎦ .

(6.5)

This implies that there exists some choice of (πV , πE) for which the left-hand side
of (6.5) is greater than or equal to the right-hand side, in which case we would have∑

(i,j)∈EH
(yi − yj)

2∑
i∈VG

wiz2
i

≤ O(r)

∑
(i,j)∈EG′ (yi − yj)

2∑
i∈VG′ y

2
i

= O(r)R(G′).(6.6)

Now suppose that we assign to each vertex v ∈ VG the value assumed by y at
πV (v). Using the fact that the maximum degree of a vertex is bounded, so that there
are O(1) triangles surrounding any vertex in G, we see that every path representing
an edge is of length O(r). We note that if i1, . . . , is is a sequence of vertices,

(yis − yi1)
2 ≤ s

s−1∑
a=1

(yia+1 − yia)2.

As such, we have ∑
(i,j)∈EG

(yπV (i) − yπV (j))
2 ≤ O(r)

∑
(i,j)∈EH

(yi − yj)
2.(6.7)

Since z is obtained from y by subtracting a multiple of the all-ones vector,

zi − zj = yπV (i) − yπV (j)

for any i and j. Plugging this into (6.7) gives∑
(i,j)∈EG

(zi − zj)
2 ≤ O(r)

∑
(i,j)∈EH

(yi − yj)
2,

and applying this to the inequality in (6.6) yields∑
(i,j)∈EG

(zi − zj)
2∑

i∈VG
wiz2

i

≤ O(r2)R(G′).

We have thus constructed an assignment of values to the vertices of G that is or-
thogonal to the vector W1 and produces a weighted Rayleigh quotient of O(r2)R(G′).
If we choose the yi to be the values that give the Fiedler value of G′, we thus obtain,
by (6.1) and the fact that the wi are Θ(1),

λ2(G) = Θ(1)λ̃W
2 (G) ≤ O(r2)λ2(G

′).

Since the number of vertices in G′ grows as r2 times the number of vertices in G, this
completes the proof of Lemma 5.2.
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We also prove impossibility results demonstrating that both our use of nondeterminism and the
hypothesis that f is balanced are necessary for “black-box” hardness amplification procedures (such
as ours).
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Definition 1.1. For δ ∈ [0, 1/2], a function f : {0, 1}n → {0, 1} is δ-hard for
size s if every circuit of size s fails to compute f on at least a δ fraction of inputs.

Note that the maximum value of the hardness parameter δ is 1/2 because f
is Boolean (and so can trivially be computed with error probability at most 1/2).
This notion of hardness is fairly standard (e.g., in the literature on derandomization
starting from [30]), but we remark that it differs from Levin’s notion of average-case
complexity [24] in several ways. Most importantly, Levin’s formulation corresponds
to algorithms that always either give the correct answer or say “don’t know,” whereas
we consider even “heuristic” algorithms that can make arbitrary errors. (See Impagli-
azzo’s survey [19].)

The hardness amplification problem is to convert a function f that is δ-hard for
size s into a function f ′ that is (1/2 − ε)-hard for size polynomially related to s.
Commonly, δ = 1/poly(n), and the aim is to make ε = ε(n) vanish as quickly as
possible.

The standard approach to hardness amplification employs Yao’s XOR lemma [39]
(see [15]): Given a mildly hard-on-average function f : {0, 1}n → {0, 1}, we define
f ′ : {0, 1}n·k → {0, 1} by

f ′(x1, . . . , xk)
def
= f(x1) ⊕ f(x2) ⊕ · · · ⊕ f(xk).

The XOR Lemma says that the hardness of f ′ approaches 1/2 exponentially fast with
k. More precisely, this can be stated as follows.

Yao’s XOR Lemma. If f is δ-hard for size s(n) ≥ nω(1) and k ≤ poly(n), then
f ′ is (1/2 − 1/2Ω(δk) − 1/s′)-hard for size s′(n · k) = s(n)Ω(1).

In particular, taking k = Θ(n/δ), the amplified hardness is dominated by the 1/s′

term. That is, we can amplify to hardness (1/2 − ε), where ε is polynomially related
to the (reciprocal of the) circuit size for which f was hard. (Note, however, that we
should measure ε = ε(n′) as a function of the new input length n′ = n · k, so when
k = n, the hardness is actually 1/2 − 1/s(

√
n′)Ω(1).)

However, if we are interested in hardness amplification within NP (i.e., f and f ′

are characteristic functions of languages in NP), we cannot use the XOR lemma; it
does not ensure that f ′ is in NP when f is in NP. Hardness amplification within
NP was first addressed in a recent paper of O’Donnell [31], which is the starting point
for our work.

1.1. O’Donnell’s hardness amplification. To ensure that the new function
f ′ is in NP when f is in NP, O’Donnell [31] was led to study constructions of the
form

f ′(x1, . . . , xk)
def
= C(f(x1), f(x2), . . . , f(xk)),(1)

where C is an efficiently computable monotone function. The monotonicity of C
ensures that f ′ is in NP when f is in NP. However, we are left with the task of
choosing such a function C and proving that it indeed amplifies hardness.

Remarkably, O’Donnell was able to precisely characterize the amplification prop-
erties of construction (1) in terms of a combinatorial property of the combining func-
tion C, called its expected bias. (The actual definition is not needed for this discussion,
but can be found in section 3.) By finding a monotone combining function in which
this expected bias is small, he obtained the first positive result on hardness amplifi-
cation in NP, given next.
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O’Donnell’s Theorem (see [31]). If NP contains a balanced function that
is 1/poly(n)-hard for polynomial-size circuits, then NP contains a function that is
(1/2 − 1/n1/2−α)-hard for polynomial-size circuits (where α is an arbitrarily small
positive constant).

However, the amplification provided by O’Donnell’s theorem is not as strong as
what the XOR lemma gives. It is limited to 1/2− 1/

√
n, regardless of the circuit size

s for which the original function is hard, even if s is exponentially large. The XOR
lemma, on the other hand, amplifies to 1/2 − 1/sΩ(1). O’Donnell showed that this
difference is inherent—no construction of the form (1) with a monotone combining
function C can always amplify hardness to better than 1/2 − 1/n.1

1.2. Our result. In this paper, we manage to amplify hardness within NP
beyond the 1/2 − 1/n barrier, as described in the following.

Theorem 1.2 (main theorem). If NP contains a balanced function that is
1/poly(n)-hard for circuits of size s(n), then NP contains a function that is (1/2 −
1/s′(n))-hard for circuits of size s′(n) for some function2 s′(n) = s(

√
n)Ω(1). In

particular,

1. if s(n) = nω(1), we amplify to hardness 1/2 − 1/nω(1);

2. if s(n) = 2n
Ω(1)

, we amplify to hardness 1/2 − 1/2n
Ω(1)

;
3. if s(n) = 2Ω(n), we amplify to hardness 1/2 − 1/2Ω(

√
n).

Items 1–3 match the parameters of the Yao’s XOR lemma. However, subsequent
“derandomizations” of the XOR lemma [18, 20] actually amplify up to 1/2− 1/2Ω(n)

rather than just 1/2 − 1/2Ω(
√
n) in the case s(n) = 2Ω(n). This gap is not inherent

in our approach and, as mentioned below, would be eliminated given a corresponding
improvement in one of the tools we employ.

Of course, our construction cannot be of the form in construction (1). Below we
describe our two main points of departure.

1.3. Techniques. To explain how we bypass it, we first look more closely at the
source of the 1/2− 1/n barrier. The actual barrier is 1/2− 1/k, where k is the input
length of the monotone combining function C. (This is based on a result of [22]; see
[31].) Since in construction (1), f ′ has input length n′ = n · k ≥ k, it follows that we
cannot amplify beyond 1/2 − 1/n′.

Derandomization. Given the above, our first idea is to break the link between the
input length of f ′ and the input length of the combining function C. We do this by
derandomizing O’Donnell’s construction. That is, the inputs x1, . . . , xk are no longer
taken independently (as in construction (1)), but are generated pseudorandomly from
a short seed of length n′ � k, which becomes the actual input to f ′. Our method for
generating the xi’s is based on combinatorial designs (as in the Nisan–Wigderson gen-
erator [30]) and Nisan’s pseudorandom generator for space-bounded computation [29];
it reduces the input length of f ′ from n · k to n′ = O(n2 + log2 k). We stress that this
derandomization is unconditional, i.e., requires no additional complexity assumption.
We also remark that it is the quadratic seed length of Nisan’s generator that limits
our amplification to 1/2 − 1/2Ω(

√
n) rather than 1/2 − 1/2Ω(n) in part 3 of our main

1The gap between O’Donnell’s positive result of 1/2− 1/
√
n and his negative result of 1/2− 1/n

is not significant for what follows, and in particular it will be subsumed by our improvements.
2In the rest of the paper, we more compactly write “for circuits of size s′(n) = s(

√
n)Ω(1),”

where the Ω(1) is to be interpreted as a fixed constant (possibly depending on previously quantified
constants).
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theorem, and thus any improvement in Nisan’s generator would yield a corresponding
improvement in our result.

Similar derandomizations have previously been achieved for Yao’s XOR lemma
by Impagliazzo [18] and Impagliazzo and Wigderson [20]. The analysis of such de-
randomizations is typically tailored to a particular proof, and indeed [18, 20] each
gave a new proof of the XOR lemma for that purpose. In our case, we do not know
how to derandomize O’Donnell’s original proof, but instead manage to derandomize
a different proof due to Trevisan [34].

Our derandomization allows for k to be larger than the input length of f ′, and
hence we can go beyond the 1/2−1/n′ barrier. Indeed, by taking k to be a sufficiently
large polynomial, we amplify to 1/2 − 1/(n′)c for any constant c.

Using nondeterminism. To amplify further, it is tempting to take k superpolyno-
mial in the input length of f ′. But then we run into a different problem: how do we
ensure that f ′ is in NP? The natural algorithm for f ′ requires running the algorithm
for f on k inputs.

To overcome this difficulty, we observe that we need only give an efficient nonde-
terministic algorithm for f ′. Each nondeterministic path may involve only polynomi-
ally many evaluations of f , while the global outcome f ′(x) depends on exponentially
many evaluations. To implement this idea, we exploit the specific structure of the
combining function C. Namely, we (like O’Donnell) use the Tribes function of Ben-
Or and Linial [5], which is a monotone DNF with clauses of size O(log k). Thus, the
nondeterministic algorithm for f ′ can simply guess a satisfied clause and (nondeter-
ministically) evaluate f on the O(log k) corresponding inputs.

1.4. Other results. We also present some complementary negative results:
• We show that the assumption that the original hard function is balanced is

necessary, in the sense that no monotone “black-box” hardness amplification
can amplify unbalanced functions of unknown bias (or even improve their
bias).3

• We show that our use of nondeterminism is necessary, in the sense that any
“black-box” hardness amplification in which each evaluation of f ′ is a mono-
tone function of at most k evaluations of f can amplify hardness to at most
1/2 − 1/k.

Informally, a “black-box” hardness amplification is one in which the construction
of the amplified function f ′ from f utilizes f only as an oracle and is well defined for
any function f (regardless of whether or not it is in NP). Moreover, the correctness of
the construction is proved by a generic reduction that converts any oracle A (regardless
of its circuit size) that computes f ′ well on average (e.g., with probability 1/2+ ε over
random choice of input) into one that computes f much better on average (e.g., with
probability 1− o(1) over random input). (A formal definition is given in section 7.1.)
We note that most results on hardness amplification against circuits, including ours,
are black-box (though there have been some recent results using non–black-box tech-
niques in hardness amplification against uniform algorithms; see [21, 35]).

Our framework also gives a new proof of the hardness amplification by Impagliazzo
and Wigderson [20]. Our proof is simpler, and in particular its analysis does not
employ the Goldreich–Levin [14] step.

3We note that there do exist balanced NP-complete problems, as observed by Barak and reported
in [10], but this has no direct implication for us because we are studying the average-case complexity
of NP.
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1.5. Organization. The rest of the paper is organized as follows. In section 2,
we discuss some preliminaries. In section 3, we review existing results on hardness
amplification in NP. In section 4, we present our main results and new techniques. In
section 5 we treat the details of the proof of our main theorem. In section 6 we show
how we could amplify to 1/2 − 1/2Ω(n), given an improvement in the pseudorandom
generator we use, and we also give a new proof of the hardness amplification by
Impagliazzo and Wigderson [20]. In section 7 we discuss some limitations of monotone
hardness amplification; in particular we show a sense in which the hypothesis that the
starting function is balanced is necessary, and also that the use of nondeterminism is
necessary.

2. Preliminaries. We denote the uniform distribution on {0, 1}n by Un. If
Un occurs more than once in the same expression, it is understood that these all
represent the same random variable; for example, Un · f(Un) denotes the random
variable obtained by choosing X uniformly at random in {0, 1}n and outputting X ·
f(X) (where · means concatenation).

Definition 2.1. Let X and Y be two random variables taking values over the
same set S. Then the statistical difference between X and Y is

Δ(X,Y )
def
= max

T⊆S

∣∣∣Pr[X ∈ T ] − Pr[Y ∈ T ]
∣∣∣.

We view probabilistic functions as functions of two inputs, e.g., h(x; r), the first
being the input to the function and the second being the randomness. (Deterministic
functions may be thought of as probabilistic functions that ignore the randomness.)
For notational convenience, we will often omit the second input to a probabilistic
function, e.g., writing h(x) instead of h(x; r), in which case we view h(x) as the
random variable h(x;U|r|).

Definition 2.2. The bias of a 0-1 random variable X is

Bias [X]
def
=

∣∣Pr[X = 0] − Pr[X = 1]
∣∣ = 2 · Δ(X,U1).

Analogously, the bias of a probabilistic function f : {0, 1}n → {0, 1} is

Bias [f ]
def
=

∣∣Pr[f(Un) = 0] − Pr[f(Un) = 1]
∣∣,

where the probabilities are taken over both the input chosen according to Un and the
coin tosses of f . We say that f is balanced when Bias [f ] = 0.

Note that the bias of a random variable is a quantity between 0 and 1.
We say that the random variables X and Y are ε-indistinguishable for size s if

for every circuit C of size s,∣∣∣Pr
X

[C(X) = 1] − Pr
Y

[C(Y ) = 1]
∣∣∣ ≤ ε.

We will routinely use the following connection between hardness and indistin-
guishability.

Lemma 2.3 (see [39]). Let h : {0, 1}n → {0, 1} be any probabilistic function. If
the distributions Un · h(Un) and Un · U1 are ε-indistinguishable for size s, then h is
(1/2− ε)-hard for size s−O(1). Conversely, if h is (1/2− ε)-hard for size s, then the
distributions Un · h(Un) and Un · U1 are ε-indistinguishable for size s−O(1).

Finally, whenever we amplify the hardness of a function f : {0, 1}n → {0, 1} that
is hard for circuits of size s(n), we assume that s(n) is well behaved in the sense that
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it is computable in time poly(n) and s(cn) = s(n)O(1), for all constants c > 0. Most

natural functions smaller than 2n, such as nk, 2logk n, 2n
ε

, 2εn, are well behaved in this
sense.

3. Overview of previous hardness amplification in NP. In this section
we review the essential components of existing results on hardness amplification in
NP. We then discuss the limitations of these techniques. By the end of this section,
we will have sketched the main result of O’Donnell [31], following the approach of
Trevisan [34]. We outline this result in a way that will facilitate the presentation of
our results in subsequent sections.

Let f : {0, 1}n → {0, 1} be an average-case hard function, and let C : {0, 1}k →
{0, 1} be any function. In [31], O’Donnell studies the hardness of functions of the
form

C ◦ f⊗k : ({0, 1}n)
k → {0, 1},

where f⊗k(x1, . . . , xk)
def
= (f(x1), . . . , f(xk)) and ◦ denotes composition. That is,

(C ◦ f⊗k)(x1, . . . , xk)
def
= C(f(x1), . . . , f(xk)).

In order to ensure that C ◦ f⊗k ∈ NP whenever f ∈ NP, O’Donnell chooses C
to be a polynomial-time computable monotone function. (Indeed, it is not hard to
see that a monotone combination of NP functions is itself in NP.)

O’Donnell characterizes the hardness of C ◦ f⊗k in terms of a combinatorial
property of the combining function C, called its expected bias (which we define later).
We will now review the key steps in establishing this characterization and O’Donnell’s
final amplification theorem.

Step 1: Impagliazzo’s hardcore sets. An important tool for establishing this
connection is the hardcore set lemma of Impagliazzo [18], which allows us to pass
from computational hardness to information-theoretic hardness.

Definition 3.1. We say that a (probabilistic) function g : {0, 1}n → {0, 1} is
δ-random if g is balanced and there exists a subset H ⊆ {0, 1}n with |H| = 2δ2n such
that g(x) = U1 (i.e., a coin flip) for x ∈ H and g(x) is deterministic for x /∈ H.

Thus, a δ-random function has a set of relative size 2δ on which it is information-
theoretically unpredictable. Note that in the above definition we require g to be
balanced. This will be convenient when dealing with functions f that are balanced.

The following version of the Impagliazzo hardcore set lemma says that any bal-
anced δ-hard function f : {0, 1}n → {0, 1} has a hardcore set H ⊆ {0, 1}n of density
≈ 2δ such that f is very hard on average on H. Thus, f looks like a δ-random function
to small circuits (cf. Lemma 2.3). (Following subsequent works, our formulation of
Impagliazzo’s lemma differs from the original in several respects.)

Lemma 3.2 (see [18, 23, 33, 31]). For any function f : {0, 1}n → {0, 1} that is
balanced and δ-hard for size s, there exists a δ′-random function g : {0, 1}n → {0, 1}
such that X ·f(X) and X ·g(X) are ε-indistinguishable for size Ω(sε2/ log(1/δ)), with
δ/2 ≤ δ′ ≤ δ, where X ≡ Un.

In particular, by a standard hybrid argument (see, e.g., [13]),

X1 · · ·Xk · f(X1) · · · f(Xk) and X1 · · ·Xk · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2/ log(1/δ)), where the Xi’s are uniform and
independent.
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Step 2: expected bias. By the above, proving the computational hardness of
C ◦ f⊗k reduces to calculating the information-theoretic hardness of C ◦ g⊗k for some
δ′-random g. It turns out that information-theoretic hardness can be characterized
by the following quantity.

Definition 3.3. Let h : {0, 1}n → {0, 1} be any probabilistic function. We define
the expected bias of h by

ExpBias [h]
def
= E

x←Un

[
Bias [h(x)]

]
,

where Bias [h(x)] is taken over the coin tosses of h.
It turns out that for any function C : {0, 1}k → {0, 1} and any δ-random g,

the quantity ExpBias
[
C ◦ g⊗k

]
does not depend on the particular choice of the δ-

random function g; indeed, it turns out to equal the quantity that O’Donnell [31]
calls the “expected bias of C with respect to noise 2δ” and denotes by ExpBias2δ(C)
in [31]. However, the more general notation we use will be useful in presenting our
improvements.

The next lemma shows that information-theoretic hardness is equivalent to ex-
pected bias.

Lemma 3.4. For any probabilistic function h : {0, 1}n → {0, 1},

Δ(Un · h(Un), Un · U1) =
1

2
ExpBias [h] .

Proof. Δ(Un · h(Un), Un · U1) = E
x←Un

[Δ(h(x), U1)] = E
x←Un

[Bias [h(x)] /2] =

ExpBias [h] /2.
In particular, for any circuit C (regardless of its size) we have |Pr[C(Un ·h(Un)) =

1] − Pr[C(Un · U1) = 1]| ≤ ExpBias [h] /2, and thus by Lemma 2.3, h is (1/2 −
ExpBias [h] /2)-hard for circuits of any size.

Now we characterize the hardness of C◦f⊗k in terms of expected bias. Specifically,
by taking, say, ε = 1/s1/3 in Lemma 3.2 and using Lemmas 2.3 and 3.4, one can prove
the following (we defer the details until the proof of the more general Lemma 5.2).

Lemma 3.5 (see [31]). Let f : {0, 1}n → {0, 1} be balanced and δ-hard for size s,
and let C : {0, 1}k → {0, 1} be any function. Then there exists a δ′-random function

g : {0, 1}n → {0, 1}, with δ/2 ≤ δ′ ≤ δ, such that C ◦ f⊗k : ({0, 1}n)
k → {0, 1} has

hardness

1

2
−

ExpBias
[
C ◦ g⊗k

]
2

− k

s1/3

for circuits of size Ω(s1/3/ log(1/δ)) − size(C), where size(C) denotes the size of a
smallest circuit computing C.

What makes this lemma so useful is that, as noted above, the quantity
ExpBias[C ◦ g⊗k] is independent of the choice of the δ-random function g (using
the fact that g is balanced, by definition of δ-random); hence the hardness of C ◦ f⊗k

depends only on the combining function C and the hardness parameter δ. Thus, un-
derstanding the hardness of C ◦ f⊗k is reduced to analyzing a combinatorial property
of the combining function C.

Step 3: noise stability. Unfortunately, it is often difficult to analyze the expected
bias directly. However, the expected bias is closely related to the noise stability, a
quantity that is more amenable to analysis and better studied (see, e.g., [31, 27]). The
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noise stability of a function is (up to normalization) the probability that the value of
the function is the same on two correlated inputs x and x + η, where x is a random
input and η a random vector of noise.

Definition 3.6. The noise stability of C with respect to the noise δ, denoted
NoiseStabδ[C], is defined by

NoiseStabδ[C]
def
= 2 · Pr

x,η
[C(x) = C(x⊕ η)] − 1,

where x is random, η is a vector whose bits are independently one with probability δ,
and ⊕ denotes bitwise XOR.

The following lemma from [31] bounds the expected bias of C ◦ g⊗k (and hence
the hardness in Lemma 3.5) in terms of the noise stability of C.

Lemma 3.7. Let g : {0, 1}n → {0, 1} be δ-random. Then

ExpBias
[
C ◦ g⊗k

]
≤

√
NoiseStabδ[C].

Combining this with Lemma 3.5, we find that the hardness of C ◦ f⊗k is at least
(roughly) 1/2−

√
NoiseStabδ[C]/2. The next step is to exhibit a combining function

C with a small noise stability (to ensure that the hardness of C ◦ f⊗k is as close to
1/2 as possible). The following is shown in [31].

Lemma 3.8 (see [31]). For all δ > 0, there exists a k = poly(1/δ) and a poly-
nomial-time computable monotone function C : {0, 1}k → {0, 1} with NoiseStabδ[C] ≤
1/kΩ(1).

Finally, by combining Lemmas 3.5, 3.7, and 3.8, we obtain the following weaker
version of O’Donnell’s hardness amplification within NP. (While in the introduction
we mentioned a stronger version of O’Donnell’s result, which amplifies up to hardness
1/2−1/m1/2−α for every constant α > 0, the following version will suffice as a starting
point for our work. The loss in the amplification in this version comes from the fact
that we did not specify the constants in Lemma 3.8.)

Theorem 3.9 (see [31]). If there is a balanced function f : {0, 1}n → {0, 1} in
NP that is 1/poly(n)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1}
in NP that is (1/2 − 1/mΩ(1))-hard for size s(mΩ(1))Ω(1).

Lmitations of direct product constructions. O’Donnell also showed that Theorem
3.9 is essentially the best result that one can obtain using the techniques that we have
described thus far. He showed that for all monotone combining functions C there
is a δ-hard function f such that the hardness of C ◦ f⊗k is not much better than
1/2 − NoiseStabδ[C]/2 (assuming that C is easily computable). This is problematic
because the noise stability of monotone functions cannot become too small. Specifi-
cally, by combining a result from [22] with a Fourier characterization of noise stability,
O’Donnell [31] proves the following theorem.

Theorem 3.10 (see [22, 31]). For every monotone function C : {0, 1}k → {0, 1}
and every δ > 0,

NoiseStabδ[C] ≥ (1 − 2δ) · Ω
(

log2 k

k

)
.

Therefore, for any monotone C : {0, 1}k → {0, 1} there is a δ-hard f such that
C ◦f⊗k does not have hardness 1/2−NoiseStabδ[C]/2 ≤ 1/2−Ω(1/k). Since C ◦f⊗k

takes inputs of length m = n·k ≥ k, this implies that we must employ a new technique
to amplify beyond hardness 1/2 − Ω(1/m).
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4. Main theorem and overview. In this paper, we obtain the following im-
provement upon Theorem 3.9.

Theorem 4.1 (main theorem, restated). If there is a balanced function f :
{0, 1}n → {0, 1} in NP that is 1/poly(n)-hard for size s(n), then there is a function
f ′ : {0, 1}m → {0, 1} in NP that is (1/2 − 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).4

We also show that the assumption that we start with a balanced function f is
essential for a large class of hardness amplifications. Specifically, we show (section
7.1) that no monotone black-box hardness amplification can amplify the hardness of
functions whose bias is unknown. Most hardness amplifications, including the one in
this paper, are black-box.

We now elaborate on the two main techniques that allow us to prove Theorem
4.1. As explained in the introduction, these two techniques are derandomization and
nondeterminism.

4.1. Derandomization. As in the previous section, let f : {0, 1}n → {0, 1} be
our hard function, and let C : {0, 1}k → {0, 1} be a (monotone) combining function.

We will derandomize O’Donnell’s construction using an appropriately “pseudo-
random” generator.

Definition 4.2. A generator is a function G : {0, 1}l → ({0, 1}n)
k
. We call l

the seed length of G, and we often write G(σ) = X1 · · ·Xk, with each Xi ∈ {0, 1}n.
G is explicitly computable if, given σ and 1 ≤ i ≤ k, we can compute Xi in time
poly(l, log k), where G(σ) = X1 · · ·Xk.

Instead of using the function C ◦ f⊗k : ({0, 1}n)
k → {0, 1}, we take a generator

G : {0, 1}l → ({0, 1}n)
k

(where l � nk) and use (C ◦ f⊗k) ◦G : {0, 1}l → {0, 1}, i.e.,

(C ◦ f⊗k) ◦G(σ) = C
(
f(X1), . . . , f(Xk)

)
,

where (X1, . . . , Xk) ∈ ({0, 1}n)
k

is the output of G(σ). This reduces the input length
of the function to l. Therefore, if G is a “good” pseudorandom generator, we would
expect (C ◦ f⊗k) ◦ G to be harder (with respect to its input length) than C ◦ f⊗k.
We will show that this is indeed the case, provided that the generator G satisfies the
following requirements:

1. G is indistinguishability-preserving. Analogously to Lemma 3.5, the generator
G should be such that the computational hardness of (C ◦ f⊗k) ◦ G is at
least the information-theoretic hardness of (C ◦ g⊗k) ◦G for some δ-random
function g—that is, at least 1/2 − ExpBias[(C ◦ g⊗k) ◦ G]. We will see that
this can be achieved, provided that G is indistinguishability-preserving; that
is (analogously to the last part of Lemma 3.2),

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

should be indistinguishable, for some δ-random g, when σ
R← {0, 1}l and

(X1, . . . , Xk) ∈ ({0, 1}n)
k

is the output of G on input σ.
2. G fools the expected bias. G should be such that for any δ-random g

ExpBias[(C ◦ g⊗k) ◦ G] is approximately ExpBias[C ◦ g⊗k], and thus, by
Lemma 3.7,

ExpBias
[
(C ◦ g⊗k) ◦G

]
≤

√
NoiseStabδ[C] + ε(2)

4A comment is in order about the input lengths for which f ′ is hard. As it turns out, the hardness
of f ′ on inputs of length m is related to the hardness of the original function f on inputs of length
Θ(

√
m). Thus if f is hard for all sufficiently large input lengths, then so is f ′. Alternatively, if f is

hard only infinitely often, then we may still conclude that f ′ is hard infinitely often.
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for a suitably small ε. Actually, we will not show that G fools the expected
bias directly but instead will work with a related quantity (the expected
collision probability), which will still suffice to show inequality (2).

Informally, the effect of the two above requirements on the generator G is that the
hardness of (C ◦ f⊗k) ◦G is roughly the hardness of C ◦ f⊗k, while the input length
is dramatically reduced from nk to l (the seed length of G). More precisely, the
first requirement allows us to relate the hardness of (C ◦ f⊗k) ◦G to the information-
theoretic hardness of (C ◦g⊗k)◦G (where g is a δ-random function); the second allows
us to relate this information-theoretic hardness to the noise stability of the combining
function C. In particular, if we employ the combining function from Lemma 3.8,
we obtain hardness 1/2 − 1/kΩ(1). Thus, by choosing k � l, we bypass the barrier
discussed at the end of the previous section.

Now we briefly describe how the above requirements on G are met. The first
requirement is achieved through a generator that outputs combinatorial designs. This
construction is essentially from Nisan [28] and Nisan and Wigderson [30] and has been
used in many places, e.g., [20, 33].

The second requirement is achieved as follows. We show that if G is pseudorandom
against space-bounded algorithms and the combining function C is computable in
small space (with one-way access to its input), then inequality (2) holds. We then use
Nisan’s unconditional pseudorandom generator against space-bounded algorithms [29],
and show that combining functions with low noise stability can in fact be computed
in small space.5 Note that we use the pseudorandomness of the generator G only to
relate the expected bias with respect to G to a combinatorial property of the combining
function C. In particular, it is not used to fool the circuits trying to compute the
hard function. This is what allows us to use an unconditional generator against a
relatively weak model of computation.

Our final generator, Γ, is the generator obtained by XORing a generator that is
indistinguishability-preserving and a generator that fools the expected bias, yielding
a generator that has both properties. The approach of XORing two generators in this
way appeared in [20] and was subsequently used in [33].

4.2. Using nondeterminism. The derandomization described above gives hard-
ness amplification up to 1/2−1/nc for any constant c. This already improves upon the
best previous result, namely Theorem 3.9. However, to go beyond this new techniques
are required. The problem is that if we want C to be computable in time poly(n), we
must take k = poly(n), and thus we amplify to at most 1/2− 1/k = 1/2− 1/poly(n).

We solve this problem by taking full advantage of the power of NP, namely
nondeterminism. This allows us to use a function C : {0, 1}k → {0, 1} which is
computable in nondeterministic time poly(n, log(k)); thus, the amplified function will
still be in NP for k as large as 2n.

Conversely, in section 7.2 we show that any nonadaptive monotone black-box
hardness amplification that amplifies to hardness 1/2 − 1/nω(1) cannot be computed
in P; i.e., the use of nondeterminism is essential.

We proceed by discussing the details of the derandomization (sections 5.1, 5.2,
and 5.3) and the use of nondeterminism (section 5.4). The results obtained in these
sections are summarized in Table 1. For clarity of exposition, we focus on the case
where the original hard function f is balanced and is 1/3-hard. Hardness amplification

5The same approach also works using the unconditional pseudorandom generator against
constant-depth circuits of [28] and showing that the combining function is computable by a small
constant-depth circuit; however, the space generator gives us slightly better parameters.
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Table 1

Hardness amplification within NP.

Functions : {0, 1}n → {0, 1}

Amplification up to Technique Reference

1/2 − 1/
√
n Direct product [31]

1/2 − 1/nc, for every c Derandomized direct product Theorem 5.8

Derandomized

1/2 − 1/2Ω(
√
n) direct product & Theorem 5.13

nondeterminism

from hardness 1/poly(n) is discussed in section 5.5, and hardness amplification of
unbalanced functions is discussed in section 7.1.

5. Proof of main theorem. In this section we prove our main theorem (i.e.,
Theorem 4.1).

5.1. Preserving indistinguishability. The main result in this subsection is
that if G is pseudorandom in an appropriate sense, then the hardness of (C ◦f⊗k)◦G
is roughly

1/2 − ExpBias
[
(C ◦ g⊗k) ◦G

]
for some δ-random function g. As we noted in the previous section, it will be sufficient
for G to be indistinguishability-preserving. We give the definition of indistinguishabi-
lity-preserving and then our main result.

Definition 5.1. A generator G : {0, 1}l → ({0, 1}n)
k

is said to be indisting-
uishability-preserving for size t if for all (possibly probabilistic) functions f1, . . . , fk,
g1, . . . , gk the following holds: If for every i, 1 ≤ i ≤ k, the distributions

Un · fi(Un) and Un · gi(Un)

are ε-indistinguishable for size s, then

σ · f1(X1) · · · fk(Xk) and σ · g1(X1) · · · gk(Xk)

are kε-indistinguishable for size s − t, where σ is a random seed of length l and
X1 · · ·Xk is the output of G(σ).

The fact that in the above definition we consider k fi’s and k gi’s implies that
an indistinguishability-preserving generator stays indistinguishability-preserving when
XORed with any other generator (cf. the proof of item 1 in Lemma 5.12). We will
use this property in the proof of our main result.

Lemma 5.2. Let f : {0, 1}n → {0, 1} be δ-hard for size s, let G : {0, 1}l →
({0, 1}n)

k
be a generator that is indistinguishability-preserving for size t, and let C :

{0, 1}k → {0, 1} be any function. Then there exists a δ′-random g, with δ/2 ≤ δ′ ≤ δ
such that the function (C ◦ f⊗k) ◦G : {0, 1}l → {0, 1} has hardness

1

2
−

ExpBias
[
(C ◦ g⊗k) ◦G

]
2

− k

s1/3
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for circuits of size Ω(s1/3/ log(1/δ))− t− size(C), where size(C) denotes the size of a
smallest circuit computing C.

Proof. By Lemma 3.2, there exists a δ′-random function g with δ/2 ≤ δ′ ≤ δ such
that Un · f(Un) and Un · g(Un) are ε-indistinguishable for size Ω(sε2/ log(1/δ)). Since
G is indistinguishability-preserving for size t by assumption, this implies that

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2/ log(1/δ))− t, where here and below σ denotes
a uniform random seed in {0, 1}l and X1 · · ·Xk will denote the output of G(σ). This
in turn implies that

σ · C(f(X1) · · · f(Xk)) and σ · C(g(X1) · · · g(Xk))

(i.e., σ · (C ◦ f⊗k) ◦ G(σ) and σ · (C ◦ g⊗k) ◦ G(σ)) are kε-indistinguishable for size
Ω(sε2/ log(1/δ)) − t− size(C). By Lemma 3.4,

σ · (C ◦ g⊗k) ◦G and σ · U1

are (ExpBias[(C ◦g⊗k)◦G]/2)-indistinguishable for any size. Therefore, we have that

σ · (C ◦ f⊗k) ◦G and σ · U1

are (ExpBias[(C ◦ g⊗k) ◦ G]/2 + kε)-indistinguishable for size Ω(sε2/ log(1/δ)) − t −
size(C). The result follows by setting ε = 1/s1/3 and applying Lemma 2.3.

In particular, we note that the identity generator G : {0, 1}nk → ({0, 1}n)
k
, i.e.,

G(x) = x, is indistinguishability-preserving for size 0 (by a hybrid argument, see,
e.g., [13]), and thus Lemma 3.5 is a corollary of Lemma 5.2. However, the identity
generator has seed length nk and is therefore a very poor pseudorandom generator.
Fortunately, there are indistinguishability-preserving pseudorandom generators with
much shorter seeds which will allow us to use Lemma 5.2 to obtain much stronger
hardness amplifications.

Lemma 5.3. There is a constant c such that for every n ≥ 2 and every k = k(n)

there is an explicitly computable generator NW k : {0, 1}l → ({0, 1}n)
k

with seed length
l = c · n2 that is indistinguishability-preserving for size k2.

Proof. The generator is the main component of the generator by Nisan [28] and
Nisan and Wigderson [30] and is based on combinatorial designs. Specifically, we
let S1, . . . , Sk ⊆ [l] be an explicit family of sets such that |Si| = n for all i, and
|Si ∩ Sj | ≤ log k for all i �= j. Nisan [28] gives an explicit construction of such sets
with l = O(n2). Then the generator NW k : {0, 1}l → ({0, 1}n)k is defined by

NW k(σ) := (σ|S1
, . . . , σ|Sk

),

where σ|Si ∈ {0, 1}n denotes the projection of σ onto the coordinates indexed by the
set Si.

The proof that this generator is indistinguishability-preserving for size k2 follows
the arguments in [30, 33]. For completeness, we sketch the proof here. Suppose that
we have a circuit C of size s−k2 distinguishing the distributions σ·f1(σ|S1) · · · fk(σ|Sk

)
and σ · g1(σ|S1) · · · gk(σ|Sk

) with advantage greater than k · ε. For i = 0, . . . , k, let Hi

be the hybrid distribution

Hi = σ · g1(σ|S1) · · · gi(σ|Si) · fi+1(σ|Si+1) · · · fk(σ|Sk
).
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Then there must exist an i ∈ {0, . . . , k} such that C distinguishes Hi from Hi+1 with
advantage greater than ε. The only difference between Hi and Hi+1 is that Hi has the
component fi+1(σ|Si+1), while Hi+1 has gi+1(σ|Si+1). By averaging, we may fix all
the bits of σ outside of Si+1 (as well as the randomness of fj , gj for j �= i + 1 if they
are probabilistic functions) while preserving the advantage of C. Thus C distinguishes
between two distributions of the form

τ · h1(τ)h2(τ) · · ·hi(τ)fi+1(τ)hi+2(τ) · · ·hk(τ)

and

τ · h1(τ)h2(τ) · · ·hi(τ)gi+1(τ)hi+2(τ) · · ·hk(τ),

where τ is uniform in {0, 1}n and each hj is a function of at most |Sj ∩ Si+1| bits of
τ . Then each hj can be computed by a circuit of size smaller than 2|Sj∩Si+1| ≤ k.
Combining these k− 1 circuits with C, we get a distinguisher between τ · fi+1(τ) and
τ · gi+1(τ) of size |C| + (k − 1) · k < s and advantage greater than ε.

5.2. Fooling the expected bias. In this subsection we prove a derandomized
version of Lemma 3.7. Informally, we show that if C is computable in a restricted
model of computation and G “fools” that restricted model of computation, then for
any δ-random function g,

ExpBias
[
(C ◦ g⊗k) ◦G

]
≤

√
NoiseStabδ[C] + ε.

The restricted model of computation we consider is that of nonuniform space-
bounded algorithms that make one pass through the input, reading it in blocks of
length n. These are formally modeled by the following kind of branching programs.

Definition 5.4. A (probabilistic, read-once, oblivious) branching program of size
s with block-size n is a finite state machine with s states, over the alphabet {0, 1}n
(with a fixed start state and an arbitrary number of accepting states). Each edge is
labeled with a symbol in {0, 1}n. For every state a and symbol α ∈ {0, 1}n, the edges
leaving a and labeled with α are assigned a probability distribution. Then computation
proceeds as follows. The input is read sequentially, one block of n bits at a time. If
the machine is in state a and it reads α, then it chooses an edge leaving a and labeled
with α according to its probability, and moves along it.

Now we formally define pseudorandom generators against branching programs.
Definition 5.5. A generator G : {0, 1}l → ({0, 1}n)

k
is ε-pseudorandom against

branching programs of size s and block-size n if for every branching program B of size
s and block-size n: ∣∣Pr[B(G(Ul)) = 1] − Pr[B(Unk) = 1]

∣∣ ≤ ε.

In [29], Nisan builds an unconditional pseudorandom generator against branching
programs. Its parameters (specialized for our purposes) are given in the following
theorem.

Theorem 5.6 (see [29]). For every n and k ≤ 2n, there exists a generator

Nk : {0, 1}l → ({0, 1}n)
k

such that
• Nk is 2−n-pseudorandom against branching programs of size 2n and block-size

n,
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• Nk has seed length l = O(n log k),
• Nk is explicitly computable.

Note that Nisan [29] does not mention probabilistic branching programs. However,
if there is a probabilistic branching program distinguishing the output of the generator
from uniform, then by a fixing of the coin tosses of the branching program there is a
determinisitic branching program that distinguishes the output of the generator from
uniform.

We now state the derandomized version of Lemma 3.7.
Lemma 5.7. Let
1. g : {0, 1}n → {0, 1} be a δ-random function,
2. C : {0, 1}k → {0, 1} be computable by a branching program of size t and

block-size 1,
3. G : {0, 1}l → ({0, 1}n)

k
be ε/2-pseudorandom against branching programs of

size t2 and block-size n.
Then ExpBias[(C ◦ g⊗k) ◦G] ≤

√
NoiseStabδ[C] + ε.

Proof. We will not show that G fools the expected bias, but rather the following
related quantity. For a probabilistic Boolean function h(x; r) we define its (normal-
ized) expected collision probability as

ExpCP[h]
def
= E

x

[
2 · Pr

r,r′
[h(x; r) = h(x; r′)] − 1

]
.

The same reasoning that proves Lemma 3.7 also shows that for every probabilistic
Boolean function h,

ExpBias [h] ≤
√

ExpCP[h].(3)

More specifically, inequality (3) holds because

ExpBias [h] = E
x←Un

[
Bias [h(x)]

]
≤

√
E

x←Un

[
Bias [h(x)]

2 ]
(by Cauchy–Schwarz)

=
√

ExpCP[h].

Let h(x; r) : ({0, 1}n)
k → {0, 1} be the probabilistic function C ◦ g⊗k. Even

though h is defined in terms of g, it turns out that its expected collision probability
is the same for all δ-random functions g. Specifically, for x = (x1, . . . , xk), the only
dependence of the collision probability Prr,r′ [h(x; r) = h(x; r′)] on xi comes from
whether g(xi) is a coin flip (which occurs with probability δ over the choice of xi),
g(xi) = 1 (which occurs with probability (1 − δ)/2), or g(xi) = 0 (which occurs with
probability (1 − δ)/2). In the case where g(xi) is a coin flip, then the ith bits of
the two inputs fed to C (i.e., g(xi; r) and g(xi; r

′)) are random and independent, and
otherwise they are equal and fixed (according to g(xi)). It can be verified that this
corresponds precisely to the definition of noise stability, so that we have

ExpCP[h] = NoiseStabδ[C].(4)

Now we construct a probabilistic branching program M : ({0, 1}n)
k → {0, 1} of

size t2 and block-size n such that for every x ∈ ({0, 1}n)
k
:

Pr[M(x) = 1] = Pr
r,r′

[h(x; r) = h(x; r′)].
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To do this, we first note that, using the branching program for C, we can build a
probabilistic branching program of size t with block-size n which computes C ◦ g⊗k:
The states of the branching program are the same as those of the branching program
for C, and we define the transitions as follows. Upon reading symbol α ∈ {0, 1}n in
state s, if g(α) = 0 (resp. g(α) = 1), we deterministically go to the state given by the
0-transition (resp., 1-transition) of C from state s, and if g(α) is a coin flip, then we
put equal probability on these two transitions.

Then, to obtain M , run two independent copies of this branching program (i.e.,
using independent choices for the probabilistic state transitions) and accept if and
only if both of them accept or both of them reject. Now,∣∣ExpCP[(C ◦ g⊗k) ◦G] − NoiseStabδ[C]

∣∣
=

∣∣ExpCP[(C ◦ g⊗k) ◦G] − ExpCP[C ◦ g⊗k]
∣∣ (by (4))

= 2 ·
∣∣Pr[M ◦G(Ul) = 1] − Pr[M(Un·k) = 1]

∣∣
≤ ε. (by pseudorandomness of G)

The lemma follows, combining this with (3).

5.3. Amplification up to 1/2 − 1/ poly. In this subsection we sketch our
hardness amplification up to 1/2 − 1/nc, for every c, as follows.

Theorem 5.8. If there is a balanced function f : {0, 1}n → {0, 1} in NP
that is (1/3)-hard for size s(n) ≥ nω(1), then for every c > 0 there is a function
f ′ : {0, 1}m → {0, 1} in NP that is (1/2 − 1/mc)-hard for size (s(

√
m))Ω(1).

To amplify we use the Tribes function of Ben-Or and Linial [5], a monotone
read-once DNF.

Definition 5.9. The Tribes function on k bits is

Tribesk(x1, . . . , xk)
def
=

(x1 ∧ · · · ∧ xb) ∨ (xb+1 ∧ · · · ∧ x2b) ∨ · · · ∨ (xk−b+1 ∧ · · · ∧ xk)

where there are k/b clauses each of size b, and b is the largest integer such that
(1 − 2−b)k/b ≥ 1/2. Note that this makes b = O(log k).

The Tribes DNF has very low noise stability when perturbed with constant noise.
Lemma 5.10 (see [31, 27]). For every constant δ > 0,

NoiseStabδ[Tribesk] ≤
1

kΩ(1)
.

A key step in our result is that Tribesk is easily computable by a branching
program of size O(k), and therefore we can use Lemma 5.7 to fool its expected bias.

We now define the generator that we will use in our derandomized direct product
construction.

Definition 5.11. Given n and k ≤ 2n, define the generator Γk : {0, 1}m →
({0, 1}n)k as follows:

Γk(x, y)
def
= NW k(x) ⊕Nk(y),

where ⊕ denotes bitwise XOR.
We recall the properties of Γ that we are interested in, as follows.
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Lemma 5.12. The following hold:
1. Γk is indistinguishability-preserving for size k2.
2. Γk is 2−n-pseudorandom against branching programs of size 2n and block-size

n.
3. Γk has seed length m = O(n2).
4. Γk is explicitly computable (see Definition 4.2 for the definition of explicit).

Proof. . Item 1 follows from Lemma 5.3 and the fact that an indistinguisha-
bility-preserving generator XORed with any fixed string is still indistinguishability-
preserving. More specifically, suppose, for the sake of contradiction, that Γk(x, y) =
NW k(x) ⊕ Nk(y) is not indistinguishability-preserving. Then there are functions
f1, . . . , fk and g1, . . . , gk such that for every i the distributions Un · fi(Un) and Un ·
gi(Un) are indistinguishable, yet the distributions

(x, y) · f1(NW 1(x) ⊕N1(y)) · · · fk(NW k(x) ⊕Nk(y))

and

(x, y) · g1(NW 1(x) ⊕N1(y)) · · · gk(NW k(x) ⊕Nk(y))

are distinguishable (for random x, y). Then, by averaging, they are distinguishable
for some fixed value of y = ỹ. Thus, we obtain that

x · f ′
1(NW 1(x)) · · · f ′

k(NW k(x))

and

x · g′1(NW 1(x)) · · · g′k(NW k(x))

are distinguishable (for random x), where f ′
i(z) = fi(z ⊕ Ni(ỹ)), g′i(z) = gi(z ⊕

Ni(ỹ)). (Note that we hardwire the fixed part of the seed ỹ in the distinguisher.)
Now observe that the indistinguishability of Un · fi(Un) and Un · gi(Un) implies the
indistinguishability of Un · f ′

i(Un) and Un · g′i(Un), because the mapping T (u · v) =
(u ⊕ Ni(ỹ)) · v transforms the latter pair of distributions to the former. (There is
no loss in the circuit size, assuming that circuits have input gates for both the input
variables and their negations.) But this is a contradiction because NW is indisting-
uishability-preserving.

Item 2 follows from Theorem 5.6 and the fact that XORing with any fixed string
(in particular, NW k(x) for any x) preserves pseudorandomness against branching
programs.

Item 3 is an immediate consequence of the seed lengths of NW k (Lemma 5.3)
and Nk (Theorem 5.6).

Item 4 follows from the facts that NW k is explicit (Lemma 5.3) and Nk is explicit
(Theorem 5.6).

Proof of Theorem 5.8. Given f : {0, 1}n → {0, 1} that is δ-hard for size s(n) (for
δ = 1/3) and a constant c, let k = nc′ for c′ = O(c) to be determined later. Consider
the function f ′ : {0, 1}m → {0, 1} defined by

f ′ def
= (Tribesk ◦f⊗k) ◦ Γk.

Note that f ′ ∈ NP since f ∈ NP, Tribes is monotone, and both Γ and Tribes are
efficiently computable.
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We now analyze the hardness of f ′. Since Γk is indistinguishability-preserving for
size k2 by Lemma 5.12, Lemma 5.2 implies that there is a δ′-random function g (for
δ/2 ≤ δ′ ≤ δ) such that f ′ has hardness

1

2
−

ExpBias
[
(Tribesk ◦g⊗k) ◦ Γk

]
2

− k

s(n)1/3
(5)

for circuits of size Ω(s(n)1/3) − k2 − size(Tribesk). Next we bound the hardness.
By Lemma 5.12, we know that Γk is 2−n-pseudorandom against branching pro-
grams of size 2n and block-size n. In particular, since k = poly(n), Γk is 1/k-
pseudorandom against branching programs of size 9k and block-size n. Since, as
we noted before, Tribesk is easily computable by a branching program of size O(k),
we can apply Lemma 5.7 (noting that O(k)2 = poly(n) � 2n) in order to bound
ExpBias

[
(Tribesk ◦g⊗k) ◦ Γk

]
by

√
NoiseStabδ′ [Tribesk] + 2/k. And the noise stabil-

ity inside the square root is at most 1/kΩ(1) by Lemma 5.10. Since k = poly(n) and
s(n) = nω(1), the k/s1/3 term in the hardness (5) is negligible, and we obtain hardness
at least 1/2 − 1/kΩ(1).

We now bound the circuit size: Since Tribesk is computable by circuits of size
O(k), and since s(n) = nω(1), the size is at least s(n)Ω(1).

Now note that f ′ has input length m = m(n) = O(n2) by Lemma 5.12. Strictly
speaking, we have defined f ′ only for certain input lengths; however, it is easy to

extend the function to every input length simply by defining f ′(x)
def
= f ′(x′), where x′

consists of the first m(n) bits of x and n is the largest integer such that m(n) ≤ |x|. It
is easy to check that f ′ still has hardness 1/2 − 1/kΩ(1) = 1/2 − 1/nΩ(c′). The result
then follows by an appropriate choice of c′ = O(c).

5.4. Using nondeterminism. In this subsection we discuss how to use nonde-
terminism to get the following theorem.

Theorem 5.13. If there is a balanced function f : {0, 1}n → {0, 1} in NP that
is (1/3)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1} in NP that
is (1/2 − 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Our main observation is that Tribesk is a DNF with clause size O(log k), and
therefore it is computable in nondeterministic time poly(n) even when k is superpoly-
nomial in n.

Lemma 5.14. Let f : {0, 1}n → {0, 1} be in NP, and let Gk : {0, 1}l → ({0, 1}n)
k

be any explicitly computable generator (see Definition 4.2) with l ≥ n. Then the

function f ′ def
= (Tribesk ◦f⊗k) ◦Gk is computable in NP for every k = k(n) ≤ 2n.

Proof. We compute f ′(σ) nondeterministically as follows. Guess a clause vi ∧
vi+1 ∧ · · · ∧ vj in Tribesk. Accept if for every h such that i ≤ h ≤ j we have
f(Xh) = 1, where G(σ) = (X1, . . . , Xk) and the values f(Xh) are computed using the
NP algorithm for f .

It can be verified that this algorithm has an accepting computation path on input
σ iff f ′(σ) = 1. Note that the clauses have size logarithmic in k, which is polynomial
in n. Moreover, G is explicitly computable. The result follows.

Now the proof of Theorem 5.13 proceeds along the same lines as the proof of

Theorem 5.8, setting k
def
= s(n)Ω(1).

5.5. Amplifying from hardness 1/ poly. Our amplification from hardness
Ω(1) to 1/2 − ε (Theorem 5.8) can be combined with O’Donnell’s amplification from
hardness 1/poly to hardness Ω(1) to obtain an amplification from 1/poly to 1/2− ε.
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However, since O’Donnell’s construction blows up the input length polynomially, we
would obtain only ε = 1/s(nΩ(1)) (where the hidden constant depends on the initial
polynomial hardness) rather than ε = 1/s(

√
n)Ω(1) (as in Theorem 5.8). Thus we

show here how to amplify directly from 1/poly to 1/2 − ε using our approach. For
this we need a combining function C that is more involved than the Tribes function.
The properties of C that are needed in the proof of Theorem 4.1 are captured by the
following lemma.

Lemma 5.15. For every δ(n) = 1/nO(1), there is a sequence of functions Ck :
{0, 1}k → {0, 1} such that for every k = k(n) with nω(1) ≤ k ≤ 2n the following hold:

1. NoiseStabδ[Ck] ≤ 1/kΩ(1).
2. For every f : {0, 1}n → {0, 1} in NP and every explicitly computable gener-

ator (see Definition 4.2) Gk : {0, 1}l → ({0, 1}n)
k

with l ≥ n, the function
(Ck ◦ f⊗k) ◦Gk is in NP.

3. Ck can be computed by a branching program of size poly(n) · k and also by a
circuit of size poly(n) · k.

Before proving Lemma 5.15, let us see how it can be used to prove our main
theorem.

Theorem 5.16 (Theorem 4.1, restated). If there is a balanced function f :
{0, 1}n → {0, 1} in NP that is 1/poly(n)-hard for size s(n), then there is a function
f ′ : {0, 1}m → {0, 1} in NP that is (1/2 − 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Proof. Let f : {0, 1}n → {0, 1} be a balanced function in NP that is δ = δ(n)-

hard for size s(n), where δ ≥ 1/nO(1). Let k = k(n)
def
= s(n)1/7, and let Ck be the

function guaranteed by Lemma 5.15. Let Γk be the the generator from Definition 5.11.

Consider the function f ′ : {0, 1}m → {0, 1} defined by f ′ def
= (Ck ◦ f⊗k) ◦ Γk. Note

that f ′ ∈ NP, by item 2 in Lemma 5.15.
We now analyze the hardness of f ′. Since Γk is indistinguishability-preserving for

size k2 (by Lemma 5.12), Lemma 5.2 implies that there is a δ′-random function g (for
δ/2 ≤ δ′ ≤ δ) such that f ′ has hardness

α(m) =
1

2
−

ExpBias
[
(Ck ◦ g⊗k) ◦ Γk

]
2

− k

s(n)1/3
(6)

for circuits of size

s′(m) = Ω

(
s(n)1/3

log(1/δ)

)
− k2 − size(Ck).

We first bound the hardness α(m). By Lemma 5.12, we know that Γk is 2−n-
pseudorandom against branching programs of size 2n and block-size n. Since the
branching program for computing Ck has size poly(n) · k, and (poly(n) · k)2 � 2n (by
our choice of k(n)), we may apply Lemma 5.7 in order to bound ExpBias[(Ck◦g⊗k)◦Γk]
by

√
NoiseStabδ′ [Ck] + 2/2n. This noise stability is at most 1/kΩ(1) by item 1 in

Lemma 5.15. Using the fact that k = s(n)1/7, we have

α(m) ≥ 1

2
−

√
1/kΩ(1) − 2/2n

2
− k

s(n)1/3
=

1

2
− 1

s(n)Ω(1)
.

We now bound the circuit size s′(m). Since Ck is computable by a circuit of size
poly(n) · k (by item 3 in Lemma 5.15) and log(1/δ) = O(log n) and s(n) = nω(1), we
have

s′(m) = Ω

(
s(n)1/3

log n

)
− s(n)2/7 − poly(n) = s(n)Ω(1).
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To conclude, we note that f ′ has input length m = O(n2) by Lemma 5.12, so s(n) =
s(Ω(

√
m)) = s(

√
m)Ω(1), and we indeed obtain hardness α(m) = 1/2 − 1/s(

√
m)Ω(1)

for size s′(m) = s(
√
m)Ω(1). Strictly speaking, we have defined f ′ only for certain

input lengths; however, it is easy to extend the function to every input length; cf. the
end of the proof of Theorem 5.8.

The rest of this subsection is devoted to the proof of Lemma 5.15. Recall that
amplification from hardness Ω(1) (Theorem 5.8) relies on the fact that the Tribes
DNF has low noise stability with respect to noise parameter δ = Ω(1) (i.e., Lemma
5.10). Similarly, to amplify from hardness 1/poly(n) we need to employ a combining
function that has low noise stability with respect to noise 1/poly(n). To this end,
following [31], we employ the recursive-majorities function, RMajr. Let Maj denote
the majority function.

Definition 5.17. The RMajr function on 3r bits is defined recursively by

RMaj1(x1, x2, x3)
def
= Maj(x1, x2, x3),

RMajr(x1, . . . , x3r )
def
= RMajr−1

(
Maj(x1, x2, x3), . . . ,Maj(x3r−2, x3r−1, x3r )

)
.

The following lemma quantifies the noise stability of RMajr.
Lemma 5.18 (see [31, Proposition 11]). There is a constant c such that for every

δ > 0 and every r ≥ c · log(1/δ) we have

NoiseStabδ[RMajr] ≤
1

4
.

Note that if r = O(log n), then RMajr is a function of 3r = poly(n) bits.
However, when r = O(log n), RMajr does not have sufficiently low noise stability

to be used on its own. For this reason, we will combine RMaj with Tribes. (The same
combination of RMaj and Tribes is employed by O’Donnell [31], albeit for a different
setting of parameters.)

Proof of Lemma 5.15. Given n and δ = δ(n) ≥ 1/nO(1), let r
def
= c · log(1/δ) for

a constant c to be chosen later. Assume, without loss of generality, that r and k/3r

are integers. The function Ck : {0, 1}k → {0, 1} is defined as

Ck
def
= Tribesk/3r ◦RMaj⊗k/3r

r .

We now prove that Ck satisfies the required properties.
Item 1. We will use the following result from [31].
Lemma 5.19 (see [31, Proposition 8]). If h is a balanced Boolean function and

ϕ : {0, 1}� → {0, 1} is any Boolean function, then

NoiseStabδ[ϕ ◦ h⊗�] = NoiseStab 1
2−

NoiseStabδ [h]

2

[ϕ].

Letting c be a sufficiently large constant (recall that r = c · log(1/δ)), by Lemma
5.18 we have that NoiseStabδ[RMajr]/2 ≥ 1/2 − 1/8 ≥ 3/8. Now note that RMajr is
balanced because taking the bitwise complement of an input x also negates the value
of RMajr(x). Hence, by Lemma 5.19,

NoiseStabδ[Tribesk/3r ◦RMaj⊗k/3r

r ] = NoiseStab3/8[Tribesk/3r ]

≤ 1

(k/3r)Ω(1)
=

1

kΩ(1)
,

where the last two equalities use Lemma 5.10 and the fact that k = nω(1) and r =
O(log n).



922 ALEXANDER HEALY, SALIL VADHAN, AND EMANUELE VIOLA

The proof of item 2 is similar to the proof of Lemma 5.14. To compute
(Tribesk/3r ◦RMaj⊗k/3r

r ◦f⊗k) ◦ Gk, we guess a clause of the Tribesk/3r and verify
that all the RMajr evaluations feeding into it are satisfied (using the NP algorithm
for f). The only additional observation is that each of the recursive majorities de-
pends on only 3r = poly(n) bits of the input and hence can be computed in time
polynomial in n.

Item 3. As noted earlier, Tribesk/3r is easily computable by a branching program
of size O(k). RMajr, on the other hand, can be computed by a branching program
of size poly(n). Indeed, Maj(x1, x2, x3) is clearly computable by a branching pro-
gram of constant size c, and therefore RMajr = RMajr−1(Maj(x1, x2, x3), . . . ,
Maj(x3r−2, x3r−1, x3r )) can be computed by a branching program whose size is at
most c times the size of RMajr−1. By induction it follows that RMajr can be com-
puted in size cr = poly(n).

By composing the branching program of size O(k) for Tribes with the branching
program of size poly(n) for RMaj, we can compute Ck by a branching program of size
poly(n) · k.

A natural question is whether one can amplify from hardness 1/nω(1). A mod-
ification of the [37] negative result about hardness amplification given in [26] shows
that this task cannot be achieved by any black-box hardness amplification computable
in the polynomial-time hierarchy (and thus in particular cannot be achieved by any
black-box hardness amplification computable in NP). (See Definition 7.2 for the
definition of black-box hardness amplification.)

6. Extensions.

6.1. On the possibility of amplifying hardness up to 1/2−1/2Ω(n). Even
when starting from a function that is δ-hard for size 2Ω(n), our results (Theorem 4.1)
amplify hardness only up to 1/2 − 1/2Ω(

√
n) (rather than 1/2 − 1/2Ω(n)). In this

section we discuss the possibility of amplifying hardness in NP up to 1/2 − 1/2Ω(n)

when starting with a function that is δ-hard for size 2Ω(n). The problem is that the
seed length of our generator in Lemma 5.12 is quadratic in n, rather than linear. To
amplify hardness up 1/2−1/2Ω(n) we need a generator (for every k = 2Ω(n)) with the
same properties of the one in Lemma 5.12, but with linear seed length.

Recall that our generator is the XOR of an indistinguishability-preserving gener-
ator and a generator that is pseudorandom against branching programs. While it is
an open problem to exhibit a generator with linear seed length that is pseudorandom
against branching programs, an indistinguishability-preserving generator with linear
seed length is given by the following lemma.

Lemma 6.1. For every constant γ, 0 < γ < 1, there is a constant c such that for

every n there is an explicitly computable generator NW ′
2n/c : {0, 1}l → ({0, 1}n)

2n/c

with seed length l = c · n that is indistinguishability-preserving for size 2γ·n.

The generator is due to Nisan and Wigderson [30] and Impagliazzo and Wigder-
son [20]. The approach is the same as for the generator used in Lemma 5.3, except
we now require a design consisting of 2Ω(n) sets of size n in a universe of size O(n),
with pairwise intersections of size at most γn/2. An explicit construction of such a
design is given in [16].6

6Alternatively, we can use the randomized algorithm described in [20], which computes such sets
S1, . . . , SM with probability exponentially close to 1 using O(n) random bits. This is sufficient for
constructing an indistinguishability-preserving generator.
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Theorem 6.2. Suppose that there exists an explicit generator N ′
2n : {0, 1}l →

({0, 1}n)
2n

that is 2−n-pseudorandom against branching programs of size 2n and block-
size n and that has seed length l = O(n). Then the following holds: If there is a
balanced function f : {0, 1}n → {0, 1} in NP that is 1/poly(n)-hard for size 2Ω(n),
then there is a function f ′ : {0, 1}m → {0, 1} in NP that is (1/2 − 1/2Ω(n))-hard for
size 2Ω(n).

A slightly more careful analysis shows that all the branching programs considered
in our constructions have width7 much smaller than their size (specifically, the branch-
ing program for Tribes has constant width, and the one for the function in Lemma
5.15, i.e., Tribes composed with RMaj, has width poly(n) independent of k). Thus to
prove the conclusion in the statement of Theorem 6.2 it would suffice to exhibit an
explicit pseudorandom generator that fools such restricted branching programs.

For amplifying from constant hardness, it suffices instead to have a generator
fooling constant-depth circuits of size 2n with seed length O(n). (The generator
of Nisan [28] has seed length poly(n).) The reason is that our proof that genera-
tors against branching programs “fool” the expected bias also works for generators
against constant-depth circuits, provided that the combining function is computable
in constant depth. The Tribes function is depth 2 by definition (but the recursive ma-
jorities RMaj is not constant-depth, and hence this would only amplify from constant
hardness).

More generally, we only need, for every constant γ > 0, a generator G :
{0, 1}O(n) → ({0, 1}n)k, where k = 2γn, such that for every δ-random function g,

ExpBias
[
(Ck ◦ g⊗k) ◦G

]
= 2−Ω(n),

where, for example, Ck = Tribesk (when δ is constant). As in the proof of Lemma 3.7,
in proving such a statement it may be convenient to work instead with the (polyno-
mially related) expected collision probability. An important property of Ck = Tribesk
used in bounding the expected bias with respect to G is that it gives expected bias
2−Ω(n) if G is replaced with a truly random generator (i.e., using seed length n ·k) and
δ is constant. One might try to use a different monotone combining function with this
property, provided that it can also be evaluated in nondeterministic time poly(n).

6.2. Impagliazzo and Wigderson’s hardness amplification. Our frame-
work gives a new proof of the hardness amplification by Impagliazzo and Wigder-

son [20]. Impagliazzo and Wigderson showed that if E def
= DTIME (2O(n)) contains a

function f : {0, 1}n → {0, 1} that requires (in the worst-case) circuits of size 2Ω(n),
then E contains a function f ′ that is (1/2 − 1/2Ω(n))-hard for circuits of size 2Ω(n).
The main contribution in [20] is amplification from constant hardness, e.g., 1/3, to
(1/2 − 1/2Ω(n)) (amplification from worst-case hardness and constant hardness was
essentially already established in [3, 18]). The improvement over the standard Yao
XOR lemma is that the input length of the amplified function increases by only a
constant factor. In this section, we sketch a simple proof of this result using the frame-
work developed in earlier sections. While other, more recent hardness amplifications
achieving the same result for E are known [33, 32, 36], the original one by Impagliazzo
and Wigderson is still interesting because it can be implemented in “low” complexity
classes, such as the polynomial-time hierarchy, while the others cannot (due to the
fact that they actually amplify from worst-case hardness [37]).

7The width of a branching program is the maximum, over i, of the number of states that are
reachable after reading i symbols.



924 ALEXANDER HEALY, SALIL VADHAN, AND EMANUELE VIOLA

The construction of [20] uses an expander-walk generator Wk : {0, 1}l → ({0, 1}n)
k
,

which uses its seed of length l = n+O(k) to do a random walk of length k (started at a
random vertex) in a constant-degree expander graph on 2n vertices. More background
on such generators can be found in [12, section 3.6.3]. The construction of [20] XORs
the expander-walk generator with the (first k outputs of the) indistinguishability-
preserving generator from Lemma 6.1, as follows.

Definition 6.3. Let k = c · n for a constant c > 1. Let NW ′′
k : {0, 1}O(n) →

({0, 1}n)
k

be a generator that is indistinguishability-preserving for size 2n/c, as given

by Lemma 6.1. The generator IW k : {0, 1}l → ({0, 1}n)
k

is defined as

IW k(x, y)
def
= NW ′′

k(x) ⊕Wk(y).

The seed length of IW k is l = O(n).

Given a function f that is 1/3-hard for size s = 2Ω(n), the Impagliazzo–Wigderson
amplification defines

f ′ def
= (XOR ◦ f⊗k) ◦ IW k : {0, 1}O(n) → {0, 1},

where k = c ·n for a constant c that depends on the hidden constant in the s = 2Ω(n).
They prove the following about this construction.

Theorem 6.4 (after [20]). If there is a function f : {0, 1}n → {0, 1} in E that
is 1/3-hard for size 2Ω(n), then there is a function f ′ : {0, 1}m → {0, 1} in E that is
(1/2 − 2−Ω(m))-hard for size 2Ω(m).

Proof. By Theorem 5.2 there exists a δ′-random function g : {0, 1}n → {0, 1},
where δ′ is a constant, such that the hardness of f ′ : {0, 1}O(n) → {0, 1} is 1/2 −
ExpBias[(XOR ◦ g⊗k) ◦ IW k] − 2−Ω(n) for circuits of size 2Ω(n).

We now bound the hardness. Whenever some IW i(x) falls in the set of inputs of
density 2 · δ′, where the output of g is a coin flip, the bias of (XOR ◦ g⊗k) ◦ IW k is 0.
Therefore

ExpBias
[
(XOR ◦ g⊗k) ◦ IW k

]
≤ Pr

x
[∀i : IW i(x) �∈ H] ≤ 2−Ω(n),

where in the last inequality we use standard hitting properties of expander walks (see,
e.g., [11] for a proof) and take c to be a sufficiently large constant.

7. Limitations of monotone hardness amplification.

7.1. On the hypothesis that f is balanced. The hardness amplification
results in the previous sections start from balanced functions. In this section we
study this hypothesis. Our main finding is that, while this hypothesis is not necessary
for hardness amplification within NP/poly (i.e., nondeterministic polynomial size
circuits), it is likely to be necessary for hardness amplification within NP.

To see that this hypothesis is not necessary for amplification within NP/poly,
note that if the quantity Prx[f(x) = 1] of the original hard function f : {0, 1}n →
{0, 1} is known, then we can easily pad f to obtain a balanced function f̄ : {0, 1}n+1 →
{0, 1}:

f̄(x, p)
def
=

⎧⎨
⎩

f(x) if p = 0,
0 if p = 1 and x ≤ Prx[f(x) = 1] · 2n,
1 if p = 1 and x > Prx[f(x) = 1] · 2n.
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It is easy to see that f̄ is 1/poly(n)-hard if f is. Since a circuit can (nonuniformly)
depend on Prx[f(x) = 1], the following hardness amplification within NP/poly is a
corollary to the proof of Theorem 4.1.

Corollary 7.1. If there is a function f : {0, 1}n → {0, 1} in NP/poly that
is 1/poly(n)-hard for size s(n), then there is a function f ′ : {0, 1}m → {0, 1} in
NP/poly that is (1/2 − 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

Now we return to hardness amplification within NP. First we note that, in our
results, to amplify the hardness of f : {0, 1}n → {0, 1} up to 1/2 − ε it is necessary
only that Bias [f ] ≤ εc for some universal constant c. The argument is standard and
can be found, for example, in [34].

Combining this observation with the above padding technique, O’Donnell con-
structs several candidate hard functions, one for each “guess” of the bias of the orig-
inal hard function. He then combines them in a single function using a different
input length for each candidate; this gives a function that is very hard on average
for infinitely many input lengths. However, this approach, even in conjunction with
derandomization and nondeterminism, cannot give better hardness than 1/2 − 1/n.
(Roughly speaking, if we want to amplify to 1/2 − ε, then we will have at least 1/ε
different candidates, and thus the “hard” candidate may have input length n ≥ 1/ε,
which means 1/2 − ε ≤ 1/2 − 1/n.)

To what extent can we amplify the hardness of functions whose bias is unknown?
Nonmonotone hardness amplifications, such as Yao’s XOR lemma, work regardless of
the bias of the original hard function. However, in the rest of this section we show that,
for hardness amplifications that are monotone and black-box, this is impossible. In
particular, we show that black-box monotone hardness amplifications cannot amplify
the hardness beyond the bias of the original function.

We now formalize the notion of black-box monotone hardness amplification and
then state our negative result.

Definition 7.2. An oracle algorithm Amp : {0, 1}l → {0, 1} is a black-box
β-bias [δ �→ (1/2 − ε)]-hardness amplification for length n and size s if for every
f : {0, 1}n → {0, 1} such that Bias [f ] ≤ β and for every A : {0, 1}l → {0, 1} such that

Pr[A(Ul) �= Ampf (Ul)] ≤
1

2
− ε

there is an oracle circuit C of size at most s such that

Pr[CA(Un) �= f(Un)] ≤ δ.

Amp is monotone if, for every x, Ampf (x) is a monotone function of the truth
table of f .

Note that if Amp is as in Definition 7.2, and if f is δ-hard for size s′ and Bias [f ] ≤
β, then Ampf is (1/2 − ε)-hard for size s′/s: If there were a circuit A of size s′/s
computing Ampf with error probability at most 1/2 − ε, then CA would be a circuit
of size s · (s′/s) = s′ computing f with error probability at most δ, contradicting the
hardness of f . The term “black box” refers to the fact that the definition requires this
to hold for every f and A, regardless of whether f is in NP or A is a small circuit.

The following theorem shows that any monotone black-box hardness amplification
up to 1/2 − ε must start from functions of bias β ≈ ε.
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Theorem 7.3. For any constant γ > 0, if Amp is a monotone black-box β-
bias [δ �→ (1/2 − ε)]-hardness amplification for length n and size s ≤ 2n/3 such that
1/2 − 4ε > δ + γ, then β ≤ 8ε + O(2−n).

The main ideas for proving this bound are the same as in the negative result for
black-box hardness amplification in [37]: First we show that the above kind of hardness
amplification satisfies certain coding-like properties. Roughly, Amp can be seen as
a kind of list-decodable code, where the distance property is guaranteed only for δ-
distant messages with bias at most β (cf. [34]). Then we show that monotone functions
fail to satisfy these properties. The limitation we prove on monotone functions relies
on the following corollary to the Kruskal–Katona theorem (see [1, Theorem 7.3.1]).

Lemma 7.4. Let S = {S1, . . . , Sm} be a collection of m subsets Si ⊆ {1, . . . , N},
where |Si| = t. If m ≥

(
N−1

t

)
=

(
1 − t

N

) (
N
t

)
, then for every integer t′ < t

|{S : |S| = t′, S ⊆ Si for some i}| ≥
(
N − 1

t′

)
=

(
1 − t′

N

)(
N

t′

)
.

Let Fp be the uniform distribution on functions f whose truth tables have relative
Hamming weight exactly p, i.e., Prx[f(x) = 1] = p. We use the above Lemma 7.4 to
prove the following fact.

Lemma 7.5. Let A : {0, 1}l → {0, 1} be a an oracle function such that, for
every x ∈ {0, 1}l, Af (x) is a monotone function of the truth table of f : {0, 1}n →
{0, 1}. (For example, any monotone black-box hardness amplification Amp satisfies
this condition.) Let τ be an integer multiple of 1/2n. Then there is p ∈ {1/2−τ, 1/2+
τ} such that

EUl

[
BiasF←Fp [A

F (Ul)]
]
≥ τ.

Proof. We show that for every fixed x ∈ {0, 1}l there is a p ∈ {1/2 − τ, 1/2 + τ}
such that BiasF←Fp

[
AF (x)

]
≥ 2τ. The theorem then follows easily. Fix x. For every

p define Sp as the set of functions f in Fp such that Af (x) = 0. Note that

BiasF←Fp

[
AF (x)

]
=

∣∣∣∣1 − 2|Sp|
|Fp|

∣∣∣∣ .
If |S1/2+τ | < (1/2 − τ) · |F1/2+τ |, then BiasF←F1/2+τ

[
AF (x)

]
> 2τ and we are done.

Otherwise,

|S1/2+τ | ≥
(

1

2
− τ

)
· |F1/2+τ | =

(
1 −

(
1

2
+ τ

))
·
(

2n

(1/2 + τ)2n

)
.

View the elements f ∈ Sp as subsets of {1, . . . , 2n} of size exactly p2n in the natural
way; i.e., the subset associated with f is the set of inputs x such that f(x) = 1.
Note that if f ′ ⊆ f ⊆ {1, . . . , 2n} and Af (x) = 0, then by the monotonicity of A,
Af ′

(x) = 0. Therefore, by Lemma 7.4,

|S1/2−τ | ≥
(

1 −
(

1

2
− τ

))
·
(

2n

(1/2 − τ)2n

)
=

(
1

2
+ τ

)
· |F1/2−τ |,

and so BiasF←F1/2−τ
[AF (x)] ≥ 2τ .

The following lemma captures the coding-like properties of monotone, black-box
hardness amplifications—it shows that it is very unlikely that Ampf for a “random
f” will land in any fixed Hamming ball of radius 1/2− ε. For two functions f1, f2, let
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Dist denote the relative Hamming distance of their truth tables, i.e., Dist(f1, f2)
def
=

Prx[f1(x) �= f2(x)].

Lemma 7.6. Let γ > 0 be any fixed constant. Let Amp be a monotone black-box
8ε-bias [δ �→ (1/2 − ε)]-hardness amplification for length n and size s ≤ 2n/3, where
1/2 − 4ε > δ + γ, and let ε > 0 be an integer multiple of 1/2n. Then for both p in
{1/2 − 4ε, 1/2 + 4ε} and every function G,

Pr
F←Fp

[
Dist(G,AmpF ) ≤ 1

2
− ε

]
≤ 2−Ω(2n).

Proof. Let N
def
= 2n. For every function f of bias at most 8ε such that Dist(G,

Ampf ) ≤ 1/2 − ε, there must exist a circuit of size s, with oracle access to G, that
computes f with error at most δ. Therefore, since there are 2O(s log s) circuits of size
s and no more than 2H(δ)N functions that are at distance at most δ from f , there are
at most 2O(s log s)2H(δ)N such functions. Thus, when we restrict our attention to the(
N
pN

)
functions in Fp (for p ∈ {1/2 − 4ε, 1/2 + 4ε}), we have

Pr
F←Fp

[
Dist(G,AmpF ) ≤ 1

2
− ε

]
≤ 2O(s log s) · 2H(δ)N(

N
pN

)
≤ 2O(s log s) · (N + 1) · 2(H(δ)−H(p))N

≤ 2O(s log s) · (N + 1) · 2(H(δ)−H(1/2−4ε))N

≤ 2−Ω(N),

where the second inequality follows from the fact that
(
N
pN

)
≥ 2H(p)N/(N + 1)8 and

the last inequality uses the fact that 1/2 − 4ε > δ + γ implies H(1/2 − 4ε) > H(δ) +
Ω(1).

Proof of Theorem 7.3. We assume that ε is a positive integer multiple of 1/2n and
show that β ≤ 8ε. The theorem then follows for general ε by rounding it up to the
next integer multiple of 1/2n. We show that β = 8ε is impossible, and therefore that
β < 8ε (because any β′-bias hardness amplification is clearly also a β-bias hardness
amplification for every β ≤ β′).

Suppose, for the sake of contradiction, that β = 8ε.

By Lemma 7.5, we may choose p ∈ {1/2 − 4ε, 1/2 + 4ε} such that

EUl

[
BiasF←Fp

[AmpF (Ul)]
]
≥ 4ε.

Define the function G(x)
def
= MajF←Fp

AmpF (x), and consider

Pr
Ul,F←Fp

[AmpF (Ul) �= G(Ul)].(7)

8Actually,
( N
pN

)
is asymptotically Θ(2H(p)N/

√
N), but for our purposes the easier estimate stated

suffices.
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We have

Pr
Ul,F←Fp

[AmpF (Ul) �= G(Ul)]

= EUl

[
Pr

F←Fp

[AmpF (Ul) �= G(Ul)]
]

= EUl

[
1

2
−

BiasF←Fp
[AmpF (Ul)]

2

]
(by def. of bias and G)

=
1

2
−

EUl

[
BiasF←Fp

[AmpF (Ul)]
]

2

≤ 1

2
− 2ε. (by the choice of p)

On the other hand, Lemma 7.6 implies that quantity (7) is at least 1/2−ε−2Ω(2n) (note
that the hypothesis of the lemma is satisfied by our assumption that 1/2−4ε ≥ δ+γ).

Combining the two bounds, we have that

1

2
− 2ε ≥ Pr

Ul,F←Fp

[AmpF (Ul) �= G(Ul)] ≥
1

2
− ε− 2−Ω(2n),

which is a contradiction for sufficiently large n (by the assumption that ε is a positive
multiple of 1/2n).

7.2. Nondeterminism is necessary. In this subsection we show that deter-
ministic, monotone, nonadaptive, black-box hardness amplifications cannot amplify
hardness beyond 1/2 − 1/poly(n). Thus, the use of nondeterminism in our results
(section 5.4) seems necessary. Note that most hardness amplifications, including the
one in this paper, are black-box and nonadaptive.

O’Donnell [31] proves that any monotone “direct product construction” (i.e.,
f ′(x1, . . . , xk) = C(f(x1), . . . , f(xk)), as in (1)) cannot amplify to hardness bet-
ter than 1/2 − 1/n, assuming that the amplification works for all functions f (not
necessarily in NP). We relax the assumption that the hardness amplification is
a direct product construction (allowing any monotone nonadaptive oracle algorithm
f ′ = Ampf ). On the other hand, we require that the reduction proving its correctness
also be black-box (as formalized in Definition 7.2).

We prove our bound even for hardness amplifications that amplify only balanced
functions (i.e., β = 0 in Definition 7.2).

Theorem 7.7. For every constant δ < 1/2, if Amp is a black-box 0-bias [δ �→
(1/2 − ε)]-hardness amplification for length n and size s ≤ 2n/3 such that, for every
x, Ampf (x) is a monotone function of k ≤ 2n/3 values of f , then

ε ≥ Ω

(
log2 k

k

)
.

The proof of this result follows closely the proof of the negative result on hardness
amplification in [37]. The main difference is that here we use bounds on the noise
stability of monotone functions rather than constant depth circuits.

By a Chernoff bound, a 2−ε2N fraction of 2N strings are ε-unbalanced. But it is
impossible to kill this fraction with noise bounded away from 1/2. (This will only

give min entropy 2−ξN , which will not kill 2−ε2N+N .)
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The following lemma is similar to Lemma 7.6. The only difference is in considering
functions F at distance η from f ; this will correspond to perturbing the monotone
amplification function with noise having parameter η.

Lemma 7.8. Let Amp be as in Definition 7.2 with β = 0 and s ≤ 2n/3. Then
for any constant δ < 1/2 there is a constant η < 1/2 such that, for sufficiently large
n, the following holds: If f : {0, 1}n → {0, 1} is any fixed balanced function and
F : {0, 1}n → {0, 1} is a random balanced function such that Dist(f, F ) = η, then

Pr
F

[
Dist(Ampf ,AmpF ) ≤ 1

2
− ε

]
≤ ε.

Proof. Let N
def
= 2n. It is easy to see that F is uniform on a set of size

(
N/2
ηN/2

)2
.

The rest of the proof is like the proof of Lemma 7.6:

Pr

[
Dist(Ampf ,AmpF ) ≤ 1

2
− ε

]
≤ 2O(s log s)2H(δ)N(

N/2
ηN/2

)2
≤ 2O(s log s) ·

(
N

2
+ 1

)2

· 2(H(δ)−H(η))N

≤ ε,

where the last inequality holds for a suitable choice of η < 1/2, using the fact that
δ < 1/2 is a constant and that s ≤ 2n/3.

Proof of Theorem 7.7. Let η be the constant in Lemma 7.8. The idea is to consider

Pr
Ul,F,F ′

[AmpF (Ul) �= AmpF ′
(Ul)],(8)

where F is a random balanced function and F ′ is a random balanced function such
that Dist(F, F ′) = η.

By the above lemma, the probability (8) is at least 1/2 − 2ε.
On the other hand, for every fixed x, AmpF (x) is a monotone function depending

only on k bits of the truth table of the function F . Since k is small compared to 2n,
the distribution (F, F ′) induces on the input of AmpF (x) a distribution very close to
(Uk, Uk ⊕ μ), where μ is a noise vector with parameter η. Specifically, it can be verified
that the statistical difference between these two distributions is at most O(k2/(η2n)).
Because this value is dominated by log2 k/k when k ≤ 2n/3, and because AmpF (x)
is a monotone function of k bits, we may apply Theorem 3.10 to conclude that the
probability (8) is at most 1/2 −O(log2 k/k).

Combining the two bounds, we have that 1/2 −O(log2 k/k) ≥ 1/2 − 2ε, and the
results follows.
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Abstract. We develop a new technique for proving cell-probe lower bounds on dynamic data
structures. This technique enables us to prove an amortized randomized Ω(lg n) lower bound per
operation for several data structural problems on n elements, including partial sums, dynamic con-
nectivity among disjoint paths (or a forest or a graph), and several other dynamic graph problems
(by simple reductions). Such a lower bound breaks a long-standing barrier of Ω(lg n / lg lgn) for any
dynamic language membership problem. It also establishes the optimality of several existing data
structures, such as Sleator and Tarjan’s dynamic trees. We also prove the first Ω(logB n) lower bound
in the external-memory model without assumptions on the data structure (such as the comparison
model). Our lower bounds also give a query-update trade-off curve matched, e.g., by several data
structures for dynamic connectivity in graphs. We also prove matching upper and lower bounds for
partial sums when parameterized by the word size and the maximum additive change in an update.

Key words. cell-probe complexity, lower bounds, data structures, dynamic graph problems,
partial-sums problem
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1. Introduction. The cell-probe model is perhaps the strongest model of com-
putation for data structures, subsuming in particular the common word-RAM model.
We suppose that the memory is divided into fixed-size cells (words), and the cost of an
operation is just the number of cells it reads or writes. Typically we think of the cell
size as being around lgn bits long, so that a single cell can address all n elements in
the data structure. (Refer to section 4 for a precise definition of the model.) While the
cell-probe model is unrealistic as a model of computation for actual data structures,
its generality makes it an important model for lower bounds on data structures.

Previous cell-probe lower bounds for data structures fall into two categories of ap-
proaches. The first approach is based on communication complexity. Lower bounds
for the predecessor problem [Ajt88, MNSW98, BF02, SV] are perhaps the most suc-
cessful application of this idea. Unfortunately, this approach can be applied only to
problems that are hard even in the static case. It also requires queries to receive a pa-
rameter of ω(lg n) bits, which is usually interpreted as requiring cells to have ω(lg n)
bits. For problems that are hard only in the dynamic case, all lower bounds have
used some variation of the chronogram method of Fredman and Saks [FS89]. By de-
sign, this method cannot prove a trade-off between the query time tq and the update
time tu better than tq lg tu = Ω(lg n), which was achieved for the marked-ancestor
problem (and consequently many other problems) in [AHR98]. This limitation on
trade-off lower bounds translates into an Ω(lgn / lg lg n) limitation on lower bounds
for both queries and updates provable by this technique. The Ω(lgn / lg lg n) barrier
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has been recognized as an important limitation in the study of data structures and
was proposed as a major challenge for future research in a recent survey [Mil99].

This paper introduces a new technique for proving cell-probe lower bounds on
dynamic data structures. With this technique we establish an Ω(lgn) lower bound for
either queries or updates in several natural and well-studied problems, in particular,
maintaining partial (prefix) sums in an array and dynamic connectivity among disjoint
paths (or a forest or a graph). (We detail the exact problems we consider, and
all results we obtain, in section 2; we summarize relevant previous results on these
problems in section 3.) These lower bounds establish the optimality of several data
structures, including the folkloric O(lg n) balanced tree data structure for partial
sums, and Sleator and Tarjan’s dynamic trees data structure (which in particular
maintains dynamic connectivity in a forest).

We also prove a trade-off lower bound of tq lg tu
tq

= Ω(lg n).1 This trade-off turns

out to be the right answer for our problems, and implies the Ω(lgn) bound on the worst
of queries and updates. In addition, we can prove a symmetric trade-off tu lg

tq
tu

=
Ω(lg n). As mentioned above, it is fundamentally impossible to achieve such a trade-off
using the previous techniques.

We also refine our analysis of the partial-sums problem beyond the dependence
on n. Specifically, we parameterize by n, the number b of bits in a word, and the
number δ of bits in an update. Naturally, δ ≤ b, but in some applications, δ is
much smaller than b. We prove tight upper and lower bounds of Θ( lgn

lg(b/δ) ) on the

worst of queries and updates. This result requires improvements in both the upper
bounds and the lower bounds. In addition, we give the tight query/update trade-off
tq(lg

b
δ +lg tu

tq
) = Θ(lgn). The tightness of this characterization is particularly unusual

given its dependence on five variables.
The main idea behind our lower bound technique is to organize time (the sequence

of operations performed on the data structure) into a complete tree. The heart of the
analysis is an encoding/decoding argument that bounds the amount of information
transferred between disjoint subtrees of the tree: if few cell are read and written, then
little information can be transferred. The nature of the problems of interest requires
at least a certain amount of information transfer from updates to queries, providing a
lower bound on the number of cells read and written. This main idea is developed first
in section 5 in the context of the partial-sums problem, where we obtain a short proof
of an Ω(lgn) lower bound for partial sums. Compared to the lower bounds based
on previous techniques, our technique leads to relatively clean proofs with minimal
combinatorial calculation.

We generalize this basic approach in several directions to obtain our further lower
bounds. In section 6, we show how our technique can be extended to handle queries
with binary answers (such as dynamic connectivity) instead of word-length answers
(such as partial sums). In particular, we obtain an Ω(lgn) lower bound for dynamic
connectivity in disjoint paths. We also show how to use our lower bound technique in
the presence of nondeterminism or Monte Carlo randomization. In section 7, we show
how our technique can be further extended to handle updates asymptotically smaller
than the word size, in particular obtaining lower bounds for the partial-sums problem
when δ < b and for dynamic connectivity in the external-memory model. This section
develops the most complicated form of our technique.

The final sections contain complementary results to this main flow of the lower

1Throughout this paper, lg x denotes log2(2 + x), which is positive for all x ≥ 0 (an important
property in this bound and several others).
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bound technique. In section 8, we give tight upper bounds for the partial-sums prob-
lem. The data structure is based on a few interesting ideas that enable us to eliminate
the precomputed tables from previous approaches. In section 9, we prove some easy
reductions from dynamic connectivity to other dynamic graph problems, transferring
our lower bounds to these problems. Finally, we conclude in section 10 with a list of
open problems.

2. Results. In this section we give precise descriptions of the problems we con-
sider, our results, and a brief synopsis of how these results compare to previous work.
(Section 3 gives a more detailed historical account.)

2.1. The partial-sums problem. This problem asks to maintain an array
A[1 . . n] of n integers subject to the following operations:

update(k,Δ): modify A[k] ← Δ.

sum(k): returns the partial sum
∑k

i=1 A[i].

select(σ): returns an index i satisfying sum(i − 1) < σ ≤ sum(i). To guarantee
uniqueness of the answer, we require that A[i] > 0 for all i.

Besides n, the problem has several interesting parameters. One parameter is b,
the number of bits in a cell (word). We assume that every array element and sum
fits in a cell. Also, we assume that b = Ω(lg n). Another parameter is δ, the number
of bits needed to represent an argument Δ to update. Naturally, δ is bounded above
by b; however, it is traditional (see, e.g., [RRR01]) to consider a separate parameter δ
because it is smaller in many applications. We write tu for the running time of update,
tq for the running time of sum, and ts for the running time of select.

We first study the unrestricted case when δ = Ω(b).

Theorem 2.1. Consider any cell-probe data structure for the partial-sums prob-
lem that may use amortization and Las Vegas randomization. If δ = Ω(b), then the
following trade-offs hold:

tq lg(tu/tq) = Ω(lg n); tu lg(tq/tu) = Ω(lg n);

ts lg(tu/ts) = Ω(lg n); tu lg(ts/tu) = Ω(lg n).

The trade-off curves are identical for the select and sum operations. The first
branch of each trade-off is relevant when queries are faster than updates, while the
second branch is relevant when updates are faster. The trade-offs imply the long-
sought logarithmic bound for the partial-sums problem: max{tu, tq} = Ω(lg n). The
best previous bound, by Fredman and Saks [FS89], was tq lg(btu) = Ω(lg n), implying
max{tu, tq} = Ω(lg n / lg b). The trade-off curves between tu and tq also hold in the
group model of computation, where elements of the array come from a black-box
group and time is measured as the number of algebraic operations. The best previous
bound for this model was Ω(lgn / lg lg n), also by Fredman and Saks [FS89].

A classic result achieves tu = tq = ts = O(lg n). For the sum query, our entire
trade-off curve can be matched (again, this is folklore; see the next section on previous
work). For select, the trade-offs cannot be tight for the entire range of parameters
because, even for polynomial update times, there is a superconstant lower bound on
the query time for the predecessor problem [Ajt88, SV].

We also analyze the case δ = o(b). We first give the following lower bounds.

Theorem 2.2. Consider any cell-probe data structure for the partial-sums prob-
lem using amortization and Las Vegas randomization. The following trade-offs hold:
tq(lg

b
δ + lg tu

tq
) = Ω(lg n) and ts(lg

b
δ + lg tu

ts
) = Ω(lg n).
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In this case, we cannot prove a reverse trade-off (when updates are faster than
queries). This trade-off implies the rather interesting lower bound max{tu, tq} =

Ω( lgn
lg(b/δ) ), and similarly for ts. When δ = Θ(b), this gives the same Ω(lg n) as before.

We give new matching upper bounds as follows.
Theorem 2.3. There exists a data structure for the partial-sums problem achiev-

ing tu = tq = ts = O( lgn
lg(b/δ) ). The data structure runs on a RAM, is deterministic,

and achieves worst-case bounds.
Our upper bounds can handle a slightly harder version of the problem, where

update(i,Δ) has the effect A[i] ← A[i] + Δ. Thus, we are not restricting each A[i] to
δ bits, but just mandate that they don’t grow by more than a δ-bit term at a time.
Several previous results [Die89, RRR01, HSS03] achieved O(lg n / lg lg n) bounds for
δ = O(lg lg n). None of these solutions scale well with δ or b because they require
large precomputed tables.

This result not only matches the previous lower bound on the hardest operation
but also actually helps match the entire trade-off of Theorem 2.2. Indeed, the trade-
off lower bound shows that there is effectively no interesting trade-off when δ = o(b):
when b

δ ≥ tu
tq

, the tight bound is tq = Θ( lgn
lg(b/δ) ), matched by our structure; when

b
δ < tu

tq
, the tight bound is tq = Θ( lgn

lg(tu/tq)
), matched by the classic result, which does

not depend on δ. Thus, we obtain an unusually precise understanding of the problem,
having a trade-off that is tight in all five parameters.

2.2. Dynamic connectivity. This problem asks to maintain an undirected
graph with a fixed set of n vertices subject to the following operations:
insert(u, v): insert an edge (u, v) into the graph.
delete(u, v): delete the edge (u, v) from the graph.
connected(u, v): test whether u and v lie in the same connected component.

We write tq for the running time of connected and tu for the running times
of insert and delete. It makes the most sense to study this problem in the cell-
probe model with O(lg n) bits per cell because every quantity in the problem occupies
O(lg n) bits.

We prove the following lower bound.
Theorem 2.4. Any cell-probe data structure for dynamic connectivity satisfies

the following trade-offs: tq lg(tu/tq) = Ω(lg n) and tu lg(tq/tu) = Ω(lg n). These
bounds hold under amortization, nondeterministic queries, and Las Vegas random-
ization, or under Monte Carlo randomization with error probability n−Ω(1). These
bounds hold even if the graph is always a disjoint union of paths.

This lower bound holds under very broad assumptions. It allows for nondeter-
ministic computation or Monte Carlo randomization (with polynomially small error)
and holds even for paths (and thus for trees, plane graphs, etc.). The trade-offs
we obtain are identical to the partial-sums problem. In particular, we obtain that
max{tu, tq} = Ω(lg n).

An upper bound of O(lg n) for trees is given by the famous dynamic trees data
structure of Sleator and Tarjan [ST83]. In addition, the entire trade-off curve for
tu = Ω(tq) can be matched for trees. For general graphs, Thorup [Tho00] gave an
almost-matching upper bound of O(lg n(lg lg n)3). For any tu = Ω(lg n(lg lg n)3), his
data structure can match our trade-off.

Dynamic connectivity is perhaps the most fundamental dynamic graph problem.
It is relatively easy to show by reductions that our bounds hold for several other
dynamic graph problems. Section 9 describes such reductions for deciding connec-
tivity of the entire graph, minimum spanning forest, and planarity testing. Many
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data structural problems on undirected graphs have polylogarithmic solutions, so our
bound is arguably interesting for these problems. Some problems have logarithmic
solutions for special cases (such as plane graphs), and our results prove optimality of
those data structures.

We also consider dynamic connectivity in the external-memory model. Let B be
the page (block) size, i.e., the number of (lgn)-bit cells that fit on one page. We prove
the following lower bound.

Theorem 2.5. A data structure for dynamic connectivity in the external-memory
model with page size B must satisfy tq(lgB + lg tu

tq
) = Ω(lg n). This bound allows for

amortization, Las Vegas randomization, and nondeterminism, and holds even if the
graph is always a disjoint union of paths.

Thus we obtain a bound of max{tu, tq} = Ω(logB n). Although bounds of this
magnitude are ubiquitous in the external-memory model, our lower bound is the
first that holds in a general model of computation, i.e., allowing data items to be
manipulated arbitrarily and just counting the number of page transfers. Previous
lower bounds have assumed the comparison model or indivisibility of data items.

It is possible to achieve an O(logB n) upper bound for a forest by combining
Euler tour trees with buffer trees [Arg03]. As with the partial-sums problem, this
result implies that our entire trade-off is tight for trees: for B ≥ tu/tq, this solution
is optimal; if the term in tu/tq dominates, we use the classic trade-off, which foregoes
the benefit of memory pages.

3. Previous work. In this section we detail the relevant history of cell-probe
lower bounds in general and the specific problems we consider.

3.1. Cell-probe lower bounds. Fredman and Saks [FS89] were the first to
prove cell-probe lower bounds for dynamic data structures. They developed the
chronogram technique and used it to prove a lower bound of Ω(lgn / lg b) for the
partial-sums problem in Z/2Z (integers modulo 2, where elements are bits and ad-
dition is equivalent to binary exclusive-or). This bound assumes b ≥ lg n so that an
index into the n-element array fits in a word; for the typical case of b = Θ(lgn), it
implies an Ω(lg n / lg lg n) lower bound. Fredman and Saks also obtain a trade-off of
tq = Ω( lgn

lg b+lg tu
).

There has been considerable exploration of what the chronogram technique can
offer. Ben-Amram and Galil [BAG01] reprove the lower bounds of Fredman and Saks
in a more formalized framework built around the concepts of problem and output
variability. Using these ideas, they show in [BAG02] that the lower bound holds even
if cells have infinite precision, but the set of operations is restricted.

Miltersen et al. [MSVT94] observe that there is a trivial reduction from the partial-
sums problem in Z/2Z to dynamic connectivity, implying an Ω(lgn / lg lg n) lower
bound for the latter problem. Independently, Fredman and Henzinger [FH98] observe
the same reduction, as well as more complex reductions applied to connectivity in
plane graphs and dynamic planarity testing. Husfeldt and Rauhe [HR03] show slightly
stronger results using the chronogram technique. They prove that the lower bound
holds even for nondeterministic algorithms, and even in a promise version of the
problem in which the algorithm is told the requested sum to ±1 precision. These
improved results make it possible to prove reductions to various other problems [HR03,
HRS96].

Alstrup, Husfeldt, and Rauhe [AHR98] give the only previous improvement to the
bounds of Fredman and Saks by proving a stronger trade-off of tq lg tu = Ω(lg n). This
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bound is the best trade-off provable by the chronogram technique. However, it still
cannot improve beyond max{tu, tq} = Ω(lg n / lg lg n). The problem they considered
was the partial-sums problem generalized to trees, where a query asks for the sum of a
root-to-leaf path. (This is a variation of the more commonly known marked-ancestor
problem.) Their bound is tight for balanced trees; for arbitrary trees, our lower bound
shows that Θ(lg n) is the best possible.

Miltersen [Mil99] surveys the field of cell-probe complexity and advocates “dy-
namic language membership” problems as a standardized framework for comparing
lower bounds. Given a language L that is polynomial-time decidable, the dynamic
language membership problem for L is defined as follows. For any given n (the prob-
lem size), maintain a string w ∈ {0, 1}n under two operations: flip the ith bit of w,
and report whether w ∈ L. Through its minimalism, this framework avoids several
pitfalls in comparing lower bounds. For instance, it is possible to prove very high
lower bounds in terms of the number of cells in the problem representation (which,
misleadingly, is often denoted n), if the cells are large [Mil99]. However, these lower
bounds are not very interesting because they assume exponential-size cells. In terms
of the number of bits in the problem representation, all known lower bounds do not
exceed Ω(lg n / lg lg n).

Miltersen proposes several challenges for future research, two of which we solve in
this paper. One such challenge was to prove an Ω(lgn) lower bound for the partial-
sums problem. Another such challenge, listed as one of three “big challenges,” was to
prove a lower bound of ω(lg n / lg lg n) for a dynamic language membership problem.
We solve this problem because dynamic connectivity can be phrased as a dynamic
language membership problem [Mil99].

3.2. The partial-sums problem in other models. The partial-sums problem
has been studied since the dawn of data structures and has served as the prototypical
problem for the study of lower bounds. Initial efforts concentrated on algebraic models
of computation. In the semigroup or group models, the elements of the array come
from a black-box (semi)group. The algorithm can manipulate the Δ inputs only
through additions and, in the group model, subtractions; all other computations in
terms of the indices touched by the operations are free.

In the semigroup model, Fredman [Fre81] gives a tight logarithmic bound. How-
ever, this bound is generally considered weak, because updates have the form A[i] ←
Δ. Because additive inverses do not exist, such an update invalidates all memory cells
storing sums containing the old value of A[i]. For the case when updates have the
form A[i] ← A[i] + Δ, Yao [Yao85] proved a lower bound of Ω(lgn / lg lg n). Finally,
Hampapuram and Fredman [HF98] proved an Ω(lgn) lower bound for this version of
the problem; their bound holds even for the offline problem. In higher dimensions,
Chazelle [Cha97] gives a lower bound of Ω((lgn / lg lg n)d), which also holds even for
the offline problem.

In the group model, the best previous lower bound of Ω(lgn / lg lg n) is by Fred-
man and Saks [FS89]. A tight logarithmic bound (including the lead constant) was
given by [Fre82] for the restricted class of “oblivious” algorithms, whose behavior can
be described by matrix multiplication. For the offline problem, Chazelle [Cha97] gives
a lower bound of Ω(lg lgn) per operation; this is exponentially weaker than the best
known upper bound. No better lower bounds are known in higher dimensions.

3.3. Upper bounds for the partial-sums problem. An easy O(lg n) up-
per bound for partial sums is to maintain a balanced binary tree with the ele-
ments of A in the leaves, augmented to store partial sums for each subtree. A
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simple variation of this scheme yields an implicit data structure occupying exactly
n memory locations [Fen94]. For the sum query, it is easy to obtain good trade-
offs. Using trees with branching factor B, one can obtain tq = O(logB n) and
tu = O(B logB n), or tq = O(B logB n) and tu = O(logB n). These bounds can

be rewritten as tq lg tu
tq

= O(lg n), or tu lg
tq
tu

= O(lg n), respectively, which matches

our lower bound for the case δ = Θ(b) and for the group model. For select queries,
one cannot expect to achieve the same trade-offs because, even for a polynomial up-
date time, there is a superconstant lower bound on the predecessor problem [BF02].
Exactly what trade-offs are possible remains an open problem.

Dietz [Die89] considers the partial-sums problem with sum queries on a RAM,
when δ = o(b). He achieves O(lg n / lg lg n) running times provided that δ = O(lg lg n).
Raman, Raman, and Rao [RRR01] show how to support select in O(lg n / lg lg n),
again if δ = O(lg lg n). For tu = Ω(lg n / lg lg n), the same δ, and sum queries, they
give a trade-off of tq = O(logtu n). They achieve the same trade-off for select queries,
when δ = 1. Hon, Sadakane, and Sung [HSS03] generalize the trade-off for select

when δ = O(lg lg n). All of these results do not scale well with b or δ because of their
use of precomputed tables.

3.4. Upper bounds for dynamic connectivity. For forests, Sleator and Tar-
jan’s classic data structure for dynamic trees [ST83] achieves an O(lg n) upper bound
for dynamic connectivity. A simpler solution is given by Euler tour trees [HK99]. This
data structure can achieve a running time of tq = O( lgn

lg(tu/tq)
), matching our lower

bound.

For general graphs, the first to achieve polylogarithmic time per operation were
Henzinger and King [HK99]. They achieve O(lg3 n) per update, and O(lg n / lg lg n)
per query, using randomization and amortization. Henzinger and Thorup [HT97]
improve the update bound to O(lg2 n). Holm, de Lichtenberg, and Thorup [HdLT01]
give a simple deterministic solution with the same amortized running time: O(lg2 n)
per update and O(lg n / lg lg n) per query. The best known result in terms of updates is
by Thorup [Tho00], achieving nearly logarithmic running times: O(lg n(lg lg n)3) per
update and O(lg n / lg lg lgn) per query. This solution is only a factor of (lg lgn)3 away
from our lower bound. Interestingly, all of these solutions are on our trade-off curve.
In fact, for any tu = Ω(lg n(lg lg n)3), Thorup’s solution can achieve tq = O( lgn

lg(tu/qt)
),

showing that our trade-off curve is optimal for this range of tu.

For plane graphs, Eppstein et al. [EIT+92] give a logarithmic upper bound. Plane
graphs are planar graphs with a given topological planar embedding, specified by the
order of the edges around each vertex. Our lower bound holds for such graphs, proving
the optimality of this data structure.

4. Models. The cell-probe model is a nonuniform model of computation. The
memory is represented by a collection of cells. Operations are handled by an algorithm
which can read and write cells from the memory; all computation is free, and the
internal state is unbounded. However, the state is lost at the end of an operation.
Because the state is not bounded, it can be assumed that all writes happen at the end
of the operation. If cells have b bits, we restrict the number of cells to 2b, ensuring that
a pointer can be represented in one cell. This restriction is a version of the standard
transdichotomous assumption frequently made in the context of the word RAM, and
is therefore natural in the cell-probe model as well.

We extend the model to allow for nondeterministic computation, in the spirit
of [HR03]. Boolean queries can spawn any number of independent execution threads;
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the overall result is an accept (“yes” answer) if and only if at least one thread accepts.
The running time of the operation is the running time of the longest thread. Rejecting
threads may not write any cells; accepting threads may, as long as all accepting threads
write exactly the same values. Because of this restriction, and because updates are
deterministic, the state of the data structure is always well defined.

All lower bounds in this paper hold under Las Vegas randomization, i.e., zero-
error randomization. We consider a model of randomization that is particularly easy
to reason about in the case of data structures. When the data structure is created,
a fixed subset of, say, 2b−1 cells is initialized to uniformly random values; from that
point on, everything is deterministic. This model can easily simulate other models
of randomization, as long as the total running time is at most 2b−1 (which is always
the case in our lower bounds); the idea is that the data structure maintains a pointer
to the next random cell and increments the pointer upon use. For nondeterministic
computation, all accepting threads increment the pointer by the largest number of
coins that could be used by a thread (bounded by the running time). Using this model,
one can immediately apply the easy direction of Yao’s minimax principle [Yao77].
Thus, for any given distribution of the inputs, there is a setting of the random coins
such that the amortized running time, in expectation over the inputs, is the same as
the original algorithm, in expectation over the random coins. Using the nonuniformity
in the model, we can hardwire the fixed setting of the coins into the algorithm.

We also consider Monte Carlo randomization, i.e., randomization with a two-
sided error. Random coins are obtained in the same way, but now the data structure is
allowed to make mistakes. We do not allow the data structure to be nondeterministic.
In this paper, we are concerned only with error probabilities of n−Ω(1); that is, the data
structure should be correct with high probability. Note that by holding a constant
number of copies of the data structure and using independent coins, we can increase
the exponent of n to any desired constant. In the data-structures world, it is natural
to require that data structures be correct with high probability, as opposed to the
bounded-error restriction that is usually considered in complexity theory. This is
because we want to guarantee correctness over a large sequence of operations. In
addition, boosting the error from constant to n−c requires O(lg n) repetitions, which
is usually not significant for an algorithm, but is a significant factor in the running
time of a data-structure operation.

5. Lower bounds, take one. In this section, we give the intuition behind our
approach and detail a simple form of it that allows us to prove an Ω(lgn) lower bound
on the partial-sums problem when δ = Θ(b), which is tight in this case. This proof
serves as a warmup for the more complicated results in sections 6 and 7.

5.1. General framework. We begin with the framework for our lower bounds
in general terms. Consider a sequence of data-structure operations A1, A2, . . . , Am,
where each Ai incorporates all information characterizing operation i, i.e., the opera-
tion type and any parameters for that type of operation. Upon receiving request Ai,
the data structure must produce an appropriate response. The information gathered
by the algorithm during a query (by probing certain cells) must uniquely identify the
correct answer to the query, and thus must encode sufficient information to do so.

To establish the lower bounds of this paper, we establish lower bounds for a sim-
pler type of problem. Consider two adjacent intervals of operations: Ai, . . . , Aj−1

and Aj , . . . , Ak. At all times, conceptually associate with each memory cell a chrono-
gram [FS89], i.e., the index t of the operation At during which the memory cell was last
modified. Now consider all read instructions executed by the data structure during
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operations Aj , . . . , Ak that access cells with a chronogram in the interval [i, j− 1]. In
other words, we consider the set of cells written during the time interval [i, j− 1] and
read during the interval [j, k] before they are overwritten. All information transfer
from time interval [i, j − 1] to time interval [j, k] must be encoded in such cells and
must be executed by such cell writes and reads. If the queries from the interval [j, k]
depend on updates from the interval [i, j − 1], all the information characterizing this
dependency must come from these cell probes, because an update happening during
[i, j−1] cannot be reflected in a cell written before time i. The main technical part of
our proofs is to establish a lower bound on the amount of information that must be
transferred between two time intervals, which implies a corresponding lower bound
on the number of cells that must be written and read to execute such a transfer.
Such bounds will stem from an encoding argument, in conjunction with a simple
information-theoretic analysis.

Next we show how to use such a lower bound on the information transfer between
two adjacent intervals of operations to prove a lower bound on the data-structure
problems we consider. Consider a binary tree whose leaves represent the entire se-
quence of operations in time order. Each node in the tree has an associated time
interval of operations, corresponding to the subtree rooted at that node. We can
obtain two adjacent intervals of operations by, for example, considering the two nodes
with a common parent. For every node in the tree, we define the information transfer
through that node to be the number of read instructions executed in the subtree of the
node’s right child that read data written by (i.e., cells last written by) operations in
the subtree of the node’s left child. The lower bound described above provides a lower
bound on this information transfer for every node. We combine these bounds into a
lower bound on the number of cell probes performed during the entire execution by
simply summing over all nodes.

To show that this sum of individual lower bounds is indeed an overall lower bound,
we make two important points. First, we claim that we are not double counting any
read instructions. Any read instruction is characterized by the time when it occurs and
the time when the location was last written. Such a read instruction is counted by only
one node, namely, the lowest common ancestor of the read and write times, because
the write must happen in the left subtree of the node, and the read must happen in the
right subtree. The second point concerns the correctness of summing up individual
lower bounds. This approach works for the arguments in this paper, because all
lower bounds hold in the average case under the same probability distribution for
the operations. Therefore, we can use linearity of expectation to break up the total
number of read instructions performed on average into these distinct components.
Needless to say, worst-case lower bounds could not be summed in this way.

The fact that our lower bounds hold in the average case of an input distribution
has another advantage: the same lower bound holds in the presence of Las Vegas
randomization. The proofs naturally allow the running time to be a random variable,
depending on the input. By the easy direction of the minimax principle, a Las Vegas
randomized data structure can be converted into a deterministic data structure that,
on a given random distribution of the inputs, achieves the same expected running
time.

This line of argument has an important generalization that we use for proving
trade-off lower bounds. Instead of considering a binary tree, we can consider a tree of
arbitrary degree. Then we may consider the information transfer either between any
node and all its left siblings, or between any node and all its right siblings. Neither of
these strategies double counts read instructions, because a read instruction is counted
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only for a node immediately below the lowest common ancestor of the read and write
times.

5.2. An initial bound for the partial-sums problem. We are now ready to
describe an initial lower bound for the partial-sums problem, which gives a clear and
concise materialization of the general approach from the previous section. We will
prove a lower bound of Ω( δb lg n), which is tight (logarithmic) for the special case of
δ = Θ(b). The bound from this section considers only sum queries and does not allow
nondeterminism.

It will be useful to analyze the partial-sums problem over an arbitrary group with
at least 2δ elements. Our proof will not use any knowledge about the group, except
the quantity δ. Naturally, the data structure is allowed to know the group; in fact,
the data structure need only work for one arbitrary choice of group. In particular, the
lower bound will hold for the group Z/2δZ, the group of δ-bit integers with addition
modulo 2δ. A solution to the original partial-sums problem also gives a solution to
the problem over this group, as long as we can avoid overflowing a cell in the original
problem. To guarantee this, it suffices that δ + lg n < b. By definition of the model,
we always have lg n ≤ b and δ ≤ b, so we can avoid overflow by changing only constant
factors.

We consider a sequence of m = Ω( 3
√
n ) operations, where m is a power of 2.

Operations alternate between updates and queries. We choose the index in the array
touched by the operation uniformly at random. If the operation is an update, we also
choose the value Δ uniformly at random. This notion of random updates and queries
remains unchanged in our subsequent lower bounds, but the pattern of alternating
updates and queries changes. Our lemmas do not assume anything about which
operations are updates or queries, making it possible to reuse them later.

Our lower bound is based on the following lemma analyzing intervals of operations.

Lemma 5.1. Consider two adjacent intervals of operations such that the left
interval contains L updates, the right interval contains L queries, and overall the
intervals contain O( 3

√
n ) operations. Let c be the number of read instructions executed

during the second interval that read cells last written during the first interval. Then
E[c] = Ω( δbL).

Before we embark on a proof of the lemma, we show how it implies our logarithmic
lower bound. As in the framework discussion, we consider a complete binary tree
with one leaf per operation. For every node v, we analyze the information transfer
through v, i.e., the read instructions executed in the subtree of v’s right child that
access cells with a chronogram in the subtree of v’s left child. If v is on the 1

3 lg n
bottommost levels, the conditions of the lemma are satisfied, with L being a quarter
of the number of leaves under v. Then, the information transfer through v is Ω(L δ

b ) on
average. As explained in the framework discussion, we can simply sum these bounds
for all nodes to get a lower bound for the execution time. The information transfer
through all nodes on a single level is Ω(m δ

b ) in expectation (because these subtrees

are disjoint). Over 1
3 lg n levels, the lower bound is Ω(m δ

b lg n), or amortized Ω( δb lg n)
per operation.

5.3. Interleaving between two intervals. The lower bound for two adjacent
intervals of operations depends on the interleaving between the indices updated and
queried in the two intervals. More precisely, we care about the indices a1, a2, . . .
touched by updates during the left interval of time, and the indices b1, b2, . . . queried
during the right interval. By relabeling, assume that a1 ≤ a2 ≤ · · · and b1 ≤ b2 ≤ · · · .
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We define the interleaving number l to be the number of indices i such that, for some
index j, ai < bj ≤ ai+1. In other words, the interleaving number counts transitions
from runs of a’s to runs of b’s when merging the two sorted lists of indices.

Lemma 5.2. Consider two adjacent intervals of operations such that the left
interval contains L updates, the right interval contains L queries, and overall the
intervals contain O( 3

√
n ) operations. Then the interleaving between the two intervals

satisfies E[l] = Θ(L) and, with probability 1− o(1), no index is touched by more than
one operation.

Proof. By the birthday paradox, the expected number of indices touched more
than once is at most O(( 3

√
n )2) · 1

n = O(n−1/3). By Markov’s inequality, all indices

are unique with probability 1−O(n−1/3). Because l ≤ L, it suffices to prove the lower
bound. We show E[l | all indices are unique] = Ω(L). Because the condition is met
with Ω(1) probability, E[l] = Ω(L). Fix the set S of 2L relevant indices arbitrarily.
It remains to randomly designate L of these to be updates from the left interval, and
the rest of S to be queries from the right interval. Then l is the number of transitions
from updates to queries, as we read S in order. The probability that a transition
happens on any fixed position is 1

4 , so by linearity of expectation, E[l | S] = Ω(L).
Because this bound holds for any S, we can remove the conditioning.

The following information-theoretic lemma will be used throughout the paper by
comparing the lower bound it gives with upper bounds given by various encoding
algorithms. For an introduction to information theory, we refer the reader to [CT91].
Remember that we are considering the partial-sums problem over an arbitrary group
with at least 2δ elements.

Lemma 5.3. Consider two adjacent intervals of operations such that the left
interval contains L updates, the right interval contains L queries, and overall the
intervals contain O( 3

√
n ) operations. Let G be the random variable giving the indices

touched by every operation, and giving the Δ values for all updates except those in the
left interval. Let S be the random variable giving all partial sums queried in the right
interval. Then H(S | G) = Ω(Lδ).

Proof. Fix G = g to an arbitrary value such that no index is touched twice in
the two intervals. Let l be the interleaving between the two intervals (l is a function
of g). Let U denote the set of indices updated in the left interval. By the definition
of the interleaving number, there must exist l queries in the right interval to indices
q1 < q2 < · · · < ql such that U ∩ [qt−1 + 1, qt] �= ∅ for each t ≥ 1, where q0 is taken
to be −∞. Now let us consider the partial sums queried by these l queries, which
we denote S1, S2, . . . , Sl. The terms of these sums are elements of the array A[1 . . n]
at the time the query is made. Some elements were set by updates before the first
interval, or during the second interval, so they are constants for G = g. However,
each St contains a random term in [qt−1 + 1, qt], which comes from an update from
the first interval. This element was not overwritten by a fixed update from the second
interval because, by assumption, no index was updated twice. Then each St will
be a random variable uniformly distributed in the group: even if we condition on
arbitrary values for all but one of the random terms, the sum remains uniformly
random in the group because of the existence of inverses. Furthermore, the random
variables will be independent, because St contains at least one random term that
was not present in any Sr with r < t (namely, the term in [qt−1 + 1, qt]). Then
H((S1, . . . , Sl) | G = g) = lδ. The variable S entails S1, . . . , Sl, so H(S | G = g) ≥ lδ.
By Lemma 5.2, E[l] = Ω(L). Furthermore, with probability 1 − o(1), a random G
leads to no index being updated twice in the two intervals, so the above analysis
applies. Then H(S | G) = Ω(Lδ).
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5.4. Proof of Lemma 5.1. We consider two adjacent intervals of time, the first
spanning operations [i, j − 1] and the second spanning operations [j, k]. We propose
an encoding for the partial sums queried in [j, k] given the value of G and compare
its size to the Ω(Lδ) lower bound of Lemma 5.3. Our encoding is simply the list of
addresses and contents of the cells probed in the right interval that were written in
the left interval. Thus, we are proposing an encoding of expected size E[c] · 2b bits,
proving that E[c] = Ω(L δ

b ). It should be noted that c is a random variable, because
the algorithm can make different cell probes for different update parameters.

To recover the partial sums from this encoding, we begin by running the algorithm
for the time period [1, i− 1]; this is possible because all operations before time i are
known given G. We then skip the time period [i, j − 1] and run the algorithm for
the time period [j, k], which will return the partial sums queried during this time. To
see why this is possible, notice that a read instruction issued during time period [j, k]
falls into one of the following three categories, depending on the time tw when the
cell was written:

tw ≥ j: We can recognize this case by maintaining a list of memory locations written
during the simulation; the data is immediately available.

i ≤ tw < j: The contents of the memory location are available as part of our en-
coding; we can recognize this case by examining the set of addresses in
the encoding.

tw < i: This is the default case, if we failed to satisfy the previous conditions. The
contents of the cell are determined from the state of the memory upon
finishing the first simulation up to time i− 1.

5.5. Obtaining trade-off lower bounds. We now show how our framework
can be used to derive trade-off lower bounds. In a nutshell, we consider instances when
the cheaper operation is performed more frequently, so that the total cost of queries
matches the total cost of updates. Then, we analyze the sequence of operations by
considering a tree with a higher branching factor.

Assume there exists a data structure with amortized expected running times
bounded by tu for updates and tq for queries. Our hard instance consists of blocks of
tu + tq operations. Each block contains tq updates and tu queries; the order inside a
block is irrelevant. We generate the arguments to updates and queries randomly as
before. Let B = 2 · max{ tu

tq
,
tq
tu
}. We prove below that the expected amortized cost

of a block is Ω(max{tu, tq} δ
b logB n). On the other hand, the expected amortized cost

of a block is at most 2tutq. This implies
tutq

max{tu,tq} = Ω( δb logB n), so min{tu, tq} ·
lg

max{tu,tq}
min{tu,tq} = Ω( δb lg n). This is the desired trade-off, which is tight when δ = Θ(b).

To prove the lower bound on blocks, consider a balanced B-ary tree in which the
leaves correspond to blocks. We let the total number of blocks be m = Θ( 6

√
n ). If

max{tu, tq} = Ω( 6
√
n ), our lower bound states that min{tu, tq} = Ω(1), so there is

nothing to prove. Thus, we can assume tu + tq = O( 6
√
n ), which bounds the number

of operations in a block. Then, the total number of operations is O( 3
√
n ), satisfying

one of the conditions of Lemma 5.1.

For the case tu ≥ tq, we are interested in the information transfer between each
node and its left siblings. The subtree of the node defines the right interval of opera-
tions, and the union of the subtrees of all left siblings defines the left interval. Let L
be the number of blocks in the right interval. We make a claim only regarding nodes
that are in the right half of their parent’s children. In this case, the number of blocks
in the left interval is at least B

2 L. Then, the number of queries in the right interval
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is Ltu, while the number of updates in the left interval is at least L tu
tq
tq = Ltu. We

can then apply Lemma 5.1; having more updates in the left interval cannot decrease
the bound, because moving the beginning of the left interval earlier can only increase
the number of cell probes that are counted. Therefore, the expected number of cell
probes associated with this node is Ω(Ltu

δ
b ). Now we sum the lower bounds for all

nodes on a level and obtain that the number of cell probes associated with that level is
Ω(mtu

δ
b ). Summing over all levels, we get an amortized lower bound of Ω(tu

δ
b logB n)

per block, as desired.
For the case tu < tq, we apply a symmetric argument. We analyze the information

transfer between any node, giving the left interval, and all its right siblings, giving
the right interval. For nodes in the first half of their parent’s children, the left inter-
val contains Ltq updates, while the right interval contains at least Ltq queries. By
Lemma 5.1, the expected number of cell probes associated with this node is Ω(Ltq

δ
b ).

Thus, the number of cell probes associated with a level is Ω(mtq
δ
b ), and the amortized

bound per block is Ω(tq
δ
b logB n).

5.6. Refinements. First, note that our lower bounds so far depend only on
randomness in the update parameters Δ, and not on randomness in the update or
query indices. Indeed, the value of G is irrelevant, except for the interleaving number
that it yields. It follows that the logarithmic lower bound and the trade-off lower
bound are also true for sequences of operations in which we fix everything except the
Δ parameters, as long as such sequences have a high sum of the interleaving numbers
of each node. Our application of Lemma 5.2 can be seen as a probabilistic proof that
such bad sequences exist.

The prototypical deterministic sequence with high total interleaving is the bit-
reversal permutation. For any n that is a power of 2, consider the permutation
π : {0, . . . , n − 1} → {0, . . . , n − 1} that takes i to the integer obtained by reversing
i’s log2 n bits. The corresponding access sequence consists of n pairs of update and
sum, the ith pair touching index π(i). The bit-reversal permutation underlies the
fast Fourier transform algorithm. It also gives an access sequence that takes Ω(lg n)
amortized time for any binary search tree [Wil89]. Finally, it was used to prove an
Ω(lg n) bound for the partial-sums problem in the semigroup model [HF98]. To see
why this permutation has high total interleaving, consider the following recursive
construction. The permutation π′ of order 2n is obtained from a permutation π of
order n by the rules π′(i) = 2 · π(i), π′(i + n) = 2 · π(i) + 1, for i ∈ {0, 1, . . . , n− 1}.
Each level of the recursion adds an interleaving of n between the left and right halves,
so the total interleaving is Θ(n lg n).

The fact that our lower bound holds for fixed sequences of operations implies the
same lower bound in the group model. A solution in the group model handles every
update and sum by executing a sequence of additions on cells containing abstract
elements from the group. The cells touched by these additions depend only on the
indices touched by queries and updates, because the data structure treats the group
as a black box and cannot examine the Δ’s. So if we know a priori the sequence of
indices touched by queries and updates, we can implement the same solution in the
cell-probe model for the group Z/2bZ; because the Δ’s are unrestricted elements of
the group, δ = b. The group additions can be hardwired into our solution for the
cell-probe model through nonuniformity, and cell probes are needed only to execute
the actual additions.

5.7. Duality of lower and upper bounds. Recall the classic upper bound for
the partial-sums problem. We maintain a tree storing the elements of the array in
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order in the leaves. Each node stores the sum of all leaves in its subtree. An update
adds Δ to the subtree sums along the root-to-leaf path of the touched element. A
query traverses the root-to-leaf path of the element and reports the sum of all subtrees
to the left of the path.

Our lower bound can be seen as a dual of this natural algorithm. To see this, we
describe what happens when we apply the lower bound analysis to the algorithm. We
argue informally. Consider two intervals of 2k operations. The information transfer
between the intervals is associated with a node of height k in the lower bound tree. On
the other hand, the indices of the operations will form a relatively uniformly spaced
set of O(2k) indices. Thus, the distance in index space between a query from the right
interval and the closest update from the left interval will usually be around n/2k. The
algorithm’s tree passes information between the update and the query through the
lowest common ancestor of the two indices. Because of the separation between the
indices, this will usually be a node at level around lgn−k. Thus, we can say that our
lower bound is roughly an upside-down view of the upper bound. The information
passed through the kth level from the bottom of one tree is roughly associated with
the kth level from the top of the other tree.

6. Handling queries with low output entropy. The lower bound technique
as presented so far depends crucially on the query answers having high entropy: the
information transfer through a node is bounded from below by the entropy of all
queries from the right subtree of the node. However, in order to prove lower bounds
for dynamic language membership problems (such as dynamic connectivity), we need
to be able to handle queries with binary answers. To prove lower bounds for a pair of
adjacent intervals, it is tempting to consider the communication complexity between
a party holding the updates from the left interval and a party holding the queries
from the right interval. Many bounds for communication complexity hold even for
decision problems, so queries with binary output should not be a problem. However, a
solution for the data structure does not really translate well into the communication-
complexity setting. The query algorithm probes many cells, only a few of which
(a logarithmic fraction) are in the left interval. If the party with the right interval
communicates all these addresses, just to get back the answer “not written in the
left interval” for most of them, the communication complexity blows up considerably.
One could also imagine a solution based on approximate dictionaries, where the party
holding the left interval sends a sketch of the cells that were written, allowing the
other party to eliminate most of the uninteresting cell probes. However, classic lower
bounds for approximate dictionaries [CFG+78] show that it is impossible to send a
sketch that is small enough for our purposes. The solution developed in this section
is not based on communication complexity, although it can be rephrased in terms of
nondeterministic communication complexity. While this solution is not particularly
hard, we find it to be quite subtle.

6.1. Setup for the lower bound. Our approach is to construct hard sequences
of operations that will have a fixed response, and the data structure need only confirm
that the answer is correct. Such predictable answers do not trivialize the problem: the
data structure has no guarantee about the sequence of operations, and the information
it gathers during a query (by probing certain cells) must provide a certificate stating
that the predicted answer is correct. In other words, the probed cells must uniquely
identify the answer to the query, and thus must encode sufficient information to do so.
As a consequence, our lower bounds hold even if the algorithm makes nondeterministic
cell probes, or if an all-powerful prover reveals a minimal set of cells sufficient to show
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π2π1

√
n

π√
n

Fig. 6.1. Our graphs can be viewed as a sequence of permutation boxes (dashed). The horizontal
edges between boxes are in fact contracted in the actual graphs.

that a certain answer to a query is correct.

The machinery developed in this section is also necessary in the case of the partial-
sums problem if we want a lower bound for sequences of update and select oper-
ations. Even though select returns an index in the array, i.e., lgn bits, it is not
clear how more than one bit of information can be used for a lower bound argu-
ment. Instead, we consider a verify-sum operation, which is given a sum Σ and
an index i, and tests whether the partial sum up to i is equal to Σ. In principle,
this operation can be implemented by two calls to select, namely, by testing that
i = select(Σ) = select(Σ − 1) + 1.

Below we give a single lower bound proof that applies to both the partial-sums
problem with verify and dynamic connectivity. We accomplish this by giving a proof
for the partial-sums problem over any group G with at least 2δ elements and then
specializing G for the two problems we consider.

For the partial-sums problem with select, we use G = Z/2δZ. This introduces a
slight complication, because verify-sum in modulo arithmetic can no longer be imple-
mented by a constant number of calls to select. To work around this issue, remember
that our lower bound for verify-sum also holds for nondeterministic computation. To
implement verify-sum(i,Σ) nondeterministically, we guess a b-bit quantity Σ′ such
that Σ′ mod 2δ = Σ, and verify the old condition i = select(Σ′) = select(Σ′−1)+1.
We have implicitly assumed that select is deterministic, which is natural because
select does not return a binary answer. Note that only one thread accepts, so there
is no problem if select updates memory cells (the updates made by the sole accepting
thread are the ones that matter).

For the dynamic-connectivity problem, we use G = S√
n, i.e., the permutation

group on
√
n elements. Notice that now we have δ =

√
n lg

√
n−Θ(

√
n ), a very large

quantity, unlike in the partial-sums problem, where it was implied that δ < b. Our
proof never actually assumes any particular relation between δ and b.

To understand the relation between this problem and dynamic connectivity, re-
fer to Figure 6.1. We consider a graph whose vertices form an integer grid of size√
n by

√
n. Edges only connect vertices from adjacent columns. Each vertex is inci-

dent to at most two edges, one edge connecting to a vertex in the previous column
and one edge connecting to a vertex in the next column. These edges do not exist
only when the vertex is in the first or last column. The edges between two adjacent
columns of vertices thus form a perfect matching in the complete bipartite graph
K√

n,
√
n, describing a permutation of order

√
n. More precisely, point (x, y1) in the

grid is connected to point (x+ 1, y2) exactly when πx(y1) = y2 for a permutation πx.
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Another way to look at the graph is in terms of permutation networks. We can
imagine that the graph is formed by

√
n horizontal wires, going between permutation

boxes. Inside each box, the order of all wires is changed arbitrarily.
Our graph is always the disjoint union of

√
n paths. This property immediately

implies that the graph is plane, because any embedding maintains planarity (though
the edges may have to be routed along paths with several bends).

The operations required by the partial-sums problem need to be implemented
in terms of many elementary operations, so they are actually “macro-operations.”
Macro-operations are of two types, update and verify-sum, and all receive as param-
eters a permutation and the index x of a permutation box. To perform an update, all
the edges inside the named permutation box are first deleted and then reconstructed
according to the new permutation. This translates to

√
n delete’s and

√
n insert’s

in the dynamic-connectivity world. Queries on box x test that point (1, y) is con-
nected to point (x+1, π(y)) for all y ∈ {1, 2, . . . ,

√
n }. This requires

√
n connectivity

queries. The conjunction of these tests is equivalent to testing that the composition
of π1, π2, . . . , πx (the permutations describing the boxes to the left) is identical to the
given permutation π—the verify-sum in the partial-sums world.

As stated before, the lower bound we obtain is Ω( δb lg n). For dynamic con-
nectivity, we are interested in b = Θ(lgn), which is the natural word size for this
problem. As we saw already, δ = Θ(

√
n lg n). Thus, our lower bound translates

into Ω(
√
n lg n). This is a lower bound for the macro-operations, though, which are

implemented through O(
√
n ) elementary operations. Therefore, the lower bound for

dynamic connectivity is Ω(lgn), as desired. The same calculation applies to the trade-
off expressions, which essentially means that the δ

b term should be dropped to obtain
the true bound for dynamic connectivity.

6.2. Proof of the lower bound. As before, the sequence of operations al-
ternates between update and verify-sum. The index queried or updated is chosen
uniformly at random. If the operation is an update, we select a random element of G
for the value Δ. If the operation is verify-sum, we give it the composition of the
elements before the queried index. This means that the data structure will be asked
to prove a tautology, involving the partial sum up to that index.

Because of this construction of the hard sequence, at least one nondeterministic
thread for each query should accept. For every random input, let us fix one accepting
thread for each operation. When we mention cells that are “read,” we mean cells read
in this chosen execution path; by definition of the model, writes are the same for all
accepting threads. As in the framework discussion, we are interested in lower bounds
for the information transfer between adjacent intervals of operations. The following
lemma is an analogue of Lemma 5.1.

Lemma 6.1. Consider two adjacent intervals of operations such that the left
interval contains L updates, the right intervals contains L queries, and overall the
intervals contain O( 3

√
n ) operations. Let w be the number of write instructions exe-

cuted during the first interval, and let r be the number of read instructions executed
during the second interval. Also, let c be the number of read instructions executed
during the second interval that read cells last written during the first interval. Then

E[c] = Ω(L δ
b ) −O(E[s]

b ), where s = lg
(
r+w
r

)
.

Note that the lower bound of this lemma is weaker than that of Lemma 5.1,

because of the additional term E[s]
b . Before we prove this lemma (in the next section),

let us show that this term is inconsequential, and the lemma implies the same bounds
and trade-offs.
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Consider a sequence of m = Θ( 3
√
n ) operations, and let T be the total running

time of the data structure. We construct a complete binary tree over these operations.
Consider a node v that is a right child, and let L be the number of leaves in its subtree.

By Lemma 6.1, we have E[c] = Ω(L δ
b )−O(E[s]

b ), where c is the number of cell probes

associated with v. Note that s = lg
(
r+w
r

)
≤ r + w; thus, s is bounded by the

number of read instructions in v’s subtree, plus the number of write instructions in
the subtree of v’s left sibling. Summing for all nodes on a level, s counts all read

and write instructions at most once, so we obtain E[
∑

ci] = Ω(m · δ
b ) − O(E[T ]

b ).
We sum up the lower bounds for each level to obtain a lower bound on E[T ]. We

obtain that E[T ] = Ω(m · δ
b lg n) − O(lg n · E[T ]

b ). Because lg n ≤ b, this means that

E[T ] = Ω(m · δ
b lg n). This result implies an average-case amortized lower bound per

operation of Ω( δb lg n).
To obtain trade-off lower bounds, we apply the same reasoning as in section 5.5.

The only thing we have to do is verify that the new term depending on E[s] does not
affect the end result. When we sum the lower bounds for one level in the tree, we lose

a term of O(
∑ E[si]

b ), compared to the old bound. Here i ranges over all nodes at

that level. We must understand
∑

si = lg
∏(

ri+wi

ri

)
in terms of T , the total running

time for the entire sequence of operations.
The quantity

∏(
ri+wi

ri

)
counts the total numbers of ways to choose ri elements

from a set ri + wi, where we have a different set for each i. This is bounded from
above by the number of ways to choose

∑
ri elements from a single set of

∑
(ri +wi)

objects. Thus,
∑

si ≤ lg
(∑

(ri+wi)∑
ri

)
. Assume we have upper bounds

∑
ri ≤ Ur and∑

wi ≤ Uw. Then, we can write
(∑

(ri+wi)∑
ri

)
≤

(
Ur+Uw∑

ri

)
≤

(
2(Ur+Uw)∑

ri

)
≤

(
2(Ur+Uw)

Ur

)
.

The last inequality holds because
(
n
k

)
increases with k for k ≤ n

2 . We entered this
regime by artificially doubling Ur + Uw. Because ri and wi are symmetric, we also

have
(∑

(ri+wi)∑
ri

)
=

(∑
(ri+wi)∑

wi

)
≤

(
2(Ur+Uw)

Ur

)
.

Now we need to develop the upper bounds Ur and Uw. For the case tu ≤ tq, our
proof considered intervals formed by a node and all its left siblings. Thus,

∑
ri counts

each read instruction once, for the node it is under; so
∑

ri ≤ T . On the other hand,∑
wi ≤ B · T , because a write instruction is counted for every right sibling of its

ancestor on the current level. For the case tu > tq, we consider intervals formed by a
node and all its right siblings. Thus,

∑
wi ≤ T and

∑
ri ≤ B · T .

Using these bounds, we see that
∑

si ≤ lg
(
2(B+1)T

T

)
= O(T lgB). Because this

upper bound holds in any random instance, it also holds in expectation: E[
∑

si] =

O(E[T ] lgB). So our lower bound loses O(E[T ] lgB
b ) per level, which, over all levels,

sums to O(E[T ] lgB
b logB n) = O(E[T ] lgn

b ). Because lg n ≤ b, our lower bound on E[T ]
is equal to the old lower bound minus O(E[T ]). Thus, we lose only a constant factor
in the lower bound, and the results of section 5.5 continue to hold.

6.3. Proof of Lemma 6.1. The proof is an encoding argument, which is similar
in spirit to the proof of Lemma 5.1 but requires a few significant new ideas. The
difference from the previous proof is that the partial sums that we want to encode are
no longer returned by queries, but rather they are given as parameters. Our strategy
is to recover the partial sums by simulating each query for all possible parameters
and see which one leads to an accept. However, these simulations may read a large
number of cells, which we cannot afford in the encoding. Instead, we add a new part
to the encoding which enables us to stop simulations that try to read cells we don’t
know. The difficulty is making this new component of the encoding small enough.
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As before, we consider two adjacent intervals of operations, the first spanning
[i, j− 1] and the second [j, k]. We propose an encoding for the partial sums passed to
the verify-sum operations during [j, k], given the variable G defined in Lemma 5.3.
By this lemma, such an encoding must have size Ω(Lδ) bits.

The encoder first simulates the entire execution of the data structure. Each query
is given the correct partial sum, so it must accept. We choose arbitrarily one of the
accepting threads. Consider the following sets of cells, based on this computation
history:

W = cells which are updated by the data structure during the interval of time
[i, j − 1], and never read during [j, k].

R = cells which are read by the data structure during [j, k] and their last update
before the read happened before time i.

C = cells which are read by the data structure during [j, k] and their last update
before the read happened during [i, j − 1].

These are simple sets, so, for example, cells written multiple times during [i, j−1]
are included only once in W . We have |C| = c, |W | ≤ w, |R| ≤ r. Note that all of
c, |W |, w, |R|, and r are random variables, because the data structure can behave
differently depending on the Δ’s passed to the updates. We will give an encoding for
the queried partial sums that uses O(b)+c·2b+O(s) bits, where s = lg

(
r+w
r

)
. Because

the expected size of our encoding must be Ω(Lδ), we obtain that E[c]+ E[s]
Θ(b) = Ω(L δ

b ),

and therefore E[c] = Ω(L δ
b ) −O(E[s]

b ).

Our encoding consists of two parts. The first encodes all information about the
interesting cell probes (the information transfer): for each cell in C, we encode the
address of the cell and its contents at time j. This uses O(b) bits to write the size of C,
and c · 2b for the information about the cells. The second part is concerned with the
“uninteresting” cell probes, i.e., those in R. This accounts for a covert information
transfer: the fact that a cell was not written during [i, j − 1] is a type of information
transmitted to [j, k]. The part certifies that W and R are disjoint, by encoding a
set S, such that R ⊂ S and W ⊂ S. We call S a separator between R and W . To
efficiently encode a separator, we need the following result.

Lemma 6.2. For any integers a, b, u with a+b ≤ u, there exists a system of sets S

with lg |S| = O
(
lg lg u + lg

(
a+b
a

))
such that, for all A,B ⊂ {1, 2, . . . , u} with |A| ≤ a,

|B| ≤ b, A ∩B = ∅, there exists an S ∈ S satisfying A ⊂ S and B ⊂ S.

Proof. It suffices to prove the lemma for |A| = a and |B| = b, because we
can simply add some elements from {1, 2, . . . , u} \ (A ∪ B) to pad the sets to the
right size. We use the probabilistic method to show that a good set system ex-
ists. Select a set S randomly by letting every element x ∈ {1, 2, . . . , u} be in the
set with probability p = a

a+b . Then, for any pair A,B, the probability that A ⊂ S

and B ⊂ S is pa(1 − p)b. The system S will be formed of sets chosen indepen-
dently at random, so the probability that there is no good S for some A and B is
(1 − pa(1 − p)b)|S| ≤ exp(−pa(1 − p)b|S|). The number of choices for A and B is(
u
a

)(
u−a
b

)
≤ ua+b. So the probability that there is no good set in S for any A,B

is at most ua+b exp(−pa(1 − p)b|S|) = exp((a + b) lnu − pa(1 − p)b|S|). As long as
this probability is less than 1, such a system S exists. So we want (a + b) lnu <
pa(1 − p)b|S| = ( a

a+b )
a( b

a+b )
b|S|. We want to choose a system of size greater than

(a+b)a+b+1 lnu
aabb

. Then lg |S| = Θ((a + b + 1) log2(a + b) + lg lg u − a log2 a − b log2 b).

Assume by symmetry that a ≤ b. Then lg |S| = Θ(lg lg u + a lg b
a + a · b

a log2(1 + a
b )).

Let t = b
a ; then t log2(1 + 1

t ) = log2((1 + 1
t )

t) → log2 e as t → ∞. We then have
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b
a log2(1 + a

b ) = Θ(1), so our result simplifies to lg |S| = Θ(lg lg u + a lg(b/a)). It is

well known that a lg(b/a) = Θ
(
lg
(
a+b
a

))
for a ≤ b.

We apply this lemma with parameters r, w, and 2b. First, we encode r and w,
using O(b) bits. The encoding and decoding algorithms can simply iterate over all
possible systems S for the given r and w, and choose the first good one (in the
sense of the lemma). Given this unique choice of a system, a separator between
R and W is the index of an appropriate set in the system. This index will occupy
O
(
lg lg(2b) + lg

(
r+w
r

))
= O(lg b + s) bits.

It remains to show that this information is enough to encode the sequence of
queried partial sums. We simulate the data structure for the interval [j, k], and
prove by induction on time steps that all cell writes made by these operations are
correctly determined, and all partial sums appearing in verify-sum’s are recovered.
Updates are easy to handle, because their parameters are known given G, and they are
deterministic. Thus, we can simply simulate the update algorithm. We are guaranteed
that all cells that are read and have a chronogram in [i, j − 1] appear in C, so we can
identify these cells and recover their contents. All other cells have a known content
given G, so we can correctly simulate the update.

In the case of verify-sum, we do not actually know the sum passed to it, so we
cannot simply simulate the algorithm. Instead, we try all partial sums that could
be passed to the query, and for each one try all possible execution paths that the
data structure can explore through nondeterminism. The cell probes made while
simulating such a thread fall in one of the following cases:

• The cell was written by the data structure after time j. This case can be
identified by looking at the set of cells written during the simulation. By the
induction hypothesis, we have correctly determined the cell’s contents.

• The cell is in C. We recover the contents from the encoding.
• The cell is on R’s side of the separator between R and W . Then, it was not

written during [i, j− 1], and thus it has the old value before time i. Given G,
everything is fixed before time i, so we know the cell’s contents.

• The cell is on W ’s side of the separator. Then this thread of execution cannot
be in the computation history chosen by the encoding algorithm. We abort
the thread.

For each query, there exists a unique partial sum for which is should accept. Fur-
thermore, one accepting thread is included in the computation history of the encoder.
Thus, we identify at least one thread which accepts and is not aborted because of
the last case above. Because the data structure is correct, all accepting threads must
be for the same partial sum, so we correctly identify the sum. By definition of the
nondeterministic model, the cell writes are identical for all accepting threads, so we
correctly determine the cell writes, as well.

It should be noted that, even though the size of the encoding depends only on the
characteristics of one accepting thread per query, the separator allows us to handle
an arbitrary number of rejecting threads. All such threads (including all threads for
incorrect partial sums) are either simulated until they reject, or they are aborted.

6.4. Handling Monte Carlo randomization. This section shows that the
logarithmic lower bound for dynamic connectivity is also true if we allow Monte Carlo
randomization with two-sided error probability at most n−c, for constant c (that is,
the data structure must be correct with high probability). The idea is to make the
decoding algorithm from the previous section use only a polynomial number of calls
to data-structure operations.
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Assume for now that the data structure is deterministic. The previous decoding
algorithm simulates a large number of primitive connectivity operations for every
query. A partial sum is recovered by simulating verify-sum for all possible sums.
Remember that a partial sum in the dynamic-connectivity problem is a permutation
in S√

n, obtained by composition of the permutations up to a certain column k. Thus,
there are (

√
n )! partial sums to try—a huge quantity. However, we can recover the

partial-sum permutation by simulating at most (
√
n )2 connected queries: it suffices

to test connectivity of every point in the first column with every point on the kth
column. First, the decoder simulates connected queries between the first node in
column one and every node in column k. Exactly one of these queries was executed
by the encoder so that query should accept. The other queries will reject or be
aborted. Now the writes made by the accepting query are incorporated in the data
structure. The decoder continues to simulate query calls between the second node in
column one and all nodes in column k, and so on.

Now assume that the data structure makes an error with probability at most
n−c for a sufficiently large constant c. We make the encoding randomized; the random
bits are those used to initialize the memory of the data structure. We assume both the
encoder and the decoder receive the same random bits, so both can simulate the same
behavior of the data structure. By the minimax principle, we can fix those random
bits if we are interested only in the expected size of the encoding for a known input
distribution (which is the case).

The decoding algorithm described above will work if all correct queries accept,
and all incorrect queries would reject if they were executed instead of the correct
one. We can simulate the execution of any query, or abort it only if it is not one
of the correct queries. So if all incorrect queries reject, their simulation will either
reject or be aborted. Because we consider only polynomial sequences of operations, we
simulate at most poly(n) queries (including the incorrect ones). The probability that
any of them will fail is at most n−c′ for some arbitrarily large constant c′ (depending
on c). Because the decoder has the same coins as the encoder, the encoder can predict
whether the decoder will fail. Thus, it can simply add one bit saying whether the old
encoding is used (when the decoder works), or the entire input is simply included in
the encoding (if the old decoder would fail). The expected size of the encoding grows
by at most 1+n−c′ ·poly(n) < 2 for sufficiently large c′. So the bounds of Lemma 6.1
remain the same. Then, the bounds and trade-offs derived for dynamic connectivity
hold even if the data structure answers correctly with high probability.

7. Handling a higher word size. For the partial-sums problem, it is natural
and traditional to consider the case δ = o(b). For ease of notation, we will let B = b

δ .
For dynamic connectivity, our motivation comes from external-memory models. For
this problem, a “memory cell” is actually an entire page, because that is the unit of
memory that can be accessed in constant time. In this case, B is what is usually
referred to as “page size”; the number of bits in a page is b = B · lg n. For both
problems, the lower bound we obtain is Ω(logB n).

We note that the analysis from the previous sections gives a tight bound on
the number of bits that must be communicated: Ω(δ lg n). Given that we can pack
b bits into a word, it is straightforward to conclude that Ω( δb lg n) = Ω( lgn

B ) read

instructions must be performed. Our strategy for achieving Ω( lgn
lgB ) is to argue that

an algorithm cannot make efficient use of all b bits of a word if future queries are
sufficiently unpredictable. Intuitively speaking, if we need δ bits of information from
a certain time epoch to answer a query, and there are t · b

δ possible future queries
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that would also need δ bits of information from the same epoch (t > 1), a cell probe
cannot be very effective. No matter what information the cell probe gathers, we have
a probability of at most 1/t that it has gathered all the information necessary for a
random future query, so with constant probability the future query will need another
cell probe. The reader will recognize the similarity, at an intuitive level, with the
round-elimination lemma from communication complexity [MNSW98, SV]. Also note
that our proof strategy hopelessly fails with any deterministic sequence of indices, such
as the bit-reversal permutation. Thus, we are identifying another type of hardness
hidden in our problems.

Unfortunately, there are two issues that complicate our lower bounds. The first
is that, for dynamic connectivity, we need to go beyond the verify-sum abstraction,
and deal with connected queries directly. To see why, remember that a verify-sum

macro-query accesses a lot of information (Θ(
√
n lg n) bits) in a very predictable fash-

ion, depending on just one query parameter. Thus, we do not have the unpredictability
needed by our lower bound. The second complication is that, for the partial-sums
problem, we can handle verify-sum only when δ = Ω(b). When δ = o(lg n), the in-
formation per query is not enough to hide the cost of the separators from Lemma 6.2.
However, we can still obtain lower bounds for sum and select, without nondetermin-
ism, using a rather simple hack.

In section 7.1, we describe a new analysis for adjacent intervals of operations,
which is the gist of our new lower bounds. In section 7.2, we show how this new lower
bound can be used for the partial-sums problems, whereas in section 7.3, we show
how to apply it to dynamic connectivity.

7.1. A new lower bound for adjacent intervals. We now consider an ab-
stract data-structure problem with two operations, update and query. We do not
specify what update does, except that it receives some parameters and behaves de-
terministically based on those. A query receives two parameters i and q and returns
a Boolean answer. We refer to i as an index. For any admissible i, there exists a
unique q which makes the query accept. The parameter q is a δ-bit value, where δ
is a parameter of the problem; we let B = b/δ. The implementation of query can
be nondeterministic. We assume that the hard instance of the problem comes from
some random distribution, but that the pattern of updates and queries is determin-
istic. In the hard instance, each query receives the q which makes it accept. We
will assume that the random features of each operation are chosen by the distribu-
tion independently of the choices for other operations. Though we do not really need
this assumption, it is true in both problems we consider and, assuming independence,
simplifies exposition.

Now consider two intervals of operations [i, j − 1] and [j, k], and let L be the
number of queries in the second interval. We make an information-theoretic assump-
tion, which we will later prove for both the partial-sums and dynamic-connectivity
problems. To describe this assumption, pick a random t ∈ [j, k] such that the tth
operation is a query. Also pick a set Q of BL random queries that could have been
generated as query t. Now, imagine simulating each such query starting with the state
of the data structure at time t− 1. Our assumption is essentially that the correct q’s
for all original queries from [j, k], plus the simulated queries in Q, have high entropy.
More specifically, let Z be the random variable specifying all updates outside [i, j−1]
and the indices for all queries, including those in Q. We assume that the vector of q’s
has entropy Ω(BLδ) given Z.

Let w be the number of write instructions executed during the first interval, and
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let r be the number of read instructions executed during the second interval. Also let
c be the number of read instructions executed during the second interval that read
cells last written during the first interval. Under the assumptions above, we prove

E[c] = Ω(L) −O( sb ), where s = (B · E[r]) log2(1 + E[w]
B·E[r] ).

We now outline the proof strategy. The probability that query t reads at least

one cell from [i, j − 1] is at most E[c]
L . If E[c] were small, so would this probability.

That would mean that a large fraction of the queries from Q (random queries that
could be executed at time t) would not need to read any cell written during [i, j]. On
the other hand, the queries recover Ω(BLδ) = Ω(Lb) bits of information about the
updates in the left interval. Because most queries don’t need to read another cell,
most of this information must have already been recovered by the cell probes made
in [j, t− 1]. There are at most E[c] probes in expectation, each reading b bits, so the
recovered information is not enough when E[c] is small.

Encoding algorithm. As the first step of the formal proof, we describe the al-
gorithm encoding the correct q’s. First, simulate the entire execution of the data
structure, with the real query at time t. For each query, include an arbitrary accept-
ing thread in the computation history. Based on this computation history, consider
the following sets:

C = cells that are written during [i, j − 1] and read during [j, k].

W = cells that are written during [i, j − 1] but not read during [j, k].

R1 = cells that are read during [j, k], but never written during [i, j − 1].

Now simulate the queries in Q starting from the state of the data structure at
time t − 1. As before, we only pass correct parameters to these queries. Call easy
queries the queries for which there exists an accepting thread which does not read
any cell in W ; call such a thread a good thread. The rest of the queries are hard
queries; let h be the number of hard queries. Let R2 be the union of the cells read by
an arbitrary good thread of every easy query, from which we exclude the cells in C.
By the definition of easy queries, R2 is disjoint from W . Let R = R1 ∪ R2; R is also
disjoint from W .

The encoding has four parts as follows:

1. Encode c and, for each cell in C, the address and contents of the cell;
2. a separator (as given by Lemma 6.2) between R and W ;

3. encode h, and the set of hard queries. The set takes lg
(|Q|

h

)
= lg

(
BL
h

)
bits;

4. the correct q for each hard query, as an array of size h. This takes hδ bits.

The third part of the encoding could be avoided for our current problem, because
the separator can be used to recognize hard queries. However, we will later consider
a variation in which we discard the separator, and then encoding which queries are
hard could no longer be avoided.

Decoding algorithm. We now describe how to recover the correct q’s given Z and
the previous encoding. By definition, a separator of R and W is also a separator for
R1 and W . Given this separator and complete information about C, we can simulate
the real operations in the second interval, as argued in Lemma 6.1, and recover their
correct q’s. Now we have to recover the correct parameters for the queries in Q. For
hard queries, this is included in the encoding. For each easy query, each possible q,
and all threads, we try to simulate the thread starting with what we know about the
data structure at time t−1. Each cell that is probed falls into one the following cases:

• The cell was written during [j, t−1]. Because we simulated the data structure
in this interval, we can identify this condition and recover the cell contents.

• The cell is in C. We recover the contents from the encoding.
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• The cell is on R’s side of the separator between R and W . Then, it was
not written during [i, j − 1], and we can recover the cell contents because Z
includes perfect information before time i.

• The cell is on W ’s side of the separator. Then, this thread of execution cannot
be among the chosen good threads for the easy queries, so we abort it.

For the chosen good thread of an easy query, the encoder included its probes
outside of C in the set R2, so simulation of this thread is never aborted. Thus, for
each easy query, we find at least one accepting thread, and recover the correct q.

Analysis. We want to bound the size of the separator. We have |W | ≤ w, |R1| ≤ r,
so it remains to bound |R2|. In expectation over a random t and a random choice of

the queries in the second interval, the number of cells read by query t is at most E[r]
L .

We are simulating a set of BL queries as if they happened at time t. In expectation,

the total number of cell probes performed by these is at most BLE[r]
L = B · E[r],

which also bounds E[|R2|]. Then E[|R|] ≤ E[|R1|] + E[|R2|] = O(B)E[r]. To specify
the separator, we need O(b) bits to write |W | and |R|, and then, by Lemma 6.2,

O
(
lg b+log2

(|W |+|R|
|R|

))
bits for the index into the system of separators. The total size

is O(b+ |R| log2(1+ |W |
|R| )) bits. The function (x, y) �→ x log2(1+ y

x ) is concave, so the

expected size is upper bounded by moving expectations inside. Then, the expected

size of the separator is O(b + (B · E[r]) lg(1 + E[w]
B·E[r] )) = O(b + s).

To analyze the rest of the encoding, we need to bound h. For a random t, the
expected number of cell probes from the first interval that are made by query t is at

most E[c]
L . This means that a random query at position t is bad with probability at

most E[c]
L . Thus, E[h] = BLE[c]

L = B · E[c]. Explicitly encoding the correct q’s for
the hard queries takes E[h]δ = b · E[c] bits in expectation. This is the same as the
space taken to encode the contents of cells in C. Encoding which queries are hard
takes space O(b) + lg

(
BL
h

)
= O(b + h lg BL

h ). The function x → x lg γ
x is concave for

constant γ, so the expected size is at most O(b+E[h] lg BL
E[h] ) = O(b+B ·E[c] lg L

E[c] ).

We have shown an upper bound of O(E[c]b+ s+B ·E[c] lg L
E[c] ) on the expected

total size of the encoding. Let ε > 0 be an absolute constant to be determined. If
E[c] ≥ εL, there is nothing to prove. Otherwise, observe that x �→ x log2(2+ γ

x ) grows
with x for constant γ, so the last term of the encoding size becomes O(BεL lg 1

ε ). The
assumed lower bound on the size of the encoding is Ω(BLδ) = Ω(bL), so we obtain
E[c] = Ω(L)−O( εδL lg 1

ε )−O( sb ). Note that ε lg 1
ε goes to zero as ε goes to zero. Then,

assuming δ ≥ 2, there is an absolute constant ε such that the second term of the lower
bound is a constant fraction of the first term. We thus obtain E[c] = Ω(L) −O( sb ).

Deterministic queries. Now we consider a variation of our original problem, in
which queries are deterministic, and they return q, as opposed to verifying a given q.
The only change in our analysis is that we do not need the separator. Indeed, each
query can be simulated unambiguously, because it only receives a known index, and
it is deterministic. Then, the separator term in our lower bound disappears, and we
obtain E[c] = Ω(L).

7.2. The partial-sums problem. Our hard instance is the same as in sec-
tion 5.5: we consider blocks of tq random updates and tu queries to random indices.
We begin by showing a lower bound for two intervals based on the analysis from the
previous section. Let c, r, w be as defined in the previous section.

Lemma 7.1. Consider two adjacent intervals of operations such that the left
interval contains B · L updates, the right interval contains L queries, and overall the
intervals contain O( 3

√
n ) operations. The following lower bounds hold:
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• In the case of sum queries, E[c] = Ω(L).
• In the case of verify-sum queries, E[c] = Ω(L) − O( sb ), where we define

s = (B · E[r]) log2(1 + E[w]
B·E[r] ).

Proof. This follows from the analysis in the previous section, as long as we can
show the information-theoretic assumption made there. Specifically, we pick a query
from the second interval, and imagine simulating BL random queries in its place. We
need to show that the partial sums of the original queries and these virtual queries
have entropy Ω(BLδ), given the indices of all queries, and the indices and Δ values
for all queries outside the left interval (the variable Z from the previous section). To
prove this, we apply Lemma 5.3. Because that lemma deals only with the partial sums
(a feature of the problem instance) and not with computation, it doesn’t matter that
we are simulating the BL queries at the same time. The partial sums would be the
same if the queries ran consecutively. Then, the lemma applies and shows our entropy
lower bound. Note that the variable G in Lemma 5.3 describes all queries, including
the simulated ones (which the lemma thinks are consecutive). This is exactly the
variable Z.

We now show how to use this lemma to derive our lower bounds. Our analysis is
similar to that of section 6.2, with two small exceptions. The first is that there is an
inherent asymmetry between the left and right intervals in Lemma 7.1. Because of
this, we can handle only the case tq = O(tu). The second change is that the definition
of s is somewhat different from that in Lemma 6.1; roughly, s is larger because E[r]
is multiplied by B. We will show lower bounds of the form tq(lgB + lg tu

tq
) = Ω(lg n).

We consider a balanced tree with branching factor β = 2B tu
tq

over m = Θ( 6
√
n )

blocks. Because, for max{tq, tu} = Ω( 6
√
n ), our trade-off states min{tq, tu} = Ω(1), we

may assume tu + tq = O( 6
√
n ). Then there are O( 3

√
n ) operations in total, as needed.

We will consider right intervals formed by a node of the tree, and left intervals formed
by all its left siblings. The choice of β gives the right proportion of updates in the left
interval, compared to queries in the right interval, for any node which is in the right
half of its siblings. Then, we can apply Lemma 7.1.

First, consider the case of sum queries, so there is no term depending on s. Note
that the Ω(L) term is linear in the number of queries, so summing it over the entire tree
yields a lower bound on the total time of E[T ] = Ω(mtu logβ n). By the definition of

the blocks, E[T ] = m·2tutq, so tq = Ω(logβ n), which is equivalent to tq(lgB+lg tu
tq

) =

Ω(lg n).
Now we consider nondetermistic verify-sum queries, assuming δ = Ω(lg n).

There is a new term in the lower bound on E[T ], given by the sum of the s terms
over all nodes. First, consider the sum for all nodes on one level:

∑
si =

∑
(B ·

E[ri]) log2(1+ E[wi]
B·E[ri]

). We have
∑

ri ≤ T , because each read is counted for the node

it is under, and
∑

wi ≤ βT , because each write is counted for the siblings of the
node it is under. These inequalities must also hold in expectation, so

∑
B · E[ri] ≤

B · E[T ] and
∑

E[wi] ≤ βE[T ]. Because the function (x, y) �→ x log2(1 + y
x ) is

concave,
∑

si is maximized when E[ri] and E[wi] are equal. Then
∑

si ≤ B ·
E[T ] log2(1+ βE[T ]

B·E[T ] ) = O(E[T ]B lg(tu/tq)). When we sum this over O(logβ n) levels,

we obtain E[T ] ·O(B lg(tu/tq)
lgn

lg(Btu/tq)
) = E[T ] ·O(B lg n).

Thus, our overall lower bound becomes E[T ] = Ω(mtu logβ n) −O( 1
bE[T ]B lg n).

Expanding B, E[T ] = Ω(mtu logβ n) − O(E[T ] lgn
δ ). For δ = Ω(lg n), we obtain

E[T ] = Ω(mtu logβ n), which is the same lower bound as for sum queries. This bound
holds for verify-sum queries, even with nondeterminism, and, as shown in section 6.1,
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also for select queries.

For the case δ = O(lg n), we can obtain the same lower bound on select by a
relatively simple trick. This means that the trade-off lower bound for select holds for
any δ, though we cannot prove it in general for verify-sum. The trick is to observe
that for small δ (e.g., δ < 1

3 lg n), we can stretch (polynomially) an instance of sum
into an instance of select. Because we already have a lower bound for sum, a lower
bound for select follows by reduction.

Consider the sum problem on an array A[0 . . 3
√
n − 1], where each element has

δ bits. This implies 0 ≤ A[i] < 3
√
n, and any partial sum is less than n2/3. Now we

embed A into an array A′[0 . . n−1] by A′[i·n2/3] = A[i]. The n2/3−1 spacing positions
between elements from A are set to 1 in the initialization phase, and never changed
later. An update in A translates into an update in A′ in the appropriate position.
Now assume we want to find σ =

∑k
i=0 A[i]. We run select((k+ 1)(n2/3 − 1)) in A′.

We have
∑t+k·n2/3

j=0 A[j] = t + σ + k(n2/3 − 1), for any t < n2/3. Then, if select

returns t + k · n2/3, we know that t + σ = n2/3 − 1, so we find σ.

7.3. Dynamic connectivity. The graph used in the hard sequence is the same
as the one before (Figure 6.1):

√
n permutation boxes, each permuting

√
n “wires.”

Let tu be the running time of an update (edge insertion or deletion) and tq the
running time of a query. We handle only tq ≤ tu. Our hard sequence consists of
blocks of operations. Each block begins with a macro-update: for an index k (chosen
as described below), remove all edges in the kth permutation box, and insert edges
for a random permutation. Then, the block contains tu

tq

√
n connected queries. Each

query picks a random node in the first column and a random index k, and calls
connected on the node in the first column and the node on the kth column which is
on the same path. This means that all queries should be answered in the affirmative;
the information is contained in the choice of the node from the kth column.

We still have to specify the sequence of indices of the macro-updates. We use
a deterministic sequence to ensure that updates which occur close in time touch
distant indices. This significantly simplifies the information-theoretic analysis. Our
hard sequence consists of exactly

√
n blocks. Each macro-update touches a different

permutation box; the order of the boxes is given by the bit-reversal permutation (see
section 5.6) of order

√
n. Now consider a set of indices S = {i1, i2, . . .} sorted by

increasing ij . We say S is uniformly spaced if ij+1 − ij =
√
n/(|S| − 1) for every j.

Lemma 7.2. Consider two adjacent intervals of operations such that the second
one contains L queries, and the indices updated in the first interval contain a uniformly
spaced subset of cardinality Θ(BL/

√
n ). Then E[c] = Ω(L) − O( sb ), where s =

B · E[r] lg(1 + E[w]
B·E[r] ).

Proof. This lemma follows from section 7.1, if we show the information-theoretic
assumption used there. For our problem, δ = Θ(lgn). Imagine picking a random
query from the right interval and simulating BL random queries in its place. The
variable Z denotes the random choices for all queries and for updates outside the left
interval. We need to show that the entropy of the correct parameters for all queries
in the right interval, including the simulated ones, given Z, is Ω(BL lg n).

Remember that all updates are to different boxes, so an update is never over-
written. For this reason, our proof is not concerned with the precise order of updates
and queries in the right interval, and there will be no difference between the real and
simulated queries. Let the uniformly spaced set of update indices be S = {i1, i2, . . .}.
We let Bj be the set of queries from the right interval (either real or simulated) whose
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random column is in [ij , ij+1−1]. For notational convenience, we write H(Bj) for the
entropy of the correct parameters to the set of queries Bj . Basic information theory
states that H(

⋃
j Bj | Z) =

∑
j H(Bj | B1, . . . , Bj−1, Z). Thus, to prove our lower

bound, it suffices to show H(Bj | B1, . . . , Bj−1, Z) = Ω(
√
n lg n) for all j.

Let Zj be a random variable describing Z and, in addition, the random permu-
tations for all updates in the left interval with indices below ij . Also, if there are
any updates with indices in [ij + 1, ij+1 − 1], include their permutation in Zj (these
are updates outside the uniformly spaced set). Note that H(Bj | B1, . . . , Bj−1, Z) ≥
H(Bj | Zj), because conditioning on Zj also fixes the correct parameters for queries
in B1, . . . , Bj−1.

Now let us look at a query from Bj . The query picks a random node in the first
column. All permutations before column ij are fixed through Zj , so we can trace
the path of the random node until it enters box ij . Assume we have the correct
parameter of the query, i.e., the node from column k to which the initial node is
connected. Permutations between column ij and ij+1 are also fixed by Zj , so we can
trace back this node until the exit of box ij . Thus, knowing the correct parameter
is equivalent to knowing some point values of the permutation ij . As long as the
nodes chosen in the first column are distinct, we will learn new point values. If we
query d distinct point values of the random permutation, the entropy of the correct
parameters is Ω(d lg n), for any d.

Now imagine an experiment choosing the queries sequentially. This describes a
random walk for d. In each step, d may remain constant or it may be incremented.

Because of the uniform spacing, the probability that a query ends up in Bj is Ω(
√
n

BL ).
If d ≤

√
n/2, with probability at least half, the node chosen in the first column is

new. Then, for d ≤
√
n/2, the probability that d is incremented in Ω(

√
n

BL ). We do
BL independent random steps, and we are interested in the expected value of d at
the end. The waiting time until d is incremented is O(BL√

n
). For a sufficiently small

constant ε, the expected time until d reaches ε
√
n is 1

2BL. Then, with probability
at least half, d ≥ ε

√
n after BL steps. This implies the expected value of d after

BL steps is Ω(
√
n ), so H(Bj | Zj) = Ω(

√
n lg n).

To use this lemma, we construct a tree with a branching factor β ≥ 2B tu
tq

, rounded

to the next power of 2. The right interval is formed by a node, and the left interval
by the node’s left siblings. We consider only the case when the node is among the
right half of its siblings. Now we argue there is a uniformly spaced subset among the
indices updated in the left interval. Note that these include all indices from the first
half of siblings. Because β is a power of 2, a root-to-leaf path in the tree is tracing a
bit representation of the leaf’s index, in chunks of log2 β bits. Because update indices
are the reverse of the leaf’s index, all the leaves in the subtrees of the first half of the
children have the same low order bits in the indices. On the other hand, the high
order bits assume all possible values. So the indices from the first half of the children
are always a uniformly spaced subset of indices.

Now we can apply Lemma 7.2, and we sum over all nodes of the tree to obtain
our lower bound. By the analysis in the previous section, the sum of the s terms
only changes the bound by a constant factor. The Ω(L) term of the lower bound
is linear in the number of queries, so by summing over all levels we obtain E[T ] =
Ω(

√
n · tu

tq

√
n · logβ n). Because E[T ] =

√
n(tu

√
n + tq

tu
tq

√
n ) = O(

√
n · tu

√
n ), we

obtain tq = Ω(logβ n), which is our desired lower bound.
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8. Upper bounds for the partial-sums problem. As mentioned before, our
partial-sums data structure can support a harder variant of updates. We will allow
the A[i]’s to be arbitrary b-bit integers, while update(i,Δ) implements the operation
A[i] ← A[i] + Δ, where Δ is a δ-bit (signed) integer.

Our data structure is based on a balanced tree of branching factor B (to be deter-
mined) with the elements of the array A[1 . . n] in the leaves. Assume we pick B such
that we can support constant-time operations for the partial-sums problem in an ar-
ray of size B. Then, we can hold an array of size B in every node, where each element
is the total of the leaves in one of the B subtrees of our node. All three operations
in the large data structure translate into a sequence of operations on the small data
structures of the nodes along a root-to-leaf path. Thus, the running time is O(logB n).
We will show how to handle B = Θ(min{b/δ, b1/5}). Then lgB = Θ(lg(b/δ)), which
implies our upper bound.

It remains to describe the basic building block, i.e., a constant-time solution for
arrays of B elements. We now give a simple solution for update and sum. In the
next section, we develop the ideas necessary to support select. We will conceptually
maintain an array of partial sums S[1 . . B], where S[k] =

∑k
i=1 A[i]. To make it

possible to support update in constant time, we maintain the array as two separate
components, V [1 . . B] and T [1 . . B], such that S[i] = V [i]+T [i]. The array V will hold
values of S that were valid at some point in the past, while more recent updates are
reflected only in T . We can use Dietz’s incremental rebuilding scheme [Die89] to keep
every element of B relatively up to date: on the tth update, we set V [t mod B] ←
V [t mod B] + T [t mod B] and T [t mod B] ← 0. This scheme guarantees that every
element in T is affected by at most B updates, and thus is bounded in absolute value
by B · 2δ.

The key idea is to pack T in a machine word. We represent each T [i] by a range
of O(δ + lg n) bits from the word, with one zero bit of padding between elements.
Elements in T also can be negative; in this case, each value will be represented in the
standard two’s complement form on its corresponding range of bits. Packing T in a
word is possible as long as B = O( b

δ+lg b ). We can read and write an element of T

using a constant number of standard RAM operations (bitwise Boolean operations
and shift operations).

To complete our solution, we need to implement update in constant time. Using
the packed representation, we can add a given value to all elements V [i], i ≥ k, in
constant time. Refer to Table 8.1. First, we create a word with the value to be
added appearing in all positions corresponding to the elements of V that need to be
changed. We can compute this word using a multiplication by an appropriate binary
pattern. The result is then added to the packed representation of V ; all the needed
additions are performed in one step, using word-level parallelism. Because we are
representing negative quantities in two’s complement, additions may carry over, and
set the padding bits between elements; we therefore force these buffer bits to zero
using a bitwise and with an appropriate constant mask.

8.1. Selecting in small arrays. To support select, we use the classic result
of Fredman and Willard [FW93] that forms the basis of their fusion-tree data struc-
ture. Their result has the following black-box functionality: for B = O(b1/5), we can
construct a data structure that can answer successor queries on a static array of B in-
tegers in constant time. As demonstrated in [AMT99], the lookup tables used by the
original data structure can be eliminated if we perform a second query in the sketch
representation of the array. The data structure then can be constructed in O(B4) time.
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Table 8.1

Performing update(2,Δ) at the word level. Here V has 5 elements, each 5 bits long.

V [4] 0 V [3] 0 V [2] 0 V [1] 0 V [0] old packed representation of V

00001 0 00001 0 00001 0 00001 0 00001 constant pattern

00001 0 00001 0 00001 0 00000 0 00000 shift right, then left by same amount

Δ argument given to update

Δ 0 Δ 0 Δ 0 00000 0 00000 multiply the last two values

V ′[4] ? V ′[3] ? V ′[2] ? V [1] ? V [0] add to the packed representation of V

11111 0 11111 0 11111 0 11111 0 11111 constant cleaning pattern

V ′[4] 0 V ′[3] 0 V ′[2] 0 V ′[1] 0 V ′[0] final value of V , obtained by bitwise and

As before, we break partial sums into the arrays V and T . We store a fusion
structure that can answer successor queries in V . Because the fusion structure is static,
we abandon the incremental rebuilding of V in favor of periodic global rebuilding. By
the standard deamortization of global rebuilding [dBSvKO00], we can then obtain
worst-case bounds. Our strategy is to rebuild the data structure completely every
B4 operations: we set V [i] ← V [i] + T [i] and T [i] ← 0, for all i, and rebuild the
fusion structure over V . While servicing a select that doesn’t occur immediately
after a rebuild, the successor in V found by the fusion structure might not be the
appropriate answer to the select query, because of recent updates. We will describe
shortly how the correct answer can be computed by also examining the array T ; the
key realization is that the real successor must be close to the successor in V in terms
of their partial sums.

Central to our solution is the way we rebuild the data structure every n4 opera-
tions. We begin by splitting S into runs of elements satisfying S[i+1]−S[i] < B4 ·2δ;
recall that we must have S[i] < S[i + 1] for the select problem. We denote by
rep(i) the first element of the run containing i (the representative of the run); also
let len(i) be the length of the run containing i. Each of these arrays can be packed
in a word, because we already limited ourselves to B = O(b1/5). Finally, we let
every V [i] ← V [rep(i)] and T [i] ← S[i] − V [rep(i)]. Conveniently, T can still be
packed in a word. Indeed, the value stored in an element after a rebuild is at most
B · (B4 · 2δ), and it can subsequently change by less than B4 · 2δ. Therefore, it takes
O(lgB + δ) bits to represent an element of C, so we need only impose the condition
that B = O(min{b/δ, b1/5}).

It remains to show how select(σ) can be answered. Let k denote the successor
in V identified by the fusion structure; we have V [k − 1] < σ ≤ V [k]. We know that
k is the representative of a run, because all elements of a run have equal values in V .
By construction, runs are separated by gaps of at least B4 ·2δ, which cannot be closed
by B4 updates. Thus, the answer to the query must be either an index in the run
starting at k, or an index in the run ending at k−1, or exactly equal to k+len(k). We
can distinguish between these cases in constant time, using two calls to sum followed
by comparisons. If we identify the correct answer as exactly k + len(k), we are done.

Otherwise, assume by symmetry that the answer is an index in the run starting
at k. Because elements of a run have equal values of V , our task is to identify the
unique index i in the run satisfying T [i − 1] < σ − V [k] ≤ T [i]. Now we can employ
word-level parallelism to compare all elements in T with σ − V [k] in constant time.
This is similar to a problem discussed by Fredman and Willard [FW93], but we must
also handle negative quantities. The solution is to subtract σ − V [k] in parallel from
all elements in T ; if elements of T are oversized by 1 bit, we can avoid overflow. The
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sign bits of every element then give the results of the comparisons. The answer to
the query can be found by summing up the sign bits corresponding to elements in
our run, which indicates how many elements in the run were smaller than σ − V [k].
Because these bits are separated by more than lg b zeros, we can sum them up using
a multiplication with a constant pattern, as described in [FW93].

9. Reductions to other dynamic graph problems. It is relatively easy to
dress up dynamic connectivity as other dynamic graph problems, obtaining logarith-
mic lower bounds for these. Most problems on undirected graphs admit polyloga-
rithmic solutions, so such lower bounds are interesting. The problems discussed in
this section are meant only as examples and not as an exhaustive list of possible
reductions.

9.1. Connectivity of the entire graph. The problem is to maintain a dynamic
graph along with the answer to the question, “Is the entire graph connected?”. We
obtain a lower bound of Ω(lgn) even for plane graphs, which implies the same lower
bound for counting connected components. The dynamic-connectivity algorithms
mentioned in the introduction also can maintain the number of connected components,
so the same almost-tight upper bounds hold for this problem.

We use the same graph as in the dynamic-connectivity lower bound, except that
we add a new vertex s which is connected to all nodes from the first column. The
updates in the connectivity problem translate into identical updates in our current
problem. The hard instance of connectivity asks queries between a vertex u on the
first column, and an arbitrary vertex v. To simulate these, we disconnect u from s,
connect v to s, and ask whether the entire graph is connected; after this, we undo
the two changes to the graph. If u and v were on distinct paths, u’s path will now be
disconnected from the rest of the graph. Otherwise, the edge (v, s) will reconnect the
path to the rest of the graph.

The graph we consider is a tree, so it is plane regardless of the embedding of the
vertices. During a query, if u and v are on the same path, we create an ephemeral
cycle. However, the (v, s) edge can simply be routed along the old path s → u � v,
so the graph remains plane.

9.2. Dynamic MSF. The problem is to maintain the cost of the MSF (mini-
mum spanning forest) in a weighted dynamic graph. The problem can be solved in
O(lg4 n) time per operation [HdLT01]. In plane graphs, the problem admits a solution
in time O(lg n) [EIT+92]. We obtain a lower bound of Ω(lgn), which holds even for
plane graphs with unit weights. Our bound follows immediately from the previous
bound. If all edges have unit weight and the graph is connected, the weight of the
MSF is n− 1. If the graph is disconnected, the weight of the MSF is strictly smaller.

9.3. Dynamic planarity testing. The problem is to maintain a dynamic plane
graph, and test whether inserting a given edge would destroy planarity. Actual in-
sertions always maintain planarity; an edge (u, v) is given along with an order inside
the set of edges adjacent to u and v. The problem can be solved in O(lg2 n) time per
operation [IPH93]. A lower bound of Ω(lgn / lg lg n) appears in [FH98]. We obtain a
lower bound of Ω(lgn).

Because the graph from our lower bound proof is always a collection of disjoint
paths, it is plane under any embedding. Consider the complete bipartite graph K3,3,
from which an edge (s, t) is removed. Without that edge, this annex graph is also
planar. To implement connectivity queries between two nodes u and v, we first insert
the edge (u, s) temporarily and then query whether inserting the edge (v, t) would
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destroy planarity. If u and v are on distinct paths, the graph created by adding (u, s)
and (v, t) is planar and can be embedded for any relative order of these two edges (the
edges of K3,3 \ {(s, t)} can simply go around the two paths containing u and v). If u
and v are on the same path, we would be creating a subdivision (graph expansion)
of K3,3, so the graph would no longer be planar (by Kuratowski’s theorem).

10. Open problems. This paper provides powerful techniques for understand-
ing problems which have complexity around Θ(lgn). The chronogram technique had
already proven effective for problems with complexity Θ( lgn

lg lg n ). However, current

techniques seem ineffective either below or above these thresholds. Below this regime,
we have integer search problems, such as priority queues. Looking at higher complexi-
ties, we find many important problems which seem to have polylogarithmic complexity
(such as range queries in higher dimensions) or even nΩ(1) complexity (dynamic prob-
lems on directed graphs). It is also an important complexity theoretic challenge to
obtain an ω(lg n) lower bound for a dynamic language membership problem.

It is also worth noting that our bounds do not bring a complete understanding
of the partial-sums problem when δ = o(b). First, we cannot prove a tight bound for
verify-sum. A bound of Ω(lgn / lg b), for any δ, is implicit in [HR03] and also can be
reproved using our technique. Second, we do not have a good understanding of the
possible trade-offs. For select, this seems a thorny issue, because of the interaction
with the predecessor problem. Even for sum, we do not know what bounds are possible
in the range tu < tq. It is tempting to think that the right bound is tu(lg

tq
tu

+ lg b
δ ) =

Θ(lg n), by symmetry with the case tu > tq. However, buffer trees [Arg03] give better
bounds for some choices of parameters, e.g., when b = Ω(lg1+ε n). This problem seems
to touch on a fundamental issue: a good lower bound apparently needs to argue that
the data structure has to recover a lot of information about the indices of updates, in
addition to the Δ values.

It would be very interesting to obtain a logarithmic upper bound for dynamic
connectivity matching our lower bound. It also would be interesting to determine the
complexity of decremental connectivity. For this problem, at least our trade-off lower
bound cannot hold, because [HK99] gave a solution with polylogarithmic updates and
constant query time.
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Abstract. We prove the following inequality: for every positive integer n and every collection
X1, . . . , Xn of nonnegative independent random variables, each with expectation 1, the probability
that their sum remains below n+1 is at least α > 0. Our proof produces a value of α = 1/13 � 0.077,
but we conjecture that the inequality also holds with α = 1/e � 0.368.

As an example for the use of the new inequality, we consider the problem of estimating the
average degree of a graph by querying the degrees of some of its vertices. We show the following
threshold behavior: approximation factors above 2 require far fewer queries than approximation
factors below 2. The new inequality is used in order to get tight (up to multiplicative constant
factors) relations between the number of queries and the quality of the approximation. We show how
the degree approximation algorithm can be used in order to quickly find those edges in a network
that belong to many shortest paths.

Key words. Markov inequality, shortest paths

AMS subject classifications. 60E15, 68W20, 68W25

DOI. 10.1137/S0097539704447304

1. A new inequality. For a random variable X, its typical value may be very
different from its mean. In particular, the probability that X exceeds its mean may
be arbitrarily close to 1. In some special cases (e.g., when X is symmetric around
its mean), the probability that X exceeds its mean is at most 1/2. The purpose of
this manuscript is to investigate the probability that X exceeds its mean when X is
the sum of n independent random variables. We show that for nonnegative random
variables, this probability is bounded away from 1, provided that we give ourselves a
little slack in exceeding the mean.

Theorem 1. Let X1, . . . , Xn be arbitrary nonnegative independent random vari-
ables, with expectations μ1, . . . , μn, respectively, where μi ≤ 1 for every i. Let X =∑n

i=1 Xi, and let μ denote the expectation of X (hence, μ =
∑n

i=1 μi). Then for every
δ > 0,

Pr[X < μ + δ] ≥ min[δ/(1 + δ), 1/13].(1)

The term δ/(1+δ) in Theorem 1 is best possible, as X1 might be a random variable
that has value 1+ δ with probability 1/(1+ δ) and value 0 with probability δ/(1+ δ),
and every other Xi might be a random variable whose value is 1 with probability 1.
This gives μi = 1 for every i. For this case, Pr[X < μ + δ] = Pr[X1 = 0] = δ/(1 + δ).
For large δ (e.g., δ = 1), it is not true that Pr[X ≤ μ + δ] ≥ δ/(1 + δ). One can take
for every i, Xi = n+ δ, with probability 1/(n+ δ) and 0 otherwise. This gives μi = 1
for every i, implying μ = n. For this case, Pr[X < n + δ] = (1 − 1/(n + δ))n, which
is roughly 1/e for large n.
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Based on the two examples above we make the following conjecture.

Conjecture 2. In the setting of Theorem 1, for every value of δ and n, one of
the two examples above is the worst case for Pr[X < μ + δ].

Conjecture 2, if true, would allow us to replace the constant 1/13 with 1/e in
Theorem 1. A conjecture very similar in nature to Conjecture 2 is the following
conjecture that was suggested by Samuels in [6].

Conjecture 3. Let X1, . . . , Xn be arbitrary nonnegative independent random
variables, with expectations μ1, . . . , μn, respectively, where μ1 ≥ · · · ≥ μn. Then for
every λ >

∑n
j=1 μj there is some 1 ≤ i ≤ n such that Pr[

∑n
j=1 Xj < λ] is minimized

when the random variables Xj are distributed as follows:

• For j > i, Xj = μj with probability 1.
• For j ≤ i, Xj = λ −

∑n
k=i+1 μk with probability

μj

λ−
∑n

k=i+1
μk

, and Xj = 0

otherwise.

The difference between the settings of the two conjectures is that in Conjecture 3
all means are given, whereas in Conjecture 2 only an upper bound on the means is
given. The difference in the conclusions of the conjectures is that in Conjecture 3 we
may have an arbitrary i ∈ {1, . . . , n}, whereas Conjecture 2 effectively states that i is
restricted to one of two values, i ∈ {1, n}.

Samuels (see [6, 7] and the references therein) proves Conjecture 3 when n (the
number of random variables) is at most 4. The case n = 2 was proved earlier in [2].
When n ≥ 5, Samuels shows that Conjecture 3 is true when λ ≥ (n − 1)

∑n
j=1 μj .

In contrast, in the current paper we are interested in the case (that when put in the
framework of Conjecture 3 corresponds to) λ = δ +

∑n
j=1 μj with δ fairly small (e.g.,

δ = μ1).

It may be instructive to consider how some standard probabilistic tools relate to
Theorem 1. Consider the case that the Xi are identically distributed. Then the central
limit theorem implies that when n is large enough, X approaches the normal distri-
bution, and hence Pr[X < μ] approaches 1/2. However, in Theorem 1 the variables
Xi may depend on n, and hence n cannot be thought of as being “large enough” with
respect to the Xi (even if they are independently and identically distributed (i.i.d.)).
This relates to the fact that we place no bounds on the variance of the Xi, and hence
standard bounds on deviations of random variables from their expectation (such as
Chebyshev’s bound or Chernoff’s bound) are not applicable. The only restriction on
the random variables (other than being independent) is their nonnegativity. In par-
ticular, this means that X is nonnegative and that Markov’s inequality can be used
to show that Pr[X ≤ μ + δ] ≥ δ/(μ + δ). For the sum of i.i.d. random variables, this
bound tends to 0 as n grows (unlike the bound in Theorem 1).

In addition to the work by Samuels mentioned above, the author is aware of
some other work of nature similar to Theorem 1. There are results surveyed and
developed by Siegel [8] that show that under certain conditions the median of the
sum of random variables does not exceed the mean. This holds, for example, for the
sum of Bernoulli random variables (if the mean is an integer). The book by Dubins
and Savage [4] analyzes strategies for gambling when the goal is to maximize the
probability of ending up with a net profit of δ. There the strategies are adaptive (the
next gamble may depend on outcomes of previous gambles), and the gambler may quit
once a net profit of δ is achieved. One of the main findings of [4] is a set of sufficient
conditions under which the strategy of “playing boldly” is optimal. Informally, this
strategy tries to reach a net profit of δ (also taking into account previous losses) in one
gamble. A simple example is the repeated doubling approach to gain one dollar when
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there are 50/50 odds, in which the gambler first gambles one dollar and then doubles
the gamble until the first win (or until he/she runs out of money). The scenario in
Theorem 1 can be viewed as a version of “how to gamble in parallel,” in which n
unbiased gambles with independent outcomes can be placed in parallel in an attempt
to reach a net profit of δ units, where each gamble is allowed to risk at most one unit.
Our results show that when δ is small (specifically, δ ≤ 1/12), having n > 1 does not
lead to higher probability of achieving a net profit of δ compared to the case that
n = 1. For larger values of δ, there is an advantage to having n > 1, but regardless of
the value of n, the probability of achieving a net profit of δ is bounded away from 1.
Regardless of the value of δ, it appears to us (though our proof does not actually
show this when δ > 1/12) that similar to the “play boldly” principle, the optimal
strategy is based on hoping for one successful gamble. (Namely, when δ is small, only
one gamble is nonzero, and when δ is large, all gambles are identical, and it suffices
for one successful gamble to both reach a profit of δ and cover for all the losses in the
other gambles.) Despite similarities in the nature of the results, the proof techniques
from [4] and [8] do not appear to be applicable to the setting of Theorem 1.

Theorem 1 can in principle be used whenever one is interested in bounding the
probability that the sum of independent random variables significantly exceeds its
expectation. However, in many contexts the random variables are known to have
some additional properties (e.g., bounded variance), and useful results can also be
derived by other means. The application that motivated the development of the
inequality (1) is described in section 2.

2. Estimating the average degree. Let G(V,E) be a graph with n vertices.
A degree query specifies a vertex v ∈ V and gets in reply dv, the degree of v in G. We
are interested in estimating m = |E| by making only degree queries. Equivalently, we
wish to estimate the average degree d = 2m/n. We say that an algorithm provides a
ρ estimation if its output d∗ satisfies

d∗ ≤ d ≤ ρd∗.

Naturally, we limit our interest to ρ ≥ 1. As our sampling-based algorithms are
randomized, there is some probability that their output fails to be a ρ estimation. We
require this failure probability to be at most 1/3. We note that the failure probability
can be reduced to an arbitrarily small value δ by repeating the estimation algorithm
O(log 1/δ) times independently and outputting the median of all estimates. Our goal
is for given ρ to design ρ estimation algorithms with as few queries as possible and
with failure probability at most 1/3.

Let us note here an observation that helps us to drastically reduce the number
of queries in our algorithms. Consider first the case where rather than having an
actual graph as input, the input is simply a sequence of integers d1, . . . , dn, with the
only restriction that for every i, 0 ≤ di ≤ n. (For simplicity of presentation we allow
values here to range up to n, even though degrees can range only up to n − 1.) Let
d = 1

n

∑n
i=1 di. We wish to estimate d. It is not hard to see that for any value d0

(which one may think of as a large constant independent of n), Ω(n/d0) queries are
required in order to distinguish between the cases d = 0 and d ≥ d0. The reason is
that it may happen that there are d0 numbers with value n, and all other numbers
have value 0. If we perform less than n/2d0 queries, most likely we always get the 0
answer, which is exactly the answer that we would get if d = 0.

To get estimation algorithms with fewer queries, we shall use the fact that not
every sequence d1, . . . , dn is a degree sequence of graphs. For example, if d1 = n− 1,
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then necessarily di ≥ 1 for all i. Still, the bad example given above can be modified
to show that Ω(n/d0) queries are required in order to distinguish between the cases
d ≤ d0 and d ≥ 2d0 − O((d0)

2/n). In the first of these two cases we can have all
di = d0. In the second of these two cases we can have di = d0 for all vertices except
for d0 vertices of degree n − 1. Hence if we wish to have estimation algorithms with
a sublinear (in n) number of queries, we need to restrict ourselves to ρ ≥ 2.

There is one more restriction that we introduce. Observe that if G contains only
one edge, one needs Ω(n) queries to distinguish this case from d = 0. To avoid the
problem of handling such very sparse graphs (which are often not interesting anyway),
we shall assume that d ≥ d0 for some d0 that will be a parameter of our estimation
algorithms. The reader may think of d0 as typically having value at least 1. Hence
the estimation algorithm is allowed to output d∗ = 0 as an estimation of d for very
sparse graphs, even though the ratio between d and d∗ is in this case infinite. (The
assumption that d ≥ d0 can be replaced by allowing the estimation algorithm to have
an additive error of d0 in addition to the multiplicative error of ρ.)

As noted above, for ρ < 2 and d0 = 1, the number of queries needed by an
estimation algorithm might be Ω(n). Our main observation is that for ρ > 2 and for
d0 = 1, the number of queries in the estimation algorithm drops dramatically, from
Ω(n) to O(

√
n). This result is stated in more technical terms in the following theorem.

Theorem 4. For any d0 > 0, ε > 0, and ρ = 2 + ε, there is a ρ estimation
algorithm for the average degree of a graph that uses O( 1

ε

√
n/d0) queries, and it is

applicable to all graphs of average degree at least d0.
In terms of the application of estimating the average degree in the graph, the more

interesting part of our upper bound on the number of queries is the term
√
n/d0. The

dependency on ε may be less interesting, especially if one is satisfied with large values
of ε, such as ε = 1. However, achieving a linear dependency in 1/ε (rather than some
polynomial dependency) is the part that uses Theorem 1.

In section 4 we prove Theorem 4. In section 5 we show how Theorem 4 can be
used in order to obtain Theorem 5, addressing a problem that is studied in [3].

Theorem 5. There is a randomized algorithm that runs in time O(mn logn
ε
√
c

) on

graphs with n vertices and m edges and outputs a list of edges that with high probability
satisfies the following:

1. Every edge that is on at least c shortest paths is on the list.
2. No edge that is on less than (1/2 − ε)c shortest paths is on the list.

3. Proof of Theorem 1. In this section we prove Theorem 1. Let us first try
to clarify our proof plan. It is based on a sequence of transformations whose goal is
to simplify the random variables until a case analysis becomes manageable. Known
arguments (the reduce support operation that will be explained in our proof) show that
we may assume that every random variable by itself is “simple” in the sense that it has
small support. Hence it is reasonable to expect that if the number of random variables
is a small constant, then the theorem (if true) can be proven by a “brute force” case
analysis. For example, Samuels [6] mentions 25 cases that are to be considered if
one is to prove Conjecture 3 for the case n = 4. In our proof we describe a merge
operation that replaces two random variables with one random variable. However, we
do not perform this merge operation until the number of random variables becomes
small, because this operation might create random variables whose mean is larger
than 1. After rescaling the random variables, this corresponds to decreasing δ in the
statement of Theorem 1 to be arbitrarily small and drives the bound δ/(1 + δ) to 0.
Instead, we perform the merge operation until a step in which many random variables
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may still remain, but they have nice properties. Namely, all random variables, except
for perhaps one, have roughly the same mean and, moreover, have small “surplus” (to
be defined in the proof). Thereafter, case analysis becomes possible through the use
of Proposition 10, which allows us to analyze many such random variables as if they
were just one random variable. It is interesting to note that even though our proof
plan does not seem to allow us to prove tight bounds (due to the fact that we generate
random variables with mean above 1), it does in fact provide optimal bounds when δ
is small (δ < 1/12). We shall comment more on our proof in section 3.2, and now we
present the proof itself.

Proof. Fix n, δ, and arbitrary nonnegative random variables X1, . . . , Xn with
means at most 1. We prove that inequality (1) holds. We assume without loss of
generality that the support of every random variable is composed of a finite set of
values. (This is a standard argument, but we sketch it for completeness. Any value
larger than μ+ δ in the support of a random variable can be lowered to μ+ δ without
increasing the probability that X < μ+δ. Thereafter, any continuous random variable
can be approximated by a discrete random variable with the same mean and whose
support includes only multiples of ε, where ε is chosen to be much smaller than δ/n.
For these new random variables, X ′

1, . . . , X
′
n, the event X ′ < μ+δ′, where δ′ = δ−εn,

implies that for the original variables, X < μ + δ. By making ε arbitrarily small, we
can make δ′ arbitrarily close to δ.)

Our proof of inequality (1) consists of a sequence of transformations on the vari-
ables Xi. We may view these transformations as occurring in discrete time steps, and
in our notation, superscripts will denote time steps. Hence, after time step t, random
variables are denoted by Xt

i , their sum by Xt, and the expectation of Xt by μt. For
t = 0, we have the original random variables. All our transformations will have the
property that for every t ≥ 0,

Pr[Xt+1 < μt+1 + δ] ≤ Pr[Xt < μt + δ].(2)

Some properties of the random variables may change by the transformations. In
particular, the reduce support transformation (to be defined shortly) when applied
to two random variables that were originally identically distributed might transform
them to new random variables that are not identically distributed. Moreover, the
merge transformation might generate random variables whose mean is larger than 1,
even though all original random variables have mean at most 1. We now describe the
transformations.

Remove constant. This transformation is applied whenever there is a random
variable Xt

i that is constant, that is, Pr[Xt
i = μt

i] = 1. Such a random variable is
removed, and μt+1 = μt − μt

i. Clearly, remove constant satisfies inequality (2).
Reduce support. This transformation is applied to every random variable whose

support has at least three values, and replaces it with a new random variable with the
same mean, and whose support includes at most two values from the original support.

Lemma 6. Let Xt
i be a random variable whose support includes at least three

values. Then Xt
i can be replaced with a new variable Xt+1

i with μt+1
i = μt

i and whose
support includes only two values from the original support of Xt

i . This can be done
in a way that satisfies inequality (2).

Proof. Let {v1, . . . , vk} be the support of Xt
i , and for 1 ≤ j ≤ k, let qj denote

the conditional probability of the event [Xt < μt + δt], conditioned on the event
[Xt

i = vj ]. For Xt+1
i and for 1 ≤ j ≤ k, we wish to select pj = Pr[Xt+1

i = vj ]
under the restrictions that the mean of Xt+1

i is the same as the mean of Xt
i and that
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inequality (2) is satisfied. This can be expressed by the following linear program over
the variables pj :

Minimize
∑k

j=1 qjpj
subject to

•
∑k

j=1 pj = 1,

•
∑k

j=1 pjvj = μt
i,

• pj ≥ 0 for every j.

The above linear program is feasible (as the probabilities associated with the
original Xt

i satisfy the constraints). By the theory of linear programming, there is a
basic optimal solution in which at most two pj are nonzero.

We remark that Lemma 6 has several alternative proofs and in general does not
require Xt to have finite support. A similar lemma (with a functional analytic proof)
is used in [6].

Align with 0. This transformation is applied to every random variable whose
support has two values and these values are greater than 0 (say Xt

i has value v1 with
probability p and v2 with probability (1 − p), with 0 < v1 < v2) and replaces it with
a random variable Xt+1

i that has value v1 − v1 = 0 with probability p and has value
v2 − v1 with probability (1 − p). Hence μt+1

i = μt
i − v1, and μt+1 = μt − v1. Clearly,

align with 0 satisfies inequality (2).

Merge. This transformation takes the two random variables with smallest mean
(say Xt

i and Xt
j) and replaces them with a new random variable in three steps. First,

replace Xt
i and Xt

j with a new random variable that is distributed like their sum
Xt

i + Xt
j . Then apply reduce support to this new random variable. Finally, apply

align with 0 or remove constant to the new random variable (if applicable).

It is easy to see that the transformation merge satisfies inequality (2).

The sequence of transformations that we perform is partitioned into two stages.
We now describe the first stage.

Stage 1:

1. Whenever possible, apply remove constant.
2. Apply reduce support until all random variables have support of size at most

two. (Different variables may have different support.)
3. Apply align with 0 to all variables.
4. Apply merge until either the number of random variables is reduced to one,

or all random variables have mean at least 1/2 (whichever happens first).

Stage 1 must end because with each application of merge, the number of ran-
dom variables decreases. Let t denote the step after which Stage 1 ends, and let
Xt

1, . . . , X
t
n′ be the random variables that remain. We assume that they are sorted in

order of decreasing μt
i. Their number n′ may be smaller than n, because some of the

transformations remove random variables. These are not arbitrary random variables,
as each of them has a support of two values, one of which is 0, and the stopping
condition for the merge transformations has been reached. For a random variable Xt

i

as above, let μt
i denote its mean, let {0, vti} denote its support, and let sti = vti − μt

i

denote its surplus. Let st =
∑n′

i=1 s
t
i denote the total surplus.

Proposition 7. If the total surplus satisfies st < δ, then Pr[Xt ≥ μt + δ] = 0.

Proof. Xt is maximized when Xt
i = vti for all i. In this case,

Xt =

n′∑
i=1

(μt
i + sti) = μt + st < μt + δ.
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Hence we may assume without loss of generality that st ≥ δ.
Lemma 8. If Stage 1 ended with a random variable with mean below 1/2, then

Pr[Xt < μt] ≥ δ/(1/2 + δ).
Proof. In this case, exactly one random variable remains. Let Xt

1 be the random
variable left, with mean μt

1 < 1/2 and support {0, v1 = μt
1 + st}. Note that the event

Xt
1 = 0 implies Xt < μt. Now Pr[Xt

1 = 0] = st/(μt
1 + st) ≥ δ/(1/2 + δ), because

st ≥ δ and μt
1 < 1/2.

Observe that Lemma 8 offers a conclusion that is even stronger than that required
by Theorem 1, as is illustrated by the following sequence of inequalities:

Pr[X < μ + δ] ≥ Pr[Xt < μt + δ] ≥ Pr[Xt < μt] ≥ δ

1/2 + δ
>

δ

1 + δ
.

Hence we may also assume that Stage 1 ended with all random variables having mean
at least 1/2. The following property will be used in this case.

Proposition 9. If Stage 1 ended with all random variables having mean at
least 1/2, then μt

1/2 ≤ μt
n′ ≤ μt

1 < 3/2.
Proof. Recall that the random variables are assumed to be sorted with μt

1 being
the largest mean and μt

n′ being the smallest mean.
If no random variable has mean greater than 1, then we are done. Hence consider

the first time that a random variable with mean greater than 1 is created. This
happens by merging two random variables, say at time step r (shortly we will see that
in fact it must hold that r = t − 1), with the random variables being Xr

i and Xr
j .

Let μr
i ≥ μr

j be their means before the merge. By the definition of merge, no other
variable had mean smaller than μr

i . By the stopping rule for Stage 1, μr
j < 1/2. To

get a variable with mean greater than 1, we must have μr
i > 1/2. Note that Stage 1

ends after the merge, because no variable with mean below 1/2 is left. Hence the new
variable created becomes Xr+1

1 with 1 < μr+1
1 < 1 + 1/2 = 3/2. But as μr+1

1 ≤ 2μr
i

and μr+1
n′ ≥ μr

i , it follows that μr+1
n′ ≥ μr+1

1 /2.
Let us pause at this point and explain what remains to be proved. All random

variables can be assumed to be 2-valued, with one of the values being 0 and with
all means μt

i satisfying μt
1/2 ≤ μt

i ≤ μt
1. Moreover, the total surplus st satisfies

st ≥ δ. For random variables as above we in fact will bound Pr[Xt < μt] rather
than Pr[Xt < μt + δ]. Lemma 11 (its first part) and Lemma 12 will show that
Pr[Xt < μt] ≥ min[δ/(μt

1 + δ), 1/13]. This almost proves Theorem 1, except that
it might happen that at the end of Stage 1, μt

1 > 1. This possibility is handled in
the second part of Lemma 11 by showing that one merge operation before the end of
Stage 1 we had Pr[Xt−1 < μt−1 + δ] ≥ δ/(1 + δ).

The following proposition is used several times in the proofs of Lemmas 11 and 12.
It is most effective when s < μn, and μn is not much smaller than μ1.

Proposition 10. Let X1, . . . , Xn be independent random variables with means
μ1 ≥ · · · ≥ μn and supports {0, μ1 + s1}, . . . , {0, μn + sn}, and let X =

∑n
i=1 Xi,

μ =
∑n

i=1 μi, and s =
∑n

i=1 si. Then

Pr[X < μ− μn + s] ≥ s

μ1 + s
.

Proof. It suffices that one random variable comes up 0 to imply X < μ+ s− μn.
(The inequality is strict because only a variable with si > 0 may come up 0.) Hence

Pr[X ≥ μ + s− μn] =

n∏
i=1

μi

μi + si
≤

n∏
i=1

μ1

μ1 + si
.
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Given that
∑n

i=1 si = s and that si ≥ 0, the above product is maximized when s1 = s
and si = 0 for all i > 1, giving μ1/(μ1+s). Hence Pr[X < μ−μn+s] ≥ s/(μ1+s).

The following lemma illustrates the desired outcome of Stage 1.
Lemma 11.

1. If Stage 1 ended with all random variables having mean at least 1/2, and if
st < μt

n′ , then

Pr[Xt < μt] ≥ δ

μt
1 + δ

≥ δ

3/2 + δ
.

2. If in addition δ ≤ 1/12, then either Pr[Xt < μt] < δ/(1 + δ) or one merge
operation before the end of Stage 1 it must have been the case that

Pr[Xt−1 < μt−1 + δ] ≥ δ/(1 + δ).

Remark. The choice of δ ≤ 1/12 in the second part of Lemma 11 is made because
δ/(1 + δ) = 1/13 for δ = 1/12. The limiting factor for improving beyond 1/13 is
Lemma 12 rather than Lemma 11. For δ > 1/12 the second part of Lemma 11 simply
implies that Pr[Xt−1 < μt−1 + δ] ≥ Pr[Xt−1 < μt−1 + 1/12] ≥ 1/13.

Proof. The surplus st is smaller than the mean of any of the random variables.
Using Proposition 10 we then have Pr[Xt < μt] ≥ st

μt
1+st

. Using the assumption that

st ≥ δ and the fact that μt
1 ≤ 3/2 (Proposition 9), we have that Pr[Xt < μt] ≥

δ/(3/2 + δ).
To prove the second part of the lemma, note that if it happens that μt

1 ≤ 1, then
we have Pr[Xt < μt] ≥ δ/(1 + δ). Hence we may assume that μt

1 > 1, implying in
particular that Xt

1 is the result of the last merge operation (see the proof of Proposi-
tion 9). Let s′ = st − st1 be the surplus of all variables except for Xt

1. If s′ > 0 (which
implies μt

2 ≥ 1/2 > 0), then analysis as in the proof of the first part of the lemma
implies that

Pr[Xt ≥ μt] ≤ μt
2

μt
2 + s′

≤ 1

1 + s′
.

Hence if s′ ≥ δ, then Pr[Xt < μt] ≥ δ/(1 + δ). So we can assume that s′ < δ (also
including the possibility that s′ = 0).

Let us backtrack to the last merge operation. Hence instead of Xt
1 we have two

variables Xt−1
i and Xt−1

j that were merged to give Xt
1. Let their means be μt−1

i ≥ μt−1
j

and their surpluses be st−1
i and st−1

j . Observe that necessarily μt−1
j < 1/2 (otherwise

the merge operation would not have been performed), and then the assumption that
μt

1 > 1 implies that μt−1
i > 1/2. As the total surplus of all random variables except for

Xt−1
i and Xt−1

j is s′ < δ, we must have Xt−1
i +Xt−1

j come up larger than μt−1
i +μt−1

j

for Xt−1 ≥ μt−1 + δ. We consider now two cases.

Case 1. st−1
i > 2δ. Then Pr[Xt−1

i = 0] =
st−1
i

μt−1
i

+st−1
i

≥ 2δ
μt−1
i

+2δ
. If Xt−1

i = 0, then

in order to have Xt−1
i +Xt−1

j > μt−1
i + μt−1

j we must have Xt−1
j > μt−1

i + μt−1
j . But

this happens with probability at most
μt−1
j

μt−1
i

+μt−1
j

≤ 1/2

μt−1
i

+1/2
. Hence

Pr[Xt−1 < μt−1 + δ] ≥ 2δ

μt−1
i + 2δ

· μt−1
i

μt−1
i + 1/2

≥ δ

1 + δ
,

where the last inequality holds for δ ≤ 1/2 because 1/2 ≤ μt−1
i ≤ 1.
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Case 2. st−1
i ≤ 2δ. Define s′′ = s′ + st−1

i as the surplus of all random variables
except for st−1

j , and observe that s′′ < 3δ ≤ 1/4, the last inequality holding for
δ ≤ 1/12. We now consider several subcases.

• s′′ < δ and st−1
j ≥ 1/2. The fact that s′′ < δ implies that it suffices for Xt−1

j

to come up 0 to ensure Xt−1 < μt−1 + δ. This happens with probability at
least st−1

j /(μt−1
j + st−1

j ) ≥ 1/2.

• s′′ < δ and st−1
j < 1/2. The fact that all random variables except for Xt−1

j

have mean at least 1/2 implies that it suffices for one random variable to come
up 0 to ensure Xt−1 < μt−1 + δ. As necessarily s′′ + st−1

j ≥ δ and μt−1
k ≤ 1

for all k, this happens with probability at least δ/(1 + δ) by Proposition 10.
• δ ≤ s′′ < δ + μt−1

j and st−1
j ≥ δ. It suffices for Xt−1

j to come up 0 to ensure

Xt−1 < μt−1 + δ. This happens with probability at least δ/(1/2 + δ).
• δ ≤ s′′ < δ + μt−1

j and st−1
j < δ. It suffices for some random variable other

than Xt−1
j to come up 0 to ensure Xt−1 < μt−1 − 1/2 + s′′ + δ < μt−1 + δ.

(We used the fact that every random variable except for Xt−1
j has mean at

least 1/2 and that s′′ ≤ 1/4.) This happens with probability at least δ/(1+δ)
by Proposition 10.

• s′′ ≥ δ+μt−1
j . By Proposition 10, there is probability of at least

δ+μt−1
j

1+δ+μt−1
j

for

a random variable other than Xt−1
j to come up 0. Thereafter Xt−1

j must come

up at least μt−1
j + δ + 1/2− s′′ ≥ μt−1

j + δ + 1/4 for Xt−1 ≥ μt−1 + δ to hold.

The probability of this is at most μt−1
j /(μt−1

j +1/4+ δ) ≤ μt−1
j /(μt−1

j +1/4).
Hence

Pr[Xt−1 < μt−1 + δ] ≥
δ + μt−1

j

1 + δ + μt−1
j

· 1/4

μt−1
j + 1/4

≥ δ

1 + δ
,

where the last inequality holds when 4(δ + δ2 + μt−1
j δ) ≤ 1, which is true for

our parameters of μt−1
j ≤ 1/2 and δ ≤ 1/12.

Summarizing, Lemmas 8 and 11 prove Theorem 1, except for the case that Stage 1
ended with μt

1/2 ≤ μt
n′ ≤ μt

1 and st ≥ μt
n′ . We now address this last case. For this

case we shall not use the extra slack offered by δ, but rather we shall show the stronger
inequality Pr[Xt < μt] ≥ 1/13. To prove this last inequality, we perform Stage 2 of
our sequence of transformations. It is composed of a modified form of the merge
operations, which we call modified merge. The modification will allow us to deal with
the event Xt < μt rather than Xt < μt + δ. Recall that the reduce support operation
was based on a linear program that minimized Pr[Xt+1 < μt+1 +δ] (via the definition
of the qj in the proof of Lemma 6). Modify the reduce support operation by modifying
the objective function of the linear program to be Pr[Xt+1 < μt+1] (by making the
respective change in the definition of qj). Use this modified reduce support rather than
the original reduce support as the second step of modified merge. Now modified merge
maintains the inequality

Pr[Xt+1 < μt+1] ≤ Pr[Xt < μt].(3)

Note that an application of modified merge cannot increase the total surplus.
(This was also true for merge.) This works in our favor, because as the proof of
Lemma 11 demonstrates, it is easier to perform case analysis when the total surplus
is small. However, an application of modified merge may result in a random variable
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whose mean is smaller than μt+1
1 /2. (For simplicity of notation, we assume that after

every step the variables are renamed so as to keep μt+1
1 the largest mean.) This

will complicate our case analysis. But note that even with repeated applications
of modified merge, there will be at most one such random variable. Let us define
s′ =

∑
si, where the sum is taken over all random variables whose mean is at least

μ1/2. In particular, at the time when Stage 1 ends we may assume that s′ = st by
Proposition 9.

Stage 2. Apply modified merge (on the two random variables with currently
lowest mean) until a step (that we shall denote by r) after which either the number
of remaining (nonconstant) random variables is one or the condition s′ ≤ αμr

1 has
been reached for some constant 0 < α < 1/2 that will be determined later. Stage 2
must eventually end, because with each application of modified merge the number of
random variables decreases.

Lemma 12. Let α = 1/3, and let r denote the time step at which Stage 2 ends.
Then either Pr[Xr < μr] ≥ 1/13 or one modified merge operation before Stage 2 ends
Pr[Xr−1 < μr−1] ≥ 1/13.

Proof. The proof of Lemma 12 is based on a case analysis. Some of the details
in the case analysis are included so as to get the explicit bound of 1/13. Those
readers who are just interested in verifying that the lemma holds for some universal
constant (though perhaps much smaller than 1/13) may simply think of α as some
small constant (say α = 1/10) and β (to be introduced shortly) as a much smaller
constant (say β = 1/100) and read each case only up to the point where it becomes
clear that under this setting of the parameters; the case in question gives a probability
bounded away from 0.

Lemma 13. If Stage 2 ends without the condition s′ ≤ αμr
1 being reached, then

Pr[Xr < μr] > α/(1 + α).
Proof. In this case we have only one nonconstant random variable, Xr

1 , with
support {0, μr

1 + s′}:

Pr[Xr < μr] = Pr[Xr
1 = 0] =

s′

μr
1 + s′

>
α

1 + α
.

Lemma 14. If Stage 2 ends with βμr
1 ≤ s′ ≤ αμr

1, where 0 ≤ β ≤ α is some
constant that will be optimized later, then

Pr[Xr < μr] ≥ min
[(α− 2α2

1 + α

)
,
(β − 2β2

1 + β

)]
.

Proof. Consider first only the random variables with mean at least μr
1/2, let X ′

be their sum, and let μ′ be the expectation of X ′. Over these random variables, the
surplus is s′ = γμr

1, with β ≤ γ ≤ α < 1/2. By Proposition 10,

Pr

[
X ′ < μ′ −

(
1

2
− γ

)
μr

1

]
≥ s′

μr
1 + s′

=
γ

1 + γ
.

The event X ′ < μ′ − (1/2 − γ)μr
1 does not yet imply that Xr < μr. There

still might be one variable Xr
n′′ with μr

n′′ < μr
1/2. If Xr

n′′ turns out μr
n′′ + srn′′ and

srn′′ ≥ (1/2 − γ)μr
1, then it still may hold that Xr ≥ μr.

Let us first assume that μr
n′′ ≤ s′ = γμr

1. Then by Markov’s inequality,

Pr[Xr
n′′ = μr

n′′ + srn′′ ] =
μr
n′′

μr
n′′ + srn′′

≤ γμr
1

γμr
1 + (1/2 − γ)μr

1

= 2γ.



974 URIEL FEIGE

Hence

Pr[Xr < μr] ≥ γ

1 + γ
· (1 − 2γ) =

γ − 2γ2

1 + γ
.

For 0 < β ≤ γ ≤ α < 1/2, the expression above is minimized when γ ∈ {α, β}.
We are left with the case that μn′′ > s′. But then we have

Pr[Xr < μr] ≥ Pr[Xr
n′′ = 0] =

srn′′

μr
n′′ + srn′′

≥ 1/2 − γ

1 − γ
,

where we have used the fact that μr
n′′ < μr

1/2 and srn′′ ≥ (1/2 − γ)μr
1. As γ ≤ α,

we have that Pr[Xr < μr] ≥ (1/2 − α)/(1 − α). But this probability is larger than
(α− 2α2)/(1 + α) of the previous case, and hence can be ignored.

Lemma 15. If Stage 2 ends with s′ < βμr
1, and 0 < β < α/2, then one merge

prior to the end of Stage 2 it must have been the case that Pr[Xr−1 < μr−1] was at
least the minimum of the following expressions:

1. α−β
1/2+α−β · 1/2−β

1−β .

2. α−3β/2
1+α−3β/2 · 1−3β/2

3/2−3β/2 .

3. α−2β
1+α−2β .

4.
(

1/2−1β
1−β

)2

.

5. 1/2−3β/2
3/2−3β/2 · 1−3β/2

3/2−3β/2 .

The proof of Lemma 15 involves a detailed case analysis and appears in section 3.1.
Summing up, Lemmas 14 and 15 imply that after Stage 2, either Pr[Xr < μr] or

Pr[Xr−1 < μr−1] is at least the smallest of the following quantities (where 0 < β <
α/2 < 1/4):

• α−2α2

1+α ;

• β−2β2

1+β ;

• α−β
1/2+α−β · 1/2−β

1−β ;

• α−3β/2
1+α−3β/2 · 1−3β/2

3/2−3β/2 ;

• α−2β
1+α−2β ;

•
(

1/2−β
1−β

)2

;

• 1/2−3β/2
3/2−3β/2 · 1−3β/2

3/2−3β/2 .

Choosing (suboptimally) α = 1/3 and β = 1/8 gives at least 1/13 in all cases.
This completes the proof of Lemma 12.
We can now summarize the proof of Theorem 1. We have the original random

variables for which we wish to prove Pr[X < μ+ δ] ≥ min[δ/(1 + δ), 1/13]. The proof
proceeds in two stages. In Stage 1 we apply a sequence of transformations maintaining
the inequality (2) until a step t in which all random variables have mean at least 1/2 (or
only one random variable remains, which is an easy case to handle). Then Lemma 11
implies the theorem whenever the total surplus st is small (st < μt

n′). To handle the
case that the surplus is large, we perform a sequence of transformations in Stage 2,
this time maintaining the inequality (3), until a step r in which the surplus of all
variables (except for the variable with smallest mean) is no longer large compared to
the maximum mean (namely, s′ ≤ αμr

1). Then Lemma 12 implies that also in this
case (corresponding to the case that st was greater than μt

n′) the theorem holds. Note
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that, overall, depending on which case is considered, Lemmas 11 and 12 do not prove
inequality (1) on the original random variables but on transformed random variables
that appear after one of the steps t− 1, t, r − 1, or r. But this implies inequality (1)
on the original random variables, because of the inequalities (2) and (3).

3.1. Remaining analysis for Stage 2. We prove here Lemma 15, whose proof
was the only part omitted from the proof of Theorem 1.

Proof. Consider the last two random variables to have been merged, say Xr−1
i

and Xr−1
j , with means μr−1

i ≥ μr−1
j , and let μr−1

1 be the largest mean at time r − 1.

After the modified merge of Xr−1
i and Xr−1

j , the largest mean μr
1 may still have been

μr−1
1 , but it could also be as high as μr−1

i + μr−1
j if this happens to be higher than

μr−1
1 . In fact, μr

1 may also be lower than μr−1
1 if only one variable is left at the end

of Stage 2 and this variable underwent an align with 0 operation. However, in this
case the bounds that we get for Xr−1 < μr−1 are much stronger than what we get
otherwise (details omitted), so we shall ignore this case.

We analyze the situation one merge operation before the end of Stage 2. Note
that we know that at that time, s′ ≥ αμr−1

1 , because otherwise Stage 2 would have
ended earlier. Likewise, the sum

∑
sr−1
i taken over all variables except Xr−1

i and
Xr−1

j is at most max[βμr−1
1 , β(μr−1

i + μr−1
j )], because otherwise we could not have

had s′ < βμr
1 at the end of Stage 2. We consider now two cases.

Case 1. μr−1
j < μr−1

1 /2. Hence Xr−1
j did not contribute to s′ at time step r − 1.

Note that μr−1
i ≥ μr−1

1 /2, and hence Xr−1
i did contribute to s′ at time step r− 1. It

follows that sr−1
i ≥ αμr−1

1 −βμr
1. (This last expression is positive, because Lemma 15

assumes that β < α/2, and μr ≤ 2μr−1.) Hence,

Pr[Xr−1
i = 0] ≥ αμr−1

1 − βμr
1

μr−1
i + αμr−1

1 − βμr
1

.

If Xr−1
i = 0, then in order to have Xr−1 ≥ μr−1, Xr−1

j must contribute at least

μr−1
j + μr−1

i − βμr
1 to Xr−1. (The expression μr−1

i − βμr
1 is positive because β < 1/4

and μr−1
i ≥ μr−1

1 /2 ≥ μr
1/4.) This may happen with probability at most μr−1

j /(μr−1
j +

μr−1
i − βμr

1). We then have

Pr[Xr−1 < μr−1] ≥ αμr−1
1 − βμr

1

μr−1
i + αμr−1

1 − βμr
1

· μr−1
i − βμr

1

μr−1
j + μr−1

i − βμr
1

.

The above expression is minimized when μr−1
j is maximized, namely, when μr−1

j =

μr−1
1 /2. As μr−1

i ≥ μr−1
1 /2, it follows that μr−1

i +μr−1
j ≥ μr−1

1 . The expression above

is minimized when μr
1 is maximized, namely, μr

1 = μr−1
j +μr−1

i . Normalizing μr−1
1 to 1

and using the notation μi to denote μr−1
i /μr−1

1 , we have after some rearrangements

Pr[Xr−1 < μr−1] ≥ α− β/2 − βμi

(1 − β)μi + α− β/2
· (1 − β)μi − β/2

(1 − β)μi + 1/2 − β/2
.

The expression above is defined for all μi ≥ 0. It equals 0 for μi ∈ {β/2(1 − β), (α−
β/2)/β} and is positive in between. Moreover, there are at most two points where
the derivative with respect to μi of this expression vanishes (as it is a ratio of two
nonproportional quadratics), and for β < 2α/3 the expression is positive in the allowed
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range of 1/2 ≤ μi ≤ 1. It follows that the expression is minimized when μi ∈ {1/2, 1},
giving

Pr[Xr−1 < μr−1]

≥ min

[
α− β

1/2 + α− β
· 1/2 − β

1 − β
,

α− 3β/2

1 + α− 3β/2
· 1 − 3β/2

3/2 − 3β/2

]
.

This gives items 1 and 2 in the statement of Lemma 15.
Case 2. μr−1

j ≥ μr−1
1 /2. Hence both sr−1

i and sr−1
j did contribute to s′ (before the

last merge), and moreover, μr−1
i + μr−1

j ≥ μr−1
1 . This, together with the inequality

μr
1 ≤ max[μr−1

1 , μr−1
i + μr−1

j ], implies that we may use μr−1
i + μr−1

j as an upper
bound on μr

1. To simplify notation and without loss of generality we may assume
that μr−1

1 = 1, and then 1/2 ≤ μr−1
j ≤ μr−1

i ≤ 1. We have that sr−1
i + sr−1

j >

α − β(μr−1
i + μr−1

j ) ≥ α − 2β. Recall (from the paragraph prior to Case 1) the sum∑
sr−1
i taken over all variables except Xr−1

i and Xr−1
j is at most β(μr−1

i + μr−1
j ).

Hence if Xr−1
i +Xr−1

j < μr−1
i +μr−1

j −β(μr−1
i +μr−1

j ), then necessarily Xr−1 < μr−1.

We let B denote the event [Xr−1
i +Xr−1

j < (1−β)(μr−1
i +μr−1

j )] and perform a subcase

analysis for Pr[B]. The subcases are partitioned according to which of Xr−1
i and Xr−1

j

(or both, or either one) needs to come up 0 in order for B to hold.
1. It suffices that either Xr−1

i = 0 or Xr−1
j = 0 for B to hold. In this case, using

μr−1
i ≤ 1 and sr−1

i + sr−1
j ≥ α− 2β, Proposition 10 implies that

Pr[B] ≥ α− 2β

1 + α− 2β
.

This gives item 3 in the statement of Lemma 15.
2. B holds iff Xr−1

i = 0. In this subcase, necessarily μr−1
i + sr−1

i ≥
(1 − β)(μr−1

i + μr−1
j ). Using the fact that μr−1

i ≤ 1 and μr−1
j ≥ 1/2 we

have that sr−1
i ≥ μr−1

j − βμr−1
i − βμr−1

j ≥ 1/2 − 3β/2, and therefore

Pr[B] = Pr[Xr−1
i = 0] =

sr−1
i

μr−1
i + sr−1

i

≥ 1/2 − 3β/2

3/2(1 − β)
.

This subcase is dominated by the subcase above, and hence can be ignored.
3. B holds iff Xr−1

j = 0. This subcase is analogous to and dominated by the
subcase above, and hence can be ignored.

4. B holds only if both Xr−1
i = 0 and Xr−1

j = 0. Then necessarily μr−1
i +sr−1

i ≥
(1 − β)(μr−1

i + μr−1
j ) and μr−1

j + sr−1
j ≥ (1 − β)(μr−1

i + μr−1
j ). We have

Pr[B]

≥
(

(1 − β)(μr−1
i + μr−1

j ) − μr−1
i

(1 − β)(μr−1
i + μr−1

j )

)
·
(

(1 − β)(μr−1
i + μr−1

j ) − μr−1
j

(1 − β)(μr−1
i + μr−1

j )

)
.

For fixed μr−1
i + μr−1

j this expression is minimized when μr−1
i − μr−1

j is

maximized. Hence either μr−1
i = 1 or μr−1

j = 1/2. Thereafter, it can
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be verified that the expression is minimized when the other mean is ei-
ther maximized or minimized, giving us three possible local minimum points,
μr−1
i , μr−1

j ∈ {1/2, 1}, μr−1
j ≤ μr−1

i . Two of these give identical values (the

cases that μr−1
i = μr−1

j ); hence we obtain

Pr[B] ≥ min

[(
1/2 − β

1 − β

)2

,

(
1/2 − 3β/2

3/2 − 3β/2
· 1 − 3β/2

3/2 − 3β/2

)]
.

This gives items 4 and 5 in the statement of Lemma 15.

3.2. Some comments. It is straightforward to modify inequality (1) so that
there is no formal requirement that the random variables are nonnegative or that their
mean is bounded by 1. Let w be the maximum over all random variables X1, . . . , Xn

of the respective μi − li, where li is the lowest value in the support of Xi. Then

Pr[X ≤ μ + δw] ≥ min[δ/(1 + δ), 1/13].(4)

The constant 1/13 in Theorem 1 is not best possible and can be improved with
more detailed case analysis. We suspect that the true constant should be 1/e. Pre-
sumably, the way to prove a tight result is to find a sequence of transformations on
the random variables that does not increase Pr[X < μ+ δ] and that gradually brings
them to the conjectured worst case for [X < μ+ δ]. The sequence of transformations
performed in our proof of Theorem 1 manages to achieve this only when δ ≤ 1/12 (or
some other constant not far from 1/12). However, it fails to characterize the worst
case for the perhaps more interesting δ = 1. The idea in the proof is to transform
the random variables into a situation where a case analysis becomes manageable, at
the possible cost of giving up the tightness of the bound. The main principles used
are reducing the support of every random variable to two values, getting all random
variables (perhaps except one) to have roughly the same mean, reducing the surplus
to be of order of magnitude comparable to this mean, and extracting from arbitrar-
ily many random variables a single event of interest, as done in Proposition 10. It
should be clear to the reader that more detailed case analysis would provide tighter
results. But let us point out some limitations that relate to Lemma 12. As long as
one chooses α not larger than μ1/2 (and, in fact, not larger than 3μ1/2) and ana-
lyzes only the situation at the end of Stage 2 or one step earlier, one cannot obtain
a bound better than Pr[X < μ] ≥ 2/9. For example, assume that during Stage 2 we
are left with three variables, each with support {0, μ} and mean μ/3. At this point,
Pr[X < μ] = (2/3)3 = 8/27 < 1/e. After a merge operation, this probability de-
creases further to (1/3) ·(2/3) = 2/9. One merge operation later, Stage 2 ends. Hence
to get (nearly) tight results using the current approach, one may need to modify the
definition of Stage 2 and perform much more extensive (possibly computer assisted)
case analysis.

4. Proof of Theorem 4. The reader is assumed to be familiar with elementary
methods in probability (such as the use of Markov’s inequality, Chebyshev’s inequality,
and Chernoff bounds). If needed, see details in [1], for example.

We query random t vertices and obtain their degrees. Let di be the degree re-
turned by the ith query. Basically, our estimator for d will be d∗ = 1

t

∑t
i=1 di. In

section 4.3 we shall modify this estimator so as to improve its quality. For simplicity
of analysis, we assume that sampling is done with replacement. (The same vertex
might be queried more than once.) This is insignificant when t is small (e.g., t ≤

√
n),
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though note that for large values of t (and, in particular, when t = n) sampling
without replacement gives better estimates than sampling with replacement.

Note that the expectation of our estimate satisfies

E[d∗] = d.(5)

Hence the estimator is unbiased. In deviations from the expectation, we will analyze
separately the events d∗ > d and d∗ < d, or rather, d∗ < d/2.

4.1. The estimate is not too high. Here we shall use Theorem 1. As an
immediate consequence of this theorem (taking δ = 1 and using the fact that the
degree of a sampled vertex is a nonnegative random variable with expectation d) we
have the following corollary.

Corollary 16. There is some universal constant α > 0 such that for every
graph with average degree d, by querying t random vertices (with replacement) for
their degree, the average d∗ satisfies Pr[d∗ ≤ (1 + 1/t)d] ≥ α.

We can take α = 1/13 in Corollary 16, and we conjecture that the corollary is
also true with α = 1/e.

4.2. The estimate is not too low. We assume that the average degree in the
graph is at least d0. Our sampling algorithm queries t = k

√
n/d0 vertices at random

and reports the sum of the degrees. Here k is a parameter that will later be chosen
to be of order 1/ε.

Let Xi be the random variable that denotes the degree of the ith query, and let
X =

∑t
i=1 Xi. Then E[X] = t · d. The following lemma shows that the typical value

of X is not much smaller than E[X]/2.
Lemma 17. For arbitrary δ > 0 (that will later be fixed to 50

√
2/α, where α is

as in Corollary 16), with probability at least 1 − 4
√

2/δ − 2−Ω(δ),

X ≥ E[X]

2

(
1 − δ

k

)
.

Proof. Essentially, the proof of the lemma is based on Chebyshev’s inequality.
To apply Chebyshev’s inequality directly, one would need the variance of X to be
small compared to (E[X])2. Unfortunately, vertices of very high degree may cause
the variance to exceed (E[X])2. To overcome this problem we observe (and will soon
show formally) that in every graph, the vertices of very high degree contain at most
slightly more than half the endpoints of the edges. The contribution to X of vertices
whose degree is not very high is concentrated around its mean, because for them the
variance is small. This explains why the value of X is likely to be not much smaller
than E[X]/2. We now present our proof of the lemma, based on the above principles.

Partition the set of vertices of G into two sets, H (for high) and L (for low). For
a constant c (independent of n, d, k) that will be determined later, the set H contains
the c

√
nd/k vertices of highest degree (breaking ties arbitrarily). The set L contains

the other vertices. Every edge has two endpoints. Let us partition the endpoints of
edges into the following four sets:

• EH,L (the endpoints in H of edges between H and L);
• EL,H (the endpoints in L of edges between H and L);
• EH,H (the endpoints in H of edges between H and H);
• EL,L (the endpoints in L of edges between L and L).

Observe that |EH,H | ≤ |H|2 = c2nd/k2. It will be the case that c is a universal
constant, whereas k ≥ Ω(1/ε), and hence |EH,H | = O(ε2nd). Moreover, we allow an
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error of ε · nd in our estimation of nd. Hence, EH,H has only a low order effect on
the accuracy of the estimation. So as to simplify notation and the presentation, we
shall simply assume that |EH,H | = 0. We shall not give a rigorous proof that this
assumption has only a low order effect on our analysis but merely note here that
formalists may redo the analysis without assuming that |EH,H | = 0, and at worst this
will affect some constants that are eventually hidden by the O notation.

Let m1 = |EH,L|, m2 = |EL,H |, and m3 = |EL,L|. Hence m1 + m2 + m3 = dn.
Note that m2 = m1, because |EL,H | = |EH,L|. Let us break the random variable
X into the sum of three random variables, X = Y1 + Y2 + Y3, according to the
contribution to X from m1, m2, and m3, respectively. Let h denote the minimum
degree of a vertex in H.

Proposition 18. With probability 1 − 2−Ω(c),

Y1 ≥ ch/2.

Proof. The expected number of vertices queried from H is t|H|/n = k
√
n/d0 ·

c
√
d0n/kn = c. With probability 1 − 2−Ω(c), the actual number of vertices queried

from H is at least c/2. Each such vertex contributes at least h to Y1.

Proposition 19. A vertex in L can cover at most |H| = c
√
nd0/k endpoints in

EL,H .

Proof. For every endpoint in EL,H covered by a vertex in L, the other endpoint
of the respective edge is in H. As the original graph is a simple graph with no parallel
edges, the proof follows.

Proposition 20. For λ > 0, with probability at least 1 − 1/λ2,

Y2 ≥ E[Y2] − λ
√

cdn/2.

Proof. The variance of Y2 is maximized if the endpoints of EL,H are concentrated
on m2/|H| vertices (each covering |H| endpoints). Hence

var[Y2] ≤ |H|2 m2

n|H| t = cm2 ≤ cdn/2.

The proof now follows from Chebyshev’s inequality.

Proposition 21. For λ > 0, with probability at least 1 − 1/λ2,

Y3 ≥ E[Y3] − λ

√
hkm3√
d0n

.

Proof. The maximum degree of any vertex in L is h. Hence the graph induced
by the edges EL,L also has maximum degree at most h. Thus

var[Y3] ≤ h2m3

h

t

n
= hm3k/

√
d0n.

The proof now follows from Chebyshev’s inequality.

Proposition 22. With probability at least 1 − 2/λ2 − 2−Ω(c),

X ≥ E[X]

2
+

ch

2
− λ

√
cdn

2
− λ

√
hkm3√
d0n

+
km3

2
√
d0n

.
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Proof. X = Y1 + Y2 + Y3. By Propositions 18, 20, and 21 we have that with
probability at least 1 − 2/λ2 − 2−Ω(c),

X ≥ E[Y2] + E[Y3] +
ch

2
− λ

√
cdn

2
− λ

√
hkm3√
d0n

.

As E[Y1] = E[Y2], we have that E[X]/2 = E[Y2] + E[Y3]/2. Using E[Y3] = m3t/n =
km3/

√
d0n, the proof follows.

Fix c = 4λ2. Then

ch

2
· km3

2
√
d0n

≥
(
λ

√
hkm3√
d0n

)2

,

implying

ch

2
− λ

√
hkm3√
d0n

+
km3

2
√
d0n

≥ 0.

Hence for c = 4λ2, the inequality in Proposition 22 can be replaced with

X ≥ E[X]

2
− λ

√
cdn

2
.

The term λ
√

cdn
2 = λ2

√
2dn is at most E[X]

2 2λ2
√

2/k, because E[X] = dt =

k
√
nd

√
d/d0. Renaming 2

√
2λ2 by δ, Lemma 17 is proved.

4.3. Combining the upper and lower bound. Let us set k = 3δ/ε (where ε
is taken from Theorem 4), and hence from Lemma 17 we have that with probability
at least 1 − 4

√
2/δ − 2−Ω(δ),

X ≥ E[X]

2

(
1 − ε

3

)
.

By Corollary 16, we have that with probability at least α, X ≤ E[X](1 + 1/t). The
ratio between the upper bound on X and the lower bound on X is 2(1+1/t)/(1−ε/3) ≤
2+ ε. This last inequality holds when ε is sufficiently small (which implies Theorem 4
also for larger values of ε) and t is sufficiently large compared to 1/ε (which is true in
our context because t is a parameter that grows with the number of vertices n, and
the O notation in the statement of Theorem 4 implies that it suffices to prove the
theorem when n is sufficiently large).

An unbiased estimate consists of taking t samples and returning their sum X.
Perform 2/α independent unbiased estimates for X, where α is taken to be as in
the discussion following Corollary 16. Our estimation procedure returns Xmin, the
minimum of these estimates. (Equivalently, we set d∗ = Xmin/t.)

Pr

[
Xmin ≤ E[X]

(
1 +

1

t

)]
≥ 1 − (1 − α)2/α ≥ 1 − 1

e2
≥ 5

6
,

Pr

[
Xmin ≥ E[X]

2

(
1 − ε

3

)]
≥ 1 − 2

α

(
4
√

2

δ
+ 2−Ω(δ)

)
≥ 5

6
,
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where the last inequality uses δ = 50
√

2/α. This gives k = 3δ/ε < 220/αε. The total
number of queries used in our estimation procedure is 2t/α. This gives the following
corollary.

Corollary 23. For some universal constant β, using

β

√
n/d0

ε

queries, one can estimate the average degree d of an n node graph within a ratio of
(2 + ε), provided that d > d0.

Proof. Setting β = ( 2
α )( 220

α ) = 440/α2, we perform 2/α unbiased estimates, each

with t = 220
√
n/d0α

−1ε−1 queries, and take the minimum of the estimations that
they give.

Let us note here the role of Corollary 16. It allows us to substitute a universal
constant for α (which is shown to be at least 1/13 in Theorem 1, though we conjecture
that 1/e also works). If not for Theorem 1, we could have used Markov’s inequality in a
proof of a modified Corollary 16, showing (for example) that Pr[d∗ ≤ (1+ε/3)d] ≥ ε/4.
This would have been equivalent to replacing α in the proof of Corollary 23 with ε/4,
which would require the number of queries used by the estimation procedure to be
β
√
n/d0ε

−3 (for some constant β). This a factor of ε−2 worse than the bounds that
we get through the use of Theorem 1.

4.4. Optimality of sample size. The sample size in Corollary 23 is essentially
best possible, as the following proposition shows.

Proposition 24. For every (reasonable) n, d, ε, one can construct a graph G1

with (1 + ε)nd edges and a graph G2 with dn/2 edges, such that Ω( 1
ε

√
n/d) vertices

need to be queried in order to have probability above 2/3 of distinguishing between
them.

Proof. Graph G1 has a set A of ε
√
nd vertices of degree (1 + ε)

√
nd/ε and a set

B of (1 + ε)
√
nd/ε vertices of degree ε

√
nd (e.g., arranged as a complete bipartite

subgraph between A and B). The other vertices have degree 0. Graph G2 has a set
C of

√
nd/ε vertices of degree ε

√
nd.

We sketch the proof of why Ω(
√

n
d ε

−1) queries are necessary. Assume that the

number of queries is
√

n
d ε

−1. Then there is constant probability that no vertex from
A is queried, and the expected number of vertices queried from B is ε−2 + ε−1.
The expected vertices queried from C is ε−2. As the standard deviation is of order√
ε−2 = ε−1, there is constant probability that G1 and G2 will be confused.

The optimality of the sample size was proved under the assumption that the only
information used by the estimation algorithm is the degree of the queried vertices.
More generally, one may think of randomized estimation algorithms that make use
of additional information. For example, when querying a vertex of positive degree,
the next vertex to query may be chosen at random from the list of neighbors of the
current vertex. The use of a more general class of random estimation algorithms may
allow either quicker or more accurate estimation of the average degree in a graph.
See [5], for example. However, let us explain here some of the advantages of “degree
only” sampling, advantages that might be lost by other estimation algorithms.

1. All queries can be made in parallel, which in some contexts results in saving
time.

2. Sampling can be done anonymously. The estimation algorithm need not know
the identity of queried vertices nor the identity of their neighbors. Privacy
issues may sometimes require that this be the case. For example, vertices of



982 URIEL FEIGE

a graph may represent persons in some community, and an edge may repre-
sent some sort of interaction that took place between the respective persons.
Persons may be willing to fill out an anonymous questionnaire stating with
how many different persons they had interaction (namely, their degree) but
may not be willing to disclose with whom they had interaction.

3. In section 5 there are several different graphs Ge defined on the same set of
vertices, and in a single degree query one gets the degrees of the respective
vertex in all graphs simultaneously. In order to efficiently estimate the average
degree in all graphs, it is useful to have an estimation algorithm for which the
choice of which vertex to query does not depend on the graph in question.

5. Quickly estimating the load on a network. We have seen how to estimate
the average degree in a graph using a relatively small number of degree queries. Graph
problems are often abstractions of other more concrete problems. As an example
(which motivated this study), consider the following problem motivated and studied
in [3].

The input is a connected network G with n vertices and m edges (namely, a
graph). Between every two vertices there is a shortest path (a path that crosses the
smallest number of edges). We assume here that shortest paths are unique, a point
that we shall return to later. For an integer parameter c (that may depend on n), we
wish to find all edges that are members of at least c shortest paths. In the terminology
of [3], these edges are called “weakest links,” apparently because these are the edges
where failure may cause the largest amount of damage to the performance of the
network. Finding all weakest links can be done in time O(nm) using an algorithm for
all pairs’ shortest paths. The goal in [3] is to do better. They propose a randomized
algorithm that with high probability has the following guarantees:

• Finds weakest links. It outputs all edges that belong to at least c shortest
paths.

• Avoids false alarms. It does not output any edge that is a member of less
than (1 − ε)c shortest paths.

The running time of the algorithm in [3] is O(mn2 logn
cε2 ), which is better than that

of all pairs’ shortest paths when c � n log n. The basic idea in this algorithm is

to choose k � n2 logn
cε2 pairs of vertices at random and for each pair to perform a

shortest path computation (taking O(m) operations per pair). Using the collection of
k shortest paths that are found, one estimates in how many shortest paths each edge
participates.

Here we present a faster algorithm for finding the weakest links. It is based
on two observations. One is that the cost of performing single source shortest path
computations (namely, that of finding the shortest paths from one vertex to all other
vertices) is O(m), similar to that of finding the shortest path between one pair of
vertices. The other observation is that the estimation problem that this gives rise to
can be cast as that of estimating the average degree in a graph or, more precisely, in
m different graphs simultaneously. The improved running time comes at a cost of a
somewhat weaker guarantee in terms of false alarms:

• Avoids false alarms. The algorithm does not output any edge that is a mem-
ber of less than (1/2 − ε)c shortest paths.

As in [3] we assume that shortest paths are unique. This requires a convention for
breaking ties between paths of equal length. We shall use the same convention that is
proposed in [3], namely, to take the lexicographically first such path. This convention
assumes that vertices are labelled and that there is a total ordering on the labels. For
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example, the labels can be 1 to n. A path can be viewed as a sequence of vertices in a
natural way. Hence a path is a sequence of labels. In fact, two sequences correspond
to the same path, depending on which of its two endpoints is considered to be the
head of the path and which is considered to be the tail. The name of the path is taken
to be the lexicographically smaller of the two. Given two different paths that connect
the same pair of vertices, if they are of equal length we use the convention that the
one with the lexicographically smaller name is considered to be shorter.

Proposition 25. Under the tiebreaking convention specified above, there is an
O(m)-time algorithm that does the following. Given a connected graph G with n
vertices and m edges and an arbitrary vertex v, it simultaneously counts for every
edge e in how many vertices u edge e participates in the shortest path connecting u
and v.

Proof. We assume a model of computation in which algorithms such as single
source shortest path take O(m) time. In particular, some basic operations (such as
comparison between two O(log n)-bit words) take unit time.

Given a starting vertex v, the distances to all other vertices in G can be computed
in O(m) time using breadth first search (BFS). The BFS tree rooted at v also gives
shortest paths from v to all vertices. It is quite straightforward to also count for each
edge in the BFS tree (starting from edges furthest from the root and moving towards
the root) in how many shortest paths (starting from v) it participates. The counting
requires only O(n) operations, as there are only n− 1 edges in the BFS tree.

In general, several different BFS trees can be constructed starting at the same
vertex v, because a vertex at distance i from v may have more than one neighbor at
distance i − 1 from v. We shall need to construct two such trees. For both trees,
we may scan the vertices of the graph in the following order, starting at v: within a
level of the BFS tree, vertices are scanned in the order under which they were first
discovered, and every vertex scans its neighbors in order of increasing labels. The
forward tree rooted at v (which gives the lexicographically first shortest paths when
v is the first vertex of the path) is constructed using the following rule: for every
vertex discovered at level i keep a pointer to its level i− 1 neighbor that was first to
be discovered (according to the scanning order described above). The backward tree
rooted at v (which gives the lexicographically first shortest paths when v is the last
vertex of the path) is constructed using the following rule: for every vertex discovered
at level i keep a pointer to its level i− 1 neighbor of smallest label. Both the forward
tree and the backward tree can be constructed in O(m) time.

Given both the forward tree and the backward tree for a vertex v, and using
the convention that for vertices with a label smaller than v one uses the backward
tree and for vertices with a label larger than v one uses the forward tree, one can
simultaneously count in O(n) time how many shortest paths with an endpoint at v
pass through every edge. (Note that this count is 0 for all but at most 2n − 2 edges
of the two BFS trees.)

We now consider m different graphs, one for every edge e. We denote the graph
that we associate with edge e by Ge. The vertices of Ge are the vertices of G. Two
vertices are connected by an edge in Ge iff e is on their unique shortest path in G.
It follows that edge e is on c shortest paths in G iff the average degree in Ge is at
least 2c/n. Hence to find all weakest links, it suffices to find (or estimate) the average
degrees of all graphs Ge. We shall now combine two facts.

1. By Theorem 4, O(
√
n/d0/ε) degree queries suffice in order to estimate the

average degree in a graph with average degree at least d0. To make the prob-
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ability of error in this estimation below 1/n2, one can repeat the estimation
procedure O(log n) times and take the median of the estimations. We shall
set d0 = (1 − ε)c/n.

2. For any vertex v, Proposition 25 implies that in time O(m) one can simulta-
neously obtain the degree of v in all graphs Ge.

Hence using k = O(
logn

√
n/(c/n)

ε ) = O(n logn
ε
√
c

) single source shortest path computa-

tions one can with high probability simultaneously estimate the average degree in all
graphs Ge, and thus find all weakest links (edges that are on more than c shortest
paths) while avoiding any false alarms (by edges that are on less than (1/2 − ε)c
shortest paths). This proves Theorem 5.

Theorem 5 offers a savings of roughly n/
√
c in the running time compared to the

running time of O(mn2 logn
cε2 ) in [3]. (Note, however, that ε has different meanings in

the two bounds. Hence the savings comes at the cost of allowing more false alarms.)
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Abstract. We show that the hit-and-run random walk mixes rapidly starting from any interior
point of a convex body. This is the first random walk known to have this property. In contrast,
the ball walk can take exponentially many steps from some starting points. The proof extends to
sampling an exponential density over a convex body.
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1. Introduction. Consider a random walk in R
n. It starts somewhere and

at each step moves to a randomly chosen “neighboring” point (which could be the
current point). With a suitable choice of the “neighbor” transition, the steady state
distribution of such a walk can be the uniform distribution over a convex body or,
indeed, any reasonable distribution in R

n. For example, to sample uniformly from a
convex body K, the ball walk at a point x chooses a point y uniformly in a ball of
fixed radius centered at x and then goes to y if y is in K; else, the step is wasted and
it stays at x.

In the last decade and a half, there has been much progress in analyzing these
walks [1, 2, 4, 6, 8, 9, 11, 12]. In [8] it was shown that the ball walk mixes in
O∗(n3) steps from a warm start after appropriate preprocessing. (A warm start
means that the starting point is chosen from a distribution that already is not too
far from the target in the sense that its density at any point is at most twice the
density of the target distribution. The O∗ notation suppresses logarithmic factors and
dependence on other parameters like error bounds.) While this result is sufficient to
get polynomial-time algorithms for important applications, it is rather cumbersome
to generate a warm start and increases the complexity substantially. Kannan and
Lovász [6] have shown that the ball walk mixes in O∗(n3) time from any starting
point if wasted steps are not counted. However, the ball walk can take an exponential
number of (mostly wasted) steps to mix from some starting points, e.g., a point close
to the apex of a rotational cone. (This is because most of the volume of the ball
around the start is outside the cone.) Moreover, even starting from a fairly deep
point (i.e., the distance to the boundary is much larger than the ball radius), the
mixing time can be exponential.1 The only known way to avoid this problem is to
invoke a warm start; it has been an open question as to whether there is a random
walk that mixes rapidly starting from, say, the center of gravity of the convex body.

∗Received by the editors November 15, 2004; accepted for publication (in revised form) August
26, 2005; published electronically February 21, 2006.

http://www.siam.org/journals/sicomp/35-4/44727.html
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1Random walks on a discrete subset of R

n (e.g., the lattice walk) avoid this local conductance
problem but have other complications that make their convergence less efficient, although still poly-
nomial. Also, one is sampling from a discrete subset, which might be acceptable for applications but
is a bit unsatisfactory.
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Is there a random walk that mixes rapidly starting from a(ny) single point? Hit-
and-run, introduced by Smith [15], is defined as follows:

• Pick a uniformly distributed random line � through the current point.
• Move to a uniform random point along the chord � ∩K.

It was proved in [15] that the stationary distribution of the hit-and-run walk is
the uniform distribution πK over K. In [10], it was shown that hit-and-run mixes in
O∗(n3) steps from a warm start after appropriate preprocessing; i.e., it is no worse
than the ball walk. In this paper, we show that it actually mixes rapidly from any
interior starting point.

To be more precise, the mixing time can be big if we start from a very tight corner.
But our bound will be logarithmic in the distance; thus, if, e.g., the convex body is
described by a system of linear inequalities with rational coefficients, and the starting
point is given by rational coordinates, then the mixing time will be polynomial in the
input data.

To derive this mixing result, we prove the following theorem that still assumes a
bound on the density of the starting distribution.

Theorem 1.1. Let K be a convex body that contains a ball of radius r and is
contained in a ball of radius R. Let σ be a starting distribution and let σm be the
distribution of the current point after m steps of hit-and-run in K. Let ε > 0, and
suppose that the density function dσ/dπK is bounded by M except on a set S with
σ(S) ≤ ε/2. Then for

m > 1010n
2R2

r2
ln

M

ε
,

the total variation distance of σm and πK is less than ε.
The condition on the starting density captures the case when the L2 distance of σ

and π is bounded (as shown in section 5). The theorem improves on existing bounds
by reducing the dependence on M and ε from polynomial (which is unavoidable for
the ball walk) to logarithmic, while maintaining the optimal dependence on r,R, and
n. To bound the convergence to stationarity when starting from a specific point at
distance d from the boundary, we do one step and then (if this is not too short) we
apply Theorem 1.1 with the starting distribution obtained this way.

Corollary 1.2. Under the conditions of Theorem 1.1, suppose that the starting
distribution σ is concentrated on a single point in K at distance d from the boundary.
Then for

m > 1011n
3R2

r2
ln

R

dε
,

the total variation distance of σm and πK is less than ε.
At the heart of this theorem is a bound of Ω(r/nR) on the conductance of every

subset (see Theorem 4.2). (For the ball walk, the conductance of small sets can be
arbitrarily small; therefore the need for a warm start.) As we discuss in section 5,
the condition that K is contained in a ball of radius R can be replaced by the weaker
condition that its second moment is at most R2, i.e., EK(|x− zK |2) ≤ R2, where zK

is the centroid of K. The mixing time goes up by a factor of O(ln2(M/ε)). For a
body in near-isotropic position, R/r = O(

√
n) and so the number of steps required

is O(n3 ln3(M/ε)). It follows that hit-and-run mixes in O(n4 ln3(n/d)) steps starting
from a point at distance d from the boundary. Such a guarantee is not possible for
the ball walk.
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Our main tool is a new isoperimetric inequality (section 2). To formulate an
isoperimetric inequality, one considers a partition of a convex body K into three sets
S1, S2, S3 such that S1 and S2 are “far” from each other and the inequality bounds
the minimum possible volume of S3 relative to the volumes of S1 and S2. All previous
inequalities have viewed the distance between S1 and S2 as the minimum distance
between points in S1 and points in S2. For example, if d(S1, S2) is the minimum
Euclidean distance between S1 and S2, then

vol(S3) ≥
2d(S1, S2)

D
min{vol(S1), vol(S2)},

where D is the diameter of K [3, 7]. One can get a similar inequality using the
cross-ratio distance (see section 2) instead of the Euclidean distance [10]:

vol(S3) ≥ dK(S1, S2)
vol(S1)vol(S2)

vol(K)
.

In this paper, by means of a weight function h(x) on K that measures the distance
between S1 and S2 as a certain average distance, we obtain a more general inequal-
ity that can be much stronger. We formulate it for general logconcave functions in
Theorem 2.1. For a convex body, it says that

vol(S3) ≥ EK(h(x)) min{vol(S1), vol(S2)}.
The weight h(x) at a point x is restricted only by the cross-ratio distance between
pairs u, v from S1, S2, respectively, for which x ∈ [u, v]. In general, the weight h(x)
can be much higher than the minimum cross-ratio distance between S1 and S2.

Hit-and-run can be extended to sampling general densities f in R
n as follows:

• Pick a uniformly distributed random line � through the current point.
• Move to a random point y along the line � chosen from the distribution

induced by f on �.
The stationary distribution of this walk is πf , the probability measure with density
f . It has been shown that it is efficient for any logconcave density from a warm start
[13]. (Similar results are also known for the ball walk with a Metropolis filter [13].)
It is natural to ask if hit-and-run is rapidly mixing from any starting point even for
arbitrary logconcave functions. There are some technical problems with extending the
results of this paper to arbitrary logconcave functions; but we make some progress
in this direction by showing that this is indeed the case for an exponential density
over a convex body. This class of density functions is interesting for other reasons
as well—these are the functions used in “simulated annealing” and in the fastest
volume algorithm [14]. We prove the following theorem in section 6. The condition
on the starting density captures the case of bounded L2-norm; the proof uses the
same isoperimetric inequality (see Theorem 2.1).

Theorem 1.3. Let K ⊆ R
n be a convex body and let f be a density supported on

K which is proportional to e−aT x for some vector a ∈ R
n. Assume that the level set

of f of probability 1/8 contains a ball of radius r and that Ef (|x− zf |2) ≤ R2, where
zf is the centroid of f . Let σ be a starting distribution and let σm be the distribution
of the current point after m steps of hit-and-run applied to f . Let ε > 0, and suppose
that the density function dσ/dπf is bounded by M except on a set S with σ(S) ≤ ε/2.
Then for

m > 1030n
2R2

r2
ln5 MnR

rε
,

the total variation distance of σm and πf is less than ε.
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1.1. Overview of analysis. We wish to bound the rate of convergence of the
Markov chain underlying hit-and-run to the uniform distribution πK on the convex
body K. For this we use the notion of conductance, which is defined as follows: For
any measurable subset S ⊆ K and x ∈ K, we denote by Px(S) the probability that a
step from x goes to S. If 0 < πK(S) < 1, then the conductance φ(S) is defined as

φ(S) =

∫
x∈S

Px(K \ S) dπK

min{πK(S), πK(K \ S)} .

The minimum value over all subsets S is the conductance, φ, of the Markov chain.
Lovász and Simonovits [12], extending a result of Jerrum and Sinclair [5], have shown
that the mixing rate (roughly, the number of steps needed to halve the distance to
the stationary distribution) is bounded by O(1/φ2) (and is at least 1/φ).

The main part of our proof shows that the conductance of the hit-and-run Markov
chain is Ω(r/nR). All previous attempts to bound the conductance of geometric ran-
dom walks could prove only that the conductance of “large” subsets is large, namely,
that the conductance bound for a subset S was proportional to πK(S). For this rea-
son, one had to limit the probability that we start in one of bad small sets, which
leads to the use of a warm start. As mentioned earlier, the example of starting at a
point x near the apex of a rotational cone shows that the ball walk can in fact take
exponentially many steps from some starting points: Most points of a ball around x
are outside the cone, and hence most steps from x are wasted.

Hit-and-run, on the contrary, exhibits a sizable (inverse polynomial) drift toward
the base of the cone. Thus, although the initial steps are tiny, they quickly get larger
and the current point moves away from the apex. By bounding the conductance, we
show that this phenomenon is general; i.e., hit-and-run mixes rapidly starting from
any interior point of a convex body. To prove this, we use the new isoperimetric
inequality. Besides the inequality, a key observation in the proof is that the “median”
step length from points in K is a concave function.

2. A weighted isoperimetric inequality. To analyze the walk, we use a non-
Euclidean notion of distance [10]. Let u, v be two distinct points in K, let �(u, v)
denote the line through u and v, and let p, q be the endpoints of the segment �(u, v)∩K,
so that the points appear in the order p, u, v, q along �(u, v). Then,

dK(u, v) =
|u− v||p− q|
|p− u||v − q| .

For two subsets S1, S2 of K, we define

dK(S1, S2) = min
u∈S1,v∈S2

dK(u, v).

Theorem 2.5 from [13] asserts the following: If f is a logconcave function on a convex
set K, ε > 0 and S1 ∪S2 ∪S3 is a partition of K into three measurable sets such that
for any u ∈ S1 and v ∈ S2 we have dK(u, v) ≥ ε, then∫

K

f(x) dx

∫
S3

f(x) dx ≥ ε

∫
S1

f(x) dx

∫
S2

f(x) dx.(1)

We prove the following related result.
Theorem 2.1. Let K be a convex body in R

n. Let f : K → R+ be a logconcave
function and let h : K → R+ be an arbitrary function. Let S1, S2, S3 be any partition
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of K into measurable sets. Suppose that for any pair of points u ∈ S1 and v ∈ S2 and
any point x on the chord of K through u and v,

h(x) ≤ 1

3
min(1, dK(u, v)).

Then ∫
S3

f(x) dx

min
{∫

S1
f(x) dx,

∫
S2

f(x) dx
} ≥

∫
K
h(x)f(x) dx∫
K
f(x) dx

.

Remark. For a logconcave density function f and corresponding distribution πf ,
the conclusion of the theorem can be stated as

πf (S3) ≥ Ef (h(x)) min{πf (S1), πf (S2)}.

Proof. We can assume that
∫
S1

f(x) dx ≤
∫
S2

f(x) dx. Suppose that the conclu-

sion is false. Then there exists an A ≤ 1/2 such that∫
K

f(x) dx =
1

A

∫
S1

f(x) dx

and ∫
S3

f(x) dx < A

∫
K

h(x)f(x) dx.

Now we invoke the localization lemma, specifically the version given in Corollary
2.4 of [7]. This implies that there exist two points a, b ∈ K and a linear function
� : [0, 1] → R+ with the following properties. Set

F (t) = �(t)n−1f(ta + (1 − t)b), G(t) = h(ta + (1 − t)b),

and

Ji = {t ∈ [0, 1] : ta + (1 − t)b ∈ Si} (i = 1, 2, 3);

then ∫ 1

0

F (t) dt =
1

A

∫
J1

F (t) dt,

∫
J3

F (t) dt < A

∫ 1

0

G(t)F (t) dt,

and hence ∫ 1

0

F (t) dt

∫
J3

F (t) dt <

∫
J1

F (t) dt

∫ 1

0

G(t)F (t) dt.

For u, v ∈ K, let Muv denote the maximum of h(x) over the chord through u and v;
then ∫ 1

0

G(t)F (t) dt ≤ Mab

∫ 1

0

F (t) dt,
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and so ∫
J3

F (t) dt < Mab

∫
J1

F (t) dt.(2)

We also have ∫
J1

F (t) dt = A

∫ 1

0

F (t) dt ≤ 1

2

∫ 1

0

F (t) dt.(3)

Let u ∈ J1 and v ∈ J2, and (say) u < v. Then by hypothesis,

v − u

u(1 − v)
≥ dK(ua + (1 − u)b, va + (1 − v)b) ≥ 3Mab,

and hence by the one-dimensional case of (1), we have

∫ 1

0

F (t) dt

∫
J3

F (t) dt ≥ 3Mab

∫
J1

F (t) dt

∫
J2

F (t) dt.

Comparing this with (2), we get

∫ 1

0

F (t) dt > 3

∫
J2

F (t) dt.

Using this and (3), it follows that

∫
J3

F (t) dt =

∫ 1

0

F (t) dt−
∫
J1

F (t) dt−
∫
J2

F (t) dt

>

(
1 − 1

2
− 1

3

)∫ 1

0

F (t) dt

=
1

6

∫ 1

0

F (t) dt.

But then (2) and (3) imply that Mab > 1/3, a contradiction.

3. Bounding the step size. For x ∈ K, let y be a random step from x. Fol-
lowing [10], we define F (x) as

P (|x− y| ≤ F (x)) =
1

8
.(4)

Roughly speaking, this is the “median” step length from x. The goal of this
section is to bound this function from below by a concave function.

For x ∈ K, let

λ(x, t) =
vol(K ∩ (x + tB))

vol(tB)

denote the fraction of a ball of radius t around x that intersects K. For a fixed γ ≥ 0,
define s : K → R+ as

s(x) = sup{t ∈ R+ : λ(x, t) ≥ γ}.
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The value s(x) is a measure of how close x is to the boundary of K. Its somewhat
complicated definition guarantees some useful properties.

Lemma 3.1. For any γ > 0, s(x) is a concave function.
Proof. Let x1, x2 ∈ K with s(x1) = r1 and s(x2) = r2. Let Ai = K ∩ (x1 + riB)

(i = 1, 2). Let x = (x1 + x2)/2 and consider A = (A1 +A2)/2. By convexity, A ⊆ K.
Further, any point y ∈ A can be written as

y =
1

2
(x1 + z1 + x2 + z2) = x +

z1 + z2

2

for some z1, z2 such that |z1| ≤ r1 and |z2| ≤ r2. Thus,

A ⊆ K ∩
(
x +

r1 + r2
2

B

)
.

Next, by the Brunn–Minkowski inequality,

vol(A)
1
n ≥ 1

2

(
vol(A1)

1
n + vol(A2)

1
n

)
≥ 1

2
γ

1
n vol(B)

1
n (r1 + r2)

= γ
1
n vol

(
r1 + r2

2
B

) 1
n

.

It follows that

vol

(
K ∩

(
x +

r1 + r2
2

B
))

≥ vol(A) ≥ γvol

(
r1 + r2

2
B

)

and thus s(x) ≥ (r1 + r2)/2.
Lemma 3.2. If γ ≥ 63/64, then for all x ∈ K,

F (x) ≥ s(x)

32
.

Proof. Set s = s(x). Let p denote the fraction of the surface of the ball x+(s/2)B
that is not in K. Then

vol((x + sB) \K) ≥ pvol(sB) − vol((s/2)B).

By the definition of s,

vol((x + sB) \K) ≤ (1 − γ)vol(sB),

and hence

p ≤ 1 − γ + 2−n ≤ 1

32
.

Take a random line � through x; then with probability at least 1−2p, �∩(x+(s/2)B) ⊆
K. If this happens, then for the point y chosen uniformly from � ∩K, we have

P
(
|y − x| ≤ s

32
| �

)
≤ 1

16
,
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and so

P
(
|y − x| ≤ s

32

)
≤ 1

16
+

15

16
· 1

16
<

1

8
.

This proves the lemma.
Let us quote Corollary 4.6 in [8] as the following lemma.
Lemma 3.3. Suppose K contains a ball of radius r. Then,∫

K

∫
y∈x+tB\K

dy dx ≤ t
√
n

2r
vol(K)vol(tB).

This lemma can be used to bound the average value of s(x) from below, as follows.
Lemma 3.4. Suppose K contains a unit ball. Then,∫

K

s(x) dx ≥ 1 − γ√
n

vol(K).

Proof. From Lemma 3.3,∫
K

λ(x, t) dx ≥
(

1 − t
√
n

2

)
vol(K).

On the other hand,∫
K

λ(x, t) dx ≤ γvol(K) + (1 − γ)vol({x ∈ K : λ(x, t) ≥ γ})

and so

vol({x ∈ K : λ(x, t) ≥ γ}) ≥
(

1 − t
√
n

2(1 − γ)

)
vol(K).

Using this, ∫
K

s(x) dx =

∫ ∞

0

vol({x ∈ K : λ(x, t) ≥ γ}) dt

≥ vol(K)

∫ ∞

0

(
1 − t

√
n

2(1 − γ)

)+

dt

=
1 − γ√

n
vol(K).

4. A scale-free bound on the conductance. For a point u ∈ K, let Pu be
the distribution obtained by taking one hit-and-run step from u. Then (as shown in
[10]),

Pu(A) =
2

voln−1(∂B)

∫
A

dx

�(u, x)|x− u|n−1
,(5)

where �(u, x) is the length of the chord through u and x.
Let dtv(P,Q) denote the total variation distance between distributions P and Q.

The following lemma from [10] connects the geometric distance of two points to the
variation distance of the distributions obtained by taking one hit-and-run step.
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Lemma 4.1 (see [10]). Let u, v ∈ K. Suppose that

dK(u, v) <
1

8
and |u− v| < 2√

n
max{F (u), F (v)}.

Then

dtv(Pu, Pv) < 1 − 1

500
.

The main theorem of this section is the following.
Theorem 4.2. Let K be a convex body in R

n of diameter D, containing a unit
ball. Then the conductance of hit-and-run in K is at least 1

224nD .
Proof. Let K = S1 ∪ S2 be a partition into measurable sets. We will prove that∫

S1

Px(S2) dx ≥ 1

224nD
min{vol(S1), vol(S2)}.(6)

We can read the left-hand side as follows: We select a random point X from the
uniform distribution and make one step to get Y . What is the probability that
X ∈ S1 and Y ∈ S2? It is well known that this quantity remains the same if S1 and
S2 are interchanged.

Consider the points that are deep inside these sets, i.e., unlikely to jump out of
the set:

S′
1 =

{
x ∈ S1 : Px(S2) <

1

1000

}

and

S′
2 =

{
x ∈ S2 : Px(S1) <

1

1000

}
.

Let S′
3 be the rest, i.e., S′

3 = K \ S′
1 \ S′

2.
Suppose vol(S′

1) < vol(S1)/2. Then∫
S1

Px(S2) dx ≥ 1

1000
vol(S1 \ S′

1) ≥
1

2000
vol(S1),

which proves (6).
So we can assume that vol(S′

1) ≥ vol(S1)/2 and, similarly, that vol(S′
2) ≥ vol(S2)/2.

For any u ∈ S′
1 and v ∈ S′

2,

dtv(Pu, Pv) ≥ 1 − Pu(S2) − Pv(S1) > 1 − 1

500
.

Thus, by Lemma 4.1, either

dK(u, v) ≥ 1

8
(7)

or

|u− v| ≥ 2√
n

max{F (u), F (v)}.(8)
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We want to apply Theorem 2.1 to the partition S′
1, S

′
2, S

′
3 and the function h(x) =

s(x)/(48D
√
n), where s(x) is as defined in section 3 with γ = 63/64. To verify the

condition, let u ∈ S′
1, v ∈ S′

2, and x be any point on the chord pq through u and v
(where p is the endpoint closer to u than v). Clearly h(x) ≤ 1/3. If (7) holds, then
h(x) ≤ dK(u, v)/3 is trivial. Then suppose that (8) holds. Let, e.g., x be between u
and q. Then, using the concavity of s (Lemma 3.1), we have

s(x) ≤ |x− p|
|u− p|s(u) ≤ 32

|q − p|
|u− p|F (u) (using Lemma 3.2)

≤ 16
|q − p|
|u− p|

√
n|u− v| (using (8) above)

= 16dK(u, v)
√
n|q − v|

≤ 16dK(u, v)D
√
n,

and hence h(x) ≤ dK(u, v)/3 follows again. Thus, Theorem 2.1 applies with f being
the uniform density and we get

vol(S′
3)

min{vol(S′
1), vol(S′

2)}
≥ 1

48D
√
n
· 1

vol(K)

∫
K

s(x) dx

>
1

4000nD
.

Here we have used Lemma 3.4 with γ = 63/64. Therefore,∫
S1

Px(S2) dx ≥ 1

2
· 1

1000
vol(S′

3)

≥ 1

223nD
min{vol(S′

1), vol(S′
2)}

≥ 1

224nD
min{vol(S1), vol(S2)},

which again proves (6).

5. Proof of the mixing bound. First note that hit-and-run is invariant under
a scaling of space (i.e., there is a 1 – 1 mapping between the random walk in K
and cK) and thus the conductance bound of Ω(r/nR) follows by considering K/r.
Next, suppose we start with an M -warm distribution σ; i.e., for any subset S of K,
σ(S) ≤ MπK(S). Then using Corollary 1.5 of [12], the distribution σm obtained after
m steps satisfies

dtv(σ
m, πK) ≤

√
M

(
1 − φ2

2

)m

and thus after m > Cn2 R2

r2 ln M
ε steps (C is a constant), the total variation distance

of σm and πK is less than ε.
If we know only that σ ≤ MπK except for the subsets of a set S with σ(S) < ε/2,

then we think of a random point of K as being generated with probability 1 − ε/2
from a distribution σ′ that is (2M)-warm with respect to πK and with probability
ε/2 from some other distribution. After m steps, we have

dtv(σ
m, πK) ≤ ε

2
+
(
1 − ε

2

)√2M

ε

(
1 − φ2

2

)m

,
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which implies Theorem 1.1.
In some applications, the L2-norm of σ w.r.t. π is bounded; i.e., suppose that

∫
K

(
dσ

dπ

)2

dπ ≤ M.

This will also be sufficient for mixing. The set

S =

{
x :

dσ

dπ
>

2M

ε

}

has measure π(S) of at most ε/2. So we can apply the mixing theorem with 2M/ε in
place of M .

As mentioned in the introduction, Theorem 1.1 can be strengthened to require
only that EK(||x − zK ||2) ≤ R2 with a small increase in the mixing time. It is well
known that the volume of K outside a ball of radius R ln(2/δ) is at most a δ/2 fraction.
Thus the conductance of any subset of measure x is at least

φ(x) =
cr

nR ln(2/x)

for some constant c. Then the average conductance theorem of [6] implies that after
m > C(n2R2/r2) ln3(M/ε) steps (where C is a constant), we get that dtv(σ

m, πK) ≤ ε.
Finally, Corollary 1.2 follows by bounding M for the distribution obtained after

one step of hit-and-run.

6. Exponential density over a convex body. Here we extend the main the-
orem to sample an exponential density over a convex body. We will use the following
notation. Let f be a density function in R

n. For any line � in R
n, let μ�,f be the

measure induced by f on �, i.e.,

μ�,f (S) =

∫
p+tu∈S

f(p + tu)dt,

where p is any point on � and u is a unit vector parallel to �. We abbreviate μ�,f by μ�

if f is understood, and also μ�(�) by μ�. The probability measure π�(S) = μ�(S)/μ�

is the restriction of f to �.
For two points u, v ∈ R

n, let �(u, v) denote the line through them. Let [u, v]
denote the segment connecting u and v, and let �+(u, v) denote the semiline in �
starting at u and not containing v. Furthermore, let

f+(u, v) = μ�,f (�+(u, v)),

f−(u, v) = μ�,f (�+(v, u)),

f(u, v) = μ�,f ([u, v]).

For any T > 0, let L(T ) = {x : f(x) ≥ T} be the level set of function value T . It
will be convenient to let πn denote the volume of the unit ball in R

n.

6.1. Distance. The following “distance” was used in [13]:

df (u, v) =
f(u, v)f(�(u, v))

f−(u, v)f+(u, v)
.
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(This quantity is not really a distance, since it does not satisfy the triangle inequality.
To get a proper distance function, one could consider ln(1 + df (u, v)); but it will be
more convenient to work with df .)

Note that when f is the uniform distribution over a convex set K, then df (u, v) =
dK(u, v). The next lemma describes how the two are related in general.

Lemma 6.1. Let f be a logconcave density function in R
n whose support is a

convex body K. Let G = maxK f(x)/minK f(x).
1. df (u, v) ≥ dK(u, v).
2.

dK(u, v) ≥ min{3, df (u, v)}
6(1 + lnG)

.

The first inequality is Lemma 5.9 in [13], and the second inequality is a direct
implication of Lemma 5.11 in [13].

6.2. Step size. Let f be a density function whose support is a convex body K.
We define three parameters that all measure the local smoothness of f . First, for a
fixed β and γ, we define

λ(x, t) =
vol((x + tB) ∩ L(βf(x)))

vol(tB)
and s(x) = sup{t ∈ R+ : λ(x, t) ≥ γ}.

Second, we define F (x) by

P (|x− y| ≤ F (x)) =
1

8
,

where y is a random step from x. Third, we define α(x) (as in [13]) as the smallest
s ≥ 3 for which a hit-and-run step y from x satisfies

P(f(y) ≥ sf(x)) ≤ 1

16
.

We will shortly fix β = 3/4 and γ = 63/64. Note that λ(x, t), s(x), and F (x)
as defined here are generalizations of the definitions in section 3 (where f(x) was the
uniform density over K).

The following lemma was proved in [13].
Lemma 6.2 (see [13, Lemma 6.10]).

πf (u : α(u) ≥ t) ≤ 16

t
.

Our next lemma extends a crucial property of s(x) to exponential functions (it
does not hold for general logconcave functions).

Lemma 6.3. Suppose f(x) is proportional to e−aT x in a convex body K and zero
outside. Then for any fixed β, γ > 0, the function s(x) is concave.

Proof. Let x1, x2 ∈ K with s(x1) = r1 and s(x2) = r2. Define

A1 = {y ∈ x1 + r1B : f(y) ≥ βf(x1)} and A2 = {y ∈ x2 + r2B : f(y) ≥ βf(x2)}.

Now let x = (x1 + x2)/2 and consider A = (A1 +A2)/2. Any point y ∈ A can be
written as

y = x +
z1 + z2

2
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for some z1, z2 such that z1 ∈ r1B and z2 ∈ r2B. Thus

A ⊆ x +
r1 + r2

2
B.

Also, since f(x) is proportional to e−aT x, we have f((x + y)/2) =
√

f(x)f(y) and so
for any y ∈ A,

f(y) = f

(
y1 + y2

2

)
=

√
f(y1)f(y2),

where y1 ∈ A1 and y2 ∈ A2. By the definition of these subsets, f(y1) ≥ βf(x1) and
f(y2) ≥ βf(x2). Thus

f(y) ≥ β
√
f(x1)f(x2) = βf

(
x1 + x2

2

)
= βf(x)

and so

A ⊆
{
y ∈ x +

r1 + r2
2

B : f(y) ≥ βf(x)

}
.

Finally, by the Brunn–Minkowski inequality,

vol(A)
1
n ≥ 1

2

(
vol(A1)

1
n + vol(A2)

1
n

)
≥ 1

2
(γπn)

1
n (r1 + r2)

= γ
1
n vol

(
r1 + r2

2
B

) 1
n

.

It follows that s(x) ≥ (r1 + r2)/2.

Next, we bound the expected value of s(x).

Lemma 6.4. Let f be any logconcave density such that the level set of f of
measure 1/8 contains a ball of radius r. Then with β = 3/4 and γ = 63/64,

Ef (s(x)) ≥ r

210
√
n
.

Proof. Let L0 be the level set

L0 = {x : f(x) ≥ f0},

such that the measure of L0 is 1/8. For i = 1, 2, . . . , consider the level sets

Li =

{
x : f(x) ≥

(
3

4

)i

f0

}
.

Note that since f is logconcave, each Li is a convex body. We will first bound
Ef (1 − λ(x, t)) as follows:



998 L. LOVÁSZ AND S. VEMPALA

∫
Rn

f(x)

∫
y∈x+tB:f(y)<3f(x)/4

dy

vol(tB)
dx

≤ 1

8
+
∑
i>0

f0

(4/3)i−1

∫
x∈Li\Li−1

∫
y∈x+tB\Li

dy

vol(tB)
dx

≤ 1

8
+
∑
i

f0

(4/3)i−1

∫
x∈Li

∫
y∈x+tB\Li

dy

vol(tB)
dx

≤ 1

8
+

t
√
n

2r

∑
i

f0

(4/3)i−1
vol(Li).

In the last step, we applied Lemma 3.3 to the convex set Li which contains a ball
of radius r by assumption. Now for any x ∈ Li \ Li−1,

f0

(4/3)i
≤ f(x) <

f0

(4/3)i−1
.

Using this,

∑
i

f0

(4/3)i−1
vol(Li) ≤

∑
i

4f0

(4/3)i−1
vol(Li \ Li−1)

≤ 16

3

∫
Rn

f(x) dx < 6.

Thus,

Ef (1 − λ(x, t)) ≤ 1

8
+

3t
√
n

r
.

Next, since λ(x, t) can be at most 1, we get∫
x:λ(x,t)≥3/4

f(x) dx ≥ 1

2
− 12t

√
n

r
.

We will use the following claim to complete the proof: If λ(x, t) ≥ 3/4, then for
c > 1,

λ(x, t/c) ≥ 1 − e−( c
4−1)2/2.

To see the claim, note that since λ(x, t) ≥ 3/4, there must be a ball of radius t/2
√
n

inside K centered at x. The claim then follows by applying Lemma 4.4 in [13].
Setting c = 16 above, we get λ(x, t/16) ≥ 1 − e−9/2 > 63/64. Using this,∫

Rn

s(x)f(x) dx ≥ 1

16

∫ ∞

t=0

∫
x:λ(x,t)≥3/4

f(x) dx dt

≥ 1

16

∫ ∞

t=0

(
1

2
− 12t

√
n

r

)+

dt

≥ r

210
√
n
.

We can also relate the maximum value of s(x) to the diameter D.
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Lemma 6.5. Let G = maxK f(x)
minK f(x) , where f is proportional to e−aT x with support

K. Suppose K has diameter D. Then,

max
K

s(x) ≤ min

{
2
√
nD

lnG
,D

}
.

Proof. Let t = 1/|a|. Then along the direction of a, the function value drops by
1/e each time we move distance t. Hence,

t ≤ D

lnG
.

On the other hand, for any point x, we claim that

s(x) ≤ 2t
√
n.

To see this, consider the nearest point y along the line through x in the direction of
a with f(y) ≤ f(x)/2. This point satisfies |x − y| ≤ t. Now the portion of the ball
x + s(x)B in the half-space {z : aT z ≥ aT y} must have volume at most 1/4 of the
volume of s(x)B by the definition of s(x) (in a ball of radius 2t

√
n, a half-space at

distance t from the center cuts off at least 1/4 of the volume of the ball). This implies
the inequality. The lemma follows.

The next lemma is about the step size along a given line.
Lemma 6.6. Let f be logconcave and � be any line through a point x. Let p, q be

intersection points of � with the boundary of L(F/8), where F is the maximum value
of f along �, and let s = max{|x− p|/32, |x− q|/32}. Choose a random point y on �
from the distribution π�. Then

P(|x− y| > s) >
3

4
.

Proof. We will use the following observation. For any logconcave function g that
is nonincreasing on an interval [a, b]∫

[a,b]

g(x) dx ≥ |a− b| g(a) − g(b)

ln g(a) − ln g(b)
.

The proof is by noting that the exponential function with value g(a) at a and g(b) at
b is a lower bound on any such function.

In our case, suppose f attains its maximum at a point z ∈ [p, q]. Then, applying
the observation separately to the intervals [p, z] and [z, q], we get∫

[p,q]

f(x) dx ≥ 7F

8 ln 8
|p− q|.

Also, by Lemma 3.5(a) in [13] (whose proof uses a similar reduction to the exponential
function), P(y ∈ [p, q]) ≥ 7/8. We now consider two cases. If x ∈ [p, q], then s ≤
|p− q|/32 and thus

P(|x− y| ≤ s) ≤ 2sF∫
[p,q]

f(x) dx
≤ ln 8

14
<

1

4
.

Suppose x 
∈ [p, q]. Let u be the unit vector along p− q. Then,

|[x− su, x + su] ∩ [p, q]| ≤ |p− q|
32

,



1000 L. LOVÁSZ AND S. VEMPALA

and thus

P(|x− y| ≤ s) ≤ 1

8
+

F |p− q|/32

7F |p− q|/8 ln 8
<

1

4
.

Finally, s(x) gives a lower bound on F (x) as in section 3.
Lemma 6.7. If γ ≥ 63/64 and β ≥ 3/4, then

F (x) ≥ s(x)

64
.

Proof. We need to prove the following: If x ∈ R
n and s > 0 satisfies

vol
(
(x + sB) ∩ {f ≤ βf(x)}

)
≤ (1 − γ)vol(x + sB),

then for a hit-and-run step y from x,

P
(
|x− y| ≤ s

64

)
≤ 1

8
.(9)

Let p denote the fraction of the surface of x+(s/2)B in the set {f ≤ βf(x)}. Clearly

vol
(
(x + sB) ∩ {f ≤ βf(x)}

)
≥ pvol(x + sB) − vol(x + (s/2)B)

= (p− 2−n)vol(x + sB),

and by our hypothesis on s,

p ≤ 1 − γ + 2−n ≤ 1

32
.

Thus if we choose a random line through x, with probability at least 15/16 it will
intersect the surface of x + (s/2)B in points z1, z2 with f(zi) ≥ βf(x).

Suppose that we have chosen such a line, and let u be a unit vector parallel to
this line. Then we have

f(x + tu) ≥ βf(x)
(
−s

2
≤ t ≤ s

2

)
and also (by logconcavity)

f(x + tu) ≤ β−2|t|/sf(x) (−∞ < t < ∞).

We have

P (|x− y| ≤ s/64) =

∫ s/64

−s/64

f(x + tu) dt

/∫ ∞

−∞
f(x + tu) dt.

Here ∫ ∞

−∞
f(x + tu) dt ≥

∫ s/2

−s/2

f(x + tu) dt ≥ sβf(x),

while ∫ s/64

−s/64

f(x + tu) dt ≤ s

32
β−1/32f(x),

and thus

P
(
|x− y| ≤ s

64

)
≤ 1

32
β−33/32 <

1

16
.

Thus the probability that |x− y| ≤ s/64 is bounded by 2p+ 1/16 ≤ 1/8. This proves
the lemma.
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6.3. Conductance. For a point u ∈ K, let Pu be the distribution obtained by
taking one hit-and-run step from u. Let μf (u, x) be the integral of f along the line
through u and x. Then,

Pu(A) =
2

nπn

∫
A

f(x) dx

μf (u, x)|x− u|n−1
.(10)

The next lemma is analogous to Lemma 4.1. It holds for any logconcave density
f , although we know how to use it only for the exponential density. Its proof is closely
related to that of Lemma 7.2 in [13].

Lemma 6.8. Let u, v ∈ K. Suppose that

df (u, v) <
1

128 ln(3 + α(u))
and |u− v| < 1

4
√
n

max{F (u), F (v)}.

Then

dtv(Pu, Pv) < 1 − 1

500
.

Proof. We will show that there exists a set A ⊆ K such that Pu(A) ≥ 1
2 and for

any subset A′ ⊂ A,

Pv(A
′) ≥ 1

200
Pu(A′).

To this end, we define certain “bad” lines through u. Let σ be the uniform
probability measure on lines through u.

Let B1 be the set of lines that are not almost orthogonal to u − v, in the sense
that for any point x 
= u on the line,

|(x− u)T (u− v)| > 2√
n
|x− u||u− v|.

The measure of this subset can be bounded as σ(B1) ≤ 1/8.
Next, let B2 be the set of all lines through u which contain a point y with f(y) >

2α(u)f(u) (see section 6.2 for the definition of α). By Lemma 3.5(a) in [13], if we
select a line from B2, then with probability at least 1/2, a random step along this
line takes us to a point x with f(x) ≥ α(u)f(u). From the definition of α(u), this can
happen with probability at most 1/16, which implies that σ(B2) ≤ 1/8.

Let A be the set of points x in K which are not on any of the lines in B1 ∪ B2,
and which are far from u in the sense of Lemma 6.6:

|x− u| ≥ 1

32
max {|u− p|, |u− q|} .

Applying Lemma 6.6 to each such line, we get

Pu(A) ≥
(

1 − 1

8
− 1

8

)
3

4
>

1

2
.

We will show that for any subset A′ ⊆ A,

Pv(A
′) ≥ 1

200
Pu(A′)
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using the next two claims.
Claim 1. For every x ∈ A,

|x− v| ≤
(

1 +
1

n

)
|x− u|.

Claim 2. For every x ∈ A,

μf (v, x) < 64
|x− v|
|x− u|μf (u, x).

Claim 1 is easy to prove (cf. [10]), and the proof of Claim 2 is identical to that
given in [13]. Thus, for any A′ ⊂ A,

Pv(A
′) =

2

nπn

∫
A′

f(x) dx

μf (v, x)|x− v|n−1

≥ 2

64nπn

∫
A′

|x− u|f(x) dx

μf (u, x)|x− v|n

≥ 2

64enπn

∫
A′

f(x) dx

μf (u, x)|x− u|n−1

≥ 1

64e
Pu(A′).

The lemma follows.
We are now ready to state and prove the main theorem.

Theorem 6.9. Let f be a density in R
n proportional to e−aT x whose support is

a convex body K of diameter D. Assume that any level set of measure 1/8 contains
a ball of radius r. Then for any subset S, with πf (S) = p ≤ 1/2, the conductance of
hit-and-run satisfies

φ(S) ≥ r

1013nD ln(nDrp )
.

Proof. The proof has the same structure as that of Theorem 4.2.
Let K = S1 ∪ S2 be a partition into measurable sets, where S1 = S and p =

πf (S1) ≤ πf (S2). We will prove that∫
S1

Px(S2) dx ≥ r

1013nD ln nD
rp

πf (S1).(11)

Consider the points that are deep inside these sets:

S′
1 =

{
x ∈ S1 : Px(S2) <

1

1000

}
and S′

2 =

{
x ∈ S2 : Px(S1) <

1

1000

}
.

Let S′
3 be the rest, i.e., S′

3 = K \ S′
1 \ S′

2.
Suppose πf (S′

1) < πf (S1)/2. Then∫
S1

Px(S2) dx ≥ 1

1000
πf (S1 \ S′

1) ≥
1

2000
πf (S1),

which proves (11).
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So we can assume that πf (S′
1) ≥ πf (S1)/2 and, similarly, that πf (S′

2) ≥ πf (S2)/2.
Next, define the exceptional subset W as the set of points u for which α(u) is

very large.

W =

{
u ∈ S : α(u) ≥ 227nD

rp

}
.

By Lemma 6.2,

πf (W ) ≤ rp

223nD
.

Next, for any u ∈ S′
1 \W and v ∈ S′

2 \W ,

dtv(Pu, Pv) ≥ 1 − Pu(S2) − Pv(S1) > 1 − 1

500
.

Thus, by Lemma 6.8, either

df (u, v) ≥ 1

128 ln(3 + α(u))
≥ 1

212 ln nD
rp

or

|u− v| ≥ 1

4
√
n

max{F (u), F (v)}.

But by Lemmas 6.1 and 6.7, this implies that either

dK(u, v) ≥ 1

215 ln nD
rp (1 + lnG)

(12)

or

|u− v| ≥ 1

28
√
n

max{s(u), s(v)}(13)

holds. Now, by Lemma 6.5, condition (12) implies that

dK(u, v) ≥ 1

217 ln nD
rp

max s(x)√
nD

.(14)

Next, we define

h(x) =
s(x)

219D
√
n ln nD

rp

and apply Theorem 2.1 to the partition S′
1 \W , S′

2 \W and the rest. If (14) holds,
then clearly h(x) ≤ dK(u, v)/3. Otherwise, (13) holds. Let x be a point on the chord
pq of K, say between u and q. Then, using the concavity of s (Lemma 6.3),

s(x) ≤ |x− p|
|u− p|s(u) ≤ 28 |q − p|

|u− p|
√
n|u− v|

≤ 28dK(u, v)D
√
n



1004 L. LOVÁSZ AND S. VEMPALA

and hence h(x) ≤ dK(u, v)/3 again. Thus,

πf (S′
3) ≥ Ef (h)πf (S′

1 \W )πf (S′
2 \W ) − πf (W )

≥ r

230nD ln nD
ra

πf (S1).

Here we have used Lemma 6.4 and the bound on πf (W ). Therefore,∫
S1

Px(S2) dx ≥ 1

2
· 1

1000
πf (S′

3)

≥ r

1013nD ln nD
rp

πf (S1),

which again proves (11).

6.4. Mixing time. Since f satisfies Ef (|x− zf |2) ≤ R2, we consider the restric-
tion of f to the ball of radius R ln(4e/a) around zf and then by Lemma 5.17 in [13], the
measure of f outside this ball is at most a/4. In the proof of the conductance bound,
we can consider the restriction of f to this set. In the bound on the conductance for
a set of measure a, the diameter D is effectively replaced by R ln(4e/a).

The bound on the mixing time then follows by applying Theorem 6.9 along with
either Corollary 1.6 in [12] or the average conductance theorem of [6]. For the latter,
we have that for any subset of measure x, the conductance is at least

φ(x) ≥ cr

nR ln(nR/rx) ln(4e/x)
≥ cr

nR ln2(nR/rx)
.

Then the theorem of [6] implies that after m > C(n2R2/r2) ln5(MnR/rε) steps, we
have dtv(σ

m, πf ) < ε.
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Abstract. We present problems in the following three application areas: identifying similar
codes in which global register reallocation and spill code minimization were done (programming
languages); protein threading (computational biology); and searching for color icons under different
color maps (image processing).

We introduce a new search model called function matching that enables us to solve the above
problems. The function matching problem has as its input a text T of length n over alphabet ΣT

and a pattern P = P [1]P [2] · · ·P [m] of length m over alphabet ΣP . We seek all text locations i,
where the m-length substring that starts at i is equal to f(P [1])f(P [2]) · · · f(P [m]), for some function
f : ΣP → ΣT .

We give a randomized algorithm that solves the function matching problem in time O(n logn)
with probability 1

n
of declaring a false positive. We give a deterministic algorithm whose time is

O(n|ΣP | logm) and show that it is optimal in the convolutions model. We use function matching to
efficiently solve the problem of two-dimensional parameterized matching.

Key words. pattern matching, parameterized matching, function matching, color maps

AMS subject classifications. 68Q05, 68Q20, 68Q25
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1. Introduction. The last few decades have prompted the evolution of pattern
matching from a combinatorial solution of the exact string matching problem [19, 20]
to an area concerned with approximate matching of various relationships motivated
by computational molecular biology, computer vision, and complex searches in dig-
itized and distributed multimedia libraries [18, 9]. We will describe a number of
important applications in various diverse areas that necessitate the introduction of a
new generalized matching paradigm, that of function matching.

Programming languages. The parameterized matching problem was introduced
by Baker [11]. Her main motivation lay in software maintenance, where program
fragments are considered “identical” even if variable names are different. Therefore,
strings under this model are comprised of symbols from two disjoint sets Σ and Π
containing fixed symbols and parameter symbols, respectively. In this paradigm, one
seeks parameterized occurrences, i.e., occurrences up to renaming of the parameter
symbols, of one string in another. This renaming is a bijection b : Π → Π.

Important topics in compiler design are global register allocation and spill code
minimization (see, e.g., [23, 22]). The idea is to minimize the number of used registers
by reusing the same register for several purposes.

Unfortunately, the parameterized matching paradigm will not identify similar
codes with different levels of optimizing reusable global variables because of the bi-
jection requirement on the parameter alphabet Π. In this application, it is sufficient
that f : Π → Π is a function.
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Computational biology. The Grand Challenge protein folding problem is one of
the most important problems in computational biology (see, e.g., [24]). It consists of
determining the protein’s tertiary structure from its linear arrangement of peptides.

This problem is still open, which leads to the myriad of extremely active research
methods used in the attempt to solve it. One possible technique that is being inves-
tigated is threading (see, e.g., [12, 31]). The idea is to try to “thread” a given protein
sequence into a known structure. A possible way of viewing this idea is to consider
subsequences that are known to fold in a particular way. These sequences can be
used as patterns in subsequent given sequences with unknown secondary or tertiary
structure. However, a subsequence of different peptides that bond in the same way
as the pattern peptides may still fold in a similar way. This cannot be detected by
exact matching, yet a function matching (under a careful reduction) will detect such
a match.

Image Processing. One of the interesting problems in Web searching is searching
for color images (see, e.g., [27, 10, 4]). Assume, for example, that we are seeking
a given icon in any possible color map. If the colors were fixed, then this is exact
two-dimensional pattern matching [3]. However, if the color map is changed the exact
matching algorithm would not find the pattern. A parameterized two-dimensional
search is precisely what is needed. If, in addition, we are also willing to lose resolution,
then we would use a two-dimensional function matching search.

The above examples are just a sample of diverse application areas encountering
search problems that are not solved by state-of-the-art methods in pattern matching.
This has led us to introduce, in this paper, the function matching model, and to explore
the two-dimensional parameterized matching problem. We start with an intuitive
description of the function matching model.

In the traditional pattern matching model, one seeks exact occurrences of a given
pattern in a text, i.e., text locations where every text symbol is equal to its correspond-
ing pattern symbol. In parameterized matching, one seeks occurrences of a pattern
image achieved by a bijection on the alphabet symbols. We seek text locations where
there exists a bijection f on the alphabet for which every text symbol is equal to
f(a), where a is the corresponding pattern symbol. In the applications we described,
f cannot be a bijection. Rather, it should be just a function. P matches T at location
i if, for every element a ∈ Π, all occurrences of a have the same corresponding symbol
in T . In other words, unlike in parameterized matching, there may be several different
symbols in the pattern which are mapped to the same text symbol.

Relaxing the bijection restriction introduces nontrivial technical difficulties. Many
powerful pattern matching techniques such as automata methods [20, 13], subword
trees [30, 14], dueling [28, 3], and deterministic sampling [29] assume transitivity of
the matching relation. For any pattern matching relation where transitivity does not
exist, the above methods do not help.

Examples of pattern matching with nontransitive matching relation are string
matching with “don’t cares” [19], less-than matching [6], pattern matching with mis-
matches [1, 21], and swapped matching [25, 2, 5]. It is interesting to note that the
efficient algorithms for solving the above problems all use convolutions as their main
tool. Convolutions were introduced by Fischer and Paterson [19] as a technique for
solving pattern matching problems where the match relation is not transitive.

It turns out that many such problems can be solved by a “standard” applica-
tion of convolutions (e.g., matching with “don’t cares,” matching with mismatches in
bounded finite alphabets, and swapped matching). Muthukrishnan and Palem were
the first to identify this application method as the convolutions model [26]. The con-
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volutions model provides an excellent tool for solving many nonstandard matching
problems efficiently using an off-the-shelf method. Even more important, a rigorous
formal definition of such a model can be very useful in proving lower bounds. While
such bounds do not restrict the solution complexity in a general RAM, they do help in
understanding the limits of the convolution method, hitherto the only powerful tool
for nonstandard pattern matching. Unfortunately, we have not found in the literature
a formal definition of the convolutions model.

There are three main contributions in this paper as follows:
1. A solution to a number of search problems in diverse fields. This is achieved

by the introduction of a new type of generalized pattern matching, called
function matching.

2. A formalization of the convolutions model. This leads to a deterministic
solution. We prove that this solution is tight in the convolutions model.
We also present an efficient randomized solution of the function matching
problem.

3. A solution to the problem of exact search in color images with different color
maps. This is done via efficient randomized and deterministic algorithms for
two-dimensional parameterized and function matching.

This paper is organized in the following way. In section 2 we give basic def-
initions. In sections 3 and 4 we present progressively more efficient deterministic
solutions, culminating in an O(n|ΣP | logm) algorithm, where |ΣP | is the pattern al-
phabet size. In section 5 we present a Monte Carlo algorithm that solves the function
matching problem in time O(n log n) with failure probability no larger than 1

n . In
section 6 we formalize the convolutions model. We then show a lower bound proving
that our deterministic algorithm is tight in the convolutions model and discuss the
limitations of that model. Finally, in section 7 we present a randomized algorithm
that solves the two-dimensional parameterized matching problem in time O(n2 log n)
with probability of false positives no larger than 1

n2 . We also present a deterministic
algorithm that solves the two-dimensional parameterized matching problem in time
O(n2m log2 m log logm).

2. Problem definition. Formally, function pattern matching is defined as fol-
lows.

Definition. Let s1 and s2 be arrays of the same dimensions and sizes over
alphabets Σ1 and Σ2, respectively. Array s1 is said to function-match array s2 if there
exists a function f : Σ1 → Σ2, such that f(s1) = s2, where f(s1) is the array obtained
by replacing every occurrence of x ∈ Σ1 with f(x). (Note that this implies that such
an f is always a surjection.) If f is a bijection, then s1 is said to parameterize-match.

Given two arrays P = P [i, j], i, j = 0, . . . ,m − 1, a pattern of size m2 over
alphabet ΣP , and T = T [i, j], i, j = 0, . . . , n− 1, a text of size n2 over alphabet ΣT ,
there is a function occurrence (parameterized occurrence, respectively) of P in T at
location [i, j] if P function-matches (parameterize-matches, respectively) the m ×m
subarray of T that begins at the [i, j]th position (T [i + k, j + �], k, � = 0, . . . ,m− 1).

The problem in which the pattern and text are strings, i.e., one-dimensional ar-
rays, is a special case of the above.

The problem of function matching (parameterized matching) is the following:
INPUT: Pattern P and text T .
OUTPUT: All function (parameterized, respectively) occurrences of P in T .
The parameterized matching definition above differs from Baker’s original defi-

nition, since her motivation called for two types of alphabet. Our simpler definition



1010 A. AMIR, Y. AUMANN, M. LEWENSTEIN, AND E. PORAT

follows the definition of Amir, Farach, and Muthukrishnan, who also proved in [7]
that the two definitions are mutually linearly reducible.

Observation 1 establishes the connection between function matching and param-
eterized matching.

Observation 1. Let s1 and s2 be strings of the same length over alphabet Σ,
and assume that string s1 function-matches string s2. Then s1 parameterize-matches
s2 iff |Σ1| = |Σ2|.

Proof. By the definition of cardinality, two sets have the same cardinality iff there
is a bijection between them.

3. Naive algorithm for function matching. The function matching problem
can be trivially solved in time O(nm) simply by checking if there exists a match for
every location (for unbounded alphabets, there is also a logm multiplicative factor).

Convolutions can be used in a standard fashion to improve the time for finite
fixed alphabets.

Definition. Let P [0], . . . , P [m − 1] and T [0], . . . , T [n − 1] be arrays of natural
numbers. The discrete convolution (polynomial multiplication) of T and P is R,
where

R[j] =
m−1∑
i=0

T [j − i]P [i],

where j = 0, . . . , n−m. We denote R as T ∗ P .
The convolution can be computed in time O(n logm), in a computational model

with word size O(logm), by using the fast Fourier transform (FFT) [17].
Similarly to R, we can define the following array M :

M [j] =

m−1∑
i=0

T [j + i]P [i],

where j = 0, . . . , n−m+ 1. We denote M as T ⊗P . It is easy to see that computing
R and M can easily reduce them to each other by reversing P .

Notations. For σ ∈ Σ, let

χσ(x) =

{
1 if x = σ,
0 if x �= σ.

If X = x1, . . . , xn then χσ(X) = χσ(x1), . . . , χσ(xn).
Let a ∈ ΣT , b ∈ ΣP . Then χa(T ) ⊗ χb(P )[i] is precisely the number of times

that an a in the text matches a b in the pattern when the pattern is matched starting
at text location i. Formally, χa(T ) ⊗ χb(P )[i] = |{� ∈ {0, . . . ,m − 1} | T [i + �] =
a and P [�] = b}|. If that number is equal to the number of b’s in the pattern, then
we know that in text location i all pattern b’s are mapped to a in the text.

This leads to the following algorithm for the function matching problem.

Algorithm A.

For all b ∈ ΣP do
cb ← the number of b’s in P
For all a ∈ ΣT , b ∈ ΣP do
Fa,b ← (χa(T ) ⊗ χb(P ))

endfor
endfor
Announce a function occurrence of P at every location i for which ∀ b ∈
ΣP ∃ a ∈ ΣT such that Fa,b[i] = cb. end
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Time. There are |ΣT ||ΣP | convolutions and each convolution requires O(n logm)
steps. Hence the total time is O(n|ΣT ||ΣP | logm).

For fixed finite alphabets this algorithm is quite efficient. For unbounded al-
phabets, the time may be O(n2m logm), which is significantly worse than the naive
algorithm.

4. Deterministic improvements. In this section we reduce the |ΣT | factor
to log |ΣT |. We use a standard observation allowing text size reduction and use an
interesting lemma that allows text alphabet size reduction for the function matching
problem.

The following observation is commonly used in pattern matching papers (see, e.g.,
[6, 2]).

Observation 2. To assume that the text size is n ≤ 2m does not limit the
algorithm’s generality. The reason is that if a matching problem can be determin-
istically solved in time O(f(m)) for text of size n ≤ 2m, then it can be solved in
time O( n

mf(m)) for any n-length strip. Simply divide the text into 2 n
2m overlapping

2m-length segments and solve the matching problem separately for each. Clearly, all
locations are covered.

From this point on our paper assumes that the text size n ≤ 2m.
Definition. A binary alphabet reduction function is a function f : Σ → {0, 1}.
Lemma 1. Let P and T be a pattern and text over alphabets ΣP and ΣT , respec-

tively. Then there exist log |ΣT | binary alphabet reduction functions {f1, . . . , flog |ΣT |}
such that, for every text location i of T , there is a function occurrence of P iff, for
all f ∈ {f1, . . . , flog |ΣT |}, there is a function occurrence of P at location i of f(T ).

Proof. For a ∈ ΣT , let fi(a) be the ith bit of a’s binary representation, i =
1, . . . , log |ΣT |.

(⇒) This follows immediately from the function matching definition.
(⇐) If there is no function occurrence of P at location i of T , it means that

there exist two indices j and k j, k ∈ {0, . . . ,m − 1}, for which P [j] = P [k] but
T [i+ j] �= T [i+ k]. However, T [i+ j] �= T [i+ k] means that there is some bit in their
binary representation, where T [i + j] and T [i + k] are different. Let that bit be the
�th bit. Then f�(T [i+ j]) �= f�(T [i+k]), and therefore there is no function occurrence
of P at location i of f�(T ).

Corollary 1. The function matching problem can be solved in timeO(n|ΣP |log2m).
Proof. Construct the O(log |ΣT |) binary alphabet reduction functions and use

Algorithm A to solve the function matching problem of P in f�(T ) for all � =
1, . . . , log |ΣT |. Each run of Algorithm A takes time O(n|ΣP | logm), and there are
log |ΣT | applications of Algorithm A. Since the text length is n ≤ 2m, it follows
that |ΣT | ≤ 2m, and hence log |ΣT | = O(logm) bits. Therefore the total time is
O(n|ΣP | log2 m).

The following number theoretic lemma allows for the removal of yet another
logarithmic factor. The lemma is folklore. Nevertheless, we include a proof for the
sake of completeness.

Lemma 2. Let a1, . . . , ak be natural numbers. Then k
∑k

i=1(ai)
2 = (

∑k
i=1 ai)

2 iff
ai = aj , i, j = 1, . . . , k.

Proof. If ai = aj , i, j = 1, . . . , k then it is easily seen that the equations are

equal. Conversely, we show a stronger claim, k
∑k

i=1(ai)
2 ≥ (

∑k
i=1 ai)

2, and show

that k
∑k

i=1(ai)
2 > (

∑k
i=1 ai)

2 iff there exists i such that ai �= ak. The proof is by
induction.

The base case is easily verified. Assume that k
∑k

i=1(ai)
2 ≥ (

∑k
i=1 ai)

2 and
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prove for k + 1. We have (k + 1)
∑k+1

i=1 (ai)
2 = k

∑k
i=1(ai)

2 +
∑k

i=1(ai)
2 + (k +

1)(ak+1)
2 and (

∑k+1
i=1 ai)

2 = (
∑k

i=1 ai+ak+1)
2 = (

∑k
i=1 ai)

2+a2
k+1+2ak+1(

∑k
i=1 ai).

By induction, k
∑k

i=1(ai)
2 ≥ (

∑k
i=1 ai)

2, and hence it is sufficient to show that∑k
i=1(ai)

2 + k(ak+1)
2 ≥ 2ak+1(

∑k
i=1 ai), which is equivalent to

∑k
i=1 ai(ai − ak+1)−∑k

i=1 ak+1(ai − ak+1) ≥ 0 and can be shortened to
∑k

i=1(ai − ak+1)
2 ≥ 0, which is

obviously true. Moreover, it is easily seen that
∑k

i=1(ai − ak+1)
2 > 0 only if there is

an i such that ai �= ak+1.
For every a ∈ ΣP and for every location i in the text, we are interested in finding

out if there is indeed a single symbol that appears in every text location that matches
a in the occurrence beginning at text location i. Lemma 2 allows us to do that with
a constant number of convolutions.

The convolutions are defined as follows: Assume that ΣT = {1, . . . , |ΣT |}. If the
alphabet is not of this form, it can be turned into {1, . . . , |ΣT |} by sorting the alphabet
and renaming the characters. This can always be accomplished in time O(m logm).
Let k = |ΣP |. Let T2 be the array of length n, where T2[i] = (T [i])2, i = 0, . . . , n− 1,
where (T [i])2 is the square of the number T [i].

The locations i, where k(T2 ⊗ χa(P ))[i] = (T ⊗ (χa(P ))[i])2, are precisely the
locations where all a’s are matched to a single text symbol.

Corollary 2. The function matching problem can be solved in time O(n|ΣP | logm).
Proof. Because of Lemma 2, our algorithm requires only O(|ΣP |) convolutions.

5. Randomized improvements. In this section we present a randomized Monte
Carlo algorithm that solves the function matching problem in time O(n log n). Our
probability of declaring a function occurrence when it does not exist is 1

n .
We have shown reductions that minimized the text alphabet size as well as the

text size. Next we attempt to reduce the number of occurrences of an alphabet
symbol in the pattern. Note that a symbol that appears only once in the pattern does
not have any effect on the function matching, since it can be matched to any text
symbol without ever causing a contradiction. In particular, a pattern that consists
of m different symbols function-matches every text location. However, the following
lemma shows that the crucial number of character occurrences is 2.

Definition. A pattern is called a paired pattern if no symbol in the pattern
appears more than twice.

Lemma 3. Let P and T be text and pattern over ΣP and ΣT , respectively. Then
there exist paired patterns Peven and Podd such that there is a function occurrence
of P in location i of T iff there are function occurrences of both Peven and Podd in
location i of T .

Proof. For every a ∈ Σ, let ca be the number of times a appears in the pattern, and
let those appearances be in locations �a0 , . . . , �

a
ca−1. Let sa0 , . . . , s

a
�ca/2� be new symbols.

Peven is constructed from P by replacing P [�ai ] with sa�i/2�. Podd is constructed from

P by replacing P [�ai ] with sa�i/2�.
In Peven we have replaced the first pair of occurrences of every letter with a new

symbol, the second pair by a new symbol, and so on. In Podd we shift the starting
point of the pairs by 1. The first occurrence of a symbol is replaced by a new symbol,
each symbol of the next pair is replaced by the next new symbol, and so on.
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Example. Let P = a a a b a b a b b a a b b. Then

Peven = sa0 sa0 sa1 sb0 sa1 sb0 sa2 sb1 sb1 sa2 sa3 sb2 sb2,

Podd = sa0 sa1 sa1 sb0 sa2 sb1 sa2 sb1 sb2 sa3 sa3 sb2 sb3.

(⇒) If there is a function occurrence of P in location i of T , then breaking up
symbol occurrences into pairs cannot make matters worse and there will be function
occurrences of both Peven and Podd in location i of T .

(⇐) If there is no function occurrence of P in location i of T , then there must be a
pair �aj , �

a
j+1 where the corresponding symbols do not match, i.e., T [i+�aj ] �= T [i+�aj+1].

This pair will cause a function mismatch either at Peven, if j is even, or at Podd, if j
is odd.

Lemma 3 implies that if we find an efficient algorithm for solving the function
matching problem for paired patterns, we are done. Our randomized algorithm will
do just that. The idea behind our algorithm is to make sure that every pair is matched
with the same symbol. We will measure it by assigning the text and pattern numerical
values and by assigning a positive number to the first element of a pattern pair and
the negation of that number to the second element of a pattern pair. Thus if a pair
of pattern symbols x,−x matches the same text symbol y, then xy + −xy = 0. We
need to discuss the conditions under which the probability of a false positive is small.

Algorithm B.

Let fT : ΣT → {1, . . . , n2}, where fT (σ) is chosen uniformly at random.
Let gP : ΣP → {1, . . . , n2}, where gP (σ) is chosen uniformly at random,
with the exception that any symbol appearing only once in the pattern is
always mapped to 0.
Let fP : ΣP×{first, second} → {−n2, . . . , n2}, where fP (σ, first} = gP (σ)
and fP (σ, second} = −gP (σ).
M ← fT (T ) ⊗ fP (P )
For i = 0 to n− 1:

If M [i] = 0, then declare function matching in location i
endfor
end

Time. The algorithm performs one convolution, so its time is O(n logm) word
operations for words of size O(log n) bits. If we stay within the O(logm) bit-word
computation model, the time is O(n log n).

We need to show that our algorithm gives the correct answer with high probability.
Theorem 1. If there is a function occurrence of P in location i of T , then Algo-

rithm B will announce it. Conversely, the probability that Algorithm B will incorrectly
announce a function occurrence at some location is 1

n .
Proof. If there is a function occurrence of P in location i of T , then for every pair

in P , the corresponding text symbols are equal. Consider a pair in locations j and
k of the pattern fP (P [j]) = x, fP (P [k]) = −x, fT (t[i + j]) = y, and fT (t[i + k]) = y.
The contribution of this pair to a convolution result at location i is thus xy−xy = 0.
Because there is a function occurrence, this is true for every pair. The single pattern
elements were mapped to 0. Therefore the value of the convolution in location i is 0.

Conversely, if Algorithm B wrongly announces a function occurrence at position
i, it is because the convolution result at location i was 0. Consider a pair j, k, where
the corresponding text elements are not equal, i.e., P [j] = P [k] = a and T [i + j] = b
and T [i + k] = c.

By definition, Pr(fT (T ) ⊗ fP (P )[i] = 0) = Pr(
∑m

l=1 fT (T [i + l]) · fP (P [l]) = 0).
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Hence,

Pr(fT (T ) ⊗ fP (P )[i] = 0)

= Pr

(
m∑
l=1

fT (T [i + l]) · fP (P [l]) − (fT (T [i + j]) · fP (P [j]) + fT (T [i + k]) · fP (P [k]))

= (fT (T [i + j]) · fP (P [j]) + fT (T [i + k]) · fP (P [k]))

)
.

Denote with p0 the following:

m∑
l=1

fT (T [i + l]) · fP (P [l]) − (fT (b) · fP (a, first) + fT (c) · fP (a, second))

=

m∑
l=1

fT (T [i + l]) · fP (P [l]) − (gP (a) · [fT (b) − fT (c)]).

We will show that Pr((gP (a) · [fT (b) − fT (c)]) = p0) ≤ 1
n2 .

Note that fT (b) and fT (c) were chosen randomly from {1, . . . , n2} and are inde-
pendent of each other. Hence, for any constant z0, P r([fT (b)−fT (c)] = z0) ≤ 1

n2 . For
any z0 �= 0, P r(gP (a) · z0) ≤ 1

n2 since gP (a) was chosen randomly from {1, . . . , n2}.
Moreover, for z0 = 0, gP (a) · z0 = 0, and for z0 �= 0, gP (a) · z0 �= 0. Hence, for
z0 = 0, P r(gP (a) · z0) ≤ 1

n2 . Since P [h] �= a, for each h /∈ {j, k}, it follows that
Pr((gP (a) · [fT (b) − fT (c)]) = p0) ≤ 1

n2 , i.e., Pr(fT (T ) ⊗ fP (P )[i] = 0) ≤ 1
n2 .

It follows that over all n locations, Pr(∃i, fT (T ) ⊗ fP (P )[i] = 0) ≤ 1
n .

6. Lower bounds in the convolutions model. In this section we give com-
pelling evidence that an efficient deterministic solution to the function matching prob-
lem, if such a solution exists, may be difficult. We do so by showing an Ω(nm) lower
bound for the problem in the convolutions model. This model, which we formally
define shortly, captures the modus operandi of pattern matching algorithms that use
convolutions as their key computational tool. We note that this model is different
from the convolution model of [26], which is defined in combinatorial terms, unlike
our computational model.

6.1. The convolutions model. We begin by defining the type of problems that
are solved by the convolutions model. For a string T , denote by Ti the suffix of T
starting at position i and by T j

i the substring from T from location i to j inclusive.
Definition 1. A pattern matching problem is defined as follows:
• Match relation: a binary relation M(a, b), where a ∈ Σ∗

P and b ∈ Σ∗
T ;

• Input: a pattern P = P [0], . . . , P [m − 1] and a text T = T [0], . . . , T [n − 1],
P [i] ∈ ΣP , T [j] ∈ ΣT .

• Output: the set of indices S ⊆ {0, . . . , n − 1}, where the pattern P matches
to T according to M , i.e., all indices i such that M(P, Ti) (where Ti is the
suffix of T starting at location i).

As the name suggests, the convolutions model uses convolutions as the key oper-
ation for computing the output for a pattern matching problem. In most cases the
convolutions are not performed directly between the original text and the original
pattern, but rather between different transformations thereof. Thus, the first step is
to compute a sequence of transformation T (1), . . . , T (c) for the text and P (1), . . . , P (c)

for the pattern. Then, for each k, one computes the convolution C(k) = T (k) ⊗ P (k).
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Given these convolutions, for each location i the decision on whether there is a match
at i is determined based on the values C(1)[i], . . . , C(c)[i].

A computation in the convolution model is thus composed of the following three
phases:

1. Preprocessing: producing the transformations T (1), . . . , T (c) and P (1), . . . , P (c).
2. Convolutions: computing C(k) = T (k) ⊗ P (k) for k = 1, . . . , c.
3. Postprocessing: for each i = 0, . . . , n − 1 deciding if there is a match at

location i based on C(1)[i], . . . , C(c)[i].
The convolution phase is the key computational tool in the convolution model on the
total number of steps of the entire process. Thus, we must determine what operations
are permitted in the pre- and postprocessing phases (or else the entire solution to

the problem may be “hidden” in these phases). For k = 1, . . . , c, let τ
(k)
P be the

transformation that produces P (k) from P , and let τ
(k)
T be the transformation that

produces T (k) from T . We assume that τ
(k)
P gets as input only the array P , and that

it can perform any computation on P . Formally, τ
(k)
P is a function τ

(k)
P : Σ∗

P → N∗.

For the text preprocessing transformations we further allow the transformations τ
(k)
T

to be dependent on the pattern P . Thus, τ
(k)
T : Σ∗

T ×Σ∗
P → N∗. However, we require

that the transformation be local, in the sense that for any location i, the value T (k)[i]
at that location is dependent only on the value of T [i] and not on other locations

of T . Formally, the function τ
(k)
T is local if for each i there exists a function fi such

that for any T and P , τ
(k)
T (T, P )[i] = fi(T [i], P ). Clearly, we also require that τ

(k)
T be

length preserving, in the sense that for any T, P , the number of elements in the array

τ
(k)
T (T, P ) is equal to that in T .

For the postprocessing phase, we allow any computation on values C(1)[i], . . . , C(c)[i]
for each i.

We are now ready to formally define the convolutions model.
Definition 2. An algorithm in the convolution model is a quadruplet A =

(c, τP , τT , D) where
1. c = c(m,n) is an integer function (where m = |P | and n = |T |, the sizes of

P and T , respectively),

2. τP = (τ
(1)
P , τ

(2)
P , . . .) is the sequence of pattern preprocessing functions, τ

(k)
P :

Σ∗
P → N∗,

3. τT = (τ
(1)
T , τ

(2)
T , . . .) is the sequence of local, length preserving text preprocess-

ing functions, τ
(k)
T : Σ∗

T × Σ∗
P → N∗.

4. D = D0, D2, . . . is the sequence of decision criteria, Di : N∗ → {0, 1}.
Given an algorithm A in the convolution model, text T , and pattern P , with |T | = n
and |P | = m, a computation in the convolutions model is composed on the following
three phases:

1. Preprocessing: for each k = 1, . . . , c, compute T (k) = τ
(k)
T and P (k) = τ

(k)
P .

2. Convolution: for each k = 1, . . . , c, compute C(k) = T (k) ⊗ P (k).
3. Decide: for each i = 0, . . . , n− 1, compute di = Di(C

(1)[i], . . . , C(c)[i]).
Example. Consider the problem of exact string matching with “don’t cares.” The

input to the problem is a pattern array P ∈ {0, 1, φ}m and a text array T ∈ {0, 1}n.
There is a match at location i if, for j = 0, . . . ,m − 1, either P [j] = T [i + j] or
P [j] = φ. Fischer and Paterson [19] provide the following convolution-based solution
to this matching problem. First, compute the following two convolutions:



1016 A. AMIR, Y. AUMANN, M. LEWENSTEIN, AND E. PORAT

C(1) ← χ0(T ) ⊗ χ1(P ),

C(2) ← χ1(T ) ⊗ χ0(P )

(where for b = 0, 1, χb(A) is the characteristic function of b). The text locations i,
where C(1)[i] = C(2)[i] = 0, are those where there is a match with “don’t cares.”

In order to cast this algorithm into the structure defined in Definition 2 set
• c(m,n) is the constant function 2.

• τ
(1)
P = χ1 and τ

(2)
P = χ0.

• τ
(1)
T (T, P ) = χ0(T ) and τ

(2)
T (T, P ) = χ1(T ), for all T and P . Note that these

functions are indeed local and length preserving.
• for each i,

Di(C
(1)[i], C(2)[i]) =

{
1, C(1)[i] = C(2)[i] = 0,
0, otherwise.

Our solutions in sections 3 and 4 are all algorithms in the convolutions model.

6.2. The lower bound. We wish to bound the amount of work necessary for
solving the function matching problem in the convolution model. We do so by pro-
viding a bound on the total number of bits produced in the convolution phase. For a
variable x, let sizeof(x) be the number of bits used to represent α (e.g., a bit, a byte,
a word).

Claim 1. Let A = (c, τP , τT , D) be an algorithm that solves the function matching
problem in the convolutions model. Then, for any m (even) and any n, there exists a
pattern P and text T , with |P | = m and |T | = n, such that the following holds. For
text location i set s(i) =

∑c
k=1 sizeof(C(k)[i]) (s(i) is the total number of bits in the

convolution results for location i). Then, for any i < n−m, s(i) ≥ m/2.
Proof. Consider the algorithm A from Claim 1 above for computing the function

matching in the convolution model. We show how to use A in order to solve the
word equality problem in the communication complexity setting. We then use known
bounds from communication complexity to bound s(i). Suppose that Alice has string
w1 ∈ {0, 1}� and Bob has string w2 ∈ {0, 1}�, and that they wish to determine
whether w1 = w2. Let w = w1w2 (the concatenation of the two) and consider the
pattern P = (1, 2, . . . , �, 1, 2, . . . , �). Then, P function-matches with w iff w1 = w2.
Consider a location i. For any k,

C(k)[i] =

⎛
⎝i+�−1∑

j=i

T (k)[j] · P (k)[j]

⎞
⎠ +

⎛
⎝i+2�−1∑

j=i+�

T (k)[j] · P (k)[j]

⎞
⎠ .

Denote C
(k)
A [i] =

∑i+�−1
j=i T (k)[j]·P (k)[j] (the first summand) and C

(k)
B =

∑i+2�−1
j=i+� T (k)[j]·

P (k)[j] (the second summand). Since the transformation T (k) is local, the value of

C
(k)
A [i] depends only on the values T [j] with i ≤ j < i + � and possibly on P , while

C
(k)
B [i] depends only on the values T [j] with i + � ≤ j < i + 2� and possibly on P .

Thus, setting T i+�−1
i = w1, T i+2�−1

i+� = w2 and fixing P = (1, 2, . . . , �, 1, 2, . . . , �),

we get that Alice can compute on her own C
(k)
A [i] (for all k), and similarly Bob can

compute on his own C
(k)
B [i] (for all k). Now, in order to determine if w1 = w2, we

must determine if there is a function match at location i. To this end, Bob sends

Alice C
(k)
B [i] for all k. Alice then computes C

(k)
A [i] and C(k)[i] = C

(k)
A [i] + C

(k)
B [i], for
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k = 1, . . . , c, and finally d = Di(C
(1)[i], . . . , C(c)[i]) to obtain the result. Thus, the

total communication is

c∑
j=1

sizeof(C
(k)
B [i]) ≤

c∑
k=1

sizeof(C(k)[i]) = s(i).

However, it is known that any protocol for solving the word equality problem for �-bit
words in the communication complexity model requires at least � bits [32]. Thus,
s(i) ≥ � = m/2.

We obtain the following.
Theorem 2. Any algorithm for solving the function matching problem in the

convolution model requires Ω(mn) bit operations.
Proof. By Claim 1, for each i < n − m at least m/2 bits must be produced.

Thus, in total at least (n−m)m/2 = Ω(mn) bits must be produced. Producing a bit
requires at least one bit operation.

The reader is cautioned that the above lower bound does not provide a determin-
istic lower bound for the function matching problem in the RAM model, but rather
only in the convolutions model. While convolutions seem to be the only known effec-
tive tool in pattern matching for solving generalized problems such as the function
matching problem, the convolutions model is very restrictive. The lower bound does
indicate, however, that using convolutions in the way defined in the convolutions
model is a direction one should not follow when seeking an efficient algorithm for the
function matching problem.

7. Two-dimensional parameterized matching. The one-dimensional param-
eterized matching problem was efficiently solved in [7]. However, as discussed in [4],
the move to two dimensions implies a possible computational difficulty if no separable
attributes exist. Parameterized matching is not separable—if all columns (or rows)
parameterize-match, it does not necessarily imply that the entire matrix parameterize-
matches. Thus we are forced to seek other approaches.

Our problem.
INPUT: Two-dimensional pattern P of size m ×m and two-dimensional text T

of size 2m× 2m.
OUTPUT: All locations [i, j] in T where there is a parameterized occurrence of

the pattern.
We may assume the text size n2 ≤ 4m2 because of an argument similar to the

one in Observation 2.
Solution idea. We will do a function matching of the pattern in the text.

Following that, because of Observation 1 we discard all locations where the number
of symbols in the text submatrix is different from |ΣP |.

The solution’s implementation uses a well-established two-dimensional lineariza-
tion technique (see, e.g., [8]). Construct a text string T ′ of length n2 and a pattern
string P ′ of length m2 such that a P ′ occurrence in T ′ will indeed mean a P occurrence
in T .

String T ′ is taken as the concatenation of all rows of T . P ′ needs to be constructed
more carefully since an occurrence of P in T means that each row of P occurs in T
at a distance n−m from its previous row. We can make this happen by introducing
a new symbol, φ, that does not appear in the alphabets. This symbol’s semantics
is different from the other alphabet symbols in that it matches every symbol. This
symbol is called the don’t care or wildcard symbol. Fischer and Paterson [19] used
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convolutions to solve the pattern matching with “don’t cares” problem. Recall that
our algorithms for function matching are convolutions-based.

We have reduced the two-dimensional parameterized matching problem to the
string function matching problem with “don’t cares” in the pattern.

Definition. The string function matching problem with “don’t cares” in the
pattern is the following:

INPUT: Pattern string P = P [0], . . . , P [m − 1] over alphabet ΣP ∪ {φ} and text
string T = T [0], . . . , T [n− 1] over alphabet ΣT .

OUTPUT: All locations i in T where there is a function occurrence of P , where
the symbol φ matches everything.

7.1. Randomized two-dimensional parameterized matching. The only
change necessary for Algorithm B to solve the function matching with “don’t cares”
in the pattern problem is in the fP function. Currently every symbol that appears
more than once was mapped to a random number between 1 and n2. Symbols that
appear in the pattern once were always mapped to 0 so they have no effect on the
results. The “don’t care” symbol behaves the same way—it is allowed to match every
symbol. Therefore for every mapping fP that we randomly construct, we always have
fP (φ) = 0.

Time. O(n log n).
Corollary 3. Two-dimensional function matching can be done in time O(n2 log n)

and with probability 1
n2 of false positive matches.

We still need to count the number of different symbols in the m ×m submatrix
at every location where there is a function matching. The problem we need to solve
is the following.

submatrix character count problem.
INPUT: Two-dimensional n×n array T of symbols over alphabet Σ and a natural

number m.
OUTPUT: For every i, j ∈ {1, . . . , n −m + 1}, the number of different alphabet

symbols occurring in the submatrix T [k, �], k = i, . . . , i+m−1, � = j, . . . , j+m−1.
Amir, Church, and Dar [4] show that the submatrix character count problem can

be solved deterministically in time O(n2 logm). We conclude with the following.
Corollary 4. Two-dimensional function matching can be done in time O(n2 log n)

and with probability 1
n2 of false positive matches.

7.2. Deterministic two-dimensional parameterized matching. It is suffi-
ciently efficient to solve the string function matching problem with “don’t cares” in
the pattern. Unfortunately, we do not know how to compute string function match-
ing for general alphabets in o(nm) time. However, our real aim is two-dimensional
parameterized matching. Therefore our algorithm will make use of both these facts.
The result of our algorithm is a set of locations that is a superset of the parameterized
match and a subset of the function match. We narrow it down to the parameterized
match by counting the number of different symbols.

Recall, then, that we have a linearized T and P , where the length of T is 4m2

and the length of P is 2m2 (caused by the addition of the “don’t cares” padding).
The algorithm’s idea is to treat symbols that appear many times in the text and

pattern (and thus are few in number) differently from the possibly numerous alphabet
symbols that appear rarely. The thinking is that convolutions can be used on a small
number of symbols (the frequent ones) while some other technique will be effective
on the rare symbols, even though they are many.

Definition. An alphabet symbol a ∈ ΣT or a ∈ ΣP is frequent if it appears in
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T or P , respectively, at least m times. Otherwise the symbol is rare.
Our algorithm will treat separately the following three types of symbols: the fre-

quent in the pattern symbols versus the text; the frequent in the text versus the pattern;
and then the rare symbols in both text and pattern. For ease of description, we will
henceforth say that symbol a function-matches the text at location i, by which we
mean that starting at location i for the length of 2m2 elements, all text symbols cor-
responding to an occurrence of a in the pattern are equal. In other words, if there is
no function occurrence at location i, then it is not because of the symbol a. We are
now ready to provide the outline of the algorithm for two dimensional parameterized
matching.

Algorithm C

1. Find all text locations where the symbols that are frequent in the pattern
function-match.
2. Find all text locations where the symbols that are frequent in the text
parameterize-match.
3. Find all text locations where symbols that are rare in the pattern function-
match the symbols that are rare in the text.
4. Retain only the text locations where the number of different symbols is
precisely equal to the number of different symbols in the pattern.
end

The submatrix character count (step C.4) can be done in time O(n2 logm) [4].
The next three subsections show efficient implementations to steps C.1.–C.3.

7.2.1. Frequent pattern symbols. For every frequent symbol a in the pattern,
Lemma 2 allows us to find all text location where a function-matches in the manner
described in section 4 using a constant number of convolutions. Mark all text location
where there was no function-matching, i.e., where a corresponds to at least two distinct
text alphabet symbols.

At the end of this stage, replace all frequent pattern symbols with φ.
Time. Since there are O(m) frequent pattern symbols, the time for this stage is

O(n2m logm).

7.2.2. Frequent text symbols. We desire to find the locations i of the lin-
earized text (corresponding to text locations (l, j)) where the pattern parameterize-
matches on the frequent symbols. To do so, remember that the padded pattern is of
length 2m2 and that we need to find out whether the frequent text symbols in the
2m2 substring, of the linearized text, starting at i parameterize-match the pattern. In
other words, no frequent text symbol corresponds to more than one pattern symbol.
Again, we would like to use Lemma 2. However, now the roles of T and P are reversed.
Additional complications are that the number of elements in the sum is different for
every location (this number is dependent on the distribution of elements in the text
substring) and that there are “don’t cares” in the pattern. Both these problems are
solved via a single convolution.

Assume that ΣP = {1, . . . , |ΣP |}. If it does not, this can always be obtained in
time O(m2 logm). Let P2 be the array of length 2m2, where P2[i] = (P [i])2, i =
0, . . . , 2m2 − 1.

Let K ← (χa(T ) ⊗ χφ(P )), where

χφ(x) =

{
1 if x �= φ,
0 if x = φ.
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The number of non-φ pattern elements that correspond to frequent text symbol
a at location i is K[i].

Let SA ← χa(T ) ⊗ P . By Lemma 2, the locations i, where (SA[i])2 = K[i]P2[i],
are precisely the locations where all text a’s are matched to a single pattern alphabet
symbol.

Note that it may still be the case that one pattern symbol matches the two
frequent text symbols a1 and a2. We need to discard these locations as well. This is
done as follows. For every location i where all occurrences of a correspond to a single
parameter alphabet symbol, find that symbol. This can be found by two convolutions.

Let Na ← χa(T ) ⊗ χφ(P ). Na[i] is precisely the number of a’s in the substring

of length sm2 starting at location i that do not correspond to φ in the pattern.
Assume that ΣP = {1, . . . , |ΣP |}. If it does not, this can always be obtained in time
O(m logm). Let Ca ← χa(T ) ⊗ P . For every undiscarded location i, Ca[i]/Na[i] is
the pattern symbol that corresponds to all occurrences of a in the O(sm2) substring
beginning at i.

For every location i where a parameterize-matches with a corresponding pattern
symbol ba, insert ba in a data structure Di that holds all different symbols that
parameterize- match a frequent text symbol in the substring starting at i. If ba already
appears in the data structure (i.e., it parameterize-matched some other symbol), then
mark i as a nonmatch location.

Di’s size is at most O(m) since there are no more than O(m) frequent symbols.
We use a data structure, e.g., balanced trees, that supports insert and search in time
O(logm) . Therefore this stages adds a cost of O(m logm) for every text location, for
a total cost of O(n2m logm).

After all frequent text symbols are handled, mark them all as φ. At the end of
this stage, all locations where there was no parameterized match of the frequent text
symbols are marked.

Time. The time for this stage is dominated by the function matching over the
binary alphabets, making the total time O(n2m log2 m).

7.2.3. Symbols rare in both text and pattern. At this point the only cases
we have not handled are correspondences of rare pattern symbols and rare text sym-
bols. There may be many such elements, but each of them appears less than m times.
We use subset matching, defined by Cole and Hariharan [15], to solve this case.

We construct a new pattern P ′ and a new text T ′ in which every element P ′ and
T ′ is a subset of Z, where Z is the set of integers. In this case, the lengths of P ′ and
T ′ are the same as the lengths of P and T , respectively.

P ′[i] = φ (the empty set) if P [i] = φ (the “don’t care” symbol).
T ′[i] = Z (the universal set) if T [i] = φ (the “don’t care” symbol).
Assume P [i] = a (a rare symbol). Further, assume that a occurs at locations

i0, i1, . . . , ij = i, . . . , ik. Then the set P ′[i] is {i0−i, i1−i, . . . , ij−1−i, ij+1−i, . . . , ik−
i}. In other words, we consider i as the center and write the distance between it and
every other occurrence of a in the pattern. The distance to the a occurrences that
precede i is negative, and the distance to the a occurrences that follow i is positive.

If T [i] is a rare symbol, then we construct T ′[i] in a manner identical to the
construction of P ′.

P ′ and T ′ can be constructed in time O(n2m).
Recall that P and T now include only rare symbols. All frequent symbols previ-

ously handled and replaced by “don’t care” symbols.
Definition. There is a function occurrence of a rare symbol a of P with the
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rare symbols of T at location i, if one of two conditions hold:
1. Every occurrence of a corresponds to φ.
2. Every occurrence of a corresponds to ba, where ba is a rare text symbol.

Theorem 3. There is a function match of the rare symbols of P in the rare
symbols of T iff there is a subset matching of P ′ in T ′.

Proof. The rare symbols of P function-match the rare symbols of T iff, at every
text location i, every occurrence of pattern alphabet symbol a corresponds either to
the same text alphabet symbol or to φ. If the corresponding text symbol everywhere
is φ, then it is replaced by Z (the universal set) and thus the subset that replaces a in
P ′ is clearly a subset of the corresponding universal set Z. Otherwise, the alphabet
symbol ba is a rare symbol. a function-matches T at i iff every location where there
is an a corresponds to the same ba. This precisely means that the relative locations
of a are a subset of the relative location of ba, which means that the set in P ′ that
replaces a is a subset of the set in T ′ that replaces ba.

Note that the cases where some occurrences of a match a φ in the text and the
rest match a single ba in the text are not defined as a function match of rare symbols
in rare symbols. The definition follows our problem’s requirement since a matching
both φ and ba means that some occurrences of a match a frequent text symbol and
some match a nonfrequent symbol, and thus it is not a function matching). However,
in this case there is not a subset matching either because the text subset of the rare
symbols will not include the indices of the occurrences corresponding to the Z sets,
and thus they will not match.

The only thing left for us to do now is analyze the time it takes for subset matching
with “don’t cares.”

Cole, Hariharan, and Indyk [16] showed that subset matching, in which the pat-
tern has m sets, the text has n sets, and the size of the sets is bound globally by z,
can be achieved deterministically in time O(nz log2 m log logm). This was done by
creating a code of size z logm log logm. An empty set in the pattern is always easily
handled, since it means there are no elements at all. However, in the case of bounded
size sets, a universal set is also easily implementable, since it means we have a set of
all 1’s in those text locations during all convolutions, forcing always a match.

We conclude with the following.
Corollary 5. The time for computing the function-matching of the rare ele-

ments is O(n2m log2 m log logm).
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Itai and Rodeh gave a linear time algorithm for finding two independent spanning trees in a 2-
connected graph. Cheriyan and Maheshwari gave an O(|V |2) algorithm for finding three independent
spanning trees in a 3-connected graph. In this paper we present an O(|V |3) algorithm for finding
four independent spanning trees in a 4-connected graph. We make use of chain decompositions of
4-connected graphs.

Key words. Connectivity, chain decomposition, numbering, independent trees, algorithm

AMS subject classifications. 05C40, 05C85, 05C38, 05C75

DOI. 10.1137/S0097539703436734

1. Introduction. We consider simple graphs only. For a graph G, we use V (G)
and E(G) to denote the vertex set and edge set of G, respectively.

For a tree T and x, y ∈ V (T ), let T [x, y] denote the unique path from x to y in T .
A rooted tree is a tree with a specified vertex called the root of T . Let G be a graph,
let r ∈ V (G), and let T and T ′ be trees of G rooted at r. We say that T and T ′ are
independent if for every x ∈ V (T ) ∩ V (T ′), the paths T [r, x], T ′[r, x] have no vertex
in common except r and x.

The study of independent spanning trees started with Itai and Rodeh [11], where
they proposed a multitree approach to reliability in distributed networks (see also [5]).
They developed a linear time algorithm that, given any vertex r in a 2-connected
graph G, finds two independent spanning trees of G rooted at r. Later, Cheriyan
and Maheshwari [1] proved that for any vertex r in a 3-connected graph G, there
exist three independent spanning trees of G rooted at r. Furthermore, they gave an
O(|V (G)|2) algorithm for finding these trees.

Itai and Zehavi [12] also proved that every 3-connected graph contains three
independent spanning trees (rooted at any vertex), and they conjectured that for any
k-connected graph G and for any r ∈ V (G), there exist k independent spanning trees
of G rooted at r. According to Schrijver [14], the Itai-Zehavi conjecture is part of
a more general conjecture by Frank [6]. Huck [9] proved this conjecture for planar
4-connected graphs. Later, Miura et al. [13] gave a linear time algorithm for finding
four independent rooted spanning trees in a planar 4-connected graph.

Our main result is the following.
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Theorem 1.1. Let G be a 4-connected graph, and let r ∈ V (G). Then there exist
four independent spanning trees of G rooted at r. Moreover, such trees can be found
in O(|V (G)|3) time.

To provide motivation for our method, we first describe Itai and Rodeh’s method
for constructing two independent spanning trees rooted at a vertex r in a 2-connected
graph. Let G be a 2-connected graph, and let r and t be two adjacent vertices of G.
An r-t numbering is a function g : V (G) �→ {1, . . . , n} with n ≥ |V (G)| satisfying the
following properties:

(i) g(r) = 1 and g(t) = n.
(ii) Every vertex v ∈ V (G) − {r, t} has a neighbor u with g(u) < g(v) and a

neighbor w with g(w) > g(v).
An r-t numbering can be produced from an ear decomposition of G. From an r-t
numbering g, Itai and Rodeh define two independent spanning trees T1 and T2 of G
rooted at r as follows. For each vertex v ∈ V (G) − {r}, specify its parent in each
tree. In tree T1, for each v ∈ V (G) − {r}, the parent of v is a neighbor u for which
g(u) < g(v). In tree T2, the parent of t is r and, for each v ∈ V (G)−{r, t}, the parent
of v is a neighbor w for which g(w) > g(u). It is not hard to show that T1 and T2 are
independent spanning trees in G rooted at r.

The idea for constructing four independent spanning trees in a 4-connected graph
is inspired by the 2-connected case. The main difference is that we need to use two
numberings instead of one. This idea can be roughly described as follows. Let G be
a 4-connected graph, and let r ∈ V (G). First, we compute a decomposition of G into
“planar chains,” a generalization of ear decomposition, which we describe in section 2.
From this decomposition, we find two numberings g and f . We then construct these
trees from these numberings.

The main difficulty with this idea lies in the fact that it is not possible to num-
ber all vertices of G, because the “chains” in our decomposition need not be paths.
Fortunately, the nonpath part of the chains are planar, and we can compute four
independent spanning trees in each one of these planar parts using the algorithm of
Miura et al. [13] mentioned above. These trees are then used to number every vertex
in the planar parts that has neighbors outside its chain. Once these numberings are
computed, we can construct four independent spanning trees.

The rest of this paper is organized as follows. The remainder of this section is
devoted to notation and terminology. In section 2 we describe chain decomposition of
a graph and state the main decomposition result from [4] (also see [3]). In section 3
we describe known results for the planar case and give some auxiliary lemmas. In
section 4 we give algorithms for constructing the required numberings. In section 5
we describe an algorithm for constructing four independent spanning trees in a 4-
connected graph, and we prove its correctness in section 6.

Throughout this paper, we use A := B to rename B as A or to define A as B.
We use the notation xy (or yx) to represent an edge with ends x and y. Let G be
a graph. For any S ⊆ V (G), let G[S] denote the subgraph of G with V (G[S]) = S
and E(G[S]) consisting of the edges of G with both ends in S; we say that G[S] is
the subgraph of G induced by S. Let G − S := G[V (G) − S]. A subgraph H of G
is an induced subgraph of G if G[V (H)] = H. We also say that H is induced in G.
For any H ⊆ G and S ⊆ V (G) ∪ E(G), H + S denotes the graph with vertex set
V (H) ∪ (S ∩ V (G)) and edge set E(H) ∪ {uv ∈ S : {u, v} ⊆ V (H) ∪ (S ∩ V (G))}.

A graph G is k-connected, where k is a positive integer, if |V (G)| ≥ k + 1 and,
for any S ⊆ V (G) with |S| ≤ k − 1, G − S is connected. A subgraph H of G is
nonseparating in G if G− V (H) is connected.
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v0 v1 v2 v3 v4 v5

B1
B2 B3 B4

B5

Fig. 1. Example of a chain.

.

Let G be a graph. For S ⊆ V (G), let NG(S) := {x ∈ V (G) − S : xy ∈ E(G) for
some y ∈ S}. For a subgraph H of G, let NG(H) := NG(V (H)). When S = {x},
we let NG(x) := NG({x}). When there exists no ambiguity, we may simply use
N(S), N(H), and N(x), instead of NG(S), NG(H), and NG(x), respectively.

We describe a path in G as a sequence P = (v1, v2, . . . , vk) of distinct vertices of
G such that vivi+1 ∈ E(G), 1 ≤ i ≤ k − 1. The vertices v1 and vk are called the
ends of the path P , and the vertices in V (P )−{v1, vk} are called the internal vertices
of P . For 1 ≤ i ≤ j ≤ k, let P [vi, vj ] := (vi, . . . , vj), and for 1 ≤ i < j ≤ k, let
P (vi, vj) := P [vi+1, vj−1]. For A,B ⊆ V (G), we say that a path P is an A-B path if
one end of P is in A, the other end is in B, and no internal vertex of P is in A ∪ B.
If P is a path with ends a and b, we say that P is a path from a to b, or P is an a-b
path. Two paths P and Q are disjoint if V (P )∩ V (Q) = ∅. Two paths are internally
disjoint if no internal vertex of one path is contained in the other. Given a path P in
G and a set S ⊆ V (G) (respectively, a subgraph S of G), we say that P is internally
disjoint from S if no internal vertex of P is contained in S (respectively, V (S)). We
also describe a cycle in G as a sequence C = (v1, v2, . . . , vk, v1) such that the vertices
v1, . . . , vk are distinct, vivi+1 ∈ E(G), for 1 ≤ i ≤ k − 1, and vkv1 ∈ E(G).

2. Chain decomposition. In order to prove Theorem 1.1, we rely on the ex-
istence of a nonseparating chain decomposition of a 4-connected graph, proved in [4]
(also see [3]). Such a decomposition is similar to an ear decomposition. An ear de-
composition of a graph G is a sequence (P0, P1, . . . , Pt) such that (i) P0 is a cycle in
G, (ii) P1, . . . , Pt are paths in G, (iii)

⋃t
i=0 Pi = G, and (iv) for each 0 ≤ i ≤ t − 1,

Gi :=
⋃i

j=0 Pj is 2-connected and Pi+1 ∩ Gi consists of the ends of Pi+1. In a non-
separating chain decomposition, the Pi’s will be chains and cycle chains, which may
be thought of as a generalization of paths and cycles.

Definition 2.1. A connected graph H is a chain if its blocks can be labeled as
B1, . . . , Bk, where k ≥ 1 is an integer, and its cut vertices can be labeled as v1, . . . , vk−1

such that

(i) V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k − 1, and
(ii) V (Bi) ∩ V (Bj) = ∅ if |i− j| ≥ 2 and 1 ≤ i, j ≤ k.

We let H := B1v1B2v2 . . . vk−1Bk denote this situation. If k ≥ 2, let v0 ∈ V (B1) −
{v1} and vk ∈ V (Bk) − {vk−1}, or, if k = 1, let v0, vk ∈ V (B1) with v0 �= vk; then
we say that H is a v0-vk chain, and we denote this by H := v0B1v1 . . . vk−1Bkvk. We
usually fix v0 and vk, and we refer to them as the ends of Hi. See Figure 1 for an
example with k = 5.

Definition 2.2. A connected graph H is a cyclic chain if for some integer k ≥ 2,
there exist subgraphs B1, . . . , Bk of H and vertices v1, . . . , vk of H such that

(i) for 1 ≤ i ≤ k, Bi is 2-connected or Bi is induced by an edge of H,

(ii) V (H) =
⋃k

i=1 V (Bi) and E(H) =
⋃k

i=1 E(Bi),
(iii) if k = 2, then V (B1) ∩ V (B2) = {v1, v2} and E(B1) ∩ E(B2) = ∅, and
(iv) if k ≥ 3, then V (Bi) ∩ V (Bi+1) = {vi} for 1 ≤ i ≤ k, where Bk+1 := B1,

and V (Bi) ∩ V (Bj) = ∅ for 1 ≤ i < i + 2 ≤ j ≤ k and (i, j) �= (1, k).
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v0 = v6 v1 v2 v3 v4 v5
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Fig. 2. Example of a cyclic chain.
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y2 = x4
y2 = x4

y4y4

x5x5
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G− V (H)

G− V (H)

Fig. 3. A planar chain H := v0B1v1B2v2B3v3B4v4B5v5 in a graph G.

For notational convenience, we usually fix one of the vertices v1, . . . , vk as the root of
H, say vk, and write H := v0B1v1 . . . vk−1Bkvk to indicate that H is a cyclic chain
rooted at v0 (= vk). Each subgraph Bi is called a piece of H. We sometimes write
I(H) := V (H). See Figure 2 for an example with k = 6.

In the chain decompositions we will work with, the blocks and pieces have a
planar structure. Let G be a graph with distinct vertices a, b, c, and d. We say that
the quintuple (G, a, b, c, d) is planar if G can be drawn in a closed disc in the plane
with no pair of edges crossing such that a, b, c, d occur in cyclic order on the boundary
of the disc. For a graph G and x, y ∈ V (G), we use G− xy to denote the graph with
vertex set V (G) and edge set E(G) − {xy} (note that xy need not be an edge of G).

Definition 2.3. Let G be a graph, and let H := v0B1v1 . . . vk−1Bkvk be a chain
(respectively, cyclic chain). If H is an induced subgraph of G, then we say that H is a
chain in G (respectively, cyclic chain in G). We say that H is planar in G if, for each
1 ≤ i ≤ k with |V (Bi)| ≥ 3 (or equivalently, Bi is 2-connected), there exist distinct
vertices xi, yi ∈ V (G) − V (H) such that (G[V (Bi) ∪ {xi, yi}] − xiyi, xi, vi−1, yi, vi) is
planar, and Bi − {vi−1, vi} is a component of G− {xi, yi, vi−1, vi}. We also say that
H is a planar v0-vk chain (respectively, planar cyclic chain). See Figure 3 for two
drawings of an example with k = 5. The dashed edges may or may not exist, but they
are not part of H.
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Fig. 4. (a) An up F -chain, (b) a down F -chain, (c) an elementary F -chain, and (d) a triangle
F -chain. The dashed edges need not exist.

We can now describe the chains in nonseparating chain decompositions. See
Figure 4 for illustrations.

Definition 2.4. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F ).
Let H be a planar x-y chain in G such that V (H) − {x, y} ⊆ V (G) − V (F ). We say
that

(i) H is an up F -chain if {x, y} ⊆ V (F ) and NG(H−{x, y}) ⊆ (V (G)−V (F −
r)) ∪ {x, y},

(ii) H is a down F -chain if {x, y} ⊆ V (G) − V (F − r) and NG(H − {x, y}) ⊆
V (F − r) ∪ {x, y}, and

(iii) H is an elementary F -chain if {x, y} ⊆ V (F ) and H is an x-y path of length
two.

In any of the three cases we say that H is a planar x-y F -chain in G (or simply a
planar F -chain). Let I(H) := V (H) − {x, y}.

Definition 2.5. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F ).
Suppose that {v1, v2, v3} ⊆ V (G) − V (F ) induces a triangle T in G and, for each
1 ≤ i ≤ 3, vi has exactly one neighbor xi in V (F − r) and exactly one neighbor
yi in V (G) − (V (F ) ∪ V (T )), and each vi has degree four in G. Moreover, assume
that x1, x2, x3 are distinct and y1, y2, y3 are distinct. Then we say that H := T +
{x1, x2, x3, v1x1, v2x2, v3x3} is a triangle F -chain in G. We let I(H) := {v1, v2, v3}.
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Note that Definitions 2.4 and 2.5 depend on the choice of r and F , but in spite
of this, whenever we use these concepts in this paper, it should be clear which pair
r, F we refer to.

Definition 2.6. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F ).
By a good F -chain in G, we mean an up F -chain or a down F -chain, or an elementary
F -chain or a triangle F -chain.

We are now ready to describe a chain decomposition, which is similar to an ear
decomposition.

Definition 2.7. Let G be a graph, let r ∈ V (G), and let H1, . . . , Ht be chains
in G, where t ≥ 2. We say that (H1, . . . , Ht) is a nonseparating chain decomposition
of G rooted at r if the following conditions hold:

(i) H1 is a planar cyclic chain in G rooted at r.

(ii) For each i = 2, . . . , t− 1, Hi is a good G[
⋃i−1

j=1 I(Hj)]-chain in G.

(iii) Ht := G− (
⋃t−1

j=1 I(Hj) − {r}) is a planar cyclic chain in G rooted at r.

(iv) For each i = 1, . . . , t− 1, both G[
⋃i

j=1 I(Hj)] and G− ((
⋃i

j=1 I(Hj))− {r})
are 2-connected.

The chains H2, . . . , Ht−1 are called internal chains of the nonseparating chain decom-
position. If ra is a piece of H1, then we say that H1, . . . , Ht is a nonseparating chain
decomposition of G starting at ra.

The following result is proved in [4] (also see [3]).
Theorem 2.8. Let G be a 4-connected graph, let r ∈ V (G), and let ra ∈ E(G).

Then G has a nonseparating chain decomposition rooted at r and starting at ra, and
such a decomposition can be found in O(|V (G)|2|E(G)|) time.

The basic idea for constructing four independent spanning trees (rooted at r) can
be described as follows. By Theorem 2.8, G has a nonseparating chain decomposition
(H1, . . . , Ht) rooted at r. For 1 ≤ i ≤ t, let Gi := G

[⋃i
j=1 I(Hj)

]
. We compute two

numberings g, f defined on V (G) which resemble r-t numberings. From g we compute
two independent spanning trees T1, T2 such that for each i = 1, . . . , t, the restriction
of T1 and T2 to Gi are independent spanning trees in Gi rooted at r. Similarly, from
f we compute two spanning trees T3, T4 such that for each i = 1, . . . , t, the restriction
of T3 and T4 to G− (V (Gi − r)) are independent spanning trees rooted at r.

3. Planar graphs. Let G be a 4-connected graph, and let r ∈ V (G). To use a
nonseparating chain decomposition of G for constructing four independent spanning
trees rooted at r, we must be able to find four independent spanning trees in the
planar blocks and pieces. Unlike the original problem, these trees are not rooted at
the same vertex, but they are rooted at four distinct vertices. Before we describe this
result, we introduce some definitions.

Definition 3.1. Let T and T ′ be two trees in a graph G with roots r and r′,
respectively. We say that T and T ′ are independent if, for each x ∈ V (T ) ∩ V (T ′),
the paths T [r, x] and T ′[r′, x] have no vertex in common except x (and r if r = r′).

Let G be a graph, and let S := {t1, . . . , t4} be a set of vertices of G. A 4-tuple
T := {T1, . . . , T4} is an S-system of G if, for 1 ≤ i ≤ 4, Ti is a tree of G rooted at
ti, V (Ti) ⊆ V (G) − (S − {ti}), and ti ∈ V (Ti). An S-system T := {T1, . . . , T4} is
independent if the trees in the system are pairwise independent, and an S-system T
is spanning if V (Ti) = V (G)− (S −{ti}) for 1 ≤ i ≤ 4. See Figure 5 for an example,
where the darkened edges are in the trees.

Let G be a graph, let S ⊆ V (G), and let k be a positive integer. We say that G
is (k, S)-connected if |V (G)| ≥ |S| + 1, G is connected, and for any T ⊆ V (G) with
|T | ≤ k − 1, every component of G− T contains an element of S.
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t1 t2

t3
t4

Fig. 5. Four independent trees in a plane graph forming an independent spanning system.

Theorem 3.2. Let (G, a, b, c, d) be a planar graph, and suppose that G is
(4, {a, b, c, d})-connected. Then there exists an independent spanning {a, b, c, d}-system
of G. Moreover, one can find such a system in linear time.

The existence of an independent system in Theorem 3.2 was proved by Huck [9].
Huck’s proof is not based on a decomposition of a planar graph, but through a careful
analysis of his proof, one can extract an O(|V (G)|3) algorithm. Miura et al. [13] gave
a linear algorithm for finding such a system based on a decomposition of 4-connected
planar graphs. In fact, the decomposition they obtained can be viewed as a special
case of a nonseparating chain decomposition.

Before we proceed, let us recall that the problem of finding an embedding of a
planar graph can be solved in linear time [7, 8]. Moreover, the following problem
can be solved in linear time: find a drawing of a planar quintuple (G, a, b, c, d) in a
closed disc in the plane with no pair of edges crossing such that a, b, c, d occur in cyclic
order on the boundary of the disc. We make no further mention of this fact, but it is
implicitly used throughout this section.

In what follows we will use Theorem 3.2 to prove some results concerning “order-
ings” of certain vertices of a planar graph (G, a, b, c, d). These results correspond to
Lemmas 3.4, 3.5, 3.6, and 3.7. They will be used in the next section to compute two
numberings of subsets of V (G).

Definition 3.3. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be
an independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each
v ∈ {a, b, c, d}. Let U ⊆ (NG(b) ∪ NG(d)) − {a, c}. We say that a permutation
u1, . . . , up of the elements of U is a (Ta, Tc)-ordering of U if, for i, j ∈ {1, . . . , p}
with i < j, Ta[a, ui] and Tc[c, uj ] are (vertex) disjoint. We also say that u1, . . . , up is
(Ta, Tc)-ordered.

Our first lemma concerns (Ta, Tc)-orderings restricted to elements in NG(b) −
{a, c}. In this case, this ordering corresponds to a total order.

Lemma 3.4. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be an
independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each v ∈
{a, b, c, d}. Then there exists a unique (Ta, Tc)-ordering of NG(b)− {a, c}. Moreover,
such an ordering can be found in O(|V (G)|) time.
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Fig. 6. u1, . . . , up is the unique (Ta, Tc)-ordering of NG(b) − {a, c}.

Proof. Let G′ := G − {ab, bc}. If b has at most one neighbor in G′, then the
result follows immediately. So assume b has at least two neighbors in G′. Take an
embedding of G′ in a closed disc such that a, b, c, d occur in clockwise order on the
boundary of the disc (such an embedding for G can be computed in linear time).
Let u1, . . . , up (p ≥ 2) denote the neighbors of b in G′ in that cyclic order around b
such that a, u1, b, up, c, d occur in clockwise order on the boundary of the disc (see
Figure 6). Since Ta, Tc are independent, we have that for each i ∈ {1, . . . , p}, Ta[a, ui]
and Tc[c, ui] are internally disjoint. Then by planarity one can see that, for every
i, j ∈ {1, . . . , p} with i �= j, Ta[a, ui] and Tc[c, uj ] are disjoint if and only if i < j.
Thus, u1, . . . , up is the unique (Ta, Tc)-ordering of NG(b) − {a, c}. Clearly, such an
ordering can be computed in O(|V (G)|) time.

In the next lemma we show that it is possible to extend a (Ta, Tc)-ordering of
NG(b) − {a, c} and a (Ta, Tc)-ordering of NG(d) − {a, c} to a (Ta, Tc)-ordering of
(NG(b) ∪NG(d)) − {a, c}.

Lemma 3.5. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be an
independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each v ∈
{a, b, c, d}. Then there exists a (Ta, Tc)-ordering of (NG(b)∪NG(d))−{a, c}. Moreover,
such an ordering can be found in O(|V (G)|2) time.

Proof. Take an embedding of G in a closed disc such that a, b, c, d occur in
clockwise order on the boundary of the disc. Consider the following relation. For
u, v ∈ (NG(b)∪NG(d))−{a, c}, we say that u ≺ v if either one of the following holds:

(i) u ∈ NG(b) and Ta[a, u] ∩ Tc[c, v] = ∅.
(ii) u ∈ NG(d), Ta[a, u] ∩ Tc[c, v] = ∅, and Ta[a, v] ∩ Tc[c, u] �= ∅.
See Figure 7 for an illustration of conditions (i) and (ii). The bold lines denote

the paths in Ta and the dashed lines denote the paths in Tc. Next, we show that ≺
defines a total order on (NG(b) ∪NG(d)) − {a, c}.

First, we show that for any distinct x, y ∈ (NG(b) ∪ NG(d)) − {a, c}, either x ≺
y, or y ≺ x, but not both. If x, y ∈ NG(b) or x, y ∈ NG(d), then by planarity,
either Ta[a, x] ∩ Tc[c, y] = ∅ and Ta[a, y] ∩ Tc[c, x] �= ∅, or Ta[a, x] ∩ Tc[c, y] �= ∅ and
Ta[a, y] ∩ Tc[c, x] = ∅. So by (i) or (ii), either x ≺ y, or y ≺ x, but not both. Thus,
we may assume that x ∈ NG(b) and y ∈ NG(d). If Ta[a, x] ∩ Tc[c, y] = ∅, then x, y
satisfy (i) (as u, v) but not (ii) (as v, u), and we have x ≺ y and y �≺ x. So assume
Ta[a, x]∩Tc[c, y] �= ∅. Then x, y does not satisfy (i) (as u, v), and hence, x �≺ y. Since
Ta and Tc are independent, Ta[a, y] and Tc[c, y] are internally disjoint, and Ta[a, x]
and Tc[c, x] are internally disjoint. By planarity, Ta[a, y] ∩ Tc[c, x] = ∅. Therefore,
y ≺ x.
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Fig. 7. u ≺ v and u ≺ w.

It remains to show that ≺ is transitive. Let x, y, z ∈ (NG(b) ∪ NG(d)) − {a, c},
and assume that x ≺ y and y ≺ z. We will show that x ≺ z. We have eight cases by
considering which of x, y, z are in NG(b).

(1) x, y, z ∈ NG(b). Since x ≺ y and y ≺ z, it follows from (i) that Ta[a, x] ∩
Tc[c, y] = ∅ and Ta[a, y] ∩ Tc[c, z] = ∅. So by planarity, Ta[a, x] ∩ Tc[c, z] = ∅,
and by (i), x ≺ z.

(2) x, y, z ∈ NG(d). Since x ≺ y and y ≺ z, it follows from (ii) that Ta[a, x] ∩
Tc[c, y] = ∅, Ta[a, y]∩Tc[c, x] �= ∅, Ta[a, y]∩Tc[c, z] = ∅, and Ta[a, z]∩Tc[c, y] �=
∅. So by planarity, Ta[a, x] ∩ Tc[c, z] = ∅ and Ta[a, z] ∩ Tc[c, x] �= ∅. By (ii),
x ≺ z.

(3) y, z ∈ NG(b) and x ∈ NG(d). Since Ta and Tc are independent, P := Ta[a, y]∪
Tc[c, y] is an a-c path in G−{b, d}. Note that P divides the disc into two closed
regions, say B and D, with b in B and d in D. Since x ≺ y and x ∈ NG(d),
it follows from (ii) that Ta[a, x]∩Tc[c, y] = ∅ and Ta[a, y]∩Tc[c, x] �= ∅. Since
y ≺ z and y ∈ NG(b), it follows from (i) that Ta[a, y]∩Tc[c, z] = ∅. So Tc[c, z]
lies in B and Ta[a, x] lies in D. Therefore, by planarity, Ta[a, x]∩Tc[c, z] = ∅.
Since Ta[a, y]∩ Tc[c, x] �= ∅, it follows by planarity that Ta[a, z]∩ Tc[c, x] �= ∅.
Therefore, x ≺ z.

(4) y, z ∈ NG(d) and x ∈ NG(b). Since Ta and Tc are independent, P := Ta[a, y]∪
Tc[c, y] is an a-c path in G − {b, d}, and P divides the disc into two closed
regions B and D, with b in B and d in D. Since x ≺ y and x ∈ NG(b), it
follows from (i) that Ta[a, x]∩ Tc[c, y] = ∅, and since y ≺ z and y ∈ NG(d), it
follows from (ii) that Ta[a, y] ∩ Tc[c, z] = ∅. So Tc[c, z] lies in D and Ta[a, x]
lies in B. By planarity, Ta[a, x] ∩ Tc[c, z] = ∅, and hence by (i), x ≺ z.

(5) x, y ∈ NG(d) and z ∈ NG(b). Since Ta and Tc are independent, P := Ta[a, y]∪
Tc[c, y] is an a-c path in G − {b, d}, and P divides the disc into two closed
regions B and D, with b in B and d in D. Since x ≺ y and x ∈ NG(d), it
follows from (ii) that Ta[a, x] ∩ Tc[c, y] = ∅, and since y ≺ z and y ∈ NG(d),
it follows from (ii) that Ta[a, y] ∩ Tc[c, z] = ∅. Thus, Ta[a, x] lies in D and
Tc[c, z] lies in B. By planarity, Ta[a, x] ∩ Tc[c, z] = ∅. Moreover, since y ≺ z
and y ∈ NG(d), it follows from (ii) that Ta[a, z] ∩ Tc[c, y] �= ∅. By planarity,
Ta[a, z] ∩ Tc[c, x] �= ∅. Therefore by (ii), x ≺ z.

(6) x, y ∈ NG(b) and z ∈ NG(d). Since Ta and Tc are independent, P := Ta[a, y]∪
Tc[c, y] is an a-c path in G − {b, d}, and P divides the disc into two closed
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Fig. 8. Two disjoint paths, one in Ta and the other in Td.

regions B and D, with b in B and d in D. Since x ≺ y and x ∈ NG(b), it
follows from (i) that Ta[a, x]∩ Tc[c, y] = ∅, and since y ≺ z and y ∈ NG(b), it
follows from (i) that Ta[a, y] ∩ Tc[c, z] = ∅. So Ta[a, x] lies in B and Tc[c, z]
lies in D. By planarity Ta[a, x] ∩ Tc[c, z] = ∅. Therefore by (i), x ≺ z.

(7) x, z ∈ NG(b) and y ∈ NG(d). We have shown that either x ≺ z or z ≺ x.
Suppose for a contradiction that z ≺ x. Then by (i), Ta[a, z] ∩ Tc[c, x] =
∅, and by planarity, Ta[a, x] ∩ Tc[c, z] �= ∅. Since y ≺ z and y ∈ NG(d),
Ta[a, z] ∩ Tc[c, y] �= ∅. But then, by planarity, Ta[a, x] ∩ Tc[c, y] �= ∅, which is
a contradiction to (i) since x ≺ y and x ∈ NG(b). Therefore, x ≺ z.

(8) x, z ∈ NG(d) and y ∈ NG(b). We have shown that either x ≺ z or z ≺ x.
Suppose for a contradiction that z ≺ x. Then by (ii), Ta[a, z] ∩ Tc[c, x] = ∅
and Ta[a, x] ∩ Tc[c, z] �= ∅. Since x ≺ y and x ∈ NG(d), Ta[a, y] ∩ Tc[c, x] �= ∅.
But then, by planarity, Ta[a, y] ∩ Tc[c, z] �= ∅, which is a contradiction to (i)
since y ≺ z and y ∈ NG(b). Therefore, x ≺ z.

Thus, ≺ defines a total order on (NG(b) ∪ NG(d)) − {a, c}. Hence, the required
(Ta, Tc)-ordering exists.

Furthermore, this ordering can be found as follows. Let b1, . . . , bp be the (Ta, Tc)-
ordering of NG(b)−{a, c}, and let d1, . . . , dq be the (Ta, Tc)-ordering of NG(d)−{a, c}.
Both exist by Lemma 3.4. Theses sequences are ordered under ≺. We can decide in
O(|V (G)|) time whether bi ≺ dj or dj ≺ bi (by checking which of (i) or (ii) holds) for
any pair bi, dj , 1 ≤ i ≤ p, 1 ≤ j ≤ q. Thus, using the so-called merge technique in [2],
we can merge the two sequences to obtain a sequence ordered under ≺ in O(|V (G)|2)
time.

The last two lemmas of this section will also be needed in section 5. Figure 8
illustrates Lemma 3.6, and Figure 9 illustrates Lemma 3.7.

Lemma 3.6. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be an
independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each v ∈
{a, b, c, d}. Assume that b has at least two neighbors in V (G) − {a, c}. Then for any
(Ta, Tc)-ordered pair x, y ∈ NG(b) − {a, c}, Ta[a, x] ∩ Td[d, y] = ∅.

Proof. Take an embedding of G in a disc such that a, b, c, d occur in clockwise
order on the boundary of the disc. Let x, y ∈ NG(b)−{a, c} such that x, y is (Ta, Tc)-
ordered (see Figure 8). Hence, Ta[a, x]∩Tc[c, y] = ∅. Since Ta and Td are independent,
P := Ta[a, x] ∪ Td[d, x] is an a-d path in G − {a, c}, and P divides the disc into two
closed regions B and C, with b in B. By planarity and since Ta[a, x] ∩ Tc[c, y] = ∅,
Td[d, y] lies in B. Then by planarity, Ta[a, x] ∩ Td[d, y] = ∅.

Lemma 3.7. Let (G, a, b, c, d) be a planar graph, and let {Ta, Tb, Tc, Td} be an
independent spanning {a, b, c, d}-system of G, where Tv is rooted at v for each v ∈
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Fig. 9. Three disjoint paths contained in Ta, Tc, and Td, respectively.

{a, b, c, d}. Assume that b has at least three neighbors in V (G) − {a, c}. Then for
any (Ta, Tc)-ordered triple x, y, z ∈ NG(b) − {a, c}, Ta[a, x], Td[d, y], and Tc[c, z] are
pairwise disjoint.

Proof. Take an embedding of G in a disc such that a, b, c, d occur in clockwise order
on the boundary of the disc. Let x, y, z ∈ NG(b) such that x, y, z is (Ta, Tc)-ordered
(see Figure 9). Hence, Ta[a, x] ∩ Tc[c, y] = ∅ and Ta[a, y] ∩ Tc[c, z] = ∅.

By Lemma 3.4, Ta[a, x] ∩ Tc[c, z] = ∅. Hence, the path P := Td[d, y] + {b, yb}
divides the disc into closed regions A and C, with Ta[a, x] in A and Tc[c, z] in C. By
Lemma 3.6, Ta[a, x]∩Td[d, y] = ∅. By applying a mirror image version of Lemma 3.6,
we can show that Td[d, y] ∩ Tc[c, z] = ∅.

4. Numberings. By Theorem 2.8, G has a nonseparating chain decomposition
rooted at r. In this section we will combine this decomposition with Theorem 3.2 to
produce a numbering of a subset of V (G). This numbering will be used in the next
section to construct four independent spanning trees rooted at r.

In the rest of this section we fix the following notation.

Notation 4.1. Let G be a 4-connected graph, and let r ∈ V (G). Fix a nonsepa-
rating chain decomposition of G rooted at r, say C := (H1, . . . , Ht), t ≥ 2. Define the
sequences G0, G1, . . . , Gt−1 and Ḡ1, . . . , Ḡt as follows:

(i) G0 := Ḡt := ({r}, ∅).
(ii) For i = 1, . . . , t− 1, Gi := G[

⋃i
j=1 I(Hj)] and Ḡi := G− (V (Gi) − {r}).

Notation 4.2. Suppose that Hi (1 ≤ i ≤ t) is an up Gi−1-chain in G or a
down Gi−1-chain in G. Let Hi := v0B1v1B2v2 . . . vk−1Bkvk. For each 2-connected
Bj there exist uj , wj (both on V (Gi−1) or both on V (Ḡi)) such that Bj − {vj−1, vj}
is a component of G − {vj−1, vj , uj , wj}, and (B+

j , vj−1, uj , vj , wj}) is planar, where

B+
j := G[V (Bj)∪{uj , wj}]−ujwj . We refer to each such B+

j as a planar section in C.

The vertices vj−1, vj , uj , wj are the terminals of B+
j . See Figure 10 for an illustration.

Note that the notation above depends on i. For the sake of clarity we will not make
it explicit in the notation, but whenever we use this we will make clear which i we
refer to. Furthermore, the algorithms we will describe deal with each Hi separately,
and thus no confusion should arise.

Definition 4.3. Suppose that Hi (1 ≤ i ≤ t) is a triangle Gi−1-chain in G. See
Figure 4. Let I(Hi) := {v1, v2, v3}, let V (Hi) − I(Hi) := {x1, x2, x3}, and suppose
that xjvj ∈ E(G) for j = 1, 2, 3. We say that vjxj (j = 1, 2, 3) are the legs of Hi.

Definition 4.4. Let D ⊆ V (G). A numbering of D is a function from D to
{1, . . . , |D|}. Let g be a numbering of D, let v1, . . . , vk be a sequence of distinct vertices
in V (G) −D, and let v0 ∈ D. The extension g′ of g to v1, . . . , vk from v0 is defined
as follows:
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v0

v0
v1

v1
v2

v2

v3

v3

v4

v4
u3

u3

w3

w3r r

B+
3

B+
3

Gi−1 Gi−1

Ḡi
Ḡi

Fig. 10. v2, v3, u3, w3 are the terminals of B+
3 .

(i) for 1 ≤ i ≤ k, let g′(vi) := g(v0) + i;
(ii) for each v ∈ D with g(v) ≤ g(v0) let g′(v) = g(v); and
(iii) for each v ∈ D with g(v) > g(v0) let g′(v) := g(v) + k.

Note that g′ is a numbering of D ∪ {v1, . . . , vk}. For convenience, if D ⊆ V (G)
and σ denotes a sequence v1, . . . , vk of vertices in V (G) − D, we let D ∪ {σ} :=
D ∪ {v1, . . . , vk}.

In order to compute the desired numberings g and f from a nonseparating chain
decomposition, we need to find independent spanning systems in the planar sections
in C.

Assumption 4.5. For each planar section B+
j in C, with terminals vj−1, vj , uj , wj ,

we compute an independent spanning {vj−1, vj , uj , wj}-system of B+
j . By Theo-

rem 3.2, such a system can be computed in O(|V (B+
j )| + |E(B+

j )|) time. Since two
distinct planar sections are edge-disjoint, the overall time consumed in this phase (for
all planar sections in C) is O(|V (G)| + |E(G)|).

Next, we describe the algorithm for computing a numbering g of a subset of V (G).
It also computes a sequence {r} = D0 ⊂ D1 ⊂ · · · ⊂ Dt−1 of subsets of V (G) such
that for i = 1, . . . , t, NG(Hi) ∩ V (Gi−1) ⊆ Di−1. When the algorithm stops, g is a
numbering of Dt−1. We note that keeping track of this sequence is not necessary for
computing g, but its inclusion will make proofs easier in section 6.

Algorithm numbering g.
Description. The algorithm executes t − 1 iterations, where t is the number of

chains in C. At the beginning of the first iteration, we have i = 1, D0 := {r}, and
g(r) := 1. At the beginning of each iteration, we have an integer i with 1 ≤ i ≤ t− 1,
a subset Di−1 ⊆ V (Gi−1) such that NG(Hi) ∩ V (Gi−1) ⊆ Di−1, and a numbering g
of Di−1.

Each iteration consists of the following: update g and define Di according to the
following cases (depending on the type of Hi), and, if i < t − 1, then set i ← i + 1
and start a new iteration.

Case 1. Hi is an elementary Gi−1-chain in G.
Let Hi := v0B1v1B2v2, and assume that v0, v2 are labeled so that g(v0) < g(v2).
Extend g to v1 from v0, and let Di := Di−1 ∪ {v1}.
Case 2. i = 1, or Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain.
Let Hi := v0B1v1 . . . vk−1Bkvk, and suppose that v0, . . . , vk and B1, . . . , Bk are

labeled so that v0 = vk = r when i = 1 and g(v0) < g(vk) when i �= 1. For
each 2-connected Bj , let uj , wj denote the terminals of B+

j other than vj−1, vj . Let

T j
vj−1

, T j
vj

denote the trees rooted, respectively, at vj−1, vj in the independent spanning

{vj−1, vj , uj , wj}-system of B+
j computed in Assumption 4.5.
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Fig. 11. Extending the numbering g to an up Gi−1-chain.
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σ

vertices
added to
Di

Fig. 12. Extending the numbering g to a down Gi−1-chain.

For each j = 1, . . . , k, compute a sequence σj as follows. If Bj is 2-connected,
then let σj be a (T j

vj−1
, T j

vj
)-ordering of NB+

j
({uj , wj}) − {vj−1, vj} (the existence of

this ordering is guaranteed by Lemma 3.5). If Bj is trivial, then let σj denote the
empty sequence.

Extend g to σ := σ1, v1, σ2, v2, . . . , vk−1, σk from v0, and let Di := Di−1 ∪ {σ}.
See Figure 11 for an illustration.

Case 3. Hi is a down Gi−1-chain in G but not an elementary Gi−1-chain.

Let Hi := v0B1v1 . . . vk−1Bkvk. For each 2-connected block Bj let uj , wj denote
the terminals of B+

j other than vj−1, vj with g(uj) < g(wj). Let T j
uj
, T j

wj
denote trees

rooted, respectively, at uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5.

Let Di := Di−1 ∪NB1
(v0) ∪NBk

(vk). See Figure 12 for an illustration. Extend
g according to the following three subcases.

Subcase 3.1. k = 1 (thus, B1 is 2-connected).
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Let σ denote a (T 1
u1
, T 1

w1
)-ordering of NB+

1
({v0, v1}) − {u1, w1} = NB1

(v0) ∪
NBk

(vk) (the existence of this ordering is guaranteed by Lemma 3.5). Extend g
to σ from u1.

Subcase 3.2. k = 2, and B1 or B2 is trivial.
Note that since Hi is not an elementary Gi−1-chain, B1 or B2 is nontrivial.
Assume then (renaming B1 and B2 if necessary) that B1 is 2-connected and B2

is trivial. Extend g according to the following cases.
(i) v1 has no neighbor in V (Gi−1). Let q1, q2, q3 be neighbors of v1 in B1 (they

exist since G is 4-connected), and assume that q1, q2, q3 is (T 1
u1
, T 1

w1
)-ordered

(this is possible by Lemma 3.4). By Lemma 3.7, T 1
u1

[u1, q1], T
1
v0

[v0, q2], and

T 1
w1

[w1, q3] are disjoint. Let H := B+
1 ∪B2 (note that H − {v0, v2, u1, w1} is

a component of G − {v0, v2, u1, w1}). Then (H, v0, u1, v2, w1) is planar, and
{T 1

v0
+{v1, v1q2}, T 1

v1
+{v2, v1v2}, T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3}} forms an

independent spanning {v0, u1, v2, w1}-system of H.
Let σ denote a (T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3})-ordering of NH({v0, v2})−

{u1, w1} (the existence of this ordering is guaranteed by Lemma 3.5). Extend
g to σ from u1.
Comment: we also keep track of q1, q2, q3 for the construction of the indepen-
dent spanning trees.

• v1 has a neighbor in V (Gi−1). Let x ∈ NG(v1)∩V (Gi−1) with g(x) minimum,
and let σ denote a (T 1

u1
, T 1

w1
)-ordering of NB+

1
(v0) − {u1, w1} (the existence

of this ordering is guaranteed by Lemma 3.4). If g(x) > g(u1), then extend
g to σ, v1 from u1, where σ, v1 is the sequence obtained from σ by adding v1

at the end. If g(x) ≤ g(u1), then extend g to v1, σ from x, where v1, σ is the
sequence obtained from σ by adding v1 in the front.

Subcase 3.3. k ≥ 3, or k = 2 and both B1, B2 are 2-connected.
Extend g to NB1

(v0) according to the following cases.
• B1 is 2-connected. Let σ denote a (T 1

u1
, T 1

w1
)-ordering of NB+

1
(v0)−{u1, w1} =

NB1(v0) (the existence of this ordering is guaranteed by Lemma 3.4). Extend
g to σ from u1.

• Both B1 and B2 are trivial. Let x ∈ NG(v1) ∩ V (Gi−1) with g(x) minimum.
Extend g to v1 from x.

• B1 is trivial and B2 is 2-connected.
– If v1 has no neighbor in V (Gi−1), extend g to v1 from u2.
– If v1 has a neighbor in V (Gi−1), let x ∈ NG(v1) ∩ V (Gi−1) with g(x)

minimum. If g(x) > g(u2), then extend g to v1 from u2. If g(x) ≤ g(u2),
then extend g to v1 from x.

Extend (the resulting) g to NBk
(vk) according to the following cases.

• Bk is 2-connected. Let σ be a (T k
uk
, T k

wk
)-ordering of NB+

k
(vk) − {uk, wk} =

NBk
(vk) (the existence of this ordering is guaranteed by Lemma 3.4). Extend

g to σ from uk.
• Both Bk and Bk−1 are trivial. Let x ∈ NG(vk−1) ∩ V (Gi−1) with g(x)

minimum. Extend g to vk−1 from x.
• Bk is trivial and Bk−1 is 2-connected.

– If vk−1 has no neighbor in V (Gi−1), extend g to vk−1 from uk−1.
– If vk−1 has a neighbor in V (Gi−1), let x ∈ NG(vk−1) ∩ V (Gi−1) with

g(x) minimum. If g(x) > g(uk−1), then extend g to vk−1 from uk−1. If
g(x) ≤ g(uk−1), then extend g to vk−1 from x.

Case 4. Hi is a triangle Gi−1-chain in G.
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Let I(Hi) := {v1, v2, v3}, and let vjxj (j = 1, 2, 3) be the legs of Hi. Suppose that
v1, v2, v3 are labeled so that g(x1) < g(x2) < g(x3). Let Di := Di−1 ∪ {v1, v2, v3}.
Extend g to v1, v2, v3 from x2.

This concludes the description of the algorithm for computing g.

Lemma 4.6. Algorithm Numbering g runs in O(|V (G)|3) time.

Proof. Observe that at the ith iteration, Algorithm Numbering g extends the
current numbering gi to a sequence σ from a previously numbered vertex v ∈ Di−1.
Clearly, given gi, σ, and v, this extension can be computed in O(|V (G)|) time. We
now analyze the time spent at each iteration of Algorithm Numbering g according to
Cases 1–4. We use the same notation as in the algorithm.

If Case 1 occurs (Hi is an elementary Gi−1-chain in G), then Algorithm Number-
ing g extends g to v1. This can be done in O(|V (G)|) time.

If Case 2 occurs (Hi is an up Gi−1-chain but not an elementary Gi−1-chain), then
Algorithm Numbering g computes sequences σ1, . . . , σk, where σj denotes the empty
sequence when Bj is trivial, and σj is a (T j

vj−1
, T j

vj
)-ordering of NB+

j
({uj , wj}) −

{vj−1, vj} when Bj is 2-connected. In the latter case, by Lemma 3.5 the sequence σj

can be computed in O(|V (B+
j )|2) time. Thus, the algorithm spends O(|V (G)|2) time

to compute σ1, . . . , σk. After that, the algorithm extends g to v0, σ1, v1, . . . , vk−1, σk, vk,
which can be done in O(|V (G)|) time. Therefore, the algorithm spends O(|V (G)|2)
time if Case 2 occurs.

If Case 3 occurs (Hi is a down Gi−1-chain but not an elementary Gi−1-chain),
then Algorithm Numbering g considers three cases.

• If Subcase 3.1 occurs (k = 1), then the algorithm computes a (T 1
u1
, T 1

w1
)-

ordering σ of NB+
1
({v0, v1}) − {u1, w1} and extends g to σ from u1. The

sequence σ can be computed in O(|V (G)|2) time by Lemma 3.5, and the
extension of g can be computed in O(|V (G)|) time, resulting in O(|V (G)|2)
time for this iteration.

• If Subcase 3.2 occurs (k = 2, and B1 or B2 is trivial), then the algorithm
considers two subcases, according to whether or not v1 has a neighbor in
V (Gi−1).

– If v1 has no neighbor in V (Gi−1), the algorithm chooses neighbors
q1, q2, q3 of v1 in B1 and computes a (T 1

u1
+ {v1, v1q1}, T 1

w1
+ {v1, v1q3})-

ordering σ of NB1(v0) ∪NBk
(vk) = NH({v0, v2}) − {u1, w1} as in Sub-

case 3.1 and extends g to σ from u1. Thus, the algorithm spends
O(|V (G)|2) time in this case.

– If v1 has a neighbor in V (Gi−1), then the algorithm computes a (T 1
u1
, T 1

w1
)-

ordering σ of NB+
1
(v0) − {u1, w1}, and it performs an extension on g.

The sequence σ can be computed in O(|V (G)|) time by Lemma 3.4, and
the extension can be computed in O(|V (G)|) time. Thus, the algorithm
spends O(|V (G)|) time in this case.

• If Subcase 3.3 occurs (k ≥ 3, or k = 2 and both B1, B2 are 2-connected),
then the algorithm extends g to NB1(v0) and extends g to NBk

(vk). The
algorithm may need to compute a (T 1

u1
, T 1

w1
)-ordering of NB+

1
(v0)− {u1, w1}

and a (T k
uk
, T k

wk
)-ordering of NB+

k
(vk) − {uk, wk}, but both can be done in

O(|V (G)|) time by Lemma 3.4. It is not hard to check that the algorithm
spends O(|V (G)|) time in this case.

If Case 4 occurs (Hi is a triangle chain), then Algorithm Numbering g extends g
to v1, v2, v3. This can be done in O(|V (G)|) time.



1038 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

From the analysis above, it follows that Algorithm Numbering g spends O(|V (G)|2)
time in each iteration. Since the number of iterations is t < n → t < |V (G)|, the
numbering g can be computed in O(|V (G)|3) time.

Note that the extension operation does not affect the order of the vertices pre-
viously numbered, although their actual g values may have changed. Thus, at each
iteration the algorithm orders the vertices in Di − Di−1 without affecting the order
of the vertices in Di−1. In fact, it does not affect the order of the vertices in Dj for
every 1 ≤ j ≤ i− 1.

The numbering g will be used to construct two independent spanning trees rooted
at r from C = (H1, . . . , Ht) in order from H1 to Ht. For constructing the other two
spanning trees we compute a numbering f by examining the chains of C in reverse
order.

The algorithm for computing f is analogous to Algorithm Numbering g when it
deals with an up Gi−1-chain or a down Gi−1-chain or elementary Gi−1-chain. The
differences appear when it deals with a triangle Gi−1-chain. The algorithm also
computes a sequence {r} = D′

t+1 ⊂ D′
t ⊂ · · · ⊂ D′

2 of subsets of V (G) such that
for t ≥ i ≥ 1, NG(Hi) ∩ V (Ḡi) ⊆ D′

i+1.
Algorithm numbering f .
Description. The algorithm executes t − 1 iterations, where t is the number of

chains in C′ := (H1, . . . , Ht). At the beginning of the first iteration, we have i = t,
D′

t+1 := {r}, and f(r) := 1. At the beginning of each iteration, we have an integer
i with t ≥ i ≥ 2, a subset D′

i+1 ⊆ V (Ḡi) such that NG(Hi) ∩ V (Ḡi) ⊆ D′
i+1, and a

numbering f of D′
i+1.

Each iteration consists of the following: update f and define D′
i according to the

following cases (depending on the chain type of Hi), and, if i > 2, then set i ← i− 1
and start a new iteration.

Case 1. Hi is an elementary Gi−1-chain in G.
Let Hi := v0B1v1B2v2, and let v′0, v

′
2 be neighbors of v1 in V (Ḡi) with f(v′0) <

f(v′2). Extend f to v1 from v′0, and let D′
i := D′

i+1 ∪ {v1}.
Case 2. i = t, or Hi is a down Gi−1-chain in G but not an elementary Gi−1-chain.
Let Hi := v0B1v1 . . . vk−1Bkvk, and suppose that v0, . . . , vk and B1, . . . , Bk are

labeled so that v0 = vk = r when i = t and f(v0) < f(vk) when i �= t. For
each 2-connected Bj , let uj , wj be the terminals of B+

j other than vj−1, vj . Let

T j
vj−1

, T j
vj

denote the trees rooted, respectively, at vj−1, vj in the independent spanning

{vj−1, vj , uj , wj}-system of B+
j computed in Assumption 4.5.

For each j = 1, . . . , k compute a sequence σj as follows. If Bj is 2-connected, then
let σj be a (T j

vj−1
, T j

vj
)-ordering of NB+

j
({uj , wj}) − {vj−1, vj} (the existence of this

ordering is guaranteed by Lemma 3.5). If Bj is trivial, then let σj denote the empty
sequence.

Extend f to σ := σ1, v1, σ2, v2, . . . , vk−1, σk from v0, and let D′
i := D′

i+1 ∪ {σ}.
See Figure 13 for an illustration.

Case 3. Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain in G.
Let Hi := v0B1v1 . . . vk−1Bkvk. For each 2-connected Bj , let uj , wj denote the

terminals of B+
j other than vj−1, vj , with f(uj) < f(wj). Let T j

uj
, T j

wj
denote the trees

rooted, respectively, at uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5.
Let D′

i := D′
i+1 ∪NB1(v0) ∪NBk

(vk). See Figure 14 for an illustration. Extend
f according to the following three subcases.

Subcase 3.1. k = 1 (thus, B1 is 2-connected).
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Fig. 13. Extending the numbering f to a down Gi−1-chain.
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Fig. 14. Extending the numbering f to an up Gi−1-chain.

Let σ denote a (T 1
u1
, T 1

w1
)-ordering of NB+

1
({v0, v1}) − {u1, w1} = NB1

(v0) ∪
NBk

(vk) (the existence of this ordering is guaranteed by Lemma 3.5). Extend f
to σ from u1.

Subcase 3.2. k = 2, and B1 or B2 is trivial.
Note that since Hi is not an elementary chain, B1 or B2 is nontrivial.
Assume then (renaming B1 and B2 if necessary) that B1 is 2-connected and B2

is trivial. Extend f according to the following cases.
• v1 has no neighbor in V (Ḡi). Let q1, q2, q3 be distinct neighbors of v1 in B1

(they exist since G is 4-connected), and assume that q1, q2, q3 is (T 1
u1
, T 1

w1
)-

ordered (this is possible by Lemma 3.4). By Lemma 3.7, T 1
u1

[u1, q1], T
1
v0

[v0, q2],

and T 1
w1

[w1, q3] are disjoint. Let H := B+
1 ∪B2. Note that H−{v0, v2, u1, w1}

is a component of G−{v0, v2, u1, w1}, (H, v0, u1, v2, w1) is planar, and {T 1
v0

+
{v1, v1q2}, T 1

v1
+{v2, v1v2}, T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3}} is an independent

spanning {v0, v2, u1, w1}-system of H.
Let σ denote a (T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3})-ordering of NH({v0, v2})−

{u1, w1} = NB1(v0) ∪ NBk
(vk) (the existence of this ordering is guaranteed

by Lemma 3.5). Extend f to σ from u1.
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Comment: we also keep track of q1, q2, q3 for the construction of the indepen-
dent spanning trees.

• v1 has a neighbor in V (Ḡi). Let x ∈ NG(v1) ∩ V (Ḡi) with f(x) minimum,
and let σ denote a (T 1

u1
, T 1

w1
)-ordering of NB1(v0) = NB+

1
(v0)−{u1, w1} (the

existence of this ordering is guaranteed by Lemma 3.4). If f(x) > f(u1), then
extend f to σ, v1 from u1. If f(x) ≤ f(u1), then extend f to v1, σ from x.

Subcase 3.3. k ≥ 3, or k = 2 and both B1, B2 are 2-connected.
Extend f to NB1(v0) according to the following cases.
• B1 is 2-connected. Let σ denote a (T 1

u1
, T 1

w1
)-ordering of NB1(v0) = NB+

1
(v0)−

{u1, w1} (the existence of this ordering is guaranteed by Lemma 3.4). Extend
f to σ from u1.

• Both B1 and B2 are trivial. Let x ∈ NG(v1) ∩ V (Ḡi) with f(x) minimum.
Extend f to v1 from x.

• B1 is trivial and B2 is 2-connected.
– If v1 has no neighbor in V (Ḡi), extend f to v1 from u2.
– If v1 has a neighbor in V (Ḡi), let x ∈ NG(v1) ∩ V (Ḡi) with f(x) min-

imum. If f(x) > f(u2), then extend f to v1 from u2. If f(x) ≤ f(u2),
then extend f to v1 from x.

Extend (the resulting) f to NBk
(vk) according to the following cases.

• Bk is 2-connected. Let σ denote a (T k
uk
, T k

wk
)-ordering of NBk

(vk) = NB+
k
(vk)−

{uk, wk} (the existence of this ordering is guaranteed by Lemma 3.4). Extend
f to σ from uk.

• Both Bk and Bk−1 are trivial. Let x ∈ NG(vk−1)∩V (Ḡi) with f(x) minimum.
Extend f to vk−1 from x.

• Bk is trivial and Bk−1 is 2-connected.
– If vk−1 has no neighbor in V (Ḡi), extend f to vk−1 from uk−1.
– If vk−1 has a neighbor in V (Ḡi), let x ∈ NG(vk−1) ∩ V (Ḡi) with f(x)

minimum. If f(x) > f(uk−1), then extend f to vk−1 from uk−1. If
f(x) ≤ f(uk−1), then extend f to vk−1 from x.

Case 4. Hi is a triangle Gi−1-chain in G.
Let I(Hi) := {v1, v2, v3}, let vjxj (j = 1, 2, 3) be the legs of Hi, and let y1, y2, y3 ∈

V (Ḡi) such that y1v1, y2v2, y3v3 ∈ E(G). Assume that v1, v2, v3 are labeled so that
g(x1) < g(x2) < g(x3). Let D′

i := D′
i+1 ∪ {v1, v2, v3}.

• If f(y1) < f(y2) and f(y1) < f(y3), then extend f to v1, v2, v3 from y1.
• If f(y2) < f(y1) and f(y2) < f(y3), then extend f to v2, v1, v3 from y2.
• If f(y3) < f(y1) < f(y2), then extend f to v3 from y3 and extend (the

resulting) f to v1, v2 from y1.
• If f(y3) < f(y2) < f(y1), then extend f to v3 from y3 and extend (the

resulting) f to v2, v1 from y2.
This concludes the description of the algorithm for computing f . The proof of

the next lemma is similar to the proof of Lemma 4.6, and we omit it.
Lemma 4.7. Algorithm Numbering f runs in O(|V (G)|3) time.

5. Construction of spanning trees. We now describe how to use Theorem 3.2
and the two numberings of the last section to produce four independent spanning trees.
This will follow from Algorithm Trees. The proof of its correction and analysis of its
complexity will be given in the next section.

Algorithm trees.

Description. Let G be a 4-connected graph, let r ∈ V (G), and let C = (H1, . . . , Ht)
be a nonseparating chain decomposition of G rooted at r. Let G0 = Ḡt = ({r}, ∅),
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and for 1 ≤ i ≤ t − 1, let Gi := G[
⋃i

j=1 I(Hj)] and Ḡi = G − (V (Gi) − {r}). The
algorithm executes t iterations, where t is the number of chains in C. At the first
iteration, we have i = 1 and T1 = T2 = T3 = T4 = G0. At the beginning of each
iteration, we have an integer i with 1 ≤ i ≤ t, spanning trees T1, T2 in Gi−1 and
spanning forests T3, T4 in Gi−1 − r.

Each iteration consists of the following: update T1, T2, T3, T4 by adding certain
vertices and edges of Hi to T1, T2, T3, T4 according to the following four cases (de-
pending on the type of Hi), and, if i < t, then set i ← i+1 and start a new iteration.
After t iterations, T1, T2, T3, T4 will be independent spanning trees in G rooted at r.

Case 1. Hi is an elementary Gi−1-chain in G.
Let Hi := v0B1v1B2v2 with g(v0) < g(v2). Let v′0, v

′
2 be neighbors of v1 in V (Ḡi)

with f(v′0) < f(v′2).
Set T1 ← T1 + {v1, v0v1}, T2 ← T2 + {v1, v1v2}, T3 ← T3 + {v′0, v1, v

′
0v1}, and

T4 ← T4 + {v′2, v1, v
′
2v1}.

Case 2. i = 1, or Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain
in G.

Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = 1, and g(v0) < g(vk)
when i �= 1.

For each 2-connected block Bj , let uj , wj denote the terminals of B+
j other than

vj−1, vj with f(uj) < f(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5.

Let J := {j : 1 ≤ j ≤ k,Bj is 2-connected}, and let J̄ := {1, . . . , k} − J .
First, set

T1 ← T1 ∪

⎛
⎝ ⋃

j∈J̄−{k}

Bj

⎞
⎠ ∪

⎛
⎝⋃

j∈J

T j
vj−1

⎞
⎠ ,

T2 ← T2 ∪

⎛
⎝ ⋃

j∈J̄−{1}

Bj

⎞
⎠ ∪

⎛
⎝⋃

j∈J

T j
vj

⎞
⎠ ,

T3 ← T3 ∪

⎛
⎝⋃

j∈J

T j
uj

⎞
⎠ , and

T4 ← T4 ∪

⎛
⎝⋃

j∈J

T j
wj

⎞
⎠ .

Now for each j = 1, . . . , k − 1 add vj and edges incident to vj to T1, T2, T3, T4

according to the following cases (at this stage, v0, vk /∈ V (T3 ∪ T4)).
Subcase 2.1. Bj and Bj+1 are trivial.
Let p3, p4 be neighbors of vj in V (Ḡi) with f(p3) minimum (hence f(p3) < f(p4)).
Set T3 ← T3 + {vj , p3, vjp3} and T4 ← T4 + {vj , p4, vjp4}.
Subcase 2.2. Bj is 2-connected and Bj+1 is trivial.
• If vj has no neighbor in V (Ḡi), then let p1, p3, p4 be neighbors of vj in Bj (they

exist since G is 4-connected), and assume that p3, p1, p4 is (T j
uj
, T j

wj
)-ordered

(this is possible by Lemma 3.4). By Lemma 3.7, T j
uj

[uj , p3], T
j
vj−1

[vj−1, p1],
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and T j
wj

[wj , p4] are disjoint. If k = 2, then we also require that p3, p1, p4

be the vertices q1, q2, q3, respectively, chosen in Subcase 3.2 of Algorithm
Numbering f .
Set T1 ← T1 + {vj , vjp1}, T3 ← T3 + {vj , vjp3}, and T4 ← T4 + {vj , vjp4}.

• If vj has a neighbor in V (Ḡi), then let x ∈ NG(vj) ∩ V (Ḡi) with f(x) mini-
mum.

– If f(x) > f(uj), then let p1, p3 be neighbors of vj in Bj such that the
paths T j

vj−1
[vj−1, p1] and T j

uj
[uj , p3] are disjoint (they exist by Lemma

3.6).
Set T1 ← T1+{vj , vjp1}, T3 ← T3+{vj , vjp3}, and T4 ← T4+{vj , x, vjx}.

– If f(x) ≤ f(uj), then let p1, p4 be neighbors of vj in Bj such that the
paths T j

vj−1
[vj−1, p1] and T j

wj
[wj , p4] are disjoint (they exist by Lemma

3.6).
Set T1 ← T1+{vj , vjp1}, T3 ← T3+{vj , x, vjx}, and T4 ← T4+{vj , vjp4}.

Subcase 2.3. Bj is trivial and Bj+1 is 2-connected.
• If vj has no neighbor in V (Ḡi), then let p2, p3, p4 be neighbors of vj in Bj+1

(they exist since G is 4-connected), and assume that p3, p2, p4 is (T j+1
uj+1

, T j+1
wj+1

)-

ordered (this is possible by Lemma 3.4). By Lemma 3.7, T j+1
uj+1

[uj+1, p3],

T j+1
vj+1

[vj+1, p2], and T j+1
wj+1

[wj+1, p4] are disjoint. If k = 2, then we also require
that p3, p2, p4 be the vertices q1, q2, q3, respectively, chosen in Subcase 3.2 of
Algorithm Numbering f .
Set T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and T4 ← T4 + {vj , vjp4}.

• If vj has a neighbor in V (Ḡi), then let x ∈ NG(vj) ∩ V (Ḡi) with f(x) mini-
mum.

– If f(x) > f(uj+1), then let p2, p3 be neighbors of vj in Bj+1 such that
the paths T j+1

vj+1
[vj+1, p2] and T j+1

uj+1
[uj+1, p3] are disjoint (they exist by

Lemma 3.6).
Set T2 ← T2+{vj , vjp2}, T3 ← T3+{vj , vjp3}, and T4 ← T4+{vj , x, vjx}.

– If f(x) ≤ f(uj+1), then let p2, p4 be neighbors of vj in Bj+1 such that
the paths T j+1

vj+1
[vj+1, p2] and T j+1

wj+1
[wj+1, p4] are disjoint (they exist by

Lemma 3.6).
Set T2 ← T2+{vj , vjp2}, T3 ← T3+{vj , x, vjx}, and T4 ← T4+{vj , vjp4}.

Subcase 2.4. Bj and Bj+1 are 2-connected.
Note that f(uj) < f(wj+1) or f(uj+1) < f(wj).
• If f(uj) < f(wj+1), then let p1, p3 be neighbors of vj in Bj such that the

paths T j
vj−1

[vj−1, p1] and T j
uj

[uj , p3] are disjoint (they exist by Lemma 3.6),

and let p2, p4 be neighbors of vj in Bj+1 such that the paths T j+1
vj+1

[vj+1, p2]

and T j+1
wj+1

[wj+1, p4] are disjoint (they exist by Lemma 3.6).
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and
T4 ← T4 + {vj , vjp4}.

• If f(uj) ≥ f(wj+1), then f(uj+1) < f(wj). Let p1, p4 be neighbors of vj in
Bj such that the paths T j

vj−1
[vj−1, p1] and T j

wj
[wj , p4] are disjoint (they exist

by Lemma 3.6), and let p2, p3 be neighbors of vj in Bj+1 such that the paths
T j+1
vj+1

[vj+1, p2] and T j+1
uj+1

[uj+1, p3] are disjoint (they exist by Lemma 3.6).
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and
T4 ← T4 + {vj , vjp4}.

Case 3. i = t, or Hi is a down Gi−1-chain in G.
Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = t, and f(v0) < f(vk)

when i �= t.
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For each 2-connected block Bj , let uj , wj denote the terminals of B+
j other than

vj−1, vj , with g(uj) < g(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5.

Let J := {j : 1 ≤ j ≤ k,Bj is 2-connected}, and let J̄ := {1, . . . , k} − J .
First, set

T1 ← T1 ∪

⎛
⎝⋃

j∈J

T j
uj

⎞
⎠ ,

T2 ← T2 ∪

⎛
⎝⋃

j∈J

T j
wj

⎞
⎠ ,

T3 ← T3 ∪

⎛
⎝ ⋃

j∈J̄−{k}

Bj

⎞
⎠ ∪

⎛
⎝⋃

j∈J

T j
vj−1

⎞
⎠ , and

T4 ← T4 ∪

⎛
⎝ ⋃

j∈J̄−{1}

Bj

⎞
⎠ ∪

⎛
⎝⋃

j∈J

T j
vj

⎞
⎠ .

Now for each j = 1, . . . , k − 1 add vj and edges incident to vj to T1, T2, T3, T4

according to the following cases (at this stage v0, vk /∈ V (T1 ∪ T2).
Subcase 3.1. Bj and Bj+1 are trivial blocks.
Let p1, p2 be neighbors of vj in V (Gi−1) with g(p1) minimum (hence g(p1) <

g(p2)).
Set T1 ← T1 + {vj , vjp1} and T2 ← T2 + {vj , vjp2}.
Subcase 3.2. Bj is 2-connected and Bj+1 is trivial.
• If vj has no neighbor in V (Gi−1), then let p1, p2, p3 be neighbors of vj in Bj

(they exist since G is 4-connected), and assume that p1, p3, p2 is (T j
uj
, T j

wj
)-

ordered (this is possible by Lemma 3.4). By Lemma 3.7, T j
uj

[uj , p1],

T j
vj−1

[vj−1, p3], and T j
wj

[wj , p2] are disjoint. If k = 2, then we also require
that p1, p3, p2 be the vertices q1, q2, q3, respectively, chosen in Subcase 3.2 of
Algorithm Numbering g.
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, and T3 ← T3 + {vj , vjp3}.

• If vj has a neighbor in V (Gi−1), then let x ∈ NG(vj) ∩ V (Gi−1) with g(x)
minimum.

– If g(x) > g(uj), then let p1, p3 be neighbors of vj in Bj such that the
paths T j

uj
[uj , p1] and T j

vj−1
[vj−1, p3] are disjoint (they exist by Lemma

3.6).
Set T1 ← T1 +{vj , vjp1}, T2 ← T2 +{vj , vjx}, and T3 ← T3 +{vj , vjp3}.

– If g(x) ≤ g(uj), then let p2, p3 be neighbors of vj in Bj such that the
paths T j

wj
[wj , p2] and T j

vj−1
[vj−1, p3] are disjoint (they exist by Lemma

3.6).
Set T1 ← T1 +{vj , vjx}, T2 ← T2 +{vj , vjp2}, and T3 ← T3 +{vj , vjp3}.

Subcase 3.3. Bj is trivial and Bj+1 is 2-connected.
• If vj has no neighbor in V (Gi−1), then let p1, p2, p4 be neighbors of vj

in Bj+1 (they exist since G is 4-connected), and assume that p1, p4, p2 is
(T j+1

uj+1
, T j+1

wj+1
)-ordered (this is possible by Lemma 3.4). By Lemma 3.7,

T j+1
uj+1

[uj+1, p1], T
j+1
vj+1

[vj+1, p4], and T j+1
wj+1

[wj+1, p2] are disjoint. If k = 2, then
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we also require that p1, p4, p2 be the vertices q1, q2, q3, respectively, chosen in
Subcase 3.2 of Algorithm Numbering g.
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, and T4 ← T4 + {vj , vjp4}.

• If vj has a neighbor in V (Gi−1), then let x ∈ NG(vj) ∩ V (Gi−1) with g(x)
minimum.

– If g(x) > g(uj+1), then let p1, p4 be neighbors of vj in Bj+1 such that
the paths T j+1

uj+1
[uj+1, p1] and T j+1

vj+1
[vj+1, p4] are disjoint (they exist by

Lemma 3.6).
Set T1 ← T1 +{vj , vjp1}, T2 ← T2 +{vj , vjx}, and T4 ← T4 +{vj , vjp4}.

– If g(x) ≤ g(uj+1), then let p2, p4 be neighbors of vj in Bj+1 such that
the paths T j+1

wj+1
[wj+1, p2] and T j+1

vj+1
[vj+1, p4] are disjoint (they exist by

Lemma 3.6).
Set T1 ← T1 +{vj , vjx}, T2 ← T2 +{vj , vjp2}, and T4 ← T4 +{vj , vjp4}.

Subcase 3.4. Bj and Bj+1 are 2-connected.

Note that g(uj) < g(wj+1) or g(uj+1) < g(wj).

• If g(uj) < g(wj+1), then let p1, p3 be neighbors of vj in Bj such that the
paths T j

uj
[uj , p1] and T j

vj−1
[vj−1, p3] are disjoint (they exist by Lemma 3.6),

and let p2, p4 be neighbors of vj in Bj+1 such that the paths T j+1
wj+1

[wj+1, p2]

and T j+1
vj+1

[vj+1, p4] are disjoint (they exist by Lemma 3.6).
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and
T4 ← T4 + {vj , vjp4}.

• If g(uj) ≥ g(wj+1), then g(uj+1) < g(wj). Let p2, p3 be neighbors of vj in
Bj such that the paths T j

wj
[wj , p2] and T j

vj−1
[vj−1, p3] are disjoint (they exist

by Lemma 3.6), and let p1, p4 be neighbors of vj in Bj+1 such that the paths
T j+1
uj+1

[uj+1, p1] and T j+1
vj+1

[vj+1, p4] are disjoint (they exist by Lemma 3.6).
Set T1 ← T1 + {vj , vjp1}, T2 ← T2 + {vj , vjp2}, T3 ← T3 + {vj , vjp3}, and
T4 ← T4 + {vj , vjp4}.

Case 4. Hi is a triangle Gi−1-chain in G.

Let I(Hi) := {v1, v2, v3}, let vjxj (j = 1, 2, 3) be the legs of Hi, and let y1, y2, y3 ∈
V (Ḡi) such that y1v1, y2v2, y3v3 ∈ E(G). Assume that v1, v2, v3 are labeled so that
g(x1) < g(x2) < g(x3).

Update T1, T2, T3, T4 according to the following four possibilities.

• If f(y1) < f(y2) and f(y1) < f(y3) then set
T1 ← T1+{v1, v2, v3, x1v1, x2v2, v2v3}, T2 ← T2+{v1, v2, v3, x3v3, v3v1, v3v2},
T3 ← T3 +{v1, v2, v3, y1v1, v1v2, v1v3}, T4 ← T4 +{v1, v2, v3, y2v2, v2v1, y3v3}.

• If f(y2) < f(y1) and f(y2) < f(y3) then set
T1 ← T1+{v1, v2, v3, x1v1, x2v2, v1v3}, T2 ← T2+{v1, v2, v3, x3v3, v3v1, v3v2},
T3 ← T3 +{v1, v2, v3, y2v2, v2v1, v2v3}, T4 ← T4 +{v1, v2, v3, y1v1, v1v2, y3v3}.

• If f(y3) < f(y1) < f(y2) then set
T1 ← T1+{v1, v2, v3, x1v1, x2v2, v1v3}, T2 ← T2+{v1, v2, v3, x3v3, v3v1, v3v2},
T3 ← T3 +{v1, v2, v3, y1v1, v1v2, y3v3}, T4 ← T4 +{v1, v2, v3, y2v2, v2v1, v2v3}.

• If f(y3) < f(y2) < f(y1) then set
T1 ← T1+{v1, v2, v3, x1v1, x2v2, v2v3}, T2 ← T2+{v1, v2, v3, x3v3, v3v1, v3v2},
T3 ← T3 +{v1, v2, v3, y2v2, v2v1, y3v3}, T4 ← T4 +{v1, v2, v3, y1v1, v1v2, v1v3}.

6. Correctness of Algorithm Trees. In this section we will prove Theo-
rem 1.1. More precisely, we will show that the subgraphs T1, T2, T3, T4 returned by
Algorithm Trees are independent spanning trees of G rooted at r, and they can be
computed in O(|V (G)|3) time.
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Notation 6.1. Let G be a 4-connected graph, let r ∈ V (G), and let C =
(H1, . . . , Ht) be a nonseparating chain decomposition of G rooted at r. Let G0 = Ḡt =

({r}, ∅), and for 1 ≤ i ≤ t− 1, let Gi := G[
⋃i

j=1 I(Hj)] and Ḡi = G− (V (Gi)− {r}).
Let T1, T2, T3, T4 denote the subgraphs returned by Algorithm Trees. Let D,D′ denote
the sets of vertices returned by Algorithm Numbering g and Algorithm Numbering
f , respectively.

We start with a series of seven simple lemmas which follow from the cases of Algo-
rithm Trees. The first lemma follows immediately by inspecting Case 1 of Algorithm
Trees.

Lemma 6.2. Let Hi := v0B1v1B2v2 be an elementary Gi−1-chain in G, with
g(v0) < g(v2). Then v1 has neighbors v′0, v

′
2 in V (Ḡi), with f(v′0) < f(v′2), such that

(1) E(T1 ∩Hi) = {v0v1} and E(T2 ∩Hi) = {v1v2}, and
(2) E(T3 ∩H ′

i) = {v′0v1} and E(T4 ∩H ′
i) = {v1v

′
2}, where H ′

i = v′0B
′
1v1B

′
2v

′
2 is

an elementary Ḡi-chain in G.

The next lemma follows by inspecting Case 2 (for i = 1) of Algorithm Trees.

Lemma 6.3. Let H1 := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r, and for each 2-
connected Bj, let uj , wj denote the terminals of B+

j other than vj−1, vj, with f(uj) <

f(wj). Let H+
1 be the graph obtained from H1 by adding NG(H1 − r) − {r} and the

edges of G from V (H1) to NG(H1 − r) − {r}. Then

(1) T1 ∩H1 is a spanning tree of H1 rooted at r and contains no edge from r to
NBk

(r),
(2) T2 ∩H1 is a spanning tree of H1 rooted at r and contains no edge from r to

NB1(r),
(3) T3∩(H+

1 −r) is a spanning forest of H+
1 −r, and each component of T3∩(H+

1 −
r) either is a tree in B+

j −wj rooted at uj for some j ∈ {1, . . . , k} or is induced

by a single edge with one end in V (Ḡ1) and the other in {v1, . . . , vk−1}, and
(4) T4∩(H+

1 −r) is a spanning forest of H+
1 −r, and each component of T4∩(H+

1 −
r) either is a tree in B+

j −uj rooted at wj for some j ∈ {1, . . . , k} or is induced

by a single edge with one end in V (Ḡ1) and the other in {v1, . . . , vk−1}.
By inspecting Case 2 (for i �= 1) of Algorithms Trees, we have the following

lemma.

Lemma 6.4. Let Hi := v0B1v1 . . . vk−1Bkvk be an up Gi−1-chain in
G (2 ≤ i ≤ t − 1), with g(v0) < g(vk), and for each 2-connected block Bj, let uj , wj

denote the terminals of B+
j other than vj−1, vj, with f(uj) < f(wj). Let H+

i be the
graph obtained from Hi by adding NG(Hi − {v0, vk}) − {v0, vk} and the edges of G
from V (Hi) to NG(Hi − {v0, vk}) − {v0, vk}. Then

(1) T1 ∩ (Hi − vk) is a spanning tree of Hi − vk rooted at v0, and T1 contains no
edge from vk to NBk

(vk),
(2) T2 ∩ (Hi − v0) is a spanning tree of Hi − v0 rooted at vk, and T2 contains no

edge from v0 to NB1
(v0),

(3) T3∩(H+
i −{v0, vk}) is a spanning forest of H+

i −{v0, vk}, and each component
of T3 ∩ (H+

i − {v0, vk}) either is a tree in B+
j − wj rooted at uj for some

j ∈ {1, . . . , k} or is induced by a single edge with one end in V (Ḡi) and the
other in {v1, . . . , vk−1}, and

(4) T4∩(H+
i −{v0, vk}) is a spanning forest of H+

i −{v0, vk}, and each component
of T4 ∩ (H+

i − {v0, vk}) either is a tree in B+
j − uj rooted at wj for some

j ∈ {1, . . . , k} or is induced by a single edge with one end in V (Ḡi) and the
other in {v1, . . . , vk−1}.
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By a simple inspection of Case 3 (for i = t) of Algorithm Trees, we have the
following lemma.

Lemma 6.5. Let Ht := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r, and for each 2-
connected Bj, let uj , wj denote the terminals of B+

j other than vj−1, vj, with g(uj) <

g(wj). Let H+
t be the graph obtained from Ht by adding NG(Ht − r) − {r} and the

edges of G from V (Ht) to NG(Ht − r) − {r}. Then

(1) T1 ∩ (H+
t − r) is a spanning forest of H+

t − r, and each component of T1 ∩
(H+

t − r) either is a tree in B+
j − wj rooted at uj for some j ∈ {1, . . . , k}

or is induced by a single edge with one end in V (Gt−1) and the other in
{v1, . . . , vk−1},

(2) T2 ∩ (H+
t − r) is a spanning forest of H+

t − r, and each component of T2 ∩
(H+

t − r) either is a tree in B+
j − uj rooted at wj for some j ∈ {1, . . . , k}

or is induced by a single edge with one end in V (Gt−1) and the other in
{v1, . . . , vk−1},

(3) T3 ∩Ht is a spanning tree of Ht rooted at r and contains no edge from r to
NBk

(r), and
(4) T4 ∩Ht is a spanning tree of Ht rooted at r and contains no edge from r to

NB1(r).

The next lemma follows from a simple inspection of Case 3 (for i �= t) of Algorithm
Trees.

Lemma 6.6. Let Hi := v0B1v1 . . . vk−1Bkvk be a down Gi−1-chain in
G (2 ≤ i ≤ t − 1), with f(v0) < f(vk), and for each 2-connected block Bj, let uj , wj

denote the terminals of B+
j other than vj−1, vj, with g(uj) < g(wj). Let H+

i be the
graph obtained from Hi by adding NG(Hi − {v0, vk}) − {v0, vk} and the edges of G
from V (Hi) to NG(Hi − {v0, vk}) − {v0, vk}. Then

(1) T1∩(H+
i −{v0, vk}) is a spanning forest of H+

i −{v0, vk}, and each component
of T1 ∩ (H+

i − {v0, vk}) either is a tree in B+
j − wj rooted at uj for some

j ∈ {1, . . . , k} or is induced by a single edge with one end in V (Gi−1) and the
other in {v1, . . . , vk−1},

(2) T2∩(H+
i −{v0, vk}) is a spanning forest of H+

i −{v0, vk}, and each component
of T2 ∩ (H+

i − {v0, vk}) either is a tree in B+
j − uj rooted at wj for some

j ∈ {1, . . . , k} or is induced by a single edge with one end in V (Gi−1) and the
other in {v1, . . . , vk−1},

(3) T3 ∩ (Hi − vk) is a spanning tree of Hi − vk rooted at v0, and T3 contains no
edge from vk to NBk

(vk), and
(4) T4 ∩ (Hi − v0) is a spanning tree of Hi − v0 rooted at vk, and T4 contains no

edge from v0 to NB1(v0).

Finally, by a simple inspection of Case 4 of Algorithm Trees, we have the following
lemma.

Lemma 6.7. Let Hi be a triangle Gi−1-chain in G (2 ≤ i ≤ t − 1). Let
I(Hi) := {v1, v2, v3}, let y1, y2, y3 ∈ V (Ḡi) such that y1v1, y2v2, y3v3 ∈ E(G), and
let vjxj (j = 1, 2, 3) be the legs of Hi, with g(x1) < g(x2) < g(x3). Let H+

i :=
Hi + {y1, y2, y3, y1v1, y2v2, y3v3}.

• If f(y1) < f(y2) and f(y1) < f(y3), then
E(T1 ∩H+

i ) = {x1v1, x2v2, v2v3}, E(T2 ∩H+
i ) = {x3v3, v3v1, v3v2},

E(T3 ∩H+
i ) = {y1v1, v1v2, v1v3}, and E(T4 ∩H+

i ) = {y2v2, v2v1, y3v3}.
• If f(y2) < f(y1) and f(y2) < f(y3), then
E(T1 ∩H+

i ) = {x1v1, x2v2, v1v3}, E(T2 ∩H+
i ) = {x3v3, v3v1, v3v2},

E(T3 ∩H+
i ) = {y2v2, v2v1, v2v3}, and E(T4 ∩H+

i ) = {y1v1, v1v2, y3v3}.
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• If f(y3) < f(y1) < f(y2), then
E(T1 ∩H+

i ) = {x1v1, x2v2, v1v3}, E(T2 ∩H+
i ) = {x3v3, v3v1, v3v2},

E(T3 ∩H+
i ) = {y1v1, v1v2, y3v3}, and E(T4 ∩H+

i ) = {y2v2, v2v1, v2v3}.
• If f(y3) < f(y2) < f(y1), then
E(T1 ∩H+

i ) = {x1v1, x2v2, v2v3}, E(T2 ∩H+
i ) = {x3v3, v3v1, v3v2},

E(T3 ∩H+
i ) = {y2v2, v2v1, y3v3}, and E(T4 ∩H+

i ) = {y1v1, v1v2, v1v3}.
We can now show that T1, T2, T3, and T4 are spanning trees of G.
Lemma 6.8. For every i = 1, . . . , t, T1 ∩Gi and T2 ∩Gi are spanning trees of Gi.
Proof. Note that every v ∈ V (G) − {r} is an internal vertex of some chain Hi in

C. The result follows by induction on i with the help of (1) of Lemma 6.2, (1) and
(2) of Lemma 6.3, (1) and (2) of Lemma 6.4, (1) and (2) of Lemma 6.5, (1) and (2)
of Lemma 6.6, and Lemma 6.7.

Lemma 6.9. For every i = t, . . . , 1, T3 ∩ Ḡi and T4 ∩ Ḡi are spanning trees of Ḡi.
Proof. The result follows by induction on t− i with the help of (2) of Lemma 6.2,

(3) and (4) of Lemma 6.3, (3) and (4) of Lemma 6.4, (3) and (4) of Lemma 6.5, (3)
and (4) of Lemma 6.6, and Lemma 6.7.

Lemmas 6.8 and 6.9 imply the following.
Corollary 6.10. T1, T2, T3, T4 are spanning trees of G.
Now we proceed to show that T1, T2, T3, T4 are independent spanning trees of G

rooted at r. The proof consists of several lemmas.
Lemma 6.11. For any 1 ≤ i ≤ t and for any v ∈ I(Hi)−{r}, there exist vertices

z1, z2, z3, z4 such that
(1) z1, z2 ∈ V (Gi−1), and either z1 = z2 = r or g(z1) < g(z2) (and g(z1) <

g(v) < g(z2) if v ∈ D),
(2) z3, z4 ∈ V (Ḡi), and either z3 = z4 = r or f(z3) < f(z4) (and f(z3) < f(v) <

f(z4) if v ∈ D′), and
(3) Ti[zi, v], i = 1, 2, 3, 4, are internally disjoint paths in G, and V (Ti[zi, v])−zi ⊆

I(Hi).
Proof. Let 1 ≤ i ≤ t and v ∈ I(Hi)−{r}. We consider the four cases of Algorithm

Trees.
Case 1. Hi is an elementary Gi−1-chain in G.
In this case, 2 ≤ i ≤ t−1. Let Hi := v0B1v1B2v2, with g(v0) < g(v2). This is the

same as in Case 1 of Algorithm Trees. Then v0, v2 ∈ V (Gi−1), v = v1, and by Case 1
of Algorithm Numbering g, we have g(v0) < g(v1) < g(v2). By Lemma 6.2, there exist
v′0, v

′
2 ∈ V (Ḡi), with f(v′0) < f(v′2), such that v0v ∈ E(T1), v2v ∈ E(T2), v

′
0v ∈ E(T3),

and v′2v ∈ E(T4). By Case 1 of Algorithm Numbering f , f(v′0) < f(v1) < f(v′2).
Thus, the result follows by taking z1 := v0, z2 := v2, z3 := v′0, and z4 := v′2.

Case 2. i = 1, or Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain.
Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = 1, and g(v0) < g(vk)

when i �= 1. For each 2-connected Bj , let uj , wj denote the terminals of B+
j other

than vj−1, vj , with f(uj) < f(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5. This is the same as in Case 2 of Algorithm Trees.
Let j ∈ {1, . . . , k − 1}. If i = 1, then by (1) and (2) of Lemma 6.3, T1[r, vj ] ⊆⋃j

l=1 Bl and T2[r, vj ] ⊆
⋃k

l=j+1 Bl. If i �= 1, then vj is a cut vertex of Hi, and hence,

by (1) and (2) of Lemma 6.4, T1[v0, vj ] ⊆
⋃j

l=1 Bl and T2[vk, vj ] ⊆
⋃k

l=j+1 Bl.
First, let us consider the case when v �= vj for j = 1, . . . , k − 1. Thus, there

exists some j, 1 ≤ j ≤ k, such that Bj is 2-connected and v ∈ V (Bj) − {vj−1, vj}.
By Case 2 of Algorithm Numbering g, we know that g(v0) ≤ g(vj−1) < g(vj) ≤
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g(vk), and if v ∈ D, then g(v0) ≤ g(vj−1) < g(v) < g(vj) ≤ g(vk). Further-
more, T j

vj−1
[vj−1, v], T

j
vj

[vj , v], T
j
uj

[uj , v], and T j
wj

[wj , v] are internally disjoint, be-

cause {T j
vj−1

, T j
vj
, T j

uj
, T j

wj
} is an independent spanning {vj−1, vj , uj , wj}-system of

B+
j . By the construction in Case 2 of Algorithm Trees, T1[vj−1, v] = T j

vj−1
[vj−1, v],

T2[vj , v] = T j
vj

[vj , v], T3[uj , v] = T j
uj

[uj , v], and T4[wj , v] = T j
wj

[wj , v]. By Case
3 of Algorithm Numbering f , if v ∈ D′, then f(uj) < f(v) < f(wj). Moreover,

T1[v0, vj−1] ⊆
⋃j−1

l=1 Bl and T2[vk, vj ] ⊆
⋃k

l=j+1 Bl. Let z1 := v0, z2 := vk, z3 := uj ,
and z4 := wj . Clearly, (1)–(3) hold.

So assume that v = vj for some j, 1 ≤ j ≤ k−1. Let z1 := v0 and z2 := vk. Then
by Case 2 of Algorithm Numbering g, g(z1) < g(v) < g(z2). We will define z3 and z4

and prove that (1)–(3) hold. We do this by analyzing how Algorithm Trees chooses
the neighbors p3, p4 of vj in the trees T3, T4, respectively.

Subcase 2.1. Bj and Bj+1 are trivial (Subcase 2.1 in Algorithm Trees).
Then Algorithm Trees chooses neighbors p3, p4 of vj in V (Ḡi) with f(p3) minimum

(and hence f(p3) < f(p4)). If vj ∈ D′, then by Case 3 of Algorithm Numbering f , we
have f(p3) < f(vj) < f(p4). Let z3 := p3 and z4 := p4. Clearly, (1)–(3) hold.

Subcase 2.2. Bj is 2-connected and Bj+1 is trivial (Subcase 2.2 in Algorithm
Trees).

• If vj has no neighbor in V (Ḡi), then Algorithm Trees chooses three neighbors
p1, p3, p4 of vj in Bj such that T j

vj−1
[vj−1, p1], T j

uj
[uj , p3], and T j

wj
[wj , p4]

are disjoint. By construction, T1[vj−1, vj ] = T j
vj−1

[vj−1, p1] + {vj , vjp1},
T3[uj , vj ] = T j

uj
[uj , p3] + {vj , vjp3}, and T4[wj , vj ] = T j

wj
[wj , p4] + {vj , vjp4}.

Moreover, T1[v0, vj−1] ⊆
⋃j−1

l=1 Bl and T2[vk, vj ] ⊆
⋃k

l=j+1 Bl. Therefore,
T1[v0, vj ], T2[vk, vj ], T3[uj , vj ], and T4[wj , vj ] are internally disjoint. If vj ∈
D′, then by Case 3 of Algorithm Numbering f , we have j = k − 1 and
f(uj) < f(v) < f(wj). Let z3 := uj and z4 := wj . Clearly, (1)–(3) hold.

• If vj has a neighbor in V (Ḡi), then Algorithm Trees chooses a vertex x ∈
NG(vj) ∩ V (Ḡi) with f(x) minimum.

– If f(x) > f(uj), then the algorithm chooses neighbors p1, p3 of vj in
Bj such that T j

vj−1
[vj−1, p1] and T j

uj
[uj , p3] are disjoint. By construc-

tion, T1[vj−1, vj ] = T j
vj−1

[vj−1, p1] + {vj , vjp1}, T3[uj , vj ] = T j
uj

[uj , p3] +
{vj , vjp3}, and T4[x, vj ] is induced by the edge xvj . Moreover, T1[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T2[vk, vj ] ⊆
⋃k

l=j+1 Bl. Therefore, T1[v0, vj ], T2[vk, vj ],
T3[uj , vj ], and T4[x, vj ] are internally disjoint. If vj ∈ D′, then by Case 3
of Algorithm Numbering f , we have f(uj) < f(v) < f(x). Let z3 := uj

and z4 := x. Clearly, (1)–(3) hold.
– If f(x) ≤ f(uj), then Algorithm Trees chooses neighbors p1, p4 of vj in

Bj such that T j
vj−1

[vj−1, p1] and T j
wj

[wj , p4] are disjoint. By construc-

tion, T1[vj−1, vj ] = T j
vj−1

[vj−1, p1]+{vj , vjp1}, T4[wj , vj ] = T j
wj

[wj , p4]+
{vj , vjp4}, and T3[x, vj ] is induced by the edge xvj . Moreover, T1[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T2[vk, vj ] ⊆
⋃k

l=j+1 Bl. Therefore, T1[v0, vj ], T2[vk, vj ],
T3[x, vj ], and T4[wj , vj ] are internally disjoint. If vj ∈ D′, then by Case
3 of Algorithm Numbering f , we have f(x) < f(v) < f(wj). Let z3 := x
and z4 := wj . Clearly, (1)–(3) hold.

Subcase 2.3. Bj is trivial and Bj+1 is 2-connected (Subcase 2.3 in Algorithm
Trees).

In this case, if vj ∈ D′, then j = 1 by Case 3 of Algorithm Numbering f . The
arguments for the proof are similar to Subcase 2.2, and we indicate only the choice of
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z3 and z4. In each case below, one can show that (1)–(3) hold for the corresponding
choice of z3, z4.

• If vj has no neighbor in V (Ḡi), then let z3 := uj+1 and z4 := wj+1.
• If vj has a neighbor in V (Ḡi), then Algorithm Trees chooses a vertex x ∈
NG(vj) ∩ V (Ḡi) with f(x) minimum.

– If f(x) > f(uj+1), then let z3 := uj+1 and z4 := x.
– If f(x) ≤ f(uj+1), then let z3 := x and z4 := wj+1.

Subcase 2.4. Both Bj and Bj+1 are 2-connected (Subcase 2.4 in Algorithm Trees).
Since G is 4-connected and (B+

j , vj−1, uj , vj , wj) and (B+
j+1, vj , uj+1, vj+1, wj+1)

are both planar, vj /∈ NBj (vj−1)∪NBj+1(vj+1). Hence, vj /∈ D′ by Case 3 of Algorithm
Numbering f . Note that f(uj) < f(wj+1) or f(uj+1) < f(wj).

• If f(uj) < f(wj+1), then Algorithm Trees chooses neighbors p1, p3 of vj in Bj

such that T j
vj−1

[vj−1, p1], T
j
uj

[uj , p3] are disjoint and neighbors p2, p4 of vj in

Bj+1 such that T j
vj+1

[vj+1, p2], T
j
wj+1

[wj+1, p4] are disjoint. By construction,

T1[vj−1, vj ] = T j
vj−1

[vj−1, p1]+{vj , vjp1}, T3[uj , vj ] = T j
uj

[uj , p3]+{vj , vjp3},
T2[vj+1, vj ] = T j+1

vj+1
[vj+1, p2]+{vj , vjp2}, and T4[wj+1, vj ] = T j+1

wj+1
[wj+1, p4]+

{vj , vjp4}. Moreover, T1[v0, vj−1] ⊆
⋃j−1

l=1 Bl and T2[vk, vj+1] ⊆
⋃k

l=j+2 Bl.
Thus, T1[v0, vj ], T2[vk, vj ], T3[uj , vj ], and T4[wj+1, vj ] are internally disjoint.
Let z3 := uj and z4 := wj+1. Clearly, (1)–(3) hold.

• If f(uj) ≥ f(wj+1), then f(uj+1) < f(wj), and Algorithm Trees chooses
neighbors p1, p4 of vj in Bj such that T j

vj−1
[vj−1, p1] and T j

wj
[wj , p4] are

disjoint and neighbors p2, p3 of vj in Bj+1 such that T j+1
vj+1

[vj+1, p2] and

T j+1
uj+1

[uj+1, p3] are disjoint. Let z3 := uj+1 and z4 := wj . One can show as
in the above paragraph that T1[v0, vj ], T2[vk, vj ], T3[uj+1, vj ], and T4[wj , vj ]
are internally disjoint and (1)–(3) hold.

Case 3. i = t, or Hi is a down Gi−1-chain in G but not an elementary Gi−1-chain.
Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = t, and f(v0) < f(vk)

when i �= t. For each 2-connected Bj , let uj , wj denote the terminals of B+
j other

than vj−1, vj , with g(uj) < g(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5. This is the same as in Case 3 of Algorithm Trees.
Let j ∈ {1, . . . , k − 1}. If i = t, then by (3) and (4) of Lemma 6.5, T3[v0, vj ] ⊆⋃j

l=1 Bl and T4[vk, vj ] ⊆
⋃k

l=j+1 Bl. If i �= t, then vj is a cut vertex of Hi, and hence,

by (3) and (4) of Lemma 6.6, T3[v0, vj ] ⊆
⋃j

l=1 Bl and T4[vk, vj ] ⊆
⋃k

l=j+1 Bl.
First, let us consider the case when v �= vj for j = 1, . . . , k − 1. Thus, there

exists some j, 1 ≤ j ≤ k, such that Bj is 2-connected and v ∈ V (Bj) − {vj−1, vj}.
By Case 2 of Algorithm Numbering f , we know that f(v0) ≤ f(vj−1) < f(vj) ≤
f(vk), and if vj ∈ D′, then f(v0) ≤ f(vj−1) < f(v) < f(vj) ≤ f(vk). Further-
more, T j

vj−1
[vj−1, v], T

j
vj

[vj , v], T
j
uj

[uj , v], and T j
wj

[wj , v] are internally disjoint because

{T j
vj−1

, T j
vj
, T j

uj
, T j

wj
} is an independent spanning {vj−1, vj , uj , wj}-system of B+

j . By

the construction in Case 3 of Algorithm Trees, T1[uj , v] = T j
uj

[uj , v], T2[wj , v] =

T j
wj

[wj , v], T3[vj−1, v] = T j
vj−1

[vj−1, v], and T4[vj , v] = T j
vj

[vj , v]. Moreover, T3[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T4[vk, vj ] ⊆
⋃k

l=j+1 Bl. Let z1 := uj , z2 := wj , z3 := v0, and z4 := vk.
Clearly, (1)–(3) hold.

So assume that v = vj for some j, 1 ≤ j ≤ k − 1. Let z3 := v0 and z4 := vk. By
Case 2 of Algorithm Numbering f , we have f(z2) < f(v) < f(z4). We will define z1

and z2 and prove that (1)–(3) hold. We do this by analyzing how Algorithm Trees
chooses the neighbors p1, p2 of vj in the trees T1, T2, respectively.
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Subcase 3.1. Bj and Bj+1 are trivial (Subcase 3.1 in Algorithm Trees).
Then Algorithm Trees chooses neighbors p1, p2 of vj in V (Gi−1) with g(p1) min-

imum (and so g(p1) < g(p2)). By Subcase 3.3 of Algorithm Numbering g, we have
g(p1) < g(v) < g(p2). Let z1 := p1 and z2 := p2. Clearly, (1)–(3) hold.

Subcase 3.2. Bj is 2-connected and Bj+1 is trivial (Subcase 3.2 in Algorithm
Trees).

• If vj has no neighbor in V (Gi−1), then Algorithm Trees chooses three neigh-
bors p1, p2, p3 of vj in Bj such that T j

uj
[uj , p1], T

j
wj

[wj , p2], and T j
vj−1

[vj−1, p3]

are disjoint. By construction, T1[uj , vj ] = T j
uj

[uj , p1]+{vj , vjp1}, T2[wj , vj ] =

T j
wj

[wj , p2]+ {vj , vjp2}, and T3[vj−1, vj ] = T j
vj−1

[vj−1, p3]+ {vj , vjp3}. More-

over, T3[v0, vj−1] ⊆
⋃j−1

l=1 Bl and T4[vk, vj ] ⊆
⋃k

l=j+1 Bl. Therefore, T1[uj , vj ],
T2[wj , vj ], T3[v0, vj ], and T4[vk, vj ] are internally disjoint. In this case, if
vj ∈ D, then by Case 3 of Algorithm Numbering g, we have j = k − 1 and
g(uj) < g(v) < g(wj). Let z1 := uj and z2 := wj . Clearly, (1)–(3) hold.

• If vj has a neighbor in V (Gi−1), then Algorithm Trees chooses a vertex x ∈
NG(vj) ∩ V (Gi−1) with g(x) minimum.

– If g(x) > g(uj), then the algorithm chooses neighbors p1, p3 of vj in
Bj such that T j

uj
[uj , p1] and T j

vj−1
[vj−1, p3] are disjoint. By construc-

tion, T1[uj , vj ] = T j
uj

[uj , p1] + {vj , vjp1}, T3[vj−1, vj ] = T j
vj−1

[vj−1, p3] +
{vj , vjp3}, and T2[x, vj ] is induced by the edge xvj . Moreover, T3[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T4[vk, vj ] ⊆
⋃k

l=j+1 Bl. Therefore, T1[uj , vj ], T2[x, vj ],
T3[v0, vj ], and T4[vk, vj ] are internally disjoint. If vj ∈ D, then by Case
3 of Algorithm Numbering g, we have j = k−1 and g(uj) < g(v) < g(x).
Let z1 := uj and z4 := x. Clearly, (1)–(3) hold.

– If g(x) ≤ g(uj), then Algorithm Trees chooses neighbors p2, p3 of vj in
Bj such that T j

wj
[wj , p2] and T j

vj−1
[vj−1, p3] are disjoint. By construc-

tion, T2[wj , vj ] = T j
wj

[wj , p2]+{vj , vjp2}, T3[vj−1, vj ] = T j
vj−1

[vj−1, p3]+
{vj , vjp3}, and T1[x, vj ] is induced by the edge xvj . Moreover, T3[v0, vj−1]

⊆
⋃j−1

l=1 Bl and T4[vk, vj ] ⊆
⋃k

l=j+1 Bl. Therefore, T1[x, vj ], T2[wj , vj ],
T3[v0, vj ], and T4[vk, vj ], are internally disjoint. If vj ∈ D, then by Case
3 of Algorithm Numbering g, we have j = k−1 and g(x) < g(v) < g(wj).
Let z1 := x and z2 := wj . Clearly, (1)–(3) hold.

Subcase 3.3. Bj is trivial and Bj+1 is 2-connected (Subcase 3.3 in Algorithm
Trees).

In this case, if vj ∈ D, then j = 1 by Case 3 of Algorithm Numbering g. The
arguments for this case are similar to Subcase 3.2, and we indicate only the choice of
z1 and z2. In each case below, one can show that (1)–(3) hold for the corresponding
choice of z1, z2.

• If vj has no neighbor in V (Gi−1), then let z1 := uj+1 and z2 := wj+1.
• If vj has a neighbor in V (Gi−1), then Algorithm Trees chooses a vertex x ∈
NG(vj) ∩ V (Gi−1) with g(x) minimum.

– If g(x) > g(uj+1), then let z1 := uj+1 and z2 := x.
– If g(x) ≤ g(uj+1), then let z1 := x and z2 := wj+1.

Subcase 3.4. Bj and Bj+1 are 2-connected (Subcase 3.4 in Algorithm Trees).
Since G is 4-connected and (B+

j , vj−1, uj , vj , wj) and (B+
j+1, vj , uj+1, vj+1, wj+1)

are both planar, vj /∈ NBj (vj−1) ∪NBj+1(vj+1). So by Case 3 of Algorithm Number-
ing g, vj /∈ D. Note that g(uj) < g(wj+1) or g(uj+1) < g(wj).

• If g(uj) < g(wj+1), then Algorithm Trees chooses neighbors p1, p3 of vj
in Bj such that T j

uj
[uj , p1] and T j

vj−1
[vj−1, p3] are disjoint and neighbors



FINDING FOUR INDEPENDENT TREES 1051

p2, p4 of vj in Bj+1 such that T j+1
wj+1

[wj+1, p2] and T j+1
vj+1

[vj+1, p4] are dis-

joint. By construction, T1[uj , vj ] = T j
uj

[uj , p1] + {vj , vjp1}, T3[vj−1, vj ] =

T j
vj−1

[vj−1, p3] + {vj , vjp3}, T2[wj+1, vj ] = T j+1
wj+1

[wj+1, p2] + {vj , vjp2}, and

T4[vj+1, vj ] = T j+1
vj+1

[vj+1, p4] + {vj , vjp4}. Moreover, T3[v0, vj−1] ⊆
⋃j−1

l=1 Bl

and T4[vk, vj+1] ⊆
⋃k

l=j+2 Bl. Thus, T1[uj , vj ], T2[wj+1, vj ], T3[v0, vj ], and
T4[vk, vj ] are internally disjoint. Let z1 := uj and z2 := wj+1. Clearly,
(1)–(3) hold.

• If g(uj) ≥ g(wj+1), then g(uj+1) < g(wj), and Algorithm Trees chooses neigh-
bors p2, p3 of vj in Bj such that T j

wj
[wj , p2] and T j

vj−1
[vj−1, p3] are disjoint

and neighbors p1, p4 of vj in Bj+1 such that T j+1
uj+1

[uj+1, p1] and T j+1
vj+1

[vj+1, p4]
are disjoint. Let z1 := uj+1 and z2 := wj . One can show as in the above
paragraph that T1[uj+1, vj ], T2[wj , vj ], T3[v0, vj ], and T4[vk, vj ] are internally
disjoint and (1)–(3) hold.

Case 4. Hi is a triangle Gi−1-chain in G.
Let I(Hi) := {v1, v2, v3}, let y1, y2, y3 ∈ V (Ḡi) such that y1v1, y2v2, y3v3 ∈ E(G),

and let vjxj (j = 1, 2, 3) be the legs of Hi. Assume that v1, v2, v3 are labeled so that
g(x1) < g(x2) < g(x3).

The proof can be done by inspecting a small number of cases (Case 4 in Algorithm
Trees) and using Lemma 6.7 and Case 4 of Algorithm Numbering g and Algorithm
Numbering f . For the sake of completeness, we list for each case the choice for
z1, z2, z3, and z4. The verification that they satisfy (1)–(3) is straightforward, and we
omit it.

• If f(y1) < f(y2) and f(y1) < f(y3), then let z2 := x3 and z3 := y1.
If v = v1, then let z1 := x1 and z4 := y2.
If v = v2, then let z1 := x2 and z4 := y2.
If v = v3, then let z1 := x2 and z4 := y3.

• If f(y2) < f(y1) and f(y2) < f(y3), then let z2 := x3 and z3 := y2.
If v = v1, then let z1 := x1 and z4 := y1.
If v = v2, then let z1 := x2 and z4 := y1.
If v = v3, then let z1 := x1 and z4 := y3.

• If f(y3) < f(y1) < f(y2), then let z2 := x3 and z4 := y2.
If v = v1, then let z1 := x1 and z3 := y1.
If v = v2, then let z1 := x2 and z3 := y1.
If v = v3, then let z1 := x1 and z3 := y3.

• If f(y3) < f(y2) < f(y1), then let z2 := x3 and z4 := y1.
If v = v1, then let z1 := x1 and z3 := y2.
If v = v2, then let z1 := x2 and z3 := y2.
If v = v3, then let z1 := x2 and z3 := y3.

This completes the proof of Lemma 6.11.
Lemma 6.12. Let i ∈ {1, . . . , t − 1}. Then for any u, v ∈ Di, with g(u) < g(v),

T1[r, u] and T2[r, v] are internally disjoint paths in Gi.
Proof. We will prove the lemma by induction on i. The basis of induction is i = 0

with D0 := {r} and G0 := ({r}, ∅). So assume that i > 0 and the lemma holds for
i− 1. We consider the four cases of Algorithm Numbering g.

Case 1. Hi is an elementary Gi−1-chain in G.
Let Hi := v0B1v1B2v2, with g(v0) < g(v2). By (1) of Lemma 6.2, E(T1 ∩Hi) =

{v0v1} and E(T2 ∩Hi) = {v1v2}. Recall that Di = Di−1 ∪ {v1}.
If u, v ∈ Di−1 and g(u) < g(v), then by the induction hypothesis, T1[r, u] and

T2[r, v] are internally disjoint paths in Gi−1. Thus, it suffices to prove the following:



1052 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

for any u, v ∈ Di, with g(u) < g(v) and v1 ∈ {u, v}, T1[r, u] and T2[r, v] are internally
disjoint paths in Gi.

Assume first that u = v1. Then v = v ∈ Di−1. Since g(v0) < g(v1) < g(v), it
follows from the induction hypothesis that T1[r, v0] and T2[r, v] are internally disjoint
paths in Gi−1. Therefore, T1[r, v1] = T1[r, v0] + {v1, v1v0} and T2[r, v] are internally
disjoint paths in Gi.

Now suppose v = v1. Then u ∈ Di−1. Since g(u) < g(v1) < g(v2), it follows
from the induction hypothesis that T1[r, u] and T2[r, v2] are internally disjoint paths
in Gi−1. Therefore, T1[r, u] and T2[r, v1] = T2[r, v2]+{v1, v1v2} are internally disjoint
paths in Gi.

Case 2. i = 1, or Hi is an up Gi−1-chain in G but not an elementary Gi−1-chain
in G.

Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = 1, and g(v0) < g(vk)
when i �= 1. For each 2-connected Bj , let uj , wj denote the terminals of B+

j other

than vj−1, vj , with f(uj) < f(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5. This is the same as in Case 2 of Algorithm Trees.
Let u, v ∈ Di with g(u) < g(v).

If u, v ∈ Di−1, then by the induction hypothesis, T1[r, u] and T2[r, v] are internally
disjoint paths in Gi−1.

If u ∈ Di −Di−1 and v ∈ Di−1, then by the construction in Case 2 of Algorithm
Numbering g, g(v0) < g(u) < g(v). By the induction hypothesis, T1[r, v0] and T2[r, v]
are internally disjoint paths in Gi−1. Since T1[v0, u] is a path in Hi − vk by (1) of
Lemma 6.3 when i = 1, or by (1) of Lemma 6.4 when i �= 1, T1[r, v] and T2[r, v] are
internally disjoint paths in Gi.

If u ∈ Di−1 and v ∈ Di −Di−1, then by the construction in Case 2 of Algorithm
Numbering g, g(u) < g(v) < g(vk). By the induction hypothesis, T1[r, u] and T2[r, vk]
are internally disjoint paths in Gi−1. Since T2[vk, v] is a path in Hi − v0 by (2) of
Lemma 6.3 when i = 1, or by (2) of Lemma 6.4 when i �= 1, T1[r, v] and T2[r, v] are
internally disjoint paths in Gi.

So we may assume that u, v ∈ Di − Di−1. Let gi denote the function g at the
start of iteration i of Algorithm Numbering g (when it examines Hi in Case 2). Recall
that for each j = 1, . . . , k the algorithm computes a sequence σj as follows. If Bj is
2 connected, then σj is a (T j

vj−1
, T j

vj
)-ordering of NB+

j
({uj , wj}) − {vj−1, vj}. If Bj

is trivial, then σj is the empty sequence. Moreover, the algorithm extends gi to
σ := σ1, v1, σ2, . . . , vk−1, σk from v0 and set Di := Di−1 ∪ {σ}. Thus, u, v ∈ {σ}.
Note that since g(u) < g(v), u precedes v in the sequence σ.

First, suppose that there exists no j ∈ {1, . . . , k−1} such that u, v ∈ {σj}. Hence,
there is some j ∈ {1, . . . , k − 1} such that either

• u appears in the sequence σ1, v1, . . . , σj , vj and v appears in the sequence
σj+1, vj+1, . . . , vk−1, σk or

• u appears in the sequence σ1, v1, . . . , σj and v appears in the sequence
vj , σj+1, vj+1, . . . , vk−1, σk.

By (1) and (2) of Lemma 6.3 when i = 1 or by (1) and (2) of Lemma 6.4 when
i �= 1, T1[v0, u] and T2[vk, v] are internally disjoint paths in Hi, and by the induction
hypothesis, T1[r, v0] and T2[r, vk] are internally disjoint paths in Gi−1. Therefore,
T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

So, we may assume that there exists some j ∈ {1, . . . , k − 1} such that u, v are
in the sequence σj . Since the sequence σj is (T j

vj−1
, T j

vj
)-ordered and u precedes v in
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σj , T
j
vj−1

[vj−1, u] and T j
vj

[vj , v] are disjoint. By the construction in Algorithm Trees,

T1[vj−1, u] = T j
vj−1

[vj−1, u] and T2[vj , v] = T j
vj

[vj , v]. By (1) and (2) of Lemma 6.3
when i = 1, or by (1) and (2) of Lemma 6.4 when i �= 1, T1[v0, vj−1] and T2[vk, vj ]
are internally disjoint paths in Hi. Moreover, by the induction hypothesis, T1[r, v0]
and T2[r, vk] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are
internally disjoint paths in Gi.

Case 3. i = t, or Hi is a down Gi−1-chain in G but not an elementary Gi−1-chain
in G.

Let Hi := v0B1v1 . . . vk−1Bkvk, with v0 = vk = r when i = t, and f(v0) < f(vk)
when i �= t. For each 2-connected Bj , let uj , wj denote the terminals of B+

j other

than vj−1, vj , with g(uj) < g(wj), and let T j
vj−1

, T j
vj
, T j

uj
, T j

wj
denote the trees rooted,

respectively, at vj−1, vj , uj , wj in the independent spanning {vj−1, vj , uj , wj}-system
of B+

j computed in Assumption 4.5. This is the same as in Case 3 of Algorithm Trees.
Let u, v ∈ Di with g(u) < g(v). Recall that Di = Di−1 ∪NB1(v0) ∪NBk

(vk).
If u, v ∈ Di−1, then by the induction hypothesis, T1[r, u] and T2[r, v] are internally

disjoint paths in Gi−1 ⊂ Gi.
If u ∈ Di −Di−1 and v ∈ Di−1, then u ∈ NB1(v0) ∪NBk

(vk). By (1) and (3) of
Lemma 6.11, there exists z1 ∈ V (Gi−1) such that g(z1) < g(u) and V (T1[z1, u]−z1) ⊆
I(Hi). Since z1, v ∈ Di−1 and g(z1) < g(u) < g(v), it follows from the induction
hypothesis that T1[r, z1] and T2[r, v] are internally disjoint paths in Gi−1. Therefore,
T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

If u ∈ Di−1 and v ∈ Di −Di−1, then v ∈ NB1(v0) ∪NBk
(vk). By (1) and (3) of

Lemma 6.11, there exists z2 ∈ V (Gi−1) such that g(v) < g(z2) and V (T2[z2, v]−z2) ⊆
I(Hi). Since z2, u ∈ Di−1 and g(u) < g(v) < g(z2), it follows from the induction
hypothesis that T1[r, u] and T2[r, z2] are internally disjoint paths in Gi−1. Therefore,
T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

So, we need only to prove the case when u, v ∈ Di − Di−1. Let gi denote the
function g at the start of iteration i of Algorithm Numbering g (when it examines Hi

in Case 3). Now we consider the three subcases of Case 3 of Algorithm Numbering g.
Subcase 3.1. k = 1 (thus, B1 is 2-connected).
Since (B+

1 , v0, u1, v1, w1) is planar and G is 4-connected, v0, v1 /∈ NB1(v0) ∪
NB1

(v1). Hence, in this case, Di − Di−1 = NB+
1
({v0, v1}) − {u1, w1} = NB1

(v0) ∪
NB1

(v1). Moreover, Algorithm Numbering g produces a (T 1
u1
, T 1

w1
)-ordering σ of

NB+
1
({v0, v1}) − {u1, w1} and extends gi to σ from u1.

Let u, v ∈ Di −Di−1, with g(u) < g(v). Then both u and v are in the sequence
σ, and u precedes v in σ. Since σ is (T 1

u1
, T 1

w1
)-ordered, T 1

u1
[u1, u] and T 1

w1
[w1, v] are

disjoint. By the construction in Case 3 of Algorithm Trees, T1[u1, u] = T 1
u1

[u1, u]
and T2[w1, v] = T 1

w1
[w1, v]. By the induction hypothesis, T1[r, u1] and T2[r, w1] are

internally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are internally disjoint
paths in Gi.

Subcase 3.2. k = 2, and B1 or B2 is trivial.
By symmetry we assume that B2 is trivial (the arguments are analogous if B1 is

trivial). Note that B1 is 2-connected because Hi is not an elementary Gi−1-chain in
G. Thus, Di −Di−1 = NB1(v0) ∪ {v1}.

• If v1 has no neighbor in V (Gi−1), then Algorithm Numbering g chooses neigh-
bors q1, q2, q3 of v1 in B1 such that T 1

u1
[u1, q1], T

1
v0

[v0, q2], and T 1
w1

[w1, q3] are
disjoint and then computes a (T 1

u1
+ {v1, v1q1}, T 1

w1
+ {v1, v1q3})-ordering σ

of NB1(v0)∪ {v1} in B+
1 ∪B2 (recall that (B+

1 ∪B2, v0, u1, v2, w1) is planar).
Then Algorithm Numbering g extends gi to σ from u1.
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Let u, v ∈ Di − Di−1, with g(u) < g(v). Then both u and v are in the
sequence σ, and u precedes v in σ.

Let us consider first the case when u �= v1 and v �= v1. Thus, u, v ∈
NB1(v0). Since σ is (T 1

u1
+{v1, v1q1}, T 1

w1
+{v1, v1q3})-ordered and u precedes

v in σ, T 1
u1

[u1, u] and T 1
w1

[w1, v] are disjoint. By construction (Case 3 of
Algorithm Trees), T1[u1, u] = T 1

u1
[u1, u] and T2[w1, v] = T 1

w1
[w1, v]. By the

induction hypothesis, T1[r, u1] and T2[r, w1] are internally disjoint paths in
Gi−1. Therefore, T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

Now suppose that u = v1. Since σ is (T 1
u1

+ {v1, v1q1}, T 1
w1

+ {v1, v1q3})-
ordered and u precedes v in σ, T 1

u1
[u1, q1] + {v1, v1q1} and T 1

w1
[w1, v] are dis-

joint. By construction (Case 3 of Algorithm Trees), T1[u1, v1] = T 1
u1

[u1, q1] +
{v1, v1q1} and T2[w1, v] = T 1

w1
[w1, v]. By the induction hypothesis, T1[r, u1]

and T2[r, w1] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and
T2[r, v] are internally disjoint paths in Gi.

So assume v = v1. Since σ is (T 1
u1

+ {v1, v1q1}, T 1
w1

+ {v1, v1q3})-ordered
and u precedes v in σ, T 1

u1
[u1, u] and T 1

w1
[w1, q3] + {v1, v1q3} are disjoint.

By construction (Case 3 of Algorithm Trees), T1[u1, u] = T 1
u1

[u1, u] and
T2[w1, v1] = T 1

w1
[w1, q3] + {v1, v1q3}. By the induction hypothesis, T1[r, u1]

and T2[r, w1] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and
T2[r, v] are internally disjoint paths in Gi.

• If v1 has a neighbor in V (Gi−1), then Algorithm Numbering g chooses a vertex
x ∈ (NG(v1) ∩ V (Gi−1)) with gi(x) minimum and computes a (T 1

u1
, T 1

w1
)-

ordering σ of NB+
1
(v0) − {u1, w1}.

Let u, v ∈ Di −Di−1, with g(u) < g(v).
Let us consider first the case when u �= v1 and v �= v1. Then both u and v

are in σ, and u precedes v in σ. Since σ is (T 1
u1
, T 1

w1
)-ordered and u precedes

v in σ, T 1
u1

[u1, u] and T 1
w1

[w1, v] are disjoint. By construction (Case 3 of
Algorithm Trees), T1[u1, u] = T 1

u1
[u1, u] and T2[w1, v] = T 1

w1
[w1, v]. By the

induction hypothesis, T1[r, u1] and T2[r, w1] are internally disjoint paths in
Gi−1. Therefore, T1[r, u] and T2[r, v] are internally disjoint paths in Gi.

Now suppose that u = v1. Thus, v is in the sequence σ. Recall how
Algorithm Numbering g extends gi in Subcase 3.2 of Algorithm Numbering g.

If g(x) > g(u1), then gi(x) > gi(u1), and Algorithm Numbering g ex-
tends gi to σ, v1 from u1. But then g(v) < g(v1) = g(u), contradicting the
assumption that g(u) < g(v).

If g(x) ≤ g(u1), then gi(x) ≤ gi(u1), and Algorithm Numbering g extends
gi to v1, σ from x. By construction (Subcase 3.2 of Algorithm Trees with
j = 1), xv1 ∈ E(T1) and T2[w1, v] = T 1

w1
[w1, v]. Since g(x) < g(w1), by

the induction hypothesis, T1[r, x] and T2[r, w1] are internally disjoint paths
in Gi−1. Therefore, T1[r, v1] and T2[r, v] are internally disjoint paths in Gi.

The case v = v1 can be treated analogously (g(x) ≤ g(u1) cannot occur).

Subcase 3.3. k ≥ 3, or k = 2 and both B1, B2 are 2-connected.

In this case, Di −Di−1 = NB1(v0) ∪NBk
(vk). Let u, v ∈ Di −Di−1 with g(u) <

g(v).

Let us consider first the case when u, v ∈ NB1(v0). Thus, B1 is 2-connected, and
Algorithm Numbering g (Subcase 3.3) computes a (T 1

u1
, T 1

w1
)-ordering σ of NB+

1
(v0)−

{u1, w1} = NB1
(v0) and extends gi to σ from u1. Thus, g(u1) < g(u) < g(v).

Since σ is (T 1
u1
, T 1

w1
)-ordered and u precedes v in σ, T 1

u1
[u1, u] and T 1

w1
[w1, v] are

disjoint. By construction (Case 3 of Algorithm trees), T1[u1, u] = T 1
u1

[u1, u] and
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T2[w1, v] = T 1
w1

[w1, v]. Since g(u1) < g(w1) and by the induction hypothesis, T1[r, u1]
and T2[r, w1] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are
internally disjoint paths in Gi.

Suppose, now, that u, v ∈ NBk
(vk). Then Bk is 2-connected, and Algorithm

Numbering g (Subcase 3.3) computes a (T k
uk
, T k

wk
)-ordering of NB+

k
(vk)− {uk, wk} =

NBk
(vk) and extends gi to σ from uk. Thus, g(uk) < g(u) < g(v). Since σ is

(T k
uk
, T k

wk
)-ordered and u precedes v in σ, T k

uk
[uk, u] and T k

wk
[wk, v] are disjoint. By

construction (Case 3 of Algorithm Trees), T1[uk, u] = T k
uk

[uk, u] and T2[wk, v] =

T k
wk

[wk, v]. Since g(uk) < g(wk) and by the induction hypothesis, T1[r, uk] and
T2[r, wk] are internally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are
internally disjoint paths in Gi.

So we may assume that u ∈ NB1(v0) and v ∈ NBk
(vk), or u ∈ NBk

(vk) and
v ∈ NB1(v0). By symmetry, assume that u ∈ NB1(v0) and v ∈ NBk

(vk). We will prove
that there exist vertices z1, z2 ∈ V (Gi−1), with g(z1) < g(z2), such that T1[z1, u] and
T2[z2, v] are internally disjoint paths in G, V (T1[z1, u]−z1) ⊆ I(Hi), and V (T2[z2, v]−
z2) ⊆ I(Hi).

Consider the following cases for u and B1.
• B1 is 2-connected. Then, by construction in Algorithm Trees, T1[u1, u] =
T 1
u1

[u1, u], and let z1 := u1.
• B1 is trivial. Thus, u = v1. If B2 is trivial, then by construction in Subcase 3.1

of Algorithm Trees (with j = 1), there exists a neighbor p1 of v1 in V (Gi−1)
such that g(p1) is minimum and p1v1 ∈ E(T1). In this case, let z1 := p1.
So assume that B2 is 2-connected.

– If v1 has no neighbor in V (Gi−1), then by construction in Subcase 3.3
(with j = 1) of Algorithm Trees, there exists a neighbor p1 of v1 in B2

such that T1[u2, v1] = T 2
u2

[u2, p1] + {v1, v1p1}. In this case, let z1 := u2.
– If v1 has a neighbor in V (Gi−1), then Algorithm Trees in Subcase 3.3

(with j = 1) chooses x ∈ NG(v1) ∩ V (Gi−1) with g(x) minimum. If
g(x) > g(u2), then by construction there exists a neighbor p1 of v1 in B2

such that T1[u2, v1] = T 2
u2

[u2, p1] + {v1, v1p1}. In this case, let z1 := u2.
If g(x) ≤ g(u2), then xv1 ∈ E(T1). In this case, let z1 := x.

Consider the analogous cases for v and Bk.
• Bk is 2-connected. Then by construction in Algorithm Trees, T2[wk, v] =

T k
wk

[wk, v], and let z2 := wk.
• Bk is trivial. Thus, v = vk−1. If Bk−1 is trivial, then by construction in

Subcase 3.1 of Algorithm Trees (with j = k − 1), there exists a neighbor p2

of vk−1 in V (Gi−1) such that g(p2) is not minimum and p2vk−1 ∈ E(T2). In
this case, let z2 := p2.
So assume that Bk−1 is 2-connected.

– If vk−1 has no neighbor in V (Gi−1), then by construction in Subcase 3.2
(with j = k − 1) of Algorithm Trees, there exists a neighbor p2 of vk−1

in Bk−1 such that T2[wk−1, vk−1] = T k−1
wk−1

[wk−1, p2] + {vk−1, vk−1p2}.
In this case, let z2 := wk−1.

– If vk−1 has a neighbor in V (Gi−1), then Algorithm Trees in Subcase 3.2
chooses x ∈ NG(vk−1)∩V (Gi−1) with g(x) minimum. If g(x) > g(uk−1),
then xvk−1 ∈ E(T2). In this case, let z2 := x. If g(x) ≤ g(uk−1),
then by construction there exists a neighbor p2 of vk−1 in Bk−1 such
that T2[wk−1, vk−1] = T k−1

wk−1
[wk−1, p2]+{vk−1, vk−1p2}. In this case, let

z2 := wk−1 (this is the same as in the previous paragraph).
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So T1[z1, u] either is contained in B+
1 , or is contained in B+

2 , or is induced by a
single edge. Hence, g(z1) < g(u). Similarly, T2[z2, v] either is contained in B+

k , or is
contained in B+

k−1, or is induced by a single edge. So g(v) < g(z2). Since g(u) < g(v),
g(z1) < g(z2).

Note that if k = 3, B2 is 2-connected, and both paths T1[z1, u] and T2[z2, v] are
contained in B+

2 , then u = v1, v = v2 = vk−1, T1[u2, u] = T 2
u2

[u2, p1] + {v1, v1p1}
for some neighbor p1 of v1 in B2, and T2[w2, v] = T 2

w2
[w2, p2] + {v2, v2p2} for some

neighbor p2 of v2 in B2. In this case, since u, v are (T 2
u2
, T 2

w2
)-ordered, T1[u2, u] and

T2[w2, v] are disjoint.

Therefore, since k ≥ 3, it is not hard to see that T1[z1, u] and T2[z2, v] are disjoint
paths in G, V (T1[z1, u] − z1) ⊆ I(Hi), and V (T2[z2, v] − z2) ⊂ I(Hi).

Since g(z1) < g(z2), by the induction hypothesis, T1[r, z1] and T2[r, z2] are in-
ternally disjoint paths in Gi−1. Therefore, T1[r, u] and T2[r, v] are internally disjoint
paths in Gi.

Case 4. Hi is a triangle Gi−1-chain in G.

By Algorithm Numbering g, Di −Di−1 = {v1, v2, v3} and g(v1) < g(v2) < g(v3).
Thus, it suffices to show that the following pairs are internally disjoint: T1[r, v1]
and T2[r, v2], T1[r, v2] and T2[r, v3], and T1[r, v1] and T2[r, v3]. This can be done by
inspecting Case 4 of Algorithm Trees.

Recall that Algorithm Numbering f with input C := (H1, . . . , Ht) computes a
numbering f and sets D′

t+1, D
′
t, D

′
t−1, . . . , D

′
2. The next lemma can be proved, anal-

ogously to Lemma 6.12. We give only some detail for Case 4, as f and g are not
symmetric in that case.

Lemma 6.13. Let i ∈ {1, . . . , t}. Then for any u, v ∈ D′
i with f(u) < f(v),

T3[r, u] and T4[r, v] are internally disjoint paths in Ḡi.

Proof. We use the notation in the proof of Lemma 6.12 and assume Hi is a triangle
Gi−1-chain in G. By inspecting Case 4 of Algorithm Numbering f and Algorithm
Trees, we have the following.

• If f(y1) < f(y2) and f(y1) < f(y3), then f(v1) < f(v2) < f(v3). So we can
show that T3[r, v1] and T4[r, v2] are internally disjoint, T3[r, v1] and T4[r, v3]
are internally disjoint, and T3[r, v2] and T4[r, v3] are internally disjoint.

• If f(y2) < f(y1) and f(y2) < f(y3), then f(v2) < f(v1) < f(v3). So we can
show that T3[r, v2] and T4[r, v1] are internally disjoint, T3[r, v2] and T4[r, v3]
are internally disjoint, and T3[r, v1] and T4[r, v3] are internally disjoint.

• If f(y3) < f(y1) < f(y2), then f(v3) < f(v1) < f(v2). So we can show
that T3[r, v3] and T4[r, v1] are internally disjoint, T3[r, v3] and T4[r, v2] are
internally disjoint, and T3[r, v1] and T4[r, v2] are internally disjoint.

• If f(y3) < f(y2) < f(y1), then f(v3) < f(v2) < f(v1). So we can show
that T3[r, v3] and T4[r, v2] are internally disjoint, T3[r, v3] and T4[r, v1] are
internally disjoint, and T3[r, v2] and T4[r, v1] are internally disjoint.

Theorem 6.14. Given a 4-connected graph G, r ∈ V (G), and a nonseparating
chain decomposition C := (H1, . . . , Ht) of G rooted at r, Algorithm Trees computes
four independent spanning trees rooted at r.

Proof. By Corollary 6.10, T1, T2, T3, T4 are spanning trees of G. Let us prove
that they are independent with r as root. Let v ∈ V (G) − {r}. Suppose that v is
an internal vertex of a good chain Hi in the decomposition C. By Lemma 6.11 there
exist z1, z2, z3, z4 ∈ V (G) such that

(i) z1, z2 ∈ V (Gi−1), and either g(z1) < g(z2) or z1 = z2 = r,
(ii) z3, z4 ∈ V (Ḡi), and either f(z3) < f(z4) or z3 = z4 = r, and
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(iii) Ti[zi, v], i = 1, 2, 3, 4, are internally disjoint paths and V (Ti[zi, v] − zi) ⊆
I(Hi).

By Lemma 6.12, if g(z1) < g(z2), then T1[r, z1] and T2[r, z2] are internally disjoint
paths in Gi−1. Obviously, the same holds if z1 = z2 = r. Similarly, by Lemma 6.13,
if f(z3) < f(z4), then T3[r, z3] and T4[r, z4] are internally disjoint paths in Ḡi, and
the same holds if z3 = z4 = r. Therefore, T1[r, v], T2[r, v], T3[r, v], and T4[r, v] are
internally disjoint. Hence, T1, T2, T3, and T4 are independent spanning trees of G
rooted at r.

Lemma 6.15. Algorithm Trees runs in O(|V (G)|3) time.

Proof. By Lemmas 4.6 and 4.7, given C we can compute numberings g and f in
O(|V (G)|3) time. By Theorem 3.2 we can compute independent spanning systems for
all planar sections in C in O(|V (G)| + |E(G)|) time.

We will show that at each iteration the time spent by Algorithm Trees is O(|V (G)|2)
time. Since the number of iterations is at most |V (G)|, this implies the result.

Suppose we are at iteration i of Algorithm Trees.

One can see easily that if Case 1 or Case 4 occurs, then Algorithm Trees uses
constant time. Thus, we may assume that Case 2 or Case 3 occurs.

Suppose that Case 2 occurs. The initial updating of T1, T2, T3, T4 (before Subcases
2.1–2.4 are dealt with) can be done in O(|V (G)|) time. Then for each j ∈ {1, . . . , k}
the algorithm inserts vj into the subgraphs T1, T2, T3, T4 according to Subcases 2.1–
2.4. One can see that Subcase 2.1 can be executed in O(1) time. In the other cases,
the algorithm has to solve one of the following problems (at most twice).

(1) Given a planar graph (B, v′, u, v, w) and an independent spanning {v′, u, v, w}-
system {Tv′ , Tu, Tv, Tw} of B (with Tv′ , Tu, Tv, Tw rooted, respectively, at
v′, u, v, w), find three neighbors p1, p2, p3 of v in B such that Tv′ [v′, p1], Tu[u, p2],
and Tw[w, p3] are disjoint.

(2) Given a planar graph (B, v′, u, v, w) and an independent spanning {v′, u, v, w}-
system {Tv′ , Tu, Tv, Tw} of B (with Tv′ , Tu, Tv, Tw rooted, respectively, at
v′, u, v, w), find two neighbors p1, p2 of v in B such that Tv′ [v′, p1] and Tu[u, p2]
are disjoint.

By Lemmas 3.6 and 3.7, both problems can be solved in O(|V (B)|) time. Thus, it is
not hard so see that the time spent by Algorithm Trees in Case 2 is O(|V (G)|2).

Case 3 is analogous to Case 2, and by an argument similar to the last paragraph,
one can show that Algorithm Trees uses O(|V (G)|2) time in this case as well.

Now we are almost ready to prove Theorem 1.1, except that if we apply Theo-
rem 2.8 directly to a 4-connected graph G to find a nonseparating chain decomposition
of G, we spend O(|V (G)|2|E(G)|) time. We can obtain an O(|V (G)|3) algorithm by
using the following result of Ibaraki and Nagamochi [10].

Theorem 6.16. Let G be a k-connected graph for some integer k ≥ 1. Then
one can find in O(|V (G)| + |E(G)|) time a spanning k-connected subgraph of G with
O(|V (G)|) edges.

Proof of Theorem 1.1. Let G be a 4-connected graph, and let r ∈ V (G). Apply
Theorem 6.16 to G, and let G′ be the resulting spanning 4-connected subgraph of G.

Applying Theorem 2.8 to G′, we can find a nonseparating chain decomposition C
of G′ in O(|V (G′)|3) time (and hence in O(|V (G)|3) time).

Finally, apply Theorem 6.14 to G, C and find four independent spanning trees
T1, T2, T3, T4 of G′ rooted at r. By Lemma 6.15, this is done in O(|V (G′)|3) time, and
hence in O(|V (G)|3) time. Clearly, T1, T2, T3, T4 are independent spanning trees of G
rooted at r.
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EFFICIENT SIMULATIONS BY QUEUE MACHINES∗

HOLGER PETERSEN† AND JOHN MICHAEL ROBSON‡

Abstract. The following simulations by machines equipped with a one-way input tape and
additional queue storage are shown:

• Every nondeterministic single-tape Turing machine (no separate input-tape) with time
bound t(n) can be simulated by one queue in O(t(n)) time.

• Every deterministic machine with a one-turn pushdown store can be simulated determin-
istically by one queue in O(n

√
n) time.

• Every Turing machine with several multidimensional tapes accepting with time bound t(n)
can be simulated by two queues in O(t(n) log2 t(n)) time.

• Every deterministic Turing machine with several linear tapes accepting with time bound
t(n) can be simulated deterministically in time O(t(n) log t(n)) by a queue and a pushdown
store.

The first two results appear to be the first subquadratic simulations of other storage devices by one
queue.

Key words. pushdown automata, grammars, multiqueue machines, multitape machines, simu-
lation, upper bounds

AMS subject classification. 68Q05

DOI. 10.1137/S0097539799350608

1. Introduction. A classical result, essentially due to Post, says that a machine
with a single queue is able to perform any computation a Turing machine can; see, e.g.,
[12]. Turing machines with auxiliary storage devices like pushdowns or stacks are well
studied, and the complexity of simulations between machines with such storages and
tapes has been thoroughly investigated. In contrast, fewer results have been obtained
for the storage device queue. It is known that one-queue machines can simulate
several tapes, pushdowns, and queues with quadratic slowdown [9, Theorem 3.1].
Nondeterministic two-queue machines can simulate any number of queues in linear
time [9, Theorem 4.2].

For deterministic devices with several queues Hühne [8] gives a simulation of
t(n) time-bounded multistorage Turing machines on O(t(n) k

√
t(n)) time-bounded ma-

chines with k ≥ 2 queues. He also reports almost matching lower bounds for online
simulations of these storage devices.

Li and Vitányi [10] report lower bounds for simulating one queue on other storages
without the online restriction.

In the framework of formal languages, machines with one or more queues have
been investigated, e.g., in [16, 2].

Hartmanis and Stearns [5] showed that a k-dimensional tape machine with time
bound t(n) could be simulated by a linear tape machine in time O(t2(n)). Pippenger
and Fischer [14] improved the time to O(t2−1/k(n)), and the result of Hennie [6] (with
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the correction from [3]) shows that this is optimal, at least for online deterministic
simulation. Grigor’ev [4] and Loui [11] showed how to reduce the time when the
simulating machine uses m-dimensional tapes (m > 1); they used nondeterministic
and deterministic machines, respectively. Monien [13] improved the result in case
of nondeterministic simulation to use only linear tapes and time O(t(n) log2 t(n)).
We show that this bound also holds for nondeterministic simulation by two queues.
Rosenberg [15] presented an O(n log n) time algorithm for context free language recog-
nition on a machine with two queues. Rosenberg’s proof—being based on context free
grammars—does not seem to generalize to the simulation of storage devices other
than a single pushdown.

We also give a self-contained simulation of multistorage machines by machines
with a queue and a pushdown.

2. Preliminaries. We adopt the concepts from [10, 9]. The simulated devices
will be introduced below. Unless stated otherwise our simulating machines are non-
deterministic and are equipped with a single one-way head on a read-only input tape.
The machines can determine end-of-input, have access to one or more first-in-first-out
queues storing symbols, and are able to signal acceptance of their input. Depending
on the symbols read by the input head and at the front of the queues, a finite control
determines one or more of the following operations:

• advance the input head to the next cell,
• dequeue the first symbols of some queues,
• enqueue at most one symbol per queue.

After these operations, control is transferred to the next state.
A machine accepts in time t(n) if, for all accepted inputs of length n, the machine

admits a computation that ends with acceptance after at most t(n) steps.
Simulation will be understood in the most general sense; i.e., machine A simu-

lates B if both machines accept the same set of inputs. Note that other concepts
of simulation are frequently used, notably step-by-step simulation or simulation of a
specified retrieval function of a storage unit (e.g., a two-dimensional array with one
point of access which can be moved one row or column at a time).

3. Results.
Theorem 1. Every nondeterministic bi-infinite single-tape Turing machine ac-

cepting in t(n) steps can be simulated by a nondeterministic one-queue machine in
O(t(n)) steps.

Proof. We call the Turing machine to be simulated S and the queue machine Q.
Let the tape cells of S be labeled with consecutive integers; the first symbol of the
input is labeled with 0. We assume without loss of generality that S moves its head
in every step, that there is a single final state, and that the head movement in every
step reaching this final state is to the right.

Recall that a crossing sequence at the boundary between two adjacent tape cells
consists of the chronological sequence of states to which the finite control of S transfers
control as the head crosses the boundary. Here we will denote by ci the crossing
sequence occurring in a computation between cell i− 1 and i, and we will also encode
the direction when going to state q by −→q (right movement) and ←−q (left movement).
We adopt the convention that c0 starts with the initial state of S moving to the right.

The computation of S in terms of crossing sequences can be divided into three
stages:

1. involving cells to the left of the input (i ≤ 0),
2. involving cells within the input w (0 < i ≤ |w|),
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3. involving cells to the right of the input (i > |w|).
Queue machine Q simulates the behavior of S on every tape cell used by S, from

left to right, i.e., generally not in chronological sequence. During a cycle corresponding
to a tape cell, Q keeps the symbol x currently in the cell in its finite control. The
symbol x is initialized with a blank in stage 1 and stage 3 and with the actual input
symbol in stage 2. This symbol is available to Q from Q’s own input tape.

The idea of the simulation is to have a crossing sequence ci on the queue and to
guess ci+1 (which is separated from ci by $) in a manner consistent with S’s finite
control. More specifically, if the remaining suffix of ci on the queue is c, we have the
following cases, which are nonexclusive (c′ is the part of the crossing sequence not
affected by the step currently simulated):

• c = −→q1←−q2c′ and there is a transition from q1 to q2 reading x, writing some
symbol y, and moving the head left. Then Q dequeues −→q1←−q2 and replaces x
with y.

• c = −→q1c′ and there is a transition from q1 to q2 reading x, writing some symbol
y, and moving the head right. Then Q dequeues −→q1 , enqueues −→q2 , and replaces
x with y.

• c = ←−q2c′ and there is a transition from q1 to q2 reading x, writing some symbol
y, and moving the head left. Then Q dequeues ←−q2 , enqueues ←−q1 , and replaces
x with y.

• There is a transition from q1 to q2 reading x, writing some symbol y, and
moving the head right. Then Q enqueues ←−q1−→q2 and replaces x with y.

If the last symbol of the current crossing sequence has been processed and no
further operations according to the last case above occur, the marker symbol $ is
dequeued, enqueued, and the next cycle starts.

Should the final state be reached, then no successor state is stored on the queue,
but the fact that it has been encountered is recorded in the finite control of Q.

The simulation is initiated by guessing zero or more pairs of states according to
the last case to be inserted into the queue with the initial tape symbol being a blank.
It proceeds in stage 1 until Q guesses that tape cell −1 has just been processed, c−1 is
stored on the queue, and stage 2 of the simulation is about to start. At this moment,
S’s initial state is inserted into the queue as the first element of c0. After c0 has been
assembled, the input is read in every cycle, until the last symbol is consumed and
c|w| has been formed. The simulation continues in stage 3 until the queue contains
no symbol except $. The machine Q eventually accepts when S’s final state has been
encountered during the simulation.

Suppose S accepts input w. We fix an accepting computation C on w using tape
cells only between positions � and r. To each cell i with �+1 ≤ i ≤ r we associate the
crossing sequence ci arising from C. By its definition, Q can first guess c�+1 and then
inductively generate ci+1 from ci in a nondeterministic way. When stage 2 starts,
Q begins to read input symbols until stage 3 starts. In this way Q can execute an
accepting computation (the final state of S is encountered, since C is accepting).

Conversely, if Q accepts an input w, then the contents of the queue after a full
cycle of the accepting computation of Q can be assembled into an accepting compu-
tation of S. This is done by starting at the step when Q reads the first symbol of w
and picking the first entry of the queue. Then we follow the arrows and always choose
“fresh” queue entries, resulting in an accepting computation of S.

The number of steps executed by S is equal to the sum of the lengths of all
crossing sequences. For every element of a crossing sequence, Q executes a number of
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steps bounded by a constant. This shows the claimed time bound.

A converse of the above simulation is not possible, showing that queue machines
are stronger than single-tape Turing machines.

Observation 1. The language D# = {w#w | w ∈ {0, 1}∗} can be accepted
in real time by a deterministic one-queue machine but not by any nondeterministic
single-tape Turing machine working in o(n2) time.

Proof. Techniques due to Hennie and Barzdin show that D# cannot be accepted
in o(n2) time by a single-tape machine; see [17, Theorem 8.13]. On the other hand, a
queue machine stores all symbols up to the first # on the queue and compares them to
the string following #. The input is rejected if a mismatch is detected or no separator
# is found; otherwise it is accepted.

In the following we present a simulation of a pushdown automaton by a machine
with a single queue. It will help to first recall the trivial simulation of one pushdown
store by a queue, a special case of [9, Theorem 3.1]. Every push operation can be
simulated in constant time by enqueuing a symbol, while pop operations are simulated
by cycling through the entire queue contents, locating the top symbol, and removing
it. Since the size of the queue is linearly bounded by the number of operations being
simulated, this results in a quadratic overhead. Notice that after simulating one
pushdown operation, this trivial approach encodes the pushdown contents verbatim.
The key to a more efficient simulation is a different encoding and processing of the
information stored.

The next machine to be simulated has a one-turn pushdown. (In any computation
the machine may switch from pushing to popping at most once.) Machines in this
class accept exactly the deterministic linear context free languages.

Theorem 2. Every deterministic machine with a one-turn pushdown store can
be simulated by a deterministic machine with one queue in O(n

√
n) time.

Proof. Let P be a deterministic one-turn pushdown machine. Note that if P
accepts, it does so in linear time.

Let Q be the queue machine with queue alphabet X ∪ {#, ∗, $}, where X is the
pushdown alphabet of P , the union is disjoint, and the length of the input is n.

The idea of the simulation is to divide Q’s computation into three stages. In the
first stage, Q simulates push operations of P by writing the pushed symbols into its
queue in the same way as in the trivial simulation outlined above. When P switches
to popping the pushdown contents, the approach deviates from the trivial one.

After stage 1, queue machine Q suspends the simulation and prepares its storage
in order to speed up the access to pushdown symbols. The main observation is that
each section of the queue contents eventually has to be read in a reversed fashion.
Therefore we would like to form mirror images of the sections. This will be fast if
the sections are short since we can process one symbol of each section in one round,
reading the queue contents once. On the other hand, if the sections are short, there
will be many of them. Because the sections are reversed as well, access time during
stage 3 depends on exactly how many. A compromise between speed of preprocessing
and access leads to a size of the sections proportional to

√
n.

In stage 3 of the simulation, Q simulates the pop operations of P , from time to
time rearranging the queue contents. A more detailed description of the second and
third stages follows.

Suppose that v is the queue contents of Q when P reverses its access to the
pushdown and stage 2 starts, |v| ∈ O(n). First Q divides v into strings vi with
|vi| ∈ Θ(

√
|v|) except for the last string, which may be shorter. To do this, Q marks
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the end of the queue with $ and in one pass writes the string ∗# after every symbol
from X. As long as the number of ∗’s in the queue exceeds one, Q deletes every second
∗ starting with the first one, and in every second pass also deletes every second #,
except the one immediately before $. Thus Q makes 
log |v|� passes in O(|v| log |v|)
steps and 

log |v|�/2� times approximately divides the number of #’s by 2. After
these operations, v is divided into k blocks vi terminated by #. We have

|vi| ≤ 2�
�log |v|�

2 � ≤
√
|v|

and

k ≤ |v|
2�

�log |v|�
2 �

≤ 2
√

2
√
|v|.

Next, Q in one pass inserts a symbol ∗ before every #. Then it starts to reverse the
blocks vi by deleting a symbol x ∈ X from the beginning of each block that is not
yet completely reversed, keeping x in its finite control and inserting it after the ∗ in
the same block. This process is repeated until all blocks start with ∗, and then the
∗’s are deleted in one pass. Each block vi# has been transformed into vRi # in a total
of O(|v|

√
|v|) steps.

The third stage of Q’s operation requires a preparation that speeds up Q’s access
to the last block on the queue. In k cycles Q inserts a ∗ in front of every block
that already contains a ∗ and of the first block that has not received a ∗ up to that
point, until every block has received at least one ∗. The effect of these operations
is that the blocks contain k, k − 1, . . . , 1 symbols ∗. The preparation is O(n

√
n)

time bounded. Now Q enters the third stage and simulates P ’s pushdown-reading
operations by repeatedly rotating blocks to the rear of the queue until it finds the
unique block with a single ∗. It deletes ∗ and reads this block of pushdown symbols
while processing the next input segment until it encounters the trailing #, deletes this
symbol, and rewrites $ at the rear of the queue. Then in one cycle it deletes a single
∗ in every block. It repeats this sequence of operations until the input is exhausted.
Emptiness of the pushdown store can easily be detected since then the $ is the first
symbol in the queue. Each rotation takes O(|v|) time, and there are k ∈ O(

√
|v|)

blocks; therefore this stage is O(|v|
√
|v|) time-bounded.

We remark that the previous simulation applies to the language L = {w#wR |
w ∈ {0, 1}∗} investigated in [9, section 3.2]. Our upper bound almost matches the
lower bound Ω(n4/3/ log n) from [9].

The proof of the next result uses ideas from [13].
Theorem 3. Every nondeterministic Turing machine with several multidimen-

sional work tapes accepting with time bound t(n) can be simulated by two queues in
O(t(n) log2 t(n)) time.

Proof. For convenience we will describe a simulator that is equipped with a large
number of queues. The linear-time simulation of machines with several queues with
two queues [9, Theorem 4.2] will give the result.

Let the m work tapes of machine M that is to be simulated be d-dimensional.
For tape i our simulator Q has d + 1 queues. Queue i(d + 1) records the read-write
operations on tape i; queues i(d+ 1) + 1 through i(d+ 1) + d contain binary counters
that store the distance of M ’s head from its initial head position on tape i. More
precisely, for a distance k, the reversal of the binary representation of k is written
into the corresponding queue followed by a separator symbol #. For each counter,



1064 HOLGER PETERSEN AND JOHN MICHAEL ROBSON

Q’s finite control records whether the stored value is positive or negative. All counters
are initially zero.

The simulation of M is divided into stages. In the first stage Q guesses step-
by-step a computation of M , reading input symbols if necessary, and guessing a
corresponding step of M . Let the symbol read by this step on tape i be xi and
the symbol written be yi. The current distances for tape i are k1, . . . , kd. Then Q
writes a record containing xi, yi, and k1, . . . , kd (including signs) into queue i(d+ 1).
The distances are copied by rotating the binary representations stored in queues
i(d + 1) + 1, . . . , i(d + 1) + d. Now Q updates the distances as indicated by the head
move on tape i by adding or subtracting one if necessary. These operations are carried
out for every tape and take O(t(n) log t(n)) time. If eventually the simulation reaches
an accepting state of M , the second stage is started.

In the second stage the consistency of the guessed computation is checked. For
every tape i the simulator uses queues i(d+1) and i(d+1)+1 for sorting the records
according to distances in a stable way. A suitable method is to use radix sort on their
binary representations, starting with the least significant bits and marking off used
bits. First a new marker is appended to queue i(d + 1). Records containing 0 at the
current position are put into queue i(d + 1) + 1; the others are moved to the rear of
queue i(d + 1). If the marker is encountered, the queues are appended, and the next
bit position is considered. In case all digits of a number are exhausted while there are
still bits to be processed, the symbol # is interpreted as a string of leading zeros. If
all bits have been handled, a final pass sorts according to signs. Sorting is done for
all dimensions. Then Q checks for every run of records with equal distances that the
first symbol read is a blank and that the symbol written by record j is equal to the
symbol read by record j + 1. If it detects an inconsistency, it aborts the simulation;
otherwise it accepts.

The number of records is O(t(n)), the length of every record is O(log t(n)),
and the total number of passes is O(log t(n)). We obtain the required time bound
O(t(n) log2 t(n)).

We remark that tapes can simulate queues in linear time; see [17, Lemma 19.9].

Hühne [8] pointed out that his deterministic simulation of multistorage Turing
machines in time O(t(n)

√
t(n)) can be performed on a deterministic machine with a

queue and a pushdown store. He also mentions an Ω(t(n) 4
√

log t(n)) lower bound.

In the nondeterministic case a queue and a pushdown simulate any number of
pushdown stores (and hence tapes) in linear time by adapting the following technique
of Book and Greibach [1]. Guess a sequence of partial configurations containing the
state of the simulated machine, the topmost symbols of each pushdown store, the
input symbol currently scanned, and the operations on input head and storage. This
sequence is written onto the queue. Then the simulator checks that the sequence
corresponds to a valid computation for each of the pushdown stores and the input.

We give a deterministic simulation of an arbitrary number of tapes on a queue
and a pushdown store that almost matches the lower bound.

Theorem 4. Any deterministic t(n)-time-bounded multitape Turing machine can
be simulated by a deterministic Turing machine accessing a queue and a pushdown
store which is O(t(n) log t(n))-time-bounded.

Proof. We first note that a tape can be simulated by two pushdown stores with a
linear overhead in a straightforward manner. We may thus restrict our attention to an
efficient simulation of several pushdown storages with the help of a single pushdown
and a queue.
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The idea of the simulation is to store the contents of several pushdown stores on
separate tracks of the single pushdown store of the simulator. Each storage cell on
these tracks may be empty or contain information stored in the simulated pushdown.
The concatenation of all nonempty cells on track k from top to bottom constitutes
the string stored on the kth simulated pushdown. We point out that the distribution
of empty cells may vary between these tracks, depending on the sequence of accesses
to the pushdown stores. Bottom markers of the simulated pushdowns are treated in
the same way as other symbols in the pushdown alphabet.

In order to simplify the description of our simulation we concentrate on one
pushdown and describe the modification of the track corresponding to this pushdown
during the simulation of pop and push operations. The contents of other tracks are
left unchanged, except for the introduction of additional empty cells above the bottom
marker of the simulator.

Each track is divided into a special topmost cell and a potentially infinite sequence
of frames of increasing size, where frame i contains 2i+1 cells. Each frame is divided
into two blocks of equal size. We assume that this structure is easily recognizable,
e.g., by marking the borders between frames and blocks. An invariant maintained by
the phases of the simulation is that a frame either is empty, has block 0 empty and
block 1 full, or has both blocks full. The number of frames is the same for each track,
and the bottom symbol of the simulator’s pushdown marks the last frame.

The simulation starts with an empty pushdown, except for the topmost symbol
and the bottom marker, and an empty queue.

We will first describe the simulation of a pop. Let the ith frame be the first
nonempty one; recall that it has block 1 full, and block 0 may be full or empty. The
state of the pushdown is described by Figure 1.

Phase 1 (unloading). The simulator unloads the pushdown onto the queue until
it has read the first nonempty frame. We assume that the structure imposed on the
pushdown is still visible after unloading.

Phase 2 (redistribution). In this phase the simulator uses the pushdown as a
scratch memory, separating the contents of the pushdown at the start of this phase
from the operations carried out within the phase. It can do so by storing a marker
on top of the pushdown. In this way the contents of the pushdown at the end of the
redistribution phase are identical to the contents at the start of the phase.

The current state of the queue before the redistribution phase is shown in Figure 2.

First the simulator rotates the queue until it reaches the string previously stored
in the nonempty frame and copies the contents of block 0, if it is nonempty, or else
block 1 onto the pushdown. Then in another round it overwrites this portion of
the queue with the mirror-image of its initial contents, emptying the pushdown (see
Figure 3).

The simulator again copies the reversed string onto the pushdown, this time
erasing the cells read. Then it puts one symbol into the position of the first cell
on the queue and, now rotating the queue contents, 2i symbols from the top of the
pushdown into the first blocks of each of the frames currently on the queue. Since 2i =
1 +

∑i−1
k=0 2k, there are just enough cells to accommodate all symbols and completely

empty the pushdown by putting 2k symbols into block 1 of frame k. Each block
receiving symbols from the pushdown is full. Therefore the invariant remains true
(see Figure 4).

Finally the simulator transforms the entire track into its mirror-image.

Phase 3 (loading). The simulator removes the marker that separated the sections
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1
...
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...

...

...
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

frame i− 1

...

Fig. 1.

· · · · · · 1 · · · 2i 2i + 1 · · · 2i+1

Fig. 2.



EFFICIENT SIMULATIONS BY QUEUE MACHINES 1067

· · · · · · 2i · · · 1 2i + 1 · · · 2i+1

Fig. 3.

1 · · · 2i−1 + 1 · · · 2i · · · 2i + 1 · · · 2i+1

Fig. 4.

not involved in the simulation of the pop operation from the pushdown. Then it
empties the queue and stores its contents onto the pushdown. Note that the initial
sequence of frames is restored by forming the mirror-image of the contents of the queue
at the end of the previous phase. We thus obtain the situation shown in Figure 5.

This completes the simulation of a pop operation.
For a push operation the situation is slightly more complicated, since the current

number of frames stored on the pushdown might not suffice for storing another symbol.
In the following we describe the simulation of a push operation again in three phases,
referring to the corresponding phases in a pop operation if there are common sections.

Phase 1 (unloading). The simulator checks whether the topmost cell is empty. If
so, it fills this position with the new symbol and skips the remaining phases. Otherwise
it unloads the pushdown onto the queue until it has read a frame that is not completely
full or the pushdown becomes empty. In the latter case it allocates a new frame on the
queue. This is done by counting the current length � of the queue on the pushdown
and adding � + 1 (for each track) empty cells.

Phase 2 (redistribution). The remaining contents of the pushdown are protected
from the forthcoming operations in the same way as described in the simulation of
pop operations. Let frame i be the one that is not completely full. The simulator
collects the 2i+1 − 1 symbols from the topmost cell and the frames that are full and
reverses this string as described above. Then it enters 2k symbols into block 1 of
frame k for each 0 ≤ k < i and the remaining 2i symbols into block 1 of frame i if it is
empty. Otherwise it uses block 0. Finally the new symbol is written into the topmost
cell.

After each operation involving frame i there are 2i symbols and 2i − 1 empty
cells above this frame in the pushdown. At most one access to frame i can thus
occur within 2i steps. The number of operations in the simulation described above is
proportional to the maximum length of the frames involved. We can therefore bound
the time complexity of simulating t(n) steps of the multitape machine by

�log t(n)�∑
k=0

c2k · 
t(n)/2k� = O(t(n) log t(n))

for some constant factor c. Since the number of tracks is fixed for a given machine,
the time complexity of the simulation is also O(t(n) log t(n)).

The simulation employed in the preceding proof is based on the idea of using
memory blocks of exponentially increasing size from the multitape simulation due to
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...

Fig. 5.

Hennie and Stearns [7]. It is known that the latter simulation can be done with a
tape and a pushdown store, and the same is true for our simulation by replacing the
queue by a tape and modifying the appropriate steps in the simulation. A direct
adaption of the simulation from [7] to a machine with queue and pushdown does not,
however, seem to be possible, since keeping the majority of memory accesses close to
the “home” square in that simulation does not work if the information is stored on a
queue. Instead the entire contents would have to be rotated, resulting in a quadratic
slow-down.
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4. Open problems. A gap remains between the upper bound O(n
√
n) from

Theorem 2 and the lower bound Ω(n4/3/ log n) from [9] for the simulation of a push-
down by one queue. The optimality of the bounds in Theorems 3 and 4 are further
open problems.
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Abstract. The k-local Hamiltonian problem is a natural complete problem for the complexity
class QMA, the quantum analogue of NP. It is similar in spirit to MAX-k-SAT, which is NP-complete
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equivalent to standard quantum computation.
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1. Introduction. Quantum complexity theory has emerged alongside the first
efficient quantum algorithms in an attempt to formalize the notion of an efficient
algorithm. In analogy to classical complexity theory, several new quantum complex-
ity classes have appeared. A major challenge today consists in understanding their
structure and the interrelation between classical and quantum classes.

One of the most important classical complexity classes is NP—nondeterministic
polynomial time. This class comprises languages that can be verified in polynomial
time by a deterministic verifier. The celebrated Cook–Levin theorem (see, e.g., [17])
shows that this class has complete problems. More formally, it states that SAT is
NP-complete; i.e., it is in NP and any other language in NP can be reduced to it
with polynomial overhead. In SAT we are given a set of clauses (disjunctions) over
n variables and asked whether there is an assignment that satisfies all clauses. One
can consider the restriction of SAT in which each clause consists of at most k literals.
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This is known as the k-SAT problem. It is known that 3-SAT is still NP-complete
while 2-SAT is in P, i.e., has a polynomial time solution. We can also consider the
MAX-k-SAT problem: here, given a k-SAT formula and a number m we are asked
whether there exists an assignment that satisfies at least m clauses. It turns out that
MAX-2-SAT is already NP-complete; MAX-1-SAT is clearly in P.

The class QMA is the quantum analogue of NP in a probabilistic setting, i.e.,
the class of all languages that can be probabilistically verified by a quantum verifier
in polynomial time (the name is derived from the classical class MA, which is the
randomized analogue of NP). This class, which is also called BQNP, was first studied
in [13, 12]; the name QMA was given to it by Watrous [20]. Several problems in QMA
have been identified [20, 12, 9]. For a good introduction to the class QMA, see the
book by Kitaev, Shen, and Vyalvi [12] and the paper by Watrous [20].

Kitaev, inspired by ideas due to Feynman, defined the quantum analogue of the
classical SAT problem, the local Hamiltonian problem [12].1 An instance of k-
local Hamiltonian can be viewed as a set of local constraints on n qubits, each
involving at most k of them. We are asked whether there is a state of the n qubits such
that the expected number of violated constraints is either below a certain threshold or
above another, with a promise that one of the two cases holds and both thresholds are
at least a constant apart. More formally, we are to determine whether the groundstate
energy of a given k-local Hamiltonian is below one threshold or above another.

Kitaev proved [12] that the 5-local Hamiltonian problem is QMA-complete.
Later, Kempe and Regev showed that even 3-local Hamiltonian is complete for
QMA [11]. In addition, it is easy to see that 1-local Hamiltonian is in P. The
complexity of the 2-local Hamiltonian problem was left as an open question in
[2, 21, 11, 7]. It is not hard to see that the k-local Hamiltonian problem contains
the MAX-k-SAT problem as a special case.2 Using the known NP-completeness of
MAX-2-SAT, we obtain that 2-local Hamiltonian is NP-hard; i.e., any problem in
NP can be reduced to it with polynomial overhead. But is it also QMA-complete? Or
perhaps it lies in some intermediate class between NP and QMA? Some special cases
of the problem were considered by Bravyi and Vyalyi [7]; however, the question still
remained open.

In this paper we settle the question of the complexity of 2-local Hamiltonian

and show that the following theorem holds.

Theorem 1.1. The 2-local Hamiltonian problem is QMA-complete.

In [12] it was shown that the k-local Hamiltonian problem is in QMA for any
constant k (and in fact even for k = O(log n), where n is the total number of qubits).
Hence, our task in this paper is to show that any problem in QMA can be reduced
to the 2-local Hamiltonian problem with a polynomial overhead. We give two
self-contained proofs for this.

Our first proof is based on a careful selection of gates in a quantum circuit and
several applications of a lemma called the projection lemma. The proof is quite in-
volved; however, it uses only elementary linear algebra and hence might appeal to
some readers.

1For a survey of the local Hamiltonian problem, see [2].
2The idea is to represent the n variables by n qubits and represent each clause by a Hamiltonian.

Each Hamiltonian is diagonal and acts on the k variables that appear in its clause. It “penalizes”
the assignment that violates the clause by increasing its eigenvalue. Therefore, the lowest eigenvalue
of the sum of the Hamiltonians corresponds to the maximum number of clauses that can be satisfied
simultaneously.
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Our second proof is based on perturbation theory—a collection of techniques that
are used to analyze sums of Hamiltonians. This proof is more mathematically involved.
Nevertheless, it might give more intuition as to why the 2-local Hamiltonian

problem is QMA-complete. Unlike the first proof, which shows how to represent any
QMA circuit by a 2-local Hamiltonian, the second proof shows a reduction from the
3-local Hamiltonian problem (which is already known to be QMA-complete [11])
to the 2-local Hamiltonian problem. To the best of our knowledge, this is the first
reduction inside QMA (i.e., not from the circuit problem). This proof involves what
is known as third order perturbation theory (interestingly, the projection lemma used
in our first proof can be viewed as an instance of first order perturbation theory). We
are not aware of any similar application of perturbation theory in the literature and
we hope that our techniques will be useful elsewhere.

Adiabatic computation. It has been shown in [3] that the model of adiabatic
computation with 3-local interactions is equivalent to the standard model of quantum
computation (i.e., the quantum circuit model).3 We strengthen this result by showing
that 2-local interactions suffice.4 Namely, the model of adiabatic computation with
2-local interactions is equivalent to the standard model of quantum computation. We
obtain this result by applying the technique of perturbation theory, which we develop
in the second proof of the main theorem.

Recent work. After a preliminary version of our paper appeared [10], Oliveira and
Terhal [16] generalized our results and have shown that the 2-local Hamiltonian

problem remains QMA-complete even if the Hamiltonians are restricted to nearest
neighbor interactions between qubits on a two-dimensional grid. Similarly, they show
that the model of adiabatic computation with 2-local Hamiltonians between nearest
neighbor qubits on a two-dimensional grid is equivalent to standard quantum compu-
tation. Their proof applies the perturbation theory techniques that we develop in this
paper and introduces several novel “perturbation gadgets” akin to our three-qubit
gadget in section 6.2.

Structure. We start by describing our notation and some basics in section 2. Our
first proof is developed in sections 3, 4, and 5. The main tool in this proof, which we
name the projection lemma, appears in section 3. Using this lemma, we rederive in
section 4 some of the previously known results. Then we give the first proof of our
main theorem in section 5. In section 6 we give the second proof of our main theorem.
This proof does not require the projection lemma and is in fact independent of the
first proof. Hence, some readers might choose to skip sections 3, 4, and 5 and go
directly to section 6. In section 7 we show how to use our techniques to prove that
2-local adiabatic computation is equivalent to standard quantum computation. Some
open questions are mentioned in section 8.

2. Preliminaries. QMA is naturally defined as a class of promise problems: A
promise problem L is a pair (Lyes, Lno) of disjoint sets of strings corresponding to
Yes and No instances of the problem. The problem is to determine, given a string
x ∈ Lyes ∪ Lno, whether x ∈ Lyes or x ∈ Lno. Let B be the Hilbert space of a qubit.

Definition 2.1 (QMA). Fix ε = ε(|x|) such that ε = 2−Ω(|x|). Then, a promise
problem L is in QMA if there exists a quantum polynomial time verifier V and a
polynomial p such that

3Interestingly, their proof uses ideas from the proof of QMA-completeness of the local Hamil-

tonian problem.
4The main result of [3] is that 2-local adiabatic computation on six-dimensional particles is

equivalent to standard quantum computation. This result is incomparable to ours since the particles
in [3] are set on a two-dimensional grid and all 2-local interactions are between closest neighbors.
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• ∀x ∈ Lyes ∃|ξ〉 ∈ B⊗p(|x|) such that Pr (V (|x〉, |ξ〉) = 1) ≥ 1 − ε,
• ∀x ∈ Lno ∀|ξ〉 ∈ B⊗p(|x|) such that Pr (V (|x〉, |ξ〉) = 1) ≤ ε,

where Pr (V (|x〉, |ξ〉) = 1) denotes the probability that V outputs 1 given |x〉 and |ξ〉.
We note that in the original definition ε was defined to be 2−Ω(|x|) ≤ ε ≤ 1/3. By

using amplification methods, it was shown in [12] that for any choice of ε in this range
the resulting classes are equivalent. Hence our definition is equivalent to the original
one. In a related result, Marriott and Watrous [14] showed that exponentially small
ε can be achieved without amplification with a polynomial overhead in the verifier’s
computation.

A natural choice for the quantum analogue of SAT is the local Hamiltonian

problem. As we will see later, this problem is indeed a complete problem for QMA.

Definition 2.2. We say that an operator H : B⊗n → B⊗n on n qubits is a k-
local Hamiltonian if H is expressible as H =

∑r
j=1 Hj where each term is a Hermitian

operator acting on at most k qubits.

Definition 2.3. The (promise) problem k-local Hamiltonian is defined as
follows. We are given a k-local Hamiltonian on n qubits H =

∑r
j=1 Hj with r =

poly(n). Each Hj has a bounded operator norm ‖Hj‖ ≤ poly(n), and its entries are
specified by poly(n) bits. In addition, we are given two constants a and b with a < b.
In Yes instances, the smallest eigenvalue of H is at most a. In No instances, it is
larger than b. We should decide which one is the case.

We will frequently refer to the lowest eigenvalue of some Hamiltonian H.

Definition 2.4. Let λ(H) denote the lowest eigenvalue of the Hamiltonian H.
Another important notion that will be used in this paper is that of a restriction of a
Hamiltonian.

Definition 2.5. Let H be a Hamiltonian and let Π be a projection on some
subspace S. Then we say that the Hamiltonian ΠHΠ on S is the restriction of H to
S. We denote this restriction by H|S .

3. Projection lemma. Our main technical tool is the projection lemma. This
lemma (in a slightly different form) was already used in [11] and [3] but not as exten-
sively as it is used in this paper (in fact, we apply it four times in the first proof of
our main theorem). The lemma allows us to successively cut out parts of the Hilbert
space by giving them a large penalty. More precisely, assume we work in some Hilbert
space H and let H1 be some Hamiltonian. For some subspace S ⊆ H, let H2 be a
Hamiltonian with the property that S is an eigenspace of eigenvalue 0 and S⊥ has
eigenvalues at least J for some large J � ‖H1‖. In other words, H2 gives a very high
penalty to states in S⊥. Now consider the Hamiltonian H = H1 + H2. The projec-
tion lemma says that λ(H), the lowest eigenvalue of H, is very close to λ(H1|S), the
lowest eigenvalue of the restriction of H1 to S. The intuitive reason for this is the
following. By adding H2 we give a very high penalty to any vector that has even a
small projection in the S⊥ direction. Hence, all eigenvectors with low eigenvalue (and
in particular the one corresponding to λ(H)) have to lie very close to S. From this it
follows that these eigenvectors correspond to the eigenvectors of H1|S .

The strength of this lemma comes from the following fact. Even though H1 and
H2 are local Hamiltonians, H1|S is not necessarily so. In other words, the projection
lemma allows us to approximate a nonlocal Hamiltonian by a local Hamiltonian.

Lemma 3.1. Let H = H1+H2 be the sum of two Hamiltonians operating on some
Hilbert space H = S + S⊥. The Hamiltonian H2 is such that S is a zero eigenspace
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and the eigenvectors in S⊥ have eigenvalue at least J > 2‖H1‖. Then,

λ(H1|S) − ‖H1‖2

J − 2‖H1‖
≤ λ(H) ≤ λ(H1|S).

Notice that with, say, J ≥ 8‖H1‖2+2‖H1‖ = poly(‖H1‖) we have λ(H1|S)−1/8 ≤
λ(H) ≤ λ(H1|S).

Proof. First, we show that λ(H) ≤ λ(H1|S). Let |η〉 ∈ S be the eigenvector of
H1|S corresponding to λ(H1|S). Using H2|η〉 = 0,

〈η|H|η〉 = 〈η|H1|η〉 + 〈η|H2|η〉 = λ(H1|S)

and hence H must have an eigenvector of eigenvalue at most λ(H1|S).

We now show the lower bound on λ(H). We can write any unit vector |v〉 ∈ H as
|v〉 = α1|v1〉 + α2|v2〉 where |v1〉 ∈ S and |v2〉 ∈ S⊥ are two unit vectors, α1, α2 ∈ R,
α1, α2 ≥ 0 and α2

1 + α2
2 = 1. Let K = ‖H1‖. Then we have

〈v|H|v〉 ≥ 〈v|H1|v〉 + Jα2
2

= (1 − α2
2)〈v1|H1|v1〉 + 2α1α2Re〈v1|H1|v2〉 + α2

2〈v2|H1|v2〉 + Jα2
2

≥ 〈v1|H1|v1〉 −Kα2
2 − 2Kα2 −Kα2

2 + Jα2
2

= 〈v1|H1|v1〉 + (J − 2K)α2
2 − 2Kα2

≥ λ(H1|S) + (J − 2K)α2
2 − 2Kα2,

where we used α2
1 = 1 − α2

2 and α1 ≤ 1. Since (J − 2K)α2
2 − 2Kα2 is minimized for

α2 = K/(J − 2K), we have

〈v|H|v〉 ≥ λ(H1|S) − K2

J − 2K
.

4. Kitaev’s construction. In this section we reprove Kitaev’s result that
O(log n)-local Hamiltonian is QMA-complete. The difference between our ver-
sion of the proof and the original one in [12] is that we do not use the authors’
geometrical lemma to obtain the result, but rather apply our Lemma 3.1. This paves
the way to the later proof that 2-local Hamiltonian is QMA-complete.

As mentioned before, the proof that O(log n)-local Hamiltonian is in QMA
appears in [12]. Hence, our goal is to show that any problem in QMA can be reduced
to O(log n)-local Hamiltonian. Let Vx = V (|x〉, ·) = UT · · ·U1 be a quantum
verifier circuit of size T = poly(|x|) operating on N = poly(|x|) qubits.5 Here and in
what follows we assume without loss of generality that each Ui is either a one-qubit
gate or a two-qubit gate. We further assume that T ≥ N and that initially, the first
m = p(|x|) qubits contain the proof and the remaining ancillary N − m qubits are
zero (see Definition 2.1). Finally, we assume that the output of the circuit is written
into the first qubit (i.e., it is |1〉 if the circuit accepts). See Figure 4.1.

5For ease of notation we hardwire the dependence on the input x into the circuit.



THE COMPLEXITY OF THE LOCAL HAMILTONIAN PROBLEM 1075

|0〉
|0〉

0 1 2 93 4 5 6 7 81111 10 11

Fig. 4.1. A circuit with T = 11, N = 4, and m = 2.

The constructed Hamiltonian H operates on a space of n = N+log(T +1) qubits.
The first N qubits represent the computation and the last log(T +1) qubits represent
the possible values 0, . . . , T for the clock:

H = Hout + JinHin + JpropHprop.

The coefficients Jin and Jprop will be chosen later to be some large polynomials in N .
The terms are given by

Hin =

N∑
i=m+1

|1〉〈1|i ⊗ |0〉〈0|, Hout = (T + 1)|0〉〈0|1 ⊗ |T 〉〈T |,

Hprop =

T∑
t=1

Hprop,t,(4.1)

and

Hprop,t =
1

2

(
I ⊗ |t〉〈t| + I ⊗ |t-1〉〈t-1| − Ut ⊗ |t〉〈t-1| − U†

t ⊗ |t-1〉〈t|
)

(4.2)

for 1 ≤ t ≤ T , where |α〉〈α|i denotes the projection on the subspace in which the ith
qubit is |α〉. It is understood that the first part of each tensor product acts on the space

of the N computation qubits and the second part acts on the clock qubits. Ut and U†
t

in Hprop,t act on the same computational qubits as Ut does when it is employed in
the verifier’s circuit Vx. Intuitively, each Hamiltonian “checks” a certain property by
increasing the eigenvalue if the property does not hold: The Hamiltonian Hin checks
that the input of the circuit is correct (i.e., none of the last N − m computation
qubits is 1), Hout checks that the output bit indicates acceptance, and Hprop checks
that the propagation is according to the circuit. Notice that these Hamiltonians are
O(log n)-local since there are log(T + 1) = O(log n) clock qubits.

To show that a problem in QMA reduces to the O(log n)-local Hamiltonian

problem with H chosen as above, we prove the following lemma.
Lemma 4.1. If the circuit Vx accepts with probability more than 1 − ε on some

input |ξ, 0〉, then the Hamiltonian H has an eigenvalue smaller than ε. If the circuit
Vx accepts with probability less than ε on all inputs |ξ, 0〉, then all eigenvalues of H
are larger than 3

4 − ε.
Proof. Assume the circuit Vx accepts with probability more than 1 − ε on some

|ξ, 0〉. Define

|η〉 =
1√

T + 1

T∑
t=0

Ut · · ·U1|ξ, 0〉 ⊗ |t〉.

It can be seen that 〈η|Hprop|η〉 = 〈η|Hin|η〉 = 0 and that 〈η|Hout|η〉 < ε. Hence,
the smallest eigenvalue of H is less than ε. It remains to prove the second part of



1076 JULIA KEMPE, ALEXEI KITAEV, AND ODED REGEV

the lemma. So now assume the circuit Vx accepts with probability less than ε on all
inputs |ξ, 0〉.

Let Sprop be the groundspace of the Hamiltonian Hprop. It is easy to see that
Sprop is a 2N -dimensional space whose basis is given by the states

|ηi〉 =
1√

T + 1

T∑
t=0

Ut · · ·U1|i〉 ⊗ |t〉,(4.3)

where i ∈ {0, . . . , 2N − 1} and |i〉 represents the ith vector in the computational basis
on the N computation qubits. These states have eigenvalue 0. The states in Sprop

represent the correct propagation from an initial state on the N computation qubits
according to the verifier’s circuit Vx.

We would like to apply Lemma 3.1 with the space Sprop. For that, we need to
establish that JpropHprop gives a sufficiently large (poly(N)) penalty to states in S⊥

prop.
In other words, the smallest nonzero eigenvalue of Hprop has to be lower bounded by
some inverse polynomial in N . This has been shown in [12], but we wish to briefly
recall it here, as it will apply in several instances throughout this paper.

Claim 4.2 ([12]). The smallest nonzero eigenvalue of Hprop is at least c/T 2 for
some constant c > 0.

Proof. We first apply the change of basis

W =
T∑

t=0

Ut · · ·U1 ⊗ |t〉〈t|,

which transforms Hprop to

W †HpropW =

T∑
t=1

I ⊗ 1

2
(|t〉〈t| + |t-1〉〈t-1| − |t〉〈t-1| − |t-1〉〈t|) .

The eigenspectrum of Hprop is unchanged by this transformation. The resulting
Hamiltonian is block-diagonal with 2N blocks of size T + 1:

W †HpropW = I ⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 − 1

2 0 · · · 0

− 1
2 1 − 1

2 0
. . .

...

0 − 1
2 1 − 1

2 0
. . .

...
. . .

. . .
. . .

. . .
. . .

... 0 − 1
2 1 − 1

2 0
0 − 1

2 1 − 1
2

0 · · · 0 − 1
2

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(4.4)

Using standard techniques, one can show that the smallest nonzero eigenvalue of each
(T + 1) × (T + 1) block matrix is bounded from below by c/T 2 for some constant
c > 0.

Hence any eigenvector of JpropHprop orthogonal to Sprop has eigenvalue at least
J = cJprop/T

2. Let us apply Lemma 3.1 with

H1 = Hout + JinHin, H2 = JpropHprop.
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Note that ‖H1‖ ≤ ‖Hout‖+ Jin‖Hin‖ ≤ T + 1 + JinN ≤ poly(N) since Hin and Hout

are sums of orthogonal projectors and Jin = poly(N). Lemma 3.1 implies that we can
choose Jprop = JT 2/c = poly(N), such that λ(H) is lower bounded by λ(H1|Sprop)− 1

8 .
With this in mind, let us now consider the Hamiltonian H1|Sprop on Sprop.

Let Sin ⊂ Sprop be the groundspace of Hin|Sprop . Then Sin is a 2m-dimensional
space whose basis is given by states as in (4.3) with |i〉 = |j, 0〉, where |j〉 is a com-
putational basis state on the first m computation qubits. We apply Lemma 3.1 again
inside Sprop with

H1 = Hout|Sprop , H2 = JinHin|Sprop
.

This time, ‖H1‖ ≤ ‖Hout‖ = T + 1 = poly(N). Any eigenvector of H2 orthogonal to
Sin inside Sprop has eigenvalue at least Jin/(T + 1). Hence, there is a Jin = poly(N)
such that λ(H1 + H2) is lower bounded by λ(Hout|Sin) − 1

8 .
Since the circuit Vx accepts with probability less than ε on all inputs |ξ, 0〉, we have

that all eigenvalues of Hout|Sin
are larger than 1 − ε. Hence the smallest eigenvalue

of H is larger than 1 − ε− 2
8 = 3

4 − ε, proving the second part of the lemma.

5. The 2-local construction.
Previous constructions. Let us give an informal description of ideas used in previ-

ous improvements on Kitaev’s construction; these ideas will also appear in our proof.
The first idea is to represent the clock register in unary notation. Then, the clock
register consists of T qubits, and time step t ∈ {0, . . . , T} is represented by |1t0T−t〉.
The crucial observation is that clock terms that used to involve log(T + 1) qubits
can now be replaced by 3-local terms that are essentially equivalent. For example, a
term like |t-1〉〈t| can be replaced by the term |100〉〈110|t−1,t,t+1. Since the gates Ut

involve at most two qubits, we obtain a 5-local Hamiltonian. This is essentially the
way 5-local Hamiltonian was shown to be QMA-complete in [12]. The only minor
complication is that we need to get rid of illegal clock states (i.e., ones that are not a
unary representation). This is done by the addition of a (2-local) Hamiltonian Hclock

that penalizes a clock state whenever 1 appears after 0.
This result was further improved to 3-local Hamiltonian in [11]. The main

idea there is to replace a 3-local clock term like |100〉〈110|t−1,t,t+1 by the 1-local term
|0〉〈1|t. These one-qubit terms are no longer equivalent to the original clock terms.
Indeed, it can be seen that they have unwanted transitions into illegal clock states.
The main idea in [11] was that by giving a large penalty to illegal clock states (i.e., by
multiplying Hclock by some large number) and applying the projection lemma, we can
essentially project these one-qubit terms to the subspace of legal clock states. Inside
this subspace, these terms become the required clock terms.

The 2-local construction. Most of the terms that appear in the construction of
[11] are already 2-local. The only 3-local terms are terms as in (4.2) that correspond to
two-qubit gates (those corresponding to one-qubit gates are already 2-local). Hence,
in order to prove our main theorem, it is enough to find a 2-local Hamiltonian that
checks for the correct propagation of two-qubit gates. This seems difficult because
the Hamiltonian must somehow couple two computation qubits to a clock qubit. We
circumvent this problem in the following manner. First, we isolate from the propa-
gation Hamiltonian those terms that correspond to one-qubit gates and we multiply
these terms by some large factor. Using the projection lemma, we can project the
remaining Hamiltonians into a space where the one-qubit-gate propagation is correct.
In other words, at this stage we can assume that our space is spanned by states that
correspond to legal propagation according to the one-qubit gates. This allows us to
couple clock qubits instead of computation qubits. To see this, consider the circuit in
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Figure 5.1 at time t and at time t+ 2. A Z gate flips the phase of a qubit if its state
is |1〉 and leaves it unchanged otherwise. Hence, the phase difference between time
t and time t + 2 corresponds to the parity of the two qubits. This phase difference
can be detected by a 2-local term such as |00〉〈11|t+1,t+2. The crucial point here is
that by using a term involving only two clock qubits, we are able to check the state
of two computation qubits (in this case, their parity) at a certain time. This is the
main idea in our proof.

We now present the proof of the main theorem in detail. We start by making
some further assumptions on the circuit Vx, all without loss of generality. First, we
assume that in addition to one-qubit gates, the circuit contains only the controlled
phase gate, Cφ. This two-qubit gate is diagonal in the computational basis and flips
the sign of the state |11〉,

Cφ = Cφ
† = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|.

It is known [5, 15] that quantum circuits consisting of one-qubit gates and Cφ gates are
universal6 and can simulate any other quantum circuit with only polynomial overhead.
Second, we assume that each Cφ gate is both preceded and followed by two Z gates,
one on each qubit, as in Figure 5.1. The Z gate is defined by |0〉〈0| − |1〉〈1|; i.e., it
is a diagonal one-qubit gate that flips the sign of |1〉. Since both the Z gate and the
Cφ gate are diagonal, they commute and the effect of the Z-gates cancels out. This
assumption makes the circuit at most five times bigger. Finally, we assume that the
Cφ gates are applied at regular intervals. In other words, if T2 is the number of Cφ

gates and L is the interval length, then a Cφ gate is applied at steps L, 2L, . . . , T2L.
Before the first Cφ gate, after the last Cφ gate, and between any two consecutive Cφ

gates we have L − 1 one-qubit gates. This makes the total number of gates in the
resulting circuit T = (T2 + 1)L− 1.

Cφ

Z

Z

Z

Z

t-2t-3 t-1 t t+1 t+2

Fig. 5.1. A modified Cφ gate applied at step t.

We construct a Hamiltonian H that operates on a space of N + T qubits. The
first N qubits represent the computation and the last T qubits represent the clock.
We think of the clock as represented in unary,

|t̂〉 def
= |1 . . . 1︸ ︷︷ ︸

t

0 . . . 0︸ ︷︷ ︸
T−t

〉.(5.1)

Let T1 be the time steps in which a one-qubit gate is applied. Namely, T1 =
{1, . . . , T} \ {L, 2L, . . . , T2L}. Then

H = Hout + JinHin + J2Hprop2 + J1Hprop1 + JclockHclock,

6The original universal gate set in [5] consists of one-qubit gates and CNOT gates. It is, however,
easy to see that a CNOT gate can be obtained from a Cφ gate by conjugating the second qubit with
Hadamard gates (see [15]).
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where

Hin =

N∑
i=m+1

|1〉〈1|i ⊗ |0〉〈0|1, Hout = (T + 1)|0〉〈0|1 ⊗ |1〉〈1|T ,

Hclock =
∑

1≤i<j≤T

I ⊗ |01〉〈01|ij .

The terms Hprop1 and Hprop2, which represent the correct propagation according to
the one-qubit gates and two-qubit gates, respectively, are defined as

Hprop1 =
∑
t∈T1

Hprop,t, Hprop2 =

T2∑
l=1

(Hqubit,lL + Htime,lL)

with

Hprop,t =
1

2

(
I ⊗ |10〉〈10|t,t+1 + I ⊗ |10〉〈10|t−1,t − Ut ⊗ |1〉〈0|t − U†

t ⊗ |0〉〈1|t
)

for t ∈ T1 ∩ {2, . . . , T − 1} and

Hprop,1 =
1

2

(
I ⊗ |10〉〈10|1,2 + I ⊗ |0〉〈0|1 − U1 ⊗ |1〉〈0|1 − U†

1 ⊗ |0〉〈1|1
)
,

Hprop,T =
1

2

(
I ⊗ |1〉〈1|T + I ⊗ |10〉〈10|T−1,T − UT ⊗ |1〉〈0|T − U†

T ⊗ |0〉〈1|T
)

and, with ft and st being the first and second qubits of the Cφ gate at time t,

Hqubit,t =
1

2

(
−2|0〉〈0|ft − 2|0〉〈0|st + |1〉〈1|ft + |1〉〈1|st

)
⊗ (|1〉〈0|t + |0〉〈1|t) ,

Htime,t =
1

8
I ⊗
(
|10〉〈10|t,t+1 + 6|10〉〈10|t+1,t+2 + |10〉〈10|t+2,t+3

+ 2|11〉〈00|t+1,t+2 + 2|00〉〈11|t+1,t+2

+ |1〉〈0|t+1 + |0〉〈1|t+1 + |1〉〈0|t+2 + |0〉〈1|t+2

+ |10〉〈10|t−3,t−2 + 6|10〉〈10|t−2,t−1 + |10〉〈10|t−1,t

+ 2|11〉〈00|t−2,t−1 + 2|00〉〈11|t−2,t−1

+ |1〉〈0|t−2 + |0〉〈1|t−2 + |1〉〈0|t−1 + |0〉〈1|t−1

)
.

At this point, these last two expressions might look strange. Let us say that later,
when we consider their restriction to a smaller space, the reason for this definition
should become clear. Note that all the above terms are at most 2-local. We will later
choose Jin � J2 � J1 � Jclock ≤ poly(N). As in section 4, we have to prove the
following lemma.

Lemma 5.1. Assume that the circuit Vx accepts with probability more than 1− ε
on some input |ξ, 0〉. Then H has an eigenvalue smaller than ε. If the circuit Vx

accepts with probability less than ε on all inputs |ξ, 0〉, then all eigenvalues of H are
larger than 1

2 − ε.
Proof. If the circuit Vx accepts with probability more than 1 − ε on some input

|ξ, 0〉, then the state

|η〉 =
1√

T + 1

T∑
t=0

Ut · · ·U1|ξ, 0〉 ⊗ |t̂〉
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satisfies 〈η|H|η〉 ≤ ε. In order to see this, one can check that

〈η|Hclock|η〉 = 〈η|Hprop1|η〉 = 〈η|Hprop2|η〉 = 〈η|Hin|η〉 = 0

and 〈η|Hout|η〉 ≤ ε. However, verifying that 〈η|Hprop2|η〉 = 0 can be quite tedious.
Later in the proof, we will mention an easier way to see this.

In the following, we will show that if the circuit Vx accepts with probability less
than ε on all inputs |ξ, 0〉, then all eigenvalues of H are larger than 1

2 −ε. The proof of
this is based on four applications of Lemma 3.1. Schematically, we proceed as follows:

H ⊃ Slegal ⊃ Sprop1 ⊃ Sprop ⊃ Sin,

where Slegal corresponds to states with legal clock states written in unary, and Sprop1

is spanned by states in the legal clock space whose propagation at time steps cor-
responding to one-qubit gates (that is, in T1) is correct. Finally, Sprop and Sin are
defined in almost the same way as in section 4. These spaces will be described in
more detail later.

Norms. Note that all relevant norms, as needed in Lemma 3.1, are polynomial
in N . Indeed, we have ‖Hout‖ = T + 1 and ‖Hin‖ ≤ N as in section 4, ‖Hprop1‖ ≤∑

t∈T1
‖Hprop,t‖ ≤ 2T (each term in Hprop1 has norm at most 2), and ‖Hprop2‖ ≤∑T2

t=1(‖Hqubit,lL‖ + ‖Htime,lL‖) ≤ O(T2) ≤ O(T ).
1. Restriction to legal clock states in Slegal. Let Slegal be the (T+1)2N -dimensional

space spanned by states with a legal unary representation on the T clock qubits, i.e.,
by states of the form |ξ̃〉 ⊗ |t̂〉 with |t̂〉 as in (5.1). In this first stage we apply Lemma
3.1 with

H1 = Hout + JinHin + J2Hprop2 + J1Hprop1, H2 = JclockHclock.

Notice that Slegal is an eigenspace of H2 of eigenvalue 0 and that states orthogonal to
Slegal have eigenvalue at least Jclock. Lemma 3.1 implies that we can choose Jclock =
poly(‖H1‖) = poly(N) such that λ(H) can be lower bounded by λ(H1|Slegal

) − 1
8 .

Hence, in the remainder of the proof, it is enough to study H1|Slegal
inside the space

Slegal. This can be written as

Hout|Slegal
+ JinHin|Slegal

+ J2Hprop2|Slegal
+ J1Hprop1|Slegal

with

Hin|Slegal
=

N∑
i=m+1

|1〉〈1|i ⊗ |0̂〉〈0̂|, Hout|Slegal
= (T + 1)|0〉〈0|1 ⊗ |T̂ 〉〈T̂ |,

Hprop,t|Slegal
=

1

2

(
I ⊗ |t̂〉〈t̂| + I ⊗ |t̂-1〉〈t̂-1| − Ut ⊗ |t̂〉〈t̂-1| − U†

t ⊗ |t̂-1〉〈t̂|
)
,

Hqubit,t|Slegal
=

1

2

(
−2|0〉〈0|ft − 2|0〉〈0|st + |1〉〈1|ft + |1〉〈1|st

)
⊗
(
|t̂〉〈t̂-1| + |t̂-1〉〈t̂|

)
,

Htime,t|Slegal
=

1

8
I ⊗
(
|t̂〉〈t̂| + 6|t̂+1〉〈t̂+1| + |t̂+2〉〈t̂+2|

+ 2|t̂+2〉〈t̂| + 2|t̂〉〈t̂+2| + |t̂+1〉〈t̂| + |t̂〉〈t̂+1| + |t̂+2〉〈t̂+1| + |t̂+1〉〈t̂+2|

+ |t̂-3〉〈t̂-3| + 6|t̂-2〉〈t̂-2| + |t̂-1〉〈t̂-1|

+2|t̂-1〉〈t̂-3| + 2|t̂-3〉〈t̂-1| + |t̂-2〉〈t̂-3| + |t̂-3〉〈t̂-2| + |t̂-1〉〈t̂-2| + |t̂-2〉〈t̂-1|
)
.
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The above was obtained by noting that the projection of a term like, say, |10〉〈10|t,t+1

on Slegal is exactly |t̂〉〈t̂|. Similarly, the projection of the term |1〉〈0|t+1 is |t̂+1〉〈t̂|.7
By rearranging terms, Htime,t|Slegal

can be written as a sum of projectors:

1

8
I ⊗
{

2
(
|t̂〉 + |t̂+1〉

)(
〈t̂| + 〈t̂+1|

)
+ 2
(
|t̂+1〉 + |t̂+2〉

)(
〈t̂+1| + 〈t̂+2|

)
+
(
|t̂〉 − |t̂+1〉

)(
〈t̂| − 〈t̂+1|

)
+
(
|t̂+1〉 − |t̂+2〉

)(
〈t̂+1| − 〈t̂+2|

)
− 2
(
|t̂〉 − |t̂+2〉

)(
〈t̂| − 〈t̂+2|

)
+ 2
(
|t̂-3〉 + |t̂-2〉

)(
〈t̂-3| + 〈t̂-2|

)
+ 2
(
|t̂-2〉 + |t̂-1〉

)(
〈t̂-2| + 〈t̂-1|

)
+
(
|t̂-3〉 − |t̂-2〉

)(
〈t̂-3| − 〈t̂-2|

)
+
(
|t̂-2〉 − |t̂-1〉

)(
〈t̂-2| − 〈t̂-1|

)
− 2
(
|t̂-3〉 − |t̂-1〉

)(
〈t̂-3| − 〈t̂-1|

)}
.(5.2)

Notice that the above expression is symmetric around t− 1
2 (i.e., switching t− 1 with

t, t− 2 with t + 1, and t− 3 with t + 2 does not change the expression). Let us also

mention that the fact that we have terms like |t̂〉− |t̂+2〉 is crucial in our proof. They
allow us to compare the state at time t to the state at time t + 2.

2. Restriction to Sprop1. We now apply Lemma 3.1 inside Slegal with

H1 = (Hout + JinHin + J2Hprop2) |Slegal
, H2 = J1Hprop1|Slegal

.

Let Sprop1 be the 2N (T2 + 1)-dimensional space given by all states that represent
correct propagation on all one-qubit gates. More precisely, let

|ηl,i〉
def
=

1√
L

(l+1)L−1∑
t=lL

Ut · · ·U1|i〉 ⊗ |t̂〉,(5.3)

where l ∈ {0, . . . , T2}, i ∈ {0, . . . , 2N − 1}, and |i〉 represents the ith vector in the
computational basis. Then these states form a basis of Sprop1. It is easy to see that
each |ηl,i〉 is an eigenvector of Hprop1 of eigenvalue 0. Hence, Sprop1 is an eigenspace
of eigenvalue 0 of Hprop1|Slegal

. Furthermore, Hprop1|Slegal
decomposes into T2 + 1

invariant blocks, with the lth block spanned by states of the form Ut · · ·U1|i〉 ⊗ |t̂〉
for t = lL, . . . , (l + 1)L − 1. Inside such a block Hprop1|Slegal

corresponds exactly
to Hprop of section 4, equations (4.1), (4.2). By Claim 4.2, its nonzero eigenvalues
are at least c/L2 ≥ c/T 2 for some constant c > 0 and hence the smallest nonzero
eigenvalue of Hprop1|Slegal

is also at least c/T 2. Therefore, all eigenvectors of H2

orthogonal to Sprop1 have eigenvalue at least J = J1c/T
2 and Lemma 3.1 implies that

for J1 ≥ poly(N), λ(H1 + H2) can be lower bounded by λ(H1|Sprop1) − 1
8 .

Hence, in the remainder of the proof, it is enough to study

Hout|Sprop1 + JinHin|Sprop1 + J2Hprop2|Sprop1 .

Let us find Hprop2|Sprop1 . Let t = lL be the time at which the lth Cφ gate is applied
and consider the projection of a state |ηl,i〉 onto the space spanned by the computation

7Notice that we do not have terms like |1〉〈1|t; its projection on Slegal is not |t̂〉〈t̂| but rather

|t̂〉〈t̂| + · · · + |T̂ 〉〈T̂ |.



1082 JULIA KEMPE, ALEXEI KITAEV, AND ODED REGEV

qubits and |t̂〉, |t̂+1〉, |t̂+2〉. Since at time t + 1 (resp., t + 2) a Z gate is applied to
qubit ft (resp., st), this projection is a linear combination of the following four states:

|00〉ft,st |ξ00〉 ⊗
(
|t̂〉 + |t̂+1〉 + |t̂+2〉

)
,

|01〉ft,st |ξ01〉 ⊗
(
|t̂〉 + |t̂+1〉 − |t̂+2〉

)
,

|10〉ft,st |ξ10〉 ⊗
(
|t̂〉 − |t̂+1〉 − |t̂+2〉

)
,

|11〉ft,st |ξ11〉 ⊗
(
|t̂〉 − |t̂+1〉 + |t̂+2〉

)
,

where |ξb1b2〉 is an arbitrary state on the remaining N − 2 computation qubits. This

implies that the restriction to Sprop1 of the projector on, say, |t̂〉 + |t̂+1〉 from (5.2)
is essentially the same as the restriction to Sprop1 of the projector on |0〉ft |t̂〉. More
precisely, for all l1, l2, i1, i2 we have

1

4
〈ηl1,i1 |

(
I ⊗
(
|t̂〉 + |t̂+1〉

)(
〈t̂| + 〈t̂+1|

))
|ηl2,i2〉 = 〈ηl1,i1 |

(
|0〉〈0|ft ⊗ |t̂〉〈t̂|

)
|ηl2,i2〉.

Similarly, the term involving |t̂〉 − |t̂+2〉 satisfies

1

4
〈ηl1,i1 |

(
I ⊗
(
|t̂〉 − |t̂+2〉

)(
〈t̂| − 〈t̂+2|

))
|ηl2,i2〉

= 〈ηl1,i1 |
((

|01〉〈01|ft,st + |10〉〈10|ft,st
)
⊗ |t̂〉〈t̂|

)
|ηl2,i2〉.

Observe that the right-hand side involves two computation qubits and the clock reg-
ister. Being able to obtain such a term from 2-local terms is a crucial ingredient in
this proof.

Following a similar calculation, we see that from the terms involving |t̂-1〉, |t̂-2〉, |t̂-3〉
we obtain projectors involving |t̂-1〉. To summarize, instead of considering Htime,t|Sprop1

we can equivalently consider the restriction to Sprop1 of

1

2

(
2|0〉〈0|ft + 2|0〉〈0|st + |1〉〈1|ft + |1〉〈1|st − 2 |01〉〈01|ft,st − 2|10〉〈10|ft,st

)
⊗
(
|t̂-1〉〈t̂-1| + |t̂〉〈t̂|

)
.

We now add the terms in Hqubit,t. A short calculation shows that the restriction to
Sprop1 of (Htime,t + Hqubit,t) is the same as the restriction to Sprop1 of

|00〉〈00|ft,st ⊗ 2
(
|t̂-1〉 − |t̂〉

)(
〈t̂-1| − 〈t̂|

)
+

|01〉〈01|ft,st ⊗
1

2

(
|t̂-1〉 − |t̂〉

)(
〈t̂-1| − 〈t̂|

)
+

|10〉〈10|ft,st ⊗
1

2

(
|t̂-1〉 − |t̂〉

)(
〈t̂-1| − 〈t̂|

)
+

|11〉〈11|ft,st ⊗
(
|t̂-1〉 + |t̂〉

)(
〈t̂-1| + 〈t̂|

)
.

At this point, let us mention how one can show that for the state |η〉 described
in the beginning of this proof, 〈η|Hprop2|η〉 = 0. First, observe that |η〉 ∈ Sprop1 (its
propagation is correct at all time steps). Next, since |η〉 has a Cφ propagation at time
t, the above Hamiltonian shows that 〈η|Hprop2|η〉 = 0.
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Let us return now to the main proof. Recall that we wish to show a lower bound
on the lowest eigenvalue of

Hout|Sprop1 + JinHin|Sprop1 + J2Hprop2|Sprop1 .(5.4)

In the following, we show a lower bound on the lowest eigenvalue of the Hamiltonian

Hout|Sprop1 + JinHin|Sprop1 + J2H
′(5.5)

on Sprop1, where H ′ satisfies that H ′ ≤ Hprop2|Sprop1
, i.e., Hprop2|Sprop1

−H ′ is positive
semidefinite. Hence, any lower bound on the lowest eigenvalue of the Hamiltonian in
(5.5) implies the same lower bound on the lowest eigenvalue of the Hamiltonian in
(5.4). We define H ′ as the sum over t ∈ {L, 2L, . . . , T2L} of the restriction to Sprop1

of

|00〉〈00|ft,st ⊗
1

2

(
|t̂-1〉 − |t̂〉

)(
〈t̂-1| − 〈t̂|

)
+

|01〉〈01|ft,st ⊗
1

2

(
|t̂-1〉 − |t̂〉

)(
〈t̂-1| − 〈t̂|

)
+

|10〉〈10|ft,st ⊗
1

2

(
|t̂-1〉 − |t̂〉

)(
〈t̂-1| − 〈t̂|

)
+

|11〉〈11|ft,st ⊗
1

2

(
|t̂-1〉 + |t̂〉

)(
〈t̂-1| + 〈t̂|

)
.

Equivalently, H ′ is the sum over t ∈ {L, 2L, . . . , T2L} of

1

2

(
I ⊗ |t̂〉〈t̂| + I ⊗ |t̂-1〉〈t̂-1| − Cφ ⊗ |t̂〉〈t̂-1| − C†

φ ⊗ |t̂-1〉〈t̂|
)∣∣∣

Sprop1

,

which resembles (4.2). Note that this term enforces correct propagation at time step
t = lL. We claim that

H ′ =
1

2L

2N−1∑
i=0

T2∑
l=1

(|ηl−1,i〉 − |ηl,i〉) (〈ηl−1,i| − 〈ηl,i|) .(5.6)

The intuitive reason for this is the following. For any i, |ηl−1,i〉 + |ηl,i〉 can be seen
as a correct propagation at time t = lL. In other words, consider the projection of
|ηl,i〉 on clock |t̂〉 and the projection of |ηl−1,i〉 on clock |t̂-1〉. Then the first state
is exactly the second state after applying the lth Cφ gate. This means that inside
Sprop1, checking correct propagation from time t−1 to time t is equivalent to checking
correct propagation from |ηl−1,i〉 to |ηl,i〉.

More precisely, fix some l and t = lL. Then, using (5.3), we get that for all
l1, l2, i1, i2 such that either l1 �= l, l2 �= l, or i1 �= i2,

〈ηl1,i1 |
(
I ⊗ |t̂〉〈t̂|

)
|ηl2,i2〉 = 0.

Otherwise, l1 = l2 = l and i1 = i2 = i for some i and we have

〈ηl,i|
(
I ⊗ |t̂〉〈t̂|

)
|ηl,i〉 =

1

L
.

Hence we obtain

I ⊗ |t̂〉〈t̂||Sprop1 =
1

L

2N−1∑
i=0

|ηl,i〉〈ηl,i|
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and similarly,

I ⊗ |t̂-1〉〈t̂-1||Sprop1 =
1

L

2N−1∑
i=0

|ηl−1,i〉〈ηl−1,i|.

For the off-diagonal terms we see that

〈ηl1,i1 |
(
Cφ ⊗ |t̂〉〈t̂-1|

)
|ηl2,i2〉 = 0

if l1 �= l or l2 �= l − 1. If l1 = l and l2 = l − 1, then using Cφ = UlL, we get

〈ηl,i1 |
(
Cφ ⊗ |t̂〉〈t̂-1|

)
|ηl−1,i2〉 =

1

L
〈i1| (UlL · · ·U1)

†
CφUlL−1 · · ·U1|i2〉 =

1

L
〈i1|i2〉,

which is 0 if i1 �= i2 and 1
L otherwise. Hence Cφ⊗|t̂〉〈t̂-1||Sprop1 = 1

L

∑2N−1
i=0 |ηl,i〉〈ηl−1,i|

and similarly for its Hermitian adjoint. This establishes (5.6).

3. Restriction to Sprop. Let Sprop be the 2N -dimensional space whose basis is
given by the states

|ηi〉 =
1√

T + 1

T∑
t=0

Ut · · ·U1|i〉 ⊗ |t̂〉 =
1√

T2 + 1

T2∑
l=0

|ηl,i〉

for i ∈ {0, . . . , 2N − 1}. Equation (5.6) shows that Sprop is an eigenspace of H ′ of
eigenvalue 0. Moreover, H ′ is block-diagonal with 2N blocks of size T2+1. Each block
is a matrix as in (4.4), multiplied by 1/L. As in Claim 4.2 we see that the smallest
nonzero eigenvalue of this Hamiltonian is c/LT 2

2 ≥ c/T 2 for some constant c. Now
we can apply Lemma 3.1. This time, we apply it inside Sprop1 with

H1 = (Hout + JinHin) |Sprop1
, H2 = J2H

′.

Eigenvectors of H2 orthogonal to Sprop have eigenvalue at least J = J2c/T
2. As

before, we can choose J2 = poly(N) such that λ(H1 + H2) is lower bounded by
λ(H1|Sprop) − 1

8 . Hence, in the remainder we consider

Hout|Sprop + JinHin|Sprop .

4. Restriction to Sin. The rest of the proof proceeds in the same way as in
section 4. Indeed, the subspace Sprop is isomorphic to the one in section 4 and both
Hout|Sprop and Hin|Sprop are the same Hamiltonians. So by another application of
Lemma 3.1 we get that the lowest eigenvalue of Hout|Sprop + JinHin|Sprop is lower
bounded by λ(Hout|Sin)− 1

8 . As in section 4, we have that λ(Hout|Sin) > 1− ε if the
circuit accepts with probability less than ε. Hence λ(H), the lowest eigenvalue of the
original Hamiltonian H, is larger than 1 − ε− 4

8 = 1
2 − ε.

6. Perturbation theory proof. In this section we give an alternative proof
of our main theorem. In section 6.1, we develop our perturbation theory technique.
Since this technique might constitute a useful tool in other Hamiltonian constructions,
we keep the presentation as general as possible. Then, in section 6.2, we present a
specific application of our technique, the three-qubit gadget. Finally, in section 6.3,
we use this gadget to complete the proof of the main theorem.
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6.1. Perturbation theory. The goal in perturbation theory is to analyze the
spectrum of the sum of two Hamiltonians H̃ = H + V in the case that V has a small
norm compared to the spectral gap of H. One setting was described in the projection
lemma. Specifically, assume H has a zero eigenvalue with the associated eigenspace
S, whereas all other eigenvalues are greater than Δ � ‖V ‖. The projection lemma

shows that in this case, the lowest eigenvalue of H̃ is close to that of V |S . In this

section we find a better approximation to Spec H̃ by considering certain correction
terms that involve higher powers of V . It turns out that these higher order correction
terms include interesting interactions, which will allow us to create an effective 3-local
Hamiltonian from 2-local terms. We remark that the projection lemma (for the entire
lower part of the spectrum) can be obtained by following the development done in
this section up to the first order.

Before giving a more detailed description of the technique, we need to introduce a
certain amount of notation. For two Hermitian operators H and V , let H̃ = H+V . We
refer to H as the unperturbed Hamiltonian and to V as the perturbation Hamiltonian.
Let λj , |ψj〉 be the eigenvalues and eigenvectors of H, whereas the eigenvalues and

eigenvectors of H̃ are denoted by λ̃j , |ψ̃j〉. In case of multiplicities, some eigenvalues
might appear more than once. We order the eigenvalues in a nondecreasing order

λ1 ≤ λ2 ≤ · · · ≤ λdimH, λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃dimH.

In general, everything related to the perturbed Hamiltonian is marked with a tilde.

An important component in our proof is the resolvent of H̃, defined as

G̃(z) =
(
zI − H̃

)−1
=
∑
j

(
z − λ̃j

)−1∣∣ψ̃j

〉〈
ψ̃j

∣∣.(6.1)

It is a meromorphic8 operator-valued function of the complex variable z with poles
at z = λ̃j . In fact, for our purposes, it is sufficient to consider real z.9 Its usefulness
comes from the fact that poles can be preserved under projections (while eigenvalues
are usually lost). Similarly, we define the resolvent of H as G(z) = (zI −H)−1.10

Let λ∗ ∈ R be some cutoff on the spectrum of H.

Definition 6.1. Let H = L+⊕L−, where L+ is the space spanned by eigenvectors
of H with eigenvalues λ ≥ λ∗ and L− is spanned by eigenvectors of H of eigenvalue
λ < λ∗. Let Π± be the corresponding projection onto L±. For an operator X on H
define the operator X++ = X|L+

= Π+XΠ+ on L+ and similarly X−− = X|L− . We
also define X+− = Π+XΠ− as an operator from L− to L+, and similarly X−+.

With these definitions, in a representation of H = L+ ⊕ L− both H and G

are block-diagonal and we will omit one index for their blocks, i.e., H+
def
= H++,

8A meromorphic function is analytic in all but a discrete subset of C, and these singularities
must be poles and not essential singularities.

9The resolvent is the main tool in abstract spectral theory [19]. In physics, it is known as
the Green’s function. Physicists actually use slightly different Green’s functions that are suited for
specific problems.

10We can express G̃ in terms of G (where we omit the variable z): G̃ =
(
G−1 − V

)−1
=

G
(
I − V G

)−1
= G + GV G + GV GV G + GV GV GV G + · · · . This expansion of G̃ in powers of V

may be represented by Feynman diagrams [1].
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G+
def
= G++ and so on. Note that G−1

± = zI± −H±. To summarize, we have

H̃ =

(
H̃++ H̃+−
H̃−+ H̃−−

)
, V =

(
V++ V+−
V−+ V−−

)
, H =

(
H+ 0
0 H−

)
,

G̃ =

(
G̃++ G̃+−
G̃−+ G̃−−

)
, G =

(
G+ 0
0 G−

)
.

We similarly write H = L̃+ ⊕ L̃− according to the spectrum of H̃ and the cutoff λ∗.
Finally, we define

Σ−(z) = zI− − G̃−1
−−(z).

This operator-valued function is called self-energy.11

With these notations in place, we can now give an overview of what follows. Our
goal is to approximate the spectrum of H̃|L̃−

. We will do this by showing that in some

sense, the spectrum of Σ−(z) gives such an approximation. To see why this arises,

notice that by definition of Σ−(z), we have G̃−−(z) =
(
zI−−Σ−(z)

)−1
. In some sense,

this equation is the analogue of (6.1), where Σ−(z) plays the role of a Hamiltonian

for the projected resolvent G̃−−(z). However, Σ−(z) is in general z-dependent and
not a fixed Hamiltonian. Nonetheless, for certain choices of H and V , Σ−(z) is nearly
constant in a certain range of z so we can choose an effective Hamiltonian Heff that
approximates Σ−(z) in this range. Our main theorem relates the spectrum of Heff to

that of H̃|L̃−
.

Theorem 6.2. Assume H has a spectral gap Δ around the cutoff λ∗; i.e., all its
eigenvalues are in (−∞, λ−] ∪ [λ+,+∞), where λ+ = λ∗ + Δ/2 and λ− = λ∗ − Δ/2.
Assume, moreover, that ‖V ‖ < Δ/2. Let ε > 0 be arbitrary. Assume there exists an
operator Heff such that SpecHeff ⊆ [c, d] for some c < d < λ∗ − ε and, moreover, the
inequality

‖Σ−(z) −Heff‖ ≤ ε

holds for all z ∈ [c− ε, d + ε]. Then each eigenvalue λ̃j of H̃|L̃−
is ε-close to the jth

eigenvalue of Heff .
The usefulness of the theorem comes from the fact that Σ−(z) has a natural

series expansion, which can be truncated to obtain Heff . This series may give rise to
interesting terms; for example, in our application, 2-local terms in H and V lead to
3-local terms in Heff . To obtain this expansion, we start by expressing G̃ in terms of
G as

G̃ =
(
G−1 − V

)−1
=

(
G−1

+ − V++ −V+−
−V−+ G−1

− − V−−

)−1

.

Then, using the block matrix identity

(
A B
C D

)−1

=

( (
A−BD−1C

)−1 −A−1B
(
D − CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D − CA−1B

)−1

)

11As we will see later, this definition includes an H− term. This term is usually not considered
part of self-energy, but we have included it for notational convenience.



THE COMPLEXITY OF THE LOCAL HAMILTONIAN PROBLEM 1087

we conclude that

G̃−− =
(
G−1

− − V−− − V−+

(
G−1

+ − V++

)−1
V+−

)−1

.

Finally, we can represent Σ−(z) using the series expansion (I−X)−1 = I+X+X2+· · · ,

Σ−(z) = H− + V−− + V−+

(
G−1

+ − V++

)−1
V+−

= H− + V−− + V−+G+

(
I+ − V++G+

)−1
V+−

= H− + V−− + V−+G+V+− + V−+G+V++G+V+−

+ V−+G+V++G+V++G+V+− + · · · .

(6.2)

Proof of Theorem 6.2. We start with an overview of the proof. We first notice
that, by definition, the eigenvalues of H̃|L̃−

appear as poles in G̃. In Lemma 6.4, we

show that these poles also appear as poles of G̃−−. As mentioned before, this is the
reason we work with resolvents. In Lemmas 6.5 and 6.6 we relate these poles to the
eigenvalues of Σ− by showing that z is a pole of G̃−− if and only if it is an eigenvalue
of Σ−(z). In other words, these are values of z for which Σ−(z) has z as an eigenvalue.
Finally, we complete the proof of the theorem by using the assumption that Σ−(z)
is close to Heff , and thus any eigenvalue of Σ−(z) must be close to an eigenvalue of
Heff . This situation is illustrated in Figure 6.1.

c − ε

d + ε

d + εc − ε z

e.v.

Fig. 6.1. The spectrum of Σ−(z) as a function of z is indicated with solid curves. The boxes

correspond to the spectrum of H̃|L̃−
; they are those eigenvalues of Σ−(z) that lie on the dashed line

z = e.v. The dots indicate the spectrum of Heff , which approximates the spectrum of H̃|L̃−
.

We start with a simple lemma that says that if two Hamiltonians H1, H2 are
close, their spectra must also be close. It is a special case of Weyl’s inequalities (see,
e.g., section III.2 in [6]).

Lemma 6.3. Let H1, H2 be two Hamiltonians with eigenvalues μ1 ≤ μ2 ≤ · · ·
and σ1 ≤ σ2 ≤ · · · . Then, for all j, |μj − σj | ≤ ‖H1 −H2‖.

Proof. We will use a fact from the theory of Hermitian forms: If X ≤ Y (i.e.,
if Y −X is positive semidefinite), then the operator Y has at least as many positive
and nonnegative eigenvalues as X. Let ε = ‖H1 −H2‖; then

(μj − ε)I −H2 ≤ μjI −H1 ≤ (μj + ε)I −H2.
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The operator μjI−H1 has at most j−1 positive and at least j nonnegative eigenvalues.
Hence (μj − ε)I −H2 has at most j − 1 positive eigenvalues, and (μj + ε)I −H2 has
at least j nonnegative eigenvalues. It follows that σj ∈ [μj − ε, μj + ε].

The next lemma asserts that the poles of G̃−− in the range (−∞, λ∗) are in

one-to-one correspondence with the eigenvalues of H̃|L̃−
. Hence we can recover the

eigenvalues of H̃|L̃−
from the poles of G̃−−.

Lemma 6.4. Let λ̃ be in (−∞, λ∗) and let m ≥ 0 be its multiplicity as an

eigenvalue of H̃|L̃−
. Then around λ̃, G̃−− is of the form (z − λ̃)−1A + O(1), where

A is a rank m operator.
Proof. We first show that L̃− ∩ L+ = {0}. Suppose the contrary; i.e., there is

a nonzero vector |ξ〉 ∈ L̃− ∩ L+. Without loss of generality, 〈ξ|ξ〉 = 1. Then we

have 〈ξ|(H + V )|ξ〉 ≤ λ∗ (since |ξ〉 ∈ L̃−) and 〈ξ|H|ξ〉 ≥ λ+ (since |ξ〉 ∈ L+). Hence
〈ξ|V |ξ〉 ≤ λ∗ − λ+ = −Δ/2. But this is impossible because ‖V ‖ < Δ/2.

Now, since L̃− ∩ L+ = {0}, we have that Π−|ξ〉 �= 0 for all nonzero vectors

|ξ〉 ∈ L̃−. From (6.1) we obtain

G̃−− = Π−G̃Π− =
∑
j

(z − λ̃j)
−1Π−|ψ̃j〉〈ψ̃j |Π−.

If the multiplicity of λ̃ is m, then the matrix
∑

|ψ̃j〉〈ψ̃j | of the corresponding eigen-

vectors has rank m. This implies that the matrix
∑

Π−|ψ̃j〉〈ψ̃j |Π− also has rank m.

Indeed, if there is some linear combination of Π−|ψ̃j〉 that sums to zero, then taking

the same linear combination of |ψ̃j〉 must also sum to zero.

The next two lemmas relate the spectrum of H̃|L̃−
to the operator Σ−(z).

Lemma 6.5. For any z < λ∗, the multiplicity of z as an eigenvalue of H̃|L̃−
is

equal to the multiplicity of z as an eigenvalue of Σ−(z).

Proof. Fix some z < λ∗ and let m be its multiplicity as an eigenvalue of H̃ (in

particular, m = 0 if z is not an eigenvalue of H̃). In the neighborhood of z the

function G̃−−(w) has the form

G̃−−(w) = (w − z)−1A + B + O
(
|w − z|

)
,

where by Lemma 6.4, A is an operator of rank m. We now consider G̃−1
−−(w). For

any w < λ+ − ‖V ‖ the norm of G+(w) is strictly less than 1/‖V ‖. Hence, by (6.2)
we see that all the poles of Σ−(w) lie on the interval

[
λ+ − ‖V ‖, +∞

)
; in particular

G̃−1
−−(w) = wI− − Σ−(w) is analytic for w ∈ (−∞, λ∗]. Hence we can write

G̃−1
−−(w) = wI− − Σ−(w) = C + D(w − z) + O

(
|w − z|2

)
.

We claim that the dimension of the null-space of C is exactly m. Notice that this
implies that z is an m-fold eigenvalue of Σ−(z) = zI− − C. By multiplying the two
equations above, we obtain

I− = G̃−1
−−(w)G̃−−(w) = (w − z)−1CA + (DA + CB) + O(|w − z|).

By equating coefficients, we obtain CA = 0 and DA + CB = I−. On one hand,
CA = 0 implies that the null-space of C has dimension at least m. On the other
hand, the rank of DA is at most rank(A) = m. Since I− has full rank, the dimension
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of the null-space of CB must be at most m. This implies that the dimension of the
null-space of C must also be at most m.

We observe that the function Σ−(z) is monotone decreasing in the operator sense
(i.e., if z1 ≤ z2, then Σ−(z1) − Σ−(z2) is positive semidefinite):

dΣ−(z)

dz
=

d

dz

(
H− + V−− + V−+(zI+ −H+ − V++)−1V+−

)
= −V−+(zI+ −H+ − V++)−2V+− ≤ 0.

Lemma 6.6. Let λ̃j be the jth eigenvalue of H̃|L̃−
. Then it is also the jth eigen-

value of Σ−(λ̃j).
Proof. For any z ∈ R, let f1(z) (resp., f2(z)) be the number of eigenvalues not

greater than z of H̃|L̃−
(resp., Σ−(z)). When z → −∞, f1(z) is clearly 0. By the

monotonicity of Σ− we see that f2(z) is also 0. Using Lemma 6.5 we see that as z
increases, both numbers increase together by the same amount m whenever z hits an
eigenvalue of H̃|L̃−

of multiplicity m (here we used again the monotonicity of Σ−).

Hence, for all z, f1(z) = f2(z) and the lemma is proven.
We can now complete the proof of the theorem. By Lemma 6.3 and our as-

sumption on Heff , we have that for any z ∈ [c − ε, d + ε], Spec Σ−(z) is contained
in [c − ε, d + ε]. From this and the monotonicity of Σ−, we obtain that there is no
z ∈ (d + ε, λ∗] that is an eigenvalue of Σ−(z). Similarly, there is no z < c− ε that is

an eigenvalue of Σ−(z). Hence, using Lemma 6.5 we see that Spec H̃|L̃−
is contained

in [c− ε, d+ ε]. Now let λ̃j ∈ [c− ε, d+ ε] be the jth eigenvalue of H̃|L̃−
. By Lemma

6.6 it is also the jth eigenvalue of Σ−(λ̃j). By Lemma 6.3 it is ε-close to the jth
eigenvalue of Heff .

6.2. The three-qubit gadget. In this section we demonstrate how Theorem
6.2 can be used to transform a 3-local Hamiltonian into a 2-local one. The complete
reduction will be shown in the next section. From now we try to keep the discussion
more specialized to our QMA problem rather than presenting it in full generality as
was done in section 6.1.

Let Y be some arbitrary 2-local Hamiltonian acting on a space M of N qubits.
Also, let B1, B2, B3 be positive semidefinite Hamiltonians each acting on a different
qubit (so they commute). We think of these four operators as having constant norm.
Assume we have the 3-local Hamiltonian

Y − 6B1B2B3.(6.3)

The factor 6 is added for convenience. Recall that in the local Hamiltonian

problem we are interested in the lowest eigenvalue of a Hamiltonian. Hence, our goal
is to find a 2-local Hamiltonian whose lowest eigenvalue is very close to the lowest
eigenvalue of (6.3).

We start by adding three qubits to our system. For j = 1, 2, 3, we denote the
Pauli operators acting on the jth qubit by σα

j . Let δ > 0 be a sufficiently small

constant. Our 2-local Hamiltonian is H̃ = H + V , where

H = −δ−3

4
I ⊗
(
σz

1σ
z
2 + σz

1σ
z
3 + σz

2σ
z
3 − 3I

)
,

V = X ⊗ I − δ−2
(
B1 ⊗ σx

1 + B2 ⊗ σx
2 + B3 ⊗ σx

3

)
,

X = Y + δ−1(B2
1 + B2

2 + B2
3).
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The unperturbed Hamiltonian H has eigenvalues 0 and Δ
def
= δ−3. Associated with

the zero eigenvalue is the subspace

L− = M⊗C, where C =
(
|000〉, |111〉

)
.

In the orthogonal subspace C⊥ we have the states |001〉, |010〉, etc. We may think of
the subspace C as an effective qubit (as opposed to the three physical qubits); the
corresponding Pauli operators are denoted by σα

eff .
To obtain Heff , we now compute the self-energy Σ−(z) using the power expansion

in (6.2) up to the third order. There is no zeroth order term, i.e., H− = 0. For the
remaining terms, notice that G+ = (z − Δ)−1IL+ . Hence, we can write Σ−(z) as

V−−+(z−Δ)−1V−+V+−+(z−Δ)−2V−+V++V+−+(z−Δ)−3V−+V++V++V+−+ · · · .

The first term is V−− = X ⊗ IC because a σx term takes any state in C to C⊥. The
expressions in the following terms are of the form

V−+ = −δ−2
(
B1 ⊗ |000〉〈100| + B2 ⊗ |000〉〈010| + B3 ⊗ |000〉〈001| +

B1 ⊗ |111〉〈011| + B2 ⊗ |111〉〈101| + B3 ⊗ |111〉〈110|
)
,

V++ = X ⊗ IC⊥ − δ−2
(
B1 ⊗ (|001〉〈101| + |010〉〈110| + |101〉〈001| + |110〉〈010|) +

B2 ⊗ (. . . ) + B3 ⊗ (. . . )
)
,

where the dots denote similar terms for B2 and B3. Now, in the second term of Σ−(z),
V+− flips one of the physical qubits, and V−+ must return it to its original state in
order to return to the space C. Hence we have V−+V+− = δ−4(B2

1 + B2
2 + B2

3) ⊗ IC .
The third term is slightly more involved. Here we have two possible processes. In the
first process, V+− flips a qubit, V++ acts with X⊗IC⊥ , and finally V−+ flips the qubit
back. In the second process, V+−, V++, and V−+ flip all three qubits in succession.
Thus,

Σ−(z) = X ⊗ IC + (z − Δ)−1δ−4(B2
1 + B2

2 + B2
3) ⊗ IC

+ (z − Δ)−2δ−4(B1XB1 + B2XB2 + B3XB3) ⊗ IC

− (z − Δ)−2δ−6(
B3B2B1 + B2B3B1 + B3B1B2 + B1B3B2 + B2B1B3 + B1B2B3

)
⊗ σx

eff

+ O
(
‖V ‖4(z − Δ)−3

)
.

(6.4)

We now focus on the range z = O(1) � Δ. In this range we have

(z − Δ)−1 = − 1

Δ

(
1 − z

Δ

)−1

= − 1

Δ
+ O
( z

Δ2

)
= −δ3 + O(δ6).

Simplifying, we obtain

Σ−(z) = Y ⊗ IC − 6B1B2B3 ⊗ σx
eff︸ ︷︷ ︸

Heff

+O(δ).

Notice that ‖Heff‖ = O(1) and hence we obtain that for all z in, say, [−2‖Heff‖, 2‖Heff‖]
we have

‖Σ−(z) −Heff‖ = O(δ).
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We may now apply Theorem 6.2 with c = −‖Heff‖, d = ‖Heff‖, and λ∗ = Δ/2

to obtain the following result: Each eigenvalue λ̃j from the lower part of Spec H̃
is O(δ)-close to the j-th eigenvalue of Heff . In fact, for our purposes, it is enough

that the lowest eigenvalue of H̃ is O(δ)-close to the lowest eigenvalue of Heff . It
remains to notice that the spectrum of Heff consists of two parts that correspond to
the effective spin states |+〉 = 1√

2

(
|0〉 + |1〉

)
and |−〉 = 1√

2

(
|0〉 − |1〉

)
. Since B1B2B3

is positive semidefinite, the smallest eigenvalue is associated with |+〉. Hence, the

lowest eigenvalue of H̃ is equal to the lowest eigenvalue of (6.3), as required.

6.3. Reduction from 3-Local Hamiltonian to 2-Local Hamiltonian. In
this section we reduce the 3-local Hamiltonian problem to the 2-local Hamil-

tonian problem. By the QMA-completeness of the 3-local Hamiltonian problem
[11], this establishes Theorem 1.1.

Theorem 6.7. There is a polynomial time reduction from the 3-local Hamil-

tonian problem to the 2-local Hamiltonian problem.
Proof. Recall that in the 3-local Hamiltonian problem (see Definition 2.3) we

are given two constants a and b and a local Hamiltonian H(3) =
∑

j Hj such that
each Hj is a three-qubit term whose norm is at most poly(n). Our goal in this proof
is to transform H(3) into a 2-local Hamiltonian H(2) whose lowest eigenvalue is close
to that of H(3). We do this in two steps. The first is a somewhat technical step where
we bring H(3) into a convenient form. In the second step, we replace each 3-local
term with 2-local terms by using the gadget construction of the previous section.
Before we continue with the proof, let us mention that it is crucial that we apply the
gadget construction to all 3-local terms simultaneously. If instead we tried to apply
the gadget construction sequentially, we would end up with an exponential blowup in
the norms (since each application of the three-qubit gadget increases the norm by a
multiplicative factor).

Lemma 6.8. The 3-local Hamiltonian H(3) can be represented as

H(3) = cr

(
Y − 6

M∑
m=1

Bm1Bm2Bm3

)
,

where Y is a 2-local Hamiltonian with ‖Y ‖ = O(1/n6), M = O(n3), each Bmi is a
one-qubit term of norm O(1/n3) that satisfies Bmi ≥ 1

n3 I, and cr is a rescaling factor
satisfying 1 ≤ cr ≤ poly(n).12

Proof. First, we can assume without loss of generality that each Hj acts on a
different triple of qubits, and hence there are at most n3 such terms. Recall that
any three-qubit Hermitian operator can be written as a linear combination with real
coefficients of the basis elements σα ⊗ σβ ⊗ σγ , where each of σα, σβ , σγ ranges over
the four possible Pauli matrices {I, σx, σy, σz}. Hence, for M = O(n3), we can write

H(3) = cr

(
−6

M∑
m=1

cm · σm,α ⊗ σm,β ⊗ σm,γ

)
,

where each σm,α is a Pauli matrix acting on one of the qubits, and cr ≤ poly(n) is
chosen to be large enough so that |cm| ≤ 1

n9 for all m = 1, . . . ,M .

12For the proof of Theorem 6.7 we need only the property Bmi ≥ 0. The stronger property
Bmi ≥ 1

n3 I will be used in section 7.
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We finish the proof by writing each cm σm,α ⊗ σm,β ⊗ σm,γ as(
2

n3
I + n6cmσm,α

)
︸ ︷︷ ︸

Bm1

⊗
(

2

n3
I +

1

n3
σm,β

)
︸ ︷︷ ︸

Bm2

⊗
(

2

n3
I +

1

n3
σm,γ

)
︸ ︷︷ ︸

Bm3

+Dm,

where Dm is 2-local. Since |cm| ≤ 1/n9 we have that Bmi ≥ 1
n3 I and ‖Dm‖ =

O(1/n9).
We now replace each term −6Bm1Bm2Bm3 by a three-qubit gadget. More specif-

ically, let δ be a sufficiently small inverse polynomial in n to be chosen later. We
consider the Hamiltonian H(2) = crH̃, H̃ = H + V , acting on a system of n + 3M
qubits, where

H = − δ−3

4

M∑
m=1

I ⊗
(
σz
m1σ

z
m2 + σz

m1σ
z
m3 + σz

m2σ
z
m3 − 3I

)
,

V = Y ⊗ I + δ−1
M∑

m=1

(B2
m1 + B2

m2 + B2
m3) ⊗ I

− δ−2
M∑

m=1

(
Bm1 ⊗ σx

m1 + Bm2 ⊗ σx
m2 + Bm3 ⊗ σx

m3

)
.(6.5)

As before, let Δ = δ−3 be the spectral gap of H. Notice that the spectrum of
H includes not only 0 and Δ but also 2Δ, 3Δ, . . . ,MΔ. Associated with the zero
eigenvalue is the subspace spanned by all the zero-subspaces of the gadgets. Using
‖Bmi‖ ≤ O(1/n3) and M = O(n3) we get ‖V ‖ = O(δ−2) < Δ/2.

The calculation of Σ− is quite similar to the one-gadget case (cf. (6.4)). Each
gadget contributes an independent term. Terms up to the third order can include
only processes that involve one gadget. Indeed, in order to involve two gadgets, one
has to flip a qubit from one gadget and from another gadget, and then flip both
qubits back. Moreover, since only one gadget is involved, G+ can be replaced by
(z − Δ)−1IL+

as before. From the fourth order onwards, processes start to include
cross-terms between different gadgets. However, we claim that their contribution is
only O(δ), as long as |z| = O(1). Indeed, in this range, the eigenvalues of G+, which
are (z − Δ)−1, (z − 2Δ)−1, . . . , are all at most O(δ3) in absolute value, while the
norm of each of the V terms is at most O(δ−2). To summarize, for |z| = O(1),

Σ−(z) = Y ⊗ IC − 6

M∑
m=1

Bm1Bm2Bm3 ⊗
(
σx
m

)
eff︸ ︷︷ ︸

Heff

+O(δ).(6.6)

Since ‖Heff‖ ≤ O(1), we can apply Theorem 6.2 with c = −‖Heff‖, d = ‖Heff‖, and

λ∗ = Δ/2. We obtain that the smallest eigenvalue of H̃ is O(δ)-close to that of Heff .
The spectrum of Heff consists of 2M parts, corresponding to subspaces spanned by
setting each effective spin state to either |+〉 or |−〉. Since Bm1Bm2Bm3 ≥ 0, the
smallest eigenvalue of Heff is achieved in the subspace where all effective spin states
are in the |+〉 state. In this subspace, Heff is identical to H(3)/cr. Hence, the smallest

eigenvalue of H(2) = crH̃ is O(crδ)-close to that of H(3). We complete the proof by
choosing δ = c′/cr for some small enough constant c′.
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7. 2-local universal adiabatic computation. In this section we show that
adiabatic computation with 2-local Hamiltonians is equivalent to “standard” quantum
computation in the circuit model. In order to prove such an equivalence, one has
to show that each model can simulate the other. One direction is already known:
it is not too hard to show that any polynomial time adiabatic computation can be
efficiently simulated by a quantum circuit [8]. Hence, it remains to show that adiabatic
computation with 2-local Hamiltonians can efficiently simulate any quantum circuit.
In [3] it is shown that adiabatic computation with 3-local Hamiltonians can efficiently
simulate any quantum circuit. We obtain our result by combining their result with
the techniques in our second proof.

Let us briefly mention the main ideas behind adiabatic computation. For more
details see [3] and the references therein. In adiabatic computation, we consider a
time-dependent Hamiltonian H(s) for s ∈ [0, 1] acting on a quantum system. We
initialize the system in the groundstate of the initial Hamiltonian H(0). This ground-
state is required to be some simple quantum state that is easy to create. We then
slowly modify the Hamiltonian from s = 0 to s = 1. We say that the adiabatic
computation is successful if the final state of the system is close to the groundstate of
H(1). The adiabatic theorem (see, e.g., [18, 4]) says that if the Hamiltonian is mod-
ified slowly enough, the adiabatic computation is successful. In other words, it gives
an upper bound on the running time of an adiabatic computation. For our purposes,
it is enough to know that this bound is polynomial if for any s ∈ [0, 1], the norm of
H(s), as well as those of its first and second derivatives, is bounded by a polynomial,
and the spectral gap of H(s) is larger than some inverse polynomial.

In [3] it is shown how to transform an arbitrary quantum circuit into an efficient
3-local adiabatic computation. To establish this, they define a 3-local time-dependent
Hamiltonian H(3)(s) with the following properties. First, the Hamiltonian acts on a
system of n qubits, where n is some constant times the number of gates in the circuit.
Second, the groundstate of H(3)(0) is very easy to create (namely, it is the all zero
state), and the groundstate of H(3)(1) is some state that encodes the result of the
quantum circuit. Third, for all s ∈ [0, 1], the spectral gap of H(3)(s) is bounded from
below by an inverse polynomial in n, and the norm of H(3)(s), as well as those of its
first and second derivatives, is bounded by some polynomial in n. Together with the
adiabatic theorem, these properties imply that adiabatic computation according to
H(3)(s) is efficient. Finally, let us mention that H(3)(s), as defined in [3], is linear in s;
that is, H(3)(s) = (1−s)H(3)(0)+sH(3)(1). This property will be useful in our proof.

The following is the main theorem of this section.
Theorem 7.1. Any quantum computation can be efficiently simulated by an

adiabatic computation with 2-local Hamiltonians.
Proof. Given a quantum circuit, let H(3)(s) be the time-dependent Hamiltonian

of [3] as described above. The idea of the proof is to apply the gadget construction
of section 6.3 to H(3)(s) for any s ∈ [0, 1], thereby creating a 2-local time-dependent
Hamiltonian H(2)(s). Some care needs to be taken to ensure that the resulting time-
dependent Hamiltonian is smooth enough as a function of s. We therefore describe
how this is done in more detail.

We start by writing H(3)(s) in a form similar to that given by Lemma 6.8. Since
H(3)(s) is linear in s, we can write

H(3)(s) = cr

(
−6

M∑
m=1

cm(s) · σm,α ⊗ σm,β ⊗ σm,γ

)
,
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where M = O(n3), each cm(s) is a linear function of s, and cr ≤ poly(n) is chosen to
be large enough so that |cm(s)| ≤ 1

n9 for all m and all s ∈ [0, 1]. Notice that cr is a
fixed scaling factor used for all s ∈ [0, 1]. Following the proof of Lemma 6.8, we write

H(3)(s) = cr

(
Y (s) − 6

M∑
m=1

Bm1(s)Bm2Bm3

)
,

where by our construction, Y (s) and Bm1(s) are linear in s, whereas Bm2 and Bm3

are independent of s. Finally, we define H(2)(s) = crH̃(s), where H̃(s) = H + V (s)
and the Hamiltonians H and V (s) are defined as in (6.5). The parameter δ will be
chosen later to be some small enough inverse polynomial in n.

In the rest of the proof, we show that adiabatic computation according to H(2)(s)
can be used to simulate the given quantum circuit. We start by proving two lem-
mas that, together with the adiabatic theorem, imply that the running time of the
adiabatic computation is polynomial in n.

Lemma 7.2. For any s ∈ [0, 1], ‖H(2)(s)‖, ‖ d
dsH

(2)(s)‖, and ‖ d2

ds2H
(2)(s)‖ are

upper bounded by a polynomial in n.

Proof. Recall that Y (s) and Bm1(s) are linear in s. Together with the definition
of H(2), this implies that H(2)(s) is a degree-two polynomial in s, i.e., we can write
H(2)(s) = A+sB+s2C for some Hermitian matrices A,B,C. It is not hard to see that
the norm of each of these matrices is bounded by some polynomial in n. This implies
that the norms of H(2)(s), its first derivative B + 2sC, and its second derivative 2C
are bounded by some polynomial in n.

Lemma 7.3. For any s ∈ [0, 1], the spectral gap of H(2)(s) is lower bounded by
an inverse polynomial in n.

Proof. As shown in section 6.3, the lower part of the spectrum of H(2)(s) is
O(crδ)-close to the spectrum of crHeff(s). Hence, by choosing δ to be a small enough
inverse polynomial in n, we see that it is enough to show that the spectral gap of
crHeff(s) is at least some inverse polynomial in n.

The spectrum of crHeff(s) consists of 2M parts, corresponding to all possible
settings for the effective qubits. The part corresponding to the subspace in which all
effective qubits are in the |+〉 state is identical to the spectrum of H(3)(s). Hence,
we know that in this subspace the spectral gap is at least some inverse polynomial in
n. We now claim that the lowest eigenvalue in all other 2M − 1 subspaces is greater
than that in the all |+〉 subspace by at least some inverse polynomial in n. Indeed,
the restriction of crHeff(s) to any such subspace is given by H(3)(s) plus a nonzero
number of terms of the form 12crBm1(s)Bm2Bm3. The claim follows from the fact
that Bm1(s)Bm2Bm3 ≥ 1

n9 I.

To complete the proof, we need to argue about the groundstate of H(2)(0) and
that of H(2)(1). To this end, we use the following lemma, which essentially says that
if Heff has a spectral gap, then Theorem 6.2 not only implies closeness in spectra but
also in the groundstates.

Lemma 7.4. Assume that H,V,Heff satisfy the conditions of Theorem 6.2 with
some ε > 0. Let λeff,i denote the ith eigenvalue of Heff and |ṽ〉 (resp., |veff〉) denote

the groundstate of H̃ (resp., Heff). Then, under the assumption λeff,2 > λeff,1,

|〈ṽ|veff〉| ≥ 1 − 2‖V ‖2

(λ+ − λeff,1 − ε)2
− 4ε

λeff,2 − λeff,1
.
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Before we prove the lemma, let us complete the proof of the theorem. Recall that
in our case ε = O(δ), ‖V ‖ = O(δ−2), λ+ = δ−3, |λeff,1| ≤ O(1), and λeff,2 − λeff,1 =
1/poly(n). Hence, the first error term in the above bound is O(δ2) while the second
is O(δ · poly(n)). Therefore, by choosing δ to be a small enough inverse polynomial
in n, we can guarantee that the groundstate of H(2)(s) is close to the groundstate of
Heff(s). In particular, the groundstate of H(2)(1), which is the output of the adiabatic

computation, is close to the groundstate of Heff(1). The latter is |v1〉⊗ |+〉⊗M
, where

|v1〉 is the groundstate of H(3)(1). By simply tracing out the 3M gadget qubits, we
can recover |v1〉 from this groundstate and therefore obtain the output of the quantum
circuit. Similarly, the groundstate of H(2)(0), which is the state to which the system

should be initialized, is close to the groundstate of Heff(0). The latter is |v0〉⊗|+〉⊗M
,

where |v0〉 is the groundstate of H(3)(0). We therefore initialize the system by setting
the original n qubits to |v0〉 and the M gadgets to the effective |+〉 state. This state
is close to the groundstate of H(2)(0), and since the adiabatic computation is unitary,
this approximation does not affect the output by much.

It remains to prove the lemma.
Proof of Lemma 7.4. Let |ṽ−〉 = Π−|ṽ〉/‖Π−|ṽ〉‖ be the normalized projection of

|ṽ〉 on the space L−. We first show that |ṽ−〉 is close to |ṽ〉. By Theorem 6.2, we

know that λ̃1 ≤ λeff,1 + ε. Hence,

‖Π+H̃|ṽ〉‖ = λ̃1‖Π+|ṽ〉‖ ≤ (λeff,1 + ε)‖Π+|ṽ〉‖

and

‖Π+H̃|ṽ〉‖ = ‖Π+H|ṽ〉 + Π+V |ṽ〉‖ ≥ ‖Π+H|ṽ〉‖ − ‖V ‖ ≥ λ+‖Π+|ṽ〉‖ − ‖V ‖.

By combining the two inequalities we obtain

‖Π+|ṽ〉‖ ≤ ‖V ‖
λ+ − λeff,1 − ε

,

from which we see that

α
def
= |〈ṽ|ṽ−〉| = ‖Π−|ṽ〉‖ ≥ ‖Π−|ṽ〉‖2 ≥ 1 − ‖V ‖2

(λ+ − λeff,1 − ε)2
.

Our next step is to show that |ṽ−〉 is close to |veff〉. For this we need to consider

the proof of Theorem 6.2. We start by taking Lemma 6.4 with λ̃ = λ̃1. The lemma
says that A is a matrix of rank 1. By looking at the proof, it is easy to see that A is
in fact Π−|ṽ〉〈ṽ|Π−. Next, Lemma 6.5 implies that λ̃1 is an eigenvalue of multiplicity

1 of Σ−(λ̃1). In fact, from the proof it follows that the corresponding eigenvector is
exactly Π−|ṽ〉 (since the null space of C is equal to the span of A). By normalizing,
this is exactly |ṽ−〉. But by our assumption, ‖Σ−(z)−Heff‖ ≤ ε for all z ∈ [c−ε, d+ε]
and in particular

‖Σ−(λ̃1) −Heff‖ ≤ ε.

From this we obtain that ∣∣〈ṽ−|(Σ−(λ̃1) −Heff)|ṽ−〉
∣∣ ≤ ε

and hence

〈ṽ−|Heff |ṽ−〉 ≤ λ̃1 + ε ≤ λeff,1 + 2ε,
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where we again used that λ̃1 ≤ λeff,1 + ε. Since Heff has a spectral gap, this indicates
that |ṽ−〉 must be close to |veff〉. Indeed, let β = |〈ṽ−|veff〉|. Then,

〈ṽ−|Heff |ṽ−〉 ≥ β2λeff,1 + (1 − β2)λeff,2 = λeff,1 + (1 − β2)(λeff,2 − λeff,1).

By combining the two inequalities we obtain

1 − β2 ≤ 2ε

λeff,2 − λeff,1
.

Summarizing,

|〈ṽ|veff〉| = |〈ṽ|ṽ−〉〈ṽ−|veff〉 + 〈ṽ|(I − |ṽ−〉〈ṽ−|)|veff〉|

≥ α · β −
√

(1 − α2)(1 − β2) ≥ α · β − 1

2

(
(1 − α2) + (1 − β2)

)
≥
(
1 − (1 − α) − (1 − β)

)
−
(
(1 − α) + (1 − β)

)
= 1 − 2(1 − α) − 2(1 − β)

≥ 1 − 2‖V ‖2

(λ+ − λeff,1 − ε)2
− 4ε

λeff,2 − λeff,1
.

8. Conclusion. Some interesting open questions remain. First, perturbation
theory has allowed us to perform the first reduction inside QMA. What other problems
can be solved using this technique? Second, there exists an intriguing class between NP
(in fact, MA) and QMA known as QCMA. It is the class of problems that can be verified
by a quantum verifier with a classical proof. Can one show a separation between
QCMA and QMA, or perhaps show that they are equal? Third, Kitaev’s original 5-
local proof has the following desirable property: For any Yes instance produced by
the reduction there exists a state such that each individual 5-local term is very close
to its groundstate. Note that this is a stronger property than the one required in
the local Hamiltonian problem. Using a slight modification of Kitaev’s original
construction, one can show a reduction to the 4-local Hamiltonian problem that
has the same property. However, we do not know if this property can be achieved for
the 3-local or the 2-local problem.

Acknowledgments. Discussions with Sergey Bravyi and Frank Verstraete are
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ALGORITHMS FOR COMBINING ROOTED TRIPLETS INTO A
GALLED PHYLOGENETIC NETWORK∗

JESPER JANSSON† , NGUYEN BAO NGUYEN† , AND WING-KIN SUNG†‡

Abstract. This paper considers the problem of determining whether a given set T of rooted
triplets can be merged without conflicts into a galled phylogenetic network and, if so, constructing
such a network. When the input T is dense, we solve the problem in O(|T |) time, which is optimal
since the size of the input is Θ(|T |). In comparison, the previously fastest algorithm for this problem
runs in O(|T |2) time. We also develop an optimal O(|T |)-time algorithm for enumerating all simple
phylogenetic networks leaf-labeled by L that are consistent with T , where L is the set of leaf labels
in T , which is used by our main algorithm. Next, we prove that the problem becomes NP-hard if
extended to nondense inputs, even for the special case of simple phylogenetic networks. We also
show that for every positive integer n, there exists some set T of rooted triplets on n leaves such
that any galled network can be consistent with at most 0.4883 · |T | of the rooted triplets in T . On
the other hand, we provide a polynomial-time approximation algorithm that always outputs a galled
network consistent with at least a factor of 5

12
(> 0.4166) of the rooted triplets in T .

Key words. phylogenetic network, galled network, rooted triplet, SN -tree, NP-hardness, algo-
rithm
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1. Introduction. A rooted triplet is a binary, rooted, unordered tree with three
distinctly labeled leaves. Aho et al. [1] introduced the problem of determining whether
a given set of rooted triplets can be combined without conflicts into a distinctly leaf-
labeled tree which contains each of the given rooted triplets as an embedded subtree,
and, if so, returning one. The original motivation for this problem came from an
application in the theory of relational databases (see [1] for details), but it has since
been studied further and generalized because of its applications to phylogenetic tree
construction [2, 6, 7, 10, 13, 14, 17, 20, 21, 23, 25]. Here, we study an extension of the
problem in which the objective is to determine if a given set T of rooted triplets can
be merged into a more complex structure known as a galled phylogenetic network.

A phylogenetic network is a type of distinctly leaf-labeled, directed acyclic graph
that can be used to model nontreelike evolution. A number of methods for inferring
phylogenetic networks under various assumptions and using different kinds of data
have been proposed recently [8, 12, 15, 19, 22, 24]. A galled phylogenetic network,
or galled network for short, is an important, biologically motivated structural restric-
tion of a phylogenetic network (see section 1.2) in which all cycles in the underlying
undirected graph are node-disjoint.1
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1Without the node-disjoint constraint, our problem becomes trivial to solve since then a solution

always exists and, furthermore, can be obtained in polynomial time using a simple sorting network-
based construction [15].
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We present several new results for the problem of inferring a galled network
consistent with a given set T of rooted triplets. Denote the set of leaf labels in T
by L. If T contains at least one rooted triplet for each cardinality-three subset of L,
then T is called dense. We first give an exact algorithm named FastGalledNetwork
for dense inputs whose running time is O(|T |). In comparison, the previously fastest
known algorithm for this case runs in O(|T |2) time [15]. Since the size of the input
is Θ(|T |) when T is dense and any algorithm that solves the problem must look at
the entire input, the asymptotic running time of our new algorithm is optimal. The
improvement in running time is due to two observations: first, that the so-called SN -
sets employed in [15] do not have to be explicitly computed but can be represented
using a tree (the SN -tree) which we can construct in O(|T |) time, and second, that
the SN -tree can be expanded into a galled network consistent with T (if one exists)
in O(|T |) time by replacing each internal node of degree 3 or higher with a special
kind of network found by applying an algorithm called SimpleNetworks.

Next, we show that the problem becomes NP-hard when T is not required to be
dense by giving a polynomial-time reduction from Set Splitting. Finally, we consider
approximation algorithms. We present an O(|L| · |T |3)-time algorithm that always
outputs a galled network consistent with at least a factor of 5

12 (> 0.4166) of the
rooted triplets in T for any T . (Our approximation algorithm can also be applied
in the dense case when the input cannot be combined into a galled network without
conflicts.) On the negative side, we show that there exist inputs for which any galled
network can be consistent with at most a factor of 0.4883 of the rooted triplets. It is
interesting to note that for trees, the corresponding bounds are known to be tight [7];
that is, there is a polynomial-time approximation algorithm which always constructs
a tree consistent with at least 1

3 · |T | of the rooted triplets in T , and there exist some
inputs for which no tree can achieve a factor higher than 1

3 · |T |.

1.1. Definitions and notation. A phylogenetic tree is a binary, rooted, un-
ordered tree whose leaves are distinctly labeled. A phylogenetic network is a gen-
eralization of a phylogenetic tree formally defined as a rooted, connected, directed
acyclic graph in which (1) exactly one node has indegree 0 (the root), and all other
nodes have indegree 1 or 2; (2) all nodes with indegree 2 (referred to as hybrid nodes)
have outdegree 1, and all other nodes have outdegree 0 or 2; and (3) all nodes with
outdegree 0 (the leaves) are distinctly labeled. For any phylogenetic network N , let
U(N) be the undirected graph obtained from N by replacing each directed edge by
an undirected edge. N is said to be a galled phylogenetic network (galled network, for
short) if all cycles in U(N) are node-disjoint. Galled networks are also known in the
literature as topologies with independent recombination events [24], galled-trees [8],
gt-networks [19], and level-1 phylogenetic networks [4, 15].

A phylogenetic tree with exactly three leaves is called a rooted triplet. The unique
rooted triplet on a leaf set {x, y, z} in which the lowest common ancestor of x and y is
a proper descendant of the lowest common ancestor of x and z (or, equivalently, where
the lowest common ancestor of x and y is a proper descendant of the lowest common
ancestor of y and z) is denoted by ({x, y}, z). For any phylogenetic network N , a
rooted triplet t = ({x, y}, z) is said to be consistent with N if t is an embedded
subtree of N (i.e., if a lowest common ancestor of x and y in N is a proper descendant
of a lowest common ancestor of x and z in N), and a set T of rooted triplets is said
to be consistent with N if every rooted triplet in T is consistent with N .

Denote the set of leaves in any phylogenetic network N by Λ(N) and for any set T
of rooted triplets, define Λ(T ) =

⋃
ti∈T Λ(ti). A set T of rooted triplets is dense if
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Fig. 1. A dense set T of rooted triplets with leaf set {a, b, c, d} and a galled phylogenetic network
which is consistent with T . Note that this solution is not unique.

for each {x, y, z} ⊆ Λ(T ), at least one of ({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs
to T . If T is dense, then |T | = Θ(|Λ(T )|3). Furthermore, for any set T of rooted
triplets and L′ ⊆ Λ(T ), define T |L′ as the subset of T consisting of all rooted
triplets t with Λ(t) ⊆ L′. The problem we consider here is the following: Given a
set T of rooted triplets, output a galled network N with Λ(N) = Λ(T ) such that N
and T are consistent if such a network exists; otherwise, output null. See Figure 1
for an example. Throughout this paper, we write L = Λ(T ) and n = |L|.

To describe our algorithms, we need the following additional terminology. Let
N be a phylogenetic network. We call nodes with indegree 2 hybrid nodes and their
parent edges hybrid edges. Let h be a hybrid node in N . Every ancestor s of h such
that h can be reached using two disjoint directed paths starting at the children of s
is called a split node of h. If s is a split node of h, then any path starting at s and
ending at h is called a merge path of h, and any path starting at a child of s and
ending at a parent of h is called a clipped merge path of h. From the above, it follows
that in a galled network, each split node is a split node of exactly one hybrid node,
and each hybrid node has exactly one split node.

Let N be a galled network. For any node u in N , N [u] denotes the subnetwork
of N rooted at u, i.e., the minimal subgraph of N which includes all nodes and
directed edges of N reachable from u. N [u] is called a side network of N if there
exists a merge path P in N such that u does not belong to P but u is a child of a
node belonging to P . In this case, N [u] is also said to be attached to P . N is called a
simple phylogenetic network (or simple network) if N has exactly one hybrid node h,
the root node of N is the split node of h, and every side network of N is a leaf. For
example, the galled network on the right in Figure 1 is a simple network. For any
simple network N , denote the leaf attached to the hybrid node in N by hl(N).

1.2. Motivation. Phylogenetic networks are used by scientists to describe evo-
lutionary relationships that do not fit the traditional models in which evolution is
assumed to be treelike. Evolutionary events such as horizontal gene transfer or hy-
brid speciation (often referred to as recombination events) cannot be adequately rep-
resented in a single tree [8, 9, 19, 22, 24] but can be modeled in a phylogenetic
network as internal nodes having more than one parent. Galled networks are an
important type of phylogenetic network and have attracted special attention in the
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literature [4, 8, 19, 24] due to their biological significance (see [8] for a discussion) and
their simple, almost treelike, structure. When the number of recombination events
is limited and most of them have occurred recently, a galled network may suffice to
accurately describe the evolutionary process under study [8].

A challenge in the field of phylogenetics is to develop efficient and reliable meth-
ods for constructing and comparing phylogenetic networks. For example, to construct
a meaningful phylogenetic network for a large subset of the human population (which
may subsequently be used to help locate regions in the genome associated with some
observable trait indicating a particular disease) in the future, efficient algorithms are
crucial because the input can be expected to be very large. The motivation behind
the rooted triplet approach taken in this paper is that a highly accurate tree for each
cardinality-three subset of the leaf set can be obtained through maximum likelihood-
based methods such as [3] or Sibley–Ahlquist-style DNA-DNA hybridization exper-
iments (see [17]). Hence, the algorithms presented in [15] and here can be used as
the merging step in a divide-and-conquer approach for constructing phylogenetic net-
works analogous to the quartet method paradigm for inferring unrooted phylogenetic
trees [16, 18] and other supertree methods (see [10, 21] and the references therein).
We consider dense input sets in particular since this case can be solved in polynomial
time.

1.3. Related work. Aho et al. [1] gave an O(|T | · n)-time algorithm for deter-
mining whether a given set T of rooted triplets on n leaves is consistent with some
rooted, distinctly leaf-labeled tree, and, if so, returning such a tree. Henzinger, King,
and Warnow [10] improved its running time to min

{
O(|T |·n0.5), O(|T |+n2 log n)

}
; in

fact, replacing the deterministic algorithm for dynamic graph connectivity employed
by Henzinger, King, and Warnow, with a more recent one due to Holm, de Lichtenberg,
and Thorup [11] yields a running time of min

{
O(|T | · log2 n), O(|T |+ n2 log n)

}
[14].

Ga̧sieniec et al. [6] studied a variant of the problem for ordered trees. Ng and
Wormald [21] considered the problem of constructing all rooted, unordered trees dis-
tinctly leaf-labeled by Λ(T ) that are consistent with T .

If two or more of the rooted triplets are in conflict, i.e., contain contradicting
branching information, the algorithm of Aho et al. returns a null tree. However, this is
not very practical in certain applications. For example, in the context of constructing
a phylogenetic tree from a set of rooted triplets, some errors may occur in the input
when the rooted triplets are based on data obtained experimentally, yet a nonnull
tree is still required. In this case, one can try to construct a tree consistent with the
maximum number of rooted triplets in the input [2, 6, 7, 13, 25], or a tree with as many
leaves from Λ(T ) as possible which is consistent with all input rooted triplets involving
these leaves only [14]. Although the former problem is NP-hard [2, 13, 25], Ga̧sieniec
et al. [7] showed that it has a polynomial-time approximation algorithm that outputs
a distinctly leaf-labeled tree consistent with at least 1

3 of the given rooted triplets,
which is a tight bound in the sense that there exist inputs T such that any distinctly
leaf-labeled tree can be consistent with at most 1

3 of the rooted triplets in T .2

The problem studied in this paper was introduced in [15]. The main result of [15]
is an exact O(|T |2)-time algorithm for the dense case. Reference [15] also showed
that if no restrictions are placed on the structure of the output phylogenetic network
(i.e., if nongalled networks are allowed), then the problem always has a solution which

2On the other hand, if the optimal solution contains a large fraction of the input rooted triplets,
another approximation presented in [7] (based on minimum cuts in the auxiliary graph introduced
by Aho et al. [1]) gives a better approximation factor.
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can be easily obtained from any given sorting network for n elements. Nakhleh et al.
[19] gave an O(n2)-time algorithm for the related problem of determining if two given
phylogenetic trees T1 and T2 with identical leaf sets can be combined into a galled
network containing both T1 and T2 as embedded subtrees and, if so, constructing one
with the smallest possible number of hybrid nodes, where n is the number of leaves (in
fact, this is equivalent to inferring a galled network consistent with the set of all rooted
triplets which are embedded subtrees of T1 or T2). They also studied the case where
T1 and T2 may contain errors but only one hybrid node is allowed. Huson et al. [12]
considered a similar problem for constructing an unrooted phylogenetic network from
a set of unrooted, distinctly leaf-labeled trees.

1.4. Organization of the paper. In section 2, we present a new algorithm
called SimpleNetworks for computing all simple phylogenetic networks consistent with
a given dense set T of rooted triplets in O(n3) time. This algorithm is used by
our main algorithm FastGalledNetwork in section 3 to construct a galled network
consistent with a given dense set T of rooted triplets, if one exists, in optimal O(n3)
time. In section 4, we prove that the problem becomes NP-hard if we remove the
requirement that T forms a dense set. Next, in section 5.1, we show that for every
positive integer n, there exists some set T of rooted triplets with |Λ(T )| = n such that
any galled network can be consistent with at most 0.4883 · |T | of the rooted triplets
in T . On the other hand, we give an O(n · |T |3)-time algorithm in section 5.2 that
constructs a galled network guaranteed to be consistent with at least a factor of 5

12
(> 0.4166) of the rooted triplets in T for any input T .

2. Constructing all simple phylogenetic networks when T is dense. In
this section, we describe an algorithm called SimpleNetworks for inferring all simple
phylogenetic networks consistent with a given dense set T of rooted triplets in O(n3)
time, where L = Λ(T ) and n = |L|. This algorithm is later used by our main algorithm
in section 3. Below, for any L′ ⊆ L, G(L′) denotes the auxiliary graph for L′ (originally
defined by Aho et al. [1]), which is the undirected graph with vertex set L′ and edge
set E(L′), where for each ({i, j}, k) ∈ T |L′, the edge {i, j} is included in E(L′).

SimpleNetworks assumes that n ≥ 3, T is dense, and G(L) is connected.
For any simple network N , define A(N) and B(N) to be the sets of leaves attached

to the two clipped merge paths in N , where we require without loss of generality that
A(N) is nonempty. If both A(N) and B(N) are nonempty, then N is called nonskew ;
if A(N) is nonempty and B(N) is empty, then N is called skew.

Algorithm SimpleNetworks is listed in Figure 2. It calls two procedures named
Non-SkewSimpleNetworks and SkewSimpleNetworks that find all valid nonskew simple
networks and all valid skew simple networks, respectively. Then it returns their union.
In the next two subsections, we show how to implement each of these two procedures
to run in O(n3) time. We thus obtain Theorem 1.

Theorem 1. The set of all simple networks consistent with a given dense set of
rooted triplets and leaf-labeled by L can be constructed in O(n3) time.

The next two lemmas are used in sections 2.1 and 2.2. A caterpillar tree is a
rooted tree such that every internal node has at most one child which is not a leaf
(see, e.g., [2]). Recall that for any simple network N , we denote the leaf attached to
the hybrid node in N by hl(N).

Lemma 1. Suppose N is a simple phylogenetic network that is consistent with
a set T of rooted triplets. Let N ′ be the graph obtained from N by deleting the root
node of N , the hybrid node of N , and hl(N) together with all their incident edges,
and then, for every node with outdegree 1 and indegree less than 2, contracting its
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Algorithm SimpleNetworks

Input: A dense set T of rooted triplets with a leaf set L such that G(L) consists of
one connected component.

Output: The set of all simple phylogenetic networks with leaf set L which are consistent
with T .

1 Let N1 = Non-SkewSimpleNetworks(T ).

2 Let N2 = SkewSimpleNetworks(T ).

3 return N1 ∪N2.
End SimpleNetworks

Fig. 2. Constructing all simple phylogenetic networks.

outgoing edge. If N is nonskew, then N ′ consists of two binary caterpillar trees which
are consistent with T |A(N) and T |B(N), respectively; if N is skew, then N ′ is a
binary caterpillar tree which is consistent with T |A(N).

Lemma 2. [15] Let T be a dense set of rooted triplets and let L be the leaf set
of T . There is at most one rooted, unordered tree distinctly leaf-labeled by L which is
consistent with T . Furthermore, if such a tree exists, then it must be binary.

2.1. Constructing all nonskew simple phylogenetic networks. Let U be
an undirected, connected graph. Any partition (X,Y, Z) of the vertex set of U is
called a nonskew leaf partition in U if |X| ≥ 1, |Y | = 1, |Z| ≥ 1, and in U the
following holds: (1) X and Z form two cliques, and (2) there is no edge between a
vertex in X and a vertex in Z. Any two nonskew leaf partitions of the form (X,Y, Z)
and (Z, Y,X) are considered to be equivalent.

Lemma 3. Let T be a dense set of rooted triplets and let L be the leaf set of T . If
N is a nonskew simple phylogenetic network with leaf set L that is consistent with T ,
then (A(N), hl(N), B(N)) forms a nonskew leaf partition in G(L).

Proof. Consider any ai, aj ∈ A(N) with i �= j and let b be an arbitrary element
in B(N). N is consistent with T , implying that ({ai, b}, aj) �∈ T and ({aj , b}, ai) �∈ T .
Since T is dense, ({ai, aj}, b) must belong to T ; i.e., there is an edge (ai, aj) in G(L).
Hence, A(N) forms a clique in G(L). In the same way, B(N) forms a clique in G(L).
Moreover, T cannot contain any rooted triplet of the form ({a, b}, x) where a ∈ A(N),
b ∈ B(N), x ∈ L, and thus there are no edges in G(L) between leaves in A(N) and
leaves in B(N). However, G(L) is connected, which means that there must be at least
one edge from A(N) to the leaf hl(N) and at least one edge from B(N) to hl(N). By
definition, (A(N), hl(N), B(N)) forms a nonskew leaf partition in G(L).

By Lemmas 1 and 3, if N is a nonskew simple network with leaf set L that is
consistent with T , then (A(N), hl(N), B(N)) forms a nonskew leaf partition in G(L)
and T |A(N) and T |B(N) are consistent with two binary caterpillar trees. Algorithm
Non-SkewSimpleNetworks, shown in Figure 3, uses these implications to efficiently
construct all nonskew simple networks with leaf set L that are consistent with T .
The algorithm enumerates all nonskew leaf partitions in G(L), and for each such
leaf partition P , tries to build binary caterpillar trees for subsets of L induced by P
(Lemma 2 ensures that for any dense subset T ′ of T , if T ′ is consistent with a
caterpillar tree, then it is uniquely determined, and so the algorithm of Aho et al. [1]
can find it) and if successful, then combines the caterpillar trees in accordance with
Lemma 1 to obtain all possible valid simple networks. Lemmas 1 and 3 guarantee that
this approach will discover every valid simple network. However, it may also yield
some simple networks which are not consistent with T ; hence, before including any
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Algorithm Non-SkewSimpleNetworks

Input: A dense set T of rooted triplets with a leaf set L such that G(L) consists of
one connected component.

Output: The set of all nonskew simple phylogenetic networks with leaf set L which are
consistent with T .

1 Set N1 = ∅.
2 Construct G(L) and compute all nonskew leaf partitions in G(L).

3 for every nonskew leaf partition (X,Y, Z) in G(L) do

3.1 Let TX = BuildTree(T |X) and TZ = BuildTree(T |Z).

3.2 if TX and TZ are binary caterpillar trees then

Make the roots of TX and TZ children of a new root node, create a new
hybrid node H with a child labeled by the leaf in Y , and construct at most
four nonskew simple networks by attaching H to one of TX ’s bottommost
leaves’ parent edges and one of TZ ’s bottommost leaves’ parent edges in all
possible ways.

For each obtained network N , if N is consistent with T then let N1 =
N1 ∪ {N}.

endfor

4 return N1.
End Non-SkewSimpleNetworks

Fig. 3. Constructing all nonskew simple phylogenetic networks.

constructed network N in the final solution set N1, Non-SkewSimpleNetworks verifies
if N is consistent with T .

For any L′ ⊆ L with |L′| ≥ 3, BuildTree(T |L′) refers to the fast implementation
of the algorithm of Aho et al. applied to T |L′ (we may assume it returns null if
it fails). For |L′| < 3, the set T |L′ is empty and we simply let BuildTree(T |L′)
return a tree with the one or two leaves in L′. The running time of BuildTree(T |L′)
is min

{
O(|T | · log2 n), O(|T | + n2 log n)

}
(see section 1.3).

We now derive an upper bound on the running time of Non-SkewSimpleNetworks.

Lemma 4. For any undirected, connected graph U with n vertices, all nonskew
leaf partitions in U can be computed in O(n3) time.

Proof. To find all nonskew leaf partitions in U , test each of the n vertices to see
if its removal divides U into two disjoint, nonempty cliques. Each test can be done in
O(n2) time by depth-first search; thus this takes a total of O(n3) time.

Lemma 5. Any undirected, connected graph U has at most two nonskew leaf
partitions.

Proof. First observe that for any two different nonskew leaf partitions (X, {h}, Z)
and (X ′, {h′}, Z ′) in U , we have h �= h′. Moreover, h and h′ are neighbors in U
(otherwise, for any two neighbors x′, z′ of h′ such that x′ ∈ X ′ and z′ ∈ Z ′, we have
x′ �= h and z′ �= h, and then all of h′, x′, z′ must belong to one of X and Z while there
is no edge between x′ and z′, which is a contradiction).

Now, suppose (X, {h}, Z) is a nonskew leaf partition in U and consider any other
nonskew leaf partition (X ′, {h′}, Z ′) in U . Either h′ ∈ X or h′ ∈ Z. If h′ ∈ X, then h
can have no neighbors in X other than h′ (otherwise, there would be an edge between
X ′ and Z ′) and, furthermore, U cannot have any nonskew leaf partition of the form
(X ′′, {h′′}, Z ′′) where h′′ ∈ Z because h′ and h′′ are not neighbors. This also holds in
the case h′ ∈ Z. This proves that U has at most two nonskew leaf partitions.
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Algorithm SkewSimpleNetworks

Input: A dense set T of rooted triplets with a leaf set L such that G(L) consists of
one connected component.

Output: The set of all skew simple phylogenetic networks with leaf set L which are
consistent with T .

1 Set N2 = ∅.
2 Construct D.

3 for every x ∈ L do

3.1 Let Q = BuildCaterpillar(D |L′), where L′ = L \ {x}.
3.2 if Q �= null then

Make the root of Q a child of a new root node r, create a new hybrid node H
with a child labeled by x, add an edge from r to H, and construct two skew
simple networks by attaching H to each one of Q’s two bottommost edges.

For each obtained network N , if N is consistent with all rooted triplets in T
involving x then let N2 = N2 ∪ {N}.

endfor

4 return N2.
End SkewSimpleNetworks

Fig. 4. Constructing all skew simple phylogenetic networks.

Next, if N is any galled network with n leaves, then the total number of nodes
in N is O(n) by Lemma 3 in [4]. By traversing the O(n) nodes in N in a bottom-
up order while keeping track of each node’s O(n) descendants and updating a table
containing all O(n2) node pairs’ lowest common ancestors, we obtain the following.

Lemma 6. Let N be a galled network with n leaves. After O(n2) time prepro-
cessing, we can check if any given rooted triplet is consistent with N in O(1) time.

Theorem 2. The time complexity of Algorithm Non-SkewSimpleNetworks is
O(n3).

Proof. Steps 1 and 4 require O(1) time. Step 2 can be performed in O(n3) time
by a single scan of T and by applying Lemma 4. Moreover, G(L) has at most two
nonskew leaf partitions according to Lemma 5. Therefore, steps 3.1 and 3.2 are carried
out at most two times each. Step 3.1 takes O(|T | + n2 log n) = O(n3) time with the
fast implementation of BuildTree by Henzinger, King, and Warnow [10]. Every time
step 3.2 is performed, the algorithm constructs at most four nonskew simple networks
and tests each of them for inclusion in N , which after O(n2) time preprocessing takes
O(n3) time using Lemma 6 since |T | = O(n3). Hence, the total running time is
O(n3).

2.2. Constructing all skew simple phylogenetic networks. To obtain all
skew simple networks with leaf set L consistent with T , Algorithm SkewSimpleNet-
works in Figure 4 tries all ways to remove one leaf x from L and construct a binary
caterpillar tree consistent with all rooted triplets not involving x using a procedure
named BuildCaterpillar. For each such caterpillar Q, it forms two candidate skew
simple networks by letting the root of Q be a child of a new split node with a hybrid
node H such that H has a child labeled by x and H is attached to one of Q’s two
bottommost edges. (By Lemma 1, every skew simple network with leaf set L that
is consistent with T must have this structure.) Then, each candidate skew simple
network is checked to see if it is consistent with all rooted triplets in T involving x
(by the above, it is always consistent with the rest); if yes, then it is included in the
solution set N2.
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The procedure BuildCaterpillar uses a graph D, defined as follows. Given a set T
of rooted triplets with leaf set L, let D be the directed graph with vertex set L such
that there is a directed edge (x, y) if and only if T contains at least one rooted triplet
of the form ({y, z}, x), where z ∈ L. For any L′ ⊆ L, let D |L′ be the subgraph of D
in which all vertices not in L′ and their incident edges have been deleted. D |L′ is
acyclic if and only if there exists a binary caterpillar tree consistent with T |L′.

For any L′ ⊆ L, BuildCaterpillar(D |L′) returns a binary caterpillar tree with leaf
set L′ which is consistent with T |L′ if such a tree exists, and null otherwise, by the
following method. If D |L′ has a cycle, then return null. Else, do a topological sort
of D |L′ to find a linear ordering O of L′ and return a binary caterpillar tree whose
leaves are labeled in order of increasing distance from the root according to O. Since
T is dense, O is uniquely determined except for its last two elements which may be
interchanged arbitrarily.

Theorem 3. The time complexity of Algorithm SkewSimpleNetworks is O(n3).

Proof. Steps 1 and 4 require O(1) time, and step 2 can be performed in O(n3)
time by a single scan of T . Steps 3.1 and 3.2 are carried out n times. Each call to
BuildCaterpillar in step 3.1 takes O(n2) time since a topological sort can be done in
O(n2) time. In step 3.2, to construct two networks and test them against the O(n2)
rooted triplets involving x takes O(n2) time by Lemma 6. Hence, the total running
time is O(n3).

3. An exact algorithm for inferring a galled phylogenetic network from
a dense set of rooted triplets with optimal running time. Here, we present
our algorithm FastGalledNetwork for constructing a galled network consistent with
a given dense set T of rooted triplets if such a network exists. Its running time is
O(n3), where n = |L| and L denotes the leaf set of T , which is optimal since the size
of the input is Θ(n3) when T is dense.

In section 3.1, we give an algorithm named ComputeSNTree which computes
the so-called SN -tree for T in O(n3) time. Then, in section 3.2, we describe Fast-
GalledNetwork. It uses ComputeSNTree as well as SimpleNetworks from section 2 to
construct a galled network consistent with T (if one exists) from the SN -tree for T .
In sections 3.1 and 3.2 below, we assume T is dense.

3.1. Computing the SN-tree. For any X ⊆ L, the set SN(X) is defined
recursively as SN(X ∪ {c}) if there exist some x, x′ ∈ X and c ∈ L \ X such that
({x, c}, x′) ∈ T , and as X otherwise. SN -sets were introduced in [15]. Intuitively,
each SN -set is a subset of L which will form the leaf set of one subnetwork in the
final solution. The SN -sets satisfy the following important property.

Lemma 7 (see [15]). If T is dense, then for any A,B ⊆ L, SN(A) ∩ SN(B)
equals ∅, SN(A), or SN(B).

Reference [15] showed how to compute SN({a, b}) for any a, b ∈ L in O(n3) time;
that approach therefore takes O(n5) time to compute SN({a, b}) for all a, b ∈ L. This
section presents a faster method for implicitly computing all SN -sets of this form when
T is dense, which requires only O(n3) time. The algorithm (ComputeSNTree) is listed
in Figure 5. Given a dense T , it builds a rooted tree called the SN -tree for T which
encodes all SN -sets so that SN(X) for any X ⊆ L can be retrieved efficiently.

In the first step, ComputeSNTree constructs a directed graph GT with vertex
set V (GT ) and edge set E(GT ). V (GT ) is defined as {v{a,b} | a, b ∈ L}, where v{a,a}
for any a ∈ L is denoted by v{a} for short, and E(GT ) is {(v{a,c}, v{a,b}), (v{a,c}, v{b,c}),
(v{b,c}, v{a,b}), (v{b,c}, v{a,c}) | ({a, b}, c) ∈ T }

⋃
{(v{a,b}, v{a}), (v{a,b}, v{b}) | a, b ∈
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Algorithm ComputeSNTree

Input: A dense set T of rooted triplets with a leaf set L.

Output: The SN -tree RT for T .

1 Construct the directed graph GT .

2 Compute the set C of strongly connected components of GT and then construct G′
T

for T .

3 Construct the SN -tree RT and return RT .
End ComputeSNTree

Fig. 5. Computing the SN-tree for a dense set T .

L}. Note that |V (GT )| = O(n2) and |E(GT )| = O(n3). Before describing the re-
maining steps of ComputeSNTree, we first investigate the structure of GT and the
relationship between GT and the SN -sets of the form SN({a, b}).

Lemma 8. For every a, b, y, z ∈ L, if GT contains a path from v{a,b} to v{a,y}
and a path from v{a,b} to v{a,z}, then GT has a path from v{a,b} to v{y,z}.

Proof. If |{a, y, z}| < 3, then the lemma follows from the construction of GT .
Otherwise, since T is dense, we have one of the following cases for {a, y, z}:

• Case (1): ({y, z}, a) ∈ T or ({a, z}, y) ∈ T . Then (v{a,y}, v{y,z}) ∈ E(GT ),
and thus there is a path from v{a,b} to v{a,y} and then to v{y,z}.

• Case (2): ({a, y}, z) ∈ T . Then (v{a,z}, v{y,z}) ∈ E(GT ), and thus there is a
path from v{a,b} to v{a,z} and then to v{y,z}.

Lemma 9. For every a, b, c ∈ L, if c ∈ SN({a, b}), then there exists a directed
path from v{a,b} to v{a,c} in GT .

Proof. Define SN0({a, b}) = {a, b} and for � = 1, 2, . . . , n, define SN� ={
x ∈ L | ({y, x}, z) ∈ T for some y, z ∈ SN�−1({a, b})

}
. Note that SN({a, b}) =⋃n

i=0 SN�({a, b}). We prove by induction that the following statement P (�) is true
for � ∈ {0, 1, 2, . . . , n}.

P (�): For every x ∈ SN�({a, b}), there exists a path from v{a,b} to v{a,x} in GT .
When � = 0 (the base case), the statement follows trivially by the construction

of GT .
Next, when � > 0, suppose the statement P (� − 1) is true; i.e., for every w ∈

SN�−1({a, b}), there exists a path from v{a,b} to v{a,w} in GT . Consider any x ∈
SN�({a, b}). By the definition of SN�, there exist y, z ∈ SN�−1({a, b}) such that
({y, x}, z) ∈ T . Then P (� − 1) implies that there is a path from v{a,b} to v{a,y} and
a path from v{a,b} to v{a,z}, which means there exists a path from v{a,b} to v{y,z}
according to Lemma 8. Moreover, (v{y,z}, v{x,y}) ∈ E(GT ) because ({y, x}, z) ∈ T .
Now, if x = a or y = a, then P (�) follows directly; therefore assume x �= a and y �= a.
Since T is dense, for the set {a, x, y}, there are two cases:

• Case (1): ({a, y}, x) ∈ T or ({a, x}, y) ∈ T . Then (v{x,y}, v{a,x}) ∈ E(GT ).
• Case (2): ({x, y}, a) ∈ T . Then (v{a,y}, v{a,x}) ∈ E(GT ).

In both cases, there exists a path from v{a,b} to v{a,x}, and thus P (�) holds.
By induction, P (�) is true for every � ∈ {0, 1, 2, . . . , n}. Since c belongs to at least

one set SN�, the lemma follows.
Lemma 10. For every a, b, c, d ∈ L, if there is a directed path from v{a,b} to v{c,d}

in GT , then SN({c, d}) ⊆ SN({a, b}).
Proof. For any e ∈ SN({c, d}), there is a directed path from v{c,d} to v{c,e} by

Lemma 9. Since E(GT ) contains the directed edge (v{c,e}, v{e}), and since there is a
directed path from v{a,b} to v{c,d}, this means there is a directed path from v{a,b} to
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v{e}. Without loss of generality, let the path be v{x0,x1}, v{x1,x2}, v{x2,x3}, . . . , v{xp−1,xp},
v{xp}, where {x0, x1} = {a, b}, and xp = e. Then, based on the rooted triplets
in T for the sets {x0, x1, x2}, {x1, x2, x3}, . . . , {xp−2, xp−1, xp}, we can deduce that
xp ∈ SN({a, b}). Thus, e ∈ SN({a, b}), so we have just shown that SN({c, d}) ⊆
SN({a, b}).

Corollary 1. For any two nodes v{a,b} and v{c,d} on a directed cycle in GT ,
SN({a, b}) = SN({c, d}).

By the above, computing SN({a, b}) for any a, b ∈ L is equivalent to finding all
nodes of the form v{c} reachable from v{a,b}. Let the set of all strongly connected com-
ponents of GT be C = {C1, C2, . . . , Cm}. By Corollary 1, SN({a, b}) = SN({c, d})
if v{a,b} and v{c,d} are in the same Ci. So, we define SN(Ci) as SN({a, b}) for any
v{a,b} ∈ Ci. The set C has the following properties.

Lemma 11. For every c ∈ L, {v{c}} ∈ C. Moreover, for every i �= j, SN(Ci) �=
SN(Cj).

Proof. Since v{c} has no outgoing edge, {v{c}} is a strongly connected component
in GT and therefore belongs to C.

To prove the second statement, suppose for the sake of contradiction that there
exist strongly connected components Ci, Cj with i �= j such that SN(Ci) = SN(Cj).
Take any v{w,x} ∈ Ci and v{y,z} ∈ Cj . Since y, z ∈ SN(Cj) = SN(Ci) = SN({w, x}),
it follows from Lemma 9 that GT has a path from v{w,x} to v{w,y} and a path from
v{w,x} to v{w,z}, and hence a path from v{w,x} to v{y,z} by Lemma 8. Symmetrically,
GT contains a path from v{y,z} to v{w,x}. But then Ci ∪ Cj must be a strongly
connected component of GT , and we have arrived at a contradiction.

In the second step of ComputeSNTree, we compute C and then let G′
T be the

directed graph with vertex set V (G′
T ) = C and edge set E(G′

T ) = {(Ci, Cj) | there
exists some (v{w,x}, v{y,z}) ∈ E(GT ) where v{w,x} ∈ Ci and v{y,z} ∈ Cj}. Note that
G′

T is a directed acyclic graph. From G′
T , construct a graph RT with V (RT ) = C and

E(RT ) = {(Ci, Cj) ∈ E(G′
T ) | there exists no path of length at least 2 from Ci to Cj

in G′
T }. Finally, return RT . The next two lemmas show that RT is indeed a tree.

Lemma 12. There is only one node in G′
T with indegree 0.

Proof. Suppose G′
T has two different nodes r, s with indegree 0. Denote the

two strongly connected components in GT which correspond to r and s in RT by
Cr and Cs, respectively. Let v{a,b} be any node in Cr and let v{c,d} be any node
in Cs. Clearly, a �= b and c �= d since any node of the form v{a} belongs to a strongly
connected component consisting only of v{a} and therefore cannot have indegree 0
by the construction of GT . Consider the three possible rooted triplets with leaf
set {a, b, c} (of which at least one belongs to T since T is dense). By the definition
of E(GT ), there will always be at least one edge ending at v{a,b}. Since r has indegree 0
in G′

T , this implies that (1) at least one of v{a,c} and v{b,c} must be in Cr. In the
same way, we see that (2) at least one of v{a,d} and v{b,d} is in Cr; (3) at least one of
v{a,c} and v{a,d} is in Cs; and (4) at least one of v{b,c} and v{b,d} is in Cs.

Assume without loss of generality that v{a,c} ∈ Cr. Then (3) yields v{a,d} ∈ Cs,
and thus we have v{b,d} ∈ Cr by (2), and then v{b,c} ∈ Cs by (4). There are three cases:

• Case (1): ({a, b}, c) ∈ T . Then the two edges (v{a,c}, v{b,c}) and (v{b,c}, v{a,c})
in E(GT ) imply that Cr is reachable from Cs in G′

T and vice versa.
• Case (2): ({a, c}, b) ∈ T . Then (v{a,b}, v{b,c}), (v{b,c}, v{a,b}) ∈ E(GT ) imply

that Cr is reachable from Cs in G′
T and vice versa.

• Case (3): ({b, c}, a) ∈ T . Then (v{a,b}, v{b,c}) ∈ E(GT ), and thus Cs is
reachable from Cr in G′

T . Next, by considering all possible rooted triplets on
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{a, c, d}, we see that (v{c,d}, v{a,c}) ∈ E(GT ); (v{a,c}, v{c,d}), (v{c,d}, v{a,c}) ∈
E(GT ); or (v{a,c}, v{a,d}), (v{a,d}, v{a,c}) ∈ E(GT ), which means that Cr is
always reachable from Cs in G′

T .

Every case contradicts that Cr and Cs are disjoint strongly connected components.
Hence, G′

T can only have one node with indegree 0.

Lemma 13. RT is a tree with no nodes having outdegree 1. Its set of leaves is
{{v{c}} | c ∈ L}.

Proof. From Lemma 12 and by the construction of RT , it follows that RT has
only one node with indegree 0, i.e., only one root node.

Now, suppose RT is not a tree. Then there exists a node Cj in RT with at
least two parents, say Ci and Ci′ . By definition, (Ci, Cj), (Ci′ , Cj) ∈ E(G′

T ) and by
Lemma 10, SN(Cj) ⊆ SN(Ci) as well as SN(Cj) ⊆ SN(Ci′). Next, by Lemmas 7
and 11, we have either SN(Ci) � SN(Ci′) or SN(Ci′) � SN(Ci). Without loss of
generality, assume SN(Ci) � SN(Ci′). Then, by Lemmas 8 and 9, we have a path
in G′

T from Ci′ to Ci and then to Cj . But this implies that (Ci′ , Cj) �∈ E(RT ), which
is a contradiction. Thus, RT must be a tree.

Next, suppose some node Ci in RT has a single child Cj . By Lemma 10, SN(Cj) ⊆
SN(Ci). Observe that for any c ∈ SN(Ci), there is a path from Ci to v{c} in G′

T
according to Lemma 9, and since this path passes through Cj , we also have c ∈
SN(Cj) by Lemma 10. This means that SN(Ci) ⊆ SN(Cj), giving us SN(Ci) =
SN(Cj). But this contradicts Lemma 11. Thus, RT has no nodes with outdegree 1.

Finally, for every c ∈ L, {v{c}} is of outdegree 0 in G′
T and is therefore a leaf

in RT . The lemma follows.

Corollary 2. |C| = O(n).

Proof. By the definition of RT , we have V (RT ) = C. Lemma 13 states that RT is a
tree with n leaves and no nodes with outdegree 1. Hence, |C| = |V (RT )| = O(n).

In the rest of the paper, RT is called the SN -tree for T . This is because
SN({a, b}) for any a, b ∈ L can be obtained from RT using the following theorem.

Theorem 4. Given any a, b ∈ L, let u be the lowest common ancestor of v{a}
and v{b} in RT . Then, SN({a, b}) = {c ∈ L | v{c} is a descendant of u in RT }.

Proof. We first prove that for any c ∈ L, if v{c} is a descendant of the lowest
common ancestor u of v{a} and v{b} in RT , then c ∈ SN({a, b}). Let v{y,z} be any
node in the strongly connected component in GT which corresponds to u in RT . Then
a ∈ SN({y, z}) by Lemma 10. Since also a ∈ SN({a, b}), Lemma 7 implies that either
(1) SN({a, b}) � SN({y, z}) or (2) SN({y, z}) ⊆ SN({a, b}). If (1) holds, then there
is a path in GT from v{y,z} to v{a,b} by Lemma 9, but then u cannot be the lowest
common ancestor of v{a} and v{b} in RT , which is a contradiction. Thus, (2) must
hold, which means that y, z ∈ SN({a, b}), so there is a path in GT from v{a,b} to
v{y,z} as can be seen by applying Lemma 9 two times and then Lemma 8. Now, since
v{c} is a descendant of u in RT , there is a path in GT from v{y,z} to v{c}. This shows
that v{c} is reachable from v{a,b} in GT , i.e., that c ∈ SN({a, b}) by Lemma 10.

Next, we prove that if c ∈ SN({a, b}), then v{c} is a descendant of u in RT .
Take any c ∈ SN({a, b}), and suppose that v{c} is not a descendant of u in RT .
Then v{b} is a descendant of the lowest common ancestor u′ of v{a} and v{c} in RT ,
so b ∈ SN({a, c}) by the preceding paragraph and, similarly, a ∈ SN({b, c}). But
then, SN({a, b}) = SN({a, c}) = SN({b, c}) by Lemma 9 and Corollary 1, which is
impossible since this would imply that u and u′ coincide. Therefore, v{c} must be a
descendant of u in RT .

Thus, the SN -tree has the properties we want. The next theorem shows that the
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SN -tree for T can be constructed efficiently.
Theorem 5. The time complexity of Algorithm ComputeSNTree is O(n3).
Proof. By scanning all rooted triplets in T , we can construct GT in step 1 in

O(|T |) = O(n3) time. For step 2, the time complexity is O(|V (GT )| + |E(GT )|) =
O(n3). To build the SN -tree RT in step 3, we need two substeps. First, for each
node Ci ∈ V (G′

T ), we compute the set of all nodes that are reachable from Ci in G′
T .

By Corollary 2, |V (G′
T )| = O(n) and thus |E(G′

T )| = O(n2), so this takes O(n2) time
for each Ci using depth-first search, so O(n3) time in total. Next, we check, for each
(Ci, Cj) ∈ E(G′

T ), if there is a path of length at least 2 from Ci to Cj . If the answer
is no, then (Ci, Cj) is an edge in RT . Each such check can be performed in O(n) time
by asking if Cj is reachable from any of the children (except Cj itself) of Ci. Since
there are O(n2) edges, we can check all edges in O(n3) time. Thus, the algorithm’s
total running time is O(n3).

3.2. Algorithm FastGalledNetwork. The main algorithm of this section, Al-
gorithm FastGalledNetwork, is listed in Figure 6. The key observation is that a galled
network consistent with T (if one exists) can be obtained from the SN -tree for T by
replacing each internal node of degree 3 or higher with a subnetwork whose structure
is inferred by Algorithm SimpleNetworks.

Recall that for any node u in a rooted, leaf-labeled tree R, R[u] is the subtree of R
rooted at u, and Λ(R[u]) denotes the set of leaves in R[u]. Below, T |u is shorthand
for the set T |Λ(R[u]).

In step 1, FastGalledNetwork computes the SN -tree R for T using Algorithm
ComputeSNTree from section 3.1. Then, in steps 2 and 3, it tries to construct a
galled network Nu consistent with all rooted triplets in T |u for each node u in R
in bottom-up order. If successful, it returns Nr, where r is the root of R (note
that T = T | r); otherwise, it returns null. To obtain Nu for any node u in R,
FastGalledNetwork proceeds as follows. Let q be the degree of u and denote the
children of u by {u1, u2, . . . , uq}. If q = 0, then let Nu be a network consisting
of one leaf, labeled by u. If q = 2, then form Nu by joining the roots of Nu1

and Nu2
to a new root node. Otherwise, q ≥ 3 by Lemma 13. In this case, let

α1, α2, . . . , αq be q new symbols not in L, and define a function f as follows. For
every x ∈ Λ(R[u]), let f(x) = αi, where x ∈ Λ(R[ui]). Next, define T ′ as the set{
({f(x), f(y)}, f(z)) : ({x, y}, z) ∈ (T |u) and f(x), f(y), f(z) all differ

}
, and apply

Algorithm SimpleNetworks from section 2 to T ′. If there is a simple phylogenetic
network N ′ consistent with T ′, then replace each αi in N ′ with Nui and let Nu be
the resulting network; otherwise, terminate and output null.

The correctness of this method follows from the next two lemmas.
Lemma 14. For any node u in R, if T |u is consistent with a galled network with

leaf set Λ(R[u]) and if q ≥ 3, then there exists a simple network consistent with T ′.
Proof. Let M be a galled network with leaf set Λ(R[u]) consistent with T |u.

First we show that if q ≥ 3, then the root r of M must be a split node. Suppose r is
not a split node and let A and B be the disjoint sets of leaves in the two subnetworks
rooted at the children of r. For every child ui of u, we have either Λ(R[ui]) ⊆ A
or Λ(R[ui]) ⊆ B (otherwise, let a, b be two leaves in Λ(R[ui]) such that a ∈ A and
b ∈ B; for each x ∈ Λ(R[u]) \ {a, b}, at least one of ({a, x}, b) and ({b, x}, a) belongs
to T |u since T is dense, so x ∈ Λ(R[ui]), i.e., Λ(R[ui]) = Λ(R[u]), which is not
possible). Since q ≥ 3, there exist i, j, k where i, j, k differ such that both Λ(R[ui])
and Λ(R[uj ]) are subsets of one of A and B, and Λ(R[uk]) is a subset of the other.
Assume without loss of generality that Λ(R[ui]),Λ(R[uj ]) ⊆ A and Λ(R[uk]) ⊆ B.
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Algorithm FastGalledNetwork

Input: A dense set T of rooted triplets with a leaf set L.

Output: A galled network consistent with T , if one exists; otherwise, null.

1 Let R = ComputeSNTree(T ).

2 Define Nu for every leaf u in R to be a single node labeled by u.

3 for each nonleaf node u in R, in bottom-up order do

/* Construct a galled network Nu for the set of leaves in Λ(R[u]). */

3.1 Denote the set of children of u in R by {u1, u2, . . . , uq}.
3.2 If q = 2, let Nu be a network with a root node joined to Nu1 and Nu2 .

3.3 Otherwise (q ≥ 3), build T ′ from T |u, compute N = SimpleNetworks(T ′), and
check if N is empty; if yes then return null, else select any N ′ ∈ N and form
a network Nu by replacing each αi in N ′ with Nui .

endfor

4 return Nr, where r is the root of R.
End FastGalledNetwork

Fig. 6. Constructing a galled phylogenetic network consistent with a dense set T of rooted triplets.

For any x, y ∈ A and bk ∈ Λ(R[uk]), T cannot contain ({x, bk}, y) or ({y, bk}, x), so
SN({ai, aj}) is a proper subset of SN({ai, bk}) for every ai ∈ Λ(R[ui]), aj ∈ Λ(R[uj ]).
However, u is the lowest common ancestor in R of {ai, aj} as well as of {ai, bk}, so
SN({ai, aj}) = SN({ai, bk}) by Theorem 4, which is a contradiction. Hence, r is a
split node.

Next, observe that each side network of M can contain leaves from only one R[ui].
To see this, let M [v] be a side network of M . For any i, j with i �= j, if M [v] contains a
leaf a ∈ Λ(R[ui]) and a leaf b ∈ Λ(R[uj ]), then since T is dense, Λ(R[ui]) � SN({a, b})
and Λ(R[uj ]) � SN({a, b}) by Lemma 7 while SN({a, b}) �= Λ(R[u]) (otherwise,
M [v] cannot be a side network of M), contradicting the maximality of Λ(R[ui])
and Λ(R[uj ]) in Λ(R[u]).

By the preceding two paragraphs, the root of M is a split node of some hybrid
node h, and each side network attached to a merge path of h contains leaves from only
one Λ(R[ui]). We now show that there exists a galled network M∗ consistent with T |u
such that for every i, all leaves in Λ(R[ui]) belong to only one side network of M∗

attached to a merge path of h. Suppose M has two side networks M [v] and M [w]
attached to merge paths of h such that both M [v] and M [w] contain leaves from the
same Λ(R[ui]). M [v] and M [w] must be attached to the same merge path p of h (oth-
erwise, Λ(R[ui]) = Λ(R[u]), which is impossible), and, furthermore, all side networks
attached to p between M [v] and M [w] contain leaves from Λ(R[ui]) only. Thus, all side
networks containing leaves from the same Λ(R[ui]) are consecutively ordered along
one merge path of h and can therefore be concatenated into one side network in such
a way that all rooted triplets involving Λ(R[ui]) are still consistent with it (note that
T does not contain any rooted triplet of the form ({a, x}, b) where a, b ∈ Λ(R[ui]) and
x is located in a side tree of M below the side trees leaf-labeled by Λ(R[ui])). Let M∗

be the resulting galled network consistent with T |u such that each side network M∗
i

attached to a merge path of h is bijectively leaf-labeled by one Λ(R[ui]).

Finally, construct a simple phylogenetic network M ′ from M∗ by replacing each
M∗

i by a leaf labeled by αi. M ′ is consistent with T ′, which can be seen as follows.
Let t′ be any rooted triplet in T ′ and write t′ = ({αi, αj}, αk). Then there exists
some rooted triplet t = ({x, y}, z) in T such that x ∈ Λ(R[ui]), y ∈ Λ(R[uj ]), and
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z ∈ Λ(R[uk]), where i, j, k all differ. t is consistent with M∗, so t′ is consistent with M ′

by the construction of M ′. Hence, T ′ and M ′ are consistent.
Lemma 15. Let u be any node in R and suppose each T |ui is consistent with

a galled network Nui
. If q = 2, then the galled network obtained by joining the roots

of Nu1 and Nu2 to a new root node is consistent with T |u. If q ≥ 3 and T ′ is
consistent with a simple network N ′ with leaf set {α1, α2, . . . , αq}, then the galled
network Nu obtained from N ′ by replacing each αi by Nui

is consistent with T |u.
Proof (analogous to the proof of Lemma 8 in [15]). Consider any rooted triplet t

in T |u and write t = ({x, y}, z). If x ∈ Λ(R[ui]), y ∈ Λ(R[uj ]), and z ∈ Λ(R[uk]),
where i, j, k all differ, then t is consistent with Nu (otherwise, t′=({f(x), f(y)}, f(z)) =
({αi, αj}, αk) cannot be consistent with N ′ which is a contradiction since t′ ∈ T ′).
If x, y ∈ Λ(R[ui]) and z ∈ Λ(R[uj ]) with i �= j, then t is consistent with Nu by the
construction of Nu. The case x, z ∈ Λ(R[ui]) and y ∈ Λ(R[uj ]) (or symmetrically,
y, z ∈ Λ(R[ui]) and x ∈ Λ(R[uj ])) with i �= j is not possible because then y would
not belong to SN({x, z}) by Theorem 4, contradicting that y ∈ SN({x, z}) according
to the definition of SN -sets. Finally, if x, y, z belong to the same Λ(R[ui]), then t
is consistent with Nui and therefore with Nu. In all possible cases, t is consistent
with Nu.

We now analyze the running time of FastGalledNetwork.
Theorem 6. The time complexity of Algorithm FastGalledNetwork is O(n3).
Proof. Step 1 takes O(n3) by Theorem 5. For every node u in R with deg(u) < 3,

Nu can be constructed in O(1) time. The total time for constructing all networks Nu

with deg(u) ≥ 3 is given by the total time needed to build all the T ′-sets plus the
total time taken by all calls to SimpleNetworks; both of these are shown below to be
O(n3). Thus, the theorem follows.

First note that to construct T ′ for a node u, we need to consider only rooted
triplets in T whose three leaves belong to subtrees rooted at three different children
of u. For this purpose, we may create a list T (u) for each node u in R containing all
rooted triplets in T of the form ({x, y}, z) such that u is the lowest common ancestor
in R of x, y, and z. All the T (u)-lists can be constructed using an additional O(n3)
time after computing the SN -tree R in step 1 by doing a bottom-up traversal of R.
Then, when constructing T ′ in step 3.3, check each rooted triplet in T (u) to see if its
leaves belong to three different subtrees, and if so, update T ′ accordingly. This way,
each rooted triplet in T is considered for one T ′-set only, so the total time required
to build all T ′-sets is bounded by O(n3).

Next, note that each constructed T ′ has deg(u) leaves. Running SimpleNetworks
on T ′ therefore takes O((deg(u))3) time by Theorem 1. Summing over all nodes, the
calls to SimpleNetworks take a total of

∑
u∈R O((deg(u))3) = O((

∑
u∈R deg(u))3) =

O(n3) time.
Finally, we remark that FastGalledNetwork can be modified to return all galled

networks consistent with T by utilizing all simple networks computed in step 3.3.
However, this may take exponential time.

4. NP-hardness of the nondense case. We now prove that the problem of
inferring a galled phylogenetic network which is consistent with a given set of T rooted
triplets, if one exists, is NP-hard when T is not required to be dense. Our proof
consists of a polynomial-time reduction from the NP-complete problem Set Splitting
(see, e.g., [5]) to the decision version of our problem. We use the same reduction
to prove that the closely related problem of inferring a simple phylogenetic network
which is consistent with a given (nondense) set of rooted triplets is also NP-hard.
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Set Splitting. Given a set S = {s1, s2, . . . , sn} and a collection C = {C1, C2, . . . ,
Cm} of subsets of S, where |Cj | = 3 for every Cj ∈ C, does (S, C) have a set splitting;
i.e., can S be partitioned into two disjoint subsets S1, S2 such that for every Cj ∈ C
it holds that Cj is not a subset of S1 and Cj is not a subset of S2?

First, we describe the reduction from Set Splitting. Given an instance (S, C),
where we assume without loss of generality that

⋃
Cj∈C Cj = S, construct a nondense

set T of rooted triplets having a leaf set L with L = {h, x, y} ∪ {sji | si ∈ S, 1 ≤ j ≤
m}, where h, x, y, and all elements of the form sji are new elements not belonging to S.
Initially, let T consist of the two rooted triplets ({x, h}, y) and ({y, h}, x). Next, for
each Cj ∈ C, write Cj = {sa, sb, sc} with a < b < c and include three rooted triplets

({sja, h}, s
j
b), ({sjb, h}, sjc), and ({sjc, h}, sja) in T . Finally, for each si ∈ S, add m rooted

triplets ({s1
i , s

2
i }, h), ({s2

i , s
3
i }, h), . . . , ({sm−1

i , smi }, h), ({smi , s1
i }, h) and 2m rooted

triplets ({s1
i , h}, x), ({y, h}, s1

i ), ({s2
i , h}, x), ({y, h}, s2

i ), . . . , ({smi , h}, x), ({y, h}, smi )
to T . (The main idea in the reduction is to encode C by rooted triplets of the form
({sja, h}, s

j
b) and use other rooted triplets to force any galled network N consistent

with T to have a special structure; see Lemma 17. Then, for each Cj = {sa, sb, sc} ∈ C,

at most two of sja, s
j
b, s

j
c can descend from the same clipped merge path from the root

in N , inducing a set splitting of S.)

Lemma 16. If (S, C) has a set splitting, then there exists a simple phylogenetic
network which is consistent with T .

Proof. Let (S1, S2) be a set splitting of (S, C). Define S∗
1 = {sji | si ∈ S1, 1 ≤

j ≤ m} and S∗
2 = {sji | si ∈ S2, 1 ≤ j ≤ m}. Note that S∗

1 ∪ S∗
2 ∪ {h, x, y} = L. Let

O1 be any ordering of S∗
1 ∪ {x} in which x is the first element, and for every pair of

elements of the form sja and sjb in S∗
1 , if there exists a Cj in C with Cj = {sa, sb, sc}

and either b < a < c, a < c < b, or c < b < a, then sja precedes sjb. (Except for this
requirement, the elements may be ordered arbitrarily in O1.) Define an ordering O2

of S∗
2 ∪ {y} analogously, letting y be the last element in O2, respectively. Next, build

a simple phylogenetic network N having a root node r and a hybrid node whose child
is a leaf labeled by h, where (1) |S∗

1 | + 1 leaves distinctly labeled by S∗
1 ∪ {x} are

attached to the left clipped merge path in order according to O1, and |S∗
2 | + 1 leaves

distinctly labeled by S∗
2 ∪ {y} are attached to the right clipped merge path in order

according to O2. See Figure 7 for an example. It is easy to verify that N and T are
consistent.

To prove the other direction (i.e., that a galled network consistent with T yields
a set splitting of (S, C)), we need the following lemma.

Lemma 17. Suppose N is a galled network with leaf set L which is consistent
with T . Then (1) the root r of N is a split node, (2) one side network attached to
a merge path of r contains h but no other leaves, and (3) h is a descendant of the
hybrid node for r.

Proof. (1) Suppose r is not a split node. Then L can be partitioned into two
disjoint, nonempty subsets U and V such that every path between a leaf in U and a
leaf in V passes through r. It follows that for any rooted triplet ({a, b}, c) which is
consistent with N , if a ∈ U , then b ∈ U , and if a ∈ V , then b ∈ V . Now consider
any element of the form sji in L. If sji ∈ U , then h, x, y ∈ U because N is consistent

with ({sji , h}, x), ({x, h}, y), and ({y, h}, sji ). But then also skz ∈ U for every skz in L

by ({skz , h}, x) ∈ T , contradicting that V is nonempty. The case sji ∈ V is analogous.
Hence, r must be a split node.

(2) Let N ′ be the side network attached to a merge path of r such that h ∈ Λ(N ′).
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Fig. 7. Let C1 = {s1, s2, s3}, C2 = {s1, s3, s4}, and C3 = {s2, s3, s4}, and suppose S1 =
{s1, s3} and S2 = {s2, s4}. The construction described in Lemma 16 yields a simple phylogenetic
network N as shown above.

If x ∈ Λ(N ′), then Λ(N ′) = L because y ∈ Λ(N ′) by ({y, h}, x) ∈ T and for every
element of the form sji in L, it holds that sji ∈ Λ(N ′) by ({sji , h}, x) ∈ T . If y ∈
Λ(N ′), then Λ(N ′) = L because of x ∈ Λ(N ′) by ({x, h}, y) ∈ T and the above. If
Λ(N ′) contains an element of the form sji , then Λ(N ′) = L because of y ∈ Λ(N ′) by

({y, h}, sji ) ∈ T and the above. Thus, if Λ(N ′) contains any element in addition to h,
then Λ(N ′) = L, which is not possible. Therefore, Λ(N ′) = {h}.

(3) By (1), r is a split node of N . Let hn(r) be the hybrid node for r and let
N ′ be the subnetwork of N rooted at hn(r). Suppose, on the contrary, that h is not
contained in N ′. Take any Cj ∈ C and write Cj = {sa, sb, sc} with a < b < c. Since

({sja, h}, s
j
b), ({sjb, h}, sjc), and ({sjc, h}, sja) are in T and h �∈ Λ(N ′), exactly one of sja,

sjb, and sjc belongs to Λ(N ′). Assume without loss of generality that sja ∈ Λ(N ′). Next,
neither x nor y can belong to the same side network as h by (2), and since ({x, h}, y)
and ({y, h}, x) are consistent with N , we have either x ∈ Λ(N ′) and y �∈ Λ(N ′) or
x �∈ Λ(N ′) and y ∈ Λ(N ′). If x ∈ Λ(N ′), then ({sja, h}, x) is not consistent with N ,
and if y ∈ Λ(N ′), then ({y, h}, sja) is not consistent with N , which is a contradiction
in both cases. Therefore, h ∈ Λ(N ′).

Lemma 18. If there exists a galled network which is consistent with T , then (S, C)
has a set splitting.

Proof. Let N be a galled network with leaf set L that is consistent with T . By
Lemma 17, the root r of N is a split node. Also by Lemma 17, the subnetwork of N
rooted at the child of hn(r), where hn(r) denotes the hybrid node for r, consists of
a single leaf which is labeled by h. Let P1 and P2 be the two clipped merge paths
of hn(r), and define L1 and L2 as the set of all leaves except x, y, and h which
are descendants of nodes on P1 and P2, respectively. We now show that (L1, L2)
induces a set splitting (S1, S2) of (S, C). For every si ∈ S, if s1

i belongs to L1, then
all elements in {ski | 1 ≤ k ≤ m} belong to L1 because ({s1

i , s
2
i }, h), ({s2

i , s
3
i }, h), . . . ,

({sm−1
i , smi }, h), ({smi , s1

i }, h) ∈ T . Similarly, if s1
i ∈ L2, then {ski | 1 ≤ k ≤ m} ⊆ L2.

Define S1 = {si | s1
i ∈ L1} and S2 = {si | s1

i ∈ L2}. Clearly, S1 ∪ S2 = S and
S1 ∩ S2 = ∅. Moreover, for every Cj ∈ C, it holds that Cj �⊆ S1 and Cj �⊆ S2 (to
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see this, write Cj = {sa, sb, sc} with a < b < c and note that if all of sa, sb, and

sc belonged to just one of S1 and S2, then sja, s
j
b, and sjc would be descendants of

nodes on the same clipped merge path of hn(r), and then all three rooted triplets
({sja, h}, s

j
b), ({sjb, h}, sjc), and ({sjc, h}, sja) could never be consistent with N , which is

a contradiction). Thus, (S1, S2) is a set splitting of (S, C).

Theorem 7. Given any nondense set T of rooted triplets, it is NP-hard to
determine if there exists a galled network which is consistent with T . It is also NP-
hard to determine if there exists a simple network which is consistent with T .

Proof. If (S, C) has a set splitting, then there exists a simple network which is
consistent with T according to Lemma 16. Next, Lemma 18 shows that if there exists
a galled network consistent with T , then (S, C) has a set splitting. Since a simple
phylogenetic network is always a galled network, and the reduction can be carried out
in polynomial time, the theorem follows.

5. Approximating the maximum number of consistent rooted triplets.
This section studies the problem of constructing a galled network consistent with the
maximum number of rooted triplets in T for any (not necessarily dense) given T . Sec-
tion 5.2 presents a polynomial-time approximation algorithm for this problem which
always outputs a galled network consistent with at least a factor of 5

12 (> 0.4166)
of the rooted triplets in T . On the negative side, section 5.1 shows that there exist
inputs for which any galled network can be consistent with at most a factor of 0.4883
of the rooted triplets in T .

5.1. Inapproximability result. Given any positive integer n, fix T to contain
all possible rooted triplets for a leaf set L of size n, that is, T =

{
({a, b}, c), ({a, c}, b),

({b, c}, a) | a, b, c ∈ L
}
. For any phylogenetic network N , let #N denote the number

of rooted triplets from T that are consistent with N .

Lemma 19. Let N be a galled network with Λ(N) = L. If N contains a nonsplit
node u with two children u1, u2 such that u is the root node or a child of a hybrid node,
then making u into a split node by removing the edges (u, u1) and (u, u2), adding two
new nodes v and w, and inserting the edges (u, v), (u,w), (v, u1), (w, u2), and (v, w)
yields a galled network N ′ with #N ′ = #N .

Lemma 20. Let N be a galled network with Λ(N) = L. Suppose N contains a
merge path P of a hybrid node h, c is the child of h, N [u] is a side network attached
to P , u �= c, and u has two children u1, u2. Then one of the following holds:

• If |Λ(N [u])| > |Λ(N [c])|, then N can be transformed into a galled network N ′

with #N ′ > #N by letting N [u] and N [c] trade places.
• Else, if |Λ(N [u])| ≤ |Λ(N [c])|, then N can be transformed into a galled net-

work N ′ with #N ′ > #N as follows: First, in case u is a split node in N ,
delete a hybrid edge descending from u (and contract all edges from ver-
tices with outdegree 1) so that N [u1] and N [u2] become disjoint. Second,
remove N [u] and instead attach the resulting disjoint N [u1] and N [u2] to P .

Proof. Let s be the split node corresponding to h, and define Lu = Λ(N [u]),
Lc = Λ(N [c]), Lm = Λ(N [s]) \ (Lu ∪ Lc), and Lrest = L \ (Lu ∪ Lc ∪ Lm). First
consider the case |Λ(N [u])| > |Λ(N [c])|. For any subset {x, y, z} of L, we have the
following possibilities:

• When at least one of {x, y, z} belongs to Lrest, it is easy to see that N and N ′

are consistent with exactly the same rooted triplets labeled by {x, y, z}.
• When {x, y, z} contains at least two leaves from Lu or at least two leaves

from Lc, or when {x, y, z} contains three leaves from Lm, then N and N ′ are
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again consistent with exactly the same rooted triplets labeled by {x, y, z}.
• When {x, y, z} contains one leaf from Lu, one leaf from Lc, and one leaf

from Lm, then each of N and N ′ is consistent with exactly two rooted triplets
labeled by {x, y, z}.

• When {x, y, z} contains one leaf from Lu and two leaves from Lm, then N is
consistent with one rooted triplet labeled by {x, y, z}, whereas N ′ is consistent
with two.

• When {x, y, z} contains one leaf from Lc and two leaves from Lm, then N is
consistent with two rooted triplets labeled by {x, y, z}, whereas N ′ is consis-
tent with one.

Since |Lu| > |Lc|, the difference in number of consistent rooted triplets is given by

#N ′ − #N = |Lu| ·
(|Lm|

2

)
− |Lc| ·

(|Lm|
2

)
> 0.

Next consider the case |Λ(N [u])| ≤ |Λ(N [c])|. If u is a split node in N , then
delete a hybrid edge e descending from u so that the resulting Λ(N [u1]) and Λ(N [u2])
are disjoint; assume without loss of generality that e is a descendant of u2. In ad-
dition to the above, define Lu1 = Λ(N [u1]) and Lu2

= Λ(N [u]) \ Λ(N [u1]). For any
subset {x, y, z} of L, we have the following possibilities:

• When at least one of {x, y, z} belongs to Lrest, then N and N ′ are consistent
with exactly the same rooted triplets labeled by {x, y, z}.

• When {x, y, z} does not contain at least one leaf from Lu1 and at least one
leaf from Lu2

, then N and N ′ are consistent with the same number of rooted
triplets labeled by {x, y, z}.

• When {x, y, z} contains one leaf from Lu1 , one leaf from Lu2 , and one leaf
from Lm, then each of N and N ′ is consistent with one rooted triplet labeled
by {x, y, z}.

• When {x, y, z} contains one leaf from Lu1
, one leaf from Lu2

, and one leaf
from Lc, then N is consistent with one rooted triplet labeled by {x, y, z},
whereas N ′ is consistent with two.

• When {x, y, z} contains two leaves from Lu1 and one leaf from Lu2 , or one
leaf from Lu1 and two leaves from Lu2 , then N is consistent with one or two
rooted triplets labeled by {x, y, z}, whereas N ′ is consistent with one.

Since |Lc| ≥ |Lu|, |Lu| ≥ |Lu1
|, and |Lu| ≥ |Lu2

|, the difference in number of

consistent rooted triplets satisfies #N ′ −#N ≥ |Lu1 | · |Lu2 | · |Lc| −
(|Lu1 |

2

)
· |Lu2 | −

|Lu1 | ·
(|Lu2

|
2

)
≥ 1

2 · |Lu1 | · |Lu2 | · (2 · |Lu| − |Lu1 | − |Lu2 | + 2) > 0.

By repeatedly applying Lemmas 19 and 20, the next lemma concludes that for
any fixed n, at least one of the galled networks N for a set of n leaves that maximizes
#N must be a caterpillar network. A galled network N is called a caterpillar network
if (1) the root of N and every nonleaf child of a hybrid node are split nodes and (2) for
every merge path P in N , all side networks attached to P except for the one at the
hybrid node are leaves.

Lemma 21. For any galled network N , there is a caterpillar network N ′ with
Λ(N ′) = Λ(N) and #N ′ ≥ #N .

Now, we are ready to show the bound on the approximation ratio. Let S(n) be
the maximum value of #N taken over all galled networks N with n leaves.

Lemma 22. S(n) = max1≤a≤n

{(
a
3

)
+ 2 ·

(
a
2

)
· (n− a) + a ·

(
n−a

2

)
+ S(n− a)

}
.

Proof. By Lemma 21, there is a caterpillar network N that maximizes #N among
all galled networks with n leaves. The recurrence for S(n) counts the maximum
number of rooted triplets in T consistent with a caterpillar network with n leaves
because if such a network contains a set A of a leaves attached to the two merge
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paths starting at the root, then it must be consistent with
•
(
a
3

)
rooted triplets labeled by three elements in A;

• 2 ·
(
a
2

)
· (n− a) rooted triplets labeled by two elements in A and one element

in L \A;
• a·

(
n−a

2

)
rooted triplets labeled by one element in A and two elements in L\A;

• S(n− a) rooted triplets labeled by three elements in L \A.
Theorem 8. There is no approximation algorithm with approximation ratio

larger than 0.4883.
Proof. Define T (n) = |T | for any given positive integer n, i.e., T (n) = 3 ·

(
n
3

)
.

Note that the approximation ratio can be at most minn∈Z+
S(n)
T (n) . By inserting n =

1000 into the recurrence in Lemma 22, we obtain S(1000) = 243383298. Hence, the

approximation ratio must be less than or equal to S(1000)
T (1000) < 0.4883.

5.2. A polynomial-time 5
12

-approximation algorithm. Given any set T of
rooted triplets, our approximation algorithm called Approximate (shown in Figure 8)
infers a galled network which is consistent with at least 5

12 of the rooted triplets in T .
We first describe the algorithm and then present the analysis.

Initially, Approximate partitions the set of leaves L into three subsets A,B,C
so that none of them equals L using an algorithm named LeafPartition (also listed
in Figure 8 and described in detail below). Then, for each X ∈ {A,B,C}, it re-
cursively infers a galled network KX by calling Approximate(T |X). Next, for each
X ∈ {A,B,C}, it generates a galled network NetworkX such that the root node is
a split node whose hybrid node is the parent of KX , and the other two networks in
{KA,KB ,KC} \ {KX} are side networks. Finally, it returns the best network among
NetworkA, NetworkB , and NetworkC .

We now explain the algorithm LeafPartition. It divides L into the three sub-
sets A,B,C in such a way that a special condition 5N1 +8N2 +12N3 ≥ 5 · |T | holds,
where for i ∈ {0, 1, 2, 3}, we define Ni = |Zi(A,B,C)| and where Zi(A,B,C) is the
set defined as follows:

• Z0(A,B,C) = {({x, y}, z) ∈ T | x and z are in one of the subsets A,B,C
and y is in another};

• Z1(A,B,C) = {({x, y}, z) ∈ T | x, y, and z are in one of the subsets A,B,C};
• Z2(A,B,C) = {({x, y}, z) ∈ T | x, y, and z are in three different subsets

among A,B,C};
• Z3(A,B,C) = {({x, y}, z) ∈ T | x and y are in one of the subsets A,B,C

and z is in another}.
Note that Z0(A,B,C) ∪ Z1(A,B,C) ∪ Z2(A,B,C) ∪ Z3(A,B,C) = T . As shown
below, any A,B,C which imply 5N1 + 8N2 + 12N3 ≥ 5 · |T | guarantee a good
approximation ratio for Approximate. Algorithm LeafPartition is a greedy algorithm
which first divides L into the three subsets arbitrarily and then moves leaves (one at
a time) from one subset to another until score(A,B,C) cannot be further improved,
where we define score(A,B,C) = 4N1 + 7N2 + 12N3. If one of the subsets, say A,
equals L after finishing moving the leaves, then it selects a leaf u that maximizes
p(u)
c(u) , where p(u) = |{({x, y}, u) ∈ T}| and c(u) = |{({u, x}, y) ∈ T }|, and moves

u from A to either B or C. (This step is to ensure that none of the three subsets
equals L.) The next lemma shows that this extra move does not reduce the value of
score(A,B,C). Since score keeps increasing by at least 1 as long as the while-loop
iterates and score(A,B,C) ≤ 12 · |T |, step 2.1 is performed at most 12 · |T | times in
total; i.e., the algorithm is guaranteed to terminate.
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Algorithm LeafPartition

Input: A set T of rooted triplets with a leaf set L.

Output: A partition of L into three subsets A,B,C such that none of them equals L
and such that 5N1 + 8N2 + 12N3 ≥ 5 · |T |.

1 Arbitrarily partition L into three subsets A,B,C.

2 while moving a leaf m from one subset to another increases score(A,B,C) =
4N1 + 7N2 + 12N3 do

2.1 Move m accordingly.

endwhile

3 if one of the subsets A,B,C equals L then

3.1 Choose a leaf u that maximizes p(u)
c(u)

and move u to another subset. Go to Step 2.

endif

4 return A,B,C.
End LeafPartition

Algorithm Approximate

Input: A set T of rooted triplets with a leaf set L.

Output: A galled network that is consistent with at least 5
12

· |T | of the rooted triplets
in T .

1 Partition L into A,B,C using LeafPartition.

2 For X ∈ {A,B,C}, let KX = Approximate(T |X).

3 For X ∈ {A,B,C}, generate a galled network NetworkX in which the root node is
a split node whose hybrid node h is the parent of KX , and the other two networks
in {KA,KB ,KC} \ {KX} are side networks attached to the merge paths of h.

4 return the NetworkX among X ∈ {A,B,C} that is consistent with the most rooted
triplets in T .

End Approximate

Fig. 8. An approximation algorithm for computing a galled network consistent with as many
rooted triplets in T as possible.

Lemma 23. Algorithm LeafPartition partitions L into three subsets A,B,C so
that score(A,B,C) cannot be further improved by moving a single element from one
subset to another.

Proof. If none of A,B,C equals L after step 2 in Algorithm LeafPartition is
done, the lemma follows. Hence, assume that one of the subsets, say A, equals L
after step 2. We only need to show that step 3.1 does not decrease score(A,B,C).
When u is moved from A, all rooted triplets in T of the form ({x, y}, u) are moved
from Z1(A,B,C) to Z3(A,B,C) and all rooted triplets in T of the form ({u, x}, y) are
moved from Z1(A,B,C) to Z0(A,B,C). The difference in score is equal to score(A \
{u}, {u}, ∅)−score(A, ∅, ∅) = p(u) · (12−4)− c(u) ·4 ≥ 0, where the last inequality
follows since p(u) ≥ 1

2 · c(u) by the choice of u. Thus, step 3.1 will not decrease
score(A,B,C).

The next two lemmas are needed to analyze the approximation ratio of Approxi-
mate.

Lemma 24. When Algorithm LeafPartition terminates, we have 5N1 + 8N2 +
12N3 ≥ 5 · |T |.

Proof. Write score(A,B,C) = x·N1+y ·N2+z ·N3. For any U, V,W ∈ {A,B,C},
denote by ({U, V },W ) the set of all rooted triplets in T of the form ({u, v}, w) where
u ∈ U , v ∈ V , and w ∈ W . Similarly, for any m ∈ L and U, V ∈ {A,B,C}, let
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({m,U}, V ) and ({U, V },m) denote the set of all rooted triplets in T of the form
({m,u}, v) and ({u, v},m), respectively, where u ∈ U and v ∈ V . For each of the six
possible ways of moving a leaf m from one of the subsets A,B,C to another, we can
derive a formula to express how score is affected, as described next.

First, suppose m is moved from A to B. Then, for every element t in ({m,A}, A),
since t will be moved from Z1(A,B,C) to Z0(A,B,C), the corresponding change in
score is −x. In the same way, we can calculate the change in score for each element
in ({m,U}, V ) and ({U, V },m) for every U, V ∈ {A,B,C} when m is moved from A
to B. After LeafPartition is done, moving m will not increase the value of score, so
score(A\{m}, B∪{m}, C) − score(A,B,C) ≤ 0. Thus, we have −x|({m,A}, A)|−
z|({m,A}, B)| + (y − z)|({m,A}, C)| + z|({m,B}, A)| + x|({m,B}, B)| + (z − y)|
({m,B}, C)|+y|({m,C}, A)|−y|({m,C}, B)|+0·|({m,C}, C)|+(z−x)|({A,A},m)|+
0 · |({A,B},m)|+ y|({A,C},m)|+(x− z)|({B,B},m)|− y|({B,C},m)|+0 · |({C,C},
m)| ≤ 0.

Next, by summing over all m ∈ A, we obtain the following inequality IAB :

IAB : −2x|({A,A}, A)| − 2z|({A,A}, B)| + 2(y − z)|({A,A}, C)| + z|({A,B}, A)| +
x|({A,B}, B)|+ (z − y)|({A,B}, C)|+ y|({A,C}, A)| − y|({A,C}, B)|+ (z −
x)|({A,A}, A)| + y|({A,C}, A)| + (x− z)|({B,B}, A)| − y|({B,C}, A)| ≤ 0.

In the summation, each element of the form ({a1, a2}, x) where a1, a2 ∈ A is counted
twice; therefore, the coefficient of each |({A,A}, x)| is multiplied by 2.

We derive five inequalities IAC , IBA, IBC , ICA, and ICB analogously. Finally,
we add IAB , IAC , IBA, IBC , ICA, and ICB together, and use N0 = |({A,B}, A)| +
|({A,B}, B)| + |({A,C}, A)| + |({A,C}, C)| + |({B,C}, B)| + |({B,C}, C)|, N1 =
|({A,A}, A)| + |({B,B}, B)| + |({C,C}, C)|, N2 = |({A,B}, C)| + |({A,C}, B)| +
|({B,C}, A)|, and N3 = |({A,A}, B)|+ |({A,A}, C)|+ |({B,B}, A)|+ |({B,B}, C)|+
|({C,C}, A)| + |({C,C}, B)| to obtain (z + 2y + x) ·N0 + (2z − 6x) ·N1 + (2z − 6y) ·
N2 + (2y+x− 5z) ·N3 ≤ 0. By substituting N0 = |T | −N1 −N2 −N3 and replacing
x = 4, y = 7, z = 12, we get 5N1 + 8N2 + 12N3 ≥ 5 · |T |.

Let m(T ) be the number of rooted triplets in T consistent with the network
returned by Approximate(T ).

Lemma 25. If m(T |Z) ≥ q · |T |Z| for every Z ∈ {A,B,C}, then m(T ) ≥
q ·N1 + 2

3 ·N2 + N3.

Proof. Every rooted triplet in Z2(A,B,C) is consistent with two of NetworkA,
NetworkB , and NetworkC , and every rooted triplet in Z3(A,B,C) is consistent with
all of these three networks. Thus, NetworkX returned by Approximate must be
consistent with at least 2

3 ·N2 +N3 of the rooted triplets in Z2(A,B,C)∪Z3(A,B,C).
Also, each of NetworkA, NetworkB , and NetworkC is consistent with m(T |A) +
m(T |B) + m(T |C) ≥ q · (|T |A| + |T |B| + |T |C|) = q · N1 of the rooted triplets
in Z1(A,B,C). Thus, in total, NetworkX is consistent with at least q ·N1+ 2

3 ·N2+N3

rooted triplets in T .

Theorem 9. m(T ) ≥ 5
12 · |T |.

Proof. By induction on |L|. Base case (|L| = 3): Steps 3 and 4 of Algorithm
Approximate construct a network consistent with at least 2/3 of the rooted triplets
in T ; i.e., m(T ) ≥ 5

12 · |T |. Inductive case (|L| > 3) Step 2 of Approximate recursively
constructs three networks KA,KB ,KC for T |A, T |B, and T |C, respectively. By the
induction assumption, m(T |X) ≥ 5

12 · |T |X| for each X ∈ {A,B,C}. By Lemmas 24
and 25, m(T ) ≥ 5

12 ·N1 + 2
3 ·N2 + N3 ≥ 5

12 · |T |.
Finally, the algorithm’s running time is given by the following theorem.

Theorem 10. The time complexity of Algorithm Approximate is O(n · |T |3).
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Proof. Denote by t(T ) and f(T ) the running times of Approximate(T ) and Leaf-
Partition(T ), respectively. We have t(T ) = f(T ) + t(T |A) + t(T |B) + t(T |C).

In LeafPartition, step 2 is performed at most 12 · |T | times in total. Every time,
the algorithm needs to compute O(n) values of score, and each score can be computed
in O(|T |) time. Steps 1 and 3 can easily be implemented in O(|T |) time. Therefore,
f(T ) = O(n · |T |2).

Furthermore, |T |A|+ |T |B|+ |T |C| < |T |. Solving the recurrence for t(T ) gives
us t(T ) = O(n · |T |3).
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CERTIFYING POLYNOMIAL TIME AND LINEAR/POLYNOMIAL
SPACE FOR IMPERATIVE PROGRAMS∗
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Abstract. In earlier work of Kristiansen and Niggl the polynomial-time computable functions
were characterized by stack programs of μ-measure 0, and the linear-space computable functions by
loop programs of μ-measure 0. Until recently, an open problem was how to extend these character-
izations to programs with user-friendly basic instructions, such as assignment statements, and with
mixed data structures.

It is shown how to strengthen the above characterizations to imperative programs built from
arbitrary basic instructions by sequencing and by if-then-else and for-do statements. These programs
operate on variables, each of which may represent any data structure such as stacks, registers, trees,
or graphs.

The paper presents a new method of certifying “polynomial size boundedness” of such imper-
ative programs under the natural assumption that the basic instructions used are polynomially
size bounded, too. The certificate for a program P with variables among X1, . . . , Xn will be an
(n + 1) × (n + 1) matrix M(P) over the finite set {0, 1,∞}.

It is shown that certified string programs (i.e., stack programs, but with any polynomial-time
computable basic instructions) exactly compute the functions in fptime. Accordingly, certified gen-
eral loop programs (using any linear-space computable basic instructions) exactly compute the func-
tions in flinspace.

Furthermore, it is shown that certified power string programs (i.e., string programs, but built
from polynomial-space computable basic instructions and extended by power loop statements) exactly
compute the polynomial-space computable functions in fpspace.

In addition, examples of certified “natural” (implementations of) algorithms, such as insertion-
sort or binary addition and multiplication, are given.

Key words. polynomial time, linear space, polynomial space, static program analysis, property
testing, implicit computational complexity, imperative programming languages
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1. Introduction. In recent research [16], [29] the polynomial-time computable
functions are characterized by stack programs of μ-measure 0, and loop programs of
μ-measure 0 exactly compute the linear-space computable functions. Loop programs
are a slight modification of the LOOP programs of Meyer and Ritchie [25], and stack
programs are essentially loop programs that operate with stacks instead of registers,
supporting a suitable loop concept over stacks. The measure μ is a conceptually
simple, purely syntactical method of analyzing the impact of nesting loops on the
running time, and it associates to each program a natural number such that programs
of μ-measure n ≥ 1 exactly compute those functions computed by a Turing machine
whose running time is in Grzegorczyk class En+2 [12].

From a programming perspective, these findings might not be practically ap-
pealing, for unlike modern programming languages, those programs support neither
user-friendly basic instructions nor mixed data structures.

Although it is no problem to extend the measure μ to programs with any nonsize-
increasing basic instructions (cf. [16]), until recently, an open problem was how to
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extend the above characterizations to programs with arbitrary size-increasing basic
instructions or vital instructions, such as assignment statements, without losing too
many programs that could be certified as, e.g., running in polynomial time.

In this paper, we show how to strengthen the above characterizations to imperative
programs built from arbitrary basic instructions by sequencing and by if-then-else
and for-do statements. Each of those programs operates on finitely many variables
X1, . . . , Xn, each of which may represent any data structure such as stacks, registers,
trees, or graphs, and is equipped implicitly with a notion of size of an object stored
in Xi, denoted by |Xi|. For example, if Xi serves as a register, then |Xi| might be the
unary or the binary length of the number stored in Xi, and if Xi serves as a stack, |Xi|
is, as usual, the length of the word stored in Xi.

The paper presents a new method of certifying “polynomial size boundedness” for
such programs under the natural assumption that all basic instructions are polynomi-
ally size bounded, too. Expressed in Hoare-like sentences {A} P {B}, for programs P

in variables X1, . . . , Xn, that means there exist polynomials p1, . . . , pn satisfying

{s1 = |X1|, . . . , sn= |Xn|} P {|Xi| ≤ pi(s1, . . . , sn)} for i = 1, . . . , n.

Thus, unlike the measure μ, the new method abstracts from the concrete form of
basic instructions and focuses on their impact on the polynomial size bounds on the
variables involved. As we shall see, polynomial size bounds provide all information
on the “control” of one variable over another in a much more subtle way than the
measure μ does. Central to the method is that we store and process only a finite
amount of information on the class of possible polynomial size bounds for programs.
For each polynomial size bound p on Xi with respect to a program P, say p(�X) =
c0 + · · · + cj · Xj11 · . . . · Xjnn + · · · , that information is just an (n + 1)-tuple 〈p〉 over
{0, 1,∞}, where for j = 1, . . . , n,

〈p〉[j] =

⎧⎨
⎩

0 if p is a polynomial in �X \ Xj ,
1 if p = Xj + q for some polynomial q in �X \ Xj ,
∞ else,

〈p〉[n + 1] =

{
c0 if c0 ≤ 1,
∞ else.

Thus, the certificate for a program P in variables X1, . . . , Xn will be an (n+1)×(n+1)
matrix M(P) over {0, 1,∞}, where for technical reasons the last row M(P)[n + 1] is
always the (n + 1)-tuple (0, . . . , 0, 1).

Altogether that results in a matrix calculus for program certificates. In particular,
that calculus provides criteria on the certificate for the body of a loop which guarantee
the existence of a certificate for the loop statement itself. We investigate two forms
of loop statements, loopI Xh [Q] and loopII Xh [Q], the intuition being that for loopI
statements the body is executed |Xh| times, while the body of loopII statements is
executed 2|Xh| − 1 times.

Strengthening the results for μ-measure 0 programs, the following theorems are
obtained.

Theorem A. Certified string programs (stack programs built from any polynomial-
time computable basic instructions) exactly compute the functions in fptime.

Theorem B. Certified general loop programs (loop programs built from any linear-
space computable basic instructions) precisely compute the functions in flinspace.

Extending string programs by power loop statements and admitting any poly-
nomial-space computable basic instructions, we obtain the following result.
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Theorem C. Certified power string programs exactly compute the polynomial-
space computable functions fpspace.

Thus, the novelty of the present certification method is that for a significantly
large class of imperative programs very close to those in programming practice, with
no restrictions on the basic instructions or the data structures involved (cf. section
8 for examples), programs can be certified so as to run in polynomial time or in
linear/polynomial space.

The present paper continues research in implicit computational complexity as ini-
tiated by Simmons [33], Bellantoni and Cook [4], and Leivant [18], [19], [20], which has
led to resource-free, purely functional characterizations of many complexity classes,
such as fptime [4], [21], [23], [5], [28], flinspace [2], [20], [5], [28], NP and the
polynomial-time hierarchy [3], the Kalmár-elementary functions [30] and fpspace

[15], [31], the exponential-time functions of linear growth [9], and the Grzegorczyk hi-
erarchy at and above the linear-space level [5], [28], [16], [17], among many others. As
well, implicit characterizations through higher-type recursion have been given for the
Kalmár-elementary functions [22], [15], [1], for polynomial space [24], and for fptime

[6], [13].
There are several groups which work on program verification and property testing,

e.g., the MRG group [27], the CRISS group [11], or the “Nancy group” (cf. [8], [7], and
[26]). There might be some connection between the present work and those interesting
approaches, but due to the different frameworks an exact comparison has not been
made.

The paper is organized as follows. In section 2, all basic notions involved in
the design of certificates for the class of imperative programs under consideration
are introduced. Section 3 is concerned with constructing certificates for composed
imperative programs, resulting in the certification method. In section 4, stack and
loop programs and the measure μ are reviewed, and it is shown that all programs of
μ-measure 0 are certified, too. Section 5 introduces string programs and establishes
Theorem A. In section 6, general loop programs are introduced, and a proof of The-
orem B is given. Section 7 presents power string programs and the proof of Theorem
C. In section 8 “natural” implementations of insertion-sort, binary addition,
multiplication, and exponentiation are given and certified, except for the latter,
where the method correctly fails.

2. Preliminaries. Each program we consider uses finitely many variables
X1, . . . , Xn, each of which may represent any data structure such as stacks, registers,
trees, or graphs, and is equipped implicitly with a notion of size of an object stored
in Xi, denoted by |Xi|. For example, if Xi serves as a stack (over a given alphabet),
|Xi| is the length of the word stored in Xi.

All we require from the primitives that those programs are built from is that they
are polynomially size bounded.

Definition 2.1. A program P with variables among X1, . . . , Xn is polynomially
size bounded (psb) iff there exist polynomials p1(�X), . . . , pn(�X) such that (expressed in
Hoare notation)

{s1 = |X1|, . . . , sn= |Xn|} P {|Xi| ≤ pi(s1, . . . , sn)} for i = 1, . . . , n.

Any such list of polynomials is called a polynomial bound on P.
The imperative programs under consideration are built from arbitrary psb basic

instructions imp(�X) by sequencing P1; P2, conditionals if (cond) then P1 else P2,
and two forms of loops, loopI Xh [Q] and loopII Xh [Q].
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We do not specify the particular form of the condition (cond) in a conditional.
All we require is that any instance of (cond) be evaluated in polynomial time (in the
size of the variables involved). Along these lines, we do not specify the particular form
of the two loop statements, but we do specify that the body of loopI is executed |Xh|
times, while the body of loopII is executed 2|Xh| − 1 times. Furthermore, we require
that during the execution of a loop statement the contents of its control variable Xh
remain unchanged.

Throughout this paper, polynomials p(�X) in variables X1, . . . , Xn are expressions

p(�X) = c0 + · · · + ci · Xi11 · . . . · Xinn + · · ·

with coefficients ci ∈ N, and we write k(p) for the constant coefficient c0. For conve-
nience, we use the same variable names for both polynomials and programs but, no
doubt, for polynomials those variables range over natural numbers only.

Given another polynomial q(�X) = d0+· · ·+di ·Xi11 ·. . .·Xinn +· · · , the coefficientwise
maximum of p and q, denoted by p � q, is defined by

p � q := max(c0, d0) + · · · + max(ci, di) · Xi11 · . . . · Xinn + · · · .

Furthermore, we write Xi ∈ p (Xi /∈ p) if Xi occurs in p (if p is a polynomial in �X \ Xi),
and we say that Xi occurs simple in p, denoted by Xi ∈ s(p), if p can be written as

p(X1, . . . , Xn) = Xi + q(X1, . . . , Xi−1, Xi+1, . . . , Xn).

As pointed out in the introduction, all that we store and process about polynomials
p(X1, . . . , Xn) is whether Xi /∈ p (represented by 0) or Xi ∈ s(p) (represented by 1) or
otherwise (represented by ∞), resulting into the forgetting set A := {0, 1,∞}. This
set is ordered by 0 < 1 < ∞, and the binary operations +, •, and � on A are defined
as follows:

+ 0 1 ∞
0 0 1 ∞
1 1 ∞ ∞
∞ ∞ ∞ ∞

• 0 1 ∞
0 0 0 0
1 0 1 ∞
∞ 0 ∞ ∞

� 0 1 ∞
0 0 1 ∞
1 1 1 ∞
∞ ∞ ∞ ∞

One can easily verify that these operations are commutative, associative, and dis-
tributive (for +, • only), and 0, 1, 0 are the neutral elements of +, •,�, respectively.

Definition 2.2. For n ≥ 1, let Mn[A] denote the set of all n×n matrices M over
A, and let M̃n[A] denote the set of all M ∈ Mn+1[A] with last row M [n+ 1] = 0n1.

As usual, one defines a matrix multiplication ⊗ on Mn[A], which is associative
and has the identity matrix 1n as the neutral element. Let +, •,� denote the compo-
nentwise extension of these operations to Am and Mn[A], and < the componentwise
extension of < to Am.

3. Constructing certificates for imperative programs. In this section we
will define and construct certificates for essentially composed programs.

Definition 3.1. For any polynomial p(X1, . . . , Xn), let 〈p〉 ∈ An+1 be defined by

〈p〉[i] :=

⎧⎨
⎩

0 if Xi /∈ p,
1 if Xi ∈ s(p),
∞ else,

〈p〉[n + 1] :=

{
k(p) if k(p) ≤ 1,
∞ else,

where i ∈ {1, . . . , n}. 〈p〉 is called the representation of p.
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Definition 3.2. For n≥0 and �a∈An+1, the set of polynomials of bound �a is

poly(�a) := {p(X1, . . . , Xn) | 〈p〉 ≤ �a}.

To verify that a polynomial belongs to poly(�a), one can use the following fact.
Corollary 3.3 (poly explicit). Let p(�X) be any polynomial, and let �a∈An+1.

Then

p ∈ poly(�a) ⇐⇒ ∀i ∈ {1, . . . , n} : (ai = 0 ⇒ Xi /∈ p) ∧
(ai = 1 ⇒ Xi ∈ s(p) ∨ Xi /∈ p)

∧ (an+1 = 0 ⇒ k(p) = 0)
∧ (an+1 = 1 ⇒ k(p) ≤ 1).

Definition 3.4 (certificate). Let P be any program in variables X1, . . . , Xn. A
certificate for P is any matrix Z ∈ M̃n[A] such that there exists a polynomial bound
p1∈poly(Z[1]), . . . , pn∈poly(Z[n]) on P (cf. Definition 2.1).

Note 3.5. If �p is a polynomial bound on the program P, the matrix 〈P, �p 〉 is a
certificate for P, where

〈P, �p 〉 :=

⎛
⎜⎜⎝

〈p1〉
. . .
〈pn〉
0n1

⎞
⎟⎟⎠.

This is exactly how certificates for basic instructions imp(�X) with polynomial bound �p
are constructed (cf. sections 5–8 for examples).

In the following, we tacitly assume that all programs P have variables among
X1, . . . , Xn.

Definition 3.6. For u ∈ {0, 1}n+1, let qu be the polynomial induced by u, i.e.,

qu := u[n+1] +

n∑
i=1

u[i] · Xi.

Lemma 3.7 (structure). Let u, v be in An+1.
(a) If u ≤ v, then poly(u) ⊆ poly(v).
(b) If ∞ /∈ u, then p ≤ qu for all p ∈ poly(u).
Proof. (a) is obvious from Def. 3.2; (b) follows from 〈qu〉 = u for u ∈ {0, 1}n+1.
Lemma 3.8 (conditional). Let v1, v2 be in An+1.
(a) If p1 ∈ poly(v1) and p2 ∈ poly(v2), then p1 � p2 ∈ poly(v1 � v2).
(b) If Z1, Z2 are certificates for P1, P2, respectively, then

• Z1

⊔
Z2 is a certificate for the conditional if (cond) then P1 else P2;

• Z1

⊔
1n+1 is a certificate for the conditional if (cond) then P1.

Proof. (b) follows from (a), and (a) follows from 〈p1〉 ≤ v1∧〈p2〉 ≤ v2 ⇒ 〈p1�p2〉 ≤
v1 � v2.

Note that
⊔

1n+1 takes into account the case where P1 is not executed.
Lemma 3.9 (sequence). Let u, v1, . . . , vn be in An+1.
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(a) Let p, q1, . . . , qn be polynomials in poly(u),poly(v1), . . . ,poly(vn), respec-
tively. Then r ∈ poly(w), where r(�X) := p(q1(�X), . . . , qn(�X)) and

w := u⊗

⎛
⎜⎜⎜⎝

v1

...
vn
0n1

⎞
⎟⎟⎟⎠.

(b) If Z1, Z2 are certificates for P1, P2, respectively, then Z2 ⊗ Z1 is a certificate
for P1; P2.

Proof. Part (b) follows from (a). As for the proof of (a), we use Corollary 3.3 and
distinguish several cases, where t, t0, j range over numbers in {1, . . . , n}.

Case w[n + 1] = 0. In other words, u[n + 1] • 1 +
∑n

t=1 u[t] • vt[n + 1] = 0; hence
u[n + 1] = 0, and u[t] = 0 or vt[n + 1] = 0 for all t. By the hypothesis, that implies
k(p) = 0, and (Xt /∈ p or k(qt) = 0) for all t. Thus, k(r) = 0 by definition of r.

Case w[n + 1] = 1 = u[n + 1] • 1 +
∑n

t=1 u[t] • vt[n + 1]. We distinguish two
subcases.

Subcase u[n+1] = 1 and (u[t] = 0 or vt[n+1] = 0) for all t. By the hypothesis, that
implies k(p) ≤ 1, and (Xt /∈ p or k(qt) = 0) for all t. Hence k(r) ≤ 1 by definition of r.

Subcase u[n + 1] = 0, and u[t0] = 1 = vt0 [n + 1] for some t0, and (u[t] = 0 or
vt[n + 1] = 0) for all t �= t0. By the hypothesis, that yields k(p) = 0, Xt0 ∈ s(p) or
Xt0 /∈ p, k(qt0) ≤ 1, and (Xt /∈ p or k(qt) = 0) for all t �= t0. Hence k(r) ≤ 1 by
definition of r.

Case w[j] = 0. We have
∑n

t=1 u[t]•vt[j] = 0, implying u[t] = 0 or vt[j] = 0 for all
t. By the hypothesis, we obtain Xt /∈ p or Xj /∈ qt for all t, implying Xj /∈ r as required.

Case w[j]=1. We have
∑n

t=1 u[t] • vt[j] = 1, implying u[t0]=1=vt0 [j] for some
t0, and (u[t]=0 or vt[j]=0) for all t �= t0. The hypothesis yields Xt0 ∈s(p) or Xt0 /∈ p,
Xj ∈ s(qt0) or Xj /∈ qt0 , and (Xt /∈ p or Xj /∈ qt) for all t �= t0. That implies Xj ∈s(r) or
Xj /∈ r as required.

Preparing the construction of certificates for loop statements, suppose that Y is
a certificate for the body Q of a loop statement. Clearly, by Lemma 3.9 the k-fold
iteration of Q, that is, Qk := Q; . . . ; Q (k-times) for k ≥ 1, has certificate Y k, where,
as usual, for M ∈ Mn[A] we write M l for the lth iterate of M , that is, M0 := 1n and
M l+1 := M ⊗M l.

Therefore, to obtain a certificate for all k-fold iterations of Q, it is natural to look
at the limit Y + of all Y k as defined below. Obviously, Y + is finite and efficiently
computable. However, in order to verify the then constructed certificate for the given
loop, we also consider the monotonic variant Ŷ ∗ of Y +.

Definition 3.10 (limit forms). For M ∈ Mn[A], the limit forms M+, M∗, and
M̂∗ are

M+ :=

∞⊔
k=1

Mk, M∗ := 1n � M+, and M̂∗ :=

∞⊔
k=0

M̂k, where M̂ := 1n �M.

Observe that if M is a matrix in M̃n[A], then so are M+, M∗, and M̂∗.
At some point in the construction of certificates for loop statements, we will

proceed by induction on the partial ordering induced by the control of the certificate
for the body of a given loop. According to the two forms of loop statements, there
are two versions of the following partial ordering lemma.

Definition 3.11 (control of M). For M ∈ Mn[A], the binary relation →M on
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{1, . . . , n}, where j →M i reads j controls i in M , is defined by

j →M i : ⇐⇒ M [i][j] ≥ 1.

Of course, given a certificate Z for a program P, j →Z i means that the variable
Xj may occur in pi ∈ poly(Z[i]) for a polynomial bound �p on P, and in that sense
may control Xi in Z.

Lemma 3.12 (partial ordering I). Let M be in Mn[A] such that ∞ /∈ Diag(M̂∗).
Then →M̂∗ is a partial ordering of {1, . . . , n}.

Proof. Reflexivity follows from M̂∗ =
⊔

m≥0(1n � M)m. As for transitivity,

suppose that j →M̂∗ i and i →M̂∗ k. Then there exist a, b ≥ 0 such that M̂a[i][j] ≥ 1

and M̂ b[k][i] ≥ 1. We obtain j →M̂∗ k as follows:

M̂∗[k][j] ≥ M̂ b+a[k][j] = (M̂ b ⊗ M̂a)[k][j]

= M̂ b[k][i] • M̂a[i][j] +
∑
d�=i

M̂ b[k][d] • M̂a[d][j]

≥ 1 • 1 = 1.

As for antisymmetry, we argue indirectly and assume j →M̂∗ i, i →M̂∗ j, and

i �= j. Thus, M̂a[i][j] ≥ 1 and M̂ b[j][i] ≥ 1 for some a, b ∈ N. As i �= j, we know
a, b ≥ 1, since, e.g., a = 0 implied M̂a[i][j] = 1n[i][j] = 0. By reflexivity of →M̂∗ ,

M̂m[k][k] = (1n�M)m[k][k] ≥ 1 for any k, and ∞ /∈ Diag(M̂∗), we obtained as above
the following contradiction:

1 = M̂∗[j][j] ≥ M̂ b[j][i] • M̂a[i][j] + M̂ b[j][j] • M̂a[j][j] ≥ 1 + 1 = ∞.

Lemma 3.13 (partial ordering II). Let M be any matrix in Mn[A] such that

M+[i] = 1n[i] or M+[i][i] = 0 for i = 1, . . . , n.

Then →M∗ is a partial ordering of {1, . . . , n}.
Proof. Reflexivity of →M∗ follows from M∗ = 1n �M+, and transitivity follows

as above, since j →M∗ i implies Ma[i][j] ≥ 1 for some a ≥ 0.
For antisymmetry, we argue indirectly and assume j →M∗ i, i →M∗ j, and i �= j.

As above, there exist a, b ≥ 1 such that Ma[i][j] ≥ 1 and M b[j][i] ≥ 1. That implied

M+[j][j] ≥ (M b ⊗Ma)[j][j] ≥ M b[j][i] •Ma[i][j] ≥ 1,

and thus M+[j][j] ≥ 1, M+[j][i] ≥ 1 with i �= j, contradicting the hypothesis on
M+.

Note that each q ∈ poly(�a) is a polynomial in those variables Xi for which ai ≥ 1.
Lemma 3.14 (certificate for loopI). Let P :≡ loopI Xh [Q] be any program, and let

Y be a certificate for Q such that ∞ /∈ Diag(Ŷ ∗). Then the matrix Z with rows

(z1 � 1n+1[1]), . . . , (zn � 1n+1[n]), 0n1

is a certificate for P, where z1, . . . , zn are defined as follows:

zi :=

⎧⎪⎪⎨
⎪⎪⎩
Y +[i] if ∞ /∈ Y +[i] (variable assignment),
Y +[i] if Y +[i] = 0n∞ (constant assignment),
1n+1[i]

⊔
0h−1 Y [i][n + 1] 0n+1−h if Y +[i] = 0i−110n−i∞ (push/inc),

else(zi) else (else),
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where for i �= h (case i = h falls under variable assignment) else(zi) is defined by

else(zi)[j] :=

⎧⎪⎪⎨
⎪⎪⎩

∞• Ŷ ∗[i][j] if j �= i, h, n + 1,
1 if j = i,
∞ if j = h,
0 if j = n + 1.

Comments. The parts �1n+1[i] in the ith row of Z take into account that
P is not executed. Furthermore, the names of the first three cases in the above
definition of zi are not meant to cover the general situation but only refer to typical
ones. In the variable assignment case, there exists a bounding polynomial on |Xi|
with simple variable occurrences only. As for the constant assignment case, there
exists a constant bound on |Xi|. The push/inc case deals with the situation where
each execution of Q increases |Xi| by a constant ≥ 1. In the else case, the idea
is that because of ∞ /∈ Diag(Ŷ ∗) there exists a bounding polynomial of the form
Xi + Xh · q(X1, . . . , Xi−1, Xi+1, . . . , Xn), resulting in the definition of else(zi).

Proof. By Lemma 3.12 we can define a strict partial ordering of {1, . . . , n} by
setting

i �Ŷ ∗ j :⇐⇒ i →Ŷ ∗ j and i �= j.

Thus, preparing the else case for zi, we first proceed by induction on �Ŷ ∗ showing
the following.

Claim. There exist polynomials q1(m,�X), . . . , qn(m,�X) such that for i = 1, . . . , n,
(A) {|�X| = �s} Qm {|Xi| ≤ si + qi(m,�s)} for all m ≥ 0.
(B) Xi + qi(Xh,�X) ∈ poly(∞• Ŷ ∗[i] �H), where H := 0h−1∞0n+1−h.
(C) Xi /∈ qi and k(qi)=0.

Proof of the claim. Consider any i ∈ {1, . . . , n}, and let i1, . . . , il be those ij �= i for

which ij →Ŷ ∗ i holds. As Y is a certificate for Q with ∞ /∈ Diag(Ŷ ∗), there exists a

polynomial Xi + q′i ∈ poly(Ŷ [i]) such that Xi /∈ q′i and

(1) {|�X| = �s } Q {|Xi| ≤ si + q′i(�s )}.

Subcase l = 0. We have that Y [i] ≤ Ŷ ∗[i] ≤ 0i−110n−i∞; hence q′i is a constant.
Thus,

qi(m,�X) := m · q′i
yields a polynomial clearly satisfying (C) and (A), the latter by (1), and (B) holds
because Xi + Xh · q′i ∈ poly(1n+1[i] �H) ⊆ poly(∞• Ŷ ∗[i] �H) by Lemma 3.7.

Subcase l ≥ 1. We have that i �= h, because the requirement on loop state-
ments and Lemma 4.5 imply that Q is nonsize-increasing w.r.t. Xh, that is, Y [h] ≤
1n+1[h], implying Ŷ ∗[h] = 1n+1[h]. Now, the induction hypothesis yields polynomials
ri1 , . . . , ril such that for j=1, . . . , l,

(IHA) {|�X| = �s} Qm {|Xij | ≤ sij + rij (m,�s)} for all m ≥ 0.

(IHB) Xij + rij (Xh,�X) ∈ poly(∞• Ŷ ∗[ij ] �H).
(IHC) Xij /∈ rij and k(rij )=0.

Let j1, . . . , jk be those indices js �= i for which js →Y i holds. As Y [i] ≤ Ŷ ∗[i], all of
those indices are among i1, . . . , il. As q′i is a polynomial in Xj1 , . . . , Xjk , we set

qi(m,�X) := m · q′i(. . . , Xij + rij (m,�X), . . . ),

where Xij + rij (m,�X) is substituted for Xij just in case ij is among j1, . . . , jk.
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As for (C), clearly k(qi)=0. To see Xi /∈qi, we argue indirectly, assuming Xi∈qi.
Then Xi ∈ rij for some ij ; hence Xi ∈ poly(∞ • Ŷ ∗[ij ] � H) by (IHB). As ij �= i
and i �= h, that implied i →Ŷ ∗ ij →Ŷ ∗ i. Thus, i = ij by antisymmetry of →Ŷ ∗ ,
contradicting i /∈{i1, . . . , il}.

As for the proof of (A), we proceed by induction on m≥0, where base case m = 0
is obvious. For the step case m → m+ 1, let �u be the output size of �X after m rounds
of Q on input of size �s, and let �v be the output size of �X after another round of Q on
input of size �u. Then, by using monotonicity of polynomials, we conclude the step
case as follows:

vi ≤ ui + q′i(�u) by (1),

≤ si + qi(m,�s ) + q′i(. . . , sij + rij (m,�s ), . . . ) by the I.H. for m and (IHA),

≤ si + (m + 1) · q′i(. . . , sij + rij (m + 1, �s ), . . . ) by definition of qi(m,�s ),

= si + qi(m + 1, �s ).

As for (B), we know q′i ∈ Ŷ [i], and Xij + rij (Xh,�X) ∈ poly(∞ • Ŷ ∗[ij ] � H) by
(IHB). As the zero polynomial belongs to each class poly(�a), Lemma 3.9 yields r ∈
poly(w), where w := Ŷ [i]⊗ (∞• Ŷ ∗� H̃), H̃ denotes the matrix in M̃n[A] with rows
H, . . . ,H, 0n1 (recall H = 0h−110n+1−h), and

r(Xh,�X) := q′i(. . . , Xij + rij (Xh,�X), . . . ).

Thus, for the proof of (B), it suffices to show (∗) poly(w) ⊆ poly(∞ • Ŷ ∗[i] � H),
because then (B) follows from Xi + qi(Xh,�X)=Xi + Xh · r(Xh,�X), and Xi /∈qi, i �= h. To
see (∗), we argue using Lemma 3.7. First, observe that Ŷ ∗ = Ŷ e = Ŷ e+1 for some
e ≥ 0, implying Ŷ [i] ⊗ (∞ • Ŷ ∗) = ∞ • (Ŷ [i] ⊗ Ŷ ∗) = ∞ • Ŷ ∗[i]. Now consider any
j ∈ {1, . . . , n+1}. If j �= h, then w[j] = (Ŷ [i]⊗(∞•Ŷ ∗))[j] = ∞•Ŷ ∗[i][j] = (∞•Ŷ ∗[i]�
H)[j]. Otherwise, if j = h, then (∞ • Ŷ ∗[i] �H)[j] = ∞ • Ŷ ∗[i][j] �∞ = ∞ ≥ w[j].
Thus, in either case, w[j] ≤ (∞• Ŷ ∗[i] �H)[j] as required. This completes the proof
of the above claim.

Turning to the proof of the lemma, recall that we must prove the existence of
polynomials p1 ∈ poly(Z1), . . . , pn ∈ poly(Zn) such that

(2) {|�X| = �s} P {|Xi| ≤ pi(�s)} for i = 1, . . . , n.

Consider any i ∈ {1, . . . , n}. As Y is a certificate for Q, there exists a polynomial
qi ∈ poly(Y [i]) such that

(3) {|�X| = �s} Q {|Xi| ≤ qi(�s )}.

According to the definition of zi, we consider four cases.
Variable assignment case ∞ /∈ Y +[i]. We have that zi = Y +[i], and we conclude

from (3) and Lemma 3.7 that qzi ∈ poly(zi) satisfies {|�X| = �s} Qm {|Xi| ≤ qzi(�s)} for
all m ≥ 1. Thus, pi := Xi�qzi is a polynomial in poly(Z[i]) such that (2) is true of pi.

Constant assignment case Y +[i] = 0n∞. We have that zi = Y +[i], and by (3)
there exists a constant polynomial c in poly(zi) such that {|�X| = �s} Q {|Xi| ≤ c}.
Thus, pi := Xi + c is a polynomial in poly(Z[i]) which satisfies (2).

Push/inc case Y +[i] = 0i−110n−i∞. We have that zi = 1n+1[i]
⊔

0h−1 Y [i][n +
1] 0n+1−h, and by (3) and Lemma 3.7 there exists a polynomial Xi + b ∈ poly(Y +[i])
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such that {|�X| = �s} Q {|Xi| ≤ si + b}. We conclude that {|�X| = �s} Qm {|Xi| ≤ si + b ·m}
for m ≥ 0. Thus, pi := Xi + b · Xh is a polynomial in poly(Zi) for which (2) holds.

Else case ∞ ∈ Y +[i] �= 0n∞ and Y +[i] �= 0i−110n−i∞. Then i �= h, because the
requirement on loop statements and Lemma 4.5 imply that Q is nonsize-increasing
w.r.t. Xh, that is, Y [h] ≤ 1n+1[h]; hence Y +[h] ≤ 1n+1[h] and ∞ /∈Y +[h]. Thus, the
case i=h is appropriately treated in the variable assignment case. Now, let qi be the
polynomial obtained from the above Claim, satisfying (A), (B), (C). The current case
is then completed by setting

pi(�X) := Xi + qi(Xh,�X).

Obviously, (2) is true of pi by (A). To see pi ∈ poly(Z[i]) = poly(else(zi)), we
argue using Corollary 3.3. If Z[i][j] = 1, then j = i; hence Xi ∈ s(pi) by (C) and
i �= h. If Z[i][j] = 0, then j �= i, h, and as k(pi) = 0, it suffices to consider the case
j ∈ {1, . . . , n} \ {i, h}. Then 0=Z[i][j]=∞ • Ŷ ∗[i][j]=(∞ • Ŷ ∗[i] �H)[j]; hence (B)
implies Xj /∈ pi as required.

Lemma 3.15 (certificate for loopII). Let P :≡ loopII Xh [Q] be any program, and
let Y be a certificate for Q satisfying

(I) Y +[i] = 1n+1[i] or Y +[i][i] = 0 for i = 1, . . . , n + 1.

Then Y ∗ is a certificate for P.
Proof. First, we define polynomials q1,m, . . . , qn,m for m ≥ 0 s.t. for i=1, . . . , n,
(A) {|�X| = �s} Qm {|Xi| ≤ qi,m(�s)} for all m ≥ 0.
(B) qi,m ∈ poly(Y m[i]).
(C) There exists an mi ≥ 0 such that

⊔
s≤m qi,s ≤

⊔
s≤mi

qi,s for all m ≥ 0.
The proof that Y ∗ is a certificate for P is then completed by setting (for i=1, . . . , n)

pi :=
⊔

s≤mi

qi,s

since (B) and Lemmas 3.8(a) and 3.7(a) imply pi ∈poly(
⊔

s≤mi
Y s[i]) ⊆ poly( Y ∗[i]),

and from (A), (C) we obtain {|�X|=�s} P {|Xi| ≤ qi,2|sh|(�s) ≤ pi(�s)} as required.
As for the proof of (A) and (B), consider any i ∈ {1, . . . , n}. Since Y is a certificate

for Q, there exist polynomials q′1 ∈ poly(Y [1]), . . . , q′n ∈ poly(Y [n]) such that

(4) {|�X|=�s} Q {|Xj | ≤ q′j(�s)} and q′i = Xi whenever Y [i] = 1n+1[i]

for j = 1, . . . , n. Let i1, . . . , il be those ij such that ij →Y + i, and let j1 < · · · < jk
be those indices js such that js →Y i. Then j1, . . . , jk ∈ {i1, . . . , il}, as Y [i] ≤ Y +[i].
We inductively define qi,m by

qi,0 := Xi,

qi,m+1 := q′i(r1, . . . , rn), where rjs := qjs,m for s = 1, . . . , k, and rt := 0 else.

One easily verifies (A) by induction on m ≥ 0, using (4). To see that (B) is true of
qi,m, observe that qi,0 ∈ poly(Y 0[i]), and inductively r1, . . . , rn ∈ poly(Y m[i]), the
hypothesis q′i ∈ poly(Y [i]), and Lemma 3.9(a) imply qi,m+1 ∈ poly(Y ⊗ Y m[i]) =
poly(Y m+1[i]).

For (C), we associate to each qi,m a control tree CTi,m with root (�) and labels
i,⊥:
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CTi,0 := (i),

CTi,m+1 :=

⎧⎨
⎩

(⊥) if l = 0 (Y +[i] ∈ {0}nA),
(i) if l ≥ 1, i ∈ {j1, . . . , jk} (Y +[i] = 1n+1[i]),
〈(i),CTj1,m, . . . ,CTjk,m〉 if l ≥ 1, i /∈ {j1, . . . , jk}.

By Lemma 3.13, →Y ∗ is a partial ordering of {1, . . . , n}, and Y ≤ Y +. Therefore, for
every path in any CTi,m from the root to a leaf, each label can occur at most once.
Hence each such path is of length at most n, implying that there are only finitely many
control trees. Thus, to prove (C), it suffices to show that the mapping qi,m �→ CTi,m

is injective, that is, for all m,m′ ≥ 0, and for i = 1, . . . , n,
(D) if CTi,m = CTi,m′ then qi,m = qi,m′ .

The proof is by induction on the depth N of CTi,m, assuming (H) CTi,m=CTi,m′ .
Case N = 0. We have that CTi,m ∈ {(i), (⊥)}. If CTi,m = (i), then qi,m = Xi =

qi,m′ , because, e.g., qi,0 = Xi, and m > 0 implies k = 1, j1 = i, ri = qi,m−1 = Xi, and
q′i = Xi; hence qi,m = Xi by construction. Otherwise if CTi,m = (⊥), then m,m′ > 0,
and q′i is a constant, implying qi,m=c=qi,m′ by construction.

Case N > 0. We have that (H) implies m,m′ > 0 and CTjs,m−1 = CTjs,m′−1

for s = 1, . . . , k. Thus, the I.H. yields qjs,m−1 = qjs,m′−1 for s = 1, . . . , k, implying
qi,m=qi,m′ .

Now that we know how to construct certificates for psb basic instructions (see
Note 3.5) and for composed programs (see Lemmas 3.8, 3.9, 3.14, 3.15), all ingredients
are at hand to set up the method of certifying the psb property for the class of programs
under consideration.

More precisely, we will define a certification method which assigns to each program
P a value M(P), which is either the undefined value ⊥ or a certificate M(P) for P. As
usual, we write M(P) ↓ for M(P) �= ⊥. Furthermore, we say that a program P is
certified iff M(P)↓.

Definition 3.16 (certification method). For any program P with variables among
�X = X1, . . . , Xl, M(P) is defined inductively as follows:

• M(imp(�X)) := 〈imp(�X), �p〉 for psb basic instructions imp(�X) with polynomial
bound �p.

• If M(P1)↓ and M(P2)↓, then M(P1; P2) := M(P2) ⊗M(P1).
• If M(P1) ↓ and M(P2) ↓, then M(if (cond) then P1 else P2) is defined as
M(P1)

⊔
M(P1).

• If M(Q)↓, then M(if top(Xk)≡a then Q) := M(Q)
⊔

1n+1.
• If P is loopI Xh [Q] and Y :=M(Q) is a certificate for Q with ∞ /∈ Diag(Ŷ ∗),

then M(P) := Z as defined in Lemma 3.14.
• If P is loopII Xh [Q] and Y := M(Q) is a certificate for Q such that Y +[i] =

1n+1[i] or Y +[i][i] = 0 for i = 1, . . . , n + 1, then M(P) := Y ∗.
• In all other cases of P, M(P) := ⊥.

Theorem 3.17 (soundness). For every program P with psb basic instructions
only, if M(P)↓, then M(P) is a certificate for P; in other words, P is psb, too.

Proof. Following the cases of M(P)↓, the statement of the theorem follows from
Note 3.5 and Lemmas 3.8, 3.9, 3.14, and 3.15.

For reasons similar to those elaborated on in [16], it is an undecidable problem
whether a given program is psb. As a consequence, there is no limit to refining the
above certification method so as to recognize more and more psb programs. We give
three examples.

Suppose that P is a sequence P1; P2 such that P2 is a loop with body Q and control
variable Xh, and M(P1) ↓. If M(P1)[h] = 0n+1, then Q will never be executed; thus
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P2 can be ignored when computing M(P). Furthermore, if M(P)[h] = 0n1, then Q is
executed at most once. In that case, we obtain (M(Q)

⊔
1n+1)⊗M(P1) as a certificate

for P whenever M(Q)↓.
Moreover, for nonsize-increasing basic instructions (cf. Definition 4.4) one obtains

a certificate ≤ 1n+1. Those instructions can be ignored when computing M(P). How-
ever, it would be wiser to keep basic instructions like nil(X), for they can lead to
better bounding polynomials.

4. Embedding stack and loop programs of μ-measure 0. In this section,
we will show that all stack and loop programs of μ-measure 0 [16] are certified by
the present method. That embedding will be used only to facilitate the proof of the
characterization theorems below. The strength of the present method, however, is not
based on the measure μ. First we review stack programs and the measure μ.

Stack programs operate on stacks X, Y, Z, . . . over a fixed but arbitrary alphabet.
Such programs are built from the usual basic instructions push(a, X), pop(X), nil(X) by
sequencing P1; P2, conditional statements if top(X)≡a then Q, and loopI statements
foreach X [Q] (read for each symbol in X do Q) provided that no push, pop, or nil

instruction with respect to the control stack X occurs in Q. The operational semantics
of stack programs is standard, except possibly for loop statements foreach X [Q]: they
are executed call-by-value such that during the execution, every symbol in X can be
inspected while preserving its contents.

Central to the design of the measure μ is the notion of control.
Definition 4.1 (control). Let P be any stack program, and let PUSH(P) be the

set of all Y appearing as push(a, Y) in P. The control of P is the transitive closure �P

of the following governance relation →P:
• X governs Y in P (X →P Y) if P contains a loop statement foreach X [R] such

that Y ∈ PUSH(R).
Thus, X controls Y in P (X �P Y) iff X →P Z1 →P · · · →P Zl →P Y for some Z1, . . . , Zl.

Observe that Z →Q Z is precluded by the syntactic restrictions on loop statements.
Definition 4.2 (measure μ). For stack programs P, the μ-measure of P, denoted

by μ(P), is inductively defined (and streamlined) as follows:
• μ(imp(�X)) := 0 for every basic instruction imp(�X).
• μ(if top(X)≡a then Q) := μ(Q).
• μ(P1; P2) := max{μ(P1), μ(P2)}.

• μ(foreach X [Q]) :=

{
μ(Q) + 1 if Q has a top circle,
μ(Q) else,

where Q has a top circle if it contains a loop T :≡ foreach Y [R] such that
μ(T)=μ(Q) and Z �Q Y for some Z ∈ PUSH(R).

One obtains μ(foreach X [foreach X [Q]])=μ(foreach X [Q]), and furthermore, if
Q is a sequence Q1; . . . ; Qk with a top circle, then some component Qi contains a loop
T :≡ foreach Y [R] such that μ(T) = μ(Q) and Z �Q Y for some Z ∈ PUSH(R). The
latter clearly shows that this measure μ admits more programs at any higher level
than the original version in [16] does, for it requires the existence of a component Qi
such that μ(Qi)=μ(Q) and U �Qi V and V �Q−i U for some U, V, where Q−i is Q without
component Qi.

The measure μ on loop programs is defined in the same way, except that the
size-increasing instruction suc(X) plays the role of the push operation.

Loop programs are built from the basic instructions suc(X) (increment the number
stored in X by one), nil(X) (set X to zero), and pred(X) (decrement the number stored
in X by one) by sequencing P1; P2 and loopI statements loop X [Q] (execute Q x times
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whenever x is stored in X), provided that no instruction suc(X), nil(X), or pred(X)
occurs in Q. Here variables serve as registers, storing natural numbers.

As shown in [16], stack programs of μ-measure 0 compute precisely the functions
in fptime, and loop programs of μ-measure 0 exactly compute the functions of the
Grzegorczyk class E2 which is identical to the class flinspace of the linear-space
computable functions [32].

To show that μ(P)=0 implies M(P) ↓, we need to embed the analysis of control
inherent in the measure μ in the certification method. Some technical lemmata are
needed beforehand.

Lemma 4.3 (iteration). Let M be in M̃n[A] such that j →Mm i for some m ≥ 1,
where i, j ∈ {1, . . . , n}. Then there exist i1 = j, i2, . . . , ik = i ∈ {1, . . . , n} such that

j = i1 →M i2 →M · · · →M ik = i

and i1, . . . , ik are pairwise distinct, except for i1, ik.
Proof. We proceed by induction on m ≥ 1. The base case m = 1 holds by the

hypothesis on M . For the step case m → m + 1, note that M [n + 1] = 0n1 implies

Mm+1[i][j] =

n∑
d=1

M [i][d] •Mm[d][j],

and hence M [i][e],Mm[e][j] ≥ 1 for some e ∈ {1, . . . , n} by the hypothesis on Mm+1.
The I.H. yields i1 = j, i2, . . . , ik = e such that j = i1 →M i2 →M · · · →M ik = e, and
i1, . . . , ik are pairwise distinct, except for i1, ik.

Subcase j �= e. If i /∈ {i1, . . . , ik}, then we are done, as e →M i. Otherwise let l
be minimal such that il = i. If j �= i, we are done; otherwise i →M i2 →M · · · →M

ik →M i will do.
Subcase j = e. In this case, we are done, since e →M i.
Definition 4.4. A program P with certificate M(P) is nonsize-increasing w.r.t.

Xi iff M(P)[i] ≤ 1n+1[i].
Obviously, pop(Xi) and nil(Xi) are nonsize-increasing w.r.t. Xi (cf. section 5).
Lemma 4.5 (nonsize-increasing). If a certified program P contains only nonsize-

increasing basic instructions w.r.t. Xi, then P is also nonsize-increasing w.r.t. Xi.
Proof. The proof is by induction on the structure of P with Z=M(P). The case

where P is a basic instruction follows from the hypothesis on P.
Case P ≡ P1; P2. Then Z = Y2 ⊗ Y1, where Yk = M(Pk) for k = 1, 2, and the

induction hypothesis yields Yk[i] ≤ 1n+1[i] for k=1, 2. Thus, for j = 1, . . . , n + 1 we
obtain

Z[i][j] = (Y2 ⊗ Y1)[i][j] =

n+1∑
d=1

Y2[i][d] • Y1[d][j] ≤ Y1[i][j] ≤ 1n+1[i][j].

Case P ≡ if (cond) then P1 else P2. Then Z = Y1 � Y2, where Yk =M(Pk) for
k=1, 2. The I.H. yields Yk[i] ≤ 1n+1[i] for k=1, 2, and hence Z[i] ≤ 1n+1[i].

Case P ≡ loopI Xh [Q]. Then ∞ /∈ Diag(Ŷ ∗) for Y = M(Q), and Y [i] ≤ 1n+1[i]
by the I.H. on Q. We conclude Ŷ [i] = 1n+1[i]; hence Y +[i] ≤ 1n+1[i] and Z[i] =
Y +[i]�1n+1[i]=1n+1[i] as required. Note that Z[i] falls under the variable assignment
case of Lemma 3.14.

Case P ≡ loopII Xh [Q]. Then Z = Y ∗, where Y = M(Q), and Y [i] ≤ 1n+1[i]
by the I.H. on Q. From the above we conclude that Y +[i] ≤ 1n+1[i]; hence Z[i] ≤
1n+1[i].



CERTIFICATION 1135

Lemma 4.6 (control embedding). For any stack or loop program P with certificate
Z = M(P), and for all i, j ∈ {1, . . . , n},

• if Z[i][j] ≥ 1 and i �= j, then Xj �P Xi;
• if Z[i][i] = ∞, then Xi �P Xi.

Note. To see that the two cases above are distinct, consider the stack program
P :≡ foreach Xh [pop(Xi)]. As M(pop(Xi))=1n+1, we obtain M(P)=1n+1, in partic-
ular M(P)[i][i]=1, but ¬(Xi �P Xi).

Proof. The proof is by induction on the structure of P with Z = M(P). We treat
only stack programs, as the proof for loop programs is almost identical. The case
where P is a basic instruction holds by pure logic, since the hypothesis fails for M(P).

Case P is if top(Xk)≡a then Q. Then Z = M(Q) � 1n+1, and the claim follows
from the I.H., as Z[i][j]=M(Q)[i][j] for i �= j, and Z[i][i]=∞ implies M(Q)[i][i]=∞.

Case P ≡ P1; P2. Then Z = Y2 ⊗ Y1, where Yk = M(Pk). As Y1[n + 1][j] = 0, we
get

(∗) Z[i][j] =

n∑
d=1

Y2[i][d] • Y1[d][j].

First consider the case where Z[i][j] ≥ 1 and i �= j. Then (∗) implies Y2[i][e], Y1[e][j]
≥ 1 for some e ∈ {1, . . . , n}. Then either i, j, e are distinct or e ∈ {i, j}. In either
case, the I.H. yields Xe �P2 Xi and Xj �P1 Xe, implying Xj �P Xi as required.

Consider the case Z[i][i] = ∞. By (∗) for i = j, we can consider two subcases.
Subcase Y2[i][e] • Y1[e][i] = ∞ for some e ∈ {1, . . . , n}. Then each factor is ≥ 1,

and one is ∞. If e = i, then Xi �P Xi follows from the I.H. on an ∞ factor. Otherwise
the I.H. yields Xe �P2 Xi and Xi �P1 Xe, implying Xi �P Xi as required.

Subcase Y2[i][e] • Y1[e][i] = 1 and Y2[i][d] • Y1[d][i] = 1 for some e �= d. We may
assume i �= e. As each factor is 1, the I.H. yields Xe �P2 Xi and Xi �P1 Xe. This
implies Xi �P Xi, concluding the current case P ≡ P1; P2.

Case P ≡ foreach Xh [Q]. Suppose that Y = M(Q). Then case Z[i][i] = ∞ is
ruled out by construction and ∞ /∈ Diag(Ŷ ∗). Suppose that Z[i][j] ≥ 1 and i �= j.
We consider several subcases according to the definition of Z = M(P).

Subcase ∞ /∈ Y +[i] or Y +[i] = 0n∞. Then Z[i] = Y ∗[i], and Z[i][j] ≥ 1 implies
Y m[i][j] ≥ 1 for some m ≥ 1, as i �= j. Lemma 4.3 yields pairwise distinct j =
i1, i2, . . . , ik = i such that

j = i1 →Y i2 →Y · · · →Y ik = i.

Therefore, the I.H. yields Xi1 �Q Xi2 �Q · · · �Q Xik , implying Xj �P Xi.
Subcase Y +[i] = 0i−110n−i∞. Then Z[i] = 1n+1[i] � 0h−1Y [i][n + 1]0n+1−h, and

i �= j and Z[i][j] ≥ 1 imply j = h and Y [i][n+ 1] ≥ 1. Thus, we must show Xh �P Xi.
It suffices to show that Q contains a push operation on Xi. If Q contained no such
operation, then Q would be nonsize-increasing w.r.t. Xi by Lemma 4.5; hence Y [i] ≤
1n+1[i]. But that implied Y +[i] ≤ 1n+1[i], contradicting the subcase assumption.

Subcase ∞ ∈ Y +[i] and Y +[i] �= 0n∞, 0i−110n−i∞. Now i �= j and Z[i][j] ≥ 1
imply j = h or Ŷ ∗[i][j] ≥ 1. If j = h then, as ∞ ∈ Y +[i], we argue as above that
Q contains a push operation on Xi, implying Xh �P Xi. Otherwise Ŷ ∗[i][j] ≥ 1 and
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i �= j imply Ŷ m[i][j] ≥ 1 for some m ≥ 1; hence Lemma 4.3 yields pairwise distinct
j = i1, i2, . . . , ik = i such that

j = i1 →Ŷ i2 →Ŷ · · · →Ŷ ik = i.

Now observe that Ŷ [d][e] ≥ 1 and d �= e imply Y [d][e] ≥ 1. Thus, the I.H. yields
Xi1 �Q Xi2 �Q · · · �Q Xik , implying Xj �P Xi as required.

Theorem 4.7 (embedding). All stack/loop programs of μ-measure 0 are certified.
Proof. The proof is by induction on the structure of P with μ(P) = 0. We treat

only stack programs, as the proof for loop programs is almost identical. The case
where P is a basic instruction push, pop, or nil is obvious.

Case P is if top(Xk) ≡ a then Q. Then μ(Q) = 0, and the I.H. yields M(P) =
M(Q) � 1n+1.

Case P ≡ P1; P2. Then μ(P1) = μ(P2) = 0, and the I.H. yields M(P) = M(P2) ⊗
M(P1).

Case P ≡ foreach Xh [Q]. Then μ(Q) = 0 and Q contains no (top) circle; that is,
Q contains no variable Xi such that Xi �Q Xi. By the I.H., Y := M(Q) is defined, and
we must show ∞ /∈ Diag(Ŷ ∗). We argue indirectly and assume Ŷ ∗[i][i] = ∞ for some
i ∈ {1, . . . , n}. Note that i �= h, since Q contains no push operation on the control
stack Xh of P, and hence Q is nonsize-increasing w.r.t. Xh by Lemma 4.5.

From the assumption, we obtain Ŷ m[i][i] = ∞ for some m ≥ 1. We show by
induction on m ≥ 1 that this implies Xi �Q Xi, contradicting μ(P) = 0. In the base
case m = 1, Ŷ [i][i] = ∞ implies Y [i][i] = ∞, and hence Xi �Q Xi by Lemma 4.6.

For the step case m → m+1, observe that Ŷ [n+1] = 0n1 and i ∈ {1, . . . , n} imply

Ŷ m+1[i][i] =

n∑
d=1

Ŷ [i][d] • Ŷ m[d][i] = ∞.

Subcase Ŷ [i][e] • Ŷ m[e][i] = ∞ for some e ∈ {1, . . . , n}. If e = i and Ŷ [i][i] = ∞,
then Y [i][i] = ∞, implying Xi �Q Xi by Lemma 4.6. If e = i and Ŷ m[i][i] =
∞, then Xi �Q Xi follows from the induction hypothesis. Otherwise e �= i and
Ŷ [i][e], Ŷ m[e][i] ≥ 1. In that case, Lemmas 4.3 and 4.6 imply Xe �Q Xi and Xi �Q Xe;
hence Xi �Q Xi.

Subcase Ŷ [i][e] • Ŷ m[e][i] = 1 and Ŷ [i][d] • Ŷ m[d][i] = 1 for some e �= d. In
that case, we may assume e �= i, and we argue as in the previous subcase to show
Xi �Q Xi.

5. String programs and fptime. This section is concerned with showing that
certified “string programs” exactly compute the functions in fptime.

Definition 5.1 (string programs). A basic instruction imp(�X) is admissible if it
can be simulated on a Turing machine in polynomial time.

String programs are stack programs that have arbitrary admissible basic instruc-
tions and are extended by the following conditional with expected operational seman-
tics:

if top(Xi)≡a then P1 else P2.

Observe that admissible basic instructions are psb.
Examples. The following are examples of admissible basic instructions, where w

is any word over Σ:
• The no operation: {�X=�v} nop {�X=�v}.
• The swap operation: {Xi, Xj =vi, vj} swap(Xi, Xj) {Xi, Xj =vj , vi}.
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• The constant assignment statement : {Xi=vi} Xi = w {Xi=w}.
• The assignment statement : {Xi, Xj =vi, vj} Xi = Xj {Xi, Xj =vj , vj}.
• The constant concatenation: {Xi=vi} Xi += w {Xi=viw}.
• The concatenation statement : {Xi, Xj =vi, vj} Xi += Xj {Xi, Xj =vivj , vj}.

We use the following notation for simple certificates.
Definition 5.2 (Zi,j,a, Ai,j,a, and f). For programs in variables X1, . . . , Xn, let
• Zi,j,a result from 1n+1 by replacing row i with 0j−1a0n+1−j, and
• Ai,j,a result from 1n+1 by replacing row i with 1n+1[i] + 0j−1a0n+1−j.

The forgetting function f : N → A is defined by f(0) := 0, f(1) := 1, f(n + 2) := ∞.
Certificates. The following are certificates for some admissible basic instructions

with variables among X1, . . . , Xn:
• 1n+1 is a certificate for both pop(Xi) and nop.
• One obtains a certificate Si,j for swap(Xi, Xj) by swapping in 1n+1 row i with

row j.
• Using the notation in Definition 5.2,

Zi,i,0 is a certificate for nil(Xi),
Zi,n+1,f(|w|) is a certificate for Xi = w,
Zi,j,1 is a certificate for Xi = Xj ,
Ai,n+1,1 is a certificate for push(a, Xi),
Ai,n+1,f(|w|) is a certificate for Xi += w,
Ai,j,1 is a certificate for Xi += Xj .

Observe that, in the presence of the conditionals, if top(Xi)≡a then P1 else P2

and nop, conditionals of the form if top(Xi) ≡ a then P1 can be dispensed with,
because they can be defined by if top(Xi) ≡ a then P1 else nop with an identical
certificate, if any.

Definition 5.3 (sharp form). For X ∈ M̃n[A] and any choice of ∗1, . . . , ∗n+1 ∈
{0, 1,∞}, a sharp form X# of X is a matrix in M̃n+1[A] defined as follows:

X=

(
X1 · · · Xn Xn+1

0 · · · 0 1

)
=⇒ X# =

⎛
⎝X1 · · · Xn 0Xn+1

∗1 · · · ∗n 1 ∗n+1

0 · · · 0 0 1

⎞
⎠.

Definition 5.4. An accumulator of X1, . . . , Xn is any string program in variables
X1, . . . , Xn, Xn+1 such that C ∈ M̃n+1[A] is a certificate for that program, where C is
obtained from 1n+2 by replacing row n + 1 with 1n+10.

Note that the certificate of an accumulator of X1, . . . , Xn is a sharp form of 1n+1.
The following program ADD is a typical example of an accumulator of X1, . . . , Xn:

ADD :≡ Xn+1 += X1; . . . ; Xn+1 += Xn.

Lemma 5.5 (sharp forms and accumulators). Let ACC be any accumulator of
�X := X1, . . . , Xn, and let P be any string program in variables �X such that M(P)↓.

(a) If X,Y ∈ M̃n[A], then Y # ⊗X# is a sharp form (Y ⊗X)#, and Y # �X#

is a sharp form (Y �X)#.
(b) M(P; ACC) is a sharp form M(P)#.
(c) If P# is obtained from P by replacing each admissible basic instruction imp(�X)

with the sequence imp(�X); ACC, then M(P#) is a sharp form M(P)#.
Proof. Part (a) holds by pure matrix multiplication. Part (b) holds by pure

matrix multiplication together with the fact that if Y ∈ M̃n[A] is a certificate for P,
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then

Y ′=

⎛
⎝Y1 · · · Yn 0Yn+1

0 · · · 0 1 0
0 · · · 0 0 1

⎞
⎠

is a certificate for P as a program with variables among �X, Xn+1. The proof of (c) is
by induction on the structure of P, where the case P ≡ imp(�X) follows from (b).

If P is a sequence P1; P2 or a conditional if top(Xi)≡a then P1 else P2, then P#

is P
#
1 ; P#

2 or if top(Xi)≡ a then P
#
1 else P

#
2 , and the claim follows from the I.H.,

part (a), and Definition 3.16.
Consider the case P ≡ foreach Xh [Q]. Then P# ≡ foreach Xh [Q#], and by the

I.H. M(Q#) is a sharp form Y # of Y := M(Q). Furthermore, as ∞ /∈ Diag(Ŷ ∗),

and as Ŷ #
∗

is a sharp form (Ŷ ∗)# by (a), we conclude that ∞ /∈ Diag(Ŷ #
∗
), too.

Thus, M(P#) is defined, and inspecting all cases in the construction of M(P#) in
Lemma 3.14, we see that M(P#) is a sharp form M(P)#.

Theorem 5.6 (characterization of fptime). Certified string programs exactly
compute the functions in fptime.

Proof. For the implication ⇐ , consider any f in fptime. By [16] and Theo-
rem 4.7, f can be computed by a stack program of μ-measure 0 such that M(P)↓.

As for ⇒ , let P be a certified string program with variables among �X := X1, . . . , Xn.
Then let timeP(�w) denote the number of steps in a run of P on input �w, where a step
is the execution of any admissible basic instruction imp(�X). Observe that there is a
polynomial qtime(�n) such that each step imp(�X) can be simulated by a Turing machine
in time qtime(|�X|). Then let P# result from P by replacing each basic instruction imp(�X)
with the sequence imp(�X); ADD, where ADD is the accumulator of �X defined above.

By Lemma 5.5 we obtain that M(P#) is a sharp form M(P)#. Thus, by soundness
(Theorem 3.17) there exists a polynomial q ∈ poly(M(P#)[n + 1]) such that

{�X, Xn+1 = �w, v} P# {|Xn+1| ≤ q(|�w|, |v|)}.

By the construction of P# we see that TIME(P) :≡ nil(Xn+1); ADD; P
# satisfies

{�X = �w} TIME(P) {|Xn+1| ≥ timeP(�w)}

and that p(|�w|) := q(|�w|,
∑

i |wi|) bounds the size of each stack at any time during
the execution of P on input �w. Thus, every step imp(�X) in a run of P on input �w
can be simulated on a Turing machine in time qtime(p(|�w|), . . . , p(|�w|)). Referring
to standard simulations of string programs on Turing machines (e.g., cf. section 7),
the existence of a Turing machine which simulates P on input �w in time O(p(|�w|) ·
qtime(p(|�w|), . . . , p(|�w|))) follows.

6. General loop programs and flinspace. In this section we will show that
certified “general loop programs” exactly compute the functions in flinspace.

Definition 6.1 (general loop programs). A basic instruction imp(�X) is admissi-
ble if it can be simulated on a Turing machine in linear space.

General loop programs are loop programs that have arbitrary admissible basic
instructions and are extended by the following conditional with expected operational
semantics:

if Xi ≤ Xj then P1 else P2.

Examples. The following are examples of admissible basic instructions, where p
is any polynomial in �X:
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• the basic instructions nil(Xi), pred(Xi), suc(Xi) of loop programs, just as
nop and swap(Xi, Xj), bearing in mind that now �X serve as registers.

• the assignment statement Xi = p satisfying {�X=�x} Xi = p {Xi=p(�x)}.
• the increase statement Xi += p satisfying {�X=�x} Xi += p {Xi=xi + p(�x)}.

In particular, the instructions Xi = c and Xi = Xj , as well as Xi += c and Xi += Xj ,
are admissible basic instructions, where c is any constant.

Certificates. The following are certificates for some admissible basic instructions
with variables among X1, . . . , Xn:

• The certificates for nil(Xi), pred(Xi), suc(Xi), nop, and swap(Xi, Xj) are just
those for nil(Xi), pop(Xi), push(a, Xi), nop, and swap(Xi, Xj) as given in
section 6.

• One obtains a certificate for Xi = p from 1n+1 by replacing row i with 〈p〉.
• By replacing in 1n+1 row i with 1n+1[i] + 〈p〉, one obtains a certificate for
Xi += p.

Theorem 6.2 (characterization of flinspace). Certified general loop programs
exactly compute the functions in flinspace.

Proof. For the implication ⇐ , consider any f in flinspace. By [16] and Theo-
rem 4.7, f can be computed by a loop program of μ-measure 0 such that M(P)↓.

As for ⇒ , let P be any certified general loop program. By soundness (Theo-
rem 3.17), every f computed by P has a polynomial bound. Thus, by closure of E2

under bounded simultaneous primitive recursion, we obtain inductively that every f
computed by P is in E2 =flinspace.

7. Power string programs and fpspace. This section concerns an extension
of string programs we call power string programs such that certified power string
programs exactly compute the functions in fpspace.

Definition 7.1 (power string programs). A basic instruction is ps-admissible if
it can be simulated on a Turing machine in polynomial space.

Power string programs are string programs that are built from ps-admissible basic
instructions and are extended by the following loopII statement we call power loop:

repeat Pow(Xh) [Q],

which executes the body 2|w|−1 times whenever w is initially stored in the control stack
Xh.

An example of a ps-admissible basic instruction used in the proof of the charac-
terization theorem above is the truncate instruction truncate(Xi, Xj) satisfying

{Xi, Xj =wi, wj} truncate(Xi, Xj) {Xj =wj and Xi=trunc(wi, wj)},

where trunc(u, v) := u if |u| ≤ |v|, and trunc(u, v) := u′ if u = u′u′′ and |u′| = |v|.
Using the notation of Definition 5.2, we obtain Zi,j,1 as a certificate for truncate

(Xi,Xj).
If the method certifies a power string program P, then every function computed by

P will be polynomially size bounded. However, when simulating P on a Turing machine
sim(P), the space used by sim(P) might exceed the polynomial bounds provided by
M(P). Therefore, to prove that power string programs with certificate M(P) can be
simulated on a Turing machine sim(P) in polynomial space, we first standardize those
simulations.

Given a power string program P with variables among X1, . . . , Xn, the simulation
sim(P) has an input/output tape, a working tape T (Xi) for each Xi, and a reference
tape R(Xi) for each occurrence of a loop controlled by Xi.
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Every run of sim(P) on input wi1# · · ·#wil is divided into three phases, where
phase 1 or 3 can be skipped, depending on the use of sim(P) as a subprogram of
another program: the initialization phase, in which each component wij is copied to
the corresponding working tape T (Xij ), the step-by-step simulation phase, and the
output preparation phase.

All cases of sim(P) are obvious, except possibly the case where P is a loop state-
ment foreach Xh [Q] or repeat Pow(Xh) [Q]. Given sim(Q), let sim(Q)∗ result from
sim(Q) by modifying its transition function such that every move w.r.t. T (Xh) be-
comes a move w.r.t. R(Xh).

sim(foreach Xh [Q]) works on input �w as follows: After the initialization phase,
the contents of tape T (Xh) is copied to the reference tape R(Xh), leaving its tape head
on the top symbol of Xh. Then for each inspected symbol on R(Xh) distinct from B,
first call sim(Q)∗, then delete the actual “top symbol” of tape R(Xh), and move its
tape head one cell to the left.

sim(repeat Pow(Xh) [Q]) works on input �w as follows: After the initialization
phase, write y := |wh| ones (the binary representation of 2|wh| − 1) or y := 0 (in case
of wh = ε) on the reference tape R(Xh). Then in an obvious loop of 2|wh| − 1 rounds,
first call sim(Q), and then compute the new y := bin((y)2 − 1) on tape R(Xh) from
the actual y.

Theorem 7.2 (characterization of fpspace). Certified power string programs
exactly compute the functions in fpspace.

Proof. As for ⇒ , we proceed by induction on the structure of certified power
string programs P, showing Ssim(P)(n) ≤ p(n) for some polynomial p(n).

The base case where P is a ps-admissible basic instruction holds by the fact that
if a power string program can be simulated on a Turing machine in polynomial space,
then it can also be simulated on a standardized Turing machine in polynomial space.

The cases where P is a sequence or a conditional easily follow by the I.H. and
closure of polynomials under composition.

Remaining cases, where P is a loop statement foreach Xh [Q] or repeat Pow(Xh) [Q].
By the I.H. there exists a polynomial q(n) such that Ssim(Q)(n) ≤ q(n). Furthermore,
since M(P) is a certificate for P, there exists a polynomial b, built from those polyno-
mials obtained in Lemma 3.14 or Lemma 3.15, respectively, such that

{s1 = |X1|, . . . , sn= |Xn|} P {|Xi| ≤ b(max{s1, . . . , sn})} for i = 1, . . . , n.

Then a straightforward induction on sh shows that Ssim(P)(n) ≤ (b � q ◦ b)(n).
As for the proof of ⇐ , let f be any function in fpspace computed by a one-tape

Turing machine M := (Q,Γ,Σ, q0, δ) such that SM (n) ≤ p(n) for some polynomial
p(n). As M halts on every input, one can find another polynomial q(n) such that
TM (n) ≤ 2q(n). Let b be the polynomial p � q. To obtain a certified power string
program P that simulates M , we follow [16], [29] and modify the given stack program
simulation of M as follows.

The required program P satisfying {X=w} P {O=fM (w)} uses stacks X, Y, Z, L, R,
O, . . . , and is of the form

P :≡ COMPUTE-SPACE-BOUND(Y); (* of μ-measure 0 *)
INITIALIZE(L, Z, R); (* of μ-measure 0 *)
repeat Pow(Y) [SIMULATE-MOVES; TRUNCATE-ALL]; (* ? *)
OUTPUT(R; O) (* of μ-measure 0 *),

where TRUNCATE-ALL :≡ truncate(X1, Y); . . . ; truncate(Xn, Y), and �X = Var(P). Let
INIT be the initial part COMPUTE-SPACE-BOUND(Y); INITIALIZE(L, Z, R), and let Q be
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the body of the power loop. Then the simulation of M is such that for each configu-
ration α(q, a)β obtained after m steps of M on w, that is, initM (w) �m α(q, a)β, we
have

{X = w} INIT; Qm {L = α, reverse(R) = aβ, Z = q}.

Observe that, apart from the use of the power loop and truncate, everything else in P

belongs to the stack program world. In particular, the stack program COMPUTE-SPACE-

BOUND(Y) computes in stack Y a word of size b(|w|), bounding the space that M uses
on input w. As well, SIMULATE-MOVES is a stack program of μ-measure 0. Hence by
Theorem 4.7, all of the components INIT, Q, and OUTPUT(R; O) are certified. Thus, to
obtain a certificate M(P), it remains to verify that the certificate for Q satisfies the
hypothesis of Lemma 3.15, that is,

(I) M(Q)+[i] = 1n+1[i] or M(Q)+[i][i] = 0 for i = 1, . . . , n + 1.

First observe that TRUNCATE-ALL is the only place in P where truncate is used,
and where Y appears in Q. Furthermore, by construction of the bound b, none of
those truncate operations changes the contents of any Xi. However, assuming Xn = Y

(w.l.o.g.), and bearing in mind that Zi,n,1 is the certificate of truncate(Xi, Xn), the
effect of TRUNCATE-ALL is that

M(Q)=

⎛
⎜⎜⎝

0 · · · 0 1 0
· · ·

0 · · · 0 1 0
0 · · · 0 0 1

⎞
⎟⎟⎠,

whatever the certificate of SIMULATE-MOVES. Thus (I) is true of M(Q).
Inspecting again the certificate M(Q) above, we see that for the proof of ⇐ , a

trivialized hypothesis on the certificate of a loopII-body in Lemma 3.15 would have
sufficed. But note again that the focus here is not on characterization theorems but
on certifying as many programs as possible, and that is why the hypothesis (I) in
Lemma 3.15 is so valuable.

8. Applications. In this section, examples of certified natural algorithms are
given, some of which are considered benchmark algorithms [14] in implicit computa-
tional complexity. Furthermore, one algorithm is given where the certification method
correctly fails.

8.1. Basic arithmetical operations. For legibility, we write

prog(X1, . . . , Xr;Y1, . . . , Ys)

for subprograms, where �X act as read-only input parameters, and �Y as output param-
eters. All variables of the subprogram not appearing among �X,�Y are local variables
and must be discharged at the end of the subprogram. That allows us to suppress in
subprogram certificates all rows and columns corresponding to local variables.

The following programs are straightforward implementations of elementary meth-
ods of basic arithmetical operations, and it is natural to use stacks of bits here. Ac-
cordingly, we use the following two kinds of variables:

• variables A, B, S, . . . of data type “stack < bit >” with bit := {0, 1}. As
usual, the size of a stack is the length of the word stored in it.

• variables carry, sum bit of data type bit. The size of a bit is 1.
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In addition to those admissible basic instructions and their certificates as shown
in section 5, we use the following admissible basic instructions, where b, S are aliases
for Xi, Xj and 〈BE〉 is any polynomial-time computable Boolean expression:

b =〈BE〉 assigns the value of 〈BE〉 to b certificate: Zi,n+1,1,
push(b, S) pushs the bit stored in b on S certificate: Aj,n+1,1,
reverse(S) reverses the word stored in S certificate: 1n+1.

Alternatively, using Lemma 3.14 and the above convention of suppressing local vari-
ables, one could implement reverse(S) with certificate 1n+1.

Binary addition. This procedure uses A, B, S, A′, B′, carry, and sum bit as aliases
for X1, . . . , X7.

1: procedure bin add(A, B; S)
2: A′ = A; B′ = B; � Creates local copies of A, B
3: if (len(B′) < len(A′)) then
4: S = B′;
5: B′ = A′;
6: A′ = S; � Sets the control variable B′

7: nil(S); � Initializes the result stack
8: carry=0; � Initializes the carry
9: foreach B′ do

10: sum bit = top(A′) xor top(B′) xor carry;
11: push(sum bit, S);
12: carry = top(A′) and top(B′);
13: pop(A′);

14: if (carry) then
15: push(1, S); � Now S holds the result string in reverse order

16: reverse(S);
17: nil(A′); nil(B′) � Discharges local copies

To compute the certificate, we refer to the following parts of the algorithm: P1
for lines 2–8, P2 for the loop with body Q, and P3 for lines 14–17. For those parts, the
method yields

M(P1) = Z6,8,1 ⊗ Z3,3,0 ⊗ ((Z4,3,1 ⊗ Z5,4,1 ⊗ Z3,5,1) � 18) ⊗ Z5,2,1 ⊗ Z4,1,1,
M(P3) = Z5,5,0 ⊗ Z4,4,0 ⊗ 18 ⊗ (A3,8,1 � 18),

Y := M(Q) = 18 ⊗ Z6,8,1 ⊗A3,8,1 ⊗ Z7,8,1.

Thus, we obtain

M(P1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, M(P3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, and Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Application of Lemma 3.14 yields the following certificate M(P2) for the loop:

As Ŷ ∗=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0∞
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0∞
0 0 0 0 0 0 1∞
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Y + =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0∞
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, we get M(P2)=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Altogether, we obtain the following certificate for binary addition:

M(bin add(A, B; S)) = M(P3) ⊗M(P2) ⊗M(P1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0∞
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Binary multiplication. This procedure uses A, B, C, and tmp as aliases for
X1, . . . , X4.

1: procedure bin mult(A,B; C)
2: nil(C); � Initializes the result stack
3: foreach B do
4: push(0, C); � Performs a shift-left of C
5: if (top(B) ≡ 1) then
6: bin add(A, C; tmp);
7: C = tmp;
8: nil(tmp);

To compute the certificate, let Q denote the loop body (lines 4–8). As binary
addition is called as a subprogram, we can use the certificate obtained above, but
suppressing local variables and mapping arguments A, C, tmp to the parameters A, B, S
of bin add, that is,

M(bin add(A, C; tmp)) =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 1 0 1
0 0 0 0 1

⎞
⎟⎟⎟⎠.

First, for the certificate Y := M(Q) of the loop body Q we obtain

Y = ((Z4,4,0 ⊗ Z3,4,1 ⊗M(bin add(A, C; tmp))) � 15) ⊗A3,5,1.

To obtain M(foreach B [Q]), we need to compute Ŷ ∗ and Y +. Since Y = Ŷ , this
simplifies the calculations of the limit forms:

Y =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
1 0 1 0∞
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ and Y + = Ŷ ∗ =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
∞ 0 1 0∞
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠.
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As ∞ /∈ Diag(Ŷ ∗), Lemma 3.14 can be applied, yielding

M(foreach B [Q]) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
∞∞ 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠. Thus,M(bin mult(A, B; C) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
∞∞ 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠.

Binary exponentiation. This procedure, which on input n computes 2n, uses
A, B, aux, and tmp as aliases for X1, . . . , X4.

1: procedure bin exp(A; B)
2: B = 1; � Initializes the result stack
3: aux = 10; � Initializes the auxiliary stack
4: foreach A do
5: bin mult(aux, B; tmp);
6: B = tmp

Clearly, as bin exp cannot run in polynomial time, the certification method must
fail. Let Q denote the loop body (lines 5–6). As bin mult is called as a subprogram, we
can use the certificate obtained above, again suppressing local variables and mapping
arguments aux, B, tmp to the parameters A, B, C of bin mult:

M(bin mult(aux, B; tmp)) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0∞∞ 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ and Y := M(Q) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 ∞ ∞ 0 0
0 0 1 0 0
0 ∞ ∞ 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠.

As ∞ ∈ Diag(Ŷ ∗), Lemma 3.14 is not applicable; hence the method correctly fails.

8.2. Insertion-sort. The previous examples demonstrate that our certification
method appropriately processes size-increasing programs; the following certification of
insertion-sort exemplifies that the method applies to nonsize-increasing programs, too.
To our knowledge, no implicit description of fptime includes a natural implementa-
tion of insertion-sort—Leivant’s first-order tiered systems typically involve needing a
second copy of the list to be sorted; Hofmann’s [14] nonsize-increasing “coin” types
require higher-type functionals. By contrast, our implementation, modeled after [10,
p. 8] stays in the realm of imperative programming, and in that way, some nontrivial
headway has been made.

For simplicity, the insertion sort algorithm sorts arrays of natural numbers.
Accordingly, we use the following two kinds of variables:

• Variables i, j, k, . . . of data type “Nat” store natural numbers, with logarith-
mic size measure |i| := �log2(n + 1)� whenever n is stored in i.

• Variables A, . . . of data type “array〈Nat〉” store sequences (of length len(A))
of natural numbers, with logarithmic size measure

|A| := len(A) · max
1≤i≤len(A)

{|ni| + 1}

whenever (n1, . . . , nlen(A)) is stored in A.
The implementation of insertion sort uses the following admissible basic instruc-
tions (cf. Definition 5.2 for the notation of certificates), where i, j, A are aliases for
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Xi, Xj , Xk:

dec(i) decrements any n > 0 stored in i by 1 certificate: 1n+1,
inc(i) increments any n stored in i by 1 certificate: Ai,n+1,1,
i = c assigns any constant c ≥ 0 to i certificate: Zi,n+1,f(|c|),
i = j assigns the storage of j to i certificate: Zi,j,1,
i = ones(len(A)) assigns 2len(A) − 1 to i certificate: Zi,k,1,
i = len(A) assigns len(A) to i certificate: Zi,k,1,
A[i] = A[j] assigns A[j] to A[i], 1 ≤ i, j ≤ len(A) certificate: 1n+1.

For the certificate of i = ones(len(A)), observe that |2len(A) − 1| = len(A) ≤ |A|.
The insertion sort algorithm sorts an array A of type array〈Nat〉. As A[1] is

sorted, in each round the algorithm inserts the current key A[i+1] into the sorted array
A[1 . . . i] (cf. [10, p. 8]). In the absence of while statements in the given framework,
a natural implementation could appear as shown below, where insertion sort(A)
sorts A[1 . . . n], using A[n+1] to buffer the current key.

1: procedure insertion sort(A)
2: len = len(A);
3: rounds = ones(len(A));
4: j = 2; � Prepares the for loop starting with 2
5: loop rounds

6: if (j < len) then
7: i = j;
8: dec(i); � Prepares the downto loop starting with j − 1
9: A[len] = A[j]; � Buffers the current key A[j]

10: loop rounds

11: if (i > 0 and A[i] > A[len]) then
12: i tmp = i;
13: inc(i tmp);
14: A[i tmp] = A[i]; � Shifts A[i] one component to the right
15: i tmp = 0;

16: dec(i); � Prepares the next round of the downto loop

17: i tmp = i; � Treats the cases key < A[1] or A[i] ≤ key

18: inc(i tmp);
19: A[i tmp] = A[len];
20: i tmp = 0;

21: inc(j) � Prepares the next round of the for loop

In order to compute the certificate for this algorithm, we refer to the variables A,
len, rounds, j, i, and i tmp as X1, . . . , X6, respectively, and to the following parts of
the algorithm:

P1 :≡ the body if (j < len) then [P2; P3; P4] of the outer loop,
P2 :≡ i = j ; dec(i); A[len]=A[j],
P3 :≡ the inner loop with body P5,
P4 :≡ lines 17–21,
P6 :≡ the body of the conditional if (i > 0 and A[i] > A[len]) then [P6].
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According to the method, we obtain the following certificates:

M(P6) = 17 ⊗ Z6,7,0 ⊗ 17 ⊗A6,7,1 ⊗ Z6,5,1 = Z6,7,0,
M(P5) = M(P6) � 17 = 17,
M(P4) = A4,7,1 ⊗ Z6,7,0 ⊗ 17 ⊗A6,7,1 ⊗ Z6,5,1 = A4,7,1 ⊗ Z6,7,0,
M(P3) = 17.

M(P2) = 17 ⊗ 17 ⊗ Z5,4,1 = Z5,4,1,
Y := M(P1) = (M(P4) ⊗M(P3) ⊗M(P2)) � 17 = A4,7,1 �A5,4,1,

Ŷ ∗ =
⊔∞

i=1(Ŷ )i = A4,7,∞ �A5,7,∞ �A5,4,∞.

As ∞ /∈ Diag(Ŷ ∗), Lemma 3.14 yields M(loopI rounds [P1]) = A4,3,1 � A5,3,∞ �
A5,4,∞. Thus, we obtain M(insertion sort) = (A4,3,1 �A5,3,∞ �A5,4,∞)⊗Z4,7,∞⊗
Z3,1,1 ⊗ Z2,1,1.

9. Conclusion. We have presented a new method of certifying polynomial size
boundedness for imperative programs under the natural assumption that the basic
instructions are polynomially size bounded, too. Apart from that, there are no re-
strictions on the data structures involved. We proved that certified string programs
exactly compute the fptime functions, certified general loop programs precisely com-
pute the flinspace functions, and finally, that certified power string programs exactly
compute the fpspace functions. We also gave examples of certified “natural” imple-
mentations of algorithms such as insertion-sort. Altogether, this can be considered a
major step towards applicability of research in the evolving field of implicit compu-
tational complexity to daily programming practice. It seems that the future will see
further work in this area.

Acknowledgments. We would like to thank Martin Dietzfelbinger for both his
precious comments and suggestions concerning the presentation of the material. Along
these lines, we are also grateful to the referees for their thorough reports. Furthermore,
we are greatly indebted to Jan Mehler for pointing out various misprints in the paper,
and in particular for his contribution to the proof of Lemma 3.15.

REFERENCES

[1] K. Aehlig and J. Johannsen, An elementary fragment of second-order lambda calculus,
ACM Trans. Comput. Log., 6 (2005), pp. 468–480.

[2] S. J. Bellantoni, Predicative Recursion and Computational Complexity, Ph.D. thesis, Uni-
versity of Toronto, Toronto, Ontario, Canada, 1993.

[3] S. J. Bellantoni, Predicative recursion and the polytime hierarchy, in Feasible Mathematics
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Boston, MA, 1995, pp. 320–343.

[22] D. Leivant, Predicative recurrence in finite types, in Logical Foundations of Computer Sci-
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Abstract. We present a near linear time algorithm for constructing hierarchical nets in finite
metric spaces with constant doubling dimension. This data-structure is then applied to obtain im-
proved algorithms for the following problems: approximate nearest neighbor search, well-separated
pair decomposition, spanner construction, compact representation scheme, doubling measure, and
computation of the (approximate) Lipschitz constant of a function. In all cases, the running (pre-
processing) time is near linear and the space being used is linear.
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1. Introduction. Given a data set, one frequently wants to manipulate it and
quickly compute some properties of it. For example, one would like to cluster the
data into similar clusters, or measure similarity of items in the data, etc. One possible
way to do this is to define a distance function (i.e., metric) on the data items and
perform the required task using this metric. Unfortunately, in general, the metric
might be intrinsically complicated (“high-dimensional”), and various computational
tasks on the data might require high time and space complexity. This is known in the
literature as “the curse of dimensionality.”

One approach receiving considerable attention recently is that of defining a notion
of dimension on a finite metric space and developing efficient algorithms for this case.
An example of this approach is the notion of doubling dimension [2, 27, 23]. The
doubling constant of metric space M is the maximum, over all balls b in the metric
space M, of the minimum number of balls needed to cover b, using balls with half
the radius of b. The logarithm of the doubling constant is the doubling dimension
of the space. The doubling dimension can be thought of as a generalization of the
Euclidean dimension, as �d has Θ(d) doubling dimension. Furthermore, the doubling
dimension extends the notion of growth restricted metrics of Karger and Ruhl [30].

Understanding the structure of such spaces (or similar notions) and how to ma-
nipulate them efficiently received considerable attention in the last few years [14, 30,
23, 28, 34, 33, 44].

The low doubling metric approach can be justified at the following two levels:
1. Arguably, non-Euclidean, low (doubling) dimensional metric data appear in

practice and deserve an efficient algorithmic treatment. Even high-dimen-
sional Euclidean data may have some low doubling dimension structure, which
makes it amenable to this approach.
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This view seems to be shared by many recent algorithmic papers on doubling
metrics, but it still awaits convincing empirical and/or theoretical support.

2. Even if one is only interested in questions on Euclidean point sets, it makes
sense to strip the techniques being used to their bare essentials, obtaining a
better understanding of the problems and conceptually simpler solutions.

More arguments along these lines can be found in [14], where the author advocates
this approach.

In general, it is impossible to directly apply algorithmic results developed for fixed
dimensional Euclidean space to doubling metrics, since there exist doubling metrics
that cannot be embedded in Hilbert space with low distortion of the distances [41, 35].
Hence, some of the aforementioned works apply notions and techniques from fixed
dimensional computational geometry and extend them to finite metric spaces.

In particular, Talwar [44] showed that one can extend the notion of well-separated
pairs decomposition (WSPD) of [11] to spaces with low doubling dimension. Specifi-
cally, he shows that for every set P of n points having doubling dimension dim, and
every ε > 0, there exists WSPD, with separation 1/ε and O(nε−O(dim) log Φ) pairs,
where dim is the doubling dimension of the finite metric space, and Φ is the spread
of the point set, which is the ratio between the diameter of P and the distance be-
tween the closest pair of points in P . This is weaker than the result of Callahan and
Kosaraju [11] for Euclidean space, which does not depend on the spread of the point
set.

Krauthgamer and Lee [34] showed a data structure for answering (1+ε)-approxi-
mate nearest neighbor queries on point set P with spread Φ. Their data structure sup-
ports insertions in O(log Φ log log Φ) time. The preprocessing time is O(n log Φ log log Φ)
(this is by inserting the points one by one), and the query time is O(log Φ+ε−O(dim)).
In �d for fixed d, one can answer such queries in O(log log(Φ/ε)) time, using near
linear space; see [24] and references therein. (In fact, it is possible to achieve constant
query time using slightly larger storage [26].) Note, however, that the latter results
strongly use the Euclidean structure. Recently, Krauthgamer and Lee [33] overcame
the restriction on the spread, presenting a data-structure with nearly quadratic space,
and logarithmic query time.

Underlining all those results is the notion of hierarchical nets. Intuitively, hi-
erarchical nets are sequences of larger and larger subsets of the underlining set P ,
such that in a given resolution, there is a subset in this sequence that represents well
the structure of P in this resolution (a formal definition is given in section 2). Cur-
rently, the known algorithms for constructing those nets require running time which
is quadratic in n.

An alternative way of constructing those nets is by the clustering algorithm of
Gonzalez [20]. The algorithm of Gonzalez computes 2-approximate k-center clustering
by repeatedly picking the point furthest away from the current set of centers. Setting
k = n, this results in a permutation of the points in the metric space. It is easy to
verify that, by taking different prefixes of this permutation, one gets hierarchical nets
for the metric. However, the running time of Gonzalez’s algorithm in this case is still
quadratic. Although in fixed dimensional Euclidean space the algorithm of Gonzalez
was improved to O(n log k) time by Feder and Greene [17], and to linear time by
Har-Peled [25], those algorithms require specifying k in advance, they do not generate
the permutation of the points, and as such they cannot be used in this case.

Our results. In this paper, we present for the aforementioned applications im-
proved algorithms having near linear preprocessing time and linear space. We also
remove the dependency on the spread. As such, we (almost) match the known results



1150 SARIEL HAR-PELED AND MANOR MENDEL

in computational geometry for low-dimensional Euclidean spaces.
We assume that the input is given via a black box that can compute the distance

between any two points in the metric space in constant time. Since the matrix of
all

(
n
2

)
distances has quadratic size, this means that in some sense our algorithms

have sublinear running time. This is not entirely surprising since subquadratic time
algorithms exist for those problems in fixed dimensional Euclidean space. Thus, our
paper can be interpreted as further strengthening the perceived connection between
finite spaces of low doubling dimensions and Euclidean space of low dimension. Fur-
thermore, we believe that our algorithms for the well-separated pair decomposition
and approximate nearest neighbor are slightly cleaner and simpler than the previous
corresponding algorithms for the Euclidean case.

Net-tree. In section 3 we present a 2O(dim)n log n expected time randomized algo-
rithm for constructing the hierarchical nets data-structure, which we call a net-tree.

Approximate nearest neighbor (ANN). In section 4 we show a new data-structure
for the (1 + ε)-approximate nearest neighbor query. The expected preprocessing time
is 2O(dim)n log n, the space used is 2O(dim)n, and the query time is 2O(dim) log n +
ε−O(dim).

This query time is almost optimal in the oracle model since there are examples
of point sets in which the query time is 2Ω(dim) log n [34], and examples in which the
query time is ε−Ω(dim).1

Our result also matches the results of Arya et al. [1] in Euclidean settings. Fur-
thermore, our result improves upon the recent work of Krauthgamer and Lee, which
either assumes bounded spread [34] or requires quadratic space [33]. The algorithms
in [1, 34, 33] are deterministic, in contrast to ours.

WSPD. In section 5 we show that one can construct an ε−1 WSPD of P in
near linear time. The number of pairs is nε−O(dim). The size of the WSPD is tight,
as there are examples of metrics in which the size of the WSPD is nε−Ω(dim). Our
result improves upon Talwar’s work [44] and matches the results of Callahan and
Kosaraju (the algorithms of both [11, 44] are deterministic, though).

Spanners. A t-spanner of a metric is a sparse weighted graph whose vertices
are the metric’s points and in which the graph metric is a t-approximation to the
original metric. Spanners were first defined and studied in [40]. Construction of
(1+ε)-spanners for points in low-dimensional Euclidean space is considered in [31, 10].
Using Callahan’s technique [10], the WSPD construction also implies a near linear
time construction of (1 + ε)-spanners having linear number of edges for such metrics.
Independently of our work, Chan et al. [12] show a construction of a (1 + ε)-spanner
for doubling metrics with a linear number of edges. Their construction is stronger in
the sense that the degrees in their spanner graph are bounded by constant. However,
they do not specify a bound on the running time of their construction.

Compact representation scheme (CRS). In section 6 we construct in near lin-
ear time a data-structure of linear size that can answer approximate distance queries
between pairs of points in essentially constant time. CRSs were coined “approx-
imate distance oracles” in [45]. Our result extends recent results of Gudmunsson
et al. [21, 22], who showed the existence of CRSs with similar parameters for metrics
that are “nearly” fixed dimensional Euclidean (and that are a subclass of fixed dou-

1Consider the set Z
n
m with the �∞ norm, where m =

⌈
ε−1/2

⌉
, n = �dim�. Consider a query at

point q satisfying ∃x0 ∈ Z
n
m such that d(q, x0) = m− 1, and for all x ∈ Z

n
m, x �= x0 ⇒ d(q, x) = m.

Since x0 can be chosen in an adversarial way, any randomized (1 + ε)-ANN query algorithm would
have to make Ω(mn) distance queries before hitting x0.
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bling dimension metrics). We also mention in passing that our CRS technique can be
applied to improve and unify two recent results [44, 43] on distance labeling.

Doubling measure. A doubling measure μ is a measure on the metric space with
the property that for every x ∈ P and r > 0, the ratio μ(b(x, 2r))/μ(b(x, r)) is
bounded, where b(x, r) = {y : d(x, y) ≤ r}. Vol′berg and Konyagin [47] proved that
for finite metrics (and in fact for complete metrics [36]) the existence of a doubling
measure is quantitatively equivalent to the metric being doubling. This measure has
found some recent algorithmic applications [43], and we anticipate more applications.
Following the proof of Wu [48], we present in section 7 a near linear time algorithm
for constructing a doubling measure.

Lipschitz constant of a mapping. In section 8 we study the problem of computing
the Lipschitz constant of a mapping f : P → B. In particular, we show how using
WSPD makes it possible to approximate the Lipschitz constant of f in near linear time
(in |P |) when P has a constant doubling dimension (and B is an arbitrary metric).
We also obtain efficient exact algorithms, with near linear running time, for the case
where P is a set of points in one- or two-dimensional Euclidean space.

Computing the doubling dimension. Although not stated explicitly in what fol-
lows, we assume in sections 2–8 that the doubling dimension of the given metric is
either known a priori or given as part of the input. This assumption is removed in
section 9, where we remark that a constant approximation of the doubling dimension
of a given metric M can be computed in 2O(dim)n log n time. It is therefore possible
to execute the algorithms of sections 2–8 with the same asymptotic running time,
using the approximation of the doubling dimension. (In all the cases where the dou-
bling dimension is needed, any upper bound on it will do, with accordingly degraded
running time.)

Most of the algorithms in this paper are randomized. However, our use of ran-
domness is confined to Lemma 2.4 (except for section 8.1). This means that the
algorithms always return the desired result, with bounds on the expected running
time. This also gives the same asymptotic bound with constant probability, using
Markov inequality. Furthermore, in the ANN and CRS schema, randomness is used
only in the preprocessing, and the query algorithms are deterministic. Lemma 2.4
can be easily derandomized in O(n2) time, thus giving n2polylog(n) deterministic
algorithms for all problems discussed here. We do not know whether a nontrivial
derandomization is possible.

2. Preliminaries. Denote byM a metric space and by P a finite subset P ⊂M.
The spread of P , denoted by Φ(P ), is the ratio of the diameter of P and the distance
between the closest pair of points in P . For a point p ∈ M and a number r ≥ 0,
we denote by b(p, r) = {q ∈M| dM(p, q) ≤ r} the ball of radius r around p. The
doubling constant λ of P , defined as the minimum over m ∈ N such that every ball
b in P , can be covered by at most m balls of at most half the radius. The doubling
dimension of the metric space is defined as log2 λ. A slight variation of the doubling
constant is that any subset can be covered by λ′ subsets of at most half the diameter.
It is not hard to see that log2 λ and log2 λ

′ approximate each other up to a factor
of 2. Since we will ignore constant factors in the dimension, these two definitions
are interchangeable. It is clear that log2 λ

′(P ) ≤ log2 λ
′(M), and thus the doubling

dimension of P is “approximately” at most that ofM.
A basic fact about the λ doubling metricM that will be used repeatedly is that

if P ⊂M has spread at most Φ, then |P | ≤ λO(log2 Φ).
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2.1. Hierarchy of nets. An r-net in a metric space M is a subset N ⊂ M of
points such that supx∈M dM(x,N ) ≤ r and infx,y∈N ; x�=y dM(x, y) ≥ r/α for some
constant α ≥ 1. r-nets are useful “sparse” object that approximately capture the
geometry of the metric space at scales larger than 3r. In this paper we will rely
heavily on the following notion of hierarchical nets.

Definition 2.1 (net-tree). Let P ⊂ M be a finite subset. A net-tree of P is a
tree T whose set of leaves is P . We denote by Pv ⊂ P the set of leaves in the subtree
rooted at a vertex v ∈ T . Associate with each vertex v a point repv ∈ Pv. Internal
vertices have at least two children. Each vertex v has a level �(v) ∈ Z ∪ {−∞}. The
levels satisfy �(v) < �(p(v)), where p(v) is the parent of v in T . The levels of the
leaves are −∞. Let τ be some large enough constant, say τ = 11.

We require the following properties from T :
Covering property: For every vertex v ∈ T ,

b

(
repv,

2τ

τ − 1
· τ �(v)

)
⊃ Pv.

Packing property: For every nonroot vertex v ∈ T ,

b

(
repv,

τ − 5

2(τ − 1)
· τ �(p(v))−1

)⋂
P ⊂ Pv.

Inheritance property: For every nonleaf vertex u ∈ T , there exists a child
v ∈ T of u such that repu = repv.

The net-tree can be thought of as a representation of nets from all scales in the
following sense.

Proposition 2.2. Given a net-tree, let

NC(l) = {repu | �(u) < l ≤ �(p(u))} .

Then the points in NC(l) are pairwise τ l−1/4 separated; that is, for any p, q ∈ NC(l),
we have dM(p, q) ≥ τ l−1/4. In addition, P ⊆ ∪p∈NC(l)b(p, 4 · τ l).

Proof. Let p, q ∈ NC(l), and let u and v be the corresponding nodes in the
net-tree, respectively. Consider the balls bp = b(p, rp) and bq = b(q, rq), where
rp = τ−5

2(τ−1) · τ �(p(u))−1 and rq = τ−5
2(τ−1) · τ �(p(v))−1. The sets bp ∩ P and bq ∩ P are

fully contained in Pu and Pv, respectively, by the definition of the net-tree. Since
u and v are on different branches of the net-tree, Pu and Pv are disjoint. But then
dM(p, q) ≥ max{rp, rq} ≥ τ−5

2(τ−1) · τ l−1 ≥ τ l−1/4 by the definition of NC(l) and since
τ = 11.

Similarly, consider the set of nodes VC(l) = {u | �(u) < l ≤ �(p(u))} realizing

NC(l). For any v ∈ VC(l), we have Pv ⊆ b
(
repv,

2τ
τ−1 · τ �(v)

)
⊆ b

(
repv,

2τ l

τ−1

)
⊆

b
(
repv, τ

l
)

since τ ≥ 3. Thus, P ⊆ ∪v∈VC(l)b(repv, τ
l) = ∪p∈NC(l)b(p, τ l), as re-

quired.
Although NC(·) are quantitatively weaker nets compared with the greedy ap-

proach,2 they are stronger in the sense that the packing and the covering properties
respect the hierarchical structure of the net-tree.

The packing and covering properties easily imply that each vertex has at most
λO(1) children. Net-trees are roughly equivalent to compressed quadtrees [1]. The

2We have made no attempt to optimize the ratio between the packing and covering radii, and the
one reported here can be (substantially) improved. However, some degradation in this ratio seems
to be unavoidable.
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net-tree is also similar to the sb data-structure of Clarkson [15], but our analysis and
guaranteed performance are new.

2.2. The computational model. The model of computation we use is the “unit
cost floating-point word RAM model.” More precisely, for a given input consisting
of poly(n) real numbers at the range [−Φ,−Φ−1] ∪ [Φ−1,Φ], and given an accuracy
parameter t ∈ N, the RAM machine has words of length O(log n+log log Φ+t). These
words can accommodate floating-point numbers from the set{

±(1 + x)2y
∣∣∣x ∈ [0, 1], x2−t ∈ N, y ∈ [−nO(1) logO(1) Φ, nO(1) logO(1) Φ] ∩ Z

}
and integers from the set

{
−(2tn log Φ)O(1), . . . , 0, . . . , (2tn log Φ)O(1)

}
. For simplicity,

we assume that the input given in this way is exact. All the problems discussed in
this paper have an accuracy parameter of ε > 0. We assume that εO(1) > 2−t to avoid
rounding problems. The space used by an algorithm (or a scheme) is the number
of words being used. The machine allows arithmetic, floor, ceiling, conversion from
integer to floating point, logarithm, and exponent operations in unit time. We further
assume that the machine is equipped with a random number generator.

Floating-point computation is a very well studied topic; see [32, Chap. 4] and
references therein. However, we were unable to trace a citation that explicitly defines
an asymptotic floating-point computational model. We choose this model for the
following two related reasons:

1. The algorithms in this paper are supposed to output only an approximate
solution. Therefore it makes sense to try to use approximate numbers since
they use less resources.

2. An important theme in this paper is developing algorithms that are indepen-
dent of the spread of the given metrics. Most algorithms that have an explicit
dependence on the spread in their time or space complexity have some form of
polylog(Φ) dependence. An algorithm that has no dependence on the spread
Φ, but relies on words of length O(log Φ), may be considered suspicious at
best.

Having stated these reasons, for the most part in what follows we will ignore
numerical and accuracy issues in our algorithms. The algorithms are simple enough
that it is evidently clear that no numerical stability issues arise. A notable exception is
Assouad’s embedding discussed in section 6.2. There we have to explicitly add another
ingredient (Lemma 6.7) to the algorithm in order to adapt it to the floating-point word
RAM model. Indeed, that section is the catalyst for the current discussion.

2.3. Finding a separating ring. We next present a simple argument that helps
to overcome the dependence on the spread in the running time.

Proposition 2.3. Denote by ropt(P,m) the radius of the smallest ball in P
(whose center is also in P ) containing m points. Then in a metric space with doubling
constant λ, any ball of radius 2r, where r ≤ 2ropt(P,m), contains at most λ2m points.

Proof. By the doubling property, the ball of radius 2r can be covered by λ2 balls
of radius ropt(P,m). Each such ball contains at most m points.

Lemma 2.4. Given an n-point metric space P with doubling constant λ, one can
compute a ball b = b(p, r), such that b contains at least m = n/(2λ3) points of P ,
and b(p, 2r) contains at most n/2 points of P . The expected running time of this
algorithm is O(λ3n).

Proof. Pick randomly a point p from P , and compute the ball b(p, r) of smallest
radius around p containing at least n/(2λ3) points. Next, consider the ball of radius
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b(p, 2r). If it contains ≤ n/2 points, we are done. Otherwise, we repeat this procedure
until we succeed.

To see why this algorithm succeeds with constant probability in each iteration,
consider the smallest ball Q = P ∩ b(q, ropt) that contains at least m points of P .
Observe that any ball of radius ropt/2 contain less than m points. With probability
1/(2λ3) our sample is from Q. If p ∈ Q, then r ≤ 2ropt, and by the doubling property
the ball b(p, 4ropt) can be covered by at most λ3 balls of radius ropt/2. Hence it holds
that |P ∩ b(p, 2r)| < λ3m ≤ n/2.

Thus, the algorithm succeeds with probability 1/(2λ3) in each iteration, and with
probability ≥ 1/3 after 2λ3 iterations, implying the result, as each iteration takes
O(n) time.

Lemma 2.4 enables us to find a sparse ring of radius “not much larger” than its
width. For example, by using it we can find an empty ring of width h and radius at
most 2nh in linear time.

3. Computing nets efficiently. In this section we prove the following theorem.
Theorem 3.1. Given a set P of n points inM, one can construct a net-tree for

P in 2O(dim)n log n expected time.
The outline of the proof is as follows. In section 3.1 we show how to construct the

Gonzalez sequence in 2O(dim)n log(n+ Φ) time. We then eliminate the dependence of
the running time on the spread Φ in section 3.3 by using a tool developed in section 3.2.
In section 3.4 we conclude the proof of Theorem 3.1 by showing how to construct the
net-tree from the Gonzalez sequence. We end by mentioning in section 3.5 a few data
structures for efficient searching on the net-tree.

3.1. Computing greedy clustering quickly. Gonzalez [20] presented a greedy
algorithm, denoted by GreedyCluster, that when applied to a set of points P com-
putes a permutation of the points Π = 〈p1, p2, . . . , pm〉, such that p1, . . . , pk are
good centers for P , for any k ≥ 1. We refer to Π as the greedy permutation of P .
Formally, there are numbers r1, . . . , rn, such that P ⊆ ∪kl=1b(pl, rk). Furthermore,
min1≤i<j≤k dM(pi, pj) = rk−1.

GreedyCluster works by picking an arbitrary point in P to be p1 and setting r1 to
be the distance of the furthest point in P to p1. For every point q ∈ P , GreedyCluster
stores its distance to the closest center picked so far; namely, in the beginning of the
kth iteration, for all q ∈ P we have αk

q = mink−1
i=1 dM(q, pi). The algorithm sets the

kth center to be pk = arg maxp∈P αk
p (namely, pk is the point in P furthest away

from the centers picked so far). Clearly, rk−1 = αk
pk

. By implementing this naively,
one can compute the first k points p1, . . . , pk in O(nk) time. Thus, this leads to a
2-approximation to k-center clustering in O(nk) time.

Feder and Greene [17] improved the running time to O(n log k) time (this was
further improved to linear time by Har-Peled [25]). Feder and Greene’s main obser-
vation was that when updating αk+1

q , one needs to update this value only for points
of P , which are in distance ≤ rk−1 away from pk, since for points q further away, the
addition of pk cannot change αk

q .
This suggests the following natural approach for computing the greedy permuta-

tion: Associate with each center in {p1, . . . , pk} the points of P that it serves (namely,
points that are closer to the given center than to any other center). Furthermore, each
center pi maintains a friends list that contains all the centers that are a distance of
at most 4rk from it. An “old” center will trim a point from its friends list only when
its distance is larger than 8rk. Specifically, the friends list of pi at the kth iteration
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(k ≥ i) contains all the centers at a distance of at most min{8rk, 4ri} from pi. Because
of the constant doubling dimension property, this list is of size λO(1).

We further maintain a max-heap in which every center pi, i < k, maintains the
point p′i furthest away from pi in its cluster along with its current αp′

i
= dM(pi, p

′
i)

value.
At the kth iteration, the algorithm extracts the maximum value from the heap.

It sets pk to be the corresponding point. Denote by cpk
the closest point among

{p1, . . . , pk−1} to pk (i.e., the cluster’s center of pk at the end of the (k− 1)th round).
Next, the algorithm scans all the points currently served by the same cluster as cpk

, or
by clusters containing points from friends list of cpk

, and updates the α value of those
points. Furthermore, it moves all the relevant points to the newly formed cluster. In
the process, it also update the points p′i (of maximum distance from pi in its cluster)
for all pi in the friends list of cpk

. It also computes the friends list of pk (how exactly
this is done will be described in detail shortly).

We next bound the running time. To this end, a phase starting at the ith iteration
of the algorithm terminates at the first j > i such that rj−1 ≤ ri−1/2. A ball of
radius 4rj−1 around each point q ∈ P contains at most λ3 points of p1, . . . , pj , and
as such every point of P is being scanned at most λ3 times at each phase of the
algorithm. Thus, if the spread of the point set is Φ, the number of phases is O(log Φ),
and scanning takes λO(1)n log Φ time overall. Maintaining the max-heap costs an
additional λO(1)n log n time, since in each iteration only λO(1) values in the head are
changed.

The only remaining hurdle is the computation of the friends list of a newly formed
center pk. This can be done by maintaining, for every point pl, l ∈ {1, . . . , n}, the
serving center pl′ two phases ago (at the end of that phase). The friends list of pk
is constructed by scanning the friends list of pk′ and picking those points that are at
distance at most 4rk from pk. This costs λO(1) time for pk and O(λO(1)n) time overall.
To see that this search suffices, note that the set {pi|i < k, dM(pi, pk) ≤ 4rk} is
scanned. Indeed, fix pi0 , having i0 < k, and dM(pi0 , pk) ≤ 4rk. Let pk′ be the center of
pk two phases ago. From the definition, 2rk ≤ rk′ ≤ 4rk, and thus dM(pk, pk′) ≤ 4rk.
The current (at the end of the (k − 1)th iteration) friends list of pk′ contains all the
current centers at a distance of at most min{8rk, 4rk′} = 8rk from pk′ . Furthermore,

dM(pi0 , pk′) ≤ dM(pi0 , pk) + dM(pk, pk′) ≤ 8rk.

We are therefore guaranteed that pi0 will be scanned.
Of course, as the algorithm progresses it needs to remove nonrelevant elements

from the friends list as the current clustering radius ri shrinks. However, this can be
done in a lazy fashion whenever the algorithm scans such a list.

Theorem 3.2. Let P be an n-point metric space with doubling constant λ and
spread Φ. Then the greedy permutation for P can be computed in O(λO(1)n log(Φn))
time and O(λO(1)n) space.

3.2. Low quality approximation by HST. Here we present an auxiliary tool
that will be used in section 3.3 to extend the net-tree construction of section 3.1 to
metric spaces with large spread.

We will use the following special type of metric spaces.
Definition 3.3. A hierarchically well-separated tree (HST) is a metric space

defined on the leaves of a rooted tree T . Associated with each vertex u ∈ T is a label
Δu ≥ 0 such that Δu = 0 if and only if u is a leaf of T . The labels are such that if a
vertex u is a child of a vertex v, then Δu ≤ Δv. The distance between two leaves x
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and y of T is defined as Δlca(x,y), where lca(x, y) is the least common ancestor of x
and y in T .

The class of HSTs coincides with the class of finite ultrametrics. For convenience,
we will assume that the underlying tree is binary (any HST can be converted into
a binary HST in linear time, while retaining the underlying metric). We will also
associate with every vertex u ∈ T an arbitrary leaf repu of the subtree rooted at u.
We also require that repu ∈ {repv| v is a child of u}.

A metric N is called a t-approximation of the metricM if N andM are defined
on the same set of points and ∀u, v ∈M, dM(u, v) ≤ dN (u, v) ≤ t · dM(u, v).

It is not hard to see that any n-point metric is (n − 1)-approximated by some
HST (see, e.g., Lemma 3.6). Here we show the following.

Lemma 3.4. For an n-point metric space M with doubling constant λ, it is pos-
sible to construct in O(λ6n log n) expected time an HST which is a 3n2 approximation
of M.

This low quality HST will help us later in eliminating the dependence on the
spread of the construction time of the net-tree and in distance queries.

We begin proving Lemma 3.4 by constructing a sparse graph that approximates
the original metric (this is sometimes called a spanner).

Lemma 3.5. Given an n-point metric space P with doubling constant λ, one can
compute a weighted graph G that 3n-approximates P in O(λ6n log n) expected time.
The graph G contains O(λ3n log n) edges.

Proof. The construction is recursive. If n = O(1), we just add all the pairs from
P as edges. Otherwise, we compute, using Lemma 2.4, a ball b(c, r) containing at
least m = n/(2λ3) points of P with the additional property that b(c, 2r) contains at
most n/2 points of P .

As such, there exists two numbers r′, h such that r ≤ r′ ≤ 2r, h ≥ r/n, and
P ∩ b(c, r′) = P ∩ b(c, r′ + h) (namely, the ring with outer radius r′ + h and inner
radius r′ around c is empty of points of P ). Computing r′ and h is done by comput-
ing the distance of each point from c and partitioning the distance range [r, 2r] into
2n segments of equal length. In each segment, we register the point with minimum
and maximum distance from c in this range. This can be easily done in O(n) time
using the floor function. Next, scan those buckets from left to right. Clearly, the
maximum length gap is realized by a maximum of one bucket together with a con-
secutive nonempty minimum of another bucket. Thus, the maximum length interval
can be computed in linear time, and it yields r and h.

Let Pin = b(c, r′) ∩ P and let Pout = P \ Pin. Observe that dM(Pin, Pout) =
minp∈Pin,q∈Pout dM(p, q) ≥ h ≥ r/n. Next, we build recursively a spanner for Pin and
a spanner for Pout. We then add the edges between c and all the points of P to the
spanner. Let G denote the resulting graph.

Since there are n/2 ≥ |Pin| ≥ n/2λ3 points of P , the running time of the algorithm
is T (|P |) = T (|Pin|) + T (|Pout|) + O

(
λ3n

)
= O(λ6n log n). Similarly, the number of

edges in G is O(λ3n log n).
Remaining is the task of proving that G provides a 3n-approximation to the dis-

tances of P . Let Gin and Gout be the graphs computed for Pin and Pout, respectively.
Consider any two points u, v ∈ P . If u and v are both in Pin or both in Pout, then
the claim follows by induction. Thus, consider the case that u ∈ Pin and v ∈ Pout.
Observe that dM(u, v) ≥ h ≥ r/n. On the other hand,

r/n ≤ dM(u, v) ≤ dG(u, v) ≤ dM(c, u) + dM(c, v)

≤ r + r + dM(u, v) ≤ (2n + 1)dM(u, v),
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since dM(c, v) ≤ dM(c, u) + dM(u, v) ≤ r + dM(u, v). Clearly, this implies that
dG(u, v) ≤ 3ndM(u, v), as claimed.

We will later obtain in Theorem 5.3 a near linear time construction of spanners
that (1 + ε)-approximate the original metric and have a linear number of edges.

Lemma 3.6. Given a weighted connected graph G on n vertices and m edges, it
is possible to construct in O(n log n + m) time an HST H that (n− 1)-approximates
the shortest path metric on G.

Proof. Compute the minimum spanning tree of G in O(n log n+m) time, and let
T denote this tree.

Sort the edges of T in nondecreasing order, and add them to the graph one by one.
The HST is built from the bottom up. At each point we have a collection of HSTs,
each of which corresponds to a connected component of the current graph. When
an added edge merges two connected components, we merge the two corresponding
HSTs into one by adding a new common root for the two HSTs and labeling this root
with the edge’s weight times n − 1. This algorithm is only a slight variation on the
Kruskal algorithm and has the same running time.

We next estimate the approximation factor. Let x and y be two vertices of G.
Denote by e the first edge that was added in the process above that made x and y
to be in the same connected component C. Note that at that point in time, e is
the heaviest edge in C, so w(e) ≤ dG(x, y) ≤ (|C| − 1)w(e) ≤ (n − 1)w(e). Since
dH(x, y) = (n− 1)w(e), we are done.

The proof of Lemma 3.4 now follows by applying Lemma 3.6 on the spanner from
Lemma 3.5.

Note that by applying Lemma 3.6 on the spanner from Theorem 5.3, one can
obtain a near linear time construction of an HST which O(n)-approximates that
original metric.

3.3. Extending greedy clustering to metrics of large spread. The main
idea in removing the dependence of the running time on the spread is to apply the
algorithm of section 3.1 to a dynamic set of points that will correspond to a level of
the HST. In more detail, the set of points will correspond to the representatives repv,
where Δv ≤ rcurr/n

4 ≤ Δp(v), where rcurr is the current greedy radius, Δv is the HST
label of v (i.e., the diameter of the subtree rooted at v), and p(v) is the parent of v
in the HST. The algorithm now needs to handle another type of event since, as the
algorithm proceeds, the greedy radius decreases to a level in which Δv ≥ rcurr/n

4. In
this case, v should be replaced with its two children u,w. Specifically, if v belongs
to a cluster of a point pi, we remove repv from the list of points associated with the
cluster of pi and add repu and repw to this list (the case where pi is equal to repv is
handled in a similar fashion). Next, we need to compute for the new point its nearest
center; namely, compute αrepu

and αrepw
(in fact, since repv = repu or repv = repw,

we need to compute only one of those values). To this end, we scan the friends list
of pi and compute αrepu

and αrepw
from it. This takes λO(1) time. We also need to

insert {repu, repw} \ {repv} into the max-heap.
Thus, the algorithm has two heaps. One is a max-heap maintaining the points

according to their distances to the nearest center; that is, for every point p ∈ P we
maintain the values of αp in a max-heap. The second max-heap maintains the nodes
of the HST sorted by their diameters Δ (multiplied by a factor of n4 for normaliza-
tion). At every point, the algorithm extracts the larger of two heaps and handles it
accordingly. One important technicality is that the algorithm is no longer generating
the same permutation as GreedyCluster, since we are not always picking the furthest
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point to add as the next center. Rather, we add the furthest active point. We refer
to the new algorithm as NetPermutAlg.

Lemma 3.7. Let π = 〈p1, . . . , pn〉 be the permutation of P generated by NetPermut-

Alg. Furthermore, let rk = αk+1
pk+1

= mink
i=1 dM(q, pi). Then, P ⊆ ∪ki=1b(pi, (1 +

n−2)rk) and for any u, v ∈ {p1, . . . , pk} we have dM(u, v) ≥ (1− n−2)rk.
Proof. Clearly, the balls of radius rk around p1, . . . , pk cover all the active points

when pk+1 was created. However, every active point might represent points which are
a distance of rk/n

2 from it. Thus, by expanding the radius by (1 + 1/n2), those balls
cover all the points.

Observe, that this implies that for any i < j we have (1 + n−2)ri ≥ rj . In
particular, let α ≤ k be the minimum number such that u, v ∈ {p1, . . . , pα}. Clearly,
dM(u, v) ≥ rα−1 ≥ rk/(1 + n−2) ≥ (1− n−2)rk.

Lemma 3.8. The expected running time of NetPermutAlg is O(λO(1)n log n).
Proof. Constructing the HST takes λO(1)n log n expected time, using Lemma 3.4.

As in the bounded spread case, we conceptually divide the execution of the algorithm
into phases. In the ith phase, the algorithm handles new clusters with radii in the
ranges diam(P )/2i−1 and diam(P )/2i. Consider a point p ∈ P : It is inserted into the
point-set when a node v in the HST is “split” at phase i (since p is the representative
point for one of the children of v). Let p and q be the two representative points of
the two children of v. We charge v for any work done with p and q for the next
L = 10 log n phases. Consider any work done on p before it undergoes another split
event. If p is at most L phases away from the split event of v, the vertex v pays for it.

Otherwise, consider p at > L phases away from its latest split event that happened
at v. Let rcurr be the current clustering radius, and observe that p represents a set of
points which has a diameter ≤ rcurr/n

2 and that rcurr ≤ Δv/n
10. In particular, this

implies that P ∩ b(p, rcurr · n2) ⊂ P ∩ b(p,Δv/n
4) ⊂ P ∩ b(p, rcurr/n

2). Namely, all
the points that p represents are very far from the rest of the points of P , in terms of
rcurr. In particular, it cannot be that the cluster that p represents is in any updated
friends list in the current stage. (It can be in a friends list that was not updated
lately, since we use lazy evaluation. However, when this friends list is used, it will
be updated and p will disappear from it. Note that the work required to update the
friends lists is λO(1)n overall; see section 3.1.) Thus, p does not require any work from
the algorithm until it undergoes another split event.

Thus, every node in the HST is charged with λO(1) log n work. It follows that the
overall running time of the algorithm is λO(1)n log n.

3.4. Constructing the net-tree. In this section we conclude the description
of the algorithm for constructing the net-tree and prove Theorem 3.1.

The construction of the net-tree T is done by adding the points of P according
to the permutation of NetPermutAlg. As mentioned before, the construction algo-
rithm and the resulting tree are similar to the data-structure of Clarkson [15] (our
analysis and the guaranteed performance are new, however). The tree constructed for
p1, . . . , pk is denoted by T (k) and T = T (n). We obtain T (k) from T (k−1) as follows.

During the construction, we maintain for every vertex u ∈ T (k) a set of “close
by” vertices Rel(u). Namely, the set Rel(u) would be in fact the set

Rel(u) =
{
v ∈ T (k)

∣∣∣ �(v) ≤ �(u) < �(p(v)), and dM(repu, repv) ≤ 13 · τ �(u)
}
,

where τ is the packing constant associated with the net-tree; see Definition 2.1. (Since
we compute Rel(u) indirectly, the fact that Rel(u) = Rel(u) requires a formal proof;
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see Lemma 3.9(v).) The set Rel(u) is of size λO(1) throughout the algorithm’s execu-
tion.

We denote ri = min {rj | 1 ≤ j ≤ i}.
The algorithm. The kth point in the permutation, pk, will be added as a leaf to

the tree T (k−1) to form the tree T (k). As such, we fix �(pk) = −∞ and reppk
= pk.

Let l = �logτ rk−1�.
Let h be the largest index such that logτ rh−1 > l (i.e., ph is the last added

center in the previous phase). Let q ∈ {p1, . . . , ph} be the closest point to pk among
{p1, . . . , ph}; namely, q is the nearest neighbor to pk in all the centers present in the
previous phase. Identifying q with the unique leaf of T (k−1) whose representative is
q, let u = p(q). We obtain T (k) as follows:

(a) If �(u) > l, then we make a new vertex v and set �(v) = l and repv = q. We
then connect q and pk as children of v and make v a child of u.

(b) Otherwise, connect pk as another child of u.
Finding q. Let cpk

be the closest point among {p1, . . . , pk−1} to pk (this infor-
mation is computed by NetPermutAlg; see section 3.1 for details). Denote û = p(cpk

).
We consider the following two cases:

(1) If �(û) > l, then q = û; see Lemma 3.9(i) for a proof.
(2) Otherwise, �(û) = l. In this case, q must be in the set {repw |w ∈ Rel(û)};

see Lemma 3.9(i) for a proof. Thus, we just pick q to be the nearest neighbor
to pk in {repw |w ∈ Rel(û)}.

Updating Rel(·). For each new vertex x added we do the following. Let
y = p(x). For each z ∈ Rel(y), and for each child z′ of z, we traverse part of the
tree rooted at z′ in the following way: When visiting a vertex u, we check whether u
should be added to Rel(x) and whether x should be added to Rel(u) according to the
Rel(·) definition, and update Rel(x) and Rel(u) accordingly. If x has been added to
Rel(u), then we continue by traversing the children of u. Otherwise, we skip them.

Note that this might require scanning a large fraction of the net-tree, as x might
appear in a large number of Rel() lists.

Lemma 3.9. For any k ∈ [1, . . . , n], the tree T (k) has the following properties:
(i) The part of the algorithm that finds q indeed finds it.
(ii) If v is a child of u, then dM(repu, repv) ≤ 2 · τ �(u).
(iii) For every t ∈ �, every pair of points in NC(t) is at least τ t−1 far apart.
(iv) T (k) is a net-tree of {p1, . . . , pk}.
(v) For any u ∈ T , Rel(u) = Rel(u).
Since the proof of Lemma 3.9 is tedious, we defer it to the appendix. We next

analyze the running time.
Lemma 3.10. Given the (approximate) greedy permutation 〈p1, . . . , pn〉 with its

“current” cluster’s center 〈cp2
, . . . , cpn

〉, the algorithm for constructing the net-tree
runs in λO(1)n time.

Proof. By the definition of Rel(·), the size of each such list is at most λO(1).
Assuming the tree is implemented reasonably (with pointers from a vertex to its
children and parent), constructing the tree clearly takes O(λO(1)) time per new point.

Next we estimate the time to construct Rel(·). For each vertex x added, we
first charge λO(1) visits for visiting the children of Rel(p(x)). All the other visits are
charged to the parent of the visited vertex. Each vertex has at most λO(1) children,
and its children are visited only if a new entry was inserted into its Rel(). As the
total size of the Rel(·) lists is at most λO(1)n, we have just bounded the number of
visits of vertices during the update process of Rel(·) to λO(1)n. Thus the time spent
is λO(1)n.
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3.5. Augmenting the net-tree. In order to efficiently search on the net-tree,
we will need the following three auxiliary data structures.

The first one, given a vertex v of level l, allows us to find all the vertices of “roughly
the same level” that are nearby, i.e., those with a representative at a distance of at
most O(τ l) from the representative of v. More accurately, we need fast access to
Rel(v), as defined in section 3.4. We have seen in that section how to construct it in
near linear time such that the whole list can be accessed in O(λ4) time.

The second data-structure enables the following seek operation: Given a leaf x
and a level l, find the ancestor y of x such that �(p(y)) > l ≥ �(y). Bender and
Farach-Colton [5] present a data-structure D that can be constructed in linear time
over a tree T such that, given a node x and depth d, it outputs the ancestor of x
at depth d at x. This takes constant time per query. Thus, performing the seek
operation just requires performing a binary search using D over the net-tree, and this
takes O(log n) time.

Our third data-structure supports a restricted version of the above seek operation:
Given a leaf x, an ancestor z of x, and a level l: If l /∈ [�(z) − c log n, �(z)], return
“don’t know.” Otherwise, return an ancestor y of x satisfying �(p(y)) > l ≥ �(y) (here
c > 0 is an absolute constant). The data-structure has O(n) space and O(n log n)
preprocessing time, and the queries can be answered in constant time.

As a first step, observe that if for every internal vertex z and a descendant leaf x
we add vertices to the tree so as to fill all levels between �(z) and �(x)− c log n on the
path between z and x, then queries to the l level ancestor, l ∈ [�(x)−c log n, �(z)], can
be answered by using the data-structure D as above to find an ancestor of x at depth
d(z)− (�(z)− l). This construction, however, may blow up the number of vertices in
the net-tree (and hence the space) by a log n factor.

To obtain linear space we do the following: In the preprocessing step we enumerate
all the possible patterns of existence/nonexistence of vertices in 0.5 log2 n consecutive
levels. For each given pattern and each given level in the pattern, we write the number
of actual vertices above this level. Preparing this enumeration takes only O(

√
n log n)

time. Now, for each vertex u of the net-tree, we hold 2c pointers to such patterns
that together map the vertices in the c log n level below v on the path to u, where v
is an ancestor of u at depth d(u)− c log n, if such v exists (note that v is c log n edges
above u in the net-tree, but u holds the pattern of only the first c log n levels below
v). This data-structure can be clearly computed in O(n log n) time using top-down
dynamic programming on the net-tree.

Given a query (with x, z, and l as above), we do as follows: Let u be an ancestor
of x at depth max

{
d(z) + c log n, d(x)

}
. Vertex u can be accessed in O(1) time using

the data-structure D. Using the patterns pointed out by u, we can find the depth of
the relevant vertex whose level is just below l in O(1) time, and now using D again
we can access this vertex in constant time.

4. Approximate nearest neighbor search. In the following, ANN stands
for approximate nearest neighbor. In this section, we present an ANN scheme that
preprocesses a given set of points P in near linear time and produces a linear space
data-structure which answers queries of the form “given point q, find p ∈ P such that
d(q, p) ≤ (1 + ε)d(q, P )” in logarithmic time. See section 1 for more details.

In section 4.1, we present a variant of Krauthgamer and Lee’s [34] net navigation
algorithm for the net-tree. This algorithm allows us to boost an A-ANN solution
to a (1 + ε)-ANN solution in O(log n + logA + εO(dim)) query time. In section 4.2
we present a fast construction of a variant of the ring separator tree [29, 33] which
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supports fast 2n-ANN queries. We conclude in section 4.3 with the general scheme
which is a combination of the previous two.

4.1. The low spread case.
Lemma 4.1. We are given a net-tree T of P , a query point q ∈M, and a vertex

u ∈ T at level l = �(u) such that dM(repu, q) ≤ 5 · τ l or p̂ ∈ Pu, where p̂ is the nearest
neighbor to q in P . Then there is an algorithm that traverses T form u downward
such that for any t ∈ N, after t + 4 steps, the algorithm reaches a vertex s for which
reps is a (1+τ l−f−t)-ANN, where f = logτ dM(p̂, q). The running time of this search
is λO(1) min {t, l − f}+ λO(max{t−(l−f),0}).

Proof. The query algorithm works as follows. It constructs sets Ai of vertices in
T with the following properties:

1. For each v ∈ Ai, �(p(v)) > i ≥ �(v).
2. p̂ ∈ ∪v∈AiPv ⊂ b(q, dM(q, p̂) + (13 + 2τ

τ−1 ) · τ i).
The algorithm starts by setting Al = Rel(u). If p̂ ∈ Pu, then Al clearly satisfies the

two properties above. If dM(repu, q) ≤ 5·τ l, then dM(repu, p̂) ≤ 10τ l. Suppose for the
sake of contradiction that p̂ /∈ ∪v∈Al

Pv; then ∃v′ such that �(v′) ≤ l, dM(repu, repv′) >
13τ l, and p̂ ∈ Pv′ . But then from the covering property, dM(repv′ , p̂) ≤ 2τ

τ−1τ
l, which

means that dM(repu, p̂) > (13− 2τ
τ−1 )τ l > 10τ l, a contradiction.

The set Ai−1 is constructed from Ai as follows. Let v ∈ Ai be the closest vertex
in Ai to q, i.e., dM(repv, q) = minw∈Ai dM(repw, q). Let B be the set obtained from
Ai by replacing every vertex of level i with its children. The set Ai−1 is obtained from
B by throwing out any vertex w for which dM(q, repw) > dM(q, repv)+ 2τ

τ−1 · τ i−1. It
is easily checked that Ai−1 has the required properties.

The running time is clearly dominated by λO(1) times the sum of the Ai’s sizes.
For i > f , dM(q, repv) is at most 2τ

τ−2 · τ i, and therefore |Ai| ≤ λO(1). For i ≤ f , we

have only a weak bound of |Ai| ≤ λO(f−i). Thus the running time of the algorithm
for t steps follows. Notice that any point in Al−i is (1 + τ l−f−i+4)-ANN.

For a set P with spread Φ, by applying the algorithm of Lemma 4.1 with u the
root of T , and t = �logτ (Φ/ε)− f�, Lemma 4.1 gives a (1 + ε)-approximate nearest
neighbor scheme with O(n log n) expected construction time and O(log Φ + ε−O(dim))
query time. (Note that the algorithm does not need to know t (and thus f) in
advance—it can estimate the current approximation by comparing dM(q, repv) to τ i.)
This gives an alternative to the data-structure of Krauthgamer and Lee [34], with a
slightly faster construction time. Their construction time is O(n log Φ log log Φ) if
one uses the insertion operation for their data-structure (note that in the constant
doubling dimension setting, logn = O(log Φ)). In fact, in this case, the Rel() data-
structure is not needed since Rel(root) = {root}. Therefore the storage for this ANN
scheme is O(n), with no dependency on the dimension. A similar construction was
obtained independently in [8]. However, its construction time is O(n2).

4.2. Low quality ring separator tree.
Lemma 4.2. One can construct a data-structure which supports 2n-ANN queries

in 2O(dim) log n time. The construction time is 2O(dim)n log n, and the data-structure
uses 2O(dim)n space.

Proof. The data structure is a binary search tree S, in which each vertex of the tree
v is associated with a point pv ∈ P and radius rv. We are guaranteed that n/2λ3 ≤
|b(pv, rv)| ≤ (1−1/2λ3)n and that(b(pv, (1 + 1/2n)rv) \ b(pv, (1− 1/2n)rv))∩P = ∅.
The left subtree is recursively constructed on the set P ∩ b(pv, rv), and the right
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subtree is recursively constructed on P \ b(pv, rv). The depth of S is clearly at most
O(λ3 log n).

The construction of S is similar to the construction of the low quality spanner
(section 3.2) and uses Lemma 2.4 as follows. Apply Lemma 2.4 to find p ∈ P and
r such that |b(p, r)| ≥ n/(2λ3), whereas |b(p, 2r)| ≤ n/2. From the pigeonhole
principle, there exists r′ ∈ [(1 + 1/2n)r, 2r − r/2n) for which b(p, (1 + 1/2n)r′) \
b(p, (1− 1/2n)r′) = ∅. We now make a root v for the ring separator tree, set pv = p
and rv = r′, and recurse on b(pv, rv) as the left subtree and P \b(pv, rv) as the right
subtree. The construction time T (n) obeys the recursive formula T (n) = T (n1) +
T (n2) + O(n), where n1 + n2 = n, n/2λ3 ≤ n1 ≤ n/2.

Once we have this data-structure, 2n-ANN can be found in O(λ3 log n) time as
follows. Let the root of the ring separator tree be u. Given a query point q, check its
distance to pu. If dM(q, pu) ≤ ru, then recurse on the left subtree. Otherwise, recurse
on the right subtree. At the end, return the nearest point to q among pv, where v is
on the path traversed by the algorithm.

The running time of this procedure is clearly dominated by the height of the tree
which is O(λ3 log n).

To see that this is indeed 2n-ANN, let a be the vertical path in the tree traversed
by the algorithm, and let b be the vertical path in the tree connecting the root to the
nearest neighbor of q in P . Let v be the lowest common vertex of a and b. Suppose
that a continued on the left subtree of v while b continued on the right subtree. In this
case the distance from q to the nearest neighbor is at least rv/2n, while dM(pv, q) ≤ rv.
Thus pv is 2n-ANN.

If a continued on the right subtree of v while b continued on the left subtree of
v, then the distance from the nearest neighbor is at least rv/2n + (dM(pv, q) − rv),
while pv is at distance dM(pv, q). The ratio between these two quantities is clearly at
most 2n.

Remark 1. As is pointed out in [29, 33], it is possible to duplicate points in the
ring for the two subtrees. Hence we can actually partition the b(p, 2r) \ b(p, r) into
t ≤ n subrings and choose to duplicate a “light” ring. When t = 1, we obtain the

ring separator tree from [33] that supports O(1)-ANN queries, but requires n2O(dim)

storage. For general t ≤ n we obtain a data-structure that supports O(t)-ANN queries,

and that by choosing the right ring to duplicate, consumes only n(3 log 2λ)1/t storage.
To see this, we set β = (3 log 2λ)1/t and prove by induction on n that it is possible
to find a ring such that the number of leaves in the tree is at most nβ . Denote
ηi = |b(p, (1 + i/t)r)|/n. Note that (2λ)−3 ≤ η0 ≤ η1 ≤ · · · ηt ≤ n/2, and therefore

there exists i ≤ t for which ηi−1 ≥ ηβi ; otherwise (2λ)−3 < ηβ
t

0 ≤ (1/2)β
t

which
is a contradiction. Thus by duplicating the ith ring, and by applying the inductive
hypothesis on the number of leaves in the subtrees, the resulting tree will have at
most (ηin)β + ((1− ηi−1)n)β ≤ (ηi−1 + (1− ηi−1))n

β leaves.
Thus, setting t = O(log log λ · log n), we obtain a linear space ring separator tree

that supports O(t)-ANN queries in O(log n) time.

4.3. ANN algorithm for arbitrary spread. The algorithm for arbitrary
spread is now pretty clear. During the preprocessing we construct the augmented
net-tree from section 3. We also construct the low quality ring separator tree. The
construction time is 2O(dim)n log n, and the space used is 2O(dim)n.

Given a query point q ∈ M, and the approximation parameter ε > 0, the query
algorithm consists of the following three steps:



CONSTRUCTION OF NETS IN LOW-DIMENSIONAL METRICS 1163

1. First, find 2n-ANN p1 using the low quality ring separator tree of section 4.2.
2. Next, find a vertex u in the net-tree that is an ancestor for p1 and that satisfies

�(p(u))− 1 ≥ �logτ (16 · dM(p1, q))� ≥ �(u).

Hence

dM(repu, q) ≤ dM(repu, p1) + dM(p1, q) ≤ 2.5 · τ �(u) + 1
16τ

�(p(u))−1.

3. We now split the analysis into two cases as follows:
(a) If 2.5 · τ �(u) ≥ 1

16τ
�(p(u))−1, then clearly dM(repu, q) ≤ 5τ �(u), and thus

u satisfies the conditions of Lemma 4.1.
(b) If, on the other hand, 2.5·τ �(u) < 1

16τ
�(p(u))−1, then the packing property

of the net-tree implies that

P ∩ b(q, dM(q, repu)) ⊂ P ∩ b(repu, 2dM(q, repu))

⊂ P ∩ b

(
repu,

1

4
· τ �(p(u))−1

)
⊂ Pu,

and therefore p̂ ∈ Pu. Thus, in this case u also satisfies the conditions
of Lemma 4.1.

4. Set l = �(u). Using the notation of Lemma 4.1, the fact that p1 is a 2n-
ANN implies that f ≥ l− (1 + logn), thus by setting the number of steps to
t = �log(n/ε)�, and applying the algorithm of Lemma 4.1, we obtain (1 + ε)-
ANN.

The running time of the query is

λO(1) log n + O(log n) + λO(1) log n + ε−O(dim) ≤ λO(1) log n + ε−O(dim).

We summarize as follows.
Theorem 4.3. Given a set P of n points of bounded doubling dimension dim

in a metric space M, one can construct a data-structure for answering ANN queries
(where the quality parameter ε is provided together with the query). The query time
is 2O(dim) log n + ε−O(dim), the expected preprocessing time is 2O(dim)n log n, and the
space used is 2O(dim)n.

Theorem 4.3 compares quite favorably with the result of Krauthgamer and Lee
[33], which solves the same problem with the same (tight) query time but uses
O(2O(dim)n2 polylog(n)) space.

5. Fast construction of WSPD and spanners. Let P be an n-point subset
of a metric space M with doubling dimension dim and a parameter 1/4 > ε > 0.
Denote by A⊗B the set {{x, y} |x ∈ A, y ∈ B }. A WSPD with parameter ε−1 of P
is a set of pairs {{A1, B1} , . . . , {As, Bs}} such that

1. Ai, Bi ⊂ P for every i.
2. Ai ∩Bi = ∅ for every i.
3. ∪si=1Ai ⊗Bi = P ⊗ P .
4. dM(Ai, Bi) ≥ ε−1 ·max {diam(Ai),diam(Bi)}.

The notion of WSPD was defined by Callahan and Kosaraju [11] for Euclidean
spaces. Talwar [44] have shown that this notion transfers to constant doubling metrics.
In particular, he proves that any n-point metric with doubling dimension dim admits
WSPD in which the number of pairs is nε−O(dim) log Φ. We improve this result.
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Lemma 5.1. For 1 ≥ ε > 0, one can construct an ε−1-WSPD of size nε−O(dim),
and the expected construction time is 2O(dim)n log n + nε−O(dim).

Furthermore, the pairs of the WSPD correspond to (Pu, Pv), where u, v are ver-
tices of a net-tree of P , and for any pair (Pu, Pv) in WSPD, diam(Pu),diam(Pv) ≤
εdP (repu, repv).

Proof. We compute the net-tree T using Theorem 3.1. For concreteness of the
WSPD, assume also that some weak linear order � is defined on the vertices of T .
The WSPD is constructed by calling genWSPD(u0, u0), where u0 is the root of the
net-tree T , and genWSPD(u, v) is defined recursively as follows:

genWSPD(u, v)
Assume �(u) > �(v) or (�(u) = �(v) and u � v)

(otherwise exchange u↔ v).
If 8 2τ

τ−1 · τ �(u) ≤ ε · dM(repu, repv), then

return {{u, v}}
else

Denote by u1, . . . , ur the children of u
return

⋃r
i=1 genWSPD(ui, v).

For any node u ∈ T , we have diam(Pu) ≤ 2 2τ
τ−1 · τ �(u) (see Definition 2.1). In

particular, for every output pair {u, v}, it holds that

max{diam(Pu),diam(Pv)} ≤ 2
2τ

τ − 1
·max

{
τ �(u), τ �(v)

}
≤ ε

4
dP (repu, repv)

≤ ε

4
(dP (Pu, Pv) + diam(Pu) + diam(Pv)),

and so max{diam(Pu),diam(Pv)} ≤ ε
4(1−ε/2)dP (Pu, Pv) ≤ εdP (Pu, Pv), since ε ≤ 1.

Similarly, for any x ∈ Pu and y ∈ Pv, we have

dP (repu, repv) ≤ dP (x, y) + diam(Pu) + diam(Pv) ≤ (1 + ε)dP (x, y).

One can verify that every pair of points is covered by a pair of subsets {Pu, Pv}
output by the genWSPD algorithm.

We are left to argue about the size of the output (the running time is clearly
linear in the output size). Let {u, v} be an output pair and assume that the call to
genWSPD(u, v) was issued by genWSPD(u,p(v)). We charge this call to p(v), and we
will prove that each vertex is charged at most ε−O(dim) times.

Fix v′ ∈ T . It is charged by pairs of the form {u, v} in which p(v) = v′, and
which were issued inside genWSPD(u, v′). This implies that �(p(u)) ≥ �(v′) ≥ �(u).

Since the pair (u, v′) was not generated by genWSPD, we conclude that dP (repv′ ,
repu) ≤ (8 2τ

τ−1 · τ �(v
′))/ε. The set

U =

{
w | �(p(w)) ≥ �(v′) ≥ �(w) and dP (repv′ , repw) ≤ 8

2τ

ε(τ − 1)
· τ �(v′)

}

contains u, and U is a subset of NC(�(v′)). By Proposition 2.2, for every u1, u2 ∈ U ,
if u1 �= u2, then dP (Pu1

, Pu2
) ≥ τ �(v

′)−1/4. By the doubling property, we have
|U | ≤ ε−O(dim). We therefore infer that v′ can be charged only by pairs in U × Cv′ ,
where Cv′ is the set of children of v′. We conclude that v′ might be charged at most
|U | · |Cv′ | ≤ (2/ε)O(dim) = ε−O(dim) times. Thus, the total number of pairs generated
by the algorithm is nε−O(dim).
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5.1. Spanners.
Definition 5.2. A t-spanner of a finite metric space P is a weighted graph G

whose vertices are the points of P , and for any x, y ∈ P ,

dP (x, y) ≤ dG(x, y) ≤ t · dP (x, y),

where dG is the metric of the shortest path on G.
Theorem 5.3. Given an n-point metric P with doubling dimension dim and

parameter 1 ≥ ε > 0, one can compute a (1 + ε)-spanner of P with nε−O(dim) edges,
in 2O(dim)n log n + nε−O(dim) expected time.

Proof. Let c ≥ 16 be an arbitrary constant, and set δ = ε/c. Compute a δ−1

WSPD decomposition using the algorithm of the previous section. For every pair
{u, v} ∈WSPD, add an edge between {repu, repv} with weight dP (repu, repv). Let G
be the resulting graph; clearly, the resulting shortest path metric dG dominates the
metric dP .

The upper bound on the stretch is proved by induction on the length of pairs
in the WSPD. Fix a pair x, y ∈ P ; by our induction hypothesis, we have that
for every pair z, w ∈ P such that dP (z, w) < dP (x, y), it holds that dG(z, w) ≤
(1 + cδ)dP (z, w).

The pair x, y must appear in some pair {u, v} ∈ WSPD, where x ∈ Pu and
y ∈ Pv. Thus dP (repu, repv) ≤ (1 + 2δ)dP (x, y) and dP (x, repu), dM(y, repv) ≤
δdM(repu, repv) by Lemma 5.1. By the inductive hypothesis

dG(x, y) ≤ dG(x, repu) + dG(repu, repv) + dG(repv, y)

≤ (1 + cδ)dP (x, repu) + dP (repu, repv) + (1 + cδ)dP (repv, y)

≤ 2(1 + cδ) · δ · dP (repu, repv) + dP (repu, repv)

≤ (1 + 2δ + 2cδ2)(1 + 2δ)dP (x, y)

≤ (1 + ε)dP (x, y),

since δc ≤ ε ≤ 1 and 16δ ≤ 1 and c ≥ 11.

6. Compact representation scheme. A CRS of a finite metric space P is a
“compact” data-structure that can answer distance queries for pairs of points. We
measure the performance of a CRS using four parameters (P,S,Q, κ ), where P is the
preprocessing time of the distance matrix, S is the space used by the CRS (in terms
of words), Q is the query time, and κ is the approximation factor.

The distance matrix by itself is a (P = O(1), S = O(n2), Q = O(1), κ = 1)-
CRS. The ε−1-WSPD as well as the (1 + ε)-spanner are representations of (1 +
O(ε))-approximation of the metric that consumes only ε−O(dim)n space. However,
naively it takes Ω(n) time to answer approximate distance queries in these data-
structures.

In this section, we obtain the following theorem.
Theorem 6.1. For any n point metric with doubling dimension dim, the follow-

ing exist:
(a) A (P = 2O(dim)n log2 n + ε−O(dim)n, S = ε−O(dim)n, Q = 2O(dim), κ = 1 + ε)-

CRS.
(b) A (P = 2O(dim) ·poly(n)+ε−O(dim)n, S = ε−O(dim)n, Q = O(dim), κ = 1+ε)-

CRS.
For general n-point metrics, Thorup and Zwick [45] obtained a (kn1+1/k, kn1+1/k,

O(k), 2k−1)-CRS, where k ∈ N is a prescribed parameter. The trade-off between the
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approximation and the space is essentially tight for general metrics. Closer in spirit to
our setting, Gudmunsson et al. [21, 22] considered metrics that are t-approximated by
Euclidean distances in �d, where both d and t are (possibly large) constants. They
showed that such metrics have (O(n log n), O(n), O(1), 1 + ε)-CRS (the O notation
here hides constants that depend on ε, d, and t). Our scheme strictly extends3 their
result since metrics that are t-approximated by a set of points in the d-dimensional
Euclidean space have doubling dimension at most O(d log(2t)). We further discuss
previous work on a special type of CRS, called distance labeling, in section 6.3.

Our scheme is naturally composed of two parts. In section 6.1 we show that by
using the net-tree it is possible to convert an A-approximate CRS into a (1 + ε)-
approximate CRS in essentially O(logA) query time (and even O(log logA) query
time). We then show in section 6.2 how to obtain an O(1)-approximate CRS using
Assouad’s embedding. In section 6.3 we observe that Assouad’s embedding can be
used in distance labeling schema.

6.1. Approximation boosting lemma. Assume we are given a data-structure
A, which is a (P,S,Q, κ)-CRS of a set P ⊂ M, where κ ≤ 3n2. In this section, we
derive a CRS with improved approximation. Besides storing the data-structure of A,
we also need the following data-structures:

1. The net-tree T , augmented so that it supports the following operations:
(a) O(log n) time access for ancestors of a given level as defined in section 3.5.
(b) Constant time access for an ancestor at a given level l of a given vertex

x, when l + 6 log n is at least the level of a given ancestor z of x.
(c) A constant time access for the lca of two vertices in T [4].

2. An ε−1-WSPD W on the net-tree T , with support for fast membership que-
ries. For each pair we also store the distance between its representatives. By
using hashing membership, queries can be answered in constant time.

3. The (3n2)-approximation HST H of section 3.2. The HST H should be
augmented with the following features:
(a) A constant time access to lca queries, after a linear time preprocess-

ing [4].
(b) Each vertex u of H contains pointers to the following set of vertices in T :

Ku = {x ∈ T : dM(repx, repu) ≤ 4Δu and �(x) < log Δu ≤ �(p(x))} .

Note that |Ku| ≤ λO(1), and computing all these sets can be accom-
plished in λO(1)n log n time by finding the level �log Δu� ancestor z of
repu in T in O(log n) time, and then scanning Rel(z).

All these data-structures can be created in 2O(dim)n log n+ε−O(dim)n time and ε−O(dim)n
space.

Assuming Query-A(x, y) returns a value η, such that dM(x, y)/κ ≤ η ≤ dM(x, y),
the query algorithm is as follows:

3Caveat: They use a weaker model of computation.
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Query-B(x, y ∈ P )
z ← lcaH(x, y).
u′ ← ancestor of x in T among Kz, v

′ ← ancestor of y in T among Kz.
η ← Query-A(x, y).
u0 ← ancestor of x in level �log(εη)�, v0 ← ancestor of y in level �log(εη)�.
u← u0, v ← v0.
while {u, v} /∈W do

if �(p(u)) < �(p(v)) or ( �(p(u)) = �(p(v)) and p(v) � p(v) ) then

u← p(u)
else

v ← p(v).
return dM(repu, repv).

Implementation details. u′ is found by scanning all vertices in Kz (there are
only λO(1) such vertices) and checking which one of them is an ancestor of x in T
(ancestorship can be checked using the lca operation on T ). Note that an ancestor of
x must be contained in Kz, since dM(repz, x) ≤ Δz, and thus the ancestor of the level
immediately below log Δz must be in Kz. A similar thing happens with v′. Both η
and Δz are 3n2-approximations to dM(x, y), and therefore �(u′)− �(u0) ≤ 4 log n+3;
hence u0 can be accessed in constant time. The same goes for v0.

The following lemma is an immediate consequence of the way in which the WSPD
algorithm works.

Lemma 6.2. For a pair {s, t} ∈W (the ε−1-WSPD), and �(s) ≤ �(t), one of the
following conditions must be satisfied:

1. �(s) ≤ �(t) < �(p(s)) and 2τ
τ−1 ·τ �(p(s)) > ε·dM(repp(s), rept), and 2τ

τ−1 ·τ �(s) ≤
ε · dM(reps, rept).

2. �(s) < �(t) = �(p(s)), and p(s) � t, and 2τ
τ−1 · τ �(p(s)) > ε · dM(repp(s), rept).

2τ
τ−1 · τ �(s) ≤ ε · dM(reps, rept).

Proposition 6.3. The while loop finds a pair in W after O(log κ) steps.
Proof. Denote by {u0, v0} the pair with which the loop begins. It is straight-

forward to see that the loop climbs through all ancestor pairs {u, v} of {u0, v0} that
satisfy either (i) �(u) ≤ �(v) < �(p(u)), or (ii) �(u) < �(v) = �(p(u)) and p(u) � v.

Thus, if an ancestor pair exists in W , it will be found by the loop. As we argue
in Lemma 5.1, there exists an ancestor pair {ū, v̄} of {x, y} in W . Our choice {u0, v0}
ensures that u0 is a descendant of ū at most O(log κ) levels down T , and the same
goes for v0 and v̄.

Combining the above claims, implies the following.
Lemma 6.4. Let P be an n-point metric. Assume we are given a (P,S,Q, κ)-CRS

A of a set P , where κ ≤ 3n2. Then, one can obtain (P′,S′,Q′, 1 + ε)-CRS B of P ,
where P′ = P + 2O(dim)n log n + εO(dim)n, S′ = S + ε−O(dim)n, Q′ = Q + O(log κ).

Remark 2. The dependence of the query time on κ can be improved from O(log κ)
to O(log log κ) without sacrificing any other parameter. The idea is to replace the
“ladder climbing” in the algorithm above (the while loop) with a binary search on the
log κ levels. To do so we change the WSPD procedure to output all pairs it encounters.
This clearly does not change asymptotically the size of W . We do a binary search on
the log κ relevant levels to find the lowest level pairs which still appear in the WSPD,
and this gives the relevant pairs. We do not pursue this improvement rigorously, since
in the CRS that we develop in the next section, the query time Q dominates κ anyway,
and thus this would lead to no asymptotic savings in the query time.



1168 SARIEL HAR-PELED AND MANOR MENDEL

6.2. Assouad embedding. To quickly obtain a constant approximation of the
distance, we will use a theorem due to Assouad [2] (see also [27, 23]). The following
is a variant of the original statement, tailored for our needs, and its proof is provided
for the sake of completeness.

Theorem 6.5. Any metric space M with doubling dimension dim can be em-
bedded in �d∞, where d ≤ ε−O(dim), such that the metric (M,

√
dM) is distorted by a

factor of 1 + ε.
Proof. Fix r > 0. We begin by constructing an embedding φ(r) : M → �d1 ,

where d1 = ε−O(dim) with the following properties for every x, y ∈M:
1.

∥∥φ(r)(x)− φ(r)(y)
∥∥
∞ ≤ min {r, dM(x, y)}.

2. If dM(x, y) ∈ [ (1 + ε)r, 2r), then
∥∥φ(r)(x)− φ(r)(y)

∥∥
∞ ≥ (1− ε)r.

We take an εr-net N (r) of M and color it such that every pair x, y ∈ N (r)

for which dM(x, y) ≤ 4r is colored differently. Clearly, d1 = ε−O(dim) colors suf-

fice. Associate with every color i a coordinate, and for x ∈ M define φ
(r)
i (x) =

max{0, r − dM(x,Ci)}, where Ci ⊂ N (r) is the set of points of color i.

We next check that the two properties above are satisfied. As φ
(r)
i (x) ∈ [0, r], it

is clear that |φ(r)
i (x)− φ

(r)
i (y)| ≤ r for every color i. The 1-Lipschitz property easily

follows from the triangle inequality.
Next, assume that dM(x, y) ∈ [ (1 + ε)r, 2r]. Since dM(x,N (r)) ≤ εr, there exists

a color i for which dM(x,Ci) ≤ εr. This implies (by the triangle inequality) that

dM(y, Ci) ≥ r, and hence |φ(r)
i (x) − φ

(r)
i (y)| ≥ (1 − ε)r. Thus, the concatenation of

all these coordinates, φ(r) = ⊕iφ
(r)
i , satisfies the condition above.

Let d2 = 8ε−1 log(ε−1). The final embedding φ :M→ �d2d1 is done by combining
a weighted sum of φ(r) as follows. Let Ml(x) denote the matrix of size d2 × d1, such

that it is all zero, except the (l (mod d2))th row, which is Ml(x) = φ((1+ε)l)(x). Then

φ(x) =
∑
l∈Z

Ml(x)

(1 + ε)l/2
.

To see that the embedding is a 1 + O(ε)-approximation of
√
dM, fix a pair of

points x, y ∈ M, and let l0 ∈ Z such that dM(x, y) ∈ [(1 + ε)l0+1, (1 + ε)l0+2). Then
in the relevant coordinates the �∞ distance between x and y is

∥∥∥∥∥
∑
k∈Z

(ψl0+d2k(x)− ψl0+d2k(y))

∥∥∥∥∥
∞

≥ ‖ψl0(x)− ψl0(y)‖∞ −
∑
k<0

‖ψl0+d2k(x)− ψl0+d2k(y)‖∞

−
∑
k>0

‖ψl0+d2k(x)− ψl0+d2k(y)‖∞

≥ (1− ε)(1 + ε)l0/2 −
∑
k<0

(1 + ε)2+l0+d2k

(1 + ε)(l0+d2k)/2
−

∑
k>0

(1 + ε)2+l0

(1 + ε)(l0+d2k)/2

≥ (1− ε) · (1 + ε)l0/2 − ε · (1 + ε)l0/2 − ε · (1 + ε)l0/2 ≥ (1−O(ε))
√
dM(x, y).

On the other hand, for each j ∈ {0, . . . , d2 − 1},
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∑
k∈Z

(ψl0+j+d2k(x)− ψl0+j+d2k(y))

∥∥∥∥∥
∞

≤
∑
k≤0

‖ψl0+j+d2k(x)− ψl0+j+d2k(y)‖∞ +
∑
k>0

‖ψl0+j+d2k(x)− ψl0+j+d2k(y)‖∞

≤
∑
k≤0

(1 + ε)2+l0+j+d2k

(1 + ε)(l0+j+d2k)/2
+

∑
k>0

(1 + ε)2+l0

(1 + ε)(l0+j+d2k)/2
= (1 + O(ε))

√
dM(x, y).

Hence ‖φ(x)− φ(y)‖∞ is a 1 + O(ε)-approximation to
√

dM(x, y).
The relevance of Assouad’s embedding to compact representations is clear: Intu-

itively, φ(x) is short, and given φ(x) and φ(y), we can compute the square of the �∞
norm of the difference and obtain a (1+ε)-approximation to dM(x, y). Note, however,
that in order to be able to do this, we need to store Θ(log(Φ/ε)) bits for each real
number, which may require many words to be represented in our computation model
(see section 2). We solve this issue in Lemma 6.7 by reducing the problem for metrics
with arbitrary spread to a set of similar problems on metrics with only polynomial
spread, on which Assouad’s embedding can be applied.

Lemma 6.6. Given an n-point metric M with a polynomially bounded spread Φ
and doubling dimension dim, an Assouad embedding (with parameter ε) of M can be
computed in ε−O(dim)n log2 n time.

Proof. We follow closely the proof of Theorem 6.5. For each scale (1 + ε)l, we

find in O(n) time an ε(1 + ε)l-net N ((1+ε)l) from the net-tree. We define a graph on
this net: two points are connected by an edge if they are at a distance of at most
4(1 + ε)l. This can be done in ε−O(dim)n time using a variant of Rel() sets (basically,
we compute sets like Rel() that contain points at a distance of at most O(ε−1) times

the current scale, instead of 13 times the current scale). We then partition N ((1+ε)l)

to color-classes using the greedy algorithm. Implemented with hashing, it works in
expected O(n) steps. Next, for each color-class we construct a (1 + ε/2)-ANN data-
structure, and thus we can compute a (1 + ε/2)-approximation to dM(x,Ci). Note
that in the proof of Theorem 6.5, by enlarging the constants a little bit, a (1 + ε/2)-
approximation suffices. We repeat this construction for the log1+ε Φ levels in the
metric. The rest of the embedding calculation is straightforward.

The running time of the algorithm is therefore ε−O(dim)n log n log Φ.
Remark 3. We believe that for ε = 100, a similar embedding can be constructed

directly on the net-tree in 2O(dim)n time. The construction seems, however, much
more complicated than the one described in Lemma 6.6. We have therefore decided
that the slight gain in preprocessing time (overall, a factor of logn, since the running
time for constructing the net-tree is 2O(dim)n log n) is not worth the complications.

Lemma 6.7. If there exists a (P,S,Q, κ)-CRS A for every n-point metric with
doubling dimension dim and spread ≤ 3(n/ε)12, and if P is concave, then there exists
a (P (4n) + 2O(dim)n log n, S + O(n), Q + O(1), (1 + ε)κ)-CRS B for every n-point
metric with doubling dimension dim (without any assumption on the spread).

Proof. Denote by H the low quality HST of section 3.2 which is a 3n2-approxi-
mation to the given metric M.

Set a1 = 0 and a2 =
⌈
5(log(ε−1) + log2 n)

⌉
. Apply the following procedure on H

to obtain two HSTs, H1 and H2. Scan H from the top down. Retain the root, the
leaves, and all internal vertices u ∈ H with the following property: There exists b > 0
such that log2 b ≡ ai (mod

⌈
10(log(ε−1) + log2 n)

⌉
) and Δp(u) > b ≥ Δu. The HST

Hi is constructed naturally on the retained vertices: A retained vertex u is connected
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to a parent v in Hi if v is the lowest retained ancestor of u in H.
Next, for each nonleaf vertex u ∈ Hi, i ∈ {1, 2}, denote by C(u) the set of children

of u. We observe that R(C(u)) = {repu| u ∈ C(u)} has a spread of at most 3(n/ε)12.
To see this, note that diam(R(C(u))) ≤ Δu, and, on the other hand, let b the largest
real number such that b < Δu and log b ≡ ai (mod

⌈
10(log(ε−1) log2 n)

⌉
). Obviously

b ≥ Δu/(n/ε)
10 and for every x, y ∈ C(u), Δlca H(x,y) ≥ b, and therefore dM(x, y) ≥

b/(3n2). Thus, for each internal vertex u ∈ Hi we can construct a κ-approximate CRS
A to R(C(u)). The whole construction time is therefore 2O(dim)n log n+

∑
k P (nk) ≤

2O(dim)n log n + P (4n).
We equip H, H1, and H2 with a data-structure for handling queries for lca and

finding an ancestor at a given depth, both in constant time.
A distance query for the pair x, y ∈ M is processed as follows. Let ui =

lcaHi(x, y). let xi be a child of ui which is an ancestor of x in Hi, and similarly
yi. Note that ui, xi, yi can be computed in constant time using the lca and depth
ancestor queries.

Further observe that ∃i ∈ {1, 2} for which max{Δxi
,Δyi

} ≤ ΔlcaH(x,y)/(n/ε)
5,

and finding this i is an easy task.
We next query the CRS A of R(C(ui)) for an approximation of dM(repxi

, repyi
).

From the above we deduce that

max
{
dM(x, repxi

), dM(y, repyi
)
}
≤ 3ε5

n3
·
ΔlcaH(x,y)

3n2
≤ 3ε5

n3
dM(x, y),

and therefore we have obtained a κ(1 + ε)-approximation to dM(x, y).
Corollary 6.8. Every n-point metric with doubling dimension dim has a (P =

ε−O(dim)n log2 n, S = ε−O(dim)n, Q = ε−O(dim), κ = 1 + ε)-CRS.
Proof. For the proof, combine Lemmas 6.7 and 6.6.
Note that in Corollary 6.8 the query time depends on ε, in contrast to the claim

in Theorem 6.1(a). This can be remedied using Lemma 6.4.
Proof of Theorem 6.1(a). Use the CRS of Corollary 6.8 with constant ε0 = 0.1 as

the bootstrapping CRS in Lemma 6.4.
Proof of Theorem 6.1(b). In [23], an alternative proof for the Assouad theorem is

given with a much improved bound on the dimension of the host space: They prove
that for any metric (M, dM) with doubling dimension dim, it is possible to embed

(M, d
1/2
M ) in �

O(dim)
∞ with distortion O(dim2).4

This embedding can be done in polynomial time. Using it as a replacement for
Lemma 6.6, we therefore obtain the claimed CRS.

Remark 4. The distortion of embedding into poly(dim) dimensional normed
space cannot be improved below 1.9, since such an embedding gives a 1.9 approximate
CRS which uses only O(npoly(dim) log φ) bits of storage with label length which are
polynomially dependent on dim (see section 6.3), but Talwar [44] have shown that
such a CRS necessarily uses at least n2Ω(dim) bits, which is impossible for dim =
Ω(log log n). In this sense the embedding technique of [23] cannot replace Assouad’s
original technique.

It is still open whether the construction time in Theorem 6.1(b) can be improved
to near linear. The difficulty lies in the algorithmic version of the Lovász local lemma.

As discussed in Remark 2, distortions as high as 22O(dim)

are tolerable in this context.

4If one wants to optimize the distortion using their technique, then it is possible to obtain O(dim)

distortion when embedding into �
O(dim log dim)
p .
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6.2.1. Lower bound. We next argue that beating the Ω(dim) query time using
schema similar to the one presented above is unlikely.

For given reals d1, D, d2 > 1, we say that a (d1, D, d2)-Assouad-type-scheme
(ATS) exists if there is a monotone increasing bijection f : [0,∞) → [0,∞), such
that for all finite metric spaces (P, dM), with doubling dimension at most d1, there
exists φ : P → R

d2

‖·‖X
, such that for x, y ∈ P , we have

dM(x, y)

D
≤ f(‖φ(x)− φ(y)‖X) ≤ dM(x, y).

For example, the embedding of [23] cited above is a (d1, O(d2
1), O(d1))-ATS for

any d1 > 1, and it uses f(x) = x2.
Proposition 6.9. If d2 ≤ d1/5, then for any D > 1, no (d1, D, d2)-ATS exists.
Proof. The argument distinguishes between two essential cases: “Concave” func-

tion f cannot be used in any ATS since it causes a violation of the triangle inequality.
For “convex” functions f we slightly generalize an argument from [9] that uses topo-
logical considerations (Borsuk–Ulam theorem) to conclude the impossibility.

Indeed, fix a (d1, D, d2)-ATS with a function f , where d2 ≤ d1/5. Denote g :
[0,∞)→ [0,∞), where g = f−1.

Suppose first that sup0<a≤b<∞
g(b)/b
g(a)/a =∞ (“concave f”). Fix a and b such that

0 < a < b <∞ and g(b)/b
g(a)/a ≥ 100D. Let n = �2Db/a�, and let P be the line metric on

{0, . . . , n} such that dM(i, j) = a|i−j|. By the assumption, there exists φ : P → R
d1

‖·‖X

such that ‖φ(i)− φ(i + 1)‖X ≤ g(dM(i, i + 1)) = g(a), while on the other hand,

g(b) ≤ g

(
�2Db/a� a

D

)
= g

(
dM(0, n)

D

)
≤‖φ(0)− φ(n)‖X ,

since g is monotone increasing, as f is monotone increasing. Then by the triangle
inequality,

g(b) ≤‖φ(0)− φ(n)‖X ≤
n∑

i=1

‖φ(i− 1)− φ(i)‖X ≤ n g(a) ≤ 4D
b g(a)

a
,

which implies that g(b)/b
g(a)/a ≤ 4D, which is a contradiction.

Next, assume that there exists C > 1 such that sup0<a≤b<∞
g(b)·a
g(a)·b ≤ C (“con-

vex f”). Then, for any a ≤ b we have g(b)a
Cb ≤ g(a). In particular, we have

g(dM(x,y))(dM(x,y)/D)
CdM(x,y) ≤ g(dM(x, y)/D). Namely,

g(dM(x, y))

C ·D ≤ g

(
dM(x, y)

D

)
≤‖φ(x)− φ(y)‖X ≤ g(dM(x, y)).

Since ‖·‖X is d2-dimensional, by John’s theorem (see [3, Chap. V]) it can be ap-
proximated by ‖·‖2 up to a

√
d2 factor. We thus have a C ′ > 1 such that for any

d1-dimensional finite metric (P, dM), there exists φ′ : (P, dM)→ �d2

‖·‖2
satisfying

g(dM(x, y))

C ′ ≤‖φ′(x)− φ′(y)‖2 ≤ g(dM(x, y)).(6.1)
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We next estimate how much g ◦ dM distorts dM as a function of the spread of
P . Assume that minx�=y∈P dM(x, y) = a1 and maxx�=y∈P dM(x, y) = b1, that is,
Φ(P ) = b1/a1. Then

max
a1≤t

g(t)

t
=

g(a1)

a1
·max
a1≤t

g(t)a1

tg(a1)
≤ C

g(a1)

a1
,

max
s≤b1

s

g(s)
=

b1
g(b1)

·max
s≤b1

g(b1)s

b1g(s)
≤ C

b1
g(b1)

.

Thus, considering the “distortion” of g, we have

maxx�=y∈P
g(dM(x,y))
dM(x,y) ·maxx�=y∈P

dM(x,y)
g(dM(x,y))

Φ(P )
≤

C g(a1)
a1
· C b1

g(b1)

b1/a1
= C2 g(a1)

g(b1)
.

As g(0) = 0 and limx→∞ g(x) =∞, we conclude that this ratio tends to 0 as the spread

Φ(P ) tends to ∞. Combining it with (6.1), we conclude that for φ̂ : (P, dM)→ �d2

‖·‖2
,

defined as φ̂(x) = φ′(x), we have dist(φ̂) = o(Φ(P )). We will next show that this is
impossible when P is a sufficiently dense net of S

d2 .
Let 0 < η ≤ 0.1. We take P = Pη to be an η-net of S

d2

‖·‖2
. The finite metric Pη

has doubling dimension at most d1. From the above we can embed φ′ : Pη → �d2

‖·‖2

with distortion o(Φ(P )) = o(η−1). By scaling we may assume that this embedding
is 1-Lipschitz. By Kirszbraun’s theorem (see [7, Chap. 1]), the embedding φ′ can

be extended to the whole sphere φ̂′ : S
d2

‖·‖2
→ R

d2

‖·‖2
without increasing the Lipschitz

constant. The Borsuk–Ulam theorem (cf. [37]) states that there exists x ∈ S
k such that

φ̂′(x) = φ̂′(−x). Note that ∃y, z ∈ Pη such that ‖x− y‖2 ≤ η, and ‖(−x)− z‖2 ≤ η.

Since φ̂′ is 1-Lipschitz, we have

‖φ′(y)− φ′(z)‖2 =
∥∥∥φ̂′(y)− φ̂′(z)

∥∥∥
2
≤
∥∥∥φ̂′(y)− φ̂′(x)

∥∥∥
2

+
∥∥∥φ̂′(−x)− φ̂′(z)

∥∥∥
2
≤ 2η.

On the other hand, ‖y − z‖2 ≥ 1 − 2η, which means that the Lipschitz constant of
φ′−1, and thus the distortion of φ′, is at least Ω(η−1). This is a contradiction when
η is a sufficiently small positive number, since we argued above that the distortion
must be o(Φ(P )) = o(η−1).

6.3. Distance labeling. An approximate distance labeling scheme (ADLS)
seeks to compute for each point in the metric a short label such that given the labels of
a pair of points, it is possible to compute efficiently an approximation of the pairwise
distance. Thus, ADLS is a stricter notion of compact representation.5 This notion
was studied, for example, in [19, 18, 45].

In the constant doubling dimension setting, Gupta et al. [23] have shown a (1+ε)-

embedding of the metric in �
O(log n)
∞ . This implies a (1 + ε)-ADLS with O(log n log Φ)

bits for each label (the O notation here hides constants that depend on ε and dim).
Talwar [44] has shown an improved (1 + ε)-ADLS with only ε−O(dim) log Φ bits per
label. Slivkins [43] has shown a (1 + ε)-ADLS with ε−O(dim) log2 n log log Φ bits per
label. Their techniques seem to be very different from each other.

5When comparing the storage of ADLSs to that of the CRSs from the previous sections, note that
here we count bits, whereas in the rest of the paper we count words of length O(logn + log log Φ +
log ε−1).
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Here we improve Slivkins’ result and unify it with Talwar’s result under the same
technique.

Proposition 6.10. Given a finite metric space, one can build a (1 + ε)-ADLS
with

min
{
ε−O(dim) log Φ, ε−O(dim) log n(log n + log log Φ)

}
bits per label.

Furthermore, there exist one-dimensional finite metric spaces of size n, and spread
Φ ≥ 22n for which any 1.9-ADLS requires labels of size Ω(log n log log Φ) bits per
label.

Proof (sketch). First, labels of length ε−O(dim) log Φ follow directly from Theo-
rem 6.5: We have ε−O(dim) coordinates, and, as discussed after the proof of Theo-
rem 6.5, we need only O(log(Φ/ε)) bits of accuracy for each coordinate.

We next show a (1+ε)-ADLS using ε−O(dim) log n(log n+log log Φ) bits per label.
We do so by presenting a “distributed implementation” of the data-structure used to
prove Corollary 6.8. That data-structure consists of two trees (HSTs) H1, H2 on the
same set of leaves: the points of the metric. Given two points x1, x2, we compute
ui = lcaHi(x

1, x2), and xj
i is the ancestor of xj in Hi which is the child of ui. We

then apply an Assouad embedding A(xj
i ) that uses O(log n+log log Φ+log(ε−1)) bits.

We define an identifier I(v) of vertex v ∈ Hi to be A(v) concatenated with the Δv

(encoded with O(log log Φ) bits). Hence, given two points x1, x2, using the identifiers
I(x1

1), I(x
2
1), I(x

1
2), I(x

2
2), I(u1), I(u2), we can compute a (1 + ε)-approximation of

dM(x1, x2). We now use (the proof of) a result of Peleg [39]: Given an n-vertex
rooted tree with identifiers I(v) of maximum length s on the vertices, it is possible to
efficiently compute labels L(v) of length O(log n(log n+ s)) to the vertices, such that
given L(x) and L(y) one can efficiently decode I(u), where u = lca(x, y).

Unfortunately, we need a little bit more, namely, access to the children of u which
are the ancestors of x and y. In order to obtain it we tinker with the construction of
Peleg: In his Definition 3.2 from [39], we extend the tuple Qi(v) to be

Qi(v) =

〈
〈i− 1, I(γi−1(v))〉, 〈i, I(γi(v))〉, 〈i + 1, I(γi+1(v))〉, 〈i, I(hs(γi(v)))〉

〉
,

where hs(u) is the heavy sibling of u (the underlined part is our extension). By
studying Peleg’s construction, it is easy to verify that this extension suffices.

The above construction is asymptotically optimal in terms of n and Φ when
Φ ≥ 22n, as we now prove. In [19] there is a family of n-vertex weighted rooted binary
trees, such that any exact distance labeling scheme of the leaves requires labels of
length Ω(logn logM) bits, where the edge weight is in the range {0, . . . ,M − 1}.
A further property of that family of trees is that the depth h = M log2 n (i.e., the
distance from the root) of all the leaves is the same. We next transform each tree
T in that family into an HST H by giving every vertex v a label 2−depthT (v). For
any two leaves x and y, let dT (x, y) = 2(h + log2 dH(x, y)). Furthermore, even a
1.9 approximation of dH(x, y) allows us to recover the exact value of dH(x, y), since
this value is an integral power of 2. Let us summarize: Given a 1.9 approximation of
the distance in H allows us to obtain the exact distance in T . Therefore by setting
M = (log2 Φ)/n, it proves a lower bound of Ω(logn log log Φ) on the average label’s
length for a 1.9-ADLS for this family of HSTs. Since these HSTs are binary, their
doubling dimension is 1.
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After a preliminary version of this paper appeared, Slivkins [42] managed to
produce an ADLS with labels of length ε−O(dim) log n log log Φ, which improves upon
our construction in the range nlog log n  Φ 2n.

7. Doubling measure. A measure μ on a metric spaceM is called η-doubling
if, for any x ∈M and r ≥ 0, μ(b(x, 2r)) ≤ η ·μ(b(x, r)). Doubling measure is already
a useful notion in the analysis of metric spaces (see [27]) and has recently been used
in some algorithmic applications [43]. Vol′berg and Konyagin [47] proved that any
compact λ-doubling metric space has a λO(1)-doubling measure. Wu’s proof of this
theorem [48] can be implemented in linear time on the net-tree.

We assume that the net-tree T is already given. Denote by deg(v) the number
of children of v ∈ T . Let γ = maxv∈T deg(v) be the maximum degree in T . As we
have seen before, γ ≤ 2O(dim). The probability measure μ is computed by calling
Partition(root, 1), where Partition is defined recursively as follows.

Partition(u ∈ T, pu ∈ [0, 1]).
if u is a leaf then

Set μ({repu})← pu.
else

for each child v of u with repv �= repu do

Set pv ← pu/γ.
Call Partition(v, pv).

Let v0 be the unique child of u such that repv0
= repu.

Set pv0
← pu(1− (deg(u)− 1)/γ).

Call Partition(v0, pv0).

Proposition 7.1. For any u ∈ T , we have pu = μ(Pu).
Proof. The proof is by straightforward induction on the height of T .
Proposition 7.2. Fix l ∈ N, and two vertices u and v in T , such that max{�(u),

�(v)} < l ≤ min {�(p(u)), �(p(v))} and dM(repu, repv) ≤ 40τ l. Then pu ≤ γO(1)pv.
Proof. Denote w = lcaT (u, v), and denote by w = u0, u1, . . . , ua = u the path in

T from w to u, and by w = v0, v1, . . . , vb = v the path in T from w to v.
We claim that for any i ≥ 1, if �(ui) > l + 3, then repui

�= repui+1
. Indeed,

otherwise

dM(repui
, repv) ≤ dM(repui+1

, repu) + dM(repu, repv)

≤ 2τ

τ − 1
· τ �(ui+1) + 40τ l ≤ 2

τ − 1
τ �(ui) + 40τ−4 · τ �(ui) ≤ τ �(ui)

4
,

but this is a contradiction to the packing property of Definition 2.1, since v /∈ Pui

(note that for this argument to work, τ needs to be a large enough constant, say 11).
Next, we claim that for any i ≥ 1 for which �(ui) > l + 3, �(ui−1) = �(ui) + 1.

Otherwise, �(ui−1)− 1 ≥ �(ui) + 1, implying

dM(repui
, repv) ≤ dM(repui+1

, repu) + dM(repu, repv) ≤
2τ

τ − 1
· τ �(ui) + 40τ−4 · τ �(ui)

=

(
2τ

τ(τ − 1)
+

40

τ5

)
· τ �(ui)+1 ≤ τ �(ui−1)−1

4
=

τ �(p(ui))−1

4
,

contradicting the packing property of Definition 2.1, since v /∈ Pui
.
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Thus, the path between u and w is full, containing vertices on all levels, except
maybe the last three levels. Furthermore, the representatives are different in each
level. We therefore conclude that pu ≤ pw/γ

�(w)−l−4. On the other hand, pv ≥
pwγ

�(w)−l+1. Therefore pu ≤ γ5pv.
Theorem 7.3. For any n-point metric space having doubling dimension dim, it

is possible to construct a 2O(dim)-doubling measure in 2O(dim)n log n time.
Proof. The running time of Partition is clearly linear and is dominated by the

time to construct the net-tree.
We are left to prove that μ is a λO(1)-doubling measure. Let x ∈ P and r > 0. De-

note N = {u ∈ T | �(u) ≤ logτ (r/8) < �(p(u))}. As we have seen in Proposition 2.2,
the representatives of the vertices of N forms a net in the right scale. In particu-
lar, there exists x̂ ∈ N such that dM(x, repx̂) ≤ 3r/8 and Px̂ ⊂ b(repx̂, 3r/8) ⊂
b(x, r). Hence px̂ ≤ μ(b(x, r)). On the other hand, any two different representa-
tives of vertices from N are at least r/40 separated, and therefore, for X = N ∩
{u ∈ T | repu ∈ b(x, 3r)}, we have |X| ≤ λO(1). Note that b(x, 2r) ⊂ ∪u∈XPu, and
therefore

μ(b(x, 2r)) ≤
∑
u∈X

pu ≤ |X|max
u∈X

pu.

By Proposition 7.2, maxu∈X pu ≤ λO(1)px̂. We conclude that μ(b(x, 2r)) ≤
λO(1)μ(b(x, r)).

We note in passing that algorithm Partition can be programmed in our computa-
tional model since every point gets at least a 2−O(n logn) measure, which can be easily
represented in a floating-point word of length O(log n). Moreover, the algorithm has
a “built in” mechanism to handle rounding error: instead of dividing by γ, we can
divide by, say, 2γ, and now rounding errors are automatically offset in the measure
given to v0.

8. Lipschitz constant of mappings.
Definition 8.1. A function f : (P, ν) → (M, ρ) is K-Lipschitz if for any

x, y ∈ P , we have ρ(f(x), f(y)) ≤ K · ν(x, y).
A point x ∈ P is K-Lipschitz if, for any y ∈ P , we have ρ(f(x), f(y)) ≤ K ·

ν(x, y).
Thus, given a set of points P ⊆ �d, and a mapping f : P → �d′

, it is natural to
ask how quickly we can compute the Lipschitz constant for f on the set P , and more
specifically, to compute it for every point of P .

8.1. The low-dimensional Euclidean case. Here, we consider a mapping
f : P → (M,ρ), where P ⊆ � is of size n, and (M,ρ) is an arbitrary metric space
given as a matrix.

Proposition 8.2. Computing the Lipschitz constant for f on P can be done in
O(n log n) time.

Proof. Indeed, let a, b, c be three numbers in P such that a < b < c. Observe that

ρ(f(c), f(a))

c− a
≤ ρ(f(c), f(b)) + ρ(f(b), f(a))

c− b + b− a
≤ max

(
ρ(f(c), f(b))

c− b
,
ρ(f(b), f(a))

b− a

)
,

since for any p, q, r, s positive numbers such that p/q ≤ r/s, we have p/q ≤ (p +
r)/(q + s) ≤ r/s. Thus, the Lipschitz constant is realized by a consecutive pair of
points in P . We can therefore sort P and compute the slope for every consecutive
pair. Clearly, the maximum is the Lipschitz constant of f .
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Proposition 8.3. Let P be a set of n numbers on the real line, and let f : P → �
be a given mapping. One can compute the Lipschitz constant of f on every point of
P in O(n log2 n) time.

Proof. Consider the set Q = {(p, f(p))| p ∈ P}. Let p be a point in P , and let Lp

be the set of points of Q strictly to the left of p (according to the x-order), and let Rp

be the set of points to its right. Denote by CH(A) the convex hull of A ⊂ �2. If we
know the tangents to CH(Lp) and CH(Rp) that pass through p, then we can compute
the Lipschitz constant of p in constant time (i.e., it is the slope of the tangent with
the largest slope).

Here, one can use the data-structure of Overmars and van Leeuwen [38], which
supports the maintenance of the convex hull under insertions, deletions, and tangent
queries in O(log2 n) per operation. Indeed, sort the points of P from left to right. Let
p1, . . . , pn be the sorted points. Clearly, given CH(Lpi) and CH(Rpi) stored in the
dynamic convex hull data-structure, we can compute CH(Lpi+1) and CH(Rpi+1) by
deleting pi+1 from CH(Rpi

) and inserting pi into CH(Lpi
). Thus, we can compute all

the relevant convex hulls in O(n log2 n) time. Furthermore, when we have CH(Lpi
)

and CH(Rpi), we perform tangent queries to compute the Lipschitz constant of pi.
Thus, the overall running time is O(n log2 n).

Theorem 8.4. Given a set P of n points in the plane, and a mapping f : P → �,
one can compute the Lipschitz constant of f in O(n log2 n) expected time.

Proof. Assume that we know that f is K-Lipschitz on a set Q ⊆ P , and we
would like to verify that it is K-Lipschitz on {q} ∪ Q, where q ∈ P \ Q. This can
be visualized as follows: From every point p ∈ P , there is an associated point in �3,
which is p̂ = (px, py, f(p)). Being K-Lipschitz, as far as p is concerned, implies that
q must lie below the upper cone of slope K emanating from p̂ and above the lower
cone of slope K emanating from p̂. Thus, if we collect all those upper cones, then q
must lie below their lower envelope. However, since the upper cones all have the same
slope, their lower envelope is no more than a (scaled) version of an additive weighted
Voronoi diagram in the plane. Such a diagram can be computed in O(n log n) time
for n points, and a point-location query in it can be performed in O(log n) time.

In fact, using the standard Bentley–Saxe technique [6], one can build a data-
structure, where one can insert such upper cones in O(log2 n) amortized time, given
a query point q in the plane, and decide in O(log2 n) time which of the cones inserted
lies on the lower envelope vertically above q. Similar data-structures can be built for
the upper envelope of the lower cones.

Thus, if we conjecture that the Lipschitz constant is K, then we can verify it for
P in O(n log2 n) time by inserting the points of P into the upper and lower envelope
data-structure described above. However, let us assume that K is too small. Then,
after inserting a subset Q of points into the data-structure, we will try to verify that
the Lipschitz constant for a point p ∈ P is K and fail. Then, it must be that the
Lipschitz constant of f on Q∪{p} is realized by p. Thus, we can compute the Lipschitz
constant of p in Q ∪ {p} in O(|Q|) time, update our guess K, and rebuild the upper
and lower data-structures for Q ∪ {p}.

Of course, in the worst case, this would required O(n2 log2 n) running time (i.e.,
we would fail on every point). However, it is well known that if we randomly permute
the points, and handle the points according to this ordering, then the value of the
Lipschitz constant on every prefix would change O(log n) times in expectation. Thus,
this would lead to O(n log3 n) expected running time. Moreover, a slightly more
careful analysis shows that the expected running time is O(n log2 n). See [16] for
details of such analysis.
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8.2. Constant doubling dimension to arbitrary metric.
Theorem 8.5. We are given a metric (P, ν) of n points having doubling di-

mension d, and a mapping f : P → (M, ρ), where M is an arbitrary metric space.
Then one can compute a (1 + ε)-approximation of the Lipschitz constant of f in
nε−O(d) log2 n expected time.

Proof. The algorithm is as follows:
1. Compute ε−1-WSPD of P according to section 5.
2. Set K ← 0.
3. For every pair (A,B) ∈ ε−1-WSPD do:

(a) Obtain some pair of points a ∈ A and b ∈ B.

(b) Compute K ← max
{
K, ρ(f(a),f(b))

ν(a,b)

}
.

Obviously the value K computed by the algorithm above is not larger than the
Lipschitz constant of f . We next show that it is not much smaller. Let x, y ∈ P be a

pair in which f obtains its Lipschitz constant, i.e., ρ(f(x),f(y))
ν(x,y) = maxa�=b

ρ(f(a),f(b))
ν(a,b) .

Let {A,B} ∈WSPD be a pair such that x ∈ A, y ∈ B. Our algorithm chooses some
pair a ∈ A, b ∈ B. Using the triangle inequality we have

ρ(f(a), f(b))

ν(a, b)
≥ ρ(f(x), f(y))− diam(f(A))− diam(f(B))

ν(x, y) + diam(A) + diam(B)

≥ ρ(f(x), f(y))− diam(f(A))− diam(f(B))

(1 + 2ε)ν(x, y)
.

If max{diam(f(A)),diam(f(B))} ≤ ε · ρ(f(x), f(y)) then we conclude that

ρ(f(a), f(b))

ν(a, b)
≥ (1− 2ε)ρ(f(x), f(y))

(1 + 2ε)ν(x, y)

and we are done. Otherwise, assume that diam(f(A)) > ε · ρ(f(x), f(y)). Then there
exists f(a1), f(a2) ∈ f(A) for which ρ(f(a1), f(a2)) > ε · ρ(f(x), f(y)), whereas

ν(a1, a2) ≤ diam(A) ≤ ε · ν(A,B) ≤ ε · ν(x, y).

Thus,

ρ(f(a1), f(a2))

ν(a1, a2)
>

ε · ρ(f(x), f(y))

ε · ν(x, y)
,

which is a contradiction to the maximality of the pair {x, y}.
9. Fast approximation of the doubling dimension.
Theorem 9.1. Given a metric space M with n points, one can approximate the

doubling dimension dim of M, up to a constant factor, in 2O(dim)n log n expected
time.

Notice that this theorem, apart from its intrinsic interest, also removes the need
to specify dim together with the input for the other algorithms in this paper.

The algorithm suggested in Theorem 9.1 naturally uses the net-tree.
Proposition 9.2. Given a net-tree T of a metricM, denote by λT the maximum

out degree in T . Then log λT is a constant approximation to dim(M).
Proof. Let v ∈ T be the vertex with the maximum number of children λT . By

Definition 2.1, any covering of b(repv,
2τ
τ−1τ

�(v)) by balls of radius τ−5
4τ(τ−1) requires at

least λT such balls. This means that dim(M) = Ω(log λT ).
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The upper bound dim(M) = O(log λT ) follows easily from the arguments of

section 7. There, we actually prove the existence of a λ
O(1)
T -doubling measure in M,

and it is easy to prove that the existence of an α doubling measure inM implies that
dim(M) ≤ α.

Proof of Theorem 9.1. By Proposition 9.2 it is enough to show an implementa-
tion of the algorithm for constructing the net-tree that is oblivious to the doubling
dimension of the metric. Checking the algorithm in section 3, we observe that the
algorithms in sections 3.1, 3.3, and 3.4 are indeed oblivious to the doubling dimen-
sion. We are therefore left with describing a doubling-dimension-oblivious algorithm
for constructing HST that O(n2)-approximates the given metric. More specifically,
the only part that needs to be changed is the use of Lemma 2.4 in Lemma 3.5. To
this end, instead of knowing λ, we “guess” the doubling constant to be 2i, increasing
i until we “succeed.” More accurately, in the ith iteration, we apply the following
sampling step 23i times: Pick randomly a point p from P , and compute the ball b(p, r)
of smallest radius around p containing at least n/(2 · 23i) points. Next, consider the
ball of radius b(p, 2r). If it contains ≤ n/2 points, the algorithm succeeded, and it
stops. The algorithm is guaranteed to stop when i ≥ �log n�). Denote by δ = δ(X)
the random value, which is the value of 2i when the algorithm stopped, when applied
to a point set X ⊂M.

The resulting spanner is a 3n-approximation regardless of the random bits, and
thus the correctness of the net-tree algorithm is guaranteed. We need only argue
about the expected running time for constructing the HST. The running time of the
HST constructed is dominated by the spanner construction and the number of edges
in it (see Lemma 3.5). Denote by λ the doubling constant of the metricM.

Proposition 9.3. For any X ⊆M,
1. E

[
δ(X)−3

]
≥ λ−3/16.

2. E
[
δ(X)3

]
= O(λ3).

Proof. Consider the algorithm above for computing δ(X). Once i reaches the
value k = �log2 λ�, the probability of success on each point sampled is at least 2−3k

(by the argument in Lemma 2.4). Hence the probability of success in the ith round,

i ≥ k, conditioned on a failure in all previous rounds is at least 1 − (1 − 2−3k)2
3i

,
which means that

E
[
δ(X)−3

]
≥ 1− (1− 2−3k)2

3k

2−3k ≥ (1− 1/e)λ−3/8.

It also means that Pr[δ ≥ 2k+i] ≤ (1− 2−3k)2
3(k+i−1) ≤ exp

(
−
(
i
2

))
, and therefore

E
[
δ3
]

=

∞∑
t=1

Pr[δ3 ≥ t] ≤ 2λ3 +

∞∑
t=23k

exp

(
−
( log t−3k

3

2

))
≤ 2λ3 + O(1).

We prove only an upper bound on the running time. Bounding the number of
edges is similar. Denote by f(X) the running time of the algorithm when applied to
X ⊆M, and let g(X) = E[f(X)] and g(n) = supX⊆M, |X|=n g(X).

The spanner construction algorithm of Lemma 3.5 satisfies

g(X) ≤ E

[
max

δ(X)−3≤α≤1/2

(
g(α|X|) + g((1− α)|X|) + c′δ(X)3n

)]
.(9.1)

We now prove by induction that g(n) ≤ cλ3n lnn for some c > 0. Fix Y to be a
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subset of M of size n such that g(Y ) = g(n). We have

g(n) ≤ E

[
max

δ(Y )−3≤α≤1/2

(
E[g(α|Y |)] + E[g((1− α)|Y |)] + c′δ3n

)]

≤ E

[
max

δ(Y )−3≤α≤1/2

(
cλ3α|Y | ln(α|Y |) + cλ3(1− α)|Y | ln((1− α)|Y |) + c′δ3n

)]
≤ E

[
cλ3δ−3n ln

(
δ−3n

)
+ cλ3(1− δ−3)n ln

((
1− δ−3

)
n
)

+ c′δ3n
]

≤ cλ3n ·E
[
δ−3 ln

(
δ−3n

)
+ (1− δ−3) ln

((
1− δ−3

)
n
)]

+ (c′′λ3 + d′)n

≤ cλ3n ·E
[
ln
((

1− δ−3
)
n
)]

+ (c′′λ3 + d′)n

≤ cλ3n lnn + cλ3n ·E
[
ln(1− δ−3)

]
+ (c′′λ3 + d′)n

≤ cλ3n lnn− cλ3n ·E
[
δ−3

]
+ (c′′λ3 + d′)n

≤ cλ3n lnn− cλ3n ·
(
λ−3/16

)
+ (c′′λ3 + d′)n

≤ cλ3n lnn,

since ln(1− δ−3) ≤ −δ−3, by Proposition 9.3, and for c > 0 large enough.

10. Concluding remarks. In this paper, we show how to efficiently construct
hierarchical nets for finite spaces with low doubling dimension and use this construc-
tion in several applications. We believe that this result will have further applications.

Among other things, our fast construction of WSPD implies a near linear time
construction of an approximate minimum spanning tree of the space. Our fast con-
struction of net-tree implies that one can do 2-approximate k-center clustering in
O(n log n) expected time.

Further, transfer of problems and techniques from low-dimensional Euclidean
space to low-dimensional metrics seems to be interesting. A plausible example of
such problems is the construction of (1 + ε)-spanners with some additional proper-
ties (such as low total weight or small hop-diameter). Results of this flavor exist in
low-dimensional Euclidean spaces.

It is easy to verify that, for a general metric, no HST can be constructed without
inspecting all

(
n
2

)
edges. Indeed, consider the uniform metric over n points, and

change in an adversarial fashion a single edge to have length 0.

10.1. All nearest neighbors. The all nearest neighbor problem is to compute
for a set P of n points the (exact) nearest neighbor for each point of p ∈ P in the
set P \ {p}. It is known that in low-dimensional Euclidean space this can be done in
O(n log n) time [13, 46, 11]. One can ask if a similar result can be attained for finite
metric spaces with low doubling dimensions. Below we show that this is impossible.

Consider the points p1, . . . , pn, where the distance between pi and pj , for i < j, is
either 2j or 2j+ε, for ε < 0.1. It is easy to verify that this metric has doubling constant
at most three. We now show that for any deterministic algorithm for computing all
nearest neighbors, there is a metric in the family of the metrics described above for
which the algorithm performs

(
n
2

)
distance queries.

This claim is proved using an adversarial argument: When the adversary is
queried about the distance between pi and pj , for i < j, if not all the distances
between p1, . . . , pj−1 and pj were specified, the adversary will always return the dis-
tance to be 2j + ε. The distances 2j would be returned only for the last pair among
the j− 1 pairs in this set. In particular, for the algorithm to know what is the closest
point to pj , it must perform j−1 queries. Thus, overall, an algorithm doing all nearest
neighbors for p1, . . . , pn will have to perform

(
n
2

)
queries.
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A similar asymptotic lower bound can be proved for randomized algorithms using
Yao’s principle (here the adversary selects for each j one index ij < j at random for
which d(pij , pj) = 2j , and for the rest of i �= ij , i < j, d(pi, j) = 2j + ε).

At this point, it is natural to ask whether one can achieve running time of
O(n log(nΦ(P ))) for the all nearest neighbor problem. This, however, is straight-
forward. Indeed, compute a 4-WSPD of P . Clearly, if q is a nearest neighbor for p,
then there is a pair in the WSPD such that p is the only point on one side, and the
other side contains q. Thus, we scan all such unbalanced pairs (one point on one side,
and many points on the other side) and compute the nearest neighbor for each point.
Thus, this computes all nearest neighbors. As for the running time analysis, consider
all such pairs in distance range l to 2l, and observe that by a packing argument,
for any node u in the net-tree, the number of such WSPD pairs with u in them is
2O(dim). In fact, along a path in the net-tree, only a constant number of nodes might
participate in such pairs. Thus, every point is being scanned 2O(dim) times, implying
that scanning all such pairs takes 2O(dim)n time. There are �lg(Φ(P ))� resolutions, so
the overall running time is 2O(dim)n log(nΦ(P )).

Appendix. Proof of Lemma 3.9. Notice that Lemma 3.7 implies that (ri)i≥1

is a monotone nonincreasing sequence and that ri ≥ ri ≥ ri/(1 + n−2) ≥ 4
5ri.

Proof of Lemma 3.9. We prove by induction on k all five assertions together. The
base case is obvious. Assume by the induction hypothesis that T (k−1) satisfies all the
properties above. We prove it for T (k).

Property (i). Every point inserted during the lth phase (i.e., a point pi for which
�logτ ri� = l) must have its current parent (in T (k)) at level l. Thus, if �(û) > l, this
means that cpk

was inserted before the current phase, which means that it is indeed
the closest point to pk among {p1, . . . , ph}. Otherwise, if �(û) = l, then

dM(û, q) ≤ dM(û, cpk
) + dM(cpk

, pk) + dM(pk, q)

≤ 2 · τ l + (1 + n−2)τ l + (1 + n−2)τ l ≤ 13 · τ l.

Since q appears before the level l began, either �(p(q)) > l and then q ∈ Rel(û), or
�(p(q)) = l; but then it must be that repp(q) = q, so p(q) ∈ Rel(û). Either case q is a

representative of a vertex in Rel(û) which is the same as Rel(û) (in T (k−1)).
Property (ii). We shall prove it for both pk and the new internal vertex (in case (a)

of the construction). Consider first case (a) of the construction:

dM(repu, repv) = dM(repu, q) ≤ τ �(u),

where the last inequality follows from the induction hypothesis. Also,

dM(repv, pk) ≤ 2 · τ �(v),

and we are done with the first case of the construction.
Case (b) of the construction follows from the definition of q and since, as argued

above, for u = p(q), repu = q.
Property (iii). Fix some t ∈ �, and let x and y be two vertices for which

max{�(x), �(y)} < t ≤ min {�(p(x)), �(p(y))}. If both x and y are not pk, then
the claim follows from the inductive hypothesis (even for the newly formed internal
vertex, since it inherits its parent and representative from a previously established
vertex). Otherwise, assume x = pk. As pk is the latest addition of a leaf to T ,
dM(pk, repy) ≥ rk−1 ≥ τ l−1. Note that �(p(pk)) = l, so t ≤ l, and we conclude that
dM(repx, repy) ≥ τ t−1.
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Property (iv). We next prove that T (k) is a net-tree. The only nonstraightforward
claims are the packing and covering properties. The covering property follows from
Property (ii) of this lemma: Let u = u1 be a vertex, v = um a descendant, and
〈u1, . . . , um〉 the path between them in T ; then

dM(repu, repv) ≤
m−1∑
i=1

dM(repui
, repui+1

) ≤ 2

m−1∑
i=1

τ �(ui)

≤ 2

m−1∑
i=1

τ �(u1)−(i−1) ≤ 2τ

τ − 1
· τ �(u).

The packing property is more delicate. Let w be an arbitrary vertex in T (k),
and let x /∈ Pw be a point. We want to prove that dM(x, repw) ≥ τ−5

2(τ−1)τ
�(p(w))−1.

Let x̂ ∈ T (k) be an ancestor of x such that �(x̂) ≤ �(p(w)) − 1 < �(p(x̂)). Applying
Property (iii) with t = �(p(w)), we get that dM(repx̂, repw) ≥ τ �(p(w))−1.

If x = x̂, we are done. Otherwise, if �(x̂) < �(p(w)) − 1, then, by Property (ii),
we have

dM(repw, x) ≥ dM(repw, repx̂)− dM(repx̂, x)

≥ τ �(p(w))−1 − 2τ

τ − 1
· τ �(p(w))−2 =

τ − 3

τ − 1
· τ �(p(w))−1,

and we are done.
Otherwise, let x̄ ∈ T (k) be an ancestor of x which is the child of x̂ (p(x̄) = x̂).

If repx̄ = repx̂, then the preceding argument (where �(x̂) < �(p(w))− 1) also applies
here, and we are done.

Otherwise, we get the following situation: �(p(x̄)) = �(p(w)) − 1 and repx̄ �=
repp(x̄). But this can happen only if x̄ was inserted during level �(p(w)) − 1. Recall
that the algorithm connects repx̄ as a child of a vertex in level �(p(w)) − 1 whose
representative is the closest point among those appearing during the levels greater
than �(p(w))−1. Note that both repp(x̄) and repw are inserted in a level greater than
�(p(w))− 1. We conclude that dM(repx̄, repp(x̄)) ≤ dM(repx̄, repw). Therefore

dM(repx̄, repw) ≥ max
{
dM(repx̄, repp(x̄)), dM(repw, repp(x̄))− dM(repx̄, repp(x̄))

}
≥

dM(repw, repp(x̄))

2
≥ 0.5 · τ �(p(w))−1.

Hence, by the covering property,

dM(x, repw) ≥ dM(repx̄, repw)− dM(repx̄, x) ≥ 0.5 · τ �(p(w))−1 − 2τ

τ − 1
· τ �(p(w))−2

=
τ − 5

2(τ − 1)
· τ �(p(w))−1,

and we are done.
Property (v). Assume that a new vertex x is attached as a child to a vertex

y. We shall prove that our traversing algorithm visits all vertices w for which either
w ∈ Rel(x) or x ∈ Rel(w). Suppose first that x ∈ Rel(w). Thus, �(w) < �(y). Let z
be an ancestor of w for which �(z) ≤ �(y) < �(p(z)). Let 〈z = z1, . . . , zm = w〉 be the
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path between them in T . Then, for any 1 ≤ i ≤ m− 1, it holds that

dM(repx, repzi) ≤ dM(repx, repw) + dM(repzi , repw)

≤ 13 · τ �(zm) +
2τ

τ − 1
· τ �(zi) ≤ 13 · τ �(zi).

Thus x ∈ Rel(zi) for any 2 ≤ i ≤ m. Thus, if z = z1 ∈ Rel(y), we are assured that
w = zm will be visited. Indeed, z ∈ Rel(y), since

dM(repy, repz) ≤ dM(repy, repx) + dM(repx, repw) + dM(repw, repz)

≤ 2 · τ �(y) + 13 · τ �(w) +
2τ

τ − 1
· τ �(z)

≤ 2 · τ �(y) + 13 · τ �(y)−1 +
2τ

τ − 1
· τ �(y)

≤ 13 · τ �(y).

This means that z ∈ Rel(y) by the inductive hypothesis.
Next, we consider the case when w ∈ Rel(x). In this case, �(w) ≤ �(x) < �(p(w))

and

dM(repw, repy) ≤ dM(repw, repx) + dM(repx, repy) ≤ 13 · τ �(x) + 2 · τ �(y) ≤ 13 · τ �(y).

Hence, if �(p(w)) > �(y), then w ∈ Rel(y) which implies that w ∈ Rel(y) by the
inductive hypothesis, and we are done.

If �(p(w)) = �(y), then

dM(repp(w), repy) ≤ dM(repp(w), repw) + dM(repw, repx) + dM(repx, repy)

≤ 2 · τ �(y) + 13 · τ �(y)−1 + 2 · τ �(y) ≤ 13 · τ �(y).

Thus, in this case p(w) ∈ Rel(y), and using the inductive hypothesis, we are done.
We are left with the case �(p(w)) < �(y). In this case

dM(repp(w), repx) ≤ dM(repp(w), repw) + dM(repw, repx)

≤ 2 · τ �(p(w)) + 13 · τ �(p(w))−1 ≤ 13 · τ �(p(w)).

Thus, we have that x ∈ Rel(p(w)). As was proved above, this means that p(w) will
be visited, and since x is added to Rel(p(w)), the algorithm also visits the children of
p(w), and in particular, w.
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EXTRACTING RANDOMNESS VIA REPEATED CONDENSING∗

OMER REINGOLD† , RONEN SHALTIEL‡ , AND AVI WIGDERSON§

Abstract. Extractors (as defined by Nisan and Zuckerman) are procedures that use a small
number of truly random bits (called the seed) to extract many (almost) truly random bits from
arbitrary distributions as long as distributions have sufficient (min)-entropy. A natural weakening
of an extractor is a condenser, whose output distribution has a higher entropy rate than the input
distribution (without losing much of the initial entropy). An extractor can be viewed as an ultimate
condenser because it outputs a distribution with the maximal entropy rate.

In this paper we construct explicit condensers with short seed length. The condenser construc-
tions combine (variants of or more efficient versions of) ideas from several works, including the block
extraction scheme of [N. Nisan and D. Zuckerman, J. Comput. System Sci., 52 (1996), pp. 43–52],
the observation made in [A. Srinivasan and D. Zuckerman, SIAM J. Comput., 28 (1999), pp. 1433-
1459; N. Nisan and A. Ta-Shma, J. Comput. System Sci., 58 (1999), pp. 148–173] that a failure
of the block extraction scheme is also useful, the recursive “win-win” case analysis of [R. Impagli-
azzo, R. Shaltiel, and A. Wigderson, Near-optimal conversion of hardness into pseudo-randomness,
in Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, IEEE,
Los Alamitos, CA, 1999, pp. 181–190; R. Impagliazzo, R. Shaltiel, and A. Wigderson, Extractors
and pseudo-random generators with optimal seed length, in Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, ACM, New York, 2000, pp. 1–10], and the error correction of
random sources used in [L. Trevisan, J. ACM, 48 (2001), pp. 860–879].

As a by-product (via repeated iterating of condensers), we obtain new extractor constructions.
The new extractors give significant qualitative improvements over previous ones for sources of arbi-
trary min-entropy; they are nearly optimal simultaneously in the two main parameters of seed length
and output length. Specifically, our extractors can make any one of these two parameters optimal
(up to a constant factor) only at a polylogarithmic loss in the other. Previous constructions require
polynomial loss in both cases for general sources.

We also give a simple reduction converting “standard” extractors (which are good for an average
seed) into “strong” ones (which are good for most seeds), with essentially the same parameters. With
this reduction, all the above improvements apply to strong extractors as well.

Key words. randomness extractors, randomness condensers, derandomization
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1. Introduction.

1.1. Extractors. One of the most successful ideas in modern computer science
is that of probabilistic algorithms and protocols. These are procedures that use ran-
dom coin tosses when performing computational tasks. A natural problem in these
procedures is how computers can obtain truly random bits.
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A line of research initiated by [1, 20, 28] was motivated by the question of avail-
ability of truly random bits. The idea behind this question is to make truly random
bits available by refining the (imperfect) randomness found in some natural physical
processes, with the ultimate goal of designing procedures called “randomness extrac-
tors” that, given a sample from an arbitrary source of randomness, produce truly
random bits. It was shown by [20] that this goal cannot be achieved by deterministic
algorithms, even for some randomness sources that have a simple and “nice” struc-
ture. In light of this, the goal became to “spend” as few as possible truly random
bits in order to extract as many as possible (almost) truly random bits from arbitrary
imperfect random sources which contain sufficient randomness.

The most general definition of weak random sources and the formal definition of
extractors emerged from the works of [3, 30, 31, 13]. The definition of extractors [13]
requires quantifying two notions: the first is the amount of randomness in probability
distributions, which is measured using a variant of the entropy function called min-
entropy.

Definition 1.1. A distribution X is called a k-source if the probability it assigns
to every element in its range is bounded above by 2−k. The min-entropy of X (denoted
by H∞(X)) is the maximal k such that X is a k-source.

The second notion is the quality of the extracted bits, which is measured using
the statistical distance between the extracted bits and truly uniform ones.

Definition 1.2. Two distributions P,Q (over the same domain Ω) are ε-close if
they have a statistical distance of at most ε. (For every event A ⊆ Ω, the probability
that both distributions assign to A differs by at most ε).

Extractors are functions that use few truly random bits to extract many (almost)
truly random bits from arbitrary distributions which “contain” sufficient randomness.
A formal definition follows. We use Um to denote the uniform distribution on m bit
strings.

Definition 1.3 (see [13]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
a (k, ε)-extractor if for every k-source X the distribution Ext(X,Ud) (obtained by
running the extractor on an element sampled from X and a uniformly chosen d bit
string, which we call the seed) is ε-close to Um. The entropy-loss of an extractor is
defined to be k + d−m.

Informally, we will say that an extractor uses a seed of length d in order to extract
m bits from distributions on n bits which contain k random bits. We refer to the ratio
between m and k as the fraction of the randomness which the extractor extracts, and
to the ratio between k and n as the entropy rate of the source.

Apart from their original application of obtaining random bits from natural
sources, extractors turned out to be useful in many areas in complexity theory and
combinatorics, with examples being construction of pseudorandom generators for
space bounded computation; deterministic amplification; oblivious sampling; con-
structive leader election; and explicit constructions of expander graphs, superconcen-
trators, and sorting networks. The reader is referred to the excellent survey articles
[11, 12]. (A more recent survey article that complements the aforementioned ones is
[21].)

1.2. Extractor constructions: Goals and previous work. We now survey
some of the goals of extractor constructions and the previous research done towards
achieving these goals. Extractor constructions are measured by viewing d and m
as functions of the source parameters (n and k) and the required error ε. A recent
result of [16] enables us to rid ourselves of ε and concentrate on the case that ε is
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Table 1

Extracting a constant fraction: m = (1 − α)k for arbitrary α > 0.

Reference min-entropy k Seed length d

[32] k = Ω(n) O(logn)

[24] any k O(log9 n)

[7] k = 2O(
√

log n) O(logn · log log log n)

[17] any k O(log2 n)

Thm. 1.4 any k O(logn · (log logn)2)

optimal any k O(logn)

some fixed small constant.1 We maintain this convention throughout the introduc-
tion.

When constructing extractors, there are two possible objectives: minimizing the
seed length d and maximizing the output size m. It should be noted that the exis-
tence of an optimal extractor (which optimizes both parameters simultaneously, and
matches the known lower bounds due to [14]) can be easily proven using the probabilis-
tic method. Thus, the goal is to match this performance with explicit constructions.
A (family of) extractors is explicit if it can be computed in polynomial time.2

In the remainder of this subsection we survey the currently known explicit extrac-
tors constructions known for the two objectives. (The reader is also referred to [21] for
a more recent survey that covers some subsequent work [25, 26, 22, 9].) Tables 1 and
2 contain some extractor constructions but are far from complete in their coverage of
the mass of work done in this area. In the following paragraphs we focus on extractors
which work for arbitrary min-entropy threshold k.

1. Minimizing the seed length. A lower bound of Ω(logn) on the seed length
was given in [13, 14]. In contrast to the (nonexplicit) optimal extractor, which uses
a seed of length O(log n) to extract all the randomness from the source, explicit
constructions of extractors can optimize the seed length only at the cost of extracting
a small fraction of the randomness. For large k (k = Ω(n)) the extractor of [32] uses
a seed of length O(log n) to extract a constant fraction of the initial randomness.
However, for smaller k, explicit constructions can extract only a polynomial fraction
of the initial randomness (m = k1−α for an arbitrary constant α). This result was
first achieved in [27] for k = nΩ(1) and later extended for any k in [7].

2. Maximizing the output size. Current constructions of explicit extractors can
extract large fractions of the randomness only at the cost of enlarging the seed length.
A general method for increasing the fraction extracted at the cost of enlarging the
seed length was given in [29]. The best extractors that extract all the randomness out
of random sources are constructed this way from extractors which extract a constant
fraction of the randomness. In light of this, we focus our attention on extractors which
extract a constant fraction. The best such explicit extractor is that in [17], which uses
a seed of length O(log2 n).

1Raz, Reingold, and Vadhan [16] give a general explicit transformation that transforms an ex-
tractor with constant error into an extractor with arbitrary small error while harming the other
parameters only slightly more than is necessary. The exact dependence of our results on ε is pre-
sented in section 7.

2More formally, a family E = {En} of extractors is defined given polynomially computable
integer functions d(n),m(n), k(n), ε(n) such that for every n, En : {0, 1}n × {0, 1}d(n) → {0, 1}m(n)

is a (k(n), ε(n))-extractor. The family is explicit in the sense that En can be computed in time
polynomial in n + d(n).
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Table 2

Optimizing the seed length: d = O(logn). All the results are stated for constant ε. α is an
arbitrary small constant.

Reference min-entropy k Output length m

[32] k = Ω(n) (1 − α)k

[27] k = nΩ(1) k1−α

[7] k = 2O(
√

log n) Ω( k
log log log n

)

[7] any k k1−α

Thm. 1.6 any k Ω( k
log n

)

optimal any k k

Concluding this presentation, we stress that while there are explicit constructions
which are optimal in any one of the above two parameters (for arbitrary k), the cost
is a polynomial loss in the other.

1.3. New results. We give two constructions, each optimal in one of the pa-
rameters and losing only a polylogarithmic factor in the other. Thus, both come closer
to simultaneously optimizing both parameters. (We remark that a subsequent work
[9] gives constructions that lose only a constant factor in the other parameter.) The
results are stated for constant ε (see section 7 for the exact dependence on ε). In
the first construction we extract any constant fraction of the initial randomness using
a seed of length O(log n · (log log n)2). This improves the best previous such result,
found in [17], which uses a seed of length O(log2 n).

Theorem 1.4. For every n, k, and constant ε, there are explicit (k, ε)-extractors

Ext : {0, 1}n × {0, 1}O(log n·(log log n)2) → {0, 1}(1−α)k, where α > 0 is an arbitrary
constant.3

Using [29], we get the following corollary,4 which also improves the previous best
construction which extract all the randomness by [17].

Corollary 1.5. For every n, k, and constant ε, there are explicit (k, ε)-extractors

Ext : {0, 1}n × {0, 1}O(log n·(log log n)2·log k) → {0, 1}k.
Our second construction uses the optimal seed length (that is, O(log n)) to extract

m = Ω(k/ log n) bits; this improves the best previous result of [7] which could only
extract m = k1−α bits.

Theorem 1.6. For every n, k, and constant ε, there are explicit (k, ε)-extractors
Ext : {0, 1}n × {0, 1}O(log n) → {0, 1}Ω(k/ logn).

Using [7], we get the following corollary (in which the “loss” depends only on k).5

Corollary 1.7. For every n, k, and constant ε, there are explicit (k, ε)-extractors
Ext : {0, 1}n × {0, 1}O(log n) → {0, 1}Ω(k/(log k·log log k)).

3We remark that our construction requires k ≥ 8 log5 n. Nevertheless, theorem 1.4 follows as
stated because the case of k < 8 log5 n was already covered in [7]. This is also the case in the next
theorems.

4In fact, the version of Theorem 1.4 stated above does not suffice to conclude the corollary. To
use the method of [29], we need a version in which the error is 1/polylogn, which follows from our
analysis; see section 7.

5Impagliazzo, Shaltiel, and Wigderson [7] show that an extractor Ext : {0, 1}kO(1) × {0, 1}d →
{0, 1}m can be used to construct an extractor Ext : {0, 1}n× {0, 1}d+O(log n) →{0, 1}Ω(m/ log log k)

for any n.
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1.4. Condensers. The main technical contribution of this paper consists of con-
structions of various “condensers.”6 A condenser is a generalization of an extractor.

Definition 1.8. A (k, k′, ε)-condenser is a function Con : {0, 1}n × {0, 1}d →
{0, 1}n′

such that for every k-source X of length n, the distribution Con(X,Ud) is
ε-close to a k′-source.

Note that an extractor is a special case of a condenser when n′ = k′. Con-
densers are most interesting when k′/n′ > k/n (that is, when the entropy rate of
the output distribution is larger than that of the initial distribution). Such con-
densers can be used to construct extractors via repeatedly condensing the source
until an entropy rate 1 is achieved. In this paper we give a new construction of
condensers. One possible setting of the parameters gives that, for constant ε > 0
and every n and k with k ≥ 8 log5 n, there is an explicit (k,Ω(k), ε)-condenser
Con : {0, 1}n × {0, 1}O(log n·log log n) → {0, 1}k logn. The exact parameters can be
found in section 5.

Somewhat surprisingly, an important component in the construction of the con-
denser above is a condenser that does not condense at all! That is one in which the
entropy rate of the output distribution is smaller than that of the initial distribution.
The usefulness of such objects in constructing extractors is demonstrated in [13] (see
also [23, 32]). We refer to such condensers as “block extraction schemes” and elab-
orate on their role in extractor (and condenser) constructions in section 1.6. In this
paper we give a construction of a block extraction scheme that uses a seed of length
O(log log n). The exact parameters can be found in section 3.

1.5. Transforming general extractors into strong extractors. Speaking
informally, a strong extractor is an extractor in which the output distribution is
independent of the seed.7 In some applications of extractors, it is beneficial to have
the strong version. Most extractor constructions naturally lead to strong extractors,
yet some (with examples being the constructions of [24, 7] and this paper) are not
strong or are difficult to analyze as strong. We solve this difficulty by giving a general
explicit transformation which transforms any extractor into a strong extractor with
essentially the same parameters. Exact details are given in section 8.

1.6. Technique. In this section we attempt to explain the main ideas in this
paper without delving into technical details.

High level overview. In contrast to the latest papers on extractors [27, 17, 7]
we do not use Trevisan’s paradigm. Instead, we revisit [13] and attempt to construct
block-sources (a special kind of source which allow very efficient extraction). Following
[23, 12], we observe that, when failing to produce a block-source, the method of [13]
“condenses” the source. This enables us to use a “win-win” case analysis, as in [6, 7],
which eventually results in a construction of a condenser. Our extractors are then
constructed by repeated condensing. A critical component in obtaining improved
parameters is derandomizing the construction of block-sources of [13].

Block-sources. We begin by describing a special kind of source called block-
sources (a precise definition appears in Definition 2.3) that allow for the construction
of extractors with very efficient parameters. Consider a source distribution X that

6The notion of condensers was also used in [15]. While similar in spirit, that paper deals with a
completely different set of parameters and uses different techniques. The notion of condensers also
comes up in subsequent work [25, 2, 9] as a tool for constructing extractors and expander graphs.

7In the original paper [13] strong versions of extractors were initially defined and constructed,
and the notion of a “nonstrong” extractor was later given by Ta-Shma [24].
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is composed of two independent concatenated distributions X = (X1, X2), where X1

is a k1-source and X2 is a k2-source. Extractors for this special scenario (which are
called block-source extractors) can be constructed by composing two extractors. An
extractor with optimal seed length can be used to extract random bits from X2, and
these bits (being independent of X1), can be used as seed to extract all the randomness
from X1 using an extractor with large output. (Note that with today’s best extractors
this construction uses the optimal seed length to extract all the randomness from X1,
as long as k2 is at least polylog(n).) The requirement that X1 and X2 be independent
could be relaxed in the following way (which was suggested in [3]). Intuitively, it
is sufficient that X1 “contains” k1 random bits, and X2 “contains” k2 random bits
even conditioned on X1. Such sources are called block-sources.8 Thus, extracting
randomness from general sources can be achieved by giving a construction which uses
few random bits to transform a general source into a block-source and by using a
block-source extractor.

This approach was suggested by Nisan and Zuckerman in [13]. They constructed
a “block extraction scheme.” That is a condenser that given an arbitrary source X,
uses few random bits to produce a new source B (called a block) which is shorter than
the initial source, and contains a large fraction of the initial randomness. This means
that the distribution (B,X) meets the first requirement of block-sources, i.e., the first
block contains randomness. Intuitively, to meet the second requirement one should
give an upper bound on the amount of randomness contained in B, and conclude
that there is some randomness in X which is not contained in B. However, in the
construction of Nisan and Zuckerman such an upper bound can be achieved only
“artificially” by setting the parameters so that the length of B is smaller than k. This
indeed gives that B does not “steal all the entropy” in the source. However, this
approach has a costly effect. In the analysis of Nisan and Zuckerman the amount
of randomness that is guaranteed to be in B is proportional to its length. Thus,
decreasing the length of B reduces the amount of entropy that can be guaranteed. In
particular, when k <

√
n and the length of B is chosen in the way explained above,

it may be the case that B contains no randomness. As a result, the extractors of [13]
do not work when k <

√
n.

Condensing by a “win-win” analysis. A way to get around this problem was
suggested in [23, 12]. We now explain a variant of the argument in [12] that we use
in our construction. Recall that we want to obtain a large block B that does not
“steal all the entropy.” An important observation is that the case in which the block
extraction scheme fails to produce such a block is also good in the sense that it means
that B “stole all the entropy from the source.” As B is shorter than the initial source,
it follows that it is more condensed. We now explain this approach in more detail.

Suppose we use the block extraction scheme to produce a large block B (say, of
length n/2) and consider the distribution (B,X). Recall that, for our purposes, to
get a useful block-source it suffices that X contains very few random bits that are not
contained in B. An important observation is that when the procedure above fails to
construct a block-source, this happens because (almost) all the randomness “landed”
in B. In this case, we obtained a block that is more condensed than the initial source
X. (It has roughly the same amount of randomness and half the length.)

Using this idea repeatedly, at each step either we construct a block-source (from
which we can extract randomness) or we condense the source. There is a limit to

8More precisely, a (k1, k2)-block-source is a distribution X = (X1, X2) such that X1 is a k1-
source, and for every possible value x1 of X1, the distribution of X2, conditioned on the event that
X1 = x1, is a k2-source.
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how much we can condense the source. Certainly, when the length reduces below the
original entropy k, no further condensing is possible. This means that by running this
procedure repeatedly enough times we eventually obtain a block-source.

The outcome of the procedure above consists of several “candidate” distributions,
where one of them is a block-source. Not knowing which is the “right one,” we run
block-source extractors on all of them (using the same seed). We know that one
of the distributions we obtain is close to uniform. It turns out that the number of
candidate distributions is relatively small (about log(n/k)). Consider the distribution
obtained by concatenating the output distributions of the block-source extractors.
This distribution contains a portion which is (close to being) uniformly distributed
on roughly k bits and thus has entropy close to that of the initial source. Moreover,
the distribution is on strings of length not much larger than k (the length is roughly
k log(n/k)). We conclude that the aforementioned distribution is more condensed
than the initial source and that the procedure described above is a condenser!

We can now obtain an extractor construction by repeatedly condensing the source
(using fresh randomness in each iteration) until it becomes close to uniform. However,
it turns out that the parameters of the constructed condenser are not good enough to
yield a good extractor. Our actual construction of condensers is achieved by using the
procedure above with an improved version of the block extraction scheme of Nisan
and Zuckerman.

Improved block extraction. Let us delve into the parameters. The block
extraction scheme of Nisan and Zuckerman spends O(log n) random bits when pro-
ducing a block B of length n/2 and guarantees that B is an Ω(k/ log(n/k))-source.
This turns out to be too costly and we cannot run our condenser construction.

One problem is that the number of random bits used by the block extraction
scheme is too large for our purposes. Note that the block extraction scheme already
spends O(log n) random bits. Using the strategy described above, we will need to run
it roughly log(n/k) times, which results in a large seed length (log n · log(n/k)). We
overcome this problem by derandomizing the construction of Nisan and Zuckerman.
We reduce the number of random bits used from logn to log log n, which allows us to
run it a larger number of times while still obtaining short seed length.

A second problem is that we want the block B to contain a constant fraction of
the initial randomness k. The analysis of Nisan and Zuckerman guarantees only that
the block B contains Ω(k/ log(n/k)) random bits. Note that while this quantity is
smaller than we want, it does achieve the goal when k is a constant fraction of n. We
introduce another modification to the construction of Nisan and Zuckerman in order
to increase the randomness in B. The idea is to reduce the case of k = o(n) to the
case of k = Ω(n). This is done by error correcting the source prior to using the block
extraction scheme. We give a nonconstructive argument to show that every error
corrected random source has a “piece” of length k which is an Ω(k)-source. When
analyzing the scheme, we use the analysis of Nisan and Zuckerman on this piece.
Intuitively, this enables the analysis of the block extraction scheme to be carried out
on the condensed piece, where it performs best.

1.7. Organization of the paper. Section 2 includes some preliminaries. In
section 3 we construct a block extraction scheme. In section 4 we use the method of
[12] to show that when using the block extraction scheme either we get a block-source
or we condense the source. In section 5 we run the block extraction scheme recursively
and obtain condensers. In section 6 we use the condensers to construct extractors.
Section 7 gives the exact dependence of our extractors on the error parameter ε. In
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section 8 we show how to transform arbitrary extractors into strong extractors.

2. Preliminaries.

2.1. Probability distributions. Given a probability distribution P , we use
the notation PrP [·] to denote the probability of the relevant event according to the
distribution P . We sometimes fix some probability space (namely, a set Ω and a
distribution over Ω) and then use the notation Pr[·] to denote the probability of
events in this probability space. We use Pr[E1, E2] to denote Pr[E1 ∩ E2].

We need the following notion of “collision probability.”
Definition 2.1. For a distribution P over Ω, define C(P ) =

∑
ω∈Ω P (ω)2. In

other words, C(P ) is the probability that two independent samples from P give the
same outcome. We refer to C(P ) as the collision probability of P .

We need the following useful lemma.
Lemma 2.2. Let V be ρ-close to a k-source. Define L = {v|Pr[V = v] >

2−(k−1)}. It follows that Pr(V ∈ L) < 2ρ.
Proof. Let V ′ be a k-source such that V and V ′ are ρ-close. We have that

|PrV (L) − PrV ′(L)| < ρ. However, V ′ assigns small probability to all elements in
L, whereas V assigns large probability to these elements. This gives that PrV (L) −
PrV ′(L) > PrV ′(L), which means that PrV ′(L) < ρ. Using the inequality above, we
get that PrV (L) < 2ρ.

2.2. Block-sources. Block-sources are random sources which have a special
structure. The notion of block-sources was defined in [3].

Definition 2.3 (see [3]). Two random variables (X1, X2) form a (k1, k2)-block-
source if X1 is a k1-source, and for every possible value x1 of X1, the distribution of
X2, given that X1 = x1, is a k2-source.

Block-source extractors are extractors which work on block-sources.
Definition 2.4. A (k, t, ε)-block-source extractor is a function Ext : {0, 1}n1 ×

{0, 1}n2 × {0, 1}d → {0, 1}m such that for every (k, t)-block-source (X1, X2) (where
X1, X2 are of length n1,n2, respectively), the distribution Ext(X1, X2, Ud) is ε-close
to Um.

Block-sources allow the following composition of extractors.
Lemma 2.5 (implicit in [13]; also appears in [23]). If there exist an explicit

(k, ε1)-extractor Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m, and an explicit (t, ε2)-extractor
Ext2 : {0, 1}n2 × {0, 1}d2 → {0, 1}d1 , then there exists an explicit (k, t, ε1 + ε2)-block-
source extractor Ext : {0, 1}n1 ×{0, 1}n2 ×{0, 1}d2 → {0, 1}m, where Ext(x1, x2; y) =
Ext1(x1, Ext2(x2, y)).

Following [13, 23, 32], we can use the above theorem to compose two extractors:
one which optimizes the seed length and another which optimizes the output length.
The resulting block-source extractor will “inherit” the nice properties of both its
component extractors. Particularly, taking Ext1 to be the extractor of [17] and Ext2
to be the extractor of [7], we get the following block-source extractor.

Corollary 2.6. For all integers n1 ≤ n2, k, and t ≥ log4 n1, there is an
explicit (k, t, 1

n1
+ 1

n2
)-block-source extractor BE : {0, 1}n1×{0, 1}n2×{0, 1}O(log n2) →

{0, 1}k.
Thus, to construct extractors which achieve short seed length and large output

simultaneously, it suffices to use few random bits and convert any k-source into a
(k′, log4 n)-block-source such that k′ is not much smaller than k.

This turns out to be a tricky problem. No such scheme (efficient in terms of
random bits spent) is known when k <

√
n.
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2.3. Error correcting codes. Our construction uses error correcting codes.
Definition 2.7. An error correcting code with distance d is a function

EC : {0, 1}n → {0, 1}n̄ such that for every x1, x2 ∈ {0, 1}n such that x1 	= x2,
dHamming(EC(x1), EC(x2)) ≥ d. (Here dHamming(z1, z2) denotes the Hamming dis-
tance between z1, z2). An error correcting code is explicit if EC can be computed in
polynomial time.

We use the following construction of error correcting codes.
Theorem 2.8 (see [8]). There exist constants 0 < b < a and an explicit error

correcting code EC : {0, 1}n → {0, 1}an with distance bn.

2.4. Almost l-wise independent distributions. We use the following notion
of efficiently constructible distributions.

Definition 2.9. Call a distribution P on n bits, polynomially constructible using
u(n) bits,9 if there exists an algorithm A : {0, 1}u(n) → {0, 1}n which runs in time
polynomial in n such that the distribution A(Y ), where Y is chosen uniformly from
{0, 1}u(n), is identical to P .

Naor and Naor [10] defined “almost l-wise independent distribution.”
Definition 2.10 (see [10]). A distribution (P1, . . . , Pn) over {0, 1}n is said to

be (ε, l)-wise dependent with mean p if for every subset {i1, . . . , il} of [n], the distri-
bution (Pi1 , . . . , Pil) is ε-close to the distribution over l bit strings, where all bits are
independent and each of them takes the value 1 with probability p.

Naor and Naor showed that almost l-wise independent distributions can be con-
structed using very few random bits.

Theorem 2.11 (see [10]). For every n, l, and ε, an (ε, l)-wise dependent distri-
bution with mean 1/2 is polynomially constructible using O(log log n + l + log(1/ε))
bits.

We require distributions that are almost l-wise independent with mean different
than 1/2. Nevertheless, it is very easy to construct such distributions from Theorem
2.11.

Corollary 2.12. For every n, ε, and q, an (ε, 2)-wise dependent distribution
with mean 2−q is polynomially constructible using O(log log n + q + log(1/ε)) bits.

Proof. We use Theorem 2.11 to construct a distribution that is (ε, 2q)-wise depen-
dent with mean 1/2 over qn bits. Note that this costs O(log log(qn) + q+ log(1/ε)) =
O(log log n+ q+ log(1/ε)) bits. We denote these bits by P1, . . . , Pqn. We divide them
into n blocks of length q and define n bits P ′

1, . . . , p
′
n as follows: P ′

i is set to “one” if
and only if all the bits in the ith block are “one.” In particular, each P ′

i is a function
of the bits in the ith block. It follows that the distribution P ′

1, . . . , P
′
n is (ε, 2)-wise

dependent.
Given (X1, . . . , Xn) that form a (0, 2)-wise dependent distribution, Chebyshev’s

inequality gives that for every 0 < λ < 1,

Pr

(∣∣∣∣∣
∑

1≤i≤n

Xi − pn

∣∣∣∣∣ > λpn

)
<

1

λ2pn
.

The same argument can be applied to (ε, 2)-wise dependent distributions and gives
the following.

9Naturally, one should speak about a sequence P = {Pn} of distributions for this to make sense.
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Lemma 2.13 (see [10]). If (X1, . . . , Xn) is an (ε, 2)-wise dependent distribution
with mean p, then for every 0 < λ < 1,

Pr

(∣∣∣∣∣
∑

1≤i≤n

Xi − pn

∣∣∣∣∣ > λpn

)
< O

(
1

λ2pn
+
√
ε

)

as long as ε < λ4p4

25 .

3. Improved block extraction. Some constructions of block-sources from gen-
eral sources [13, 23, 32] rely on a building block called a “block extraction scheme.” In
our terminology a block extraction scheme is a condenser. Nevertheless, we choose to
redefine this notion, as it is more convenient to present the parameters in a different
way.

Definition 3.1. Let n, k, and r be integers and ρ, γ be numbers. A function B :
{0, 1}n×{0, 1}d → {0, 1}n/r is a (k, ρ, γ)-block extraction scheme if it is a (k, γ·

(
k
r

)
, ρ)-

condenser.
In other words, a block extraction scheme takes a k-source of length n and uses a

seed to produce a distribution (which we call a block) of length n/r. The parameter γ
measures the entropy rate of the new distribution in terms of the entropy rate of the
initial distribution. For example, when γ = 1 this means that the two distributions
have the same rate and the block extraction scheme “preserves” the entropy rate in
the source. In this section, we discuss constructions in which γ < 1, meaning that the
entropy rate in the output distribution is smaller than that of the initial distribution.

Using this notation, Nisan and Zuckerman proved the following theorem.
Lemma 3.2 (see [13]). There exists a constant c > 0 such that for every

n, k, r, and ρ ≥ 2−ck/r there is an explicit (k, ρ,Ω( 1
logn/k ))-block extraction scheme

B : {0, 1}n × {0, 1}O(log n log 1/ρ) → {0, 1}n/r.
We prove the following lemma, which improves Lemma 3.2 for some choice of

parameters, namely, for 1 < r ≤ log n and ρ = 1/ logO(1) n.
Lemma 3.3. There exists a constant c > 0 such that for every n, k, r, and

ρ ≥ c
√

r
k there is an explicit (k, ρ,Ω(1))-block extraction scheme B : {0, 1}n ×

{0, 1}O(log log n+log(1/ρ)+log r) → {0, 1}n/r.
Lemma 3.3 improves Lemma 3.2 in the following two respects (as long as one

settles for small r ≤ log n and large ρ > 1/ logO(1) n):
1. We reduce the number of random bits spent by the block extraction scheme.

In [13] the number of random bits is logarithmic in n, whereas in Lemma 3.3
the number of random bits is double logarithmic in n.
This is achieved by derandomizing the proof of Nisan and Zuckerman us-
ing almost l-wise independent distributions. In section 3.1 we describe the
property that a distribution needs to have to allow for the Nisan–Zuckerman
analysis, and we construct a small sample space with this property.

2. We increase the amount of randomness guaranteed in the output block. In [13]
the amount of randomness guaranteed in the output block B is Ω( k

r log(n/k) ).

Lemma 3.3 guarantees that B contains Ω(kr ) random bits.
Note that the two quantities are the same when k = Ω(n). Indeed, our
improvement is achieved by reducing the case of k = o(n) to that of k = Ω(n).
We start from a k-source with k = o(n). In section 3.3 we show that once
a random source is error corrected, there are some k indices (to the error
corrected source) which induce an Ω(k)-source. This induced source has a
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constant entropy rate. When applying the argument of Nisan and Zuckerman,
our analysis concentrates on this source which allows us to guarantee that the
block contains more randomness. The exact analysis is given in section 3.4.

The remainder of this section is devoted to proving Lemma 3.3.

3.1. The analysis of Nisan and Zuckerman. The block extraction scheme
of Nisan and Zuckerman is obtained by restricting the source to some subset of the
indices which is selected using few random bits. More precisely, they construct a
small sample space of subsets of [n] (having a property that we immediately describe)
and prove that the distribution obtained by sampling an element from a k-source and
restricting it to the indices in a random set from the sample space contains a large
fraction of the initial randomness. In this section we construct a smaller such sample
space which enables us to spend less random bits to construct a block extraction
scheme. We now describe the property used by Nisan and Zuckerman. Intuitively, a
k-source has k random bits “hidden” somewhere.

Definition 3.4. Let n, k, r, and δ be parameters. A distribution S over subsets
of [n] is called r-intersecting for sets of size k with error probability δ if for every
G ⊆ [n] with |G| ≥ k, PrS(|S ∩G| < k

8r ) < δ.
The following is implicit in [13].
Lemma 3.5 (see [13]). There exists some constant c > 0 such that if X is a

k-source on {0, 1}n and S is a distribution over subsets of [n] which is r-intersecting
for sets of size ck

log(n/k) with error probability δ, then the distribution X|S (obtained

by sampling x from X and s from S and computing x|s) is (4
√
δ + 2−Ω(k))-close to

an Ω( k
r log(n/k) )-source.

Nisan and Zuckerman use a construction based on O(log(1/δ))-wise independence
to prove the following lemma.

Lemma 3.6 (see [13]). For every n, k, r, and δ > 2−O(k/r) there is a distribu-
tion over subsets of [n] that are of size n/r and this distribution is r-intersecting for
sets of size k with error probability δ. Furthermore, the distribution is polynomially
constructible using O(log n · log(1/δ)) bits.

Using Lemma 3.5, this immediately implies the block extraction scheme of Lemma
3.2. We will be mostly interested in the case when r is small (say r ≤ log n) and δ

is large, (say δ ≥ log−O(1) n). For this setup we can save random bits and make the
dependence on n double logarithmic.

Lemma 3.7. There exists a constant c > 0 such that for every n, k, r, and δ >
cr/k, there is a distribution over subsets of [n] that are of size n/r and this distribution
is r-intersecting for sets of size k with error probability δ > 0. Furthermore, the
distribution is polynomially constructible using O(log log n + log r + log(1/δ)) bits.

We prove this lemma in the following subsection.

3.2. A small sample space for intersecting large sets. We now prove
Lemma 3.7. We view distributions over n bit strings as distributions over subsets
of [n]. More specifically, we identify the n bit values (W1, . . . ,Wn) with the set
{i|Wi = 1}. We construct random variables (W1, . . . ,Wn) with the following proper-
ties:

• For every 1 ≤ i ≤ n, Pr(Wi = 1) ≈ 1/2r.
• For every set G ⊆ [n] with |G| ≥ k, the probability that the sum of the Wi’s

for i ∈ G is far from the expected |G|/2r is small. (It is important to note
that we allow the “small probability” to be quite large, since we are shooting
for large δ.)
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Note that the second condition gives both the intersecting property and the fact
that the selected sets are rarely of size larger than n/r (by considering G = [n]). We
are interested in constructing such a distribution using as few random bits as possible.
A pairwise independent distribution has these properties but takes logn random bits
to construct. We can do better by using the “almost l-wise independent” distributions
of [10].

Construction 3.8. Let q be an integer such that 1/4r < 2−q ≤ 1/2r and
ε = min(cδ2, c/r4), where c > 0 is a constant that will be determined later. Let
W = (W1, . . . ,Wn) be the (ε, 2)-wise dependent distribution with mean 2−q guaranteed
in Corollary 2.12. Note that this requires O(log log n+ log r+ log(1/ε)) random bits.

The next lemma follows.
Lemma 3.9. There exist constants c, c′ > 0 such that when using construction

3.8 with the constant c, for every δ > c′ · r/k the distribution W has the following
properties:

1. For every set G ⊆ [n] such that |G| ≥ k, Pr(
∑

i∈G Wi <
k
8r ) < δ

3 .

2. Pr(
∑

1≤i≤n Wi >
n
r ) < δ

3 .
Proof. We use Lemma 2.13 to deduce both parts of the lemma and we use the

fact that the Wi’s are (ε, 2) dependent with mean p = 1/2q, where 1/4r < p ≤ 1/2r.
We start by proving the first part. For this part, we set λ = 1/2 and assume without
loss of generality that |G| = k. Note that{∑

i∈G

Wi <
k

8r

}
⊆

{∑
i∈G

Wi <
k

2 · 2q

}
⊆

{∣∣∣∣∣
∑
i∈G

Wi −
k

2q

∣∣∣∣∣ > λk

2q

}
.

Thus, it suffices to bound the probability of the latter event. To meet the condition

in Lemma 2.13 we need to make sure that ε < λ4p4

25 = Θ( 1
r4 ). The requirement that

ε < c/r4 takes care of this condition by choosing a sufficiently small constant c > 0.
Applying Lemma 2.13, we get that the probability of deviation from the mean is
bounded by O(r/k + δ

√
c). We have that r/k ≤ δ/c′. We can set c′ to be large

enough so that O(r/k + δ
√
c) ≤ δ/6 + O(δ

√
c). This is bounded from above by δ/3

for small enough c > 0.
The proof of the second item is similar. We choose λ = 1 and note that{ ∑

1≤i≤n

Wi >
n

r

}
⊆

{ ∑
1≤i≤n

Wi >
2n

2q

}
⊆

{∣∣∣∣∣
∑

1≤i≤n

Wi −
n

2q

∣∣∣∣∣ > λn

2q

}
.

Using the fact that n ≥ k, we can repeat the computations above and conclude
that the probability of this event is also bounded by O(δ

√
c). The lemma follows by

choosing a sufficiently small c > 0.
We are ready to prove Lemma 3.7.
Proof of Lemma 3.7. The first item of Lemma 3.9 shows that W is a distribution

over subsets of [n] that is r-intersecting for sets of size k with error probability δ/3.
The second item shows that W could be transformed into a distribution over subsets of
size exactly n/r without changing it by much. This change is done by adding arbitrary
indices to the set if its size is smaller than n/r and deleting arbitrary indices if its size
is larger than n/r. Adding indices will not spoil the intersecting property, and the
probability that we need to delete indices is bounded by δ/3. The lemma follows.

3.3. Error corrected random sources. In this subsection we develop another
tool required for the proof of Lemma 3.3 and show that if we apply an error correcting
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code to an arbitrary k-source, we obtain a k-source which has k indices which induce
an Ω(k)-source.

In the remainder of this section we fix a, b, and EC to be as in Theorem 2.8. For
a vector x ∈ {0, 1}n and a set T ⊆ [n], we use x|T to denote the restriction of x to T .

Lemma 3.10. Let X be a k-source on {0, 1}n. There exists a set T ⊆ [an] of size
k such that EC(X)|T is an Ω(k)-source.

Lemma 3.10 is an immediate corollary of Lemma 3.11 which was mentioned to us
by Russell Impagliazzo. A very similar argument also appears in [23].

Lemma 3.11 (see [5]). Let X be a k-source on {0, 1}n. For every v, there exists
a set T ⊆ [an] of size v such that EC(X)|T is a 1

2 · log 1/(2−k + (1 − b
a )v)-source.

The following fact states that if a distribution has low collision probability, then
it has high min-entropy. This follows because a distribution with low min-entropy has
an element which gets large probability. This element has a large chance of appearing
in two consecutive independent samples.

Fact 3.12. If C(P ) ≤ 2−k, then P is a (k/2)-source.
Our goal is to show that there exists a subset of [an] on which the error corrected

source has low collision probability. We will show that a random (multi-) set has this
property.

Proof of Lemma 3.11. Consider the following probability space: X1, X2 are in-
dependently chosen from the distribution X, and T = (I1, . . . , Iv) is chosen indepen-
dently, where each Ij is uniformly distributed in [an]. Consider the following event:
B = {EC(X1)|T = EC(X2)T }. We first show that the probability of B is small:

Pr(B) = Pr(B|X1 = X2) Pr(X1 = X2)(3.1)

+
∑

a1 �=a2

Pr(B|X1 = a1, X2 = a2) Pr(X1 = a1, X2 = a2).

X is a k-source, and therefore Pr(X1 = X2) ≤ 2−k. For given a1 	= a2, we know
that the distance between EC(a1) and EC(a2) is at least bn. Thus, any of the Ij ’s
has a chance of b

a to “hit” a coordinate where EC(a1) and EC(a2) disagree. Having
chosen v such coordinates, the probability that none of them differentiate between
EC(a1) and EC(a2) is bounded by (1 − b

a )v. Plugging this into (3.1) we get that

Pr(B) ≤ 2−k +

(
1 − b

a

)v

.

In the sample space we considered, T was chosen at random. Still, by averaging there
exists a fixed value T ′ of the random variable T for which the above inequality holds.
For this T ′ we have that the probability that independently chosen X1 and X2 have
EC(X1)|T ′ = EC(X2)|T ′ is small. In other words, we have that

C(EC(X)|T ′) ≤ 2−k +

(
1 − b

a

)v

.

The lemma immediately follows from Fact 3.12.

3.4. Construction of the block extraction scheme. In this subsection we
put everything together and prove Lemma 3.3. We are ready to define our block
extraction scheme. Recall that EC is the error correcting code from Theorem 2.8 and
a and b are the constants whose existence is guaranteed by that theorem.
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Construction 3.13 (block extraction scheme). Given n, k, r, ρ, and a constant
e (which will be fixed later), let d = O(log log n + log r + log(1/ρ)) be the number of
bits used by Lemma 3.7 to construct a distribution over subsets of [an] that is ar-
intersecting for sets of size ek with error probability (ρ4 )2. For y ∈ {0, 1}u, let Sy be
the set defined by y in the intersecting distribution. We now define

B(x, y) = EC(x)|Sy
.

We are finally ready to prove Lemma 3.3.
Proof of Lemma 3.3. Let V denote the distribution EC(X). Lemma 3.10 implies

that there exists a set T ⊆ [an] of size k such that V |T is an ηk-source (for some
constant η > 0). Consider the distribution S ∩ T (the restriction of the intersecting
distribution to the coordinates of T ). Note that the distribution S∩T is a distribution
over subsets of T . We claim that it has the same intersecting properties of S, namely,
that S ∩ T is ar-intersecting for sets of size ek with error probability (ρ4 )2. (This
follows from the definition, as every subset G ⊆ T is in particular a subset of [n].)
We now use Lemma 3.5 on the source V |T using the intersecting distribution S ∩ T .
Let us first check that the conditions of Lemma 3.5 are met. We fix the constant e
of Construction 3.13, setting e = (cη)/(− log η), where c is the constant from Lemma
3.5. The conditions of Lemma 3.5 are met since V |T is an ηk-source of length k and we

have a distribution consisting of intersecting sets of size ek = c(ηk)
log(k/(ηk)) . We conclude

from the lemma that V |S∩T is ρ-close to an Ω(k/r)-source. We now claim that V |S is
ρ-close to an Ω(k/r)-source. This is because adding more coordinates cannot reduce
the entropy. The lemma follows, as we have shown that B(X,Ud) = V |S is ρ-close to
an Ω(k/r)-source.

4. Partitioning to two “good” cases. Let B be the block extraction scheme
constructed in the previous section and let X be a k-source. We consider the distri-
bution (B(X,Y ), X) (where Y is a random seed that is independent of X). Following
the intuition explained in section 1.6, we would like to argue that for every k-source
X, at least one of the following good cases occurs:

• (B(X,Y ), X) is (close to) a block-source.
• B(X,Y ) is (close to) having a higher entropy rate than X; that is, B(X,Y )

is more condensed than X.
In this section we show that, although the statement above does not hold as

stated, we can prove a more technical result with the same flavor.
Remark 4.1. Here is a counterexample for the statement above assuming k ≤ n/2.

To make the example more simple, we assume that the block extraction scheme does
not error correct the source prior to choosing a subset. Consider a source X which
tosses a random bit b and, depending on the outcome, decides whether to sample from
a distribution X1, in which the first k bits are random and the remaining n− k bits
are fixed, or from a distribution X2 that is k-wise independent. X1 corresponds to the
first good case (and yields a block-source), as B is expected to hit about k/2 random
bits. X2 corresponds to the second (and yields a condensed block), as the block that
B outputs contains n/2 bits and thus “steals all the randomness.” However, the
“combination distribution” X does not satisfy any of the two good cases.

A way of getting around this problem was devised in [12]. The idea is to argue
that the example in the remark above is the “worst possible” and show that any
source X can be partitioned into two sources, where for each of them one of the good
cases holds. To make this formal, we introduce the following notation.
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Definition 4.2 (conditioning random variables). Fix some probability space. Let
X be a random variable and E be an event with positive probability. We define the
probability distribution of X conditioned on E, which we denote by P(X|E) as follows:
For every possible value x in the range of X,

P(X|E)(x) =

{
Pr(X = x|E) Pr(X = x,E) > 0
0 Pr(X = x,E) = 0

• For a random variable X and an event E we say that X is a k-source in E
if P(X|E) is a k-source.

• For two random variables A,B and an event E, we say that the pair (A,B)
is a (k1, k2)-block-source in E if P((A,B)|E) is a (k1, k2)-source.

We use the convention that if E has zero probability, then any random variable is a
k-source (or (k1, k2)-block-source) in E.

With this notation, the precise statement is that, given some k-source X and
uniformly distributed seed Y for the block extraction scheme, we can partition this
probability space into three sets: The first has negligible weight and can be ignored.
In the second, the block extraction scheme produces a block-source, and in the third,
the block extraction scheme condenses the source. We now state this precisely.

For the remainder of this section we fix the following parameters:
• a k-source X over n bit strings,
• an (k, ρ, γ) block extraction scheme B : {0, 1}n × {0, 1}u → {0, 1}n/r for

r ≥ 2,
• a parameter t. (Intuitively, t measures how much randomness we want the

second block of a block-source to contain.)
We now fix the following probability space that will be used in the remainder of this
section. The probability space is over the set Ω = {0, 1}n×{0, 1}u and consists of two
independent random variables: X (the given k-source) and Y (uniformly distributed
over {0, 1}u).

Lemma 4.3. There exists a partition of {0, 1}n × {0, 1}u into three sets, BAD,
BLK, CON , with the following properties:

1. Pr(BAD) ≤ 2(ρ + 2−t).
2. (B(X,Y ), X) is a (γkr − t, t)-block-source in BLK.
3. B(X,Y ) is a (k − 2t)-source in CON .

In the remainder of this section we use an idea similar to that in [12] to prove
Lemma 4.3. This idea is to partition the elements in the probability space into
three sets according to their “weight”: The “small weight” elements form the set
CON . Intuitively the small weight elements induce a source of high min-entropy.
The “medium-weight” elements form the set BLK. Intuitively the medium weight
elements induce a source of medium min-entropy. Thus, they contain some (but not
all!) of the min-entropy of the initial source. The fraction of “large weight” elements
is bounded by ρ (the error parameter of the block extraction scheme). These elements
form the set BAD and can be ignored because of their small fraction.

The following definition is motivated by the intuition above. (The partition of
Lemma 4.3 will be based on the following partition.)

Definition 4.4. We partition Ω = {0, 1}n×{0, 1}u according to the “weight” of
the elements:

LRG = {(x, y) ∈ Ω | 2−( γk
r −1) < Pr(B(X,Y ) = B(x, y))}

MED = {(x, y) ∈ Ω | 2−(k−t) < Pr(B(X,Y ) = B(x, y)) ≤ 2−( γk
r −1)}

SML = {(x, y) ∈ Ω | Pr(B(X,Y ) = B(x, y)) ≤ 2−(k−t)}.
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We prove the following lemma.
Lemma 4.5. The sets LRG,MED, and SML have the following properties:
1. Pr(LRG) ≤ 2ρ.
2. (B(X,Y ), X) is a (γkr − log 1

Pr(MED) − 1, t)-block-source in MED.

3. B(X,Y ) is a (k − (t + log 1
Pr(SML) ))-source in SML.

Proof of Lemma 4.5.
Proof of first item. We apply Lemma 2.2, choosing V = B(X,Y ). Note that V is

guaranteed to be ρ-close to a (γk/r)-source and therefore, by the lemma, Pr(LRG) ≤
2ρ.

Proof of second item. Note that we need to prove the following:

• For every (x, y)∈MED, Pr(B(X,Y ) =B(x, y)|MED)≤2−( γk
r −log 1

Pr(MED)−1).
• For every (x, y) ∈ MED, Pr(X = x|B(X,Y ) = B(x, y),MED) ≤ 2−t.

For the first statement, we use the following inequality: For every two events E1, E2,

Pr(E1|E2) =
Pr(E1 ∩ E2)

Pr(E2)
≤ Pr(E1)

Pr(E2)
.(4.1)

Applying this rule on the first statement gives

Pr(B(X,Y ) = B(x, y)|MED) ≤ Pr(B(X,Y ) = B(x, y))

Pr(MED)

≤ 2−( γk
r −1)

Pr(MED)
≤ 2−( γk

r −log 1
Pr(MED)−1).

Here we used the definition of MED.
We now prove the second statement:

Pr(X = x|B(X,Y ) = B(x, y),MED) =
Pr(X = x,B(X,Y ) = B(x, y),MED)

Pr(B(X,Y ) = B(x, y),MED)
.

Note that whether a given pair (x, y) is in the set MED depends only on the value
B(x, y). Thus, {B(X,Y ) = B(x, y),MED} = {B(X,Y ) = B(x, y)} because when
B(X,Y ) = B(x, y) for (x, y) ∈ MED, we already know that (X,Y ) ∈ MED. Thus,

=
Pr(X = x,B(X,Y ) = B(x, y))

Pr(B(X,Y ) = B(x, y))
≤ Pr(X = x)

Pr(B(X,Y ) = B(x, y))
≤ 2−k

2−(k−t)
= 2−t,

where the last inequality follows from the fact that X is a k-source and from the
definition of MED.

Proof of the third item. We need to prove that for (x, y) ∈ SML,

Pr(B(X,Y ) = B(x, y)|SML) ≤ 2−(k−(t+log 1
Pr(SML) )).

The proof is similar to the proof of the first part in the second item. More precisely,
we use the rule (4.1) above. We argue that

Pr(B(X,Y ) = B(x, y)|SML) ≤ Pr(B(X,Y ) = B(x, y))

Pr(SML)

≤ 2−(k−t)

Pr(SML)
≤ 2−(k−(t+log 1

Pr(SML) ))

We are now ready to prove Lemma 4.3.
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Proof of Lemma 4.3. We need to slightly change the partition above. The sets
LRG,MED, and SML are almost the partition we want. We need only avoid a
setup in which the sets MED or SML are too small, since in this case the effect of
conditioning is too costly. Still, if one of the sets is very small, we can safely add it to
the “bad” elements and ignore it. This is the intuition behind the following partition,
which partitions {0, 1}n × {0, 1}u into three sets:

1. The set BAD will contain all (x, y) ∈ LRG. It will also contain all (x, y) ∈
SML if Pr(SML) < 2−t, and all (x, y) ∈ MED if Pr(MED) < 2−t.

2. The set BLK (which corresponds to the set MED) contains all (x, y) ∈ MED
if Pr(MED) ≥ 2−t. (Thus, BLK is empty if Pr(MED) < 2−t.)

3. The set CON (which corresponds to the set SML) contains all (x, y) ∈ SML
if Pr(SML) ≥ 2−t. (Thus, BLK is empty if Pr(SML) < 2−t.)

Lemma 4.3 follows from Lemma 4.5.

5. Constructing condensers. In this section we use a win-win analysis as
outlined in section 1.6 to construct a condenser. The main theorem of this section is
the following.

Theorem 5.1. For every n and k such that k ≥ 8 log5 n and 2 ≤ r ≤ log2 n, there

is an explicit (k,Ω(k/r), 1/log2 n)-condenser Con : {0, 1}n×{0, 1}O( log(n/k)·log log n
log r +logn)

→ {0, 1}
k log(n/k)

r log r .
It is helpful to consider two particular corollaries. For the first one, we choose

r = 2. This gives that the condenser maintains a constant fraction of the initial
randomness.

Corollary 5.2. For every n and k such that k ≥ 8 log5 n, there is an ex-
plicit (k,Ω(k), 1/ log2 n)-condenser Con : {0, 1}n × {0, 1}O(log(n/k) log log n+logn) →
{0, 1}O(k log(n/k)).

For the second condenser, we choose r = Θ(logn). This gives a condenser with
seed O(log n) that maintains a (1/ log n)-fraction of the initial randomness.

Corollary 5.3. For every n and k such that k ≥ 8 log5 n, there is an explicit
(k,Ω(k/ log n), 1/ log2 n)-condenser Con : {0, 1}n × {0, 1}O(log n) → {0, 1}k/2.

In the remainder of this section we prove Theorem 5.1.

5.1. Getting a block-source. We now implement the idea presented in the
introduction, namely, that running the block extraction scheme recursively eventually
produces a block-source. In the next definition we recursively run the block extraction
scheme. That is, given an n bit string x we use a fresh random seed y of length
O(log log n) to obtain x′ = B(x, y) and continue this process recursively on x′.

Definition 5.4. Let n, k, and r be parameters such that k ≥ 8 log5 n and 1 <
r ≤ log2 n. Let l be a number that will be determined later. Let t = log4 n and
ρ = 1/ log4 n.

We first define sequences of numbers n0, . . . , nl and k0, . . . , kl as follows: ni =
n/ri and ki = k − 2ti. Let l be the smallest integer such that ni < ki. We soon show
that such an l exists and l = O(logr(n/k)).

By Lemma 3.3 there exists a universal constant γ > 0 such that for every i there is
a (ki, ρ, γ)-block extraction scheme Bi : {0, 1}ni ×{0, 1}ui → {0, 1}ni/r. Furthermore,
note that u0 ≥ ui for every 1 ≤ i ≤ l. Let u = u0, and observe that for this choice of
parameters, u = O(log log n).

For every 0 ≤ i ≤ l, we define a function Di : {0, 1}n × ({0, 1}u)l → {0, 1}n/ri in
the following manner:

• D0(x; y1 · · · yl) = x.
• For i > 0, Di(x; y1, . . . , yl) = Bi(Di−1(x; y1, . . . , yl), yi).



1202 OMER REINGOLD, RONEN SHALTIEL, AND AVI WIGDERSON

It is easy to see that Di does not depend on yi+1, . . . , yl, and that for each i, computing
Di takes polynomial time.

Let X be some k-source over n bit strings. Consider the following probabil-
ity space over Ω = {0, 1}n × ({0, 1}u)l. It consists of the random variable X and
an independent random variable Y = (Y1, . . . , Yl) that is uniformly distributed over
({0, 1}u)l. We also define random variables B0, . . . , Bl by Bi = Di(X,Y ). Follow-
ing the intuition in section 1.6, we want to argue that there exists a small l and an
1 ≤ i ≤ l such that (Bi, Bi−1) is a block-source. This does not hold. However, we can
use the machinery developed in section 4 to show a result with the same flavor.

Lemma 5.5. Let t = log4 n. If k ≥ 8 log5 n, then there exists a partition of
{0, 1}n × ({0, 1}u)l into l + 1 sets: BLK1, . . . , BLKl and BAD with the following
properties:

1. Pr(BAD) ≤ 2l(ρ + 2−t).

2. (Bi, Bi−1) is a (k′, t)-block-source in BLKi, (where k′ ≥ γ(k−2lt)
r ).

3. l = O(logr(n/k)).
The remainder of this section is devoted to proving Lemma 5.5. The proof is just

a recursive application of Lemma 4.3 and the reader is encouraged to skip it on a first
reading.

Proof of Lemma 5.5. For 0≤ i≤ l, we recursively define sets BADi, BLKi, CONi ⊆
{0, 1}n× ({0, 1}u)l and a distribution Xi that is defined over strings of length ni. We
define BAD0 = BLK0 = ∅, CON0 = {0, 1}n × ({0, 1}u)l, and X0 = X. For i > 0,
suppose that sets BADi−1, BLKi−1, CONi−1 have already been defined; that the
distribution of Xi−1 is P(Bi−1|CONi−1); and that Xi−1 is a (ki−1)-source. (Note that
this holds for i = 1.) We now recursively define sets BADi, BLKi, CONi that are a
partition of CONi−1 and a distribution Xi.

We first apply Lemma 4.3 on the ith application of the block extraction scheme
Bi on Xi−1 and Yi. It follows that {0, 1}ni−1 × {0, 1}u can be partitioned into three
sets BAD,BLK,CON as in the lemma.

We “pull these events back to the original probability space.” That is, we want
to see these sets as a partition of CONi−1. More precisely, we define

BADi = {(x, y1, . . . , yl) ∈ CONi−1 : Di−1(x, y1, . . . , yl) ∈ BAD},

BLKi = {(x, y1, . . . , yl) ∈ CONi−1 : Di−1(x, y1, . . . , yl) ∈ BLK},

CONi = {(x, y1, . . . , yl) ∈ CONi−1 : Di−1(x, y1, . . . , yl) ∈ CON}.

Note that this is a partition of CONi−1. Recall that Bi = Di(X,Y ) = Bi(Di−1(X,Y ),
Yi). Thus, the distribution P(Bi|CONi) is exactly the same as P(Bi(Xi−1,Yi)|CON).
Similarly, P(Bi|BLKi) is exactly the same as P(Bi(Xi−1,Yi)|BLK). We conclude that the
guarantees of Lemma 4.3 give the following:

1. Pr(BADi) ≤ 2(ρ + 2−t).

2. (Bi, Bi−1) is a (γki−1

r − t, t)-block-source in BLKi.
3. Bi is a ki-source in CONi.

We now define Xi to be the distribution P(Bi|CONi) that is over ni bits. Indeed, we
have that Xi is a ki-source. Thus, we can successfully define sets BADi, BLKi, CONi

such that for each i > 0, these sets are a partition of CONi−1 and the three properties
above hold.
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We now show that at some step i, CONi = ∅. After i steps, the length of the ith
block is ni = n/ri and ki = k−2it. Thus, after l = logr(4n/k) steps we have that the
ith block is of length at most k/4. At this point, kl = k− 2lt ≥ k− 2 log5 n ≥ k/2. It
follows that nl < kl and that there is some i ≤ l for which CONi = ∅, as otherwise the
third item above cannot hold (simply because it is impossible to have a distribution
with more entropy than length).

We define BAD = ∪1≤i≤lBADi. It follows that BLK1, . . . , BLKl and BAD are
a partition of Ω = {0, 1}n × ({0, 1}l)u and the lemma follows.

5.2. Getting a condenser. In the previous section we showed how to get 
 =
O(logr(n/k)) pairs of distributions such that (at least in some sense) one of them is a
block-source. Had we been able to construct a single block-source, we could have used
the block-source extractor of Corollary 2.6 to get an extractor. At this point, however,
we have many candidates (pairs Bi, Bi−1). We now run block-source extractors on
all pairs (using the same seed). It follows that one of the outputs is close to uniform,
and therefore the concatenation of the outputs gives a condenser. We now formalize
this intuition.

Construction 5.6. We use the parameters of Definition 5.4. Let n, k, and r be
parameters such that k ≥ 8 log5 n and 1 < r ≤ log2 n. Let l = logr(4n/k), t = log4 n,
and ρ = 1/ log4 n. Let u = O(log log n) be the seed length for the block extraction

scheme as determined in Definition 5.4. Let k′ = γ(k−2lt)
r .

We define a function Con : {0, 1}n × {0, 1}ul+O(log n) → {0, 1}n′
, where n′ is

determined later. Given inputs x ∈ {0, 1}n and y ∈ {0, 1}ul+O(log n), Con interprets
its second argument as l strings y1, . . . , yl ∈ {0, 1}u and an additional string s of
length O(log n). For 0 ≤ i ≤ l it computes bi = Di(x; y1, . . . , yl) (where Di is taken
from Definition 5.4) and oi = BE(bi, bi−1, s) (where BE is the block-source extractor
of Corollary 2.6 using output length k′). The final output is (o1, . . . , ol) (which makes
n′ = lk′).

We now prove Theorem 5.1.
Proof of Theorem 5.1. Let X be a k-source. For this proof we fix a probability

space consisting of independent random variables X, Y , and Z, where Y = (Y1, . . . , Yl)
is uniformly distributed over ({0, 1}u)l and Z = (Z1, . . . , Zl) is uniformly distributed
over ({0, 1}k′

)l. We now define more random variables as a function of the initial ran-
dom variables. We define random variables B1, . . . , Bl as before by Bi = Di(X,Y ).
We also define random variables O1, . . . , Ol by Oi = BE(Bi−1, Bi). Note that
CON(X,Y ) = (O1, . . . , Ol). We also define random variables (R1, . . . , Rl) over
({0, 1}k′

)l as follows: Let BLK1, . . . , BLKl and BAD be the sets of Lemma 5.5. If
(X;Y1, . . . , Yl) ∈ BAD, we set R = Z. Otherwise, (X;Y1, . . . , Yl) belong to a unique
BLKi. In this case we set Ri = Zi and Rj = Oj for j 	= i. Note that R is a k′-source.
To complete the proof we now show that (R1, . . . , Rl) is (2l(ρ+2−t)+2/ log4 n)-close
to (O1, . . . , Ol). This suffices, as 2l(ρ + 2−t) + 2/ log4 n ≤ 1/ log2 n.

By Lemma 5.5 we have that (Bi, Bi−1) is close to a block-source in BLKi. The
block-source extractor BE has error ε′ = 1/|B2| + 1/|B1|. Recall that the length of
all blocks Bi is at least k′ ≥ log4 n. It follows that ε′ < 2/ log4 n and that Oi is
ε′-close to uniform in BLKi. We conclude that for every i, (R1, . . . , Rl) is ε′-close to
(O1, . . . , Ol) in BLKi. This gives that (R1, . . . , Rl) is ε′-close to (O1, . . . , Ol) in the
complement of BAD. By Lemma 5.5 the probability of BAD is at most 2l(ρ + 2−t).
Thus, (R1, . . . , Rl) is 2l(ρ + 2−t) + ε′ close to (O1, . . . , Ol).

Let us compare the entropy rates of the new source and the initial source. The
new source has min-entropy k′, which is approximately k, and length approximately
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k·log n
k , whereas the initial source had length n = k· nk . Note that log(n/k) < n/k, and

thus Con indeed improves the entropy rate and is a (k, k′, 2l(ρ+2−t)+ ε′)-condenser.
Remark 5.7. Actually, the distribution (O1, . . . , Ol) is a source of a special kind

called a “somewhere random source” by Ta-Shma in [24], where it was shown that
extracting randomness from such sources is easier using special extractors, which are
called “somewhere random mergers.” At this point we could have used Ta-Shma’s
“somewhere random mergers” to extract the randomness from (o1, . . . , ol). Instead,
we use different methods, which exploit the fact that l is relatively small, to obtain
better results.

6. Constructing extractors. In this section we use the condensers constructed
in the previous section to prove the two main theorems (Theorems 1.4 and 1.6).

For Theorem 1.4 we use the condenser of Corollary 5.2 repeatedly (with fresh
seeds) to condense the source until we achieve constant entropy rate. (This is guar-
anteed to happen after no more than log∗ n iterations.) For constant entropy rate,
Zuckerman’s extractor [32] (see Table 2) uses the optimal seed length to extract a
constant fraction. This procedure loses some randomness in the iteration process and
results in an extractor which extracts a subconstant fraction of the initial randomness.
We then use the method of [29] to increase this fraction to an arbitrary constant. This
informal argument is made precise in the following proof.

Proof of Theorem 1.4. Without loss of generality, we assume that k ≥ 8 log5 n as
the extractor of [7] achieves the required result for k < 8 log5 n. It is easy to check
that, given a (k, k′, ε)-condenser Con1 : {0, 1}n × {0, 1}d → {0, 1}n′

and a (k′, k′′, ε′)-
condenser Con2 : {0, 1}n′ × {0, 1}d′ → {0, 1}n′′

, composing the condensers produces
a (k, k′′, ε + ε′)-condenser Con : {0, 1}n × {0, 1}d+d′ → {0, 1}n′′

.
Let us denote the entropy rate of a source by R(X) = k/n and let R′(X) =

n/k = 1/R(X). The condenser of Corollary 5.2 produces a source X ′ that is close
to an Ω(k) source over k log(n/k) bits. Thus, R(X ′) = Θ(1/ log(1/R(X))) or, in
other words, we have that R′(X ′) = Θ(log(R′(X)). We now apply the condenser
recursively on X ′ using a fresh seed. After log∗ R′(X) ≤ log∗ n iterations, the entropy
rate becomes constant. Once the ratio is constant, Zuckerman’s extractor [32] (see
Table 1) can be used to extract a constant fraction (say, half) of the randomness
using a fresh seed of length O(log n) and error 1/ log2 n. Overall, we have used at
most log∗ n iterations, where in each of them we required a seed of length at most
O(log n · log log n) and the final application of Zuckerman’s extractor requires an
additional O(log n) bits. Thus, the strategy described above gives an extractor that
uses seed length O(log n · log log n · log∗ n) bits. Recall that our condenser loses a
constant fraction of the randomness in every iteration. Thus, after log∗ n iterations
we extract only k/2O(log∗ n) random bits from the source and produce an extractor
which extracts 1/2O(log∗ n) of the initial randomness. To get to a constant fraction we
use the method of Wigderson and Zuckerman [29].10 Implementing the technique of
Wigderson and Zuckerman multiplies the seed and error by 2O(log∗ n). Thus, the total
number of random bits is logn · log log n · log∗ n · 2O(log∗ n) = O(log n · (log log n)2) as
required. Furthermore the final extractor has error smaller than 1/ log n.

In the case of Theorem 1.6, we are shooting for the optimal seed length and
cannot afford the condenser of Corollary 5.2 or repeated condensing. Instead we use

10Wigderson and Zuckerman suggested to repeatedly extract randomness from the source (using
fresh seeds) until one extracts the desired fraction. This gives that if m = k/p, then m could be
increased to (1 − α)k (where α is an arbitrary constant) at the cost of multiplying d by O(p). (An
exact formulation of the Wigderson and Zuckerman technique can be found, for example, in [11, 12].)
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the condenser of Corollary 5.3, interpreting it as a block extraction scheme. Viewed
this way, the condenser extracts a block B of length k/2, and therefore the distribution
(B(X,Y ), X) forms a block-source, since B is too short to “steal” all the randomness
from X. (This intuition is formalized in the next lemma.) All that is left is to use
the block-source extractor of Corollary 2.6. The precise details follow.

Lemma 6.1. Let Con be the condenser of Corollary 5.3. If X is a k-source for
k ≥ 8 log5 n, then the distribution (Con(X,UO(log n)), X) is O(1/ log2 n)-close to an

(Ω(k/ log n), log4 n)-block-source.
Proof. Fix some n and k ≥ 8 log5 n, and let Con : {0, 1}n × {0, 1}u=O(log n) →

{0, 1}k/2 be the (k,Ω(k/ log n), 1/ log2 n)-condenser of Corollary 5.3. For this proof
we view Con as a block extraction scheme B : {0, 1}n × {0, 1}u → {0, 1}n/r for
r = 2n/k. It follows that B is a (k, ρ, γ)-block extraction scheme for ρ = 1/ log2 n
and γ = Ω(r/ log n). We remark that, in particular, γ  1.

We now consider the probability space of section 4. The probability space is
over the set Ω = {0, 1}n × {0, 1}u and consists of two independent random variables
X (the given k-source) and Y (that is uniformly distributed over {0, 1}u). We set
t = log4 n and apply Lemma 4.3 and let BAD,BLK,CON be the sets guaranteed by
the lemma. We claim that CON = ∅.

We make this claim because the lemma guarantees that (B(X,Y ) is a (k − 2t)-
source in CON . Note that the output length of B is k/2, whereas k − 2t > k/2
because k ≥ 8 log5 n. Thus, the lemma says that in CON there is a random variable
which has min-entropy larger than it length. This statement is true only if CON = ∅.

Lemma 4.3 also gives that
• Pr(BAD) ≤ 2(ρ + 2−t).
• (B(X,Y ), X) is a (γkr − t, t)-block-source in BLK.

Thus, (B(X,Y ), X) is O(ρ + 2−t)-close to a (γkr − t, t)-block-source. Using

again that k ≥ 8 log5 n, we conclude that the distribution (Con(X,UO(log n)), X) is

O(1/ log2 n)-close to an (Ω(k/ log n), log4 n)-block-source as required.
We now prove Theorem 1.6.
Proof of Theorem 1.6. As in the proof of Theorem 1.4, without loss of generality

we can assume that k ≥ 8 log5 n because the extractor of [7] achieves the required
result for k < 8 log5 n. Given a k-source, we use Lemma 6.1 to get a distribution that
is close to a block-source and use the block-source extractor of Corollary 2.6.

7. Achieving small error. The statements of Theorems 1.4 and 1.6 are for
constant error ε. The analysis provided in this paper gives a slightly better result and
allows us to replace the requirement that ε be a constant with ε = 1/(log n)c for any
constant c. Still, our technique does not give good dependence of the seed length on
the error. We get better dependence on ε using the error reduction transformation of
[16], which transforms an extractor with large (say, constant) error into an extractor
with arbitrary small error, while losing only a little bit in the other parameters. More
precisely, after undergoing the transformation, a factor of O(logm(log logm)O(1) +
log(1/ε)) is added to d, and the fraction extracted decreases by a constant. The latter
loss makes no difference from our point of view since we are only able to extract
constant fractions. The first loss is not significant in the case of Theorem 1.4, since
the seed size is already larger than the optimal one by a multiplicative polyloglog(n)
factor. However, it completely spoils Theorem 1.6 and makes it inferior to Theorem
1.4. Following is Theorem 1.4 rephrased using the error reduction transformation of
[16].
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Theorem 7.1 (Theorem 1.4 rephrased for nonconstant ε). For every n, k, and
ε > exp( −n

(log∗ n)O(log∗ n) ), there are explicit (k, ε)-extractors

Ext : {0, 1}n × {0, 1}O(log n·(log log n)O(1)+log(1/ε)) → {0, 1}(1−α)k,

where α > 0 is an arbitrary constant.

8. Transforming arbitrary extractors into strong extractors. It is some-
times helpful to have a stronger variant of extractors, called a strong extractor. A
strong extractor is required to extract randomness “only from the source” and not
“from the seed.”

Definition 8.1. A (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is strong
if for every k-source X the distribution (Ext(X,Ud) ◦Ud) (obtained by concatenating
the seed to the output of the extractor) is ε-close to a Um+d.

Intuitively, this is helpful since a strong extractor has the property that, for any
source, a 1 − ε fraction of the seeds extracts randomness from that source. It is
interesting to note that the concept of strong extractors preceded that of nonstrong
extractors, and the strong version was the one which was defined in the seminal paper
[13]. Several extractors constructions (with examples being the constructions of [24, 7]
and this paper) are nonstrong or difficult to analyze as strong.

The following theorem shows that every nonstrong extractor can be transformed
into a strong one with essentially the same parameters.

Theorem 8.2. Any explicit (k, ε)-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m can
be transformed into an explicit strong (k,O(

√
ε))-extractor Ext′ : {0, 1}n×{0, 1}d+d′ →

{0, 1}m−(d+L+1) for d′ = polylog(d/ε) and L = 2 log(1/ε) + O(1).
Let us consider the parameters of Ext′ compared to that of Ext. The seed length

of Ext′ is longer than that of Ext by a factor that is only polylogarithmic (for large
ε). The output length of Ext′ is shorter than that of Ext by d + L + 1. The loss of
d bits is unavoidable, as the output of Ext may contain d bits of randomness from
the seed. The additional loss of L+ 1 bits can sometimes be recovered (at the cost of
increasing the seed length). Exact details are given in Remark 8.3.

Remark 8.3. In [17] it was shown that any strong extractor which has seed
length d and entropy-loss Δ can be transformed into a strong extractor with seed
length d+O(Δ) and an optimal entropy loss of 2 log(1/ε) +O(1). Thus, if the initial
extractor Ext had an entropy loss of Δ, we can use our construction to get an extractor
Ext′ with the parameters mentioned above, and then use [17] to construct a strong
extractor Ext′′ with seed length d′′ = d + d′ + O(Δ) and optimal entropy-loss. This
addition is affordable if Δ is small.

The intuition above also gives a hint for the construction. The output of Ext may
contain d bits of randomness which “belong” to the seed. Still, it contains roughly
m− d bits which do not depend on the seed. Thus, fixing the seed, the output of Ext
is a random source of length m which contains roughly m − d random bits. We can
now use another extractor to extract this randomness and “dismantle” the correlation
between the seed and the output. The extractor we need is one that works well when
the source lacks only a very small amount of randomness. Such a construction was
given by [4] and improved by [19].

Theorem 8.4 (see [19]). There are explicit strong (k, ε)-extractors RVW :
{0, 1}n ×{0, 1}d′ → {0, 1}k−L for d′ = polylog((n− k)/ε) and L = 2 log(1/ε) +O(1).

Construction 8.5. Given a (k, ε)-extractor Ext : {0, 1}n×{0, 1}d→ {0, 1}m, we
construct Ext′ as follows. Let RVW : {0, 1}m×{0, 1}d′=polylog(d/ε) → {0, 1}m−d−1−L
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be an (m− d− 1, ε)-extractor guaranteed by Theorem 8.4. Then,

Ext′(x; (y, z)) = RVW (Ext(x, y), z).

The actual proof that Ext′ has the desired properties is slightly more complicated
than the above presentation. This is mainly because the above presentation ignores
the error of Ext. We now give the formal proof.

Proof of Theorem 8.2. We now describe a probability space for this proof. It
consists of three independent random variables: an arbitrary k-source X over n bit
strings, a uniformly chosen string Y of length d, and a uniformly chosen string Z of
length d′.

Given strings x ∈ {0, 1}n and y ∈ {0, 1}d we define the weight of (x, y), denoted
w(x, y), in the following way:

w(x, y) = Pr(Ext(X,Y ) = Ext(x, y)).

In other words, this is the weight of the string Ext(x, y) according to the distri-
bution Ext(X,Y ). We say that a pair (x, y) is heavy if w(x, y) > 2−(m−1). We first
claim that only few pairs are heavy.

Claim 1. Pr((X,Y ) are heavy) < 2ε.
Proof. Let V denote the distribution Ext(X,Y ). We now use Lemma 2.2. We

have that V is ε-close to an m-source (the uniform distribution). Therefore the prob-
ability under V of hitting an element v such that PrV (V = v) > 2−(m−1) is bounded
by 2ε and the claim follows.

Call a seed y ∈ {0, 1}d bad if Pr((X, y) is heavy) >
√

2ε. That is, if for many
choices of x, the output element is heavy. We now claim that there are few bad seeds.

Claim 2. The fraction of bad seeds is at most
√

2ε.
Proof. The proof is a Markov argument. If the fraction of bad seeds is more than√

2ε, then Pr((X,Y ) is heavy) > 2ε.
The following claim shows that running the extractor with a good seed produces

a source which lacks very few random bits.
Claim 3. For a good seed y, Ext(X, y) is

√
2ε-close to an (m− d− 1)-source.

Proof. For a good y we know that Pr((X, y) is heavy) <
√

2ε. That is, at least a
1 −

√
2ε fraction of the x’s has w(x, y) ≤ 2−(m−1). For such an x,

Pr(Ext(X, y) = Ext(x, y)) = Pr(Ext(X,Y ) = Ext(x, y)|Y = y)

≤ w(x, y)

2−d
≤ 2−(m−d−1).

We have that Ext′ runs RVW on the source Ext(X,Y ) using a fresh seed Z.
Using the fact that, for a good seed y, Ext(X, y) is close to a high entropy source, we
derive the following claim.

Claim 4. Given y ∈ {0, 1}d, let Dy denote (Ext′(X; (y, Z)) ◦Z). For every good
y, Dy is (2

√
ε + ε)-close to uniform.

Proof. Note that Ext′(X; (y, Z)) = RVW (Ext(X, y), Z). The claim follows im-
mediately from Claim 3 and the fact that RVW is a strong extractor.

We now complete the proof of the theorem. Let D denote (EXT ′(X; (Y,Z))◦Z).
We need to show that (D ◦Y ) is O(

√
ε)-close to uniform. Note that D = DY (that is,

D is a convex combination of the distributions Dy). As the fraction of bad seeds is at
most O(

√
ε), it is sufficient to show that for any good seed y, (Dy ◦Y ) is O(

√
ε)-close

to uniform. Note that as Y is independent of Dy, it is sufficient to show that Dy is
O(

√
ε)-close to uniform, which follows from Claim 4.
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9. Discussion. In a subsequent work, Lu et al. [9] achieve extractors with better
parameters than those constructed here. Namely, for constant error ε > 0 they achieve
a (k, ε)-extractor E : {0, 1}n × {0, 1}O(log n) → {0, 1}Ω(k) for every choice of k. Their
construction uses some of the ideas of this paper (condensers, win-win analysis) as
well as additional ideas.

The next milestone in extractor constructions seems to be achieving seed length
d = O(log n) and output length m = k + d − O(1). (We remark that the difference
between output length Ω(k) and k is significant in some applications of extractors.)
This has already been achieved by [25] for small values of k (k = 2logn/ log log n) in a
subsequent work.

Another important goal is to achieve the “correct dependence” of the seed length
on ε for nonconstant ε, namely, to achieve an extractor with seed length d=O(log(n/ε))
and output length (say) m = Ω(k). We remark that both our approach and the ap-
proach of [9] do not give this dependence.
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1. Introduction. During the last decade, the massive increase in the volume
of data has motivated the investigation of algorithms on compressed data, e.g., com-
pressed strings, trees, or pictures. The general goal is to develop algorithms that
directly work on compressed data without prior decompression. Let us mention here
the work on compressed pattern matching; see, e.g., [19, 23, 49, 60].

In this paper we investigate two classes of computational problems on compressed
data that have been of central importance in theoretical computer science since its
very beginning: the word problem and the membership problem.

In its most general form, the word problem asks whether two terms over an alge-
braic structure represent the same element of the structure. Here we restrict ourselves
to the word problem for finitely presented monoids, i.e., monoids that are given by a
finite set of generators and defining relations. In this case the input consists of two
finite words over the set of generators, and we ask whether these two words represent
the same monoid element. The undecidability results concerning the word problem
for finitely presented monoids [47, 56] and finitely presented groups [12, 51] are among
the first undecidability results that touched “real mathematics.” Moreover, these neg-
ative results motivated a still ongoing investigation of decidable subclasses of word
problems and their computational complexity. In particular, monoids that can be pre-
sented by terminating and confluent semi-Thue systems (i.e., string rewriting systems
where every word can be rewritten in a finite number of steps to a unique irreducible
word; see [11, 33]) received a lot of attention: these monoids have decidable word prob-
lems, and if the restriction to terminating systems is suitably sharpened, then precise
complexity bounds can be deduced [10, 41, 42]. All relevant definitions concerning
semi-Thue systems and finitely presented monoids are collected in section 3.3.
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In its compressed variant, the input to the word problem for a (finitely presented)
monoid consists of two compressed representations of words over the generators. Here
we choose straight-line programs, or equivalently context-free grammars that generate
exactly one word, for compression—this approach is also known as grammar-based
compression. See section 3.4 for a formal definition of straight-line programs. Re-
cently, straight-line programs turned out to be a very flexible compressed represen-
tation of strings. Several other compressed representations, e.g., Lempel–Ziv factor-
izations [73], can be efficiently converted into straight-line programs and vice versa
[55], which implies that most of our complexity results will also hold for Lempel–
Ziv factorizations. An algorithmic application of this efficient transformation to and
into straight-line programs is given in [23], where the pattern matching problem for
Lempel–Ziv compressed texts is solved efficiently via reduction to straight-line pro-
grams. Finally, by using straight-line programs for representing inputs, the com-
pressed word problem becomes equivalent to the well-known circuit equivalence prob-
lem (a generalization of the circuit evaluation problem), where we ask whether two
circuits over a finitely presented monoid M (i.e., acyclic directed graphs with leaves
labeled by generators of M and internal nodes labeled by the monoid operation)
evaluate to the same element of M. This problem was mainly investigated for finite
structures (e.g., finite monoids [7]) and integer circuits [48] so far. From this per-
spective, the compressed word problem highlights the classical circuit versus formula
evaluation problem in the context of finitely presented monoids.

In sections 4–7 we study the complexity of compressed word problems for several
subclasses of monoids presented by terminating and confluent semi-Thue systems.
For this we will distinguish semi-Thue systems with respect to the syntactical form of
the rewriting rules. In sections 4 and 5 we will consider confluent and 2-homogeneous
semi-Thue systems, which are confluent systems where all rules are of the form w → ε
with w of length 2. For confluent and 2-homogeneous systems that satisfy a further
syntactical restriction (which we call N -freeness) we prove that the presented monoid
has a polynomial time solvable compressed word problem (Theorem 4.5). For all
other confluent and 2-homogeneous systems, the compressed word problem becomes
coNP-hard (Corollary 5.9) and is contained in PNP (Theorem 5.1). In section 6 we
show that the complexity of the compressed word problem increases to PSPACE-
completeness if we allow also rules of the form u → v, where again u has length
2 but v may have length 0 or 1 (Theorem 6.6)—the resulting semi-Thue systems
are called 2-monadic. The largest class of semi-Thue systems that is considered in
this paper consists of confluent and weight-reducing systems. It is briefly studied in
section 7, where it is shown that the compressed word problem for a monoid which
is presented by a confluent and weight-reducing semi-Thue system is in EXPSPACE
and is EXPSPACE-hard for some specific system (Theorem 7.1).

As a by-product of our investigation of compressed word problems we obtain sev-
eral new results concerning compressed membership problems. Here the problem is
to decide for a fixed language L (e.g., a regular or context-free language) whether
a given straight-line compressed word w belongs to L [55]. Using Theorem 6.6
concerning 2-monadic semi-Thue systems, we show that there exists a fixed deter-
ministic context-free (even deterministic linear) language with a PSPACE-complete
compressed membership problem (Corollary 6.7), which solves an open problem from
[23, 55]. Corollary 6.7 should be compared with a result from [24], stating that
given a straight-line compressed word w and a nondeterministic hierarchical automa-
ton A (see [24] for a precise definition) it is PSPACE-complete to decide whether
w ∈ L(A). It is straightforward to transform a hierarchical automaton in logspace
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into an equivalent nondeterministic pushdown automaton of the same size. Corol-
lary 6.7 improves the result of [24] in two aspects: (i) the context-free language in
Corollary 6.7 is deterministic and (ii) it is fixed; i.e., it does not belong to the input.
Another result related to Corollary 6.7 was recently shown in [50]: it is PSPACE-
complete to decide for two given nonrecursive context-free grammars G1 and G2

whether L(G1)∩L(G2) �= ∅. Nonrecursive context-free grammars generate finite lan-
guages; in particular, a straight-line program is a nonrecursive context-free grammar.
Thus, in comparison to the result of [50], we sharpen the condition on the grammar
G1 (it has to be a straight-line program) but relax the condition on G2 (it generates
an infinite language). One should also note that for the result of [50] it is crucial that
both G1 and G2 are part of the input.

Compressed membership problems for context-free languages are also interesting
in light of recent attempts to use straight-line programs for the compressed repre-
sentation of control flow traces of procedural programming languages [36, 72]. At
a certain level of abstraction, the set of all valid control flow traces of a procedural
programming language is a context-free language.

In section 8 we will investigate the complexity of the compressed membership
problem for various circuit complexity classes. We show that the levels of the logtime
hierarchy [63] correspond in a compressed setting to the levels of the polynomial time
hierarchy. This is another instance of a general phenomenon that we observe: in the
worst case there is an exponential jump with respect to computational complexity
when moving from the (uncompressed) word/membership problem to its compressed
variant. This exponential jump is well known also from other work on the complex-
ity of succinct problems [21, 66, 68, 69], where Boolean circuits/formulas are used
for the succinct representation of graphs. But whereas for these formalisms general
upgrading theorems can be shown, which roughly state that completeness of prob-
lem for a complexity class C implies completeness of the compressed variant for the
exponentially harder version of C, such an upgrading theorem fails for straight-line
programs: The compressed membership problem for a language may be of the same
complexity as the language itself (Proposition 8.5). Thus, the relationship between
a computational problem and its straight-line compressed variant is quite loose. A
similar phenomenon was observed in the context of hierarchical graph descriptions
[38], which can be seen as graph generating straight-line programs.

An extended abstract of this paper appeared in [43].

2. Related work. One of the most intensively studied problems on compressed
strings is the pattern matching problem; see, e.g., [19, 23, 49, 60]. In these papers,
strings are compressed using either a variant of Lempel–Ziv encoding or straight-line
programs. Compressed membership problems for straight-line compressed words were
investigated for the first time in [23, 55, 59]; see also [62] for a recent survey.

The problem of checking whether for a given input string s and a given integer n
there exists a straight-line program of size at most n that generates s is NP-complete
[37]. A smallest straight-line program generating a given input string is even hard
to approximate up to some constant factor unless P = NP [37]. Practical algorithms
for generating a small straight-line program that produces a given input string were
proposed and analyzed with respect to their approximation ratios in [16, 37, 61].

Algorithmic problems on compressed data were also investigated for more general
structures than only strings. Complexity theoretical investigations of computational
problems on compressed graphs can be found in [13, 20, 21, 38, 44, 53, 66, 67, 68, 69].
In [13, 21, 53, 68, 69] (resp., [66]) Boolean circuits (resp., formulas) are used for
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compression, in [20, 67] OBBDs are used, and in [38, 44] graphs are represented
via hierarchical graph descriptions. The latter formalism can be seen as an adapta-
tion of the idea of grammar-based compression to the context of graphs. Recently,
grammar-based compression was also used in the context of XML in order to obtain
succinct representations of large XML documents [14, 45, 46, 71]. Here context-free
tree grammars are used as a compact representation of XML skeletons.

3. Preliminaries.

3.1. General notation. For a binary relation → on some set, we denote by
+→ (

∗→) the transitive (reflexive and transitive) closure of →. For sets A, B, and
C, we write A = B � C if A is the disjoint union of B and C (B or C may be
empty). Let Γ be a finite alphabet. The empty word over Γ is denoted by ε. Let
s = a1a2 · · · an ∈ Γ∗ be a word over Γ, where ai ∈ Γ for 1 ≤ i ≤ n. We define
wrev = anan−1 · · · a1. The alphabet of s is alph(s) = {a1, . . . , an}. The length of s is
|s| = n. Furthermore, for a ∈ Γ we define |s|a = |{i | ai = a}|. For 1 ≤ i ≤ n let
s[i] = ai and for 1 ≤ i ≤ j ≤ n let s[i, j] = aiai+1 · · · aj . If i > j, we set s[i, j] = ε. For
a subalphabet Σ ⊂ Γ we define the projection morphism πΣ : Γ∗ → Σ∗ by πΣ(a) = ε
if a �∈ Σ and πΣ(a) = a if a ∈ Σ. For a language L ⊆ Γ∗ we define the language
Pref(L) = {w ∈ Γ∗ | w is a prefix of some u ∈ L}. An involution on Γ is a function

: Γ → Γ such that a = a for all a ∈ Γ. It may have fixed points; i.e., a = a for
some a ∈ Γ. The involution : Γ → Γ can be extended to an involution on Γ∗ by
setting a1 · · · an = an · · · a1. By Γ = {a | a ∈ Γ} we will always denote a disjoint
copy of the alphabet Γ. Then we can define an involution on Δ = Γ ∪ Γ by setting
a = a; this involution will be extended to Δ∗ in the above way. A weight-function
is a homomorphism f : Γ∗ → N from the free monoid Γ∗ with concatenation to the
natural numbers with addition such that f(s) = 0 if and only if s = ε. Given a
linear order � on the alphabet Γ, we extend � to a linear order on Γ∗, called the
lexicographic extension of �, as follows: u � v if either v is a prefix of u or there exist
factorizations u = wau′ and v = wbv′ with a, b ∈ Γ and a � b. For two monoids M1

and M2 we write M1
∼= M2 if M1 and M2 are isomorphic.

3.2. Complexity theory. We assume that the reader is familiar with standard
complexity classes such as P, coNP, PSPACE, and EXPSPACE; see, e.g., [52] for
more details. All hardness results in this paper refer to logspace reductions unless
some stronger form of reductions is mentioned explicitly. Several times we will use the
fact that addition and multiplication of integers with nO(1) many bits can be done
in space O(log(n)). In section 8 we will make use of alternating Turing-machines
with logarithmic running times. An alternating Turing-machine is a nondeterministic
Turing-machine, where the set of states is partitioned into existential and universal
states [15]. A configuration with a universal (resp., existential) state is accepting if
every (resp., some) successor state is accepting. An alternation in a computation of
an alternating Turing-machine is a transition from a universal state to an existential
state or vice versa. Following [15], we add a random access mechanism to the ordinary
Turing-machine model when dealing with sublogarithmic time bounds: There exists
a special address tape that contains a binary coded number p. If the machine enters
a special query state, then it has random access to the pth symbol of the input. This
mechanism allows a Turing-machine to reach every input position in logarithmic time.
If the address tape contains a position which is larger than the length of the input,
then querying the input yields some distinguished special symbol. With DLOGTIME
(resp., ALOGTIME ) we denote the class of languages that can be recognized on a
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deterministic (resp., alternating) Turing-machine in time O(log(n)). It is known that
ALOGTIME is equal to uniform NC1 [3], which is the class of all languages that
can be recognized by a uniform family of polynomial-size, logarithmic-depth, fan-in 2
Boolean circuits. Functions computable in uniform NC1 are defined analogously by
allowing circuits with more than one output. For the considerations in this paper,
it is not necessary to go into the quite technical details of the precise definition of
uniformity. We just remark that Ruzzo’s UE∗ -uniformity of circuit families [58] would
be suitable for all purposes in this paper. A language L ⊆ {0, 1}∗ is NC1-many-one
reducible to a language K ⊆ {0, 1}∗, briefly L ≤NC1 K, if there exists a function f
which is computable in uniform NC1 such that for all x ∈ {0, 1}∗, x ∈ L if and only
if f(x) ∈ K.

3.3. Semi-Thue systems and finitely presented monoids. Presentations
for monoids are the basic concept of this work. In this section we will introduce the
necessary definitions. For more details and references see [11, 33].

Let Γ be a finite alphabet. A semi-Thue system R over Γ is a finite subset R ⊆
Γ∗×Γ∗, whose elements are called rules. A rule (s, t) ∈ R will be also written as s → t.
The pair (Γ, R) is called a monoid presentation. The sets dom(R) of all left-hand sides
and ran(R) of all right-hand sides are defined by dom(R) = {s | ∃t : (s, t) ∈ R} and
ran(R) = {t | ∃s : (s, t) ∈ R}, respectively. We define two binary relations →R and
↔R on Γ∗ as follows:

• s →R t if there exist u, v ∈ Γ∗ and (�, r) ∈ R with s = u�v and t = urv (the
one-step rewrite relation).

• s ↔R t if (s →R t or t →R s).

We also write tR← s in case s →R t. Let RED(R) = Γ∗ · dom(R) · Γ∗ be the set
of reducible words and IRR(R) = Γ∗\RED(R) be the set of irreducible words (with
respect to R). The presentation (Γ, R) is terminating if there does not exist an
infinite chain s1 →R s2 →R s3 →R · · · in Γ∗. The presentation (Γ, R) is confluent

if for all s, t, u ∈ Γ∗ with tR
∗← s

∗→R u there exists v ∈ Γ∗ with t
∗→R v R

∗←u. It
is well known that (Γ, R) is confluent if and only if (Γ, R) is Church–Rosser ; i.e.,

for all s, t ∈ Γ∗, if s
∗↔R t, then s

∗→R uR
∗← t for some u ∈ Γ∗. The presentation

(Γ, R) is locally confluent if for all s, t, u ∈ Γ∗ with tR← s →R u there exists v ∈ Γ∗

with t
∗→R v R

∗←u. By Newman’s lemma, a terminating presentation is confluent if
and only if it is locally confluent. Moreover, if (Γ, R) is terminating and confluent,
then for every s ∈ Γ∗ there exists a unique normal form NFR(s) ∈ IRR(R) such

that s
∗→R NFR(s). It is undecidable whether a given presentation is terminating,

confluent, or locally confluent, respectively. On the other hand, for a terminating
presentation, local confluence (and hence by Newman’s lemma also confluence) can
be checked using critical pairs, which result from overlapping left-hand sides.

The relation
∗↔R is a congruence relation with respect to the concatenation of

words; it is called the Thue-congruence generated by (Γ, R). Hence we can define the

quotient monoid Γ∗/
∗↔R, which we denote by M(Γ, R). It is called a finitely presented

monoid, and we say that M(Γ, R) is the monoid presented by (Γ, R).

A decision problem that is of fundamental importance in the theory of monoid
presentations is the word problem. Let (Γ, R) be a fixed presentation. The word
problem for (Γ, R) is the following decision problem:

INPUT: Two words s, t ∈ Γ∗.

QUESTION: Does s
∗↔R t hold; i.e., do s and t represent the same element of the

monoid M(Γ, R)?
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Here the input size is |s| + |t|.
If (Γ, R) and (Σ, S) are presentations such that M(Γ, R) ∼= M ∼= M(Σ, S), then

for every a ∈ Γ there exists a word wa ∈ Σ∗ such that a and wa represent the same
element of M. If we define the homomorphism h : Γ∗ → Σ∗ by h(a) = wa, then for

all s, t ∈ Γ∗ we have s
∗↔R t if and only if h(s)

∗↔S h(t). Thus, the word problem for
(Γ, R) can be reduced to the word problem for (Σ, S) and vice versa. Moreover, this
reduction can be realized in deterministic logspace (even in uniform TC0 [35]). Thus,
the decidability and complexity of the word problem do not depend on the chosen
presentation. Since we are interested only in decidability and complexity questions
for word problems, we may just speak of the word problem for the monoid M.

It is well known that in case (Γ, R) is a terminating and confluent presentation,

then the word problem for M(Γ, R) is decidable: in order to check whether u
∗↔R v

it suffices to verify whether NFR(u) = NFR(v). On the other hand, this algorithm
does not yield any upper bound on the computational complexity of the word problem
[5]. Complexity results on word problems for restricted classes of finitely presented
monoids can be found, for instance, in [10, 41, 42].

3.4. Grammar-based compression. Following [55], a straight-line program
(SLP) (over the terminal alphabet Γ) is a restricted context-free grammar G =
(V,Γ, S, P ) (where V is the set of nonterminals, Γ is the set of terminals, S ∈ V
is the initial nonterminal, and P ⊆ V × (V ∪ Γ)∗ is the set of productions) such that

• for every X ∈ V there exists exactly one production of the form (X,α) ∈ P
for α ∈ (V ∪ Γ)∗, and

• there exists a linear order ≺ on the set of nonterminals V such that X ≺ Y
whenever there exists a production of the form (X,α) ∈ P with Y ∈ alph(α).1

Clearly, the language generated by the SLP G consists of exactly one word that is
denoted by eval(G). More generally, from every nonterminal X ∈ V we can generate
exactly one word that is denoted by evalG(X) (thus eval(G) = evalG(S)). We omit
the index G if the underlying SLP is clear from the context. We also write P (G) for
the set of productions P . The size of G is |G| =

∑
(X,α)∈P |α|. Note that every SLP

can be transformed in polynomial time into an equivalent SLP in Chomsky normal
form; i.e., all productions have the form (A, a) with a ∈ Γ or (A,BC) with B,C ∈ V .

Example 3.1. Consider the SLP G7 over the terminal alphabet {a, b} that consists
of the following productions:

Xi → Xi−1Xi−2 for 3 ≤ i ≤ 7, X2 → a, X1 → b.

X7 is the start nonterminal. Then eval(G7) = abaababaabaab, which is the 7th Fi-
bonacci word. The SLP G7 is in Chomsky normal form and |G7| = 12.

Sometimes we will also allow exponential expressions of the form Ai for A ∈ V
and i ∈ N in the right-hand sides of productions. Here the number i is coded binary.
Such an expression can be replaced by a sequence of ordinary productions, where the
length of that sequence is bounded polynomially in the length of the binary coding
of i. The following lemma collects several simple algorithmic properties of SLPs that
will be used several times in this paper.

1The term “straight-line program” is used for such a context-free grammar, because a production
A → α corresponds to a definition A := α. Thus, the whole context-free grammar can be interpreted
as a linear sequence of instructions, i.e., a straight-line program. Usually one also allows instructions
in straight-line programs, where the defined variable appears on the right-hand side (e.g., x := x+1).
But instructions of this kind can be easily eliminated by introducing additional variables.
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Lemma 3.2. The following tasks can be easily solved in polynomial time:

1. Given an SLP G, calculate |eval(G)| and alph(eval(G)).
2. Given an SLP G and a number i ∈ {1, . . . , |eval(G)|}, calculate eval(G)[i].
3. Given an SLP G over the terminal alphabet Γ and a homomorphism ρ :

Γ∗ → Σ∗, calculate an SLP H such that eval(H) = ρ(eval(G)) (this is in fact
possible in logspace).

The proofs of these statements are straightforward. The following result from
[30, 54] is much harder to obtain.

Lemma 3.3 (see [30, 54]). For two given SLPs G1 and G2, we can decide in
polynomial time whether eval(G1) = eval(G2).

It is open whether this problem is P-complete. In this work, we will consider the
following generalization: Let (Γ, R) be a fixed monoid presentation. The compressed
word problem for the monoid M(Γ, R) is the following problem:

INPUT: Two SLPs G1 and G2 over the terminal alphabet Γ.

QUESTION: Does eval(G1)
∗↔R eval(G2) hold?

Here the input size is |G1|+|G2|. Analogously to the uncompressed word problem, the
complexity of the compressed word problem does not depend on the chosen presen-
tation (for this, Lemma 3.2, statement 3, can be used). For a fixed language L ⊆ Γ∗

we will also consider the compressed membership problem for the language L, which
is the following problem:

INPUT: An SLP G over the terminal alphabet Γ.

QUESTION: Does eval(G) ∈ L hold?

We can view the compressed word problem also from another perspective. A circuit
C over M(Γ, R) is a finite directed acyclic graph with exactly one node of outdegree
0. The nodes of indegree 0 are labeled with elements from Γ. All nodes of indegree
greater than zero are labeled with the multiplication of the monoid M(Γ, R). Such
a circuit computes in a natural way an element of M(Γ, R). Then the compressed
word problem for M(Γ, R) is equivalent to the question of whether two given circuits
over M(Γ, R) compute the same monoid element. This question has been considered
in [7] for the case of finite monoids. Clearly, for a finite monoid, the compressed
word problem can be solved in polynomial time. In [7], it was shown that for a finite
nonsolvable monoid the compressed word problem is P-complete, whereas for every
finite solvable monoid the compressed word problem belongs to DET (the class of all
problems that are NC1-reducible to the calculation of an integer determinant [17]) and
hence to NC2. Due to the tight correspondence between finite monoids and regular
languages, every compressed word problem for a finite monoid is equivalent to the
compressed membership problem for a specific regular language and vice versa. Thus,
[7] gives a complete classification of the complexity of the compressed membership
problem for regular languages. Our work can be seen as a first step of an extension
of the work from [7] to finitely presented infinite monoids.

Finally, let us remark that most of our complexity results can be transferred to
other compression schemes, e.g., Lempel–Ziv 77, briefly LZ77 [73]. If w is a string
and G is an SLP of size n with eval(G) = w, then LZ(w) (the LZ77-compressed rep-
resentation of w) has size O(n) and can be constructed in polynomial time [55, 61].
On the other hand, if n is the size of LZ(w), then we can construct in polynomial
time an SLP of size O(n2 · log(n)) that generates w [55]. Thus, if we allow poly-
nomial time reductions, all our hardness results for complexity classes above P also
hold if we use LZ77 for compression. Since the transformation from an SLP to the
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LZ77-compressed representation might be P-hard, we cannot transfer directly P-
hardness results for SLPs to LZ77.

4. Compressed word problems in P. As already mentioned in the previous
section, for every finite monoid the compressed word problem is solvable in polynomial
time. In this section we will present a class of infinite monoids with polynomial time
solvable compressed word problems. This class contains all free groups. We will also
prove that the compressed word problem for every free group of rank at least 2 is
P-complete.

A presentation (Γ, R) is called 2-homogeneous if, for every (�, r) ∈ R, |�| = 2
and r = ε [9]. In [42] it was shown that for every 2-homogeneous presentation the
(uncompressed) word problem is in logspace. Moreover, the uniform variant of the
word problem for 2-homogeneous presentations, where the presentation is part of the
input, is complete for symmetric logspace [42].

The following result was shown by Book [9].

Proposition 4.1 (see [9]). For every 2-homogeneous presentation (Γ, R) there
exists a 2-homogeneous and confluent presentation (Σ, S) with M(Γ, R) ∼= M(Σ, S).

For further consideration let us fix a 2-homogeneous presentation (Γ, R). By
Proposition 4.1 we may assume that (Γ, R) is confluent. The following lemma is easy
to prove.

Lemma 4.2. Let u, v ∈ IRR(R). Then there exist factorizations u = u1u2 and

v = v1v2 such that NFR(uv) = u1v2, |u2| = |v1|, and u2v1
∗→R ε.

The following lemma was shown in [42].

Lemma 4.3 (see [42]). There exists a partition Γ = Σ��Σr�Δ and an involution
: Δ → Δ with {(aa, ε) | a ∈ Δ} ⊆ R ⊆ {(aa, ε) | a ∈ Δ}∪{(ab, ε) | a ∈ Σ�, b ∈ Σr}.

We say that (Γ, R) is N -free if there do not exist a, b ∈ Σ� and c, d ∈ Σr (where
Σ� and Σr result from Lemma 4.3) such that ac, ad, bc ∈ dom(R) but bd �∈ dom(R).
N -freeness means that the bipartite graph (Σ� ∪ Σr, {(a, b) ∈ Σ� × Σr | (ab, ε) ∈ R})
does not contain an N -shaped induced subgraph; i.e., it is a disjoint union of complete
bipartite graphs.

Example 4.4. Let Γ = {a, a, b, b} and R = {(aa, ε), (aa, ε), (bb, ε), (bb, ε)}. Then
(Γ, R) is 2-homogeneous, confluent, and N -free. In fact, we have Δ = Γ and Σ� =
Σr = ∅. The monoid M(Γ, R) is the free group of rank 2; see also the paragraph
before Theorem 4.9. If Γ = {a, b, c, d} and R = {(ac, ε), (ad, ε), (bc, ε)}, then (Γ, R)
is 2-homogeneous and confluent but not N -free. In fact, (Γ, R) is contained in every
2-homogeneous and confluent presentation, which is not N -free.

Theorem 4.5. If (Γ, R) is 2-homogeneous, confluent, and N -free, then the com-
pressed word problem for M(Γ, R) is in P.

In the next section we will see that Theorem 4.5 cannot be extended to non-N -free
presentations unless P = NP.

The proof of Theorem 4.5 will be presented after introducing composition systems
[23]—a generalization of SLPs. A composition system G = (V,Γ, S, P ) is defined
analogously to an SLP, but in addition to productions of the form A → α (A ∈ V ,
α ∈ (V ∪Γ)∗) it may also contain productions of the form A → B[i, j] for B ∈ V and
i, j ∈ N. For such a production we define evalG(A) = evalG(B)[i, j]; i.e., we select
from evalG(B) the subword from position i to position j.2 We also allow more general

2In [23], a slightly more restricted formalism, where only productions of the form A →
B[j, |evalG(B)|]C[1, i] are allowed, was introduced. But this definition is easily seen to be equiv-
alent to our formalism.
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rules, e.g., A → B[i, j]C[k, �]; of course this does not lead to higher compression rates.
As for SLPs we define eval(G) = evalG(S). The following result from [23] generalizes
Lemma 3.3.

Lemma 4.6 (see [23]). For two given composition systems G1 and G2, we can
decide in polynomial time whether eval(G1) = eval(G2).

The following result was shown in [29, Ch. 8].
Lemma 4.7 (see [29]). A given composition system can be transformed in poly-

nomial time into an SLP that generates the same word.
Lemma 4.7 leads to an alternative proof of Lemma 4.6: transform the two given

composition systems in polynomial time into equivalent SLPs and apply Lemma 3.3.
Moreover, Lemma 4.7 implies that all statements from Lemma 3.2 also hold for com-
position systems.

Lemma 4.8. Assume that (Γ, R) is 2-homogeneous, confluent, and N -free. Then
the following problem belongs to P:

INPUT: Composition systems G1 and G2 with eval(G1), eval(G2) ∈ IRR(R), and
|eval(G1)| = |eval(G2)|.

QUESTION: Does eval(G1)eval(G2)
∗→R ε hold?

Proof. Let Γ = Σ� � Σr � Δ be the partition resulting from Lemma 4.3 and
: Δ → Δ be the corresponding involution on Δ. Note that eval(G1), eval(G2) ∈

IRR(R) and eval(G1)eval(G2)
∗→R ε implies that eval(G1) ∈ (Σ�∪Δ)∗ and eval(G2) ⊆

(Σr ∪Δ)∗. Thus, we first check in polynomial time whether this is true; if not, we can
reject. Next, from G2 we can easily construct (by reversing productions) a composition
system G′

2 with eval(G′
2) = eval(G2)

rev. Since (Γ, R) is N -free, we can find partitions

Σ� =
⊎k

i=1 Σ�,i and Σr =
⊎k

i=1 Σr,i such that

R = {(aa, ε) | a ∈ Δ} ∪
k⋃

i=1

{(ab, ε) | a ∈ Σ�,i, b ∈ Σr,i}.

Let us take new symbols a1, . . . , ak and define homomorphisms ρ1 and ρ2 by ρ1(a) =
ρ2(a) = ai for all a ∈ Σ�,i ∪ Σr,i, 1 ≤ i ≤ k, ρ1(a) = a for all a ∈ Δ, and ρ2(a) = a
for all a ∈ Δ. From G1 and G′

2 we can construct in polynomial time composition
systems H1, H2 such that eval(H1) = ρ1(eval(G1)) and eval(H2) = ρ2(eval(G′

2)). By

construction, we have eval(G1)eval(G2)
∗→R ε if and only if eval(H1) = eval(H2). The

latter identity can be verified in polynomial time by Lemma 4.6.
Proof of Theorem 4.5. Let (Γ, R) be a fixed 2-homogeneous, confluent, and N -

free presentation. Given SLPs G1 and G2 over the terminal alphabet Γ, we have to
verify in polynomial time whether NFR(eval(G1)) = NFR(eval(G2)). By Lemma 4.6,
it suffices to prove that given an SLP G in Chomsky normal form over the terminal
alphabet Γ, we can construct in polynomial time a composition system H such that
eval(H) = NFR(eval(G)). We construct H inductively by adding more and more rules.
Initially, we put into P (H) all productions from P (G) of the form A → a with a ∈ Γ.
Now assume that A → BC belongs to P (G) and that H already contains enough
productions such that evalH(B) = NFR(evalG(B)) and evalH(C) = NFR(evalG(C)).
We first calculate the largest i such that

evalH(B) = u1u2, evalH(C) = v1v2, |u2| = |v1| = i, u2v1
∗→R ε.(4.1)

Lemma 4.2 implies that NFR(evalG(A)) = u1v2. For a given i ∈ N, we can check
condition (4.1) in polynomial time by Lemma 4.8. Since i is bounded exponentially
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in the input size, the largest i satisfying (4.1) can be calculated in polynomial time by
doing a binary search. For this largest i we add to the current H the production A →
B[1, |evalH(B)|−i]C[i+1, |evalH(C)|]. This concludes the proof of Theorem 4.5.

For a finite alphabet Γ, the free group F (Γ) generated by Γ is defined as

F (Γ) = M(Γ ∪ Γ, {(cc, ε) | c ∈ Γ ∪ Γ}).(4.2)

Recall from section 3.1 that we define an involution on Γ∪Γ by setting a = a. Clearly,
F (Γ) is indeed a group. In case |Γ| = n we also write Fn instead of F (Γ) and call it
the free group of rank n. It is known that the (uncompressed) word problem for a free
group is in logspace [40]. Moreover, the word problem for F2 is hard for uniform NC1

[57]. By Theorem 4.5, the compressed word problem for every free group Fn is in P
(we have Σ� = Σr = ∅ for the presentation in (4.2)). This upper bound is also sharp.

Theorem 4.9. The compressed word problem for F2 is P-complete.
Proof. It suffices to prove P-hardness, which will be done by a reduction from

the monotone circuit value problem, i.e., the problem of whether a Boolean circuit
consisting of AND and OR gates evaluates to TRUE [25]. We will use the following
result, which is proved in [57]: Let Γ = {a, b} and x, y ∈ (Γ∪Γ)∗ such that |x| = |y| = k
and |x|a − |x|ā = |y|a − |y|ā = 0. Then, if we interpret x and y as elements from F2,
the following holds, where 1 denotes the neutral element of F2:

(x = 1) ∨ (y = 1) ⇔ ā3kxa3kyā3kxa3ky = 1,

(x = 1) ∧ (y = 1) ⇔ ā3kxa3kyā3kxa3ky = 1.

Note that the words on the right of these equivalences have length 16k and that the
number of a’s minus the number of ā’s is again 0.

Now let C be a monotone Boolean circuit. Without loss of generality we can
assume that C is layered; i.e., the gates of C are partitioned into n layers and a
gate in layer i > 1 receives its inputs from layer i − 1; see, e.g., [28, Problem A.1.6].
Layer 1 contains the input gates and layer n contains the unique output gate. We
now construct an SLP G(C) as follows. For every gate z of C, G contains two
nonterminals Az and Az̄. The nonterminal Az will evaluate to a string that represents
the 1 of F2 if and only if gate z of the circuit evaluates to TRUE. The nonterminal Az̄

evaluates to the inverse of evalG(C)(Az) in F2. Moreover, we will have |evalG(C)(Az)| =
|evalG(C)(Az̄)| = 2 · 16i−1 if z is located in the ith layer of the circuit (1 ≤ i ≤ n).

For every input gate x in layer 1 we introduce the productions

Ax →
{
aā if input gate x is TRUE,

b2 if input gate x is FALSE,

Ax̄ →
{
aā if input gate x is TRUE,

b̄2 if input gate x is FALSE.

If z is an OR gate in the ith layer (i ≥ 2) with input gates x and y from the (i− 1)th
layer, then the productions for Az and Az̄ are

Az → ā6·16i−2

Axa
6·16i−2

Ayā
6·16i−2

Ax̄a
6·16i−2

Aȳ and

Az̄ → Ayā
6·16i−2

Axa
6·16i−2

Aȳā
6·16i−2

Ax̄a
6·16i−2

.

Note that the binary codings of the exponents 6 · 16i−2 have polynomial length,
and hence each of the above productions can be replaced by a sequence of ordinary
productions. Moreover, if |eval(Au)| = 2 · 16i−2 for u ∈ {x, x̄, y, ȳ} (which is true if x
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and y are located in the first layer, i.e., i = 2), then |eval(Az)| = |eval(Az̄)| = 2 ·16i−1.
If z is an AND gate in the ith layer (i ≥ 2) with input gates x and y, then the
productions for Az and Az̄ are

Az → ā6·16i−2

Axa
6·16i−2

Ayā
6·16i−2

Axa
6·16i−2

Ay and

Az̄ → Aȳā
6·16i−2

Ax̄a
6·16i−2

Aȳā
6·16i−2

Ax̄a
6·16i−2

.

Once again, these productions can be replaced by a sequence of ordinary productions.
Let o be the unique output gate of the circuit C. Then, by the result from [57], the
circuit C evaluates to TRUE if and only if evalG(C)(Ao) = 1 in F2.

5. Compressed word problems between P and PSPACE. In this section
we will consider 2-homogeneous and confluent presentations that are not necessarily
N -free. Recall that PNP is the class of all languages that can be accepted by a
deterministic polynomial time machine that has additional access to an NP-oracle
[64]. PNP is also denoted by Δp

2 in the literature; it is contained in the second level of
the polynomial time hierarchy and hence in PSPACE. Several complete problems for
PNP can be found in [34].

Theorem 5.1. If (Γ, R) is 2-homogeneous and confluent (but not necessarily
N -free), then the compressed word problem for M(Γ, R) is in PNP.

Proof. The key observation is that for a 2-homogeneous and confluent (but not
necessarily N -free) presentation (Γ, R) the problem from Lemma 4.8 is in coNP;
i.e., the complementary condition is in NP: If eval(G1), eval(G2) ∈ IRR(R) and
|eval(G1)| = |eval(G2)|, then

eval(G1)eval(G2)
∗→R ε does not hold

if and only if there exists 1 ≤ i ≤ |eval(G1)| with

eval(G1)[i] eval(G2)[|eval(G2)| − i + 1] �∈ dom(R).

For a given i, the latter condition can be checked in polynomial time. Now the
decision procedure from the proof of Theorem 4.5 in section 4 gives us a PcoNP-, i.e.,
PNP-,algorithm in the present situation.

By the next result, coNP-hardness can be obtained for every 2-homogeneous
presentations that is not N -free.

Theorem 5.2. Let Γ = {a, b, c, d} and R = {(ac, ε), (ad, ε), (bc, ε)}. The com-
pressed word problem for M(Γ, R) is coNP-hard.

Proof. The following problem is the complementary problem to SUBSETSUM
[22, Problem SP13], and hence is coNP-complete:

INPUT: Binary coded integers w1, . . . , wn, t ≥ 0.

QUESTION: For all x1, . . . , xn ∈ {0, 1}, does
∑n

i=1 xi · wi �= t hold?

Let us fix binary coded integers w1, . . . , wn, t ≥ 0. Let wk = (w1, . . . , wk), and
w = wn. Let 1k = (1, . . . , 1) be the k-dimensional vector with all entries equal to 1.
For vectors x = (x1, . . . , xm) and y = (y1, . . . , ym) we define x ·y = x1y1 + · · ·+xmym.
Finally, let sk = 1k · wk = w1 + · · · + wk, and s = sn = w1 + · · · + wn.

We construct two SLPs G1 and G2 over the terminal alphabets {a, b} and {c, d},
respectively, such that eval(G1)eval(G2)

∗→R ε (i.e., eval(G1)eval(G2)
∗↔R ε since R
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is confluent and hence Church–Rosser) if and only if x ·w �= t for all x ∈ {0, 1}n. This
will prove the theorem. First, let us construct G1:

S1 → bas+w1b,

Sk+1 → Ska
s−sk+wk+1Sk.

Let Sn be the start nonterminal of G1.
Claim.3

evalG1(Sk) =

⎛
⎝ ∏

x∈{0,1}k\{1k}

ax·wkbas−x·wk

⎞
⎠ askb.

We prove the claim by induction on k. The case k = 1 is clear, since evalG1(S1) =
bas+w1b = basas1b = a0bas−0as1b. For k + 1 ≤ n we obtain the following:⎛
⎝ ∏

x∈{0,1}k+1\{1k+1}

ax·wk+1bas−x·wk+1

⎞
⎠ ask+1b

=

⎛
⎝ ∏

x∈{0,1}k

ax·wkbas−x·wk

⎞
⎠

︸ ︷︷ ︸
eval(Sk)a

s−sk

⎛
⎝ ∏

x∈{0,1}k\{1k}

ax·wk+wk+1bas−x·wk−wk+1

⎞
⎠ awk+1askb

︸ ︷︷ ︸
awk+1eval(Sk)

= evalG1(Sk)a
s−sk+wk+1evalG1

(Sk) = evalG1
(Sk+1),

which proves the claim.
For k = n we get

eval(G1) = evalG1(Sn) =
∏

x∈{0,1}n

ax·wbas−x·w.

Now let G2 be an SLP such that eval(G2) = (cs−tdct)2
n

, which is easy to construct.
Let us give an example before we continue with the proof.

Example 5.3. Assume that w1 = 2, w2 = 5, w3 = 8, and t = 9. Thus, s =
2 + 5 + 8 = 15 and

eval(G1) = ba15a2ba13a5ba10a7ba8a8ba7a10ba5a13ba2a15b

= ba17ba18ba17ba16ba17ba18ba17b

eval(G2) = (c6dc9)8 = c6dc15dc15dc15dc15dc15dc15dc15dc9.

For this example, we have eval(G1)eval(G2)
∗→R ε, because, while reducing the word

eval(G1)eval(G2), in the middle of the current word the factor bd (which cannot be
replaced by ε) will never occur.

Note that eval(G1) ∈ {a, b}∗, eval(G2) ∈ {c, d}∗, and |eval(G1)| = |eval(G2)| =
2n · (s + 1). Thus, since bd is the only factor from {ac, ad, bc, bd} that cannot be

3The
∏

-expression on the right-hand side of this production denotes the concatenation of the
corresponding words, where the order of concatenation is given by the lexicographic order on the set
of vectors {0, 1}k, where the last position has the highest significance.
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rewritten to ε, we have eval(G1)eval(G2)
∗→R ε if and only if a b does not meet a d in

the unique R-derivation that starts from eval(G1)eval(G2). Hence, by construction of

G1 and G2, we have eval(G1)eval(G2)
∗→R ε if and only if x ·w �= t for all x ∈ {0, 1}n.

This concludes the proof.
The precise complexity of the compressed word problem for a 2-homogeneous but

not N -free presentation remains open; it is located somewhere between coNP and
PNP. On the other hand, by the previous proof, it is already coNP-hard to decide
whether eval(G)

∗↔R ε for a given SLP G, in case R is 2-homogeneous and confluent
but not N -free. For this restricted variant of the compressed word problem we can
also prove an upper bound of coNP.

Theorem 5.4. For every 2-homogeneous and confluent (but not necessarily N -
free) presentation (Γ, R), the following problem belongs to coNP:

INPUT: An SLP over the terminal alphabet Γ.
QUESTION: Does eval(G)

∗↔R ε (i.e., eval(G)
∗→R ε) hold?

For the proof of Theorem 5.4 we first introduce some notation.
Let us fix a 2-homogeneous and confluent (but not necessarily N -free) presentation

(Γ, R) for the rest of this section. Recall that by Lemma 4.3, there exist a partition
Γ = Σ� � Σr � Δ and an involution : Δ → Δ such that {(aa, ε) | a ∈ Δ} ⊆ R ⊆
{(aa, ε) | a ∈ Δ} ∪ {(ab, ε) | a ∈ Σ�, b ∈ Σr}. Let S = {(aa, ε) | a ∈ Δ} ⊆ R, which is
also 2-homogeneous and confluent but in addition N -free. Thus, by Theorem 4.5, the
compressed membership problem for the language {w ∈ Δ∗ | w ∗→S ε} can be solved
in polynomial time.

Let us take two bracket symbols “〈” and “〉” and define the morphism ρ : Γ∗ →
{〈, 〉}∗ by ρ(a) = 〈 for a ∈ Σ�, ρ(b) = 〉 for b ∈ Σr and ρ(c) = ε for c ∈ Δ. Let D1

be the set of all well-bracketed words over {〈, 〉}; i.e., D1 is the Dyck language over
one bracket pair. If P is the semi-Thue system that contains the single rule 〈 〉 → ε,

then D1 = {w ∈ {〈, 〉}∗ | w ∗→P ε}. Since P is 2-homogeneous, confluent, and N -free,
Theorem 4.5 implies that the compressed membership problem for D1 can be solved
in polynomial time.

Now assume that w ∈ Γ∗ is a word such that ρ(w) ∈ D1. We say that two positions
i, j ∈ {1, . . . , |w|} are corresponding brackets, briefly match(i) = j, if w[i] ∈ Σ�,
w[j] ∈ Σr, i < j, ρ(w[i, j]) ∈ D1, and ρ(w[i, k]) �∈ D1 for all k with i < k < j.

Example 5.5. Let Γ = {a, b, c, d, x, y, x, y} and

R = {(ac, ε), (ad, ε), (bc, ε), (xx, ε), (xx, ε), (yy, ε), (yy, ε)}.

Thus, Δ = {x, y, x, y}, Σ� = {a, b}, and Σr = {c, d}. Consider the word w =
x a y y c y x b a xx d x c y x. Then ρ(w) = 〈 〉 〈 〈 〉 〉 ∈D1 and, for instance, match(8) = 14.

Lemma 5.6. The following problem can be solved in polynomial time:
INPUT: An SLP G over the terminal alphabet Γ such that ρ(eval(G)) ∈ D1 and

a position 1 ≤ i ≤ |eval(G)| such that eval(G)[i] ∈ Σ�.
OUTPUT: The unique position j = match(i) in eval(G).
Proof. In a first step we will reduce the problem to the alphabet {〈, 〉}. Let

1 ≤ i ≤ |eval(G)| such that eval(G)[i] ∈ Σ�. First, we calculate in polynomial time
the unique number k such that i is the position of the kth symbol from Σ� ∪ Σr

in eval(G). Formally, k = |πΣ�∪Σr
(eval(G)[1, i])| (by Lemma 4.7 we can calculate in

polynomial time an SLP H that generates eval(G)[1, i]; then |πΣ�∪Σr
(eval(H))| can be

calculated in polynomial time using Lemma 3.2). Now assume for a moment that we
can calculate the position � of the bracket “〉” that corresponds to the bracket “〈” at
position k in ρ(eval(G))—we also call this position match(k). Then we just calculate
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Fig. 5.1.

the position j of the �th symbol from Σ� ∪ Σr in eval(G) and have match(i) = j
in eval(G). Formally, j is the unique number with � = |πΣ�∪Σr

(eval(G)[1, j])| and
eval(G)[j] ∈ Σ� ∪ Σr. In order to calculate j from � in polynomial time, we calculate
bottom-up |πΣ�∪Σr

(evalG(A))| as well as |evalG(A)| for every nonterminal A of the
SLP G. Then we can walk top-down in G in order to calculate j from �.

Thus, we may assume that G is an SLP with eval(G) ∈ D1 and 1 ≤ i ≤ |eval(G)|
is a position with eval(G)[i] = 〈. We compute in polynomial time the unique matching
position match(i) in eval(G). Consider the language

K = Pref(D1) \ [(D1 \ {ε}) · Pref(D1)];

i.e., K is the set of all prefixes of words from D1 that do not contain a nonempty
prefix from D1. Then

match(i) = max{j > i | eval(G)[i, j] ∈ K} + 1.

Since K is prefix-closed, it suffices to show that the compressed membership problem
for the language K is solvable in polynomial time, because then we can find the largest
j > i with eval(G)[i, j] ∈ K using a binary search.

Thus, let H be an SLP in Chomsky normal form. We want to check whether
eval(H) ∈ K = Pref(D1) \ [(D1 \ {ε}) · Pref(D1)]. Recall that the semi-Thue system
P consists of the single rule 〈 〉 → ε. Clearly, for a word w ∈ {〈, 〉}∗, we have
NFP (w) ∈ 〉∗〈∗. We represent a word 〉n〈m by the binary coding of n and m. Using this
representation, we can calculate bottom-up in polynomial time for every nonterminal
A of H the normal form NFP (evalH(A)) ∈ 〉∗〈∗. Clearly, for every word w ∈ {〈, 〉}∗,
w ∈ Pref(D1) if and only if NFP (w) ∈ 〈∗. Using this, we can first check whether
eval(H) = evalH(S) ∈ Pref(D1). If this is not the case, we reject. Thus, assume
that eval(H) ∈ Pref(D1). We have to check in polynomial time whether or not
eval(H) ∈ (D1 \ {ε}) · Pref(D1).

Consider the unique path of nonterminals S = A0, A1, . . . , Am such that Am →
〈 and for all i ≤ 0 < m, Ai → Ai+1Bi+1 are productions of H. This path is
shown in Figure 5.1 (left) for m = 4. Since every prefix of eval(H) also belongs to
Pref(D1), we have NFP (evalH(Ai)) = 〈ki for some numbers ki ≥ 0. Assume that
NFP (evalH(Bi)) = 〉mi〈ni for mi, ni ≥ 0; see the right tree in Figure 5.1. We claim
that eval(H) ∈ (D1 \ {ε}) · Pref(D1) if and only if there exists 1 ≤ i ≤ m such that
ki ≤ mi, which can be checked in polynomial time. If ki ≤ mi for some 1 ≤ i ≤ m, i.e.,
NFP (evalH(Bi)) = 〉ki〉�〈ni for some �, then there exists a prefix u of evalH(Bi) such
that NFP (u) = 〉ki and thus evalH(Ai)u ∈ D1 (we may have u = ε in case ki = 0, i.e.,
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evalH(Ai) ∈ D1). The word evalH(Ai)u is a nonempty prefix of eval(H) that belongs
to D1. On the other hand, if there exists a nonempty prefix v ∈ D1 of eval(H),
then let i be maximal such that v is a prefix of evalH(Ai). Clearly, i < m, since
evalH(Am) = 〈. Thus, v = evalH(Ai+1)u for some prefix u of evalH(Bi+1). Since
NFP (evalH(Ai+1)) = 〈ki+1 and evalH(Ai+1)u ∈ D1, it follows that NFP (u) = 〉ki+1 .
Since NFP (evalH(Bi+1)) = 〉mi+1〈ni+1 and u is a prefix of evalH(Bi+1), we obtain
mi+1 ≥ ki+1. This proves the lemma.

Let us again take a word w ∈ Γ∗ such that ρ(w) ∈ D1. Then we can factorize
w uniquely as w = s0w[i1, j1]s1 · · ·w[in, jn]sn, where n ≥ 0, match(ik) = jk for all
k ∈ {1, . . . , n}, and sk ∈ Δ∗ for all k ∈ {0, . . . , n}. We define F(w) = s0s1 · · · sn ∈ Δ∗.

Example 5.7. Take Γ, R, and the word w ∈ Γ∗ from Example 5.5. Then we have
F(w) = x y x y x.

Lemma 5.8. The following problem can be solved in polynomial time:
INPUT: An SLP G over the terminal alphabet Γ such that ρ(eval(G)) ∈ D1 and

two positions i and j such that match(i) = j in eval(G).
OUTPUT: An SLP that generates F(eval(G)[i + 1, j − 1]).
Proof. Let Θ = Δ ∪ {〈, 〉} and consider the infinite semi-Thue system

T = {〈w〉 → ε | w ∈ Δ∗}

over the alphabet Θ. This system is clearly terminating and confluent (T has no
overlapping left-hand sides); hence every word w ∈ Θ∗ has a unique normal form
NFT (w). Note that IRR(T ) = (Δ∗〉Δ∗)∗(Δ∗〈Δ∗)∗. Let μ : Γ → Θ be the morphism
with μ(a) = 〈 for all a ∈ Σ�, μ(a) = 〉 for all a ∈ Σr, and μ(a) = a for all a ∈ Δ.

In a first step we construct in polynomial time an SLP G′ such that eval(G′) =
μ(eval(G)[i + 1, j − 1]). Then NFT (eval(G′)) = F(eval(G)[i + 1, j − 1]). Hence, it
suffices to calculate a composition system H that generates NFT (eval(G)) for a given
SLP G with eval(G) ∈ Θ∗; this composition system can be transformed in polynomial
time into an equivalent SLP by Lemma 4.7. We construct H analogously to the proof
of Theorem 4.5. Assume that A → BC is a production from G and assume that
H already contains enough rules such that evalH(X) = NFT (evalG(X)) =: wX ∈
(Δ∗〉Δ∗)∗(Δ∗〈Δ∗)∗ for X ∈ {B,C}. We then calculate the numbers nB = |wB |〈 and
nC = |wC |〉, i.e., the number of opening (closing) brackets in wB (wC). Assume that
nC ≥ nB ; the other case is analogous. Then we calculate the position iB of the nBth
opening bracket 〈 in wB as well as the position iC of the nCth closing bracket 〉 in
wC . It follows that NFT (evalG(A)) = wB [1, iB − 1]wC [iC + 1, |wC |]. Thus, we add to
the current H the production A → B[1, iB − 1]C[iC + 1, |wC |].

Proof of Theorem 5.4. We use all notation from the previous discussion. The
following statement was shown in [42]: For w ∈ Γ∗ it holds that w

∗↔R ε if and only

if ρ(w) ∈ D1, F(w)
∗→S ε, and for all i, j ∈ {1, . . . , |w|} with match(i) = j it holds

that w[i]w[j] ∈ dom(R) and F(w[i + 1, j − 1])
∗→S ε.

This leads to the following NP-algorithm for testing eval(G) � ∗↔R ε for a given

SLP G, and hence to a coNP-algorithm for testing eval(G)
∗↔R ε:

1. Produce an SLP G′ such that eval(G′) = ρ(eval(G)) and check whether
eval(G′) ∈ D1. This is possible in polynomial time by Theorem 4.5. If
eval(G′) �∈ D1, then accept; otherwise continue.

2. Guess a position 1 ≤ i ≤ |eval(G)| (this is the only nondeterministic step) such
that eval(G)[i] ∈ Σ�, calculate in polynomial time (by Lemma 5.6) the unique
position j = match(i) in eval(G), and check whether eval(G)[i]eval(G)[j] �∈
dom(R). If this is true, then accept; otherwise continue.
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3. Calculate in polynomial time (by Lemma 5.8) an SLP G′′ that generates
F(eval(G)[i+1, j−1]) and test in polynomial time (by Theorem 4.5) whether

eval(G′′) � ∗→S ε. If this is true, then accept; otherwise reject.
This concludes the proof of Theorem 5.4.

From Theorems 4.5, 5.2, and 5.4 we obtain the following corollary.
Corollary 5.9. Let (Γ, R) be a 2-homogeneous and confluent presentation.

Consider the following computational problem:
INPUT: A word s ∈ Γ∗.
QUESTION: Does w

∗↔R ε hold?
If (Γ, R) is N -free, then this problem can be solved in polynomial time; otherwise this
problem is coNP-complete.

6. Compressed word problems in PSPACE. In the previous two sections
we have investigated 2-homogeneous systems, where every rule is of the form ab → ε.
In this section we consider a slightly more general class of presentations, where we also
allow rules of the form ab → c. We show that this generalization leads to PSPACE-
complete compressed word problems. As a corollary we obtain a fixed deterministic
context-free language with a PSPACE-complete compressed word problem, which
solves an open problem from [23, 55].

Our PSPACE upper bounds rely all on the following simple fact.
Proposition 6.1. If the membership problem for the language L (the word prob-

lem for a finitely presented monoid M) belongs to
⋃

c>0 NSPACE(logc(n)), then the
compressed membership problem for L (the compressed word problem for M) belongs
to PSPACE.

Proof. Assume that the language L belongs to NSPACE(logc(n)). Let us fix an
SLP G. We decide eval(G) ∈ L by simulating the NSPACE(logc(n)) algorithm for
the membership problem for L on words of length |eval(G)|. Note that a number
less than |eval(G)| can be stored in polynomial space and that for a given position
i ∈ {1, . . . , |eval(G)|} we can calculate eval(G)[i] in polynomial time. Thus, the
simulation gives us a PSPACE-algorithm for the compressed membership problem
for L.

A presentation (Γ, R) is weight-reducing if there exists a weight-function f : Γ∗ →
N such that f(s) > f(t) for all (s, t) ∈ R. Typical examples of weight-reducing
presentations are length-reducing presentations (i.e., |s| > |t| for all (s, t) ∈ R).

Proposition 6.2. For every weight-reducing and confluent presentation (Γ, R),
the compressed word problem for M(Γ, R) is in PSPACE.

Proof. In [41] we have shown that for every fixed weight-reducing and confluent
presentation (Γ, R), the (uncompressed) word problem for M(Γ, R) is in LOGCFL,
which is the logspace closure of the class of context-free languages [65]. The class
LOGCFL is known to be contained in NSPACE(log2(n)) [39]. Thus, membership in
PSPACE follows from Proposition 6.1.

In the rest of this section, we will show that PSPACE-hardness can be shown
already for a quite small subclass of weight-reducing and confluent presentations.

A presentation (Γ, R) is called monadic if, for every (�, r) ∈ R, |�| > |r| and |r| ≤
1. A 2-monadic presentation is a monadic presentation (Γ, R) such that, moreover,
|�| = 2 for every � ∈ dom(R). In the following, we present a construction that reduces
the reachability problem for directed forests to the (uncompressed) word problem of
a fixed 2-monadic and confluent presentation (Γ, R). Later in this section, we will use
this construction in order to prove that the compressed word problem for M(Γ, R) is
PSPACE-complete.
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Let Γ = {b0, b1, c0, c1, c2,#, $, �, 0} and let R be the 2-monadic semi-Thue system
consisting of the following rules:

(1) b0x → ε for all x ∈ {$, c0, c1, c2} (2) b1c0 → ε
(3) b1$ → � (4) �ci → � for all i ∈ {0, 1, 2}
(5) �$ → $ (6) #$ → ε
(7) b1c2 → 0
(8) 0x → 0 for all x ∈ Γ (9) x0 → 0 for all x ∈ Γ

Only the rules involving the absorbing symbol 0 produce overlappings. In the
resulting critical pairs, both words can be reduced to 0. Thus, R is confluent.

A directed forest is a directed acyclic graph (V,E) (where V is the finite set of
nodes and E ⊆ V × V is the edge relation) such that, moreover, for every u ∈ V ,
|{v ∈ V | (u, v) ∈ E}| ≤ 1; i.e., every node has at most one outgoing edge. Assume
now that (V,E) is a directed forest, where V = {v1, . . . , vn} and (vi, vj) ∈ E implies
i < j. Let vα ∈ V be a distinguished start node (1 ≤ α ≤ n) and U ⊆ V be a set
of final nodes such that every node in U has outdegree 0 (there may be also nodes in
V \U without outgoing edges). For i ≤ j we define the interval Ii,j = {vk | i ≤ k ≤ j}.
Thus, I1,n = V . If i > j, we set Ii,j = ∅. We will construct a word w(vα, U) ∈ Γ∗ such
that (vα, vi) ∈ E∗ for some vi ∈ U (i.e., there is a path from the start node to some

final node) if and only if w(vα, U)
∗↔R 0, i.e., w(vα, U)

∗→R 0. For every i ∈ {1, . . . , n}
define the word δi as follows:

δi =

⎧⎪⎨
⎪⎩
cn−j+i+1
0 if (vi, vj) is the unique outgoing edge at node vi,

c1 if vi ∈ V \ U and vi has no outgoing edge,

c2 if vi ∈ U (and thus has no outgoing edge).

Note that �δi
∗→R � for all 1 ≤ i ≤ n using the rules in (4). For an interval Ii,j (i ≤ j)

we define σ[Ii,j ] = δi$δi+1$ · · · δj$. We set σ[∅] = ε. Note that �σ[Ii,j ]
∗→R $σ[Ii+1,j ]

if i ≤ j using the rules in (4) and (5). Let β = |σ[I1,α−1]|. Finally, define

w(vα, U) = (#bn1 )nbβ0σ[I1,n].

Lemma 6.3. We have w(vα, U)
∗↔R 0 if and only if (vα, vi) ∈ E∗ for some

vi ∈ U .

Before we prove Lemma 6.3 let us first consider an example.

Example 6.4. Let (V,E) be the following directed forest (see Figure 6.1). The
set U contains only the node v6. Let α = 2; i.e., v2 is the start node.

Fig. 6.1.
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Then w(vα, U) = (#b71)
7b50c

4
0$c

5
0$c

4
0$c

5
0$c

7
0$c2$c1$. We obtain the following deriva-

tion:

(#b71)
7b50c

4
0$c

5
0$c

4
0$c

5
0$c

7
0$c2$c1$

∗→R (rules in (1))

(#b71)
7c50$c

4
0$c

5
0$c

7
0$c2$c1$

∗→R (rule (2))

(#b71)
6#b21$c

4
0$c

5
0$c

7
0$c2$c1$ →R (rule (3))

(#b71)
6#b1 � c

4
0$c

5
0$c

7
0$c2$c1$

∗→R (rules in (4))

(#b71)
6#b1 � $c50$c

7
0$c2$c1$ →R (rule (5))

(#b71)
6#b1$c

5
0$c

7
0$c2$c1$ →R (rule (3))

(#b71)
6# � c50$c

7
0$c2$c1$

∗→R (rules in (4))

(#b71)
6# � $c70$c2$c1$ →R (rule (5))

(#b71)
6#$c70$c2$c1$

∗→R (rule (6))

(#b71)
6c70$c2$c1$

∗→R (rule (2))

(#b71)
5#$c2$c1$ →R (rule (6))

(#b71)
5c2$c1$

∗→R (rule (7))

(#b71)
4#b610$c1$

∗→R (rules in (8) and (9))

0.

Indeed, there exists a path from v2 to a node in U . If U would consist only of the
node v7 instead of v6, then w(vα, U) = (#b71)

7b50c
4
0$c

5
0$c

4
0$c

5
0$c

7
0$c1$c2$. In this case

we obtain a similar derivation showing w(vα, U)
∗→R (#b71)

5c1$c2$. But the latter

word is irreducible. Since R is confluent, w(vα, U)
∗→R 0 cannot hold.

Proof of Lemma 6.3. First, note that using the rules in (1) we obtain

w(vα, U) = (#bn1 )nbβ0σ[I1,α−1]σ[Iα,n]
∗→R (#bn1 )nσ[Iα,n].

Claim. For every vi ∈ V , if (vα, vi) ∈ E∗, then there exists k ≥ n − i + α such

that w(vα, U)
∗→R (#bn1 )kσ[Ii,n].

We prove this claim by induction over the length of the unique path from vα to
vi. The case i = α is clear. Thus, assume that (vα, vj) ∈ E∗ and (vj , vi) ∈ E. Then
j < i and by induction we have

w(vα, U)
∗→R (#bn1 )kσ[Ij,n] = (#bn1 )k−1#bn1 c

n−i+j+1
0 $σ[Ij+1,n],

where k ≥ n− j + α, i.e., k − 1 ≥ n− i + α. We obtain

(#bn1 )k−1#bn1 c
n−i+j+1
0 $σ[Ij+1,n]

∗→R (rule (2))

(#bn1 )k−1#bi−j−1
1 $σ[Ij+1,n] →R (rule (3))

(#bn1 )k−1#bi−j−2
1 � σ[Ij+1,n]

∗→R (rules in (4) and (5))

(#bn1 )k−1#bi−j−2
1 $σ[Ij+2,n]

∗→R

...

(#bn1 )k−1#b01$σ[Ii,n]

= (#bn1 )k−1#$σ[Ii,n] →R (rule (6))

(#bn1 )k−1σ[Ii,n].

This proves the claim.
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Thus, if (vα, vi) ∈ E∗ for some vi ∈ U , then by the above claim

w(vα, U)
∗→R (#bn1 )kσ[Ii,n]

= (#bn1 )k−1#bn−1
1 b1c2$σ[Ii+1,n] →R (rule (7))

(#bn1 )k−1#bn−1
1 0$σ[Ii+1,n]

∗→R 0 (rules in (8) and (9))

for some k > 0. On the other hand, if there does not exist vi ∈ U with (vα, vi) ∈ E∗,
then there exists vi ∈ V \U with outdegree 0 and (vα, vi) ∈ E∗. Thus,

w(vα, U)
∗→R (#bn1 )kσ[Ii,n] = (#bn1 )kc1$σ[Ii+1,n] ∈ IRR(R).

Since (Γ, R) is confluent, w(vα, U)
∗→R 0 cannot hold. This proves Lemma 6.3.

Lemma 6.3 yields the following result that is of independent interest; see sec-
tion 3.2 for the definition of NC1-reductions.

Theorem 6.5. There exists a fixed 2-monadic and confluent presentation (Γ, R)
such that the word problem for M(Γ, R) is L-hard under NC1-reductions.

Proof. By [18], the reachability problem for directed forests that are ordered (i.e.,
the set of nodes is {1, . . . , n} for some n and i < j whenever there is an edge from
i to j) is L-complete under NC1-reductions. Moreover, one can assume that 1 is the
initial node. It remains to show that for such a forest G = (V,E) and U ⊆ V the
word w(1, U) can be constructed in NC1 from G and U . We leave the details to the
reader.

The existence of a fixed monadic and confluent presentation with an L-hard word
problem was also shown in [6].

Now let us consider the compressed word problem for 2-monadic and confluent
presentations.

Theorem 6.6. For every 2-monadic and confluent presentation (Γ, R), the com-
pressed word problem for M(Γ, R) is in PSPACE. There exists a fixed 2-monadic and
confluent presentation (Γ, R) such that the compressed word problem for M(Γ, R) is
PSPACE-complete.

Proof. The upper bound follows from Proposition 6.2. For the lower bound we
will show that the compressed word problem for the 2-monadic presentation (Γ, R)
from the previous discussion is PSPACE-hard. For this we repeat a construction from
[41]. Let A = (Q,Σ, δ, q0, qf ) be a fixed deterministic linear bounded automaton (Q
is the set of states, Σ is the tape alphabet, q0 (resp., qf ) is the initial (resp., final)
state, and δ : Q\{qf}×Σ → Q×Σ×{left, right} is the transition function) such that
the question of whether a word w ∈ Σ∗ is accepted by A is PSPACE-complete. Such
a linear bounded automaton exists; see, e.g., [5]. The one-step transition relation
between configurations of A is denoted by ⇒A. Let w ∈ Σ∗ be an input for A with
|w| = N . We may assume that A operates in phases, where a single phase consists of a

sequence of 2·N transitions of the form q1γ1
∗⇒A γ2q2

∗⇒A q3γ3, where γ1, γ2, γ3 ∈ ΣN

and q1, q2, q3 ∈ Q. During the transition sequence q1γ1
∗⇒A γ2q2, only right-moves

are made, whereas during the sequence γ2q2
∗⇒A q3γ3, only left-moves are made. The

automaton A accepts if it reaches the final state qf . Otherwise A does not terminate.
There exists a constant c > 0 such that if w is accepted by A, then A, started on w,
reaches the final state qf after at most 2c·N phases. Let Σ̂ = {â | a ∈ Σ} be a disjoint

copy of Σ and similarly for Q̂. Let Δ = Σ ∪ Σ̂ ∪ {, 0, 1,£} and Θ = Q ∪ Q̂ ∪ Δ. We
simulate A by the following semi-Thue system S over the alphabet Θ:
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0q̂ → q̂£ for all q ∈ Q \ {qf} qa → b̂p if δ(q, a) = (p, b, right)
1q̂ → 0q for all q ∈ Q \ {qf} â q̂ → p̂b if δ(q, a) = (p, b, left)
q£ → 1q for all q ∈ Q \ {qf} q → q̂ for all q ∈ Q \ {qf}

(Θ, S) is length-preserving and if � is any linear order on the alphabet Θ that

satisfies Q � 1 � 0 � Σ̂ � Q̂, then s � t for every rule (s, t) ∈ S; i.e., S is
lexicographic (recall from section 3.1 that we identify an order � on the alphabet
Θ with its lexicographic extension to Θ∗. Let us choose such a linear order on Θ
that, moreover, satisfies Q � Δ � Q̂. In [41] we have argued that w is accepted by

A if and only if 1q0£
c·N−1w

∗→S v for some word v with alph(v) ∩ {qf , q̂f} �= ∅.
We briefly repeat the arguments: First, note that 1q0£

c·N−1w
∗→S 1c·Nq0w. From

the word 1c·Nq0w we can simulate 2c·N phases of A. The crucial point is that
the prefix from {0, 1}∗ acts as a binary counter: for every u ∈ {0, 1}i (i < c · N)

and every q ∈ Q we have u10c·N−|u|−1q̂
∗→S u1q̂£c·N−|u|−1 →S u0q£c·N−|u|−1 ∗→S

u01c·N−|u|−1q. Thus, if A accepts w, then we can derive from 1q0£
c·N−1w a word v

with alph(v)∩{qf , q̂f} �= ∅. On the other hand, if A does not accept w and hence does
not terminate, then we can derive from 1q0£

c·N−1w a word of the form q̂£c·Nu for
some u ∈ ΣN and q �= qf . Since S is confluent (the left-hand sides of S do not overlap)
and q̂£c·Nu ∈ IRR(S), we cannot reach a word v with alph(v) ∩ {qf , q̂f} �= ∅ from
1q0£

c·N−1w.
To simplify the following construction, we will next expand all rules from S in

the following sense: The rule q£ → 1q, for instance, is replaced by all rules of the
form xq£ → x1q for all x ∈ Δ, whereas the rule 0q̂ → q̂£ is replaced by all rules of
the form 0q̂x → q̂£x for all x ∈ Δ. Let us call the resulting system again S. Then
S is still length-preserving and lexicographic and dom(S) ⊆ Δ(Q ∪ Q̂)Δ. The new
system S is no longer confluent, but this is not important for the further arguments.
It is only important that

∀v, v1, v2 ∈ Δ∗(Q ∪ Q̂)Δ∗ : (v1 S← v →S v2) ⇒ v1 = v2.(6.1)

This is easy to see by inspection of the rules. Moreover, w is accepted by A if and only
if 1q0£

c·N−1w
∗→S v for some word v with alph(v)∩{qf , q̂f}. Let m = (c+ 1)N − 1;

thus m + 3 is the length of words in any derivation starting from 1q0£
c·N−1w.

Let us now define the directed graph (V,E), where V =
⋃m+1

i=1 Δi(Q∪ Q̂)Δm−i+2

and E = {(v, v′) ∈ V × V | v →S v′}. This graph is basically the transition graph
of the automaton A on configurations of length N . Since S is lexicographic, (V,E)
is acyclic. Moreover, by (6.1), every node from V has at most one outgoing edge.
Thus, (V,E) is a directed forest. If we order V lexicographically by � and write
V = {v1, . . . , vn} with v1 � v2 � · · · � vn, then (vi, vj) ∈ E implies i < j. Note
that n = |V | = 2(m + 1) · |Q| · |Δ|m+2, which belongs to 2O(N). Let U be those
words in V that contain either qf or q̂f ; these words have outdegree 0 in the directed
forest (V,E). Let vα = 1q0£

c·N−1w. Thus, α − 1 is the number of words from
V that are lexicographically larger than 1q0£

c·N−1w. The number α can be easily
calculated in logarithmic space from the input word w using simple arithmetic. We
now have available all the data in order to construct the word w(vα, U) ∈ Γ∗ from
Lemma 6.3.

The automaton A accepts w if and only if there is a path in (V,E) from vα to a

node in U . By Lemma 6.3 this holds if and only if w(vα, U)
∗↔R 0. Thus, it remains

to show that the word w(vα, U) can be generated by a small SLP. Recall the definition
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of the words σi and σ[I] ∈ Γ∗, where 1 ≤ i ≤ n = |V | and I is an interval of (V,�)
that we introduced before Lemma 6.3.

Note that for all 1 ≤ i, j ≤ n, if vi = u1�u2 →S u1ru2 = vj with (�, r) ∈ S, then
j − i (i.e., the number of words from V that are lexicographically between vi and vj)
is a number that depends only on the rule (�, r) (and thus �) and |u2|. We call this
number λ(�, |u2|); it belongs to 2O(N) and can be calculated in logarithmic space from
� and |u2| using simple arithmetic. We now describe a small SLP that generates the
word σ[V ] ∈ Γ∗. For this let us assume that Q = {p1, . . . , pn1} and Δ = {a1, . . . , an2}
with pi � pi+1, p̂i � p̂i+1, and ai � ai+1 (note that the order � on the subalphabets

Q, Q̂, and Δ, respectively, is arbitrary except that 1 � 0). We introduce the following
productions:4

Ai →
n2∏
j=1

Bi,jAi+1B̂i,j for 0 ≤ i < m,

Am →
n2∏
j=1

Bm,jB̂m,j ,

Bi,j →
n1∏
k=1

n2∏
�=1

(Ci,j,k,�$)|Δ|m−i

for 0 ≤ i ≤ m, 1 ≤ j ≤ n2,

Ci,j,k,� →

⎧⎪⎨
⎪⎩
c
n−λ(ajpka�,m−i)+1
0 if ajpka� ∈ dom(R),

c1 if ajpka� �∈ dom(R) and pk �= qf ,

c2 if pk = qf ,

B̂i,j →
n1∏
k=1

n2∏
�=1

(Ĉi,j,k,�$)|Δ|m−i

for 0 ≤ i ≤ m, 1 ≤ j ≤ n2,

Ĉi,j,k,� →

⎧⎪⎨
⎪⎩
c
n−λ(aj p̂ka�,m−i)+1
0 if aj p̂ka� ∈ dom(R),

c1 if aj p̂ka� �∈ dom(R) and p̂k �= q̂f ,

c2 if p̂k = q̂f .

The exponents that appear in the right-hand sides of the productions for the nonter-
minal Bi,j and B̂i,j , namely |Δ|m−i, are of size 2O(N) and can therefore be replaced by
sequences of ordinary productions. Note that eval(Ci,j,k,�) = δs for every node vs from

Δiajpka�Δ
m−i, whereas eval(Ĉi,j,k,�) = δs for every node vs from Δiaj p̂ka�Δ

m−i. It
follows that for all 0 ≤ i ≤ m, all u ∈ Δi, and all 1 ≤ j ≤ n2 we have (note that
uajQΔm−i+1 ⊆ V is an interval of (V,�))

eval(Bi,j) = σ[uajQΔm−i+1] and eval(B̂i,j) = σ[uajQ̂Δm−i+1].(6.2)

Claim. Let 0 ≤ i ≤ m and let u ∈ Δi be arbitrary. Then for the interval
I =

⋃m−i+1
j=1 uΔj(Q∪ Q̂)Δm−i−j+2 of the linear order (V,�) we have σ[I] = eval(Ai).

The claim will be shown by induction on i (for i = m down to 0). For i = m the

4The expression
∏k

i=1 wi is an abbreviation for w1w2 · · ·wk.
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claim is true:

eval(Am) =

n2∏
j=1

eval(Bm,j)eval(B̂m,j) (by (6.2))

=

n2∏
j=1

σ[uajQΔ]σ[uajQ̂Δ] (Q � Q̂)

= σ[uΔ(Q ∪ Q̂)Δ].

Now let i < m and u ∈ Δi. The words from the interval
⋃m−i+1

j=1 uΔj(Q∪Q̂)Δm−i−j+2

can be partitioned into the following decreasing sequence of consecutive intervals of
(V,�) (recall that Q � Δ � Q̂ and a1 � a2 � · · · � an2):

ua1QΔm−i+1 �
m−i⋃
j=1

ua1Δ
j(Q ∪ Q̂)Δm−i−j+1 � ua1Q̂Δm−i+1

� ua2QΔm−i+1 �
m−i⋃
j=1

ua2Δ
j(Q ∪ Q̂)Δm−i−j+1 � ua2Q̂Δm−i+1

� · · · � uan2QΔm−i+1 �
m−i⋃
j=1

uan2
Δj(Q ∪ Q̂)Δm−i−j+1 � uan2Q̂Δm−i+1.

By induction, we have

σ

[
m−i⋃
j=1

ua1Δ
j(Q ∪ Q̂)Δm−i−j+1

]

= · · · = σ

[
m−i⋃
j=1

uan2
Δj(Q ∪ Q̂)Δm−i−j+1

]
= eval(Ai+1).

Together with (6.2) we obtain

σ

[
m−i+1⋃
j=1

uΔj(Q ∪ Q̂)Δm−i−j+2

]
=

n2∏
j=1

eval(Bi,j)eval(Ai+1)eval(B̂i,j) = eval(Ai).

This proves the claim. By setting i = 0 we get

eval(A0) = σ

[
m+1⋃
j=1

Δj(Q ∪ Q̂)Δm−j+2

]
= σ[V ].

Let β = |σ[I1,α−1]| ∈ 2O(N). Arithmetic on numbers with NO(1) many bits allows us
to compute β in logspace from the input word w. Using the above productions and
the number β, we can construct an SLP G of size polynomial in the input size N with
eval(G) = (#bn1 )nbβ0σ[V ] = w(vα, U). Recall that n is of size 2O(N). Then our input

word w is accepted by A if and only if eval(G)
∗↔R 0. This proves the theorem.

The following corollary solves an open problem from [23, 55].
Corollary 6.7. There exists a fixed deterministic context-free language L such

that the compressed membership problem for L is PSPACE-complete.
Proof. Since every context-free language is contained in DSPACE(log2(n)), the

PSPACE upper bound can be deduced from Proposition 6.1. For the lower bound,
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notice that the language {w ∈ Γ∗ | w ∗→R 0} is deterministic context-free for every
monadic and confluent presentation and every 0 ∈ Γ; see, e.g., [11, Theorem 4.2.7]. If
we choose the 2-monadic and confluent presentation from the proof of Theorem 6.5
for (Γ, R), then the language {w ∈ Γ∗ | w ∗→R 0} is PSPACE-hard by the proof of
Theorem 6.6.

In [31] a language L is called deterministic linear if it is accepted by a deterministic
1-turn pushdown automaton.

Corollary 6.8. There exists a fixed deterministic linear language L such that
the compressed membership problem for L is PSPACE-complete.

Proof. The language {w ∈ Γ∗ | w ∗→R 0} ∩ (#b+1 )+b+0 ((c+0 ∪ c1 ∪ c2)$)+ is easily
seen to be deterministic linear. Moreover, it contains a word of the form w(vα, U) if

and only if w(vα, U)
∗→R 0.

7. Compressed word problems in EXPSPACE. The largest class of monoid
presentations that we consider in this paper are weight-lexicographic and confluent
presentations: A presentation (Γ, R) is weight-lexicographic if there exist a linear order
� on the alphabet Γ and a weight-function f : Γ∗ → N such that for all (s, t) ∈ R
we have either f(s) > f(t) or (f(s) = f(t) and s � t). If the weight-function f is the
length-function, i.e., f(w) = |w|, then (Γ, R) is called length-lexicographic.

Theorem 7.1. For every weight-lexicographic and confluent presentation (Γ, R),
the compressed word problem for M(Γ, R) is in EXPSPACE. Moreover, there exists a
fixed length-lexicographic and confluent presentation (Γ, R) such that the compressed
word problem for M(Γ, R) is EXPSPACE-complete.

Proof. For the upper bound we can use a result from [41]: for every fixed weight-
lexicographic and confluent presentation (Γ, R), the word problem for M(Γ, R) be-
longs to PSPACE. Thus, for two given SLPs G1 and G2 we can first generate the
exponentially long words eval(G1) and eval(G2) and then check in space bounded

polynomially in |eval(G1)| + |eval(G1)| whether eval(G1)
∗↔R eval(G2).

For the lower bound, let (Θ, S) be the presentation from the proof of Theorem 6.6,
where this time the simulated machine A is a fixed Turing-machine that accepts an
EXPSPACE-complete language. Also for such a machine we may assume that it
operates in alternating phases of left and right sweeps. The presentation (Θ, S) is
length-lexicographic and confluent. Without loss of generality the space bound for an
input of length n is 2n. The number of phases can be bounded by 2c·2

n

for some con-
stant c > 0. Add to Θ an absorbing symbol 0 and add to S the following rules: qf → 0,
q̂f → 0, x0 → 0 for all x ∈ Θ, and 0x → 0 for all x ∈ Θ. We again call the resulting
presentation (Θ, S); it is still length-lexicographic and confluent. Moreover, for an in-

put word w of length n, w is accepted by A if and only if 1q0£
c·2n−1w�2n−|w|

∗↔S 0
(where q0 is the initial state of A and � is the blank symbol); see also the proof of
Theorem 6 in [41]. Finally, note that the word 1q0£

c·2n−1w�2n−|w| can be generated
by an SLP of polynomial size in n.

The language {w ∈ Θ∗ | w ∗→S 0}, where (Θ, S) is the presentation from the
previous proof, is context-sensitive. Thus, we obtain the following result.

Corollary 7.2. There exists a fixed context-sensitive language L such that the
compressed membership problem for L is EXPSPACE-complete.

8. Circuit complexity and compression. In this section we will investigate
the compressed membership problem for languages from very low complexity classes.
These classes are usually defined by uniform families of small depth Boolean circuit
families. An equivalent and for our purpose more suitable definition is based on
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alternating Turing-machines with logarithmic time bounds; see section 3.2. Recall
that ALOGTIME denotes the class of all languages that can be recognized on an
alternating Turing-machine in time O(log(n)). Within ALOGTIME, we can define

the logtime hierarchy: For k ≥ 1 we denote by Σlog
k (resp., Πlog

k ) the class of all
languages that can be decided by an alternating Turing-machine in time O(log(n))
within k− 1 alternations (on every computation path) starting in an existential state

(resp., universal state). In [4], Σlog
k ∪ Πlog

k is proposed as a uniform version of AC0
k,

which is the class of all languages that can be recognized by a polynomial-size, depth
k family of unbounded fan-in Boolean circuits. The union

⋃
k≥0 Σlog

k ∪ Πlog
k is also

called the logtime hierarchy (LH). By [63], LH is a strict hierarchy.

The well-known polynomial time hierarchy [64] is defined similarly to the LH: For
k ≥ 1 we denote by Σp

k (resp., Πp
k) the class of all languages that can be decided by

an alternating Turing-machine in polynomial time within k−1 alternations (on every
computation path) starting in an existential state (resp., universal state).

For the further investigations we will need the following lemma.

Lemma 8.1. Incrementing a binary n-bit counter C (with arbitrary initial value)
m times by 1 takes a total of O(n + m) steps on a deterministic Turing-machine.

Proof. Without loss of generality assume that m is a power of 2. We assume
that after each increment, the read-write head moves back to the least significant
bit of C. If the first i bits of C are 1i−10 in that order, then we need 2i steps for
the increment. For i > log(m), this will happen only once during the m increments.
Thus, it suffices to show that incrementing a binary log(m)-bit counter m times by 1
takes a total of O(m) steps. There are at most 2log(m)−i = m

2i numbers t ∈ {0, . . . ,m}
such that the first i bits of t are 1i−10 in that order. Incrementing such a number
by 1 takes 2i steps. Thus, incrementing the counter m times by 1 takes a total of∑log(m)

i=1 2i · m
2i ≤ 2m

∑∞
i=1

i
2i = 4m steps.

Of course, an analogous statement for decrementing a counter is also true.

Theorem 8.2. For every language L in Σlog
k (resp., Πlog

k ) the compressed mem-
bership problem belongs to Σp

k (resp., Πp
k). Moreover, there exists a fixed language L in

Σlog
k (resp., Πlog

k ) such that the compressed membership problem for L is Σp
k-complete

(resp., Πp
k-complete).

Proof. It suffices to prove the statement for Σp
k and Σlog

k , respectively, because

Πp
k and Πlog

k are the corresponding complementary classes. Let us first show that

the compressed membership problem for L belongs to Σp
k in case L belongs to Σlog

k .

Assume that L belongs to Σlog
k . Given an SLP G we simulate the Σlog

k -algorithm on
eval(G). Since |eval(G)| ∈ 2O(n), this simulation takes O(n) steps. Moreover, the
number of alternations during the simulation is k and we start in an existential state.
Finally, note that if the Σlog

k -machine has written a position i ∈ {1, . . . , |eval(G)|} on
its address tape and queries the ith position of eval(G), then in the simulation we
have to determine the symbol eval(G)[i] which is possible in polynomial time (with
respect to |G|).

Next, we will construct a language L in Σlog
k such that the compressed membership

problem for L is Σp
k-complete. First, assume that k is odd. In this case the following

restricted version of quantified Boolean satisfiability (QBF), called Q3SATk, is Σp
k-

complete [70]:

INPUT: A quantified Boolean formula of the form

Θ = ∃x1∀x2 · · · ∃xk : ϕ(x1, . . . , xn).
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Here xi = (x�i , . . . , x�i+1−1) (where �1 = 1 and �k+1 = n+1) is a sequence of Boolean
variables and ϕ is a formula in 3-CNF (a conjunction of disjunctions, each containing
exactly three literals) over the variables x1, . . . , xn.

QUESTION: Is Θ a true quantified Boolean formula?
Let us take an instance Θ of Q3SATk of the above form. Assume that ϕ = C1 ∧C2 ∧
· · ·∧Cm where every Ci is a disjunction of three literals. Note that there are 2n truth
assignments to the variables x1, . . . , xn and each of these truth assignments can be
represented by the vector (b1, . . . , bn) where bi = 1 if the variable xi evaluates to true;
otherwise bi = 0. We order these vectors lexicographically, where the last position
gets the highest significance, i.e., (0, . . . , 0) < (1, 0, . . . , 0) < · · · < (1, . . . , 1). Thus,
we can speak of the jth truth assignment (0 ≤ j ≤ 2n − 1). For each disjunction Ci

define the word ci = b0b1 · · · b2n−1, where bj ∈ {0, 1} is the truth value of Ci under
the jth truth assignment. In [8] it is shown that the word ci can be generated by an
SLP of size O(n). Let di = �i+1−�i; i.e., di is the number of variables in the ith block
xi. Let Γ = {0, 1, $, a1, . . . , ak}. Finally, we define the word w(Θ) ∈ Γ∗ by

w(Θ) = c1c2 · · · cm$2m

adk

k · · · ad2
2 ad1

1 .

Since every ci can be generated by an SLP of size O(n), the word w(Θ) can be
generated by an SLP of polynomial size with respect to the size of the formula Θ.
Note that |w(Θ)| = m · 2n + 2m +n. Thus n ≤ log(|w(Θ)|) and also m ≤ log(|w(Θ)|).
The only use of the padding-factor $2m

is to ensure m ≤ log(|w(Θ)|). It remains to

construct a Σlog
k -machine A that accepts a given input word of the form w(Θ) if and

only if Θ is true. The behavior of this machine on inputs that are not of the form w(Θ)
is not important; it is important only that the logarithmic time bound is respected,
independently of the form of the input. This will be ensured by a counter t. In the
following, we write w[i] (i ∈ {0, . . . , |w| − 1}), where i is the current content of the
address tape, for the result of querying the input w via the random access mechanism.
Note that in contrast to the definition in section 3.1, we number the first position of
w with 0 and the last position with |w| − 1. The alternating Turing-machine A is
described in Figure 8.1. Let us consider an example before we continue analyzing the
machine A.

Example 8.3. Let Θ be the quantified Boolean formula

∃x1∀x2∃x3 : (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3),

which evaluates to true. We have c1 = 11110111 and c2 = 10111111 and thus

w(Θ) = 1111011110111111$4a3a2a1.

Consider the truth assignment x1 = x2 = 1, x3 = 0. This is the third assignment
in lexicographic order (recall that we start with the 0th assignment). The fact that
(x1 ∨x2 ∨¬x3)∧ (¬x1 ∨x2 ∨x3) is true under this assignment corresponds to the fact
that w(Θ)[3] = 1 and w(Θ)[3 + 2n] = w(Θ)[11] = 1. This is verified by the machine
A in the second while-loop, where p = 3 is guessed in the for-loop.

Now let us analyze the behavior of the alternating Turing-machine A on an input
w ∈ Γ∗. All counters (t, s, n, and q) in this algorithm need only log(|w|) bits
and are incremented (or decremented) only O(log(|w|)) times. Thus, by Lemma 8.1
all increments and decrements for the various counters need O(log(|w|)) total time.
Hence, the counter t enforces a logarithmic time bound of the whole algorithm. Since
the number of alternations is precisely k and A starts in an existential state, the
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input a string w ∈ Γ∗

t := 2�log(|w|)� (by [3, Lemma 6.1], t can be calculated in DLOGTIME)
s := |w| − 1 (again, by [3, Lemma 6.1], s can be calculated in DLOGTIME)
p := 0; n := 0;
for i = 1 to k do

while w[s] = ai and t > 0 do
t := t− 1; s := s− 1; n := n + 1;
Guess existentially (if i is odd) or universally (if i is even) the nth bit of
the number p.

endwhile
endfor
Copy the n-bit number p to the address tape, initialize a counter q to 0, and
append q to the n bits of the address tape. When querying the input tape
via the address tape, the machine A will interpret the content of the address
tape (i.e., the concatenation of the n bits of p followed by the bits of q) as the
number p + 2n · q.
while w[p + 2n · q] = 1 and t > 0 do

q := q + 1; t := t− 1;
endwhile
if w[p + 2n · q] = 0 then reject else accept

Fig. 8.1. The alternating Turing-machine A.

machine A is indeed a Σlog
k -machine. We claim that if the input w is of the form

w(Θ) for an instance Θ of Q3SATk, then the counter t does not reach the value 0
if A is started on w(Θ). Let us fix an instance Θ of Q3SATk with n variables and
m clauses. Thus, n ≤ log(|w(Θ)|) and m ≤ log(|w(Θ)|). From the construction
of w(Θ) it follows that A decrements the counter t only n + m ≤ 2�log(|w(Θ)|)�
times when A runs on the input w(Θ). Thus, t does not reach the value 0. Using this
observation, it is easy to see that A accepts w(Θ) if and only if Θ is true. This finishes

the presentation of a language in Σlog
k with a Σp

k-complete compressed membership
problem for the case that k is odd. If k is even, one can argue analogously; one has
to only replace the 3-CNF formula by a 3-DNF formula. The resulting variant of
Q3SATk is Σp

k-complete [70].
Let us remark that the logtime hierarchy LH can be also characterized using first-

order logic (FO) with ordering and the BIT predicate: LH = FO[<,BIT]; see, e.g.,
[32] for definitions. Since, for instance, NP can be captured by existential second-
order logic (NP = SO∃), it follows from Theorem 8.2 that FO[<,BIT] properties on
strings cannot be translated into SO∃ properties on SLPs unless the polynomial time
hierarchy collapses. In a setting without the BIT predicate, similar definability issues
are investigated in [1].

By Proposition 6.1, for every language in
⋃

i≥0 NSPACE(logi(n)) the compressed
membership problem belongs to PSPACE. It turns out that we find languages with
a PSPACE-complete compressed membership problem already in ALOGTIME ⊆
DSPACE(log(n)).

Theorem 8.4. There exists a fixed language L in ALOGTIME such that the
compressed membership problem for L is PSPACE-complete.

Proof. We can reuse the construction from the previous proof, except that we
start from an instance of QBF which is PSPACE-complete [52].
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One should note that it is not the case that for every ALOGTIME-complete
language the compressed membership problem is PSPACE-complete (unless P =
PSPACE): The word problem for the finite group S5 is ALOGTIME-complete [2],
but the compressed word problem for S5 is in P; in fact, it is P-complete [7]. An-
other example is the word problem for the free group F2 of rank 2. Its compressed
membership problem is P-complete by Theorem 4.9, whereas the word problem for
F2 is ALOGTIME-hard [57] but not even known to be in ALOGITME. Thus, in the
framework of SLPs, a general upgrading theorem analogous to [68] does not hold.
The next theorem states this fact in a more general context. For this, we introduce a
parallel notion of reducibility that we call LOGDCFL-reducibility.

A deterministic logspace-bounded AuxPDA is a deterministic pushdown automa-
ton that has an auxiliary read-write working tape of length O(log(n)) for an input
of length n [65]. It is known that a language can be recognized by a deterministic
logspace-bounded AuxPDA in polynomial time if and only if it belongs to the class
LOGDCFL, which is the class of all problems that are logspace reducible to a deter-
ministic context-free language [65]. We say that a function f : Γ∗ → Σ∗ is computable
in LOGDCFL if there exists a deterministic logspace-bounded AuxPDA with an out-
put tape that computes for an input x ∈ Γ∗ the word f(x) on the output tape in
polynomial time. This leads to the notion of LOGDCFL-reductions. LOGDCFL-
reducibility is denoted by ≤LOGDCFL. It is easy to see that a LOGDCFL-computable
function belongs to the functional class LLOGCFL of [27], which is the class of all func-
tions that can be computed by a logspace transducer which has additional access to
an oracle from LOGCFL. Since LLOGCFL is contained in functional NC2 [27], we see
that LOGDCFL-computable functions also belong to functional NC2.

If R is any notion of reducibility, then we write A ≡R B for A ≤R B ≤R A.
In the following proposition, we denote for a language K by C(K) the compressed
membership problem for K.

Proposition 8.5. For every language L there exists a language K such that
L ≡NC1 K ≡LOGDCFL C(K).

Proof. Let us fix a language L ⊆ Γ∗, let # �∈ Γ be a new symbol, and define

K = {a1#a2#
2a3 · · ·#n−1an | a1a2 · · · an ∈ L, a1, . . . , an ∈ Γ}.

Then L ≡NC1 K is easy to see.
That K is LOGDCFL-reducible to C(K) is trivial. Thus, it remains to show

C(K) ≤LOGDCFL K. Note that if an SLP G generates a word a1#a2#
2a3 · · ·#n−1an

(which has length n(n+1)
2 ), then |G| ≥ n. This is true, because if for a nonterminal

A, evalG(A) contains more than one symbol from Γ, then A can occur only once in
the whole derivation tree generated by G. Now a LOGDCFL-reduction from C(K)
to K can be implemented as follows: For a given SLP G, a deterministic logspace-
bounded AuxPDA generates the word eval(G) on the pushdown in the same way
as context-free languages are recognized on pushdown automata. Moreover, every
time the AuxPDA pushes a terminal on the pushdown, it writes that terminal on the
output tape, increments a counter by 1, and removes the terminal from the pushdown.

If the counter reaches the value |G|(|G|+1)
2 + 1 (which has O(log(|G|)) many bits in

its binary representation), then the AuxPDA terminates immediately (this ensures
a polynomial running time) and writes, for instance, ## on the output in order to
ensure that the generated output does not belong to K. If the counter does not reach

the value m(m+1)
2 + 1, then the AuxPDA finally has produced the word eval(G) on

the output. We have described a LOGDCFL-reduction from C(K) to K.
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From Proposition 8.5 it follows that if C is a complexity class that is closed
under NC1-reductions and such that C has complete problems under some notion R
of reducibility that is weaker than LOGDCFL-reducibility (e.g., NC2-reducibility),
then C contains a language L such that both L and C(L) are complete for C under
R-reducibility.

We remark that also for hierarchical graph descriptions [38] (which can be viewed
as graph-generating SLPs) the correlation between the complexity of a problem in its
compressed and uncompressed variant, respectively, is quite loose.

9. Uniform variants. Many of the decision problems in this paper can be also
investigated in a uniform setting. For a class C of monoid presentations define the
compressed uniform word problem for the class C as the following decision problem:

INPUT: A monoid presentation (Γ, R) and two SLPs G1 and G2 over the terminal
alphabet Γ.

QUESTION: Does eval(G1)
∗↔R eval(G2) hold?

Similarly we can define the compressed uniform membership problem for a class C
of languages. Here we have to specify the representation of a language from C. For
various representations of regular languages, the complexity of the uniform compressed
membership problem was investigated in [55]. The upper bound in the following result
was also stated in [55].

Theorem 9.1. The compressed uniform membership problem for the class of all
context-free languages (represented by context-free grammars) is PSPACE-complete.

Proof. The lower bound follows from Corollary 6.7. For the upper bound it was
argued in [55] that one can use a DSPACE(log2(n)) algorithm for parsing context-free
languages in the same way as in the proof of Corollary 6.7. But here, a problem arises:
The uniform membership problem for context-free languages is P-complete, and thus
probably not contained in

⋃
c>0 DSPACE(logc(n)). On the other hand, by [26] the

uniform membership problem for context-free grammars in Chomsky normal form can
be solved in DSPACE(log2(|G| + |w|)), where |G| is the size of the input grammar
and w is the word that has to be tested for membership. Since every context-free
grammar can be transformed in polynomial time into Chomsky normal form, we can
argue analogously to the proof of Proposition 6.1.
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Czechoslovakia, Lecture Notes in Comput. Sci. 118, J. Gruska and M. Chytil, eds., Springer,
Berlin, New York, 1981, pp. 216–223.

[11] R. V. Book and F. Otto, String–Rewriting Systems, Springer, New York, 1993.
[12] W. W. Boone, The word problem, Ann. of Math. (2), 70 (1959), pp. 207–265.
[13] B. Borchert and A. Lozano, Succinct circuit representations and leaf language classes are

basically the same concept, Inform. Process. Lett., 59 (1996), pp. 211–215.
[14] G. Busatto, M. Lohrey, and S. Maneth, Efficient memory representation of XML docu-

ments, in Proceedings of the 10th International Symposium on Database Programming
Languages (DBPL 2005), Trondheim, Norway, Lecture Notes in Comput. Sci. 3774, G. M.
Bierman and Ch. Koch, eds., Springer, Berlin, 2005, pp. 199–216.

[15] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation, J. Assoc. Comput. Mach.,
28 (1981), pp. 114–133.

[16] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sahai,

and A. Shelat, Approximating the smallest grammar: Kolmogorov complexity in natural
models, in Proceedings of the 34th Annual Symposium on Theory of Computing (STOC
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1. Introduction. Scheduling problems with precedence constraints are among
the most difficult problems in the area of machine and processor scheduling, in par-
ticular for the design of good approximation algorithms. Our understanding of the
structure of these problems and our ability to generate near-optimal solutions remain
limited. The following examples illustrate this point:

(i) The first approximation algorithm for P|prec|Cmax by Graham (1969) with
performance ratio 2 − 1/m is still the algorithm of choice for this problem. On the
other hand, it is known only that no polynomial-time algorithm can have a better
approximation ratio than 4/3, unless P = NP (Lenstra and Rinnooy Kan (1978)).

(ii) The computational complexity of the problem Pm|prec, pj = 1|Cmax, open
problem “OPEN8” from the original list of Garey and Johnson (1979), is still open.

(iii) No constant-factor approximation algorithms are known for machines running
at different speeds. For the makespan and total weighted completion time objectives,
Chudak and Shmoys (1999) only recently improved to O(logm) performance ratios
of O(

√
m) due to Jaffe (1980) and Schulz (1996a), respectively.

(iv) Progress is also quite recent for the latter objective on a single machine or
identical parallel machines. Until recently, no constant-factor approximation algo-
rithms were known. Lately, the use of linear programming (LP) relaxations has led
to 2- and 2.7183-approximation algorithms for 1|prec|

∑
wjCj and 1|rj ,prec|

∑
wjCj ,

respectively (Schulz (1996b), Schulz and Skutella (1997)), and to a 5.3281-approxima-
tion algorithm for P|rj ,prec|

∑
wjCj (Chakrabarti et al. (1996)). (Since then, Chudak
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and Hochbaum (1999), Chekuri and Motwani (1999), and Margot, Queyranne, and
Wang (2003) have proposed various combinatorial 2-approximation algorithms for
1|prec|

∑
wjCj .) Few deep negative results are known for these problems (Hoogeveen,

Schuurman, and Woeginger (2001)).
We consider (a generalization of) the scheduling problem P|rj ,prec|

∑
wjCj and

answer a question of Hall et al. (1997, page 530), which they raised in the context of
a 7-approximation algorithm for this problem:

Unfortunately, we do not know how to prove a good performance
guarantee for this model by using a simple list-scheduling variant.

We show that using a similar LP relaxation as Hall et al. (1997) and Chakrabarti et al.
(1996) in a different way (reading the list order from the LP midpoints instead of LP
completion times) yields a simple 4-approximation algorithm for P|rj ,prec|

∑
wjCj .

We actually obtain this result in the more general framework of precedence delays.
Let us describe the model in detail. We are given a set N of n jobs, and m identical

parallel machines. Each job j has a nonnegative processing time pj ; it must be
processed uninterruptedly for that amount of time on any one of the machines. Each
machine can process only one job at a time. An acyclic, directed graph D = (N,A)
specifies precedence constraints between jobs. A nonnegative precedence delay dij is
associated with each precedence-constrained job pair (i, j) ∈ A, with the following
meaning: in every feasible schedule, job j cannot start until dij time units after job i
is completed. Precedence delays can be used to model ordinary precedence constraints
(dij = 0), release dates rj ≥ 0 (by adding a dummy job 0 with zero processing time
and precedence delays d0j = rj for all other jobs), or delivery times qj ≥ 0, which
must elapse between the end of a job’s processing and its actual completion time.

Precedence delays were considered for project scheduling under the name of
“finish-to-start lags,” e.g., by Bartusch, Möhring, and Radermacher (1988) and Her-
roelen and Demeulemeester (1995), for one-machine scheduling by Wikum, Llewellyn,
and Nemhauser (1994) under the name of “generalized precedence constraints,” and
by Balas, Lenstra, and Vazacopoulos (1995) under that of “delayed precedence con-
straints”; the latter authors used the Lmax minimization problem as a key relaxation
in a modified version of the shifting bottleneck procedure for the classic job-shop
scheduling problem. The one-machine problem 1|prec. delays dij = k, pj = 1|Cmax

corresponds to a basic pipeline scheduling problem; see Lawler et al. (1987) for a sur-
vey. Leung, Vornberger, and Witthoff (1984) showed that this problem is strongly NP-
complete. Several other authors, including Bruno, Jones III, and So (1980), Bernstein
and Gertner (1989), Palem and Simons (1993), Finta and Liu (1996), and Brucker and
Knust (1999), derived polynomial-time algorithms for particular instances by utilizing
well-known algorithms for special cases of the classical m-machine problem. In the
context of approximation algorithms, Hall and Shmoys (1989, 1990, 1992) presented
polynomial-time approximation schemes for the problems 1|rj , qj |Cmax, P|rj , qj |Cmax,
and 1|rj ,prec, qj |Cmax, respectively. Schuurman (1998) gave a fully polynomial-time
approximation scheme for 1|prec. delays dij |Cmax when the partial order A has a spe-
cial structure introduced by Wikum, Llewellyn, and Nemhauser (1994). Graham’s
list-scheduling algorithm (Graham (1969)) was extended to P|prec. delays dij = k,
pj = 1|Cmax to yield a worst-case performance ratio of 2 − 1/(m(k + 1)) (Lawler
et al. (1987), Palem and Simons (1993)). This result was in turn extended by Mu-
nier to nonidentical precedence delays and processing times; see Munier, Queyranne,
and Schulz (1998) for details. We refer to Brucker and Knust (1999) for an overview
of complexity results for single-machine problems with precedence delays, including
polynomially solvable cases with total completion time objective.
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For given nonnegative job weights wj ≥ 0, we consider the objective of min-
imizing the weighted sum

∑
j∈N wjCj of completion times. Here, Cj denotes the

completion time of job j in the corresponding schedule. Even special cases of this
problem P|prec. delays dij |

∑
wjCj are NP-hard;1 we therefore discuss the quality

of relaxations and approximation algorithms. An α-approximation algorithm is a
polynomial-time algorithm that produces a solution with objective value at most α
times the optimal value. Sometimes α is called the (worst-case) performance guaran-
tee of the algorithm. Similarly, an α-relaxation is a relaxation with objective value at
least 1/α times the optimal value.

For P|prec. delays dij |
∑

wjCj , we present in section 3 a new algorithm with a
performance guarantee of 4. This algorithm is based on an LP relaxation of this prob-
lem, which is a direct extension of earlier LP relaxations proposed by Schulz (1996b)
and Hall et al. (1997). The decision variables are the job completion times Cj ; in
particular, this relaxation ignores the machine assignments. There are two sets of
linear constraints: one represents the precedence delays in a straightforward fashion;
the other set of constraints is a relatively simple way of enforcing the total capacity of
the m machines. Although the machine assignments are ignored and the machine ca-
pacities are modeled in a simplistic way, this is sufficient to obtain the best relaxation
and approximation bounds known so far for these problems and several special cases
thereof. We show that using job midpoints (instead of completion times) derived from
the LP relaxation leads to a performance ratio of 4 for the general problem described
above. In a given schedule, the midpoint of a job is the earliest point in time at which
half of its processing has been performed; if the schedule is nonpreemptive, then the
midpoint of job j is simply Cj−pj/2. Midpoints and more general notions of α-points
have previously been used in the design and analysis of approximation algorithms for
a variety of scheduling problems with the weighted sum of completion times objective;
see, e.g., Phillips, Stein, and Wein (1998), Hall, Shmoys, and Wein (1996), Goemans
(1997), Chekuri et al. (2001), Goemans et al. (2002), and Schulz and Skutella (2002a,
2002b).

In summary, the contributions of this paper are as follows:
(i) We shed further light on the relationship between two forms of list-scheduling

algorithms: Graham’s nonidling, machine-based list scheduling and job-driven list
scheduling.2 It is well known that the former is appropriate for optimizing objec-
tives, such as the makespan Cmax, that are related to maximizing machine utilization,
whereas they are inappropriate (leading to unbounded performance ratio) for job-
oriented objectives, such as the weighted sum of completion times

∑
j wjCj . This

difficulty was recognized by, among others, Chekuri et al. (2001), who proposed a
variant of machine-based list scheduling that allows for insertion of idle time, us-
ing a mechanism for “charging” such idle time to jobs. This technique leads to a
5.8285-approximation algorithm for P|rj ,prec|

∑
wjCj . We show that job-driven list-

scheduling algorithms have bounded performance ratio for the
∑

j wjCj objective if
the priority list is sensibly chosen.

(ii) Using job completion times as a basis for job-driven list scheduling may yield
very poor schedules for problems with parallel machines, precedence constraints, and a
weighted sum of completion times objective. This may happen even if the completion

1For example, P2| |
∑

wjCj , 1|rj |
∑

wjCj , and 1|prec|
∑

wjCj are NP-hard (Bruno, Coffman,
Jr., and Sethi (1974), Lenstra, Rinnooy Kan, and Brucker (1977), Lawler (1978), Lenstra and Rin-
nooy Kan (1978)).

2Sometimes also called the parallel and serial methods; see Kolisch (1996) for a recent review in
the context of resource-constrained project scheduling.
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times are those of an optimal schedule. In contrast, we show that job-driven list
scheduling according to job midpoints from an appropriate LP relaxation leads to
job-by-job error bounds of at most 4 for a broad class of problems.

(iii) The general model of scheduling with precedence delays allows us to treat in
a unified framework ordinary precedence constraints and release dates. In particular,
this simplifies and unifies the analysis and proof techniques.

(iv) We present the best polynomial-time approximation bounds known so far for
a broad class of parallel machine scheduling problems with precedence constraints or
delays and a total weighted completion time objective. These approximation results
are summarized in Table 1.1.

Table 1.1

Summary of results.

Problem Performance Guarantee Reference

P|prec. delays dij |
∑

wjCj 4 Corollary 3.3

P|prec. delays dij , pj = p|
∑

wjCj 3 Corollary 3.7

P|rj , prec|
∑

wjCj 4 Corollary 3.3

P|rj , prec, pj = p|
∑

wjCj 3 Corollary 3.7

P|prec|
∑

wjCj 4 − 2/m Corollary 3.5

P|prec, pj = p|
∑

wjCj 3 − 1/m Corollary 3.7

P|prec = stiff|
∑

wjCj 3 − 1/m Corollary 3.8

1|prec. delays dij |
∑

wjCj 3 Corollary 3.6

2. List-scheduling algorithms. List-scheduling algorithms, first analyzed by
Graham (1966, 1969), are among the simplest and most commonly used approximate
solution methods for parallel machine scheduling problems. These algorithms use pri-
ority rules, or job rankings. Whenever one of the m machines becomes idle, the next
available job in the list is started on that machine. In the presence of precedence
constraints, a job is available if all of its predecessors have completed processing. By
their nonidling property, Graham’s list-scheduling algorithms are appropriate when
machine utilization is an important consideration. Indeed, Graham (1969) showed
that list scheduling is a (2− 1/m)-approximation algorithm for P|prec|Cmax, no mat-
ter which priority order is used. In contrast, the two examples below show that
the nonidling property may lead to poor performance ratios for a weighted sum of
completion times objective

∑
j wjCj .

Example 2.1. Consider the following two-job instance of the single-machine non-
preemptive scheduling problem 1|rj |

∑
wjCj (a special case of a precedence delay

problem, as discussed in the introduction). For a parameter q ≥ 2, job 1 has p1 = q,
r1 = 0, and w1 = 1, whereas job 2 has p2 = 1, r2 = 1, and w2 = q2. The optimal
strategy is to leave the machine idle during the time interval [0, 1) so as to process
job 2 first. The optimum objective value is 2q2 + q + 2. Any nonidling heuristic
starts processing job 1 at time 0, leading to an objective value of q3 + q2 + q. The
performance ratio is unbounded as q may be arbitrarily large.

The following example is of the same type but uses ordinary precedence con-
straints instead of release dates.

Example 2.2. Consider an instance with m ≥ 3 machines and three types of jobs.
Unit-time job 1 precedes jobs a(1), a(2), . . . , a(m), each of which has processing time 1
as well. Jobs b(1), b(2), . . . , b(m − 1) are independent and have processing time m
each. Job 1 and jobs b(1), b(2), . . . , b(m− 1) have zero weight, whereas wa(h) = 1 for
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h = 1, 2, . . . ,m. The optimal schedule starts job 1 at time 0 on some machine and
leaves m − 1 machines idle during the time interval [0, 1) so as to complete all jobs
a(1), a(2), . . . , a(m) by time 2. Hence, its objective value is 2m. Any form of Graham’s
machine-based list scheduling starts processing jobs b(1), b(2), . . . , b(m− 1) at time 0.
These jobs occupy their machines until time m, forcing jobs a(1), a(2), . . . , a(m) onto
the same machine as job 1, which results in an objective value of (m+1)(m+2)/2−1.
Therefore, the performance ratio increases with m.

Evidently, the appropriate introduction of idle time is an important element in the
design of approximation algorithms to minimize a weighted sum of completion times
subject to precedence delays. As Examples 2.1 and 2.2 illustrate, idle time is needed
to prevent large-weight jobs, which may soon become available, from being delayed
by other, less important jobs.3 On the other hand, too much idle time is undesirable
as well. The necessity to balance these two effects contributes to the difficulty of this
problem. All former approximation algorithms for P|rj ,prec|

∑
wjCj with constant-

factor performance ratios are based on variants of Graham’s original list scheduling,
which actually tries to avoid machine idle time. In fact, Hall et al. (1997) partitioned
jobs into groups that are individually scheduled according to Graham’s list-scheduling
rule, and then these schedules are concatenated to obtain a solution for the original
problem. To find a good partition, this scheme was enriched with randomness by
Chakrabarti et al. (1996). Chekuri et al. (2001) presented a different variant of Gra-
ham’s list scheduling by artificially introducing idle time whenever it seems that a
further delay of the next available job in the list (if it is not the first) can be afforded.
It is worth mentioning that these techniques, analyses, and approximation results also
generalize to precedence delays.

Another, arguably simpler, strategy is to consider the jobs one by one, in the given
list order, starting from an empty schedule. Each job is nonpreemptively inserted into
the current schedule without altering the jobs already scheduled. Specific job-driven
list-scheduling algorithms differ in how this principle is implemented. For definiteness,
consider the version in Figure 2.1, whereby every job is considered in the list order
and is scheduled at the earliest feasible time at the end of the current schedule on
a machine. We assume that the given list is a linear extension of the partial order
defined by the precedence constraints.

1. The list L = (�(1), �(2), . . . , �(n)) is given.
2. Initially, all machines are empty, with machine completion times

Γh := 0 for h = 1, 2, . . . ,m.
3. For k = 1 to n do:

3.1 Let job j = �(k); set its start time Sj := max
(
max{Ci + dij : (i, j) ∈ A},

min{Γh : h = 1, 2, . . . ,m}
)

and its completion time Cj := Sj + pj .
3.2 Assign job j to a machine h such that Γh ≤ Sj . Update Γh := Cj .

Fig. 2.1. Job-driven list-scheduling algorithm for P|prec. delays dij |
∑

wjCj .

Various rules may be used in step 3.2 for the choice of the assigned machine h, for
example, one with largest completion time Γh (so as to reduce the idle time between
Γh and Sj). Moreover, the above algorithm can be modified to allow the insertion of

3It is important to point out that this difficulty results from the nonpreemptive mode; Graham’s
list scheduling with jobs ordered according to LP completion times gives a 3-approximation for
P|rj , prec, pmtn|

∑
wjCj (Hall et al. (1997)).
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a job in an idle period before time Γh. In effect, the observations below also apply to
all these variants.

One method (e.g., Phillips, Stein, and Wein (1998) and Hall et al. (1997)) for
defining the list L consists of sorting the jobs in nondecreasing order of their com-
pletion times in a relaxation of the scheduling problem under consideration. In the
presence of ordinary precedence constraints, this works well for the case of a single
machine (Schulz (1996b), Hall et al. (1997)), but Example 2.3 shows that this may
produce very poor schedules for the case of identical parallel machines. This example
uses the list which is produced by an optimal schedule, the tightest kind of relaxation
that can be defined; moreover, this optimal schedule defines the same completion time
order as the LP relaxation in section 3.1.

Example 2.3. For a fixed number m ≥ 2 of identical parallel machines and a
positive number ε, let the job set N consist of m sets Jh (h = 1, 2, . . . ,m) of m + 1
jobs each, plus a “last job” n. (Thus n = m(m + 1) + 1.) Each set Jh consists of
a “long job” a(h), with processing time pa(h) = 1 + (h − 1)(m + 1)ε, and m “small
jobs” b(h, g) (for g = 1, 2, . . . ,m), each with processing time pb(h,g) = ε and subject to
the precedence constraint (a(h), b(h, g)). In addition, there is a precedence constraint
(b(h, g), n) from each small job b(h, g) (for h = 1, 2, . . . ,m and g = 1, 2, . . . ,m) to
the last job n, which has processing time ε. The objective is to minimize either the
makespan or a weighted sum

∑
j wjCj of job completion times with weights wj = 0

for all j �= n and wn = 1; due to the precedence constraints, these two objectives
coincide for any feasible schedule. An optimal schedule has, for h = 1, 2, . . . ,m, long
job a(h) starting at time S∗

a(h) = 0 on machine h, immediately followed by all small

jobs b(h, g) (for g = 1, 2, . . . ,m) in the same set Jh, assigned as uniformly as possible
to machines 1, 2, . . . , h. Note that all the jobs in Jh are completed before the next
long job a(h + 1) completes. Job n is then processed last on any machine, so that
the optimal objective value is C∗

max = C∗
n = 1 + (m2 + 1)ε. On the other hand, any

version of the job-driven list-scheduling algorithm with all jobs listed in order of their
optimal completion times produces the following schedule: long job a(1) is scheduled
first, with start time SL

a(1) = 0 and completion time CL
a(1) = 1; the m small jobs b(1, g)

(for g = 1, 2, . . . ,m) in J1 are then scheduled, each with start time SL
b(1,g) = 1 and

completion time CL
b(1,g) = 1 + ε on a different machine; this forces all subsequent jobs

to be scheduled no earlier than date 1+ ε. Consequently, for h = 1, 2, . . . ,m, long job
a(h) is scheduled with start time SL

a(h) = (h− 1)+ (h− 1+ (h− 1)(h− 2)(m+1)/2)ε,

followed by all small jobs b(h, g) (for g = 1, 2, . . . ,m) in the same set Jh, each with
start time SL

b(h,g) = SL
a(h) + pa(h) on a different machine. Finally, job n is scheduled

last with SL
n = m + (m + m(m − 1)(m + 1)/2)ε, and thus the objective value is

CL
max = CL

n = m + o(ε), arbitrarily close to m times the optimal value C∗
max when

ε > 0 is small enough.

3. LP-based approximation algorithms. In this section we present an LP
relaxation for the problem of minimizing a weighted sum

∑
j wjCj of job completion

times subject to precedence delays, and use it to develop a 4-approximation algorithm
for this problem. Thereafter, we refine the analysis to give improved bounds for various
relevant special cases.

3.1. The LP relaxation. The decision variables are the job completion times
Cj . The set of constraints is

Cj ≥ pj for all j ∈ N,(3.1)
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Cj ≥ Ci + dij + pj for all (i, j) ∈ A,(3.2)

∑
j∈F

pjCj ≥ 1

2m

(∑
j∈F

pj

)2

+
1

2

∑
j∈F

p2
j for all F ⊆ N.(3.3)

This relaxation is an extension of a relaxation introduced by Hall et al. (1997) for
P|rj ,prec|

∑
wjCj : on the one hand, ordinary precedence constraints are replaced by

inequalities (3.2), which model the precedence delays; on the other hand, inequalities
(3.3) are stronger than the analogous class of inequalities used by Hall et al. (1997).
Our analysis requires this strengthened class of inequalities, which was proposed by
Schulz (1996b). For m = 1 (the single-machine case), they are identical to inequalities
introduced by Wolsey (1985) to model the constraint that the machine can process
at most one job at a time; see Queyranne (1993) for further details. Constraints (3.1)
impose the trivial lower bounds on job completion times.

For a weighted sum of completion times objective, the LP formulation is simply

minimize
∑
j∈N

wjCj subject to (3.1)–(3.3).(3.4)

Although there is an exponential number of constraints in (3.3), the separation prob-
lem for these inequalities can be solved in polynomial time (Schulz 1996a). It follows
that this LP relaxation can be solved in polynomial time, using the ellipsoid method.

3.2. The approximation algorithm. Let CLP denote any feasible solution
to the constraint set (3.1)–(3.3) of this LP. We use this LP solution to define a
feasible schedule with completion time vector CH and analyze the job-by-job rela-
tionship between CH

j and CLP
j for every job j ∈ N . We define the LP midpoint as

MLP
j := CLP

j − pj/2. We now use the list-scheduling algorithm of Figure 2.1 with
the LP midpoint list L defined by sorting the jobs in nondecreasing order of their
midpoints MLP

j . The next theorem contains our main result.

Theorem 3.1. Let CLP denote any feasible solution to the constraint set (3.1)–
(3.3), and let MLP denote the corresponding vector of LP midpoints. Let SH be
the vector of start times of the feasible schedule constructed by the job-driven list-
scheduling algorithm using the LP midpoint list. Then

SH
j ≤ 4MLP

j for all jobs j ∈ N.(3.5)

Proof. Assume for simplicity that the jobs are indexed in the order of their LP
midpoints; that is, MLP

1 ≤ MLP
2 ≤ · · · ≤ MLP

n . We fix job j ∈ N and consider
the schedule constructed by the list-scheduling heuristic using the LP midpoint list
L = (1, 2, . . . , n) up to and including the scheduling of job j, that is, up to the
completion of step 3 with k = j. Let [ j ] := {1, 2, . . . , j}.

Let μ denote the total time between 0 and the start time SH
j of job j when all

m machines are busy at this stage of the algorithm. Since only jobs in [ j − 1] have

been scheduled so far, μ ≤
∑j−1

i=1 pi/m. Let λ := SH
j − μ. To prove (3.5), we need

only show that

(i)
1

m

j−1∑
i=1

pi ≤ 2MLP
j and (ii) λ ≤ 2MLP

j .

Inequality (i) follows from a straightforward variant of Lemma 1 in Schulz (1996b) or
Lemma 3.2 in Hall et al. (1997). For this, first observe that the inequalities (3.3) are
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equivalent to

∑
i∈F

piMi ≥
1

2m

(∑
i∈F

pi

)2

for all F ⊆ N.

Since MLP satisfies all these inequalities, letting F = [ j−1] and using MLP
1 ≤ MLP

2 ≤
· · · ≤ MLP

j , we obtain(
j−1∑
i=1

pi

)
MLP

j ≥
j−1∑
i=1

piM
LP
i ≥ 1

2m

(
j−1∑
i=1

pi

)2

,

implying (i).
To show (ii), let q denote the number of maximal intervals between dates 0 and SH

j

when at least one machine is idle (i.e., not processing a job in [ j − 1]) in the sched-
ule CH. Denote these idle intervals as [ah, bh) for h = 1, 2, . . . , q, so that 0 ≤ a1,
bh−1 < ah < bh for all h = 2, . . . , q, and bq ≤ SH

j . Hence, λ =
∑q

h=1(bh − ah) and all
machines are busy during the complementary intervals [bh, ah+1), including intervals
[0, a1) and [bq, S

H
j ), if nonempty.

Consider the digraph G[ j ] = ([ j ], A[ j ]), where

A[ j ] := {(k, �) ∈ A : k, � ∈ [ j ] and CH
� = CH

k + dk� + p�}.
That is, A[ j ] is the set of precedence pairs in [ j ] for which the precedence delay
constraints (3.2) are tight for CH. If bq > 0, then a machine becomes busy at date bq
(or starts processing job j if bq = SH

j ) and thus there exists a job x(q) ∈ [ j ] with

start time SH
x(q) = bq. Since x(q) ∈ [ j ] we have MLP

x(q) ≤ MLP
j . We repeat the

following process for decreasing values of the interval index h, starting with h = q,
until we reach the date 0 or the busy interval [0, a1). Let (v(1), . . . , v(s)) denote a
maximal path in G[ j ] with last node (job) v(s) = x(h). Note that we must have
bg < SH

v(1) ≤ ag+1 for some busy interval [bg, ag+1) with ag+1 < bh, for otherwise

some machine is idle immediately before the start time SH
v(1) of job v(1) and this job,

not being constrained by any tight precedence delay constraint, should have started
earlier than that date. (Unless SH

v(1) = 0, of course. In this case, ag+1 is the first

point in time at which some machine falls idle.) We have

bh − ag+1 ≤ SH
v(s) − SH

v(1) =

s−1∑
i=1

(
SH
v(i+1) − SH

v(i)

)
=

s−1∑
i=1

(
pv(i) + dv(i)v(i+1)

)
.(3.6)

On the other hand, the precedence delay constraints (3.2) imply

MLP
v(i+1) ≥ MLP

v(i) +
1

2
pv(i) + dv(i)v(i+1) +

1

2
pv(i+1)

for all i = 1, 2, . . . , s− 1. Therefore,

MLP
x(h) −MLP

v(1) ≥
1

2

s−1∑
i=1

(
pv(i) + dv(i)v(i+1)

)
≥ 1

2
(bh − ag+1).

If bg > 0, then let x(g) be a job with SH
x(g) = bg. Because of the order of jobs in the

priority list L, SH
x(g) < SH

v(1) implies MLP
x(g) ≤ MLP

v(1). Therefore,

MLP
x(h) −MLP

x(g) ≥
1

2
(bh − ag+1).(3.7)
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We also have (k, x(g)) ∈ A[ j ] for some k ∈ [ j ] with SH
k < bg = SH

x(g), for otherwise

job x(g) should have started processing on some idle machine before date bg. We may
thus repeat the above process with h = g and job x(h) = x(g). Since g < h at each
step, this whole process must terminate, generating a decreasing sequence of indices
q = H(1) > · · · > H(q′) = 0 such that every idle interval is contained in some interval
[aH(i+1)+1, bH(i)). Adding the corresponding inequalities (3.7), we obtain

λ ≤
q′−1∑
i=1

(bH(i) − aH(i+1)+1) ≤ 2(MLP
x(H(1)) −MLP

x(H(q′))) ≤ 2(MLP
j − 0).(3.8)

This establishes (ii). The proof of Theorem 3.1 is complete.
The following example shows that the factor 4 in inequality (3.5) is (asymptoti-

cally) best possible, even for ordinary precedence constraints only.
Example 3.2. For a given number m ≥ 2 of identical parallel machines, the job

set N includes m sets Jh (for h = 1, 2, . . . ,m) of m + 1 jobs each: a job a(h) with
processing time pa(h) = 2h−1−m, and m “small jobs” b(h, g) (for g = 1, 2, . . . ,m), each
with processing time pb(h,g) = 0 and subject to the ordinary precedence constraint
(a(h), b(h, g)) (with zero delay). In addition, there are m “unit jobs” u(i) (for i =
1, 2, . . . ,m) with processing time pu(i) = 1, and two jobs, n−1 and n, with processing
times pn−1 = 2/m and pn = 0 (thus n = (m + 1)2 + 1). There are two additional
(ordinary) precedence constraints: a(m) precedes n− 1 and n− 1 precedes n.

For sufficiently large m, the following solution CLP is feasible for constraints (3.1)–
(3.3): CLP

j = pa(h) = 2h−1−m for all jobs j ∈ Jh, for h = 1, 2, . . . ,m; CLP
u(i) = 1 + 2/m

for all unit jobs u(i); and CLP
n−1 = CLP

n = MLP
n = pa(m) + pn−1 = 1/2 + 2/m.

Therefore, an LP midpoint list starts with sets J1, J2, . . . , Jm (each with its medium
job before all its small jobs), followed by job n − 1, all unit jobs u(i), and finally
job n. This LP midpoint list produces the following schedule. First schedule the
sets Jh in sequence h = 1, 2, . . . ,m, beginning with the medium job a(h) on one
machine (starting just after set J(h − 1) is complete), immediately followed by the
m small jobs in Jh, each on a different machine. All jobs j in Jh have completion
time CH

j =
∑h

i=1 pa(i) = 2h−m − 2−m; since all machines are occupied at that date,
this forces all subsequent jobs to start no earlier than that date. After the last set Jm
is complete, schedule job n− 1 and m− 1 unit jobs u(i), each on a different machine.
After this, start the remaining unit job on the same machine as job n − 1. The
first m − 1 unit jobs have completion time CH

u(i) = 2 − 2−m. Finally, start job n at

date SH
n = 2 − 2−m. For m large enough, the latter expression is arbitrarily close to

4MLP
n = 2 + 8/m.
If CLP is an optimal LP solution, Theorem 3.1 implies performance ratios of

1/4 and 4 for the LP relaxation and the heuristic solution, respectively.
Corollary 3.3. Let CLP denote an optimal solution to the LP relaxation defined

in (3.4) for the problem P|prec. delays dij |
∑

wjCj. Let CH denote the solution con-
structed from CLP by the job-driven list-scheduling algorithm using the LP midpoint
list, and let C∗ denote an optimum schedule. Then,

∑
j∈N

wjC
LP
j ≥ 1

4

∑
j∈N

wjC
∗
j and

∑
j∈N

wjC
H
j ≤ 4

∑
j∈N

wjC
∗
j .(3.9)

The following example shows that the latter bound is (asymptotically) tight, even
for ordinary precedence constraints only, i.e., for problem P|prec|

∑
wjCj .
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Example 3.4. In Example 3.2, let the weights be wn = 1 and all other wj = 0, so
that the optimum solution has

∑
j∈N wjC

∗
j = wn(pa(m) + pn−1 + pn) = 1/2 + 2/m.

Since the precedence constraints (3.2) and the lower bounds (3.1) imply CLP
n ≥ pa(m)+

pn−1 + pn = 1/2 + 2/m, the solution CLP described in Example 3.2 is optimal for the
LP relaxation (3.4); its objective value is

∑
j∈N wjC

LP
j = 1/2 + 2/m =

∑
j∈N wjC

∗
j .

Using the LP midpoint list produces the schedule described in the above example,
with

∑
j∈N wjC

H
j = 2− 2−m. For m large enough, the latter expression is arbitrarily

close to 4
∑

j∈N wjC
∗
j .

We suspect that the first inequality in (3.9), bounding the performance ratio of
the LP relaxation, is not tight. The worst instances we know arise actually for m = 1
and lead to a gap of 2; see Hall et al. (1997) for details.

3.3. Special cases. The analysis in Theorem 3.1 can be refined for some special
cases, yielding tighter performance ratios. For the problem P|prec|

∑
wjCj , observe

that the list-scheduling algorithm will not allow all machines to be simultaneously
idle at any date before the start time of any job j ∈ N . Therefore, in the proof of
Theorem 3.1, all the idle intervals, with total length λ, contain some processing of
some job(s) i < j; as a result the total work during the busy intervals is at most∑j−1

i=1 pi − λ. Hence, we obtain the following result.

Corollary 3.5. Job-driven list scheduling by optimal LP midpoints is a (4 −
2/m)-approximation algorithm for the scheduling problem P|prec|

∑
wjCj.

Note that for m = 1 we recover the performance ratio of 2 for 1|prec|
∑

wjCj in
Schulz (1996b), which is known to be tight for that special case (Hall et al. (1997)).

In the case of precedence delays and a single machine, the idle intervals that
add up to λ time units cannot contain any processing. Therefore, in the proof of
Theorem 3.1 replace inequality (3.6) with bh−ag+1 ≤ SH

v(s)−CH
v(1) =

∑s−1
i=1 dv(i)v(i+1).

(Note that, if all processing times are positive, then s = 2 and the summation in the
right-hand side consists of a single term dv(1)v(2).) Adding up the precedence delay
constraints (3.2) for all i = 1, 2, . . . , s − 1 and omitting some processing times yields

MLP
x(h) −MLP

v(1) ≥
∑s−1

i=1 dv(i)v(i+1) ≥ bh − ag+1. Therefore, we may replace (3.8) with

λ ≤
∑q′−1

i=1 (bH(i) −aH(i+1)+1) ≤ MLP
x(H(1)) −MLP

x(H(q′)) ≤ MLP
j and thus inequality (ii)

with λ ≤ MLP
j . This implies SH

j ≤ 3MLP
j .

Corollary 3.6. Job-driven list scheduling by optimal LP midpoints is a 3-
approximation algorithm for the scheduling problem 1|prec. delays dij |

∑
wjCj.

Note that for the special case 1|rj ,prec|
∑

wjCj we recover the performance ratio
of 3 in Schulz (1996b). The best approximation algorithm known for this problem,
however, has a performance guarantee of e ≈ 2.7183 (Schulz and Skutella (1997)).

In principle, we may use any LP α-point CLP
j (α) := CLP

j − (1 − α)pj for some
0 ≤ α < 1 in section 3.2. Indeed, inequality (i) in the proof of Theorem 3.1 can be

replaced with
∑j−1

i=1 pi/m ≤ 2CLP
j (α), provided that α ≥ 1/2. On the other hand,

inequality (ii) becomes λ ≤ (1 − α)−1CLP
j (α). While it turns out that using the

midpoint MLP
j = CLP

j (1/2) leads to the best bound for the general case, we can take
advantage of this observation for some special cases.

For example, if the LP midpoint list coincides with the LP start-time list (which
is the case, e.g., if pi = pj for all i, j ∈ N), then we can apply inequality (i) in the
proof of Theorem 3.1 with α = 1/2 to bound the total busy time, whereas we can
use inequality (ii) with α = 0 to bound the total idle time λ by SLP

j = CLP
j (0). We

obtain the following result.
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Corollary 3.7. Let CLP denote an optimal solution to the LP relaxation (3.4).
If MLP

1 ≤ MLP
2 ≤ · · · ≤ MLP

n implies SLP
1 ≤ SLP

2 ≤ · · · ≤ SLP
n , then job-driven list

scheduling by LP midpoints is a 3-approximation algorithm for the problem P|prec.
delays dij |

∑
wjCj.

Because the arguments leading to Corollary 3.5 apply here as well, Corollary 3.7
actually gives a (3−1/m)-approximation algorithm for this special case of P|prec|

∑
wjCj .

Hall et al. (1997) had earlier proved these performance ratios for the special cases P|rj ,
prec, pj = 1|

∑
wjCj and P|prec, pj = 1|

∑
wjCj , respectively.

Let us finally consider “stiff” instances of P|prec|
∑

wjCj . Margot, Queyranne,
and Wang (2003) called an instance (of the single-machine problem 1|prec|

∑
wjCj)

stiff if w(I)/p(I) ≤ w(N)/p(N) for all initial sets I ⊆ N . A set I is initial if j ∈ I
and (i, j) ∈ A imply i ∈ I. Chekuri and Motwani (1999) and Margot, Queyranne,
and Wang (2003) showed that the total weighted completion time of any feasible one-
machine schedule of a stiff instance is within a factor 2 of that of an optimum. Given
an instance of P|prec|

∑
wjCj , we define a corresponding single-machine instance

with processing times pj/m, and we keep the original job weights and precedence
constraints. The objective value of an optimal solution to this single-machine instance
is a lower bound on the cost of an optimal schedule C∗ for the original instance on
m identical parallel machines (Chekuri et al. (2001)). Let us argue that job-driven
list scheduling according to optimal LP start times SLP

j = CLP
j − pj is a (3 − 1/m)-

approximation for stiff instances of P|prec|
∑

wjCj . In fact, it suffices when CLP is
an optimal solution to the LP with constraint set (3.1)–(3.2), which can be solved
combinatorially using shortest-path computations. That is, inequalities (3.3) are not
needed. So, let L be defined by SLP

1 ≤ SLP
2 ≤ · · · ≤ SLP

n . From the preceding
discussion, we already know that we can use inequality (ii) in the proof of Theorem 3.1

with α = 0 to bound the total idle time λ by SLP
j . It remains to bound

∑j
i=1 pi/m.

This time, we do not give a job-by-job bound, but bound the entire contribution of
busy periods to the objective function value of the heuristic schedule. Let C1 be the
completion time vector of an optimal schedule to the corresponding single-machine
instance. Note that

∑j
i=1 pi/m is the completion time of job j in the single-machine

schedule where jobs are sequenced according to L. Hence, as the instance is stiff,∑n
j=1 wj

∑j
i=1 pi/m ≤ 2

∑n
j=1 wjC

1
j . Overall, we obtain

n∑
j=1

wjC
H
j ≤

n∑
j=1

wj

(
j∑

i=1

pi/m +
(
1 − 1/m

)(
SLP
j + pj

))

≤ 2

n∑
j=1

wjC
1
j +

(
1 − 1/m

) n∑
j=1

wjC
LP
j

≤
(
3 − 1/m

) n∑
j=1

wjC
∗
j .

Corollary 3.8. Let CLP denote an optimal solution to the LP relaxation de-
fined over (3.1)–(3.2). Job-driven list scheduling by LP start times is a combinato-
rial (3 − 1/m)-approximation algorithm for stiff instances of the scheduling problem
P|prec|

∑
wjCj.

Finally, let us point out that Corollaries 3.5, 3.6, and 3.7 also imply corresponding
bounds on the quality of the LP relaxation (3.4) for these special cases.
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1. Introduction. A secure computation protocol for a function f(·, ·) allows
two parties, a receiver who knows x and a sender who knows y, to jointly compute
the value of f(x, y) in a way that does not reveal to each side more information
than it can learn from f(x, y). The fact that for every polynomially computable
function f(·, ·) there exists such a (polynomially computable) protocol is one of the
most remarkable achievements of research in foundations of cryptography. However,
the resulting protocols are often not as efficient as one would desire, since the number
of cryptographic operations that should be performed is proportional to the size of
the circuit computing f(x, y) [60]. Even for relatively simple functions this may be
prohibitively expensive. It is therefore interesting to investigate for which functions
it is possible to come up with a protocol that does not emulate a circuit computing
the function.

1.1. Oblivious polynomial evaluation. In the oblivious polynomial evalua-
tion (OPE) problem the input of the sender is a polynomial P of degree k over some
field F . The receiver can learn the value P (x) for any element x ∈ F without learn-
ing anything else about the polynomial P and without revealing to the sender any
information about x (for the precise definition of “learning” and “information” see
section 1.2). We find this problem to be a useful primitive. For example, as it can act
as a cheap replacement for pseudorandom functions in case only k-wise independence
is needed.

Strongly polynomial overhead The overhead of an algorithm is strongly polynomial
if it is bounded by a polynomial function of the number of data items in the input,
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rather than a function of the size of the input values (e.g., the number of bits of nu-
merical input values). In combinatorial optimization it is common to look for strongly
polynomial algorithms for different problems, for example, for linear programming.

The computational overhead of cryptographic protocols is usually measured as the
number of public key operations. We use this term to denote cryptographic operations
which we do not know how to implement based on the existence of one-way functions,
and for which the best known constructions are based on trapdoor functions, or on
similar primitives. (In the context of this paper we usually only measure the number
of invocations of a 1-out-of-2 oblivious transfer protocol.) Counting only public key
operations is justified since the overhead of public key operations depends on the
length of their inputs, and is greater by orders of magnitude than the overhead of
symmetric key operations (i.e., operations based on one-way functions). Furthermore,
the separation result of Impagliazzo and Rudich [38], and subsequent work, hint that
it is unlikely that these operations can be based on the existence of one-way functions.

We say that a cryptographic protocol is strongly polynomial if the following two
properties hold: (1) the number of public key operations performed by the protocol is
bounded by a polynomial function of a security parameter and of the number of inputs
(but not their size), and (2) the length of the inputs to the public key operations is
linear in the security parameter. Note that the number of symmetric key operations
that the protocol performs can be polynomial in the size of its inputs.

Known methods of implementing oblivious polynomial evaluation include generic
protocols for secure two-party computation (e.g., [60]), or using homomorphic encryp-
tion (e.g., using Paillier’s encryption system [56]). However, none of these methods
is strongly polynomial in the sense defined above: the number of oblivious transfer
operations in the generic construction, as well as the size of the input to the homo-
morphic encryption function, is linear in the size of the receiver’s input in the OPE
protocol.

In contrast, the number of oblivious transfers (OT) used by the OPE protocols
presented in this paper does not depend on the size of the underlying field: the length
of the items transferred in the oblivious transfer protocols is of size log |F|, but they
require only O(1) public key operations per transfer. Namely, if log |F| is longer than
the length of the input of the OT protocol, then the items to be transferred in the OT
protocol are encrypted using random keys, and the corresponding keys are transferred
in the actual OT protocol.

An alternative formulation of the “strongly polynomial” requirement for crypto-
graphic protocols is to allow only “black box” access to field operations, while hiding
the underlining field from the parties. In addition, the number of invocations of the
black box must be independent of the size of the inputs. Note that our construction
satisfies this requirement, whereas generic constructions, or constructions based on
homomorphic encryption, do not.

It is interesting to note that the work on randomizing polynomials [36] implies that
any function which has an efficient branching program representation can be efficiently
reduced to computing polynomials. We explain in section 4.3 how to reduce two-party
secure computation of such functions to OPE. In particular, this implies strongly
polynomial protocols for computing any function which has an efficient branching
program representation.

Our protocols can also be readily applied to oblivious computation of gP (x), where
P is a polynomial, with no increase in their overhead, as described in section 4.1. In
comparison, binary circuits that evaluate this function must compute exponentia-
tions and are very large, and the overhead of the resulting secure protocols is high.
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(Protocols based on homomorphic encryption, however, can compute gP (x) without
increasing their overhead.) Oblivious evaluation of gP (x) yields k-wise independent
outputs that might be useful for distributed implementations of public key operations.

The noisy polynomial reconstruction problem. The protocols we describe are based
on intractability assumptions related to the noisy polynomial reconstruction problem.
While being related to other computational problems, this problem has not been
used before as an intractability assumption in a cryptographic protocol. Section 2
describes in detail the assumptions and the background. Interestingly, following the
publication of the conference version of our work [51] Kiayias and Yung designed
different cryptographic primitives which are based on variants of the noisy polynomial
reconstruction problem [40, 41].

Overhead independent of the degree of the polynomial. We describe a protocol
(Protocol 3.4) whose computational overhead (as measured by the number of 1-out-
of-2 oblivious transfers that are computed) is independent of the degree of the polyno-
mial. That is, for any degree d, the number of oblivious transfers that are required for
an oblivious evaluation of a polynomial of degree d is the same as for a linear polyno-
mial. (Of course, the total computation overhead of the evaluation of the polynomial
depends on the degree of the polynomial, but the number of public key operations is
independent of the degree.)

Applications. We envision two types of applications for oblivious polynomial
evaluation. One is whenever k-wise independence can replace full independence or
pseudorandomness (i.e., oblivious evaluation of a pseudorandom function, as in [54]).
Such property is required, for example, for the application of constructing anonymous
coupons that enable anonymous usage of limited resources (e.g., for constructing an
anonymous complaint box). The other type of application uses OPE for preserving
anonymity when the receiver must compute the value of a polynomial at a certain
point. Applications of this nature include a protocol that allows reliable and privacy
preserving metering (described in section 4.4), a method for distributed generation
of RSA keys, designed by Gilboa [26], and a protocol for private computation of the
ID3 data mining algorithms [45] (in that case the polynomial is used for a Taylor
approximation of the logarithm function).

1.2. Correctness and security definitions. We now get to the delicate busi-
ness of defining the security of oblivious polynomial evaluation. The OPE function-
ality requires privacy for both receiver and sender. In an OPE protocol neither party
learns anything more than is defined by the OPE functionality. The strongest way of
formalizing this notion and ensuring simple composability of the protocols is through
the definition of secure two-party computation (see, e.g., Goldreich [29] and papers on
composability, e.g., [10, 11]). However, this definition is rather complex, while there
are many applications that do not require the full power of the general definition
and could use “non-ideal” protocols. We therefore prefer to use a relaxed definition
for OPE, which ensures privacy for both parties but does not require the sender to
commit to its input (i.e., to commit to the polynomial P ). We call this definition pri-
vate computation. The definition of private computation is relevant also to the case
of malicious parties (and is therefore stronger than a definition for the semi-honest
case only). It preserves the privacy of the clients, but does not require simulation of
the joint distribution of the view of a malicious sender and the output of an honest
receiver, as is required by the general definition of secure computation.

We claim that this relaxation is justified by efficiency considerations, in particular
when constructing specific OPE protocols rather than black-box reductions of OPE
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to other primitives. Furthermore, the definition of private computation is standard
for related primitives such as oblivious transfer [58, 21, 53] or private information re-
trieval (PIR) [13, 43] (note that we present a reduction of OPE to oblivious transfer).
Note also that the definition of private computation is equivalent to the definition of
secure computation in the case of semi-honest parties. Furthermore, we deal with a
receiver-sender (aka. client-server) scenario, where only one party, the receiver, has
an output in the protocol. Therefore, the two definitions are equivalent with respect
to a malicious client, as there is no issue of simulating the joint distribution of the
client’s view and the server’s output.

The requirements of a private OPE protocol can be divided into correctness,
receiver privacy, and server privacy. Let us first define these properties independently
and then define a private OPE protocol as a protocol satisfying these three properties.
In the definitions, the running time of polynomial time algorithms is polynomial
in the size of their inputs, as well as in log |F|, where F is the field in which the
polynomial P is defined, and in a security parameter k. (Note that the length of
representations of elements in F must be polynomial in the security parameter since
otherwise the cryptographic operations might be insecure given adversaries with poly-
log |F| running time.) We don’t require in the definitions themselves that the number
of public key operations is independent of F . To simplify the notation we also omit
any reference to auxiliary inputs.

We first define the input and output for the OPE functionality as a two party
protocol run between a receiver and a sender over a field F .

• Input:
– Receiver: an input x ∈ F .
– Sender: a polynomial P defined over F .

• Output:
– Receiver: P (x).
– Sender: nothing.

Definition 1.1 (correctness, or functionality). At the end of the protocol the
receiver obtains the output of the OPE functionality, namely, P (x).

The definition of the receiver’s privacy is simplified by the fact that the sender
gets no output. It is as follows.

Definition 1.2 (receiver’s privacy—indistinguishability). For any probabilistic
polynomial time B′ executing the sender’s part, for any x and x′ in F , the views
that B′ sees in case the receiver’s input is x and in case the receiver’s input is x′ are
computationally indistinguishable.

The definition of sender’s privacy is a bit trickier, since the receiver obtains some
information, and we want to say that the receiver does not get more or different
information than P (x). We compare the protocol to the ideal implementation. In the
ideal implementation there is a trusted third party Charlie, which gets the sender’s
polynomial P and the receiver’s request x and gives P (x) to the receiver. The privacy
requirement is that the protocol does not leak to the receiver more information than
in the ideal implementation.

Definition 1.3 (sender’s security—comparison with the ideal model). For any
probabilistic polynomial-time machine A′ substituting the receiver, there exists a prob-
abilistic polynomial-time machine A′′ that plays the receiver’s role in the ideal im-
plementation, such that the view of A′ and the output of A′′ are computationally
indistinguishable.

Definition 1.4 (private OPE protocol). A two-party protocol satisfying Defini-
tions 1.1, 1.2 and 1.3.
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Note that the definition of receiver privacy does not preclude the sender from
cheating by using a polynomial of degree higher than the degree of P (and therefore
it might not be possible to extract from the sender a degree k polynomial). We do not
require that the sender be committed to a single polynomial, or that the receiver could
verify that the value she receives corresponds to such a polynomial. Our construction
allows such cheating; however, in many applications (including the ones described in
this paper) this is immaterial.

As a side note we observe that a possible approach for ensuring correctness could
use the verifiable secret sharing (VSS) schemes of Feldman and of Pedersen [23, 57],
which let the sender commit to a single polynomial P before engaging in the OPE
protocol. Since two polynomials of degree d agree in at most d locations, an OPE
invocation in which the sender lets the user evaluate a different polynomial P ′ of
the same degree is revealed with probability 1 − d/|F| by a receiver that evaluates
the polynomial at a random point. This approach does not work, however, if the
sender has some information about the distribution of points in which the user might
compute P .

Shared output OPE. A variant of OPE which might be useful in many applications
(e.g., [26, 45]) is one where the output of the polynomial is shared between the two
parties. As in the basic OPE protocol the input of the sender is a polynomial P ()
and the input of the receiver is x. However, unlike the basic OPE protocol both
parties have random outputs which sum up to P (x). In other words, the sender
and receiver have output yS and yR, respectively, such that each of these values is
uniformly distributed in F and it also holds that yS + yR = P (x).

There is a simple reduction from shared output OPE to basic OPE. Namely,
given an input polynomial P (), the sender chooses a random yS ∈ F and defines
P ′(x) = P (x) − yS . The parties then perform an OPE of P ′(x) and the receiver sets
yR = P ′(x).

1.3. Related work.

1.3.1. Oblivious transfer. The basic cryptographic primitive that is used by
the protocols for oblivious polynomial evaluation is oblivious transfer. The notion
of 1-out-of-2 oblivious transfer was suggested by Even, Goldreich and Lempel [21]
as a generalization of Rabin’s oblivious transfer [58]. A protocol for 1-out-of-2 OT
involves a sender, which has two inputs x0 and x1, and a receiver whose input is a
single bit, b ∈ {0, 1}. At the end of the protocol the receiver learns xb and nothing
about x1−b, while the sender learns nothing about b. More generally, a k-out-of-N
OT functionality is defined in the following way.

Definition 1.5. (k-out-of-N oblivious transfer functionality).
• Parameters: Integers N > k ≥ 1.
• Input:

– Sender: N inputs x1, . . . , xN .
– Receiver: k inputs i1, . . . , ik which are integer values in the range [1, N ].

• Output:
– Sender: nothing.
– Receiver: xi1 , . . . , xik .

For a discussion of OT see Goldreich [29]. 1-out-of-N oblivious transfer was intro-
duced by Brassard, Crépeau and Robert [8, 9] under the name ANDOS (all or nothing
disclosure of secrets). They used information theoretic reductions to construct 1-out-
of-N protocols from N − 1 invocations of a 1-out-of-2 protocol (it was later shown
that such reductions must use at least Ω(N) invocations of 1-out-of-2 OT in order



OBLIVIOUS POLYNOMIAL EVALUATION 1259

to preserve the information theoretic security [17]). Goldreich and Vainish [33] and
Kilian [42] showed that oblivious transfer enables general secure two-party computa-
tion, with no additional assumptions (with security against semi-honest and malicious
adversaries, respectively).

This paper describes reductions of oblivious polynomial evaluation to an ideal
implementation of the OT functionality of Definition 1.5. Based on composition the-
orems (see, e.g., [29, 10, 11]) the ideal functionality can be replaced with actual imple-
mentations of OT. Such constructions of OT can be based on physical assumptions,
such as the use of a noisy channel (see, e.g., [15]), or on computational assumptions.
Constructions of OT based on computational assumptions can be divided to different
categories, as listed below, according to the security definitions that they satisfy. The
OPE constructions can be based on OT protocols from any of these categories. (Of
course, security depends on the security of the oblivious transfer protocol. In partic-
ular, all OT protocols we describe provide security against semi-honest adversaries.
All but the first category provide privacy in the face of malicious parties.)

(i) OT protocols which provide security in the semi-honest model. These in-
clude basic protocols based on the EGL (Even–Goldreich–Lempel) paradigm [21],
which are based on using a public key encryption system with the additional property
that the distribution of ciphertexts is independent of the encryption key (the original
EGL protocol uses trapdoor permutations with a special property, but its structure
is similar). In these protocols the receiver sends two encryption keys PK0 and PK1,
while knowing only a single decryption key, corresponding to PKb. The sender en-
crypts x0 using the key PK0, and encrypts x1 using the key PK1. The receiver then
decrypts xb but cannot decrypt x1−b. Protocols based on this paradigm include the
construction suggested by Bellare and Micali [4], and generic constructions based on
the existence of trapdoor permutations.

OT protocols of this type can be made secure with respect to malicious parties by
applying the GMW (Goldreich–Micali–Wigderson) [31] paradigm, i.e., “compiling”
a semi-honest protocol using generic techniques to obtain a protocol which ensures
that the operation of the parties follows the protocol. This is usually done by adding
zero-knowledge proofs in which the parties prove that they operate according to the
protocol. If the zero-knowledge proofs enable extraction then the protocols are simu-
latable, but only for a single invocation at a time, rather than for parallel or concurrent
invocations of the protocol.

(ii) OT protocols which provide information-theoretic security for the sender
with respect to a corrupt receiver, and computational security for the receiver (e.g.,
the two round protocols of [52, 1, 39]). Although these protocols provide information-
theoretic security, they do not enable extraction of the receiver’s input. Therefore
they do not enable easy simulation of the output that is obtained by the receiver.
(The GMW paradigm can be applied to this type of protocol as well, but usually with
considerable degradation in efficiency. In addition, the information-theoretic security
might be lost.)

(iii) Fully simulatable OT protocols, in particular for parallel or concurrent in-
vocations. These include the concurrent OT protocol of [24] (which assumes that
the inputs are independent), the universally composable protocols of [11], and the
universally composable committed OT of [25].

(iv) Protocols based on the random oracle model. In this model it is possible
to design very efficient protocols based on the EGL or the Bellare–Micali paradigms.
These protocols are secure against malicious parties and fully simulatable. Their
security relies, however, on the random oracle model.
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Most constructions of OT protocols that are described in the literature are of 1-
out-of-2 OT. Efficient implementations of 1-out-of-N and k-out-of-N oblivious transfer
protocols are described in [53]. These protocols are based on efficient computationally
secure reductions to 1-out-of-2 oblivious transfer. A 1-out-of-N oblivious transfer is
reduced to logN invocations of 1-out-of-2 OT, and the k-out-of-N protocol is consid-
erably more efficient than k repetitions of 1-out-of-N oblivious transfer. Furthermore,
more recent constructions [52] reduce the amortized overhead of oblivious transfer, if
multiple invocations of this protocol should be run (as is the case in the OPE con-
structions). A direct implementation of 1-out-of-N OT, e.g., by the protocols which
provide information-theoretic security for the sender [52, 1, 39], is quite efficient for
the receiver which has to do only O(1) work, while the sender has to perform O(N)
exponentiations.

It was recently shown how to extend oblivious transfer in the sense that two parties
can execute a large number of OTs (a number polynomial in k, where k is a security
parameter of a pseudorandom function), at the cost of running only k OTs and exe-
cuting additional invocations of symmetric cryptographic functions for every OT [35]
(this is an efficient realization of a generic construction of Beaver [2]). The security
of this construction is based on a nonstandard assumption (or alternatively on the
random oracle assumption), and security against malicious parties is obtained using
a cut-and-choose method that involves running multiple invocations of the system.

In our work we measure the computational overhead by the number of OTs that
are executed by the parties. The use of this criterion makes sense since all other opera-
tions are either arithmetic or are symmetric crypto operations, which are considerably
more efficient. It is preferable to minimize the number of OT operations even given
the recent work on extending oblivious transfer, since that construction depends on
a new assumption, involves some additional constants, and requires a cut-and-choose
solution against malicious parties.

We present a protocol that uses a minimal number of OTs in the sense that this
number is independent of the size of the field and of the degree of the polynomial.
We assume that each 1-out-of-2 OT operation is atomic and can accommodate an
input of arbitrary size (this is justified since the OT can be used to transfer one of
two keys whose length is equal to the security parameter, and these keys can be used
to encrypt each of the two inputs, which can be of arbitrary size).

1.3.2. Secure two-party computation. The idea of secure two-party compu-
tation was introduced by Yao [60]. His construction enables one party, the sender, to
define a function F and enable another party, the receiver, to compute the value of
F at a single point x without learning anything else about F , and without disclosing
to the sender any information about x. The construction is based on describing F
as a binary circuit and evaluating the circuit. Its computational overhead is com-
posed of running an oblivious transfer protocol for every input wire of the circuit, and
computing a pseudorandom function for every gate. The bulk of the communication
overhead is incurred by sending a table, of size linear in the security parameter of the
pseudorandom function, for every gate. The overhead, therefore, strongly depends on
the size of the representation of F as a binary circuit. In the case of a polynomial of
degree d this circuit should compute xd and its size is O(|x|2 · log d). In particular, the
size of the circuit depends on the size of the field over which the polynomial is defined.
(It is also possible to construct a circuit that uses an FFT approach for computing xd.
The size of this circuit, too, depends on the size of the field over which the polynomial
is defined.)
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In another generic construction, Naor and Nissim [49] show that any two-party
protocol can be transformed into a secure protocol with the effect that a protocol
with communication complexity of c bits is transformed to a secure protocol which
performs c invocations of oblivious transfer (or SPIR) from a database of length 2c.
A simple (insecure) protocol for oblivious polynomial evaluation has a single round
and a communication overhead of log |F| bits (the receiver simply sends x to the
sender). Applying the Naor–Nissim transformation to this protocol results in a secure
protocol that executes an OT/SPIR out of a table of |F| elements. Namely, the server
constructs a table of |F| items, containing the value of P (x) for every x ∈ F . The
receiver then reads a single entry of this table using OT or SPIR. This protocol is
definitely not strongly polynomial as its overhead is linear in |F|.

2. Intractability assumptions. This section contains definitions of two new
pseudorandomness assumptions. They are later used for constructing protocols for
oblivious polynomial evaluation. The assumptions are closely related to the noisy
polynomial reconstruction problem, or the list decoding problem of Reed–Solomon
codes. We first describe this well-known problem, and then introduce the pseudoran-
domness assumptions.

2.1. The noisy polynomial reconstruction problem. The noisy polynomial
reconstruction problem is described by the following definition.

Definition 2.1 (polynomial reconstruction). A polynomial reconstruction algo-
rithm has the following functionality:

• Input: Integers k and t, and n points {(xi, yi)}ni=1, where xi, yi ∈ F (F is a
field).

• Output: Any univariate polynomial P of degree at most k such that P (xi) = yi
for at least t values i ∈ [1, n].

The noisy polynomial reconstruction problem is related to the list decoding prob-
lem, which is motivated by coding theory and was first defined by Elias [20] (and
sometimes also termed as the bounded-distance decoding problem). The input to this
problem is a received word, and the output is a list of all code words that are within
some distance from the received word. For the case of Reed–Solomon codes the list
decoding problem can be formulated as follows.

Definition 2.2 (polynomial list reconstruction). A polynomial list reconstruc-
tion algorithm has the following functionality.

• Input: Integers k and t, and n points {(xi, yi)}ni=1, where xi, yi ∈ F (F is a
field).

• Output: All univariate polynomials P of degree at most k such that P (xi) = yi
for at least t values i ∈ [1, n].

For given values of k and n, and in particular for a given message rate k/n, it
is preferable to obtain solutions for minimal values of t. The classic algorithm of
Berlekamp and Massey (see, e.g., [48]) solves the polynomial reconstruction problem
in polynomial time for t ≥ n+k

2 (in this range there is a unique solution). Sudan

[59] presented a polynomial algorithm that works if t ≥
√

2kn, and later Guruswami
and Sudan [34] presented a polynomial algorithm that solves the problem for t ≥√
kn, and thus improves upon the Berlekamp–Massey algorithm for every value of the

message rate k/n. (Later, Coppersmith and Sudan [14] showed an improved noisy
interpolation algorithm which removes random errors applied to curves of the form
〈x, p1(x), p2(x), . . . , pc(x)〉, where p1, . . . , pc are polynomials. We are interested in
the case c = 1, for which this algorithm is not better than the Guruswami–Sudan
algorithm.)
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The “polynomial list reconstruction” problem is defined as a worst case problem
regarding the number of polynomials that might appear in the solution list. In other
words, the definition requires that all polynomials within a given distance be listed.
Goldreich et al. [32] have shown that for t >

√
kn the number of possible polynomials

in the solution to the problem is bounded by a polynomial in n. We are more interested
in the problem of finding just a single polynomial that fits t or more of the given n
points, since our constructions use random instances for which it holds with high
probability that the corresponding noisy polynomial reconstruction problem has a
single solution.

We note that given an input to a noisy polynomial reconstruction problem it is
possible to randomize it to obtain an input that corresponds to a random polynomial.
Specifically, for parameters k and t and given n points {(xi, yi)}ni=1 the randomization
is achieved by choosing a random polynomial R of degree k and constructing a new
instance of the problem with input {(xi, yi +R(xi))}ni=1. While this is by no means a
reduction from the worst case problem to the average case (since it only randomizes
the polynomial but not the noise), it might hint that solving the problem in the
average case might not be much simpler than solving it in the worst case.

2.2. The intractability assumptions—pseudorandomness. We present two
new intractability assumptions. The first assumption is equivalent to a conjecture that
given a randomly chosen input to the polynomial list reconstruction problem the value
of the polynomial at x = 0 is pseudorandom. The second assumption states that the
value P (0) is pseudorandom even given some additional hints about the location of
the values of P . Section 3 describes OPE protocols that are based on the assumptions.

The intractability assumptions depend on the following parameters:
(i) F , the field over which the polynomial is defined.
(ii) k, the degree of the hidden polynomial.
(iii) n, the number of correct values of the polynomial, which is also the number

of queries made in the oblivious evaluation protocol. (This parameter corresponds to
t in the definition of the polynomial list reconstruction problem, Definition 2.2. We
change the notation to agree with the notation used later in this paper.)

(iv) m, the expansion ratio (namely, the ratio between the total number of points
and n). This parameter corresponds to n/t in Definition 2.2.

Setting precise parameter sizes to satisfy the intractability assumptions is beyond
the scope of this paper, and we therefore do not make any precise recommendations
with regard to parameter sizes.

The first intractability assumption. This intractability assumption simply
assumes that given an input to the polynomial list reconstruction problem, with all
xi being distinct, the value of the polynomial at x = 0 is pseudorandom. That is, it is
infeasible to distinguish between two such inputs corresponding to polynomials with
different values at x = 0. To define this more formally, we use the following notation:

Let Ak,α
n,m denote the probability distribution of sets generated in the following

way:
1. Pick a random polynomial P over F , of degree at most k, for which it holds

that P (0) = α.
2. Generate nm random values x1, . . . , xnm in F subject to the constraint that

all xi values are distinct and different from 0.
3. Choose a random subset S of n different indices in [1, nm], and set yi = P (xi)

for all i ∈ S. For every i �∈ S set yi to be a random value in F .
4. Output the set {(xi, yi)}nmi=1.
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The pseudorandomness assumption is based on the notion of computationally
indistinguishability, as defined by Goldreich in [28, page 104]. It sets the size of the
parameters to be polynomial in a security parameter �, and requires that the resulting
probability ensembles are computationally indistinguishable.

Assumption 1 (first pseudorandomness assumption). Let � be a security param-
eter, and let n(�),m(�), k(�), F (�) be polynomially bounded functions that define the
parameters n,m, k and the description of the field F . Let α(�) and α′(�) be any
polynomially bounded functions defining elements of the field F , and define α = α(�)
and α′ = α′(�). Let Ak,α

n,m and Ak,α′

n,m be random variables that are chosen according

to the distributions Ak,α
n,m and Ak,α′

n,m, respectively.

The assumption is that the probability ensembles {Ak,α
n,m} and {Ak,α′

n,m} are com-
putationally indistinguishable for adversaries whose running time is polynomial in the
security parameter �.

Pseudorandomness Assumption 1 is related to the assumption that polynomial
list reconstruction is hard. Assumption 1 is stronger, since in addition to assuming
that reconstructing the polynomial is hard, it assumes that all xi are distinct and
that it is even hard to learn information about the value of the polynomial at 0.

Assumption 1 is weaker than an assumption that states that it is hard to dis-
tinguish between any probability ensemble {Ak,α

n,m} and a probability ensemble that
generates sets with the same number of random (x, y) values. If the latter assump-
tion is true, then so is Assumption 1. (Assume that Assumption 1 does not hold.
Then there is a distinguisher such that the probability of its output being 1 given an
input from {Ak,α

n,m} has a nonnegligible difference from the probability of it having a

1 output given an input from {Ak,α′

n,m}. The probability of a 1 output given an input
from the “random” ensemble must have a nonnegligible difference from at least one
of these two probabilities.) The converse might not be true. It might be that it
is easy to distinguish between an input from the “random” ensemble and an input
from {Ak,α

n,m}, yet for all α values, the inputs from the different {Ak,α
n,m} ensembles are

indistinguishable.
The pseudorandomness assumption is of course false for any choice of parameters

for which the polynomial list reconstruction problem is easy, e.g., when m < n/k.
(This corresponds to the number of correct points, n, being more than the square
root of the total number of points, nm, times the degree of polynomial, k. This
equation therefore agrees with the threshold for which the noisy polynomial problem
is easy.) In the other direction, it is an open problem to find a reduction from the
polynomial list reconstruction to the assumption.

The second intractability assumption. The second assumption states that
given n sets with m points in every set, such that a polynomial P agrees with at least
one point in each set, the value of P (0) is pseudorandom. Namely, the total number
of points, and the number of correct points, are as in pseudorandomness Assumption
1, but in addition there is a partition into sets and it is promised that the polynomial
P agrees with at least one point in each set. It is hard to come up with a reduction to
this assumption from pseudorandomness Assumption 1 since the reduction must map
each of the n points of P into a different set. The new assumption seems stronger than
pseudorandomness Assumption 1 since the problem is easier. Namely, the adversary
is given an additional hint—the partition into sets containing at least one correct
value of the polynomial.

The definition of the assumption uses the following notation.
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Let Ck,α
n,m denote the probability distribution of sets generated in the following

way:
1. Pick a random polynomial P over F , of degree at most k, for which it holds

that P (0) = α.
2. Generate nm random values x1, . . . , xnm in F subject to the constraint that

all xi values are distinct and different from 0.
3. Choose a random subset S of n different indices in [1, nm], and set yi = P (xi)

for all i ∈ S. For every i �∈ S set yi to be a random value in F .
4. Partition the nm (xi, yi) pairs to n random subsets subject to the following

constraints:
(i) The subsets are disjoint.
(ii) Each subset contains exactly one pair whose index is in S (and therefore

for this pair it holds that yi = P (xi)).
(iii) Each subset contains exactly m−1 pairs whose indices are not in S (and

therefore have a random yi value).
Output the resulting subsets.

The intractability assumption says that for any α, α′ the two probability en-
sembles {Ck,α

n,m}, {Ck,α′

n,m} are computationally indistinguishable. It depends on the
parameters F, k,m, and n.

Assumption 2 (second pseudo-randomness assumption). Let � be a security pa-
rameter, and let n(�),m(�), k(�), F (�) be polynomially bounded functions that define
the parameters n,m, k and the description of the field F . Let α(�) and α′(�) be any
polynomially bounded functions defining elements of the field F , and define α = α(�)
and α′ = α′(�). Let Ck,α

n,m and Ck,α′

n,m be random variables that are chosen according to

the distributions Ck,α
n,m and Ck,α′

n,m , respectively.

The assumption is that the probability ensembles {Ck,α
n,m} and {Ck,α′

n,m} are compu-
tationally indistinguishable.

As with Assumption 1 there is an easy reduction from the problem of breaking
this pseudorandomness assumption to the noisy polynomial reconstruction problem.
In addition, if pseudorandomness Assumption 1 does not hold in the worst case, then
pseudorandomness Assumption 2 does not hold in the worst case (since any input for
the latter can be transformed to an input for the first assumption by simply ignoring
the partition into subsets). This reduction is also true in the average case: consider
all sets generated by the distributions Ak,α

n,m and Ck,α
n,m subject to the constraint that

no more than n points in a set agree with the polynomial P (the probability that this
property does not hold for a specific set is at most n(m− 1)/|F|, which we consider
to be negligible). Denote the resulting collections of sets as Âk,α

n,m and Ĉk,α
n,m. A set in

Âk,α
n,m is matched to a set in Ĉk,α

n,m if they contain exactly the same points. Each of the

sets in Âk,α
n,m is therefore matched with the exactly same number of sets in Ĉk,α

n,m, and

no two sets in Âk,α
n,m are matched with the same set in Ĉk,α

n,m. Now, picking a random

set in Ĉk,α
n,m and removing the partition into subsets results in the matching set in

Âk,α
n,m. Therefore, this procedure has the same probability of hitting any set in Âk,α

n,m.
It is an interesting open problem to provide a reduction to pseudorandomness

Assumption 2 from pseudorandomness Assumption 1, or from the polynomial recon-
struction problem. The problem with designing such a reduction is that its out-
put should comply with the input distribution of pseudorandomness Assumption 2,
namely, in each subset there should be (with high probability) a single value of the
polynomial P .
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Remark. The pseudorandomness assumption that was used in an earlier version
of this work [51] was broken by Bleinchenbacher and Nguyen [6] and by Boneh [7]. The
assumption was similar to pseudorandomness Assumption 2, but with the additional
requirement that in each subset of the sets generated by Ck,α

n,m all the points have the
same x coordinate. This property enables reduction of this problem to an instance
of the lattice shortest vector problem, and solving it using the LLL algorithm [44].
We remark that it is unknown how to employ this attack against pseudorandomness
Assumption 2. Furthermore, the overhead of the oblivious evaluation scheme that is
based on pseudorandomness Assumption 2 is not greater than that of the scheme that
is based on the broken assumption.

3. Protocols for oblivious polynomial evaluation. This section describes
protocols for oblivious evaluation of polynomials. The protocols reduce computing the
OPE functionality to computing an OT functionality. We first describe a generic OPE
protocol (Protocol 3.1), and then describe two instantiations of the generic protocol
using each of the two pseudorandomness assumptions (Protocols 3.2 and 3.3, respec-
tively). These protocols provide privacy against semi-honest or malicious senders, and
against semi-honest receivers.

The protocols ensure that a malicious receiver learns at most a single linear equa-
tion of the coefficients of the polynomial, but this equation might not correspond to
a legitimate value of the polynomial. We show that if the polynomial P that is eval-
uated is linear, then the protocols are secure even against malicious receivers, since
the linear equation always corresponds to a value of the polynomial.

Security against malicious receivers, and improved efficiency. We then describe
Protocol 3.4 which is secure against malicious receivers. Furthermore, Protocol 3.4,
although a little more complicated conceptually, has computational overhead which
is better than that of the previous protocols: the number of oblivious transfers is
independent of the degree of the polynomial P and is equal to the number of oblivious
transfers that are required in the case of a linear polynomial.

3.1. A generic protocol. All the protocols involve a receiver A and a sender
B and have the following specifications:

• Input:
– Sender: a polynomial P (y) =

∑dP

i=0 biy
i of degree dP in the field F .

– Receiver: a value α ∈ F .
• Output:

– Sender: nothing.
– Receiver: P (α).

• Protocol security parameters: m, k, which are discussed below.
At the end of the protocol the parties learn nothing but their specified outputs. The
generic protocol (Protocol 3.1) is described in Figure 1. It is based on the sender
hiding P in a bivariate polynomial, and running oblivious transfer protocols with the
receiver to reveal to her just enough information to enable the computation of P (α).
(In this respect, the protocol is somewhat similar to the instance hiding construction
of [3, 46].)

Note that the protocol uses a polynomial Q(x, y) which is defined by d + dP + 1
coefficients only, whereas a random bivariate polynomial of the same degrees is defined
by (d + 1)(dP + 1) coefficients.

The only step that has to be further specified is step 3, in which the receiver learns
dR + 1 values of R. This is the only step that involves interaction between the two
parties, and as such determines the overhead of the protocol. Below are descriptions
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Protocol 3.1 (a generic protocol for oblivious polynomial evaluation).
1. The sender hides P in a bivariate polynomial: (see Figure 2) The

sender generates a random masking polynomial Px(x) of degree d,

s.t. Px(0) = 0. Namely, Px(x) =
∑d

i=1 aix
i. The parameter d

equals the degree of P multiplied by the security parameter k (i.e.,
d = k · dP ).
The sender then defines a bivariate polynomial

Q(x, y) = Px(x) + P (y) =

d∑
i=1

aix
i +

dP∑
i=0

biy
i

for which it holds that ∀y Q(0, y) = P (y).
2. The receiver hides α in a univariate polynomial: (see Figure 3)

The receiver chooses a random polynomial S of degree k, such that
S(0) = α. The receiver’s plan is to use the univariate polyno-
mial R(x) = Q(x, S(x)) in order to learn P (α): it holds that
R(0) = Q(0, S(0)) = P (S(0)) = P (α) and, therefore, if the receiver
is able to interpolate R she can learn R(0) = P (α). The degree of R
is dR = d = k · dP .

3. The receiver learns points of R: The receiver learns dR + 1 values of
the form 〈xi, R(xi)〉.

4. The receiver computes P (α): The receiver uses the values of R that it
learned to interpolate R(0) = P (α).

Fig. 1. A generic protocol for oblivious polynomial evaluation.

Y

X

Q(x,y)
P is 

in Q(0,.)
embedded

P(y)=Q(0,y)

Fig. 2. The polynomial P embedded in the bivariate polynomial Q s.t. Q(0, y) = P (y).

Y

X

α
S

Q(x,y)

Fig. 3. The polynomial S defines a polynomial R s.t. R(0) = Q(0, S(0)) = Q(0, α) = P (α).
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Fig. 4. The receiver uses n-out-of-N OT to learn n values of R hidden between N values.

of two protocols for oblivious polynomial computation in which step 3 is based on
each of the two pseudorandomness assumptions.

3.2. Detailed protocols. This section describes instantiations of Protocol 3.1
based on the two pseudorandomness assumptions.

3.2.1. A protocol based on pseudorandomness Assumption 1. The first
instantiation is a reduction to an n-out-of-N oblivious transfer protocol (see, e.g., [53]),
in which the receiver learns n of the N inputs of the sender while hiding these values
from the sender.

Protocol 3.2 (oblivious polynomial evaluation based on Assumption 1). The
protocol is the generic protocol (Protocol 3.1), where the third step is run as follows:

1. The receiver sets n = dR +1 = d+1 = kdP +1 and chooses N = nm distinct
random values x1, . . . , xN ∈ F , all different from 0.

2. The receiver chooses a random set T of n distinct indices 1 ≤ i1, . . . , in ≤ N .
She then defines N values yi, for 1 ≤ i ≤ N . The value yi is defined as S(xi)
if i is in T , and is a random value in F otherwise.

3. The receiver sends the N points {(xi, yi)}Ni=1 to the sender.
4. The receiver and sender execute an n-out-of-N oblivious transfer protocol for

the N values Q(x1, y1), . . . , Q(xN , yN ) (see Figure 4). The receiver chooses
to learn {Q(xi, yi)}i∈T .

The correctness of the protocol is based on observing that the receiver learns
dR + 1 values of the polynomial R, and can, therefore, interpolate R and compute
R(0) = P (α). We prove the security of the protocol in section 3.3 below.

3.2.2. A protocol based on pseudorandomness Assumption 2. The sec-
ond protocol is based on using n sets of points, such that each set contains a point of
the polynomial R. The receiver runs an independent oblivious transfer protocol for
each set, in which it learns a value of R.

Protocol 3.3 (oblivious polynomial evaluation based on Assumption 2). The
protocol is the generic protocol (Protocol 3.1), where the third step is run as follows:

1. The receiver sets n = dR + 1 = kdP + 1, defines N = nm and chooses N
distinct random values x1, . . . , xN ∈ F , all different from 0.

2. The receiver chooses a set T of n randomly-chosen distinct indices 1 ≤
i1, i2, . . . , in ≤ N , subject to the constraint that (j − 1)m + 1 ≤ ij ≤ jm
for 1 ≤ j ≤ n.

3. The receiver defines N values yi, for 1 ≤ i ≤ N . The value yi is defined as
S(xi) if i is in T , and is random otherwise.

4. The receiver partitions the N pairs {(xi, yi)}Ni=1 into n subsets B1, . . . , Bn,
where subset Bj contains the m pairs indexed (j−1)m+1 to jm. This means
that each subset Bj contains exactly one pair from T .
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5. The receiver sends the n subsets B1, . . . , Bn to the sender.
6. The receiver and sender execute n protocols of 1-out-of-m oblivious transfer,

one for each subset. The protocol for subset Bj enables the receiver to learn
one of the values Q(xi, yi) for the m points (xi, yi) in Bj. (The receiver should
choose to learn Q(xi, yi) for which yi = P (xi).)

3.2.3. Properties of the protocols.
Correctness. It is straightforward to verify that both protocols enable the receiver

to obtain any value P (α) she desires. She can do this by choosing a polynomial S for
which S(0) = α, learning dR + 1 values of R, and interpolating R(0) = P (α).

Complexity. The main overhead of the protocols, in terms of both computation
and communication, is the overhead of the oblivious transfer stage. The overhead
depends on the degree of P and on the security parameters k and m. Namely, the
overhead of each protocol is that of running the following primitives:

(i) Protocol 3.2 (based on Assumption 1): running a single invocation of (kdP +
1)-out-of-[(kdP + 1) ·m] oblivious transfer.

(ii) Protocol 3.3 (based on Assumption 2): running (kdP + 1) invocations of
1-out-of-m oblivious transfer.

The actual overhead of the protocol depends on the value that is set to the
parameter m, as a function of k and dP , in order for the relevant security assumption
to hold (this value might be different in each of the protocols). It might seem that
Protocol 3.3, which uses (kdP + 1) invocations of 1-out-of-m oblivious transfer, is
always inferior to Protocol 3.2, which uses a single invocation of (kdP + 1)-out-of-
[(kdP + 1) · m] oblivious transfer. Also, the fact that in Protocol 3.3 each subset is
known to contain a value of the polynomial S might make the task of attacking the
receiver easier, and require the use of larger parameter m to ensure the security of the
protocol. We describe both protocols since the choice of parameters k and m might
be different in the two cases and result in Protocol 3.3 being the more efficient. Also,
recent work on extending oblivious transfer [35] leads to more efficient implementation
of multiple invocations of OT.

We note that the multiple invocations of the oblivious transfer protocol in Proto-
col 3.3 can be run in parallel. The protocol is secure if the specific oblivious transfer
protocol which is used can be securely run in parallel with respect to the relevant
adversary (i.e., with respect to either semi-honest or malicious adversaries).

3.2.4. A note on evaluating multiple polynomials with the same re-
ceiver input. The OPE protocols have a rather handy property: a single invocation
of a protocol can be used to let the receiver compute the values of several polynomials
at the same point x, with the same overhead (in terms of the number of oblivious
transfers) as computing the value of a single polynomial. This can be done since
the choices of the receiver in the OT protocols depend on its input x alone, and this
input is the same in all invocations of the OPE protocol. The parallel invocation is
done by the parties running a protocol in which the sender’s input is n polynomials
〈P1, . . . , Pn〉, the receiver’s input is x, and the receiver’s output is 〈P1(x), . . . , Pn(x)〉.
The sender defines appropriate polynomials 〈Q1, . . . , Qn〉 and in every step in which
the sender transfers a single value Q(i, j) in the original protocol, it transfers n values
〈Q1(i, j), . . . , Qn(i, j)〉 in the multipolynomial protocol. Note that this variant ensures
that the receiver computes the values of all the polynomials at the same point x. This
variant of the protocol is used in Protocol 3.4 in section 3.4, and is also used in [26]
for distributed generation of RSA keys.
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3.3. Security analysis for semi-honest behavior. In order to prove the se-
curity of the protocol one must show that the privacy of both parties is preserved.
The privacy of the receiver is based on the pseudorandomness assumption which is
used (namely, Assumption 1 or 2), while the privacy of the sender is independent
of this assumption. The proof employs a hybrid model in which there is access to
an ideal OT functionality, as is defined in Definition 1.5. Composition theorems (see,
e.g., [29, 10, 11]) can then be used to replace the ideal OT functionality with a specific
implementation of OT, as is described in section 1.3.1.

3.3.1. The receiver’s privacy. The privacy goal of the receiver is to hide the
value α = S(0) from the sender. We only need to show this for a semi-honest sender,
since the protocol includes a single message from the receiver to the sender, which does
not depend on the operation of the sender (and our security definition does not require
stimulation of the output of the receiver together with the view of the sender). This
property is guaranteed by the pseudorandomness assumptions stated in section 2.2.
We prove this result for Protocol 3.2, based on pseudorandomness Assumption 1. The
proof for Protocol 3.3 is identical and is based on pseudorandomness Assumption 2.

Theorem 3.1. If the sender can distinguish between two different inputs of the
receiver in Protocol 3.2, then pseudorandomness Assumption 1 does not hold (namely,
there is a distinguisher between the two probability ensembles stated in the assump-
tion).

Proof. The sender’s view in the protocol contains the set of points that is given
to him by the receiver, and the interaction between the two parties in the oblivious
transfer protocol. Each instance of the sender’s view therefore contains nm points,
and in addition his view in an oblivious transfer protocol in which the receiver chooses
to learn values associated with a set of n of the nm points. Recall also that we assume
that the protocol uses an ideal OT functionality.

Let α0, α1 be any two values in F . Consider the following probability distributions
of instances of the sender’s view in the protocol.

(i) SOT,0: The set of nm points is chosen randomly from Ak,α0
n,m . The interaction

of the receiver in the oblivious transfer protocol corresponds to it choosing to learn
the n correct points of the polynomial among the nm points.

(ii) SOT,1: Similar to SOT,0, with the only difference being that the set of nm
points is chosen randomly from Ak,α1

n,m .

(iii) SR,0: The set of nm points is chosen randomly from Ak,α0
n,m . The interaction

of the receiver in the oblivious transfer protocol corresponds to it choosing to learn n
points sampled at random from the set of nm points.

(iv) SR,1: Similar to SR,0, with the only difference being that the set of nm
points is chosen randomly from Ak,α1

n,m .
We would like to show that no algorithm Dα0,α1 run by the sender can distinguish

between an input sampled from SOT,0 and an input sampled from SOT,1. Define DOT,0

as the probability that the output of Dα0,α1 is 1 given an input sampled from SOT,0.
Similarly, define DOT,1, DR,0 and DR,1. It holds that

|DOT,0 −DOT,1| ≤ |DOT,0 −DR,0| + |DR,0 −DR,1| + |DR,1 −DOT,1|.

Assume to the contrary that |DOT,0 −DOT,1| is nonnegligible. In this case either
the value |DOT,0 − DR,0| + |DR,1 − DOT,1| is nonnegligible (option 1), or the value
|DR,0 −DR,1| is nonnegligible (option 2).

If option 1 occurs, then either |DR,0 −DOT,0| or |DR,1 −DOT,1| is nonnegligible.
This is a contradiction since in this case the sender can distinguish between different
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inputs of the receiver to the oblivious transfer protocol. (It is possible to show a
reduction that uses the fact that, e.g., |DR,0 −DOT,0| is nonnegligible, to distinguish
between different inputs of the receiver.)

If option 2 occurs then we have a distinguisher between inputs sampled from Ak,α0
n,m

and from Ak,α1
n,m . The distinguisher operates by receiving its input, adding to it an

interaction for the oblivious transfer protocol in which the receiver learns a random
set of n values, and forwarding the combined input to Dα0,α1

. Since |DR,0 − DR,1|
is nonnegligible there will be a nonnegligible difference between the output being 1
given inputs from the two distributions.

3.3.2. The sender’s privacy—the case of a semi-honest receiver. We first
assume a semi-honest receiver whose operation follows the behavior that it should take
according to the protocol. This is a good model for the case of a truthful party that
executes the protocol, but at a later stage falls prey to an adversary that might
examine the information learned during the protocol execution. The proof for the
case of a semi-honest receiver, as we show in section 3.4, is also sufficient for the case
of linear polynomials, even if the receiver is malicious. Later we show how to provide
privacy in the general case of malicious receivers.

The proof that the sender’s privacy is preserved against semi-honest receivers is
identical for all protocols. The sender hides the polynomial P in a bivariate polynomial
Q that is generated by adding to P () a random polynomial in x, and the receiver
obtains a system of dR + 1 = d + 1 = kdP + 1 values of Q, using different x values.
Lemma 3.2 states that the receiver learns only a single linear combination of the
coefficients of P . In particular this implies (Corollary 3.1) that a semi-honest receiver
learns only a single value of the polynomial P .

Lemma 3.2. Let Q(x, y) be a bivariate polynomial of the form

Q(x, y) = Px(x) + P (y) =

d∑
i=1

aix
i +

dP∑
i=0

biy
i.

Then for any d + 1 values x1, . . . , xd+1, which are distinct and different from
0, and for any d + 1 values y1, . . . , yd+1, the distribution of {Q(xj , yj)}d+1

j=1 is either
independent of the coefficients b0, . . . , bdP

, or depends on a single linear equation of
these coefficients.

Proof. The values of Q(xj , yj) are equations of the form Q(xj , yj) =
∑d

i=1 aj ·
(xj)

i +
∑dP

i=0 bi · (yj)i. They correspond, therefore, to a set of d + 1 equations of the
following form, with different xj ’s:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(xj1)
d (xj1)

d−1 · · · xj1 ydP
j1

· · · 1

(xj2)
d (xj2)

d−1 · · · xj2 ydP
j2

· · · 1
...

...
...

...
...

...
...

...
...

...
...

(xjd+1
)d (xjd+1

)d−1 · · · xjd+1
ydP
jd+1

· · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ad
...
a1

bdP

...
b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

Q(xj1 , yj1)
Q(xj2 , yj2)

...
Q(xjd+1

, yjd+1
)

⎞
⎟⎟⎟⎠ .

It should be shown that regardless of the values of the points (xj , yj), the rows of the
matrix A do not span more than a single linear combination of the vectors

{ei = (0, . . . , 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0) | d + 1 ≤ i ≤ d + dP + 1}.
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The matrix A has d + dP + 1 columns and d + 1 rows. Consider the matrix A′

with d + dP + 1 rows that is formed by taking the first d rows of A and appending
to them the vectors ed+1, . . . , ed+dp+1. The determinant of A′ is different from 0,
since its upper-left submatrix of size d× d is a Vandermonde matrix, and the lower-
right submatrix of size (dp + 1) × (dp + 1) is an identity matrix. Therefore, the first
d rows of A do not span any of ed+1, . . . , ed+dp+1, and the matrix A that has just
a single additional row cannot span more than a single linear combination of these
vectors.

Note that we assume that the OT protocol implements an ideal functionality, and
therefore the receiver (either semi-honest or malicious) learns d + 1 values from the
set {Q(xj , yj)}d+1

j=1 . In the case of a semi-honest receiver these values are of the form
Q(xj , P (xj)), whereas a malicious receiver can learn arbitrary values of Q(xj , yj)
subject to the constraint that the x coordinates are distinct and different from 0.
Therefore Lemma 3.2 implies the following two corollaries.

Corollary 3.1. A semi-honest receiver learns only a single value of the poly-
nomial P .

Corollary 3.2. A malicious receiver learns only a single linear equation of the
coefficients of the polynomial P .

The latter corollary is used in section 3.4 to construct an OPE protocol which is
secure against malicious adversaries.

3.4. Security against malicious behavior. As described in section 3.3.1, we
should only consider a semi-honest server since the only message sent by the receiver
is sent before it receives any information from the server. On the other hand, a
malicious adversary that plays the receiver’s role might run the protocol and ask to
learn values Q(x, y) that do not correspond to a polynomial S(x), i.e., are not of the
form Q(x, S(x)). By doing so it might learn a linear combination of the coefficients
of P which does not correspond to any value of P (x). Lemma 3.2 shows that the
adversary can only learn a single such linear combination. This might be sufficient
for some applications, but to conform to the “ideal model” security definition, or, in
general, to security against malicious behavior, the protocol must limit the information
that the receiver can learn to a linear combination corresponding to a value of the
polynomial P . This is achieved by the Protocol 3.4 that is described in what follows.

Improved efficiency. Another advantage of Protocol 3.4 is that its computational
overhead, as measured by the number of oblivious transfers that are executed, is
independent of the degree of P , and is equal to the overhead of Protocols 3.2 and 3.3
for the case of a linear polynomial P .

Before describing Protocol 3.4, we first note that if the polynomial P is linear,
then Protocols 3.1, 3.2, and 3.3 allow the receiver to learn only a single value of P
and no other information about the coefficients (regardless of whether the receiver is
malicious or not). This is proved for Protocol 3.2 in the following lemma.

Lemma 3.3. When P is linear, the only information that the receiver can learn
in Protocol 3.2 is a single value of P (·).

Proof. Denote P (x) as P (x) = b1x + b0. Corollary 3.2 implies that the receiver
can only learn a single linear combination of the form b1 · γ1 + b0 · γ0, where the
receiver knows γ1 and γ0. If γ0 �= 0, then this is equivalent to the receiver learning
P (γ1/γ0) = b1 · (γ1/γ0) + b0.

We next claim that the adversary cannot learn any combination in which the co-
efficient γ0 is 0. Consider the matrix A used in the proof of Theorem 3.2. The receiver
can learn the scalar multiplication of the coefficient vector by a linear combination of
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the rows of this matrix. In the case of a linear polynomial P , the matrix has d+1 rows
and d + 2 columns, where the last two columns correspond to the coefficients b1 and
b0 of P . Note that the (d+1)× (d+1) matrix that is composed of the first d columns
together with the last column, is a Vandermonde matrix. Therefore no linear combi-
nation of the d + 1 rows of the original matrix can generate the row (0, . . . , 0, 1, 0),
which corresponds to the receiver learning a linear combination b1 ·γ1+b0 ·γ0 in which
the coefficient γ0 is 0.

Using linearization to combat malicious receivers. Given Lemma 3.3 the major
tool we use is a reduction from the OPE of a polynomial of degree z, to z OPEs
of linear polynomials, due to Gilboa [27]. The reduction is stated in the following
lemma, which is proven at the end of this section.

Lemma 3.4 (see [27]). For every polynomial P of degree z, there exist z linear
polynomials P1, . . . , Pz such that an OPE of P can be reduced to a parallel execution
of an OPE of each of P1, . . . , Pz, where all the linear polynomials are evaluated at the
same point.

We first describe Protocol 3.4 that uses this reduction to provide security against
a malicious receiver. We then show that the privacy of the server is preserved and
prove the lemma. Protocol 3.4 itself ensures that the receiver evaluates all linear
polynomials at the same point. Furthermore, the overhead, in terms of oblivious
transfers, is the same as that of a single OPE of a linear polynomial, since the choices
of the receiver in the oblivious transfer invocations in all OPEs are the same, and
therefore it is possible to use parallel executions of OPE as described in section 3.2.4.

Protocol 3.4 (oblivious polynomial evaluation against malicious receivers).
The sender’s input is P and the receiver’s input is a polynomial α. The protocol
is composed of the following steps:

1. The sender generates the dP linear polynomials P1, . . . , PdP
that are used for

reducing the OPE of the polynomial P to dP OPEs of linear polynomials, by
the method of Lemma 3.4.

2. The parties execute dP instances of OPE in which the receiver evaluates the
linear polynomials P1, . . . , PdP

at the point α, under the following constraints:
(i) The sender generates independent masking polynomials Px,i, 1 ≤ i ≤ dP ,

and obtains the resulting bivariate polynomials Qi(x, y) = Px,i(x)+Pi(y),
one for each of the dP OPEs. (step 1 of Protocol 3.1.)

(ii) The receiver generates a single polynomial S for use in all the OPEs
(step 2 of Protocol 3.1). This step defines dP polynomials R1(x) =
Q1(x, S(x)), . . . , RdP

(x) = QdP
(x, S(x)) such that for each i it holds

that Ri(0) = Pi(α).
(iii) The receiver learns dR + 1 tuples of the form (xj , R1(xj), . . . , RdP

(xj)).
These values enable it to interpolate R1(α), . . . , RdP

(α) (steps 3 and 4
of Protocol 3.1).
The implementation of this step is done by executing the same number of
oblivious transfers as is required for a single OPE of a linear polynomial.
In the protocol the receiver obtains values of all polynomials, namely,
(xj , R1(xj), . . . , RdP

(xj)), instead of a single value (xj , R(xj)).
3. The receiver uses P1(α), . . . , PdP

(α) to compute P (α) according to the method
of Lemma 3.4.

It follows from Lemma 3.4 and from the correctness of Protocol 3.1 that this
protocol is correct. Namely, that it enables the receiver to compute P (α) for every
value α. As for efficiency, we measure the computation overhead by the number
of oblivious transfers that are executed. The protocol requires the same number of
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oblivious transfers as is required by an OPE of a linear polynomial, regardless of the
degree dP .1 It is therefore more efficient computationally than a direct OPE of the
dP degree polynomial P . The communication overhead is about dP + 1 times larger
than that of the OPE of a linear polynomial.

Theorem 3.5. Assuming the use of an ideal OT functionality, Protocol 3.4 is
secure against malicious behavior. Namely,

(i) The sender cannot distinguish between two different inputs of the receiver.
(ii) The receiver learns only a single value of the polynomial P .

Proof. The receiver’s privacy is an immediate corollary of the receiver’s privacy
in the linear OPE protocol (Theorem 3.1), since the information that the receiver
sends is the same as in a single OPE protocol where it asks to learn the value of a
linear polynomial at x = α. The sender’s privacy follows from Lemma 3.4 and from
Lemma 3.3 (which guarantees the sender’s privacy against malicious receivers in the
case of linear polynomials).

We now turn to the proof of Lemma 3.4.
Proof of Lemma 3.4. The lemma follows from the following three claims.
Claim 3.1. For every polynomial P of degree z the server can define z linear

polynomials P1, . . . , Pz such that given P1(α), . . . , Pz(α), it is possible to compute the
value of P (α).

Proof. Denote the polynomial P as P (x) =
∑z

i=0 bix
i, where z denotes the degree

of the polynomial. The Horner representation of this polynomial is the following:

P (x) = (((bzx + bz−1) · x + bz−2) · x) + · · · + b0.

The innermost linear polynomial of the Horner representation is Qz(x) = bzx +
bz−1. Define the linear polynomial Pz(x) = bzx + bz−1 − sm, where sz is a random
value chosen by the server. Of course, it holds that Pz(x)+sz = Qz(x). Suppose that
the client learns the value Pz(α) (say, by executing an OPE). Following this step, the
client and server have two random shares, Pz(α) and sz, that sum up to Qz(α). Now,
the innermost polynomial of degree 2 is the following:

Qz−1(x) = Qz(x) · x + bz−2 = (Pz(x) + sz) · x + bz−2 = Pz(x) · x + sz · x + bz−2.

Define Pz−1(x) = sz · x + bz−2 − sz−1, where sz−1 is randomly chosen by the server.
Then,

Qz−1(α) = Pz(α) · α + Pz−1(α) + sz−1.

Suppose now that the client learns Pz−1(α) (by executing an OPE). Now the
parties know two random shares that sum up to Qz−1(α): the client can compute the
share Pz(α) · α + Pz−1(α), and the server knows sz−1.

In the general case, the inner polynomial of degree z − i can be represented as

Qi(x) = Qi+1(x) · x + bi−1

= Pz(x) · xz−i + Pz−1(x) · xz−i−1 + · · · + Pi+1(x) · x + si+1 · x + bi−1.

1The length of the inputs of the oblivious transfer protocols is likely to be larger than the security
parameter. This fact does not increase the number of oblivious transfers: the sender encrypts the
long inputs with random keys, uses oblivious transfer to let the receiver learn one of the keys, and
sends all encrypted inputs to the receiver. The receiver then uses the key to decrypt one of the
inputs.
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The server chooses a random value si and defines the linear polynomial Pi(x) = si+1 ·
x+bi−1−si. It now holds that (Pz(α)·αz−i+Pz−1(α)·αz−i−1+· · ·+Pi+1(α)·α+Pi(α))
and si are two random shares, which can be computed by the client and the server,
respectively, and which sum up to Qi(α). This definition is used up to P2(x); for
P1(x), the server defines P1(x) = s2 · x + b0 (without any random value m1).

We get that Q1(x) = P (x), and therefore

P (α) = Pz(α) · αz−1 + Pz−1(α) · αz−2 + · · · + P1(α).(3.1)

Claim 3.2. The computation of the z linear polynomials of Claim 3.4 can be
done by z OPEs that are executed in parallel.

Proof. Note that the polynomials P1, . . . , Pz do not depend on α. Therefore, the
server can define them in advance (by defining the values s2, . . . , sz). This enables
the parties to execute z parallel invocations of OPE, in which the client computes
P1(α), . . . , Pz(α). At the end of this stage, the client is able to compute P (α) using
(3.1).

It follows that for every α ∈ F , the client can compute P (α) by learning the values
P1(α), . . . , Pz(α). If the parties use the OPE protocols described in this paper then
the z + 1 OPEs can be implemented with the client sending the same message in all
invocations, which is the same information as in a single OPE of a linear polynomial
at the point α. The server responds with the relevant answer for each of the z
polynomials.

In order to prove that the only information about P that can be computed given
P1(α), . . . , Pz(α) is P (α) we prove the following claim.

Claim 3.3. Given P (α) it is possible to simulate the client’s output in the z
invocations of the OPE protocols. (Namely, the only information about P that can be
computed given P1(α), . . . , Pz(α) is P (α).)

Proof. To prove the claim we show that for every 〈P, α〉 it holds that the vec-
tor 〈P2(α), . . . , Pz(α)〉 is uniformly distributed in Fz−1 given that 〈s2, . . . , sz〉 are
uniformly distributed in Fz−1.

For every 2 ≤ i ≤ z, observe that we can write Pi(α) = Ci(P, α, si+1, . . . , sz) −
si, where Ci(P, α, si+1, . . . , sz) is a function of the coefficients of P , of α, and of
si+1, . . . , sz. The claim is proved by induction, showing that Pi(α), . . . , Pz(α) is ran-
dom, with i going from z down to 2. The base case, i = z is clear. In every step,
we observe that si, which is chosen at random, is used to define Pi(α) alone and is
not involved in defining Pi+1(α), . . . , Pz(α). Therefore the vector Pi(α), . . . , Pz(α) is
randomly distributed given that Pi+1(α), . . . , Pz(α) is randomly distributed.

Now, recall (3.1). P1(α) is well defined given α, P (α), and the values of P2(α), . . . ,
Pz(α). Therefore to simulate the client’s view we choose random values for P2(α), . . . ,
Pz(α) and compute P1(α) according to (3.1).

Realizing oblivious transfer. The security proofs show a reduction of security to
that of an ideal OT functionality. All implementations of OT which are described in
section 1.3.1 provide security against semi-honest adversaries. In the malicious case,
the security provided by Protocol 3.4 depends on the security of the protocol which is
used to realize the OT functionality. Universally composable OT protocols obviously
result in a secure OPE protocol, since the choices of the receiver in the invocations
of the OT protocol define a single point in which it can evaluate the polynomial.
Invoking an information-theoretic OT protocol results in an OPE protocol which
provides information-theoretic security for the sender. In this case the receiver cannot
learn more than a single point of the polynomial, but it might not be possible to extract
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it. Finally, it is also possible to use OT protocols that provide computational security
for the sender, where the receiver’s input is extractable if the OT invocations are
done sequentially. In this case, however, the protocols must be invoked sequentially
in order to enable extraction of the receiver’s input from the OPE protocol.

4. Applications of oblivious evaluation of polynomials. There are two
types of applications in which oblivious polynomial evaluation is useful. The first
is where the receiver obtains a value from a k-wise independent space. For many
applications such values are as good as truly random or pseudorandom values. The
second type of application is of cryptographic protocols in which users must obtain
a value of a polynomial held by another party without revealing their input. We
give examples of both types of applications below. We also give a short description
of applying the protocols of this paper to obliviously computing gP (x), where P is a
polynomial.

4.1. Obliviously computing a polynomial in the exponent. In some sce-
narios it might be required to let the receiver compute the value of gP (x), where g is
a generator of some group, P is known to the sender and x is known to the receiver.
This computation is likely to be useful for cryptographic protocols that are based on
the Diffie–Hellman assumption [19].

All the protocols described in this paper can be readily applied for this com-
putation. The only change is for the sender to provide the receiver with values of
gR(x) = gQ(x,S(x)), instead of values of R(x) = Q(x, S(x)). The receiver needs to
interpolate these values to compute gR(0) = gP (α). She can do so by computing

gR(0) = g

dR+1∑
i=1

λi ·R(i) =

dR+1∏
i=1

gλi·R(i) =

dR+1∏
i=1

(gR(i))λi ,

where the values {λi}dR+1
i=1 are the appropriate Lagrange coefficients.

4.2. Comparing information without leaking it. Imagine two parties, A
and B. Each of the parties holds a particular name (e.g., of a “suspect” from a small
group of people). The two parties would like to check whether they both have the
same input, under the condition that if the inputs are different they do not want to
reveal any information about them (except for the fact that they are different). The
main obstacle in designing a protocol for this problem is that the domain of inputs,
e.g., names, is probably small enough to enable a brute force search over all possible
inputs. This problem was thoroughly discussed by Fagin, Naor, and Winkler [22],
with subsequent constructions by Crépeau and Salvail [16].

To specify the function more accurately, we require that if the parties’ inputs are
(α, β), respectively, then their outputs are (1, 1) if α = β, and (0, 0) otherwise. In
the case of malicious parties we relax the requirement and say that while for α = β
the outputs can be arbitrary (since a malicious party can always change its input
or output), in the case of inputs α �= β, the output of the honest party must be 0.
Namely, the malicious party cannot convince the honest party that the inputs are
equal. (This requirement is natural in the context of password verification, discussed
below, in which if one party does not provide the right password then the other party
must reject.)

Since we cannot prevent a malicious party from choosing or guessing its input, we
refer to the common security notion of simulation: for every behavior of the malicious
party it should be possible to construct a simulator which has access to the trusted
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third party (TTP) in the ideal model (but has no access to the input of the honest
party) and can interact with the malicious party. The simulator should simulate the
output distribution of the two parties, where the output of the honest party satisfies
the requirement above. (In our case, the simulator will operate by extracting the
input that the malicious party provides to the OPE and sending it as an input to the
TTP.)

Oblivious evaluation of linear polynomials can be used to construct a very simple
solution to the comparison of information problem.

Protocol 4.1 (privacy preserving comparison of information).
(i) Input: Denote A’s input as α and B’s input as β.
(ii) Party A generates a random linear polynomial PA(·).
(iii) Party B generates a random linear polynomial PB(·).
(iv) The parties execute the oblivious polynomial evaluation twice, switching

roles.
(i) In the first invocation, A obliviously learns a value of B’s polynomial (it

should choose to learn PB(α)).
(ii) In the second invocation, B obliviously learns a value of A’s polynomial (it

should choose to learn PA(β)).
(iii) The parties compute and compare the two values, PA(α)+PB(α) (computed

by A), and PA(β) + PB(β) (computed by B).
(iv) If these values are equal then each party outputs 1. Otherwise the parties

output 0. (If α = β, then the two values are the same, otherwise they are different
with probability 1/|F|, where F is the field over which the polynomial is defined.)

For semi-honest parties, privacy is preserved since the parties compare values of
the function PA(x) + PB(x) that has the following properties (which are trivial to
prove):

(i) The function is pairwise independent.
(ii) Each party only computes PA(x) + PB(x) once.
(iii) Each party computes PA(x)+PB(x) without revealing x to the other party.
In the case of malicious parties, the proof is simple if the protocol uses an OPE

protocol which enables the extraction of the receiver’s input. In this case, given
a TTP which computes the function in the ideal model, we can simulate the joint
distribution of the malicious party and the output of the other party: assume that
Alice is malicious. We extract her input α from her invocations of the OPE protocol
and provide α to the TTP. If the answer is 1, we continue the protocol by evaluating
her polynomial at β = α, sending the value PA(α) + PB(α) to the comparison, and
fixing Bob’s output based on the result of the comparison. If the answer of the TTP
is 0 then we provide a random value to the comparison. (Note that in the case of a
malicious Bob, who computes a value of Alice’s polynomial after letting her evaluate
his, we cannot extract Bob’s input before evaluating PB(). We can, however, execute
the OPE of Bob’s polynomial twice in the simulation, learn PB() completely, and
then be able to compute any value of PB() and use it to provide the right value to
the comparison.)

Note that for all OPE protocols it holds that if the evaluation point does not
match the input of the honest party, then with high probability the output of the
protocol is 0. If the OPE protocol does not enable extraction, then we don’t know,
however, how to extract the evaluation point. (It might even be possible that the
malicious party has some computational representation of the other party’s input
such that it can evaluate the OPE in the right point but does not have an explicit
knowledge of the value of its input.)
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Application to passwords. The protocol can serve as a basis for a mutually au-
thenticated key exchange based on (possibly weak) passwords. Consider a user who
wishes to log in to a remote server over an insecure network. She does not want to
send her password in the clear, and is not even certain that the remote party is the
required server. An additional problem is that the password might not have enough
entropy and might therefore be susceptible to dictionary attacks. Assume that there
is no PKI (public key infrastructure), and that the user does not carry with her a
public key of the remote server. There have been several initial solutions to this prob-
lem (see, e.g., [5, 47]), for which it seems that a security proof must postulate the
existence of a random oracle.

The most natural formulation of the scenario is as a “comparing information
without leaking it” problem. If the right user contacts the right server they both
should be “thinking” of the same password, and they can verify whether this is the case
using Protocol 4.1. Therefore, if it is assumed that there is no active adversary, and
an adversary only listens to the communication between the two parties and then tries
to impersonate the user, then Protocol 4.1 can be used for password authentication.
Furthermore, it can be used to generate a session key for the two parties, whose
entropy does not depend on the entropy of the passwords.

In more detail, each of the parties, the user and the remote server, chooses a
random linear polynomial and (obliviously) computes the sum of the two polynomials
at x = password. They use the first half of the output for authentication and the
second half as a session key.

If the adversary can also be active, i.e., change the communication sent between
the two parties, then the above protocol is insufficient. Although the adversary cannot
decrypt the messages sent between the parties (e.g., in the invocations of the oblivious
transfer protocol), it can change them and cause the output of the oblivious transfer
protocol to be different, but related, to its legitimate output. The adversary can use
this feature to attack different invocations of the protocol that are being executed in
parallel. Our protocol can serve as a basis for a protocol that prevents such attacks,
which must address delicate issues such as the nonmalleability [18] of the oblivious
transfer protocols. Elaborate definitions and constructions of such protocols were
given in subsequent work (see, e.g., [30, 55]).

4.3. Secure computation using randomizing polynomials. Ishai and Kushi-
levitz showed that secure evaluation of arbitrary functions can be reduced to secure
evaluation of (perhaps several) degree-3 polynomials [36]. The inputs of these poly-
nomials are the input variables of the original function and additional variables which
must take random values. The size of the polynomials is quadratic in the size of a
branching program computing the original function (therefore, this approach is effi-
cient for functions that have an efficient branching program representation).

An examination of the structure of the polynomials generated by the constructions
in [36] shows that each monomial is of the form rixjrk, where xj is an original input
variable and ri and rk are variables which must be assigned random values. Each of
the variables is assigned to a party that must instantiate it with its corresponding
input value (in the case of xj) or with a random value (in the case of rj and rk).
In the case of secure two-party computation, the computation of the randomizing
polynomials can be easily reduced to OPE of linear polynomials. Namely, the sender
assigns values to each of the variables that it controls and consequently each monomial
becomes either a constant or a linear polynomial of an input known to the receiver.
The two parties then do a shared output OPE for each of these polynomials and
compute the sum of all the shares they learned.
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The original work of [36] reduced the computation of the OPE to generic secure
computation (the focus of that work was on information-theoretic security). However,
a more efficient solution could use the linear OPE described in this paper. Further-
more, this results in a strongly polynomial secure computation protocol for a more
general class of functions—namely, functions with efficient branching program repre-
sentation.

4.4. Anonymous initialization for metering. A scheme for efficient and se-
cure metering of clients’ visits to servers was suggested in [50]. This scheme involves
clients which send requests to servers, and a trusted, off-line, audit authority. Servers
prove to the audit authority that they fulfilled requests (e.g., served web pages) of
a certain number of clients. On a very high level, the operation of the scheme is as
follows:

(i) The audit authority generates a random bivariate polynomial P (x, y), where
the degree of x is k − 1.

(ii) Each client u receives from the audit authority initialization data, which
contains a univariate polynomial P (u, ·).

(iii) When u sends a request to a server S (e.g., visits its web site), it sends it
the value P (u, S).

(iv) After k requests of different clients, S can interpolate the value P (0, S)
which serves as a proof for serving k requests.

A modification of this scheme described in [50] preserves the anonymity of clients
towards servers. However, if the audit agency cooperates with a server S they are
able to identify clients which access the server, since the audit agency knows which
polynomial is owned by every client. Combining this scheme with oblivious poly-
nomial evaluation enables the client to learn the initialization data from the audit
agency without revealing to the agency which initialization value (i.e., polynomial)
was learned by the client. If this method is employed, then even a coalition of the
audit agency and a server is not able to identify the client.

4.5. Anonymous coupons. Consider the following scenario. An organization
wants to set up an anonymous complaint box for its personnel, but would like to ensure
that each person complains at most once (for example, if there are ten complaints
about the quality of the coffee machine, they should be from ten different people and
not ten complaints of the same person). A solution for this problem is to give each
person an anonymous coupon that he or she should attach to any submitted complaint.
When a complaint is received the coupon is checked for validity and freshness (namely,
it is verified that it is a valid coupon that was not previously used).

Anonymous coupons can be constructed using oblivious polynomial evaluation.2

The coupon manager sets up a polynomial P of degree d. Each person A obtains
a coupon by choosing a random secret value RA and obliviously computing P (RA),
using an oblivious polynomial evaluation protocol in which the coupon manager is
the sender. The coupon is the pair 〈RA, P (RA)〉. It is easy for the coupon manager
to verify that a coupon 〈X,Y 〉 is valid by simply testing whether Y = P (X). The
coupon manager also keeps a list of the coupons that were received and compares
each new coupon to that list in order to verify that it was not used before.

2Another construction for this problem can be based on using blind signatures: Each user pre-
pares in advance coupons by letting the central server sign them using a blind signature scheme
(e.g., Chaum’s scheme [12], or the scheme of Juels et al. that can be based on standard hardness
assumptions [37]). A complaint must be accompanied by a signed coupon. The server verifies the
signature, and also verifies that this coupon has not been used before.
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The system is secure against a coalition of corrupt users that attempt to generate
fake coupons, as long as the coalition has at most d different coupons. The degree of
the polynomial, d, should therefore be set in accordance with the potential size of a
corrupt coalition of users.

A corrupt coupon manager might attempt to identify the owners of coupons by
using a different polynomial for each person. Namely, for every user A it might use a
different polynomial PA for the oblivious evaluation protocol. When it later receives
a coupon 〈X,Y 〉 it attempts to identify its owner by checking for which polynomials
PA it holds that Y = PA(X). This attack can be prevented by ensuring that the
sender uses the same polynomial in all oblivious evaluation protocols, for example,
using the verifiable secret sharing techniques of Feldman [23] or Pedersen [57].
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1. Introduction. In the theory of differential operators with constant coeffi-
cients, fundamental solutions have a central place. Let

P = P (D) =
∑

|α|≤m

cαD
α(1)

be a partial differential operator with constant coefficients cα, where α = (α1, . . . , αn)
is a multi-index of order |α| = α1 + · · · + αn, Dj = (1/i)∂/∂xj with 1 ≤ j ≤ n and
i =

√
−1, D = (D1, . . . , Dn), and Dα = Dα1

1 Dα2
2 · · ·Dαn

n . A distribution is called a
fundamental solution of the partial differential operator P if it is a solution of the
point source problem

P (D)u =
∑

|α|≤m

cαD
αu = δ,(2)

where δ is the Dirac measure at 0. In 1954 Malgrange and Ehrenpreis proved that ev-
ery partial differential operator with constant coefficients has a fundamental solution.
Fundamental solutions are very useful tools in the theory of partial differential equa-
tions, for instance, in solving inhomogeneous equations and in providing information
about the regularity and growth of solutions. In the case of solving inhomogeneous
equations, if E is a fundamental solution of the partial differential operator P = P (D)
and if f is a distribution, then E ∗f is a solution of the equation P (D)u = f whenever
the convolution is defined.

Many classical differential operators are known to have computable functions as
fundamental solutions. For example, the Schwartz function

EH(t, x) = (4πνt)−n/2e−|x|2/4νt,

which is a computable real function, is a fundamental solution of the heat equation

∂u

∂t
= ν

n∑
i=1

∂2u

∂x2
i

, (t, x) ∈ R × R
n.
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In general, however, a fundamental solution is a distribution. Does every partial dif-
ferential operator P (D) with computable coefficients have a computable fundamental
solution? In fact, this follows from the even more general result we prove in this note:
There is a computable operator mapping every differential operator P (D) (as in (1))
to a fundamental solution. We present an algorithm which in a well-defined realistic
model of computation computes a fundamental solution of any given differential oper-
ator P from its coefficients, where abstract data are encoded canonically by, generally
infinite, sequences of symbols and where computations are (can be) performed by
Turing machines.

2. Preliminaries. In this note, we consider the representation approach as a
model of computation for analysis [4]. Computable functions on Σ∗ and Σω (the set
of finite and infinite sequences of symbols, respectively, from the finite alphabet Σ) are
defined by Turing machines which can read and write finite and infinite sequences. A
multifunction f : ⊆X ⇒ Y is a function which assigns to every x ∈ X a set f(x)⊆Y ,
the set of “acceptable” values (f(x) = ∅ if x �∈ dom(f)). Any concrete computation
will produce on input a ∈ dom(f) some element b ∈ f(a), but usually there is no
method to select a specific one.

Computability on other sets is defined by using Σ∗ and Σω as codes or names. In
some of our applications, a “name” w ∈ Σ∗ or p ∈ Σω contains information about a
point x, which is sufficient for certain computations but may not identify x. Therefore,
we use multifunctions as naming systems. A naming system of a set M is a surjective
multifunction ν : ⊆Σ∗ ⇒ M (a notation) or γ : ⊆Σω ⇒ M (a representation). For the
natural numbers and the rational numbers we use canonical notations νN : ⊆Σ∗ → N

and νQ : ⊆ Σ∗ → Q, respectively. For the real numbers we use the representation
ρ : ⊆ Σω → R, where ρ(p) = x if p encodes a sequence (ai)i of rational numbers
such that |x − ai| ≤ 2−i. For a naming system γ : ⊆ Y → M (Y ∈ {Σ∗,Σω}) the
representation γk : ⊆Y → Mk is defined by γ〈y1, . . . , yk〉 := (γ(y1), . . . , γ(yk)), where
〈 〉 is a tupling function. For the complex numbers we use the representation ρ2 of
R

2.

For naming systems γi : ⊆Yi ⇒ Mi a function h : ⊆Y1 → Y2 (on names) realizes
a multifunction f : ⊆M1 ⇒ M2 if

γ2 ◦ h(p) ∩ f(x) �= ∅ if γ1(p) ∈ dom(f) ;

that is, h(p) is a name of some y ∈ f(x) if p is a name of x ∈ dom(f); see Figure 1.

The multifunction f is called (γ1, γ2)-computable if it has a computable realiza-
tion.

Multifunctions occur naturally in computable analysis. As an example, there is
an algorithm which maps every ρ-name p of x ∈ R (i.e., every sequence of rational
numbers rapidly converging to x) to some n ∈ N such that x < n. This algorithm,
however, might give another upper bound n′ of x if fed with another ρ-name p′ of
x. The algorithm is not “(ρ, νN)-extensional.” Nevertheless, the algorithm realizes
the multifunction f : R ⇒ N, defined by n ∈ f(x) ⇐⇒ x < n. There is no
(ρ, νN)-computable function g : R → N such that x < g(x).

As generalizations of the “acceptable Gödel numbering ϕ : N → P (1)” of the
partial recursive functions, for any a, b ∈ {∗, ω} there is a canonical representation
ηab : Σω → F ab of continuous functions f : ⊆Σa → Σb satisfying the “utm-theorem”
and the “smn-theorem” [4] (abbreviation: ηabp := ηab(p)). For naming systems γ1 :

⊆ Σa → M1 and γ2 : ⊆ Σb → M2 a representation [γ1 → γ2] of the total (γ1, γ2)-
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Fig. 1. h(p) is a name of some y ∈ f(x) if p is a name of x ∈ dom(f).

continuous functions is defined by

[γ1 → γ2](p) = f : ⇐⇒ ηabp realizes f w.r.t. (γ1, γ2) ,

and a multirepresentation [γ1 →p γ2] of all partial (γ1, γ2)-continuous functions is
defined by

f ∈ [γ1 →p γ2](p) : ⇐⇒ ηabp realizes f w.r.t. (γ1, γ2) .

Notice that [γ1 → γ2] is the “weakest” representation δ of the set of total (γ1, γ2)-
continuous functions such that the evaluation (f, x) �→ f(x) becomes (δ, γ1, γ2)-
computable (Lemma 3.3.14 in [4]).

We will apply the following slight generalization of the type conversion theorem
in [4].

Lemma 2.1 (type conversion). Let γi : ⊆Yi → Mi be representations (i = 1, 2, 3),
let f : ⊆M1 × M2 → M3, and let f̃ : M1 → M̃ be the total function to the partial
(γ2, γ2)-continuous functions h : ⊆M2 → M3 defined by f̃(x)(y) := f(x, y). Then

f is (γ1, γ2, γ3)-computable ⇐⇒ f̃ is (γ1, [γ2 →p γ3])-computable .

For definitions and mathematical properties of distributions, see [1, 2]. In [6] com-
putability on distributions over the real line is studied. The definitions and theorems
can be generalized straightforwardly to distributions over R

n (n ≥ 1). For the space
of continuous functions f : R

n → C we use the representation [ρn → ρ2] : ⊆Σω →
C(Rn). For the space C∞(Rn) of infinitely differentiable functions f : R

n → C we
use the representation δ∞ : ⊆Σω → C∞(Rn) defined by

δ∞(〈pα〉α∈Nn) = f : ⇐⇒ (∀α ∈ N
n) Dαf = [ρn → ρ2](pα)

(where 〈pα〉α∈Nn ∈ Σω is a canonical merging of the infinitely many infinite sequences
pα ∈ Σω, α ∈ N

n). The topology of C∞(Rn) can be defined by the seminorms
f → |Dmf |k = sup|α|≤m(supx∈K |Dαf(x)|) as m varies over the set of nonnegative
integers and K varies over the family of compact subsets of R

n.
A test function is a function f ∈ C∞(Rn) with compact support supp(f) :=

cls{x ∈ R
n | f(x) �= 0}. The set of test functions is denoted by D(Rn), and its
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topology is induced by C∞(Rn). We use the representation δD : ⊆ Σω → D(Rn)
defined by

δD(0k1p) = f : ⇐⇒ δ∞(p) = f and supp(f) ⊆ [−k; k]n .

A Schwartz function is a function f ∈ C∞(Rn) such that supx∈Rn(|x|j |Dαf(x)|) < ∞
for all j ∈ N and α ∈ N

n. The set of Schwartz functions is denoted by S(Rn). We use
the representation δS : ⊆Σω → S(Rn) defined by

δS(〈p, q〉) = f : ⇐⇒ δ∞(p) = f and q encodes a function h : N
n+1 → N

such that (∀ j, α) supx∈Rn(|x|j |Dαf |) ≤ h(j, α).

Of course, the above representations can be replaced by equivalent ones. Examples
for the case n = 1 are discussed in [6].

A continuous linear map T : D(Rn) → C (or T : S(Rn) → C) is called a distribu-
tion (tempered distribution). The set of all distributions (tempered distributions) is
denoted as D′(Rn) (S ′(Rn)). For the set D′(Rn) we use the representation [δD → ρ2]
(restricted to the linear functions).

Recall that the evaluation function is computable; i.e., there is Type-2 Turing
machine which computes a ρ2-name of T (φ) whenever given a [δD → ρ2]-name of T
and a δD-name of φ as input. Usually T (φ) is written as <T, φ>.

We conclude this section by recalling some further definitions and facts [2]. The
Dirac measure δ on R

n at 0 is a tempered distribution defined by δ(φ) = <δ, φ> = φ(0)
for any Schwartz function φ ∈ S(Rn). The Dirac measure can be viewed as a point

source. The Fourier transform of a Schwartz function φ ∈ S(Rn), denoted by φ̂ or
F(φ), is defined as

F(φ)(ξ) = φ̂(ξ) := (2π)−n/2

∫
Rn

e−ixξφ(x)dx,

where x = (x1, x2, . . . , xn), ξ = (ξ1, ξ2, . . . , ξn), and xξ = x1ξ1+x2ξ2+· · ·+xnξn. The
Fourier transform is a linear bijection of S(Rn) to itself. For every partial derivative,

F(Djφ) = ξjF(φ) and DjF(φ) = F(−ξjφ).(3)

Therefore, for any partial differential operator P (D) with constant coefficients

<F(P (D)), φ> = P (ξ)φ̂ ∀φ ∈ S(Rn).(4)

Since S(Rn) is sequentially dense in S ′(Rn), by a duality argument, F and Dj

can be uniquely extended from S(Rn) to S ′(Rn) defined by the following formulae:

<FT, φ> := <T,Fφ>,(5)

<DjT, φ> := <T,−Djφ>(6)

for any T ∈ S ′(Rn) and φ ∈ S(Rn). The Fourier transform δ̂ of the Dirac measure δ
is a constant:

F(δ) = (2π)−n/2 .(7)

Let R be the reflexion operator on S(Rn) defined by R(u)(x) := u(−x).
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Lemma 2.2. For any E ∈ D′(Rn) let <Ẽ, φ> := <E,Rφ>. Then E is a
fundamental solution of P (D); that is, P (D)E = δ iff

<Ẽ, P (D)φ> = φ(0) ∀ φ ∈ D(Rn) .

Proof. By (6), <E,RDjφ> = <E,−DjRφ> = <DjE,Rφ>, and therefore,

<Ẽ, P (D)φ> = <E,RP (D)φ> = <P (D)E,Rφ>.

We obtain P (D)E = δ iff (∀φ)<P (D)E,Rφ> = Rφ(0) = φ(0) iff

(∀φ)<Ẽ, P (D)φ> = φ(0).

3. Computing a fundamental solution. Formally, the problem of construct-
ing a fundamental solution of a partial differential operator P (D) is very easy. Indeed,
suppose that we have

P (D)E = δ .

Since FDjT = ξjFT (from (3), (5), and (6)), by taking the Fourier transform we
obtain P (ξ)FE = (2π)−n/2, hence

FE =
(2π)−n/2

P (ξ)
,

and E should be defined as the inverse Fourier transform of (2π)−n/2/P (ξ). This
is meaningful if P (ξ) has no real zeros. In the general case, we will overcome the
difficulty by selecting domains of integration which avoid the zeros of P (ξ).

For m ≥ 1 let P(m) be the linear space of all polynomials P (ξ) =
∑

|α|≤m cαξ
α,

cα ∈ C, in n variables of degree ≤ m, where ξα = ξα1
1 · · · ξαn

n for α = (α1, . . . , αn) and
|α| = α1 + · · · + αn. This space has dimension N(m,n) := (m + n)!/m!n!, and the
monomials ξα, |α| ≤ m, can be considered as a basis. On P(m) we consider the norm
||
∑

|α|≤m cαξ
α||m :=

√∑
|α|≤m|cα|2.

Lemma 3.1 (see [3]). From m a finite set Am = {νi | 1 ≤ i ≤ L(m,n)}⊆Q
n

of vectors, L(m,n) := (m + 1)(n+1), can be computed such that for all P ∈ P(m),
P �≡ 0,

(∃ ν ∈ Am)(∀z ∈ C, |z| = 1)P (zν) �= 0 .(8)

Am can be chosen as follows: Am = { k
mν : ν ∈ A′, k = 0, 1, . . . ,m}, where

A′ = {ξ ∈ R
n : ξi ∈ {0, 1, 2, . . . ,m}, 1 ≤ i ≤ n}. Observe that |Am| = (m + 1)(n+1) =

L(m,n).
Lemma 3.2. There is a Type-2 Turing machine which, for every polynomial

P ∈ P(m) of degree m > 0, computes a number l ∈ N such that

2−l < max
ν∈Am

inf
|z|=1

|P (ξ + zν)| ∀ ξ ∈ R
n .(9)

More precisely, from the degree m and ρ2-names of the coefficients cα ∈ C (|α| ≤ m)
of a polynomial P (ξ) =

∑
|α|≤m cαξ

α the machine computes a number l such that (9)
holds.
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Proof. By Lemma 3.1 there is some ν ∈ Am such that for all z ∈ C, P (zν) �= 0 if
|z| = 1. Since z �→ |P (zν)| is continuous,

0 < max
ν∈Am

inf
|z|=1

|P (zν)| .(10)

For every ν ∈ Am the total function

(c̃, z) �→ |P (zν)| is (ρ2N(m,n), ρ2, ρ)-computable

(c̃ := (cα)|α|≤m ∈ C
N(m,n)). By Lemma 2.1 on type conversion, the function

c̃ �→ (z �→ |P (zν)|) is (ρ2N(m,n), [ρ2 → ρ])-computable.

Since {z ∈ C | |z| = 1} is a κ2-computable compact set (see Definition 5.2.1 in [4])
the function

f �→ inf
|z|=1

f(z) is ([ρ2 → ρ], ρ)-computable

by Corollary 6.2.5 in [4]. Therefore, for each ν ∈ Am, the function

c̃ �→ inf
|z|=1

|P (zν)| is (ρ2N(m,n), ρ)-computable.(11)

By Theorem 6.2.1 in [4], the total function

c̃ �→ max
ν∈Am

inf
|z|=1

|P (zν)| is (ρ2N(m,n), ρ)-computable.(12)

Since Bm := {c̃ |
√∑

|α|≤m|cα|2 = 1} is compact and c̃ �→ maxν∈Am
inf |z|=1 |P (zν)|

is continuous by (12), by (10)

inf
||c̃||m=1

max
ν∈Am

inf
|z|=1

|P (zν)| > 0 .

Since Bm is κ2N(m,n)-computable, by (12) and Corollary 6.2.5 in [4],

inf
||c̃||m=1

max
ν∈Am

inf
|z|=1

|P (zν)| > 0 is ρ-computable.

Since all the above computations are uniform in the degree m, a rational number
Cm > 0 can be computed from m such that

Cm < max
ν∈Am

inf
|z|=1

|P (zν)| if ||P ||m = 1 .(13)

Now consider arbitrary polynomials P (ξ) =
∑

|α|≤m cαξ
α of degree m. There is

a Type-2 machine which on input m and the coefficients (cα)|α|≤m computes some
rational number aP such that 0 < aP < |cβ | for some index β with |β| = m.

For fixed ξ ∈ R
n, P (ξ + ξ′) =

∑
cα(ξ + ξ′)α =

∑
dα(ξ) (ξ′)α, where the coef-

ficients of the polynomials dα(ξ) can be determined by algebraic computation. By
an easy observation, dβ(ξ) = cβ since |β| = m. Let Q(ξ′) := P (ξ + ξ′). Then

aP < |cβ | ≤
√∑

|dα(ξ)|2 = ||Q||m. Since Q/||Q||m has norm 1, by (13), Cm <
maxν∈Am inf |z|=1 |Q(zν)|/||Q||m, and therefore

aP · Cm < ||Q||m · Cm ≤ max
ν∈Am

inf
|z|=1

|Q(zν)| = max
ν∈Am

inf
|z|=1

|P (ξ + zν)| .
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Finally, some l ∈ N can be computed such that 2−l ≤ aPCm.
In the following we denote, for any (ξ1, . . . , ξn) ∈ R

n, |(ξ1, . . . , ξn)| := maxj |ξj |.
X will denote the closure, and X◦ will denote the interior of a set X. For vectors in
R

n let (x1, . . . , xn) < (y1, . . . , yn) iff xi < yi for all i. For a, b ∈ R
n and a < b, let

(a; b] be the half-open interval (box) {x ∈ R
n | a < x ≤ b}. Let B1 := {(a; b] | a, b ∈

Q
n and a < b} be the set of all half-open rational intervals with canonical notation

νB1. The set {I◦ | I ∈ B1} is a basis of the topology on R
n. Let B be the set of all

finite unions of elements from B1, and let νB be a standard notation of B. Notice that
∅ ∈ B and B is closed under union, intersection, and difference (I, J) �→ I \J and that
every J ∈ B is a finite union of pairwise disjoint half-open intervals from B1. Union
and difference are (νB , νB , νB)-computable.

Integration of total continuous functions over intervals is computable [4]. We need
a generalization to partial functions. The following lemma generalizes Theorem 6.4.1
in [4]. It can be proved by using standard techniques.

Lemma 3.3.

1. The partial function f �→
∫
|z|=1

f(z) dz for continuous f : ⊆C → C, which is

defined if {z | |z| = 1}⊆dom(f), is ([ρ2 →p ρ2], ρ2)-computable.
2. The partial function (f, I) �→

∫
I
f(ξ) dξ for continuous f : ⊆ R

n → C and

I ∈ B, which is defined if I ⊆dom(f), is ([ρn →p ρ2], νB , ρ
2)-computable.

Since the boundary of every I ∈ B has measure 0, for every continuous function
f , ∫

I

f(ξ) dξ =

∫
I

f(ξ) dξ =

∫
I◦

f(ξ) dξ

if I⊆dom(f). After these preparations we can prove our main theorem.
Theorem 3.4. There is a Type-2 Turing machine which for every differential

operator P (D) =
∑

|α|≤m cαD
α �≡ 0 computes a fundamental solution E ∈ D′(Rn).

More precisely, from m and ρ2-names of the cα ∈ C it computes a [δD → ρ2]-name of
a fundamental solution E.

Proof. First, we assume that the degree m of the polynomial P (ξ) =
∑

|α|≤m cαξ
α

is fixed. Let c̃ := (cα)|α|≤m ∈ C
N(m,n) be the vector of coefficients of P (ξ). Let

Am = {νi | 1 ≤ i ≤ L(m,n)} be any set satisfying Lemma 3.1. Let l ∈ N be some
constant such that (9). For 1 ≤ j ≤ L(m,n), define

Ωj :=

{
ξ ∈ R

n
∣∣∣2−l < inf

|z|=1
|P (ξ + zνj)|

}
.(14)

Notice that
⋃L(m,n)

j=1 Ωj = R
n.

Let M−1 := M0 := ∅ ∈ B and Mk := ((−k, . . . ,−k); (k, . . . , k)] ∈ B for k ≥ 1. For
k, j ∈ N, 1 ≤ j ≤ L(m,n), let T k

j ∈ B be sets such that

T k
j ⊆Ωj , T k

i ∩ T k
j = ∅ for i �= j, and

⋃
j

T k
j = Mk \Mk−1 .(15)

We shall show below how such sets T k
j can be computed. Since for each k the T k

j

(1 ≤ j ≤ L(m,n)) are a partition of Mk \ Mk−1, and since the Mk \ Mk−1 are a
partition of R

n, T k
j ∩ T k′

j′ = ∅ if k �= k′ or j �= j′. Define Tj :=
⋃

k T
k
j . Then

Tj⊆Ωj , Ti ∩ Tj = ∅ for i �= j, and
⋃
j

Tj = R
n .(16)
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For any u ∈ D(Rn) and k ∈ N define

Ẽk(u) := (2π)−n/2

L(m,n)∑
j=1

∫
Tk
j

dξ
1

2πi

∫
|z|=1

û(ξ + zνj)

P (ξ + zνj)

1

z
dz(17)

and

Ẽ(u) := (2π)−n/2

L(m,n)∑
j=1

∫
Tj

dξ
1

2πi

∫
|z|=1

û(ξ + zνj)

P (ξ + zνj)

1

z
dz .(18)

The integrals exist because u ∈ D(Rn) and P (ξ + zνj) �= 0 for |z| = 1 and ξ ∈ Tj by
(14) and (16).

Define E by <E,φ> := <Ẽ,Rφ> for all φ ∈ D(Rn). Then <Ẽ, φ> = <Ẽ,R2φ>
= <E,Rφ> for all φ ∈ D(Rn). We show in the following that E is a fundamental
solution of P (D). By Lemma 2.2, E is a fundamental solution of P (D) iff Ẽ(P (D)v) =
v(0) for any v ∈ D(Rn). For any v ∈ D(Rn) and u = P (D)v,

Ẽ(u) = Ẽ(P (D)v)

= (2π)−n/2

L(m,n)∑
j=1

∫
Tj

dξ
1

2πi

∫
|z|=1

F(P (D)v)(ξ + zνj)

P (ξ + zνj)

1

z
dz

= (2π)−n/2

L(m,n)∑
j=1

∫
Tj

dξ
1

2πi

∫
|z|=1

P (ξ + zνj)v̂(ξ + zνj)

P (ξ + zνj)

1

z
dz

= (2π)−n/2

L(m,n)∑
j=1

∫
Tj

dξ
1

2πi

∫
|z|=1

v̂(ξ + zνj)
1

z
dz .

We observe that

1

2πi

∫
|z|=1

v̂(ξ + zνj)
1

z
dz

=
1

2πi

∫
|z|=1

(2π)−n/2

∫
Rn

e−ix(ξ+zνj)v(x)dx
1

z
dz

= (2π)−n/2

∫
Rn

e−ixξv(x)dx
1

2πi

∫
|z|=1

e−ixzνj

z
dz

= (2π)−n/2

∫
Rn

e−ixξv(x)e−ix0νjdx (Cauchy integral)

= (2π)−n/2

∫
R

e−ixξv(x)dx

= v̂(ξ) .

Thus we obtain

Ẽ(P (D)v) = (2π)−n/2

L(m,n)∑
j=1

∫
Tj

v̂(ξ)dξ

= (2π)−n/2

∫
Rn

v̂(ξ)dξ

= (2π)−n/2

∫
Rn

ei0ξ v̂(ξ)dξ

= v(0) .
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Next we determine an upper bound of |Ẽk(u)|. Since û ∈ S(Rn),

(∃ k′ ∈ N) (|û(ξ)| |ξ|n+2 ≤ 1 if |ξ| ≥ k′) .(19)

Define ν̄ := maxν∈Am |ν|.
Let k ≥ k′ + ν̄ + 1 and k ≥ 2ν̄ + 2. Then for ξ ∈ R

n, z ∈ C, and 1 ≤ j ≤ L(m,n),

|ξ + zνj | ≥ |ξ| − ν̄ ≥ k′ if |ξ| ≥ k − 1 and |z| = 1 .(20)

We obtain

|Ẽk(u)| ≤ (2π)−n/2

L(m,n)∑
j=1

∫
Tk
j

dξ
1

2π

∫
|z|=1

|û(ξ + zνj)|
|P (ξ + zνj)|

1

|z| |dz|

≤ 2l(2π)−n/2

L(m,n)∑
j=1

∫
Tk
j

dξ
1

2π

∫
|z|=1

|û(ξ + zνj)||dz| (by (14), (15))

≤ 2l(2π)−n/2

L(m,n)∑
j=1

∫
Tk
j

dξ
1

2π

∫
|z|=1

|û(ξ + zνj)| · |ξ + zνj |n+2

|ξ + zνj |n+2
|dz|

≤ 2l(2π)−n/2

L(m,n)∑
j=1

∫
Tk
j

dξ
1

2π

∫
|z|=1

1

|ξ + zνj |n+2
|dz|

(by (19)and (20), since |ξ| ≥ k − 1 for ξ ∈ T k
j )

≤ 2l(2π)−n/2

L(m,n)∑
j=1

∫
Tk
j

dξ
1

2π

∫
|z|=1

1

(k − 1 − ν̄)n+2
|dz|

≤ 2l(2π)−n/2

L(m,n)∑
j=1

∫
Tk
j

dξ
1

(k − 1 − ν̄)n+2

≤ 2l(2π)−n/2 (2k)n

(k − 1 − ν̄)n+2
(by (15))

≤ 2l · (2π)−n/2 · 22n+2 1

k2
(since k ≥ 2ν̄ + 2).

Since
∑

k>K
1
k2 ≤ 1

K , we obtain for all K ≥ k′ + 2ν̄ + 2,

∞∑
k=K+1

|Ẽk(u)| ≤ 2l+2n+2 · (2π)−n/2 1

K
,

and by (15)–(18),

Ẽ(u) =
∞∑
k=0

Ẽk(u),(21)

and for all K ≥ k′ + 2ν̄ + 2,∣∣∣∣∣Ẽ(u) −
K∑

k=0

Ẽk(u)

∣∣∣∣∣ ≤ 2l+2n+2 · (2π)−n/2 1

K
.(22)
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It remains to prove that the fundamental solution E can be computed from the
polynomial P . Concretely, a polynomial P of degree m is given by the list c̃ =
(cα)|α|≤m, cα ∈ C, of its coefficients represented by ρ2N(m,n). Let Am be a set of
vectors according to Lemma 3.1.

(a) By Lemma 3.2, the multifunction c̃ |⇒ l such that (9) is (ρ2N(m,n), νN)-computable.
(b) Next we compute the sets Ωj defined in (14). For each number j the function

(l, c̃, ξ) �→ inf |z|=1 |P (ξ + zνj)| − 2−l is (νN, ρ
2N(m,n), ρn, ρ)-computable. The

proof is essentially that of (11). By Lemma 2.1 on type conversion, for each
j the function

(l, c̃) �→
(
ξ �→ inf

|z|=1
|P (ξ + zνj)| − 2−l

)

is (νN, ρ
2N(m,n), [ρn → ρ])-computable. For the open subsets of R

n we use
the representation θ< defined by θ<(p) = U iff p ∈ Σω is (encodes) a list
of all I ∈ B1 such that I ⊆U (see Definition 5.1.15 in [4]). Notice that
U =

⋃
I⊆U I◦ =

⋃
I⊆U I. Since the set {y ∈ R | y > 0} is reclusively

enumerable (r.e.) open, by Theorem 6.2.4.1 in [4] for each j the function

(l, c̃) �→ Ωj is (νN, ρ
2N(m,n), θ<)-computable.

(c) We describe how to compute sets T k
j from sequences pj ∈ Σω such that

θ<(pj) = Ωj . Consider k ∈ N. Simultaneously for all j = 1, . . . , L(m,n)
produce the lists of intervals I ∈ B1 encoded by the pj . Halt as soon as a

finite family C ⊆B1 has been found such that Mk \Mk−1⊆
⋃

I∈C I◦ (finite
covering of a compact set). For each j let Cj ⊆C be the set of intervals from
C so far listed by pj . Let T k

0 := ∅ and determine the T k
j ⊆B successively by

the rule

T k
j :=

⎛
⎝ ⋃

I∈Cj

I ∩ (Mk \Mk−1)

⎞
⎠ \

⋃
j′<j

T k
j′ .

If (9) holds for the number l, then
⋃

j Ωj = R
n, a set C will be found by

compactness of Mk \Mk−1, and (15) and (16) are true. As a summary, we
have a multifunction

(l, c̃) |⇒ ((k, j) �→ T k
j ), which is (νN, ρ

2N(m,n), [ν2
N
→ νB ])-computable.

(d) Next we prove that (c̃, k, u, ((k, j) �→ T k
j )) �→ Ẽk(u) defined in (17) is

(ρ2N(m,n), νN, δD, [ν2
N
→ νB ], ρ2)-computable.

First let j be fixed. Since the identity from D(Rn) to S(Rn) is (δD, δS)-
computable, the Fourier transform is (δS , δS)-computable [6], and the identity
from S(Rn) to C(Rn) is (δS , [ρ

n → ρ2])-computable, the partial function

(u, c̃, ξ, z) �→ û(ξ + zνj)

P (ξ + zνj)

1

z
is (δD, ρ2N(m,n), ρn, ρ2, ρ2)-computable .

Therefore by type conversion (Lemma 2.1),

(u, c̃, ξ) �→
(
z �→ û(ξ + zνj)

P (ξ + zνj)

1

z

)
is (δD, ρ2N(m,n), ρn, [ρ2 →p ρ2])-computable .
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By Lemma 3.3 the function

(u, c̃, ξ) �→
∫
|z|=1

û(ξ + zνj)

P (ξ + zνj)

1

z
dz is (δD, ρ2N(m,n), ρn, ρ2)-computable .

Again after type conversion by Lemma 3.3, the function

(I, u, c̃) �→
∫
I

dξ

∫
|z|=1

û(ξ + zνj)

P (ξ + zνj)

1

z
dz is (νB , δD, ρ2N(m,n), ρ2)-computable .

Finally, since π is computable, we can conclude that

(c̃, k, u, ((k, j) �→ T k
j )) �→ Ẽk(u)

is (ρ2N(m,n), νN, δD, [ν2
N
→ νB ], ρ2)-computable. By Theorem 3.1.7 in [4] on

primitive recursion, the function

(c̃, K, u, ((k, j) �→ T k
j )) �→

K∑
k=0

Ẽk(u)

is (ρ2N(m,n), νN, δD, [ν2
N
→ νB ], ρ2)-computable.

(e) As above, from u ∈ D(Rn), û ∈ S(Rn) can be computed. By the definition
of δS , a number k′ can be computed from û such that |v(ξ)||ξ|n+2 ≤ 1 if
|ξ| ≥ k′. From l, k′, and L ∈ N, a number K can be computed such that
K ≥ k′ + 2ν̄ + 2 and K ≥ 2l+2n+2 · (2π)−n/2 · 2L+1. Then by (22),∣∣∣∣∣Ẽ(u) −

K∑
k=0

Ẽk(u)

∣∣∣∣∣ ≤ 2−L−1 .

By (d) above, from c̃, K, u, ((k, j) �→ T k
j ) and L a rational bL ∈ C can be

computed such that ∣∣∣∣∣bL −
K∑

k=0

Ẽk(u)

∣∣∣∣∣ ≤ 2−L−1 .

From the sequence b0, b1, . . . we can compute a ρ2-name of Ẽ(u). Therefore,
after type conversion, the function

(c̃, l, ((k, j) �→ T k
j )) �→ (u �→ Ẽ(u))

is (ρ2N(m,n), νN, [ν
2
N
→ νB ], [δD → ρ2])-computable.

From (a), (c), and (e), the multifunction c̃ |⇒ Ẽ is (ρ2N(m,n), [δD → ρ2])-computable.
Since 〈E, u〉 = 〈Ẽ,Ru〉 = 〈RẼ, u〉 and R is computable on D′(Rn) by Lemma 4.7
in [6], the operator u |⇒E mapping a polynomial of degree m to some fundamental
solution is (ρ2N(m,n), [δD → ρ2])-computable.

So far we have assumed a fixed degree m of the polynomial. Since the set Am

can be computed from m (Lemma 3.1) and all the other computations are uniform
also in m the proof is finished.

In the proof multivalued functions occur several times. A critical part is the
computation of the sets T k

j , which determines a partition of R
n into (at most) L(m,n)
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sets. The resulting distribution depends essentially on this partition. However, the
function from C

N(m,n) to these sets cannot be computable (hence continuous) and
single-valued at the same time, provided it is not trivial (Lemma 4.3.15 in [4]).

Problem. Is there a single-valued computable function mapping any polynomial
of degree m to a fundamental solution?

As usual in recursion theory, we have not merely proved the existence of a com-
putable function (from names of input objects to names of output objects), but also
the proof is constructive; i.e., it explains how a concrete Turing machine or computer
program can be constructed for computing this function. Of course, the algorithm is
not trivial since subroutines for integration, for Fourier transform on Schwartz space,
etc., have to be included. The presented algorithms can be improved, since, e.g., no
derivatives of the Fourier transform û of the input test function u ∈ S(Rn) are needed
for computing the Ẽk(u) by integration. We finish the article with a question.

Problem. Can our informal algorithm be converted to a feasible numerical algo-
rithm for computing fundamental solutions efficiently, or is the problem inherently
difficult?
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Abstract. We consider the following problem. Given a rooted tree T , label the nodes of T in the
most compact way such that, given the labels of two nodes u and v, one can determine in constant
time, by looking only at the labels, whether u is ancestor of v. The best known labeling scheme is
rather straightforward and uses labels of length at most 2 log2 n bits each, where n is the number of
nodes in the tree. Our main result in this paper is a labeling scheme with maximum label length
log2 n + O(

√
logn). Our motivation for studying this problem is enhancing the performance of web

search engines. In the context of this application each indexed document is a tree, and the labels of
all trees are maintained in main memory. Therefore even small improvements in the maximum label
length are important.
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1. Introduction. The problem that we study in this paper is the following.
Given a rooted tree T , what are the shortest labels that one can attach to the nodes
of the tree such that, given the labels of two nodes v and w, it is possible to determine
in constant time—by looking only at the labels—whether v is an ancestor of w? When
measuring the quality of a labeling scheme, we will look at the length of the maximal
label, as a function of the size of the tree. We are interested in the exact function
rather than its order of growth—constant factors do matter! (E.g., labels of length
bounded by, say, 1.5 log n bits will be considered significantly better than labels of
length 2 logn bits.1) Note that clearly one cannot go below logn bits—if the maximal
label has less than log n bits, there are not enough labels in the domain even to identify
all nodes. But how much more is actually needed for answering ancestor queries? This
somewhat abstract problem arises in optimizing web search engines.

Before presenting our results, let us consider a simple labeling scheme that we call
the DFS labeling scheme. Let T be a tree of size n. To each internal node we assign a
first and last value, and to a leaf we assign only a first value, as follows. Perform a
depth first traversal [28] of the tree from the root r. Let first(r) = counter = 0. The
first time a node v is visited, we set first(v) = counter and increment the counter by
1. The last time an internal node v is visited, we set last(v) = counter and increment
the counter by 1. Now an internal node v is a proper ancestor of a node w if and only
if first(v) < first(w) < last(v). The standard binary representation of the numbers
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<Catalog>

<Category>

<Category_Name> Literature & Fiction </Category_Name>

<Book>

<ISBN>12445</ISBN> <Title>Bridget Jones’s Diary</Title>

<Authors><Author> Helen Fielding </Author></Authors>

<Price> $10.39</Price> ...

</Book>

<Book> ... </Book>

...

</Category>

<Category> ... </Category>

...

</Catalog>

Fig. 1. The books catalog.

first and last consists of log n + 2 bits. Hence, this scheme uses at most log n + 2
bits for a label of a leaf and at most 2 logn + 4 bits for a label of an internal node.
Interestingly, although rather naive, the bound obtained by this simple scheme is in
fact the tightest we could find in the existing literature. We present a labeling scheme
that improves this bound to logn + O(

√
log n) bits.

We use the RAM model of computation and assume that the length of a computer
word is Ω(log n) bits (hence the basic operations on the labels can be performed
in constant time). The algorithm uses only the basic and fast RAM operations as
assignment, less-than comparison, bitwise AND, OR, and XOR. Our labeling scheme
avoids the sometime more costly operations such as multiplication.

Motivation. Most of the data on the web today is written in HTML format [33].
An HTML document consists of text interspersed with tag fields such as <I>...</I>
to describe the presentation of the page, the inclusion of pictures, hyperlinks, forms,
etc. These tags do not provide, however, any information about the semantic nature
of the document components, which makes the analysis of the content of documents
difficult. To remedy this, a new web standard, the XML data exchange format [31],
has been proposed. Just like HTML, XML documents feature tags. But rather than
providing instructions on how the document is to be displayed,2 they provide infor-
mation on the logical structure of the document, with each semantic element starting
with an <itemname> tag and ending with an </itemname> tag. To see an example,
consider Figure 1, which shows a fragment of an XML document describing a books
catalog. The <Category> and </Category> tags are used to delimit the informa-
tion corresponding to one catalog category. Each category item consists of a sequence
of tagged subitems such as Category Name, Book, etc.

XML is being widely adopted as web standard, and it is believed that although
a large portion of the web will remain unstructured or hidden behind interactive
graphics and forms, a large and contentwise essential portion of the web will soon be
available in XML [25, 31].

To retrieve data from the web, people use search engines like Alta vista [8] or
Google [17]. Today these search engines support full-text queries; namely, the user

2This may be specified in a style-sheet.
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gives a few words, and the engine returns documents containing these particular
words. When querying XML data it is desired also to support queries that utilize
the document structure to ask for more specific data. For example, it is desired to
support structural queries like “find all book items containing “Fielding” as an author
and a price less than $12” [1, 12, 32].

Going back to the problem stated in the introduction, observe that an XML docu-
ment can be viewed as a tree (essentially the parse tree of the document) whose nodes
are the document items and whose edges correspond to the component-of relationship
among data items. With this view, a query of the above form amounts to finding
nodes with particular tags (book, author, price) having certain ancestor relationship
between them. In our example we ask for documents containing book nodes that are
ancestors of particular qualifying author and price nodes.

To understand how to implement such structural queries, consider the following
rather typical implementation of a search engine. The engine’s heart is a big hash
table containing all words occurring in the database, where for each word we keep the
identifiers of the documents in which it appears. For XML documents we refine this
structure as follows. First, in addition to the words that appear in text items, we also
keep the tags of the nodes (like “book,” “author,” etc.) in the hash table. Second,
to allow structural queries we give each node in the XML document (tree) a unique
label and associate with each tag in the hash table the labels of all nodes with this
tag in each particular document containing it.

Now if we give the nodes meaningful labels that reflect the hierarchical structure
of the documents (namely, such that, given labels of two items, we can determine
whether one is a descendant, i.e., component, of the other), queries of the above form
can be answered by using the index only, without access to the actual document. We
first use the hash table to retrieve the labels of the relevant nodes, and then iterate over
the retrieved label sets and select those having the appropriate ancestor relationships.

To allow for good performance it is essential that the index structure (or at least
a large part of it) reside in main memory. Observe that we are talking here about an
extremely large structure. Experiments to evaluate the effect of adding the structural
information to the index show that adding a label of just one integer (4 bytes) to each
word occurrence almost doubles the index size [34]. Since the length of the node labels
is a main factor for the index size, reducing this, even by a constant factor, is a critical
issue, contributing directly to hardware cost reduction and performance improvement.

Consider now the actual physical representation of the labels in the index. In
a fixed-length representation each label is allocated a fixed space, determined by
the maximal potential label length. In a variable-length representation labels are
allocated a variable size space (consisting of a fixed prefix stating the actual size of
the label, followed by the label itself), and the size of the index is determined by the
average label length plus the log of the maximum potential length of a label (the space
allocated for the fixed prefix). We study here the case of fixed-length representation,
aiming to improve the bound on the maximal label length. The case of variable-length
representation is left for future research.

Related work. Variants of the DFS labeling scheme have been described in
several papers including [11, 18, 23, 27, 30]. Implementations of such approaches
are integrated in the Xyleme XML warehouse system [34]. As explained by Kannan,
Naor, and Rudich [18], the names of the nodes in a graph3 typically convey no in-

3Typically the integers 1 to n.
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formation about the graph itself, and so memory is wasted. Therefore [18] focus on
labeling the nodes in such a way that various information can be, as in this paper,
detected solely by looking at names of the nodes. Kannan, Naor, and Rudich [18]
considered determining ancestor relationship, and to that end they suggested a vari-
ant of the DFS labeling scheme. They also considered the parent relation and other
information.

Extracting local information from the node is helpful for some routing appli-
cations. In [29] Thorup and Zwick show how to assign short labels to a packet
which is to be routed, such that one can determine the ancestor relationship be-
tween the packet’s destination and the currently visited node, thus avoiding costly
access to external memory. Specifically, after the work presented in [7], Thorup and
Zwick [29], independently, obtained a labeling scheme for ancestor queries with labels
of length logn + O(logn/ log log n). Recently, Alstrup, Bille, and Rauhe [3] estab-
lished that labels which carry ancestor information for every tree must have length
log n + Ω(log log n) for some trees. An experimental comparison of different labeling
schemes for testing ancestor relationships on real XML data can be found in [20].

Labeling schemes for other types of queries have recently received significant inter-
est. Labeling schemes for various distance queries have been studied in [15, 19, 22, 26].
Alstrup et al. [4] studied a labeling scheme for computing nearest common ances-
tors in trees. Labels for vertex-connectivity and the adjacency relation are described
in [9, 10, 18, 19, 21, 27]. In [14] one finds an extensive survey of labeling schemes and
their applications.

The rest of this paper is organized as follows. Section 2 gives some definitions
and background on labelings of trees, alphabetic codes, and partitions of trees. We
present our labeling scheme in section 3. In section 4 we describe the algorithm that
answers a query based on two labels. Section 5 analyzes the lengths of the labels.
Finally, in section 6 we show how to implement our algorithm so that it runs in linear
time.

2. Preliminaries. In this section we give a more formal definition of labeling
scheme. Furthermore, we define an alphabetic code and subtree partition of a tree,
and state the known results we use to construct our labeling.

Labeling schemes. An ancestor labeling scheme for a family F of trees with n
nodes consist of two mappings EC and DC. For a given tree T ∈ F , the encoder EC
labels the nodes of the tree; i.e., ECT = EC(T ) maps the nodes from T into labels.
The decoder DC maps a pair of labels into {0, 1} such that for all T , DC(ECT (v),
ECT (w)) = 1 if and only if v is an ancestor to w in T . Notice that DC is independent
of the tree from which the pair of labels is taken; it depends only on the two labels.
In different papers [18, 21] there are additional requirements, such as different time
constraints on the function DC. The function DC presented in this paper can be
computed in constant time on a RAM, assuming a standard set of operations as
explained in the introduction.

Alphabetic codes. We denote by 〈y〉k a sequence of objects y1, y2, . . . , yk (such as
integers or binary strings). For binary strings a, b ∈ {0, 1}∗, a <lex b if and only if a
precedes b in the lexicographic order on binary strings, i.e., a is prefix of b, or the first
bit in which a and b differ is 0 in a and 1 in b. A sequence 〈b〉k of binary strings is
lexicographically ordered if bi <lex bj for all 1 ≤ i < j ≤ k. Let |s| denote the length of
a binary string s ∈ {0, 1}∗. Observe that, given machine words that contain a, b, |a|,
and |b| in their least significant bits, it is possible to determine whether a <lex b in a
constant number of operations as follows. Assume |a| ≤ |b|. We first align a and b by
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shifting a to the left by |b|− |a| bits. Then we use standard integer comparison on the
resulting words and return the result of this integer comparison if these words differ.
If the two words are equal—this will happen if b equals a followed by a sequence of
zeros—we break the tie according to the lengths of a and b.

For a sequence of binary strings 〈b〉k, we say it is prefix-free if no string is a prefix
of another in the sequence. The following lemma due to Gilbert and Moore [16] states
the existence of a lexicographically ordered prefix-free sequence of binary strings called
an alphabetic code.

Lemma 2.1 (see Gilbert and Moore [16]). For any sequence 〈y〉k of positive

integers with n =
∑k

i=1 yi there exists a prefix-free lexicographically ordered sequence
〈b〉k, where |bi| ≤ log n− log yi + O(1) for all i.

For the sake of completeness we show how to construct an alphabetic code for
an integer sequence 〈y〉k in O(k) time. Let s0 = 0, si =

∑i
j=1 yj for 1 ≤ i ≤ k,

Ii = [si−1 +1, si−1 + yi], and fi = max{0, �log yi�}. For each yi we will find a number
zi in the interval Ii such that zi can be represented in a word with w = 	log n

bits, having the fi less significant bits set to 0. Then we can let bi be the bit string
consisting of the w−fi most significant bits of zi. Thus we get alphabetic codes where
1 ≤ |bi| ≤ log n−log yi+O(1). We choose zi such that zi+2fi−1 belongs to Ii to make
the bit strings prefix-free. The computation can be done as follows. In the interval Ii
there must be a number zi such that zi mod 2fi = 0. If si−1 + 1 mod 2fi = 0, then
zi = si−1 + 1. Otherwise zi = si−1 + 1 − (si−1 + 1 mod 2fi) + 2fi .

The algorithm runs in O(k) time if machine operations for shift, remainder in
a division by a power of 2, and discrete logarithm on words of O(log n) bits are
available. In a machine that does not support such operations we can construct a
table representing these functions, using O(n) time and space. This will only in-
crease the preprocessing time of our labeling algorithm by a constant factor. Note
that Mehlhorn [24] gives a somewhat more complicated algorithm that produces an
alphabetic code, 〈b〉k, for an arbitrary sequence 〈y〉k of positive real numbers with the
same bound on the lengths. Mehlhorn’s algorithm can be implemented to run in O(k)
time.

Tree terminology. We denote the sets of nodes and edges in T by V (T ) and
E(T ), respectively. We let T (u) denote the subtree of T rooted at node u ∈ V (T ). If
w ∈ V (T (u)), then u is an ancestor of w, and we write u ≺ w. If w ∈ V (T (u)) \ {u},
then u, is a proper ancestor of w. If u is a (proper) ancestor of w, then w is a (proper)
descendant of u. For nodes u and v in T we denote the path between u and v including
u and v by u � v.

We say that a rooted tree is a binary tree if all nodes in the tree have at most
two children. If a tree T is not binary, it is straightforward to construct a binary
tree T ′ such that |V (T ′)| ≤ 2|V (T )|, and a mapping f : V (T ) → V (T ′) such that
for v, w ∈ V (T ) we have that v ≺T w if and only if f(v) ≺T ′ f(w). Hence, in
the remainder of this paper we assume without loss of generality that T is a binary
tree.

Clustering. Let T be a rooted tree of size n = |V (T )| > 1. Let C be a connected
subgraph of T . A node x in V (C) is a boundary node if either x = r, where r is the
root of T , or x is adjacent to a node in V (T ) \ V (C). The boundary nodes of C are
denoted by ∂C. A cluster is a connected subgraph of T , where |∂C| ≤ 2. Clusters are
also used in [5, 6, 13].

Next we define a cluster partition of a tree T . If T is a single vertex, then its
cluster partition consists of one cluster containing this vertex. Otherwise a set of
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Fig. 2. Left: a tree T decomposed into four clusters, where V (c1) = {v, h}, ∂c1 = {v},
V (c2) = {v, a, b, c, d, w}, ∂c2 = {v, w}, V (c3) = {w, e}, ∂c3 = {w}, V (c4) = {w, f, g}, and
∂c4 = {w}. Right: the tree Tm, illustrating from which clusters the nodes of Tm originate.

clusters CS is a cluster partition of a tree T if the following conditions hold:
1. For every C ∈ CS, |E(C)| ≥ 1.
2. V (T ) = ∪C∈CSV (C), and E(T ) = ∪C∈CSE(C).
3. For any C1, C2 ∈ CS, E(C1) ∩ E(C2) = ∅.
4. If v ∈ ∂C has two children a and b, then no cluster includes both a and b.

Note that the sets of edges of the different clusters form a partition of the set
of edges of T . A vertex, on the other hand, may belong to more than one cluster.
Figure 2 gives an example of a cluster partition. A variant of the following lemma
was also used in [5, 6, 13].

Lemma 2.2. Given a tree T , n > 1, and a parameter x, where 	n/x
 ≥ 2, it is
possible to construct a cluster partition CS in linear time such that |CS| ≤ k · x for
a constant k, and |V (C)| ≤ 	n/x
 for every C ∈ CS.

Proof. We describe an algorithm that constructs such a cluster partition. Let S
be the set of boundary nodes picked until now; initially S = {r}. Now recursively



COMPACT LABELING SCHEME FOR ANCESTOR QUERIES 1301

choose a node v ∈ S not yet examined. Let the children of v be a and b. We
treat the two children similarly; hence in the following we can assume c = a (or
c = b). If |V (T (c))| + 1 ≤ 	n/x
, we let the nodes V (T (c)) and v be a cluster, with
the boundary node v. Otherwise, let w ∈ V (T (c)) be a maximal node such that
|V (T (c))|+ 2− |V (T (w))| ≤ 	n/x
. (By maximal we mean that this inequality holds
for w but does not hold for any of the children of w.) We let V (T (c))\V (T (w))∪{v, w}
be a cluster, with boundary nodes w and v, and add w to S. Finally, we remove v
from S. It is easy to see that one can implement this algorithm to run in linear time.

Clearly we have |V (C)| ≤ 	n/x
 for every C ∈ CS. Notice that each node is a
boundary node in at most three different clusters, and each cluster has at least one
boundary node. Therefore the number of boundary nodes is within a constant factor
of the number clusters. So to bound the number of clusters we will prove an upper
bound on the number of boundary nodes.

To bound the number of boundary nodes, we consider separately those boundary
nodes that have two children that are roots of subtrees of T of size ≥ 	n/x
, and
those boundary nodes which have at least one child which roots a subtree of size
≤ 	n/x
 − 1.

Consider first the set S of boundary nodes which have two children that are
roots of subtrees of size ≥ 	n/x
. It is easy to see that, by the definition of our
algorithm, if y and z are nodes in S, then their lowest common ancestor must be a
boundary node and therefore belongs to S. Thus if we connect each node in S to its
immediate descendants that are in S, we obtain a tree with all internal nodes having
two children. Since the number of leaves in this tree is O(x) (each roots a tree with
at least 2	n/x
 + 1 nodes), we obtain that there are O(x) boundary nodes in S.

Consider now a boundary node z that has one child y which roots a subtree of
size ≤ 	n/x
−1. By the definition of our algorithm, z and the subtree rooted by y form
a cluster C. Assume that z is not the root. Then by the definition of our algorithm,
the cluster C, and the other one or two clusters for which z is a boundary node,
contain together at least 	n/x
 nodes. (Otherwise z should not have been selected as
a boundary node.) Therefore, if we charge each such boundary node evenly among the
nodes of the clusters of which it is a boundary, each node in these clusters is charged
by at most x/n. Since each node is charged by a constant number of boundary nodes,
the total charge of a node is O(x/n), and the total charge summed over all nodes
is O(x). Thus there are O(x) boundary nodes with at most one child which roots a
subtree of size ≤ 	n/x
 − 1.

3. A log n + O(
√

log n) labeling scheme. Our labeling scheme is based on a
particular tree decomposition technique. We define this tree decomposition in section
3.1 and characterize the ancestor relationship in terms of it. The labeling itself is
defined in section 3.2.

3.1. Tree decomposition. Let T be a binary tree with root r. (As explained
in section 2 when we defined our tree terminology, we assume that T is a binary
tree.) Let CS be a cluster partition of T , as described in Lemma 2.2. We will fix
the parameter x later. By the definition of a cluster partition we have that, if z is a
boundary node in a cluster, it is a boundary node in every cluster that contains it. If
z not is a boundary node, it belongs to a unique cluster, which we denote by C(z).
Furthermore, for v, w ∈ ∂C, either v or w is an ancestor in T of all nodes in V (C).
Let C be a cluster such that ∂C = {v, w}; we define the spine path of C to be the set
of nodes on the path from v to w in T excluding v and w. We denote this path by
P(v, w). In the example of Figure 2, P(v, w) = {a, c}.
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Given a cluster partition CS of T , we define a macro tree and denote it by Tm

as follows. The vertex set of Tm consists of the boundary nodes of all clusters in CS,
together with one or two new nodes for each cluster. For a cluster C with a single
boundary node, say ∂C = {v}, we introduce one new node, denoted by �(v, C). For
a cluster C with two boundary nodes, say ∂C = {v, w}, where v is an ancestor of
w, we introduce two new nodes denoted by �(v, w) and s(v, w). The edges of Tm

consist of an edge (v, �(v, C)), for every cluster C with a single boundary node, and
the three edges (v, s(v, w)), (s(v, w), w), and (s(v, w), �(v, w)), for every cluster C with
two boundary nodes. See Figure 2.

Since r is a boundary node, then r ∈ V (Tm). Furthermore, since there is a path
from r to every boundary node v ∈ T , there is a corresponding path from r to v
in Tm, and therefore Tm is connected. We can obtain Tm by deleting the edges
that do not belong to spine paths and then replacing each spine path P(v, w) by
a path of two edges connecting v and w through s(v, w). Finally for every cluster
with a single boundary node we add a leaf �(v, C) and connect it to v, and we also
connect a leaf �(v, w) to every node s(v, w). From this description it is clear that Tm

is indeed a tree. We define r to be the root of Tm. The properties of Tm that are
summarized in the following lemma easily follow from Lemma 2.2 and the definition
of Tm.

Lemma 3.1. Let T be a binary tree, and let Tm be the macro tree corresponding
to a cluster partition of T . Then

• Tm is a binary tree;
• |V (Tm)| ≤ 4kx, where k is the constant given in Lemma 2.2;
• the leaves of Tm are the nodes �(·, ·);
• for two boundary nodes v, w ∈ T , v ≺T w if and only if v ≺Tm w.

We classify each node of v ∈ T into one of four different types as follows:
1. Boundary node: v is a boundary node of a cluster in the cluster partition.
2. Spine node: C(v) has two boundary nodes, and v is on the spine path of

C(v).
3. Leaf clustered node: C(v) has a single boundary node, and v is in C(v)\∂C(v).
4. Internal clustered node: C(v) has two boundary nodes, say u and w, and v

is in C(v) \ {u,w} \ P(u,w).
With every node v ∈ T we associate a representative node in Tm, which we

denote by a(v), as follows. If v is a boundary node, then a(v) = v. If v is a spine
node, where ∂C(v) = {u,w}, then a(v) = s(u,w). If v is a leaf clustered node, then
a(v) = �(v, C(v)), and if v is an internal clustered node, then a(v) = �(u,w), where
u and w are the boundary nodes of C(v). In the example of Figure 2, v and w are
boundary nodes, a and c are spine nodes, b and d are internal clustered nodes, and e,
f , g, and h are leaf clustered nodes.

Let z ∈ T be a spine node. By the definition of a spine node, node z has a child
w, which is either a boundary node or a spine node. We define Isubtree(z) to be
T (z) from which we have removed the subtree T (w) and the edge (w, z). It follows
that V (Isubtree(z)) consists of z and all the internal clustered nodes in C(z) whose
nearest node on the spine path is z. For w ∈ V (Isubtree(z)), we define sub(w) = z.
Thus, the sub() mapping maps each internal clustered node to its closest ancestor on
the spine path of its cluster. For nodes v and w on the same spine path, we define an
ordering <α such that v <α w if and only if depthT (v) < depthT (w).

It would be instructive at this point to understand how the ancestor relationship
between nodes in T relates to the classification of the nodes and their representatives
in Tm. We summarize this relation in the following lemma.
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Lemma 3.2. Letting v ∈ T , the followings cases give necessary and sufficient
conditions for v ≺T w to hold, according to the type of v:

1. If v is a leaf clustered node, then v ≺ w if and only if w is also a leaf clustered
node, a(v) = a(w), and v is an ancestor of w in C(v).

2. If v is an internal clustered node, then v ≺ w if and only if w is also an inter-
nal clustered node, a(v) = a(w), sub(v) = sub(w), and v ≺Isubtree(sub(v)) w.

3. If v is a spine node, then v ≺ w if and only if one of the following conditions
holds:
(a) C(v) = C(w), w is also a spine node, and v <α w.
(b) C(v) = C(w), w is an internal clustered node, and v = sub(w) or v <α

sub(w).
(c) C(v) �= C(w) and a(v) is an ancestor of a(w) in Tm.

4. If v is a boundary node, then v ≺ w if and only if a(v) is an ancestor of a(w)
in Tm.

Lemma 3.2 indicates that we can compute ancestor relationship in T by computing
one of the following:

1. ancestor relationship in Tm,
2. ancestor relationship in Isubtree(v) for a spine node v,
3. ancestor relationship in a cluster C with a single boundary node,
4. whether v <α w for two spine nodes v and w.

We achieve 1 by using a DFS labeling of Tm. We achieve 2 and 3 by recursively
decomposing clusters with a single boundary node and subtrees hanging off spine
nodes. We achieve 4 by using an alphabetic code for the spine nodes on each spine
path. The details of how exactly we construct the labels are in the next section.

3.2. The labels. Let Lm : V (Tm) → {0, 1}∗ be the DFS labeling of Tm. Recall
that this DFS labeling associates a label consisting of |Lm(v)| ≤ 2 log x + O(1) bits
with each internal node v in Tm, and a label of |Lm(�)| ≤ log x+ O(1) bits with each
leaf � in Tm. For binary strings b1 and b2 we denote the concatenation of b1 and b2
by b1 · b2.

The label of each node starts with a prefix of constant length stating the type of
the node. We denote the prefix corresponding to a boundary node, a spine node, an in-
ternal clustered node, and a leaf clustered node, by boundary, spine, int clustered,
and leaf clustered, respectively. The bits following this constant length prefix de-
pend on the type of the node v as follows.

Boundary node. In addition to the type bits, L(v) contains the label of v in Tm.
That is,

L(v) = boundary · Lm(a(v)).

It follows that in this case |L(v)| ≤ 2 log x + O(1).
Spine node. Let a(v) = s(v′, w′) ∈ Tm, and let SP = P(v′, w′) be the spine path

of C(v). Let k = |SP | be the number of nodes on this spine path, and let
v1, v2, . . . , vk be the nodes on SP ordered such that for i < i′, depthT (vi) <
depthT (vi′). Clearly v is a node on this spine path, say v = vj , for some
1 ≤ j ≤ k. Let Ti = Isubtree(vi), and let 〈c〉k be an alphabetic code
of the sequence 〈|V (T1)|, . . . , |V (Tk)|〉 constructed according to Lemma 2.1.
Hence, cj is the string corresponding to V (Tj) in 〈c〉k. Note that |cj | ≤
log

∑
i |V (Ti)| − log |V (Tj)| + O(1) ≤ log(n/x) − log |V (Tj)| + O(1), since all

nodes in Ti, 1 ≤ i ≤ k, belong to the same cluster which contains no more
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than n/x nodes. The label of v is defined to be

L(v) = spine · Lm(s(v′, w′)) · cj .

Thus, |L(v)| ≤ 2 log x+ log(n/x)− log |V (Tj)|+ O(1) ≤ log x+ log n+ O(1).
Internal clustered node. Let a(v) = �(v′, w′), and let vj = sub(v) be the spine

node associated with v. As in the previous case, let v1, . . . , vk be the nodes
on the spine path P(v′, w′), and let 〈c〉k be an alphabetic code for the se-
quence 〈|V (T1)|, . . . , |V (Tk)|〉, where Ti = Isubtree(vi). Thus cj is the string
corresponding to Tj in the code 〈c〉k. By its definition the root of Tj has
one child d in Tj . We define T ′

j = Tj(d) to be the subtree of Tj rooted by
this child. We recursively apply the labeling algorithm to T ′

j (with the same
decomposition threshold x, which is not scaled relative to the size of T ′

j). Let

Lb(v) denote the label of node v in the recursive labeling of T ′
j . The label of

v in the tree T is defined to be

L(v) = int clustered · Lm(�(v′, w′)) · cj · Lb(v).

Thus, |L(v)| ≤ log x+ log(n/x)− log |Tj |+ |Lb(v)|+ O(1) = logn− log |Tj |+
|Lb(v)| + O(1), where |Lb(v)| is the length of the recursive ancestor labeling
of v in T ′

j .
Leaf clustered node. Let c be the only child of the boundary node of C(v) in C(v).

We recursively label the tree T (c) (with the same decomposition threshold
x, which is not scaled relative to the size of T (c)). Let Lb(v) be the label of
v in this labeling of T (c). Also let a(v) = �(v′, C). The label of v is defined
to be

L(v) = leaf clustered · Lm(�(v′, C)) · Lb(v).

We obtain in this case that |L(v)| ≤ log x + |Lb(v)| + O(1), where |Lb(v)| is
the length of Lb(v).

We say that the prefix of L(v) before the recursive labeling Lb(v) is a block
of the labeling L(v). Similarly Lb(v) consists of such recursive blocks, i.e., L(v) =
b1b2, . . . , bk, where bi ∈ {0, 1}∗ is a block of bits starting with the type bit information
and ending just before the type bit information of block bi+1. By the definition of the
labels, the last block bk is either a label of a spine node or a label of a boundary node.

The recursion ends when we get to label a tree of size no larger than x, in which
case 	|T |/x
 ≤ 1 and Lemma 2.2 does not apply.

In this case we consider all nodes as boundary nodes and take the macro tree Tm

to be identical to T .
Consider a node v ∈ V (T ) and its label L(v) with blocks b1, . . . , bk. We define

subtrees of T relative to prefixes of this label. For the empty bitstring ε we let
T (ε) = T . The tree T (b1) is the subtree of T containing v, whose recursive labeling
defined the suffix of the label of v to be b2, . . . , bk. In general for every i < k we let
T (b1b2, . . . , bi) denote the subtree of T containing v whose recursive labeling defined
the suffix of the label of v to be bi+1, . . . , bk.

In addition to the labeling defined above, we also keep the index of the first bit of
the last block bk, i.e., |b1, . . . , bk−1|, using log logn bits. This index, which is of fixed
length, is stored at a fixed position of the word storing the label. Note that each block
bi stores a DFS label of a node in the macro tree corresponding to T (b1b2, . . . , bi−1).
This DFS label occupies a fixed number of bits at the beginning of the block. This
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number of bits is either 2 log x+O(1) in case of a boundary node or a spine node, or
log x + O(1) in case of an internal clustered node or a leaf clustered node.

To parse the labels while answering a query, the decoder needs to know the length
and the position of the field storing |b1, . . . , bk−1|. Furthermore, it also needs to know
our decomposition threshold x. The decoder has this information if it knows n, the
size of the tree, since both these lengths are functions of n: the first is log logn and
the second will be fixed to 2

√
logn. Since both lengths change quite slowly with n, the

decoder does not in fact have to know n exactly but just up to a precision that allows
it to determine these values uniquely. For example, knowing logn certainly suffices.
In case the value of log n is not available to the decoder, one can encode it within
each label using log logn bits.

4. Answering a query. Let v, w be two nodes in the tree T with labels L(v) =
a1a2, . . . and L(w) = b1b2, . . . , where ai and bi are the blocks of the labels of v and
w, respectively, as defined in section 3.2. We now show how to decide based on L(v)
and L(w) whether v ≺T w. The test consists of two phases defined as follows.

Let j be the index of the last block of L(v), and assume first that j > 1. (If
j = 1, we do nothing in the first phase and jump directly to the second phase.)
It follows from Lemma 3.2 that if v ≺ w, then v and w must both be either leaf
clustered nodes or internal clustered nodes in the same cluster of the cluster partition
of Ti = T (a1, a2, . . . , ai) for every i < j. Furthermore, in each of these cluster
partitions where they are internal clustered nodes then it must be the case that
sub(w) = sub(v). Therefore, if v ≺ w and j > 1, we must have that for every i < j,
ai = bi. Thus in the first phase of the query algorithm we verify that for every i < j,
ai = bi. If this test fails, we report that v �≺T w, and otherwise we continue to the
second phase.

To efficiently test that indeed ai = bi for every i < j without decomposing L(v)
and L(w) into their components a1, a2, . . . , aj−1 and b1, b2, . . . , bj−1, respectively, we
use the fact that ai cannot be a prefix of bi and bi cannot be a prefix of ai. This
follows from the fact that the part of ai and bi containing a DFS label of a node in
Ti−1 = T (a1, a2, . . . , ai−1) is of fixed length, and in case v and w are internal clustered
nodes of the same cluster in Ti−1 also from the fact that the strings in an alphabetic
code are prefix-free.

Since ai is not a prefix of bi and bi is not a prefix of ai, one can easily prove by
induction that a1a2, . . . , aj−1 is a prefix of b1b2, . . . if and only if ai = bi for every
1 ≤ i ≤ j − 1. Thus we start the processing of the query by testing if a1a2, . . . , aj−1

is a prefix of L(w). Note that we can extract a1a2, . . . , aj−1 from L(v) since we store
with L(v) the index of the first bit of bj . If a1a2, . . . , aj−1 is not a prefix of L(w),
then v is not an ancestor of w. Otherwise we proceed to the second phase of the
algorithm, which is defined as follows.

Let T = T (a1, a2, . . . , aj−1). Next we check whether v ≺ w in T since at this point
we know that v ≺ w in T if and only if v ≺ w in T . Since j is the index of the last block
of L(v), node v is either a spine node or a boundary node in the cluster partition of T .
Node w, on the other hand, may be of any type. We check whether v is an ancestor of
w in T according to Lemma 3.2. Let dfs(v) and dfs(w) be the DFS labels of a(v) and
a(w), respectively, in the DFS labeling of T

m
. We extract dfs(v) and dfs(w) from

the blocks aj and bj of L(v) and L(w), respectively. Then we can determine whether

the representative a(v) of v in T
m

and the representative a(w) of w in T
m

are equal,
and whether a(v) is an ancestor of a(w), by comparing dfs(v) and dfs(w).

If dfs(v) is equal to dfs(w), then a(v) is the same node as a(w). We know that
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a(v) is either a spine node or a boundary node. Since a boundary node v is not a(w)
for any w �= v, and since a(v) = a(w), it follows that v and w are spine nodes. Thus,
by Lemma 3.2, v ≺T w if and only if w is a descendant of v on their spine path, i.e.,
if and only if v <α w. Let c(v) and c(w) be the alphabetic codes in blocks aj and bj
of v and w, respectively. By the definition of an alphabetic code and the definition
of the labels, we have that v <α w if and only if c(v) <lex c(w). Thus in this case we
answer that v ≺T w if and only if c(v) <lex c(w).

If dfs(v) is not equal to dfs(w), then a(v) is not equal to a(w). By Lemma 3.2, a
necessary condition for v to be an ancestor of w is that a(v) be an ancestor of a(w) in
T

m
, so we check that using dfs(v) and dfs(w). Furthermore, by Lemma 3.2, if a(v) is

indeed an ancestor of a(w) in T
m

, then we can conclude that v ≺T w except when v
and w are in the same cluster, v is a spine node, and w is an internal clustered node.
In this case a(v) = s(u1, u2) is the parent of a(w) = �(u1, u2), where u1 and u2 are the
boundary nodes of C(v) = C(w). Fortunately, the DFS labeling scheme allows us to
determine whether a(w) is indeed a child of a(v) and thereby identify this case where
v is a spine node and w is an internal clustered node of the same cluster. First we
check whether a(w) is indeed a leaf, by verifying that dfs(w) consists only of a single
number. Assume this is indeed the case, let k = dfs(w), and let (first, last) = dfs(v).
Then a(v) is a leaf child of a(w) if and only if k = first + 1 or last = k + 1.

If indeed v is a spine node and w is an internal clustered node of some cluster,
then, by Lemma 3.2, v ≺T w if and only if sub(w) is a descendant of v on v’s spine
path. Let c(v) and c(w) be the alphabetic codes in blocks aj and bj of L(v) and
L(w), respectively. By the definition of the labels and the definition of an alphabetic
code, sub(w) is a descendant of v on v’s spine path if and only if c(v) = c(w) or
c(v) <lex c(w).

Since the decoder does not know the length of c(w) it cannot easily extract it.
However, since c(w) is not a proper prefix of c(v) (as c(w) and c(v) are strings in an
alphabetic code) we have that c(v) ≤lex c(w) if and only if c(v) is lexicographically
smaller than the suffix of the label of w starting from and including c(w). Thus in
case v is a spine node and w is an internal clustered node of some cluster of T , the
second phase concludes that v ≺T w if and only if c(v) is lexicographically smaller
than the suffix of the label of w starting from and including c(w).

Note that the above test for the ancestor relation using the DFS labeling and
alphabetic codes uses a constant number of basic and fast RAM operations, i.e., bit
wise AND/OR, left/right shifts, and less-than comparisons. Our labeling scheme
avoids the sometimes more costly operations such as multiplication, retrieval of the
most significant bit, or nonstandard operations precomputed and stored in a pre-
computed table.

5. The length of the labels. In this section we give an upper bound on the
length of L(v) for any v ∈ T . We first bound the length of any block which is not the
last block.

Lemma 5.1. Let L(v) = b1b2, . . . , bk for some k ≥ 2. Then,

b1 ≤ log

(
n

|T (b1)|

)
+ O(1),

and for 1 < i < k, |bi| ≤ log

(
|T (b1, . . . , bi−1)|
|T (b1, . . . , bi−1bi)|

)
+ O(1).

Proof. Since bi is not the last block in L(v), v is either an internal clustered
node or a leaf clustered node in T (b1, . . . , bi−1) or in T in case i = 1. In case v is an
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internal clustered node, the claim follows from the definition of the label of an internal
clustered node and the definition of |T (b1, . . . , bi−1bi)| (see section 3.2). In case v is a
leaf clustered node, then by the definition of the label we have that |bi| ≤ log x+O(1).
But in this case we also have that |T (b1, . . . , bi−1bi)| ≤ 	|T (b1, . . . , bi−1)|/x
 by the
definition of a cluster partition.

The following lemma gives a bound on the length of the last block.
Lemma 5.2. Let L(v) = b1b2, . . . , bk. Then

|bk| ≤ log(|T (b1, . . . , bk−1)|) + O(log x) + O(1).

Proof. Since bk is the last block, v is either a boundary node or a spine node in
T (b1, . . . , bk−1). If v is a boundary node, then |bk| ≤ 2 log x + O(1). If v is a spine
node, then |bk| ≤ log(|T (b1, . . . , bk−1)|) + log x + O(1).

Last we bound the number of blocks.
Lemma 5.3. Let L(v) = b1b2, . . . , bk. Then k ≤ logn

log x .

Proof. By the definition of a cluster partition we have for i < k that |T (b1, . . . ,
bi−1)|/|T (b1, . . . , bi)| ≥ x. Since |T (ε)| = |T | = n the lemma follows.

Now from these three lemma we immediately obtain the following result.
Lemma 5.4. For every v ∈ T , |L(v)| ≤ log n + O(log x) + O( logn

log x ).

Hence, choosing x = 2
√

logn, we obtain the claimed bound of logn + O(
√

log n)
for the worst-case length of a label in T .

6. Preprocessing time. It is rather straightforward to compute the labels in
time O(n

√
log n), spending linear time calculating the part of the labels in each of

the
√

log n recursive levels. In each recursive level we calculate the cluster partition
in each of the trees that get labeled in that level, and we also calculate alphabetic
code for the nodes on every spine path.

We can improve this preprocessing time to linear by slightly changing the labeling
scheme, while keeping the labels of length logn + O(

√
log n). We do that as follows.

We obtain a cluster partition of T with x = n/
√

log n, as described in section 2. Hence
the clusters are of size at most

√
log n. For this cluster partition we construct a tree

T ′ that is similar to Tm defined in section 3.1. We define T ′ as follows. For each
cluster with two boundary nodes v and w, we have in T ′ the nodes v, w, s(v, w) and
two edges (v, s(v, w)) and (w, s(v, w)). For each cluster C with one boundary node v,
we have in T ′ the nodes v and �(v, C) and the edge (v, �(v, C)). (In contrast with Tm,
in T ′ we do not have a leaf �(v, w) for a cluster with boundary nodes v and w.) By
Lemma 3.1, the tree T ′ consists of O(n/

√
log n) nodes. We label T ′ by the labeling

scheme of section 3, using the naive labeling algorithm mentioned above. Since the
size of T ′ is O(n/

√
log n), computing this labeling of T ′ takes linear time. We denote

the label of a node v in T ′ by L′(v).
We also label the nodes of each cluster separately for ancestor queries using the

DFS labeling scheme. This takes linear time for all clusters. We denote the label of
v in its cluster by CL(v).

For each node v in T we associate a node in T ′, denoted by b(v). (This mapping is
similar to the mapping a() from section 3.1.) If v is a boundary node, then b(v) = v.
If v is a spine node or an internal clustered node in a cluster with two boundary nodes
u,w, then b(v) = s(u,w). If v is a leaf clustered node in a cluster C with boundary
node w, then b(v) = �(w,C).

We define the label of a node v ∈ T to be L(v) = Q(v)·CL(v)·L′(b(v)), where Q(v)
are two bits that determine the type of the node with respect to the cluster partition
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(see section 3.2). Since |L′(b(v))| ≤ log n + O(
√

log n) and |CL(v)| ≤ O(log log n) we
obtain that |L(v)| ≤ log n + O(

√
log n).

To test whether v is an ancestor of w in T we proceed as follows. If v is a
boundary node, we check whether b(v) is an ancestor of b(w). If v is a spine node
and b(v) �= b(w), we test whether b(v) is ancestor of b(w). If v is a spine node and
b(v) = b(w), we use CL(v) and CL(w) to test whether v is ancestor of w. In the
remaining cases, for v to be an ancestor of w, b(v) must be equal to b(w), and if that
is indeed the case, then we check that v is an ancestor of w in their cluster using
CL(v) and CL(w).

We conclude this section with the following theorem, which is the main result of
this paper.

Theorem 6.1. We can label the nodes of a tree of size n in O(n) time by labels
of length at most log n + O(

√
log n) such that, given the labels of two nodes v and w,

we can determine whether v is an ancestor of w in T in O(1) time.

7. Conclusions. We have described a labeling scheme for ancestor queries,
where the length of each label is bounded by logn + O(

√
log n) bits. The labeling is

computed in linear time, and an ancestor query takes O(1) time. As we mentioned,
Alstrup, Bille, and Rauhe [3] proved that for every labeling scheme there is a tree
that requires a label of length logn + Ω(log log n) bits. Closing this gap between the
upper and the lower bounds is an intriguing open question.
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1. Introduction. A primary goal of the theory of quantum complexity is to
determine when quantum computers may offer a computational speed-up over classical
computers. Today there are only a few results which give a polynomial time quantum
algorithm for some problem for which no classical polynomial time solution is known.
We are interested in studying the potentials for speed-up for problems for which
there already are efficient classical algorithms. Basic graph problems are interesting
candidates.

We study the query complexity of these problems, meaning the minimal number
of queries to the graph required for solving the problem. Throughout this paper, the
symbol [n] denotes the set {0, 1, . . . , n−1}. We consider two query models for directed
graphs:

• the adjacency matrix model, where the graph is given as the adjacency matrix
M ∈ {0, 1}n×n, with Mij = 1 if and only if (vi, vj) ∈ E, and

• the adjacency array model, where we are given the out-degrees of the vertices
d+
1 , . . . , d

+
n and for every vertex u an array with its neighbors fi : [d+

i ] → [n].
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So fi(j) returns the jth neighbor of vertex i, according to some arbitrary but
fixed numbering of the outgoing edges of i. In this paper the upper bounds
for this model are all at least n, so we assume henceforth that the degrees
are given as part of the input and we count only queries to the arrays fi. In
addition the arrays satisfy the simple graph promise

∀i ∈ [n], j, j′ ∈ [k], j �= j′ : fi(j) �= fi(j
′)(1.1)

ensuring the graph is not a multigraph, i.e., does not have multiple edges
between any two vertices.

For undirected graphs we require an additional promise on the input, namely, that
M is symmetric in the matrix model, and for the array model that for all i, i′ ∈ [n],
if ∃j ∈ [k] : fi(j) = i′, then ∃j′ ∈ [k] : fi′(j

′) = i. Note that in the matrix model this
symmetry assumption does not create a promise problem on undirected graphs since
we may assume that the input is upper triangular.

Weighted graphs are encoded by a weight matrix, where for convenience we set
Mij = ∞ if (vi, vj) �∈ E. In the adjacency array model, the graph is encoded by a
sequence of functions fi : [d+

i ] → [n] × N, such that if fi(j) = (i′, w), then there is an
edge (vi, vi′) and it has weight w.

We emphasize that the array model is different from the standard list model.
In the latter, we have access to the neighbors of a given vertex only as a list, and
thus querying the ith neighbor requires i accesses to the list. This is also true on a
quantum computer, so its speed-up is quite restricted.

Many other query models are of course possible; for example, we could be given
an array of edges f : [m] → [n] × [n] or an ordered array (which is up to O(n)
preprocessing the same as the adjacency array model). For simplicity, we use the
array model as presented above.

For the quantum query complexity of general monotone graph properties, a lower
bound of Ω(

√
n) is known in the matrix model, as shown by Buhrman et al. [9]. We

are not aware of any quantum or classical lower bounds in the array model.

In this paper we show that the quantum query complexity of Connectivity is
Θ(n3/2) in the matrix model and Θ(n) in the array model. The classical randomized
query complexity of Connectivity in the matrix model is Ω(n2) by a sensitivity
argument: Distinguishing the graph consisting of two length n/2 paths from the graph
consisting of those two paths, plus an additional edge connecting them, requires Ω(n2)
queries.

We study the complexity of three other problems; see Table 1.1. In Strong

Connectivity we are given a directed graph and have to decide if there is a directed
path between every pair of vertices. In Minimum Spanning Tree we are given
a weighted graph and have to compute a spanning tree with minimal total edge
weight. In Single Source Shortest Paths we have to compute the shortest paths
according to the total edge weight from a given source vertex to every other vertex.
The quantum query complexity of these three problems is Ω(n3/2) in the matrix model
and Ω(

√
nm) in the array model. We give almost tight upper bounds.

We note that for graphs with a large number of edges (m = Θ(n2)), the com-
plexities are (almost) the same in the matrix and array models for all problems but
Connectivity. However, the models still differ in that case. For example, the test

(u, v) ∈ E costs a single query in the matrix model and Θ(
√

min{d+
u , d

+
v }) queries in

the array model since we do not assume any order on the arrays fu and fv.
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Table 1.1

Quantum query complexity of some graph problems.

Problem Matrix model Array model

Minimum Spanning Tree Θ(n3/2) Θ(
√
nm)

Connectivity Θ(n3/2) Θ(n)

Strong Connectivity Θ(n3/2) Ω(
√
nm), O(

√
nm logn)

Single Src. Short. Paths Ω(n3/2), O(n3/2 log2 n) Ω(
√
nm), O(

√
nm log2 n)

The time complexities of the algorithms are the same as the query complexities up
to log-factors. The algorithms given for Connectivity and Strong Connectivity

can be altered to also output the (strongly) connected components without increasing
the asymptotic complexity. The space requirement is O(log n) qubits and O(n log n)
classical bits. If we constrain the space (both classical and quantum) to O(log n)
qubits, the problems may be solved by random walks. Quantum random walks have
been the subject of several papers [1, 10, 15], in particular for the st-Connectivity

problem [22].
Other work on the query complexity of graph problems has been done indepen-

dently of us. For example, [4] shows that testing whether a given graph is bipartite
needs Ω(n3/2) queries in the matrix model. Note that a graph is bipartite if and
only if it does not contain an odd cycle. For the array model a lower bound can be
constructed from our lower bound for connectivity, showing that Ω(

√
nm) queries are

necessary for any bounded error quantum algorithm which distinguishes a single even
cycle from two disjoint odd cycles. Matching upper bounds follow from our connec-
tivity algorithms: simply construct a spanning forest of the graph, color the nodes of
each tree alternately black and white, and finally use the quantum search procedure
to find an edge with endpoints of the same color. Such an edge creates an odd cycle
and exists if and only if the graph contains an odd cycle.

2. Tools used in this paper. We use two fundamental tools. The first is
amplitude amplification [7, 8], which we use when proving the upper bounds; the
second is Ambainis’s lower bound technique [2].

Amplitude amplification is a generalization of Grover’s search algorithm [13].
Since it is the most important tool used in our algorithms, we restate the exact results
we require. We are given a boolean function F defined on a domain of size n. The
function is given as a black box so that the only way we can obtain information about
F is via evaluating F on elements in the domain. The search problem considered by
Grover is to find an element x for which F (x) = 1, provided one exists. We say that
x is a solution to the search problem and that x is good. We use three generalizations
of the search algorithm—all of which we refer to as “the search algorithm.”

• If there are t elements mapped to 1 under F , with t > 0, the search algorithm
returns a solution after an expected number of at most 9

10

√
n/t queries to

F . The output of the algorithm is chosen uniformly at random among the t
solutions. The algorithm does not require prior knowledge of t [6].

• A second version uses O(
√
n) queries to F in the worst case and outputs a

solution with probability at least a constant, provided there is one [6].
• A third version uses O(

√
n log 1/ε) queries to F and finds a solution with

probability at least 1 − ε, provided there is one [9].
We note that for very sparse graphs given in the adjacency matrix model, it

may for some applications be efficient to initially learn all entries of the matrix by
reiterating the first version of the search algorithm, for instance, as formalized in
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Fact 2.1.

Fact 2.1. Let k be given. There is a quantum algorithm that takes as input an
n×n boolean matrix M , uses O(n

√
k) queries to M , and outputs a set S of 1-entries

of M so that with probability at least 1
2 , S is of cardinality at least k or contains all

1-entries of M in case M has less than k 1-entries.

Our lower bounds use a technique introduced by Ambainis [2].

Theorem 2.2 (see [2, Theorem 6]). Let L ⊆ {0, 1}∗ be a decision problem. Let
X ⊆ L be a set of positive instances and Y ⊆ L a set of negative instances. Let
R ⊆ X × Y be a relation between instances of the same size. Let values m,m′, �x,i,
and �′y,i for x, y ∈ {0, 1}n and x ∈ X, y ∈ Y , i ∈ [n] be so that

• for every x ∈ X there are at least m different y ∈ Y in relation with x,
• for every y ∈ Y there are at least m′ different x ∈ X in relation with y,
• for every x ∈ X and i ∈ [n] there are at most �x,i different y ∈ Y in relation

with x which differ from x at entry i,
• for every y ∈ Y and i ∈ [n] there are at most �′y,i different x ∈ X in relation

with y which differ from y at entry i.

Then the quantum query complexity of L is Ω(
√
mm′/�max), where �max is the maxi-

mum of �x,i�
′
y,i subject to xRy and xi �= yi.

3. Minima finding. Many graph problems are optimization problems, as are
finding a minimum spanning tree, single source shortest paths, and largest connected
components. Most quantum algorithms for such optimization problems utilize the
search algorithm discussed above. A very basic and abstract optimization problem is
as follows. Suppose we are given a function f defined on a domain of size n, and we
want to find an index i so that f(i) is a minimum in the image of f . This minimization
problem was considered in [11], which gives an optimal quantum algorithm that uses
O(

√
n) queries to f and finds such an i with constant probability. Since it will make

the rest of the section easier to understand, we include it here.

1. Initially let j ∈ [N ] be an index chosen uniformly at random.
2. Repeat forever

(a) Find an index i ∈ [N ] such that f(i) < f(j).
(b) Set j := i.

The analysis of this minimization algorithm is straightforward.

Theorem 3.1 (see [11]). The expected number of queries to f , until j contains
the index of a minimum in the image of f , is O(

√
N).

Proof. Without loss of generality assume that f is injective. Every index j ∈ [N ]
has a rank, which we define as the number of indices i such that f(i) ≤ f(j). Consider
an iteration of the main loop, and suppose the rank of j is r in Step 2(a). Let t be
a power of two such that t ≤ r < 2t. After an expected number of at most 9

10

√
N/t

queries, the algorithm finds an index i of rank ri < r. Since the algorithm in Step 2(b)
picks an index of rank smaller than j uniformly at random, ri < t with probability
at least 1

2 . Thus after an expected number of at most 9
5

√
N/t queries, we have

found an index of rank less than t.1 Applying this argument repeatedly, the expected
total number of queries is at most 9

5

∑
k≥0

√
N/2k. Since the geometric summation∑

k≥0
1√
2k

is upper bounded by a constant, the expected total number of queries is

O(
√
N).

1In fact, the probability that the index of rank r is picked at some point during the run of the
algorithm is exactly 1

r
.
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Let c′
√
N be the expected number of queries to f until j contains the index of a

minimum. Stopping the algorithm after 2c′ queries gives a quantum algorithm with
error probability upper bounded by 1

2 .

For the purposes of this paper, we require the following generalizations of the
minimum finding problem, illustrated in Figure 3.1.

Problem 1 (find d smallest values of a function). Let N
∗ denote N∪{∞}. Given

a function f : [N ] → N
∗ and an integer d ∈ [N ], we wish to find d distinct indices

mapping to smallest values, i.e., a subset I ⊆ [N ] of cardinality d such that for any
j ∈ [N ] \ I we have that f(i) ≤ f(j) for all i ∈ I.

In the rest of this section, we assume d ≤ N/2. In the following problem we
are given a different function g : [N ] → N, such that g(j) defines the type of j. Let
e = |{g(j) : j ∈ [N ]}| be the number of different types.

Problem 2 (find d elements of different type). Given a function g and an integer
d′ we wish to find integer d = min{d′, e} and a subset I ⊆ [N ] of cardinality d such
that g(i) �= g(i′) for all distinct i, i′ ∈ I.

Now we present a generalization of both problems.

Problem 3 (find d smallest values of different type). Given two functions f, g
and an integer d′ we wish to find integer d = min{d′, e} and a subset I ⊆ [N ] of
cardinality d such that g(i) �= g(i′) for all distinct i, i′ ∈ I and such that for all
j ∈ [N ] \ I and i ∈ I, if f(j) < f(i), then f(i′) ≤ f(j) for some i′ ∈ I with
g(i′) = g(j).

4 points of min. value 4 points of diff. type 4 points of min. value

Fig. 3.1. Illustration of the three problems. Each index i is illustrated by a point with horizontal
coordinate g(i) and vertical coordinate f(i).

It is clear that Problems 1 and 2 are special cases of Problem 3. In this section,
we give an upper bound of O(

√
dN) for Problem 3. In section 8, we then show a

lower bound of Ω(
√
dN) for Problems 1 and 2, implying that all three problems are

of complexity Θ(
√
dN). We prove the upper bound by a simple greedy algorithm.

Consider a subset I ⊆ [N ] of d indices of different types. We say an index j ∈ [N ] is
good for I if

1. either g(j) = g(i) and f(j) < f(i) for some i ∈ I,
2. or g(j) �∈ g(I) and f(j) < f(i) for some i ∈ I.

In the former case we say j is a good index of known type and in the latter that j is
a good index of unknown type. In each iteration of the greedy algorithm, we find a
good index j by the search algorithm and then improve I by replacing some index in
I by j.

1. Initially, let I = {N + 1, . . . , N + d′} be a set of artificial indices of unique
different types and unique maximal value.

2. Repeat forever
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(a) Let t denote the number of good elements for I. (Note: This step is not
required but is only included for the purpose of simplifying the analysis
of the algorithm.)

(b) Use the first version of the search algorithm to find a good element
j ∈ [N ] for I.

(c) Set I = improve(I, j) where we improve I by replacing with j the el-
ement in I that has the same type as j if j is of known type, and by
replacing with j some element in I with largest f -value if j is of unknown
type.

The next lemma shows that we need only an expected number of O(d) iterations
of the main loop to eliminate a constant fraction of the remaining good elements.

Lemma 3.2. Let I ⊆ [N ] be any subset of d′ indices of different types with t > 0
good elements of e types. After an expected number of O(d) iterations of the main
loop there are at most 3

4 t good elements for I. Here d = min{d′, e}.
Proof. For notational simplicity assume f is injective. Set I0 = I and let T0 = T

be the set of good elements for I. Let Tj denote the set of good elements after j
iterations of the main loop for j > 0. Similarly, let Ij denote the selected index set
after j iterations for j > 0. Set tk = |Tk|. In particular, I0 = I and t0 = t. Let
ymid denote the �t/2th smallest of the t elements according to f . For any subset
S ⊆ [N + d′], let low(S) denote the number of elements in S that are no bigger than
ymid according to f .

Note that initially

• low(T0) = �t/2 and
• low(I0) < d.

By the nature of the greedy algorithm, low(Tk+1) ≤ low(Tk) and low(Ik+1) ≥ low(Ik)
for any k ≥ 0. Note that

• if low(Tk) <
t
4 , then we have eliminated at least a fraction of 1

4 of the initially
t good elements for I, and similarly,

• if low(Ik) = d, then we have eliminated at least a fraction of 1
2 of the initially

t good elements for I.

We claim that in each iteration of the main loop, as long as low(Tk) ≥ t
4 , with

probability at least 1
32 , at least one of the following two events happens:

• low(Tk+1) ≤ low(Tk)
(
1 − 1

32d

)
,

• low(Ik+1) = low(Ik) + 1.

Assume low(Tk) ≥ t
4 , since otherwise we are done. Consider the element j picked

in Step 2(b). First suppose the majority of the low(Tk) indices are of unknown type
with respect to Ik. Then, with probability at least 1

8 , index j is among these, in which
case low(Ik+1) = low(Ik) + 1.

Now suppose the majority of the low(Tk) indices are of known type with respect
to Ik. Then, with probability at least 1

8 , index j is among these. Conditioned on this

happening, with probability at least 1
2 , there are at least low(Tk)

4d good elements for Ik
of the same type as j. With probability at least 1

2 , at least half of these are not good
for Ik+1. Thus, with probability at least 1

32 , we have eliminated at least t
32d of the

remaining elements in Tj .

This proves the claim. It follows that after an expected number of O(d) iterations
of the main loop, we have eliminated at least a fraction of 1

4 of the initially t good
elements.

The above lemma implies that, for t > 2d, after an expected number of O(d
√

N/t )
applications of function f , the number of good elements is at most t

2 . Hence, for any
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t > 2d, the expected number applications of function f required until we have that
t ≤ 2d for the first time is on the order of

d

(√
N

d
+

√
N

2d
+

√
N

4d
+

√
N

8d
+ · · ·

)
∈ O(

√
dN).

Once t ≤ 2d for the first time, the expected number of applications of f required
before t = 0 for the first time is on the order of

∑2d
j=1

√
N/j, which is O(

√
dN ).

Corollary 3.3. In the greedy algorithm given above, after an expected number of
O(

√
dN) applications of function f , there are no good elements for I; that is, t = 0.
The next theorem follows immediately.
Theorem 3.4. The problem Find d Smallest Values of Different Type

has bounded error quantum query complexity O(
√
dN).

Nayak and Wu give in [19] a bounded error quantum algorithm that, given a
function f : [N ] → N and two integers d and Δ, outputs an index i such that the
rank of f(i) is between d−Δ and d+ Δ. The query complexity of their algorithm is
O(M logM log logM), where M =

√
N/Δ +

√
d(N − d)/Δ. Setting Δ = 1

2 , it would

find the dth smallest element with O(
√
dN logN log logN) queries. Nayak [18] later

improved this algorithm to O(
√
dN), matching the lower bound given in [19]. His

method is different from ours.
Remark 1. The algorithm above uses c

√
dN queries for some constant c and

outputs the solution with probability at least 1/2. In order to reduce the error prob-
ability to 1/2k one could run the algorithm k times and, among the dk resulting
indices, output the d smallest values of different type. However, starting each run
with randomly chosen points of different type regardless of the previous outcome is a
waste of information. So it is much more clever to run the algorithm only once and
stop it after kc

√
dN queries.

4. MINIMUM SPANNING TREE. In this section we consider undirected graphs
with weighted edges. In Minimum Spanning Tree we wish to compute a cycle-free
edge set of maximal cardinality that has minimum total weight. To be precise, if the
graph is not connected, this is actually a spanning forest.

Classically, there are a number of different approaches to finding minimum span-
ning trees efficiently, including the algorithms of Bor̊uvka [5, 20], Kruskal [17], and
Prim [21]. To construct an efficient quantum algorithm, we use Bor̊uvka’s algorithm
since it is of a highly parallel nature. This allows us to use the minima finding algo-
rithms given in section 3.

Bor̊uvka’s algorithm consists of at most log n iterations. In brief, initially it starts
with a collection of n spanning trees, each tree containing a single vertex. In each
iteration, it finds a minimum weight edge out of each tree in the collection, adds
the edges to the trees, and merges them into larger and fewer trees. After at most
log n iterations, there is only one tree left, which is a minimum spanning tree. The
correctness of Bor̊uvka’s algorithm rests on the following simple fact about spanning
trees.

Fact 4.1. Let U ⊂ V be a set of vertices of a connected graph G = (V,E) and
let e be a minimum weight edge of (U × U) ∩ E. Then there is a minimum spanning
tree containing e.

In our quantum version of Bor̊uvka’s algorithm, we make a few adjustments to
keep the overall error probability small without sacrificing the number of queries. We
adjust it slightly so that the �th iteration errs with probability at most 1

2�+2 , ensuring
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that the overall error is at most 1
4 . This increases the cost of the �th iteration by a fac-

tor of �, but since the cost of the first few iterations dominates, this is asymptotically
negligible. The details follow.

1. Let T1, T2, . . . , Tk be a spanning forest. Initially, k = n and each tree Tj

contains a single vertex.
2. Set � = 0.
3. Repeat until there is only a single spanning tree (i.e., k = 1).

(a) Increment �.
(b) Find edges e1, e2, . . . , ek satisfying that ej is a minimum weight edge

leaving Tj . Interrupt when the total number of queries is (� + 2)c
√
km

for some appropriate constant c.
(c) Add the edges e′j to the trees, merging them into larger trees.

4. Return the spanning tree T1.

To find the minimum edges e1, . . . , ek in Step 3(b), we use the following functions.
In the array model, any edge (u, v) is coded twice, u appears as neighbor of v, but
v also appears as neighbor of u. Enumerate the directed edges from 0 to 2m − 1.
Let f : [2m] → N

∗ denote the function that maps every directed edge (u, v) to its
weight if u and v belong to different trees of the current spanning forest and to ∞
otherwise. Let g : [2m] → [k] denote the function that maps every directed edge (u, v)
to the index j of the tree Tj containing u. We then apply the algorithm for Find k

Smallest Values of Different Type, interrupting it after (� + 2)c
√
km queries

to obtain an error probability at most 1/2�+2 (see Remark 1 in section 3).

Theorem 4.2. Given an undirected graph with weighted edges, the algorithm
above outputs a spanning tree that is minimum with probability at least 1

4 . The al-

gorithm uses O(
√
nm) queries in the array model and O(n3/2) queries in the matrix

model.

Proof. To simplify the proof, consider the matrix model an instance of the array
model with m = n(n− 1) edges.

At the beginning of the �th iteration of the main loop, the number of trees k is
at most n/2�−1, and thus it uses at most (� + 2)c

√
nm/2�−1 queries. Summing over

all iterations, the total number of queries is at most
∑

�≥1(� + 2)c
√
nm/2�−1, which

is O(
√
nm).

The �th iteration introduces an error with probability at most 1
2�+2 . The overall

error probability is thus upper bounded by
∑

�≥1
1

2�+2 ≤ 1
4 .

5. Connectivity. A special case of Minimum Spanning Tree when all edge
weights are equal is Graph Connectivity. The input is an undirected graph and
the output is a spanning tree, provided the graph is connected.

For the matrix model, the algorithm for Minimum Spanning Tree given in the
previous section implies an O(n3/2) upper bound for Graph Connectivity as well.
Below, we give a somewhat simpler and arguably more natural quantum algorithm
of query complexity O(n3/2), which is optimal by the lower bound given in section 8
below.

For the array model, we give a quantum algorithm that uses only O(n) queries.
Both algorithms start with a collection of n connected components, one for each
vertex, and greedily construct a spanning tree by repeatedly picking an edge that
connects two of the components.

Theorem 5.1. Given the adjacency matrix M of an undirected graph G, the
algorithm below outputs a spanning tree for G after an expected number of O(n3/2)
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queries to M , provided G is connected, and otherwise runs forever.
Proof. Consider the following algorithm.
1. Initially the edge set A is empty.
2. Repeat until A connects the graph.

(a) Search for a good edge, i.e., an edge that connects two different compo-
nents in A, and add it to A. Use the version of the search algorithm
that returns a solution in the expected O(n2/t) queries if there are t > 0
good edges and otherwise runs forever.

3. Return the edge set A.
Suppose the graph is connected and consider the expected total number of queries

used by the algorithm. There are exactly n−1 iterations of the main loop. The number
of good edges is at least k−1 when A consists of k components, and thus the expected
total number of queries is on the order of

∑n
k=2

√
n2/(k − 1), which is O(n3/2).

When implementing the above algorithm, we maintain an appropriate data struc-
ture containing information about the connected components in the graph induced
by A. This introduces an additional O(n log n) term in the running time of the algo-
rithm which is negligible compared to O(n3/2). We may choose to stop the algorithm
after twice the expected total number of queries, giving an O(n3/2) query algorithm
with bounded one-sided error.

5.1. The array model. As for the matrix model, we also solve Connectivity

for the array model by constructing larger and larger connected components by merg-
ing components. Achieving an O(n3/2) query algorithm is fairly easy but not optimal.
To do better, we require an efficient routine for generating connected components as
a first stage of the complete algorithm.

Lemma 5.2. Given an undirected graph G in the array model, we can in O(n)
classical queries partition vertex set V into a set of connected components {C1, . . . , Ck}
for some integer k, so that for each component C, its total degree mC =

∑
i∈C di is

no more than |C|2.
Proof. The algorithm is classical and is as follows.
1. Initially the edge set A is empty.
2. Let S = V be the set of vertices not yet placed in some component.
3. Let k = 0 be the number of components constructed thus far.
4. While S is nonempty

(a) Take the vertex v of highest degree in S and set D = {v}.
(b) Go through v’s list of neighbors one by one, each time adding the neigh-

bor w to D and the edge (v, w) to A, until one of two events happens:
(1) We reach the end of the list, or (2) we reach a neighbor w already
assigned to some component Cj with j ≤ k.

(c) In case (1), set k = k + 1, Ck = D, and remove D from S. In case (2),
add D to Cj , and remove D from S.

5. Output k, A, and C1, C2, . . . , Ck.
The algorithm uses n− k queries in total, one query for each vertex but the first

added to each component. Edge set A contains the union of spanning trees of the
components C1 through Ck.

To show correctness, let v be the vertex chosen in Step 4(a) and d its degree.
Then d ≤ |Cj | for each component constructed so far, since the size of a freshly
created component is the degree of one of its vertices, which by choice in Step 4(a)
must be no less than d, and components can only grow. To show that the total degree
of every component Cj is no more than |Cj |2, consider the two cases in Step 4(b).
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In case (1), D is the set of v and its neighbors, each neighbor having degree no
larger than d, implying the total degree is at most d(d+ 1) which is strictly less than
(d + 1)2 = |D|2. In case (2), let a be the size of the component Cj to which D is
merged, and b the size of D. Then b ≤ d ≤ a. The total degree is no more than
a2 + bd which is strictly less than (a + b)2.

Theorem 5.3. Given an undirected graph G in the array model, the algorithm
below outputs a spanning tree for G using an expected number of O(n) queries, provided
G is connected, and otherwise runs forever.

Proof. Consider the following algorithm.
1. Construct the edge set A using the above lemma.
2. Repeat until A connects the graph.

(a) Pick a connected component C in A with smallest total degree, i.e., a
component minimizing mC =

∑
i∈C di.

(b) Search for an edge out of C, i.e., an edge that connects C to some other
component in A, and add it to A. Use the version of the search algorithm
that returns a solution in the expected O(

√
mC) queries if there is at

least one such edge and otherwise runs forever.
3. Return the edge set A.

Suppose the graph is connected and consider the expected total number of queries
used by the algorithm.

We first construct k components, each component C having total degree mC at
most |C|2. In each iteration of the main loop, we pick the component with smallest
total degree and search for an edge out of C. The expected cost of finding such an
edge is at most α

√
mC for some constant α. We distribute this cost evenly among

each of the mC edge endpoints in C, each endpoint paying α/
√
mC .

Fix an arbitrary edge endpoint. Enumerate from 0 up to at most logm the suc-
cessive components that were chosen by the algorithm for a search and that contain
this fixed edge endpoint. Let mi be the number of edge endpoints in the ith compo-
nent. Then mi+1 ≥ 2mi. The total cost assigned to our fixed edge endpoint is upper
bounded by

logm∑
i=0

α
√
mi

≤
logm∑
i=0

α√
2im0

≤ 4α
√
m0

.

Let C be any of the k components constructed in the first step. The total cost
assigned over all edge endpoints in C is thus upper bounded by 4α

√
mC , which is at

most 4α|C|. Summing over all k components, the total cost assigned in the main loop
is at most 4αn, which is linear in n.

6. STRONG CONNECTIVITY. We give two quantum algorithms for Strong

Connectivity, first one for the matrix model and then one for the array model. The
input is a directed graph and the output is a set of at most 2(n− 1) edges that proves
the graph is strongly connected, provided it is. It follows from the discussions below
that such sets always exist.

For the matrix model, all we need is to construct an oriented tree, rooted at some
vertex v0. We can then run the procedure again on the transposed adjacency matrix,
which results in 2(n− 1) edges with the required property.

We now give a method for constructing such a tree with bounded error using an
optimal number of queries. To keep the overall error small, we classify vertices covered
by the current tree into sets T0, . . . , Tq such that the confidence that vertices from Ti
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have no new neighbors is increasing with i. Whenever a search for an edge (u, v) with
u ∈ R and v �∈ T0 ∪ · · · ∪ Ti is successful for some subset R ⊆ Ti, the vertices R and
v will be moved into T0; otherwise R will be moved into Ti+1. We make this formal
now.

1. Let S be the tree consisting of the single vertex v0.
Partition the vertex set covered by S into T0 = {v0} and T1 = · · · = Tq = {}
for q = �log2(n) + 1.

2. While there is a set Ti with |Ti| ≥ 2i do
(a) Let i be the smallest index such that |Ti| ≥ 2i.
(b) If |Ti| < 2i+1, then R = Ti; otherwise R is an arbitrary subset of Ti with

|R| = 2i.
(c) Remove R from Ti.
(d) Search for an edge (u, v) with u ∈ R and v �∈ S in a search space of

size O(2in) with the version of the quantum search procedure that uses

O(23i/4
√
n) queries and finds a solution with probability 1 − c0/2

√
2i+2

,
provided such an edge exists, and where c0 > 0 is some appropriately
small constant.

(e) If the search is successful, add (u, v) to S and R ∪ {v} to T0; otherwise
add R to Ti+1.

3. Output S.
We now show some properties of the algorithm. For convenience we define tj =

|T0| + |T1| + · · · + |Tj | for each j = 0, . . . , q.
Lemma 6.1. At the beginning and end of each iteration, the following invariants

hold. Let k be the smallest and � the largest index of a nonempty set Tj. Then

|T�| ≥ 2�−1,(6.1)

∀k ≤ j < � : tj ≥ 2j .(6.2)

Proof. The proof is by induction on the number of iterations of the algorithm.
Initially, when T0 is the unique nonempty set, the conditions (6.1) and (6.2) hold.

Assume both conditions hold at the beginning of an iteration. First observe that
by the induction hypothesis (6.2) that if k < �, then |Tk| ≥ 2k, and so the index
chosen by the algorithm is always i = k. Now if the search is successful, we have
t0 ≥ 2k and thus tj ≥ 2k for all 0 ≤ j ≤ k, while for all j > k, tj increases by one,
maintaining condition (6.2). If the search is not successful, then by the choice of R,
after the iteration, either tk = 0 or tk ≥ 2k, while for all values j > k, tj is not
modified, and thus condition (6.2) holds for all k ≤ j < l.

Consider condition (6.1). Whenever an empty set Tj becomes nonempty, it con-
tains at least 2j−1 elements, and whenever elements are taken out of a set Tj , after-
ward it is either empty (|Tj | = 0) or |Tj | ≥ 2j . Thus in all cases, condition (6.1) is
maintained.

As a consequence, when the algorithm stops, there is a unique nonempty set Ti

and moreover 2i−1 ≤ |Ti| < 2i. Also since at most n − 1 searches can be successful,
the algorithm stops after O(n2) iterations.

Lemma 6.2. When the algorithm stops, S covers all vertices reachable from v0

with probability at least 39/40.
Proof. First note that the algorithm never outputs a vertex that is not reachable

from v0. Suppose the algorithm outputs a strict subset of the r vertices that are
reachable from v0. Consider the probability of the event that the algorithm outputs
a subset of size q with q < r. For this event to happen, in particular the very last run
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of the search procedure fails in finding a new edge, which happens with probability at

most c0/2
√

2i+2, where i is such that 2i−1 ≤ q < 2i. By summing over all 1 ≤ q < r,
the probability that the algorithm fails in finding all reachable vertices is at most∑

q≥1

c0

2
√
q+2

,

which is upper bounded by 1
40 for some appropriately small constant c0 > 0.

We now analyze the complexity of the algorithm.
Lemma 6.3. The expected number of queries made by the algorithm is O(|S|

√
n).

Proof. To analyze the total number of queries made by the search procedures,
we group the calls to the search procedures into sequences of unsuccessful searches
ending with a success, plus the last sequence of unsuccessful searches.

For the first case, let (u, v) be an arbitrary edge found by the algorithm. Then
the probability that it was found when u ∈ Ti is upper bounded by the probability

that it was not found when u ∈ Ti−1, which is at most 1/2
√

2i
. The cost of this search

and the i− 1 unsuccessful searches over sets R containing u is of order

i∑
j=0

23j/4
√
n ∈ O(23i/4

√
n).

The expected cost of finding (u, v) is thus at most

∑
i≥0

23i/4

2
√

2i

√
n ∈ O(

√
n).

To complete the analysis we upper bound the total work of the O(log n) unsuc-
cessful searches which were made after the last successful search. Let i be such that
2i−1 ≤ |S| < 2i. There are at most 2i/2j searches for sets R with |R| = 2j . Therefore
the total work is of order

i∑
j=0

2i−j23j/4
√
n ∈ O(|S|

√
n).

This concludes the proof.
In conclusion we have an algorithm that outputs a directed tree T rooted at v0.

With probability at least 39/40, T covers all the vertices which are reachable from
v0, and its expected number of queries to M is at most O(n3/2). This can be turned
into an algorithm with worst case query complexity O(n3/2) and success probability
at least 19/20. Now running the algorithm again on the transposed adjacency matrix
provides an edge set T ∪T ′ which with probability at least 9/10 is strongly connected,
provided the input graph is strongly connected.

Theorem 6.4. There is an algorithm that, given the adjacency matrix M of
a directed graph G, uses O(n3/2) queries to M , outputs “strongly connected” with
probability at least 9/10 if G is strongly connected, and otherwise outputs “not strongly
connected.”

6.1. The array model. In the array model, we may try to apply an algorithm
similar to the one given above for the matrix model. Doing so, we would reverse
the edge orientations as part of the second stage, which would require m queries and
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hence be of the same query complexity as the classical algorithm that initially queries
every bit of the input. We now give another algorithm that is sublinear in m and
works in two stages. The first stage computes an oriented spanning tree rooted at v0

as we did for the matrix model, but this time by using a depth-first search algorithm.
The second stage then uses desirable properties of a depth-first search tree to achieve
an algorithm of complexity sublinear in m.

Lemma 6.5. Given the adjacency array of a directed graph G and a vertex v0, the
algorithm below uses O(

√
nm log n) queries to M and outputs a directed tree A ⊆ E

rooted at v0. With probability at least 9
10 , A is a depth-first tree spanning all of G,

provided G is strongly connected.
Proof. Consider the following simple algorithm.
1. Initially the edge set A is empty.
2. Let S = {v0} be a set of reachable vertices and T = {v0} a stack of vertices

to be processed.
3. While T �= {} do

(a) Let u be the topmost vertex on stack T .
(b) Search for a neighbor v of u not in S. Use the version of the search

algorithm that uses O(
√
d+
u log n) queries and outputs a solution with

probability at least 1 − 1
20n , provided one exists.

(c) If (3b) succeeds, add (u, v) to A, add v to S, and push v onto T .
(d) Otherwise, remove u from T .

4. Return edge set A.
For any vertex u let b+u be its out-degree in the tree A produced by the algorithm.

Then the total number of queries spent in finding the b+u neighbors of u is on the

order of
∑b+u

t=1

√
d+
u /t

√
log n which is O(

√
b+u d

+
u log n). Summing over all vertices u

this gives

∑
u∈V

√
b+u d

+
u log n ≤

√∑
u

b+u

√∑
u

d+
u

√
log n ∈ O(

√
nm log n),

where the first inequality follows from the Cauchy–Schwarz inequality and the second
from the fact that a tree has only O(n) edges. The algorithm spends in addition

O(
∑

u

√
d+
u log n) queries for the unsuccessful neighbor searches, but this is dominated

by the previous cost.
The overall error probability is upper bounded by 1

10 since each of the at most
2n− 1 searches has error at most 1

20n .
We show now, given a depth-first tree A, how to compute the remaining edge set

B such that A ∪B is strongly connected, provided G is strongly connected.
Theorem 6.6. Given the adjacency array of a directed graph G = (V,E) and a

vertex v0, there is an algorithm that uses O(
√
nm log n) queries and outputs an edge

set E′ ⊆ E of size at most 2n − 2 covering v0. If G is strongly connected, then with
probability at least 3

4 , (V,E′) is strongly connected.
Proof. We use the previous algorithm to construct a directed depth-first spanning

tree A ⊆ E rooted at v0. We label the vertices according to the order in which they
are added to the tree A in Lemma 6.5.

Then in the second stage, for every vertex vi ∈ V , we search for the neighbor vj
with smallest index. The result is a set of backward edges B ⊆ E. We claim that the
graph G = (V,E) is strongly connected if and only if its subgraph G′ = (V,A ∪B) is
strongly connected.
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Clearly if G′ is strongly connected then so is G since A ∪ B ⊆ E. Therefore to
show the converse assume G is strongly connected. For a proof by contradiction let
vi be the vertex with smallest index for which there is no path from vi to v0 in G′.
By assumption there is a path in G from vi to v0. Let (vl, vl′) be its first edge with
l ≥ i and l′ < i. We use the following property of depth-first search.

Let vi and vl be two vertices in the graph G with i ≤ l. If there is a
path from vi to vl in G then vl is in the subtree of G′′ = (V,A) that
is rooted at vi.

Therefore we can replace in the original path the portion from vi to vl by a path
using only edges from A. Let vl′′ be the neighbor of vl in G with smallest index.
Clearly l′′ ≤ l′ < i. By the choice of vi, there exists a path from vl′′ to v0 in G′.
Together this gives a path from vi to v0 in G′, contradicting the assumption and
therefore concluding the correctness of the algorithm.

Now we analyze the complexity. During the first stage, set A is computed in
time O(

√
nm log n). The second stage can be done with O(

√
nm) queries using the

minima finding for the mapping from an edge number in [1,m] to the source-target
vertex pair. Both stages can be made to succeed with probability at least 7/8.

7. SINGLE SOURCE SHORTEST PATHS. Let G be a directed graph with
nonnegative edge weights and let v0 be a fixed vertex in G. We want to compute a
shortest path from v0 to every vertex v ∈ V . It may happen that the shortest path
is not unique. Using, for example, the lexicographical ordering on vertex sequences,
we choose to compute a single canonical shortest path. From now on assume that
different paths have different lengths. As a result, the union over all vertices v of the
shortest paths from v0 to v is a shortest path tree. Let ν(u, v) be the weight of edge
(u, v) and δ(v0, v) the shortest path length from v0 to v.

Classically Single Source Shortest Paths may be solved by Dijkstra’s algo-
rithm. It maintains a subtree T with the “shortest path subtree” invariant: for any
vertex v ∈ T , the shortest path from v0 to v uses only vertices from T . An edge (u, v)
is called a border edge (of T ) if u ∈ T and v �∈ T , where u is the source vertex and v
the target vertex. The cost of (u, v) is δ(v0, u) + ν(u, v). Dijkstra’s algorithm starts
with T = {v0} and iteratively adds the cheapest border edge to it.

Our improvement lies in the selection of the cheapest border edge. We first give
an algorithm for the array model. Setting m = n2 gives the upper bound for the
matrix model.

Theorem 7.1. The bounded error query complexity of Single Source Short-

est Paths in the array model is O(
√
nm log2 n).

Proof. As in Dijkstra’s algorithm, we iteratively construct a tree T such that for
every vertex v ∈ T , the shortest path from v0 to v is in T . We maintain a partitioning
of the vertices covered by T and store the partitioning as a sequence of sets. The
length of the sequence is denoted by l.

1. Set T = {v0}, l = 1, P1 = {v0}.
2. Repeat until T covers the graph

(a) For Pl compute up to |Pl| cheapest border edges with disjoint target
vertices. For this purpose set N =

∑
v∈Pl

d(v), and number all edges
with source in Pl from 0 to N − 1. Define the functions f : [N ] → N

∗

and g : [N ] → V , where g(i) is target vertex of the ith edge and f(i) is
its weight if g(i) �∈ T and ∞ otherwise. Apply the algorithm of section 3
on f and g with d = |Pl| to find the d edges of smallest weight with
distinct target vertices. Let Al be the resulting edge set.
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(b) Let (u, v) be the minimal weighted edge of A1 ∪ · · · ∪ Al with v �∈ P1 ∪
· · · ∪ Pl. Set T = T ∪ {(u, v)}, Pl+1 = {v}, and l = l + 1.

(c) As long as l ≥ 2 and |Pl−1| = |Pl|, merge Pl into Pl−1, and set l = l− 1.
All steps but 2(a) construct a vertex set sequence P1, . . . , Pl, the cardinality of

each being a power of two, and of strictly decreasing sizes. Figure 7.1 shows an
example of this partitioning of the vertices in T .

v0 v1 v2 v3 v4 v6v5 v0 v1 v2 v3 v4 v6v5

A2

A1
A3

P3P1 P2 P1 P2 P3

Fig. 7.1. Left: Example of the set decomposition for |T | = 7 into powers of 2. Right: Example
of corresponding edge sets. The closest border edge of T belongs to one of A1, A2, A3.

Therefore each set Pi is strictly larger than the union of all the following sets.
Hence, if Ai contains |Pi| edges, then at least one of them has its target vertex outside
of P1, . . . , Pl. Let (u, v) be the cheapest border edge of T . Let Pi be the vertex set
containing u. Then Ai must contain this edge, and Step 2(b) selects it.

Only Step 2(a) generates queries to the graph. Consider the total number of
queries related to sets Pi of some size s. There are at most n/s sets of this size s.

Therefore the total work is of order
∑n/s

j=1

√
smj , where mj is the number of edges

with source in the jth vertex set. We have
∑n/s

j=1 mj = m. The worst case is when

mi = sm/n. In this case, the total work is O(
√
nm) for the fixed size s. There

are log n different set sizes in the algorithm. We require that each of the O(n log n)
queries to the minimum finding succeeds with probability at least 1 − 1/2n log n,
which introduces an O(log n) factor (see also Remark 1 in section 3) and we obtain
the claimed complexity.

8. The lower bounds. Finding the d smallest values of a function can be done
in O(

√
dN) queries by Theorem 3.4. We now show this is tight.

Theorem 8.1. The problems Find d Smallest Values of a Function, Find

d Elements of Different Type, and Find d Smallest Values of Different

Type require Ω(
√
dN) queries.

Proof. For even k and odd d we consider d × k boolean matrices with a single 0
in every row. It is encoded by a function f : [N ] → {0, 1} with N = kd, such that
for every i ∈ [d], j ∈ [k], f(id + j) is the entry in row i and column j. Let function
g : [N ] → [d+ 1] be such that g(id+ j) maps to i if f(id+ j) = 0 and to d otherwise.
By this construction, the problems of Find d+1 Smallest Values of a Function

or d+1 Elements of Different Type or d+1 Smallest Values of Different

Type are all equivalent to finding the positions of the d zeros in the matrix.
Let X be the set of matrices such that exactly �d/2 rows have their 0 in the first

k/2 columns. And let Y be the set of matrices such that this number is exactly �d/2�.
We show a lower bound for distinguishing X and Y . We say that matrix A ∈ X is
in relation with B ∈ Y if and only if the matrices differ at exactly two entries. It
follows that there are indices i ∈ [d], 0 ≤ j < k/2 ≤ j′ < k with Aij = Bij′ = 1 and
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Aij′ = Bij = 0. The following example illustrates this definition.

A =

⎛
⎜⎜⎝

k/2︷︸︸︷
011
111
111

k/2︷︸︸︷
111
011
101

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

k/2︷︸︸︷
011
110
111

k/2︷︸︸︷
111
111
101

⎞
⎟⎟⎠ .(8.1)

Then the number of matrices which are in relation with a fixed matrix is at least
m = m′ = �d/2�k/2. For fixed i, j the number of matrices in relation with M and
differing at i, j is k/2 if Mij = 0 and 1 if Mij = 1. So lmax = k/2 and, by Theorem 2.2,

Ω(
√
mm′/lmax) gives the required lower bound.
We first consider lower bounds for Connectivity and Strong Connectivity

in the array model. By reducing from Parity as done by Henzinger and Fredman
for the on-line connectivity problem [14], one can show a simple lower bound of Ω(n)
queries in the array model for both problems. For directed graphs, we can improve
this to Ω(

√
nm) queries in the array model.

Theorem 8.2. Strong Connectivity requires Ω(
√
nm) queries in the array

model.
Proof. Let m be such that m = kn for some integer k, and assume n− k is even.

We construct the lower bound for regular graphs with out-degree k.
We use two kinds of vertices. The first 2p vertices are connected by two disjoint

cycles or by a single cycle, as in the aforementioned reduction from Parity. The
other k vertices are used as a pool to collect most of the edges. See Figure 8.1. Let
the vertex set be V = {v0, . . . , v2p−1, u0, . . . , uk−1} for integer p = (n − k)/2. In the
list model, the edges are defined by a function f : V × [k] → V . We consider only
functions with the following restrictions:

For every i ∈ [k] we have f(ui, 0) = v0 and for j ∈ {1, . . . , k − 1} f(ui, j) = ui+j ,
where addition is modulo k.

For every i ∈ [p] there exist j0, j1 ∈ [k] and a bit b such that f(v2i, j0) = v2i+2+b

and f(v2i+1, j1) = v2i+3−b, where addition is modulo 2p this time. We call these edges
the forward edges. The backward edges are for all j ∈ [k] f(v2i, j) = uj whenever
j �= j0 and f(v2i+1, j) = uj whenever j �= j1.

v1

v0

to v1

to v0

u0

u3 u2

u1

Fig. 8.1. A strongly connected graph.

Now all the vertices are connected to the k-clique, the clique is connected to v0,
and the graph is strongly connected if and only if there is a path from v0 to v1.
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Let X be the set of functions which define a strongly connected graph and Y the
set of functions which do not. Function f ∈ X is in relation with g ∈ Y if there are
numbers i ∈ [p], j0, j1, h0, h1 ∈ [k] with j0 �= h0, j1 �= h1 such that the only places
where f and g differ are

g(v2i, h0) = f(v2i+1, j1)g(v2i+1, h1) = f(v2i, j0),

g(v2i, j0) = uj0g(v2i+1, j1) = uj1 ,

f(v2i, h0) = uh0f(v2i+1, h1) = uh1 .

Informally f and g are in relation if there is a level, where the forward edges are
exchanged between a parallel and crossing configuration and in addition the edge
labels are changed.

Then m = m′ ∈ Ω(nk2), p ∈ Ω(n), for the number of levels and (k − 1)2 for
the number of possible forward edge labels. We also have lf,(v,j) = k − 1 if f(v, j) ∈
{u0, . . . , uk−1} and lf,(v,j) = (k − 1)2 otherwise. The value l′g,(v,j) is the same. Since

only one of f(v, j), g(v, j) can be in {u0, . . . , uk−1} we have lmax ∈ O(k3) and the
lower bound follows.

For the matrix model, there is a much simpler lower bound which works even for
undirected graphs.

Theorem 8.3. Connectivity requires Ω(n3/2) queries in the matrix model.
Proof. We use Ambainis’s method for the following special problem in a very

simple manner. We are given a symmetric matrix M ∈ {0, 1}n×n with the promise
that it is the adjacency matrix of a graph with exactly one or two cycles, and we have
to determine which is the case.

Let X be the set of all adjacency matrices of a unique cycle and Y the set of all
adjacency matrices with exactly two cycles each of length between n/3 and 2n/3. We
define the relation R ⊆ X × Y as M R M ′ if there exist a, b, c, d ∈ [n] such that the
only difference between M and M ′ is that (a, b), (c, d) are edges in M but not in M ′

and (a, c), (b, d) are edges in M ′ but not in M . See Figure 8.2. The definition of Y
implies that in M the distance from a to c is between n/3 and 2n/3.

a b

c
d

a b

c
d

1 0

0 1

0
10

1

a b c d

a
b
c
d

a b c d

a
b
c
d

0 1

01
1
0 1

0

Fig. 8.2. Illustration of the relation.

Then m ∈ Ω(n2) since there are n − 1 choices for the first edge and n/3 choices
for the second edge. Also m′ ∈ Ω(n2) since from each cycle one edge must be picked,
and cycle length is at least n/3.

We have lM,(i,j) = 4 if Mi,j = 0 since in M ′ we have the additional edge (i, j) and
the endpoints of the second edge must be neighbors of i and j, respectively. Moreover
lM,(i,j) ∈ O(n) if Mi,j = 1 since then (i, j) is one of the edges to be removed and there
remain n/3 choices for the second edge.

The values l′M ′,(i,j) are similar, so in the product one factor will always be constant

while the other is linear giving lM,(i,j)l
′
M ′,(i,j) ∈ O(n), and the theorem follows.

We give a lower bound for both Minimum Spanning Tree and Single Source

Shortest Paths.
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Theorem 8.4. Minimum Spanning Tree and Single Source Shortest

Paths each require Ω(
√
nm) queries.

Proof. The proof is a reduction from minima finding. Let m = k(n+ 1) for some
integer k. Let M be a matrix with n rows and k columns and positive entries. The
lower bound on minima finding, with d = n,N = kn, shows that Ω(

√
kn2) queries are

required to find the minimum value in every row.

s

u1 u2 u4 u5

v3 v4 v5v1 v2

u3

0 0...

M11

M21

M51
M55

M45

Fig. 8.3. Reduction from finding minima to Minimal Spanning Tree.

We construct a weighted graph G from M like this: The vertices are V (G) =
{s, v1, . . . , vk, u1, . . . , un}. The edges are all (s, vi) with weight 0 and all (vi, uj) with
weight Mji. (See Figure 8.3.) Then clearly a minimum spanning tree contains the
0-weight edges connecting s to all vertices vi. And every vertex uj will be connected
to the rest of the graph only with the minimal weighted edge.

Acknowledgments. We are grateful to Miklos Santha, Katalin Friedl, Oded
Regev, Ronald de Wolf, and Andris Ambainis for helpful discussions or comments.
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Societ. Scient. Natur. Moravicae), 3 (1926), pp. 37–58.

[6] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Tight bounds on quantum searching,
Fortschr. Phys., 46 (1998), pp. 493–505.

[7] G. Brassard and P. Høyer, An exact quantum polynomial-time algorithm for Simon’s prob-
lem, in Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems
(ISTCS), Ramat-Gan, Israel, 1997, pp. 12–23.

[8] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum amplitude amplification and
estimation, in Quantum Computation and Quantum Information: A Millennium Volume,
Contemp. Math. 305, AMS, Providence, RI, 2002, pp. 53–74.

[9] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka, Bounds for small-error and zero-
error quantum algorithms, in Proceedings of the 40th IEEE Symposium on Foundations of
Computer Science (FOCS), IEEE Computer Society, Los Alamitos, CA, 1999, pp. 358–368.
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THE APPROXIMABILITY OF THREE-VALUED MAX CSP∗

PETER JONSSON† , MIKAEL KLASSON† , AND ANDREI KROKHIN‡

Abstract. In the maximum constraint satisfaction problem (Max CSP), one is given a finite
collection of (possibly weighted) constraints on overlapping sets of variables, and the goal is to assign
values from a given domain to the variables so as to maximize the number (or the total weight, for
the weighted case) of satisfied constraints. This problem is NP-hard in general, and, therefore, it
is natural to study how restricting the allowed types of constraints affects the approximability of
the problem. It is known that every Boolean (that is, two-valued) Max CSP with a finite set of
allowed constraint types is either solvable exactly in polynomial time or else APX-complete (and
hence can have no polynomial-time approximation scheme unless P = NP). It has been an open
problem for several years whether this result can be extended to non-Boolean Max CSP, which
is much more difficult to analyze than the Boolean case. In this paper, we make the first step in
this direction by establishing this result for Max CSP over a three-element domain. Moreover, we
present a simple description of all polynomial-time solvable cases of our problem. This description
uses the well-known algebraic combinatorial property of supermodularity. We also show that every
hard three-valued Max CSP contains, in a certain specified sense, one of the two basic hard Max

CSPs which are the Maximum k-colorable Subgraph problems for k = 2, 3.

Key words. maximum constraint satisfaction, approximability, dichotomy, supermodularity
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1. Introduction and related work. Many combinatorial optimization prob-
lems are NP-hard, and the use of approximation algorithms is one of the most prolific
techniques to deal with NP-hardness. However, hard optimization problems exhibit
different behavior with respect to approximability, and complexity theory for approx-
imation is now a well-developed area [1].

Constraint satisfaction problems (CSPs) have always played a central role in this
direction of research, since the CSP framework contains many natural computational
problems, for example, from graph theory and propositional logic. Moreover, certain
CSPs were used to build foundations for the theory of complexity for optimization
problems [21], and some CSPs provided material for the first optimal inapproxima-
bility results [16] (see also survey [25]). In a CSP, informally speaking, one is given
a finite collection of constraints on overlapping sets of variables, and the goal is to
decide whether there is an assignment of values from a given domain to the variables
satisfying all constraints (decision problem) or to find an assignment satisfying the
maximum number of constraints (optimization problem). In this paper we will focus
on the optimization problems, which are known as maximum constraint satisfaction
problems (Max CSPs). The most well-known examples of such problems are Max
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83, Sweden (peter.jonsson@ida.liu.se, mikael.klasson@ida.liu.se). The work of the first author was
partially supported by the Swedish Research Council (VR) under grant 621–2003–3421 and by the
Center for Industrial Information Technology (CENIIT) under grant 04.01. The work of the second
author was partially supported by the Swedish Research Council (VR) under grant 621–2003–3421.

‡Corresponding author. Department of Computer Science, University of Durham, Science Lab-
oratories, South Road, Durham, DH1 3LE, UK (andrei.krokhin@durham.ac.uk). The work of this
third author was partially supported by the UK EPSRC grant GR/T05325/01.

1329



1330 PETER JONSSON, MIKAEL KLASSON, AND ANDREI KROKHIN

k-Sat and Max Cut. Let us now formally define these problems.

Let D denote a finite set with |D| > 1. Let R
(m)
D denote the set of all m-ary

predicates over D, that is, functions from Dm to {0, 1}, and let RD =
⋃∞

m=1 R
(m)
D .

Also, let Z
+ denote the set of all nonnegative integers.

Definition 1.1. A constraint over a set of variables V = {x1, x2, . . . , xn} is an
expression of the form f(x) where

• f ∈ R
(m)
D is called the constraint predicate and

• x = (xi1 , . . . , xim) is called the constraint scope.
The constraint f is said to be satisfied on a tuple a = (ai1 , . . . , aim) ∈ Dm if

f(a) = 1.
Definition 1.2. For a finite F ⊆ RD, an instance of Max CSP(F) is a pair

(V,C) where
• V = {x1, . . . , xn} is a set of variables taking their values from the set D and
• C is a collection of constraints f1(x1), . . . , fq(xq) over V , where fi ∈ F for

all 1 ≤ i ≤ q.
The goal is to find an assignment ϕ : V → D that maximizes the number of satisfied
constraints, that is, to maximize the function f : Dn → Z

+, defined by f(x1, . . . , xn) =∑q
i=1 fi(xi). If the constraints have (positive integral) weights �i, 1 ≤ i ≤ q, then the

goal is to maximize the total weight of satisfied constraints, to maximize the function
f : Dn → Z

+, defined by f(x1, . . . , xn) =
∑q

i=1 �i · fi(xi).
Note that throughout the paper the values 0 and 1 taken by any predicate will

be considered, rather unusually, as integers, not as Boolean values, and addition will
always denote the addition of integers. It easy to check that, in the Boolean case,
our problem coincides with the Max CSP considered in [9, 10, 19]. We say that a
predicate is nontrivial if it is not identically 0. Throughout the paper, we assume that
F is finite and contains only nontrivial predicates.

Boolean constraint satisfaction problems (that is, when D = {0, 1}) are by far
better studied [10] than the non-Boolean version. The main reason for this is, in
our opinion, that Boolean constraints can be conveniently described by propositional
formulas which provide a flexible and easily manageable tool, and which have been
extensively used in complexity theory from its very birth. Moreover, Boolean CSPs
suffice to represent a number of well-known problems and to obtain results clarifying
the structure of complexity for large classes of interesting problems [10]. In partic-
ular, Boolean CSPs were used to provide evidence for one of the most interesting
phenomena in complexity theory, namely, that interesting problems belong to a small
number of complexity classes [10], which cannot be taken for granted due to Ladner’s
theorem. After the celebrated work of Schaefer [22] presenting a tractable versus NP-
complete dichotomy for Boolean decision CSPs, many classification results have been
obtained (see, e.g., [10]), most of which are dichotomies. In particular, a dichotomy
in complexity and approximability for the Boolean Max CSP has been obtained by
Creignou [9], and it was slightly refined in [19] (see also [10]).

Many papers on various versions of Boolean CSPs mention studying non-Boolean
CSPs as a possible direction of future research, and additional motivation for it,
with an extensive discussion, was given by Feder and Vardi [14]. Non-Boolean CSPs
provide a much wider variety of computational problems. Moreover, research in non-
Boolean CSPs leads to new sophisticated algorithms (e.g., [3]) or to new applications
of known algorithms (e.g., [7]). Dichotomy results on non-Boolean CSPs give a better
understanding of what makes a computational problem tractable or hard, and they
give a more clear picture of the structure of complexity of problems, since many facts
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observed in Boolean CSPs appear to be special cases of more general phenomena.
Notably, many appropriate tools for studying non-Boolean CSPs have not been dis-
covered until recently. For example, universal algebra tools have proved to be very
fruitful when working with decision and counting problems [2, 4, 5, 8] while ideas from
combinatorial optimization and operational research have been recently suggested for
optimization problems [7].

The Max-CSP framework has been well studied in the Boolean case. Many
fundamental results have been obtained, concerning both complexity classifications
and approximation properties (see, e.g., [9, 10, 16, 18, 19, 28]). In the non-Boolean
case, a number of results have been obtained that concern exact (superpolynomial)
algorithms or approximation properties (see, e.g., [11, 12, 13, 17, 23]). The main
research problem we will look at in this paper is the following.

Problem 1. Classify the problems Max CSP(F) with respect to approximabil-
ity.

It is known that, for any F , Max CSP(F) is an NP optimization (NPO) prob-
lem that belongs to the complexity class APX. In other words, for any F , there is
a polynomial-time approximation algorithm for Max CSP(F) whose performance is
bounded by a constant.

For the Boolean case, Problem 1 was solved in [9, 10, 19]. It appears that a
Boolean Max CSP(F) also exhibits a dichotomy in that it either is solvable exactly
in polynomial time or else does not admit a polynomial-time approximation scheme
(PTAS) unless P=NP. These papers also describe the boundary between the two
cases.

In this paper we solve the above problem for the case |D| = 3 by showing that
Max CSP(F) is solvable exactly in polynomial time if, after removing redundant
values, if there are any, from the domain (that is, taking the core), all predicates in
F are supermodular with respect to some linear ordering of the reduced domain (see
definitions in section 2.2) or else the problem is APX-complete. Experience shows
that non-Boolean constraint problems are much more difficult to classify, and hence
we believe that the techniques used in this paper can be further extended to all finite
domains D. A small technical difference between our result and that of [19] is that we
allow repetitions of variables in constraints, as in [10]. Similarly to [10, 19], weights do
not play much of a role, since the tractability part of our result holds for the weighted
case, while the hardness part is true in the unweighted case even if repetitions of
constraints in instances are disallowed. Our result uses a combinatorial property of
supermodularity which is a well-known source of tractable optimization problems [6,
15, 24], and the technique of strict implementations [10, 19] which allows one to show
that an infinite family of problems can express, in a regular way, one of a few basic
hard problems. We remark that the idea to use supermodularity in the analysis of
the complexity of Max CSP(F) is very new and has not been even suggested in the
literature prior to [7]. Generally, it has been known for a while that the property
of supermodularity allows one to solve many maximization problems in polynomial
time [6, 15, 24]; however, our result is surprising in that supermodularity appears to
be the only source of tractability for Max CSP(F). In the area of approximability,
examples of other works where hardness results are obtained for large families of
problems simultaneously include [20, 27].

The only other known complete dichotomy result on a non-Boolean constraint
problem (that is, with no restrictions on F) is the theorem of Bulatov [2], where
the complexity of the standard decision problem CSP on a three-element domain is
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classified. Despite the clear similarity in the settings and also in the outcomes (full
dichotomy in both cases), we note that none of the universal-algebraic techniques used
in [2] can possibly be applied in the study of Max CSP because the main algebraic
constructions which preserve the complexity of decision problems can be easily shown
not to do this in the case of optimization problems. Another similarity between
Bulatov’s result and our theorem is that the proof is broken down to a (relatively)
large number of cases. We believe that this is caused either by insufficiently general
methods or, more likely, by significant variation in structure of the problems under
consideration, where a large number of cases is probably an unavoidable feature of
complete classifications.

The structure of the paper is as follows. Section 2 contains definitions of approx-
imation complexity classes and reductions, descriptions of our reduction techniques,
and the basics of supermodularity. Section 3 contains the proof of the main theorem
of the paper. Finally, section 4 contains a discussion of the work we have done and
of possible future work.

2. Preliminaries. This section is subdivided into two parts. The first one con-
tains basic definitions on complexity of approximation and our reduction techniques,
while the second one introduces the notion of supermodularity and discusses the rel-
evance of this notion in the study of Max CSP.

2.1. Approximability.

2.1.1. Definitions. A combinatorial optimization problem is defined over a set
of instances (admissible input data); each instance I has a finite set sol(I) of feasible
solutions associated with it. An objective function attributes an integer value to any
feasible solution. The goal of an optimization problem is, given an instance I, to find
a solution s ∈ sol(I) of optimum value. The optimal value is the largest one for maxi-
mization problems and the smallest one for minimization problems. A combinatorial
optimization problem is said to be an NP optimization (NPO) problem if instances
and solutions can be recognized in polynomial time, solutions are polynomial-bounded
in input size, and the objective function can be computed in polynomial time. For a
more formal definition, see, e.g., [1].

Definition 2.1 (performance ratio). A solution s to an instance I of an NPO
problem Π is r-approximate if it has value V al satisfying

max

{
V al

Opt(I)
,
Opt(I)

V al

}
≤ r,

where Opt(I) is the optimal value for a solution to I. An approximation algorithm
for an NPO problem Π has performance ratio R(n) if, given any instance I of Π
with |I| = n, it outputs an R(n)-approximate solution.

Definition 2.2 (complexity classes). PO is the class of NPO problems that
can be solved (to optimality) in polynomial time. An NPO problem Π is in the class
APX if there is a polynomial-time approximation algorithm for Π whose performance
ratio is bounded by a constant.

Completeness in APX is defined using an appropriate reduction, called AP -
reduction. Our definition of this reduction follows [10, 19].

Definition 2.3 (AP -reduction, APX-completeness). An NPO problem Π1 is
said to be AP -reducible to an NPO problem Π2 if two polynomial-time computable
functions F and G and a constant α exist such that

1. for any instance I of Π1, F (I) is an instance of Π2;
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2. for any instance I of Π1, and any feasible solution s′ of F (I), G(I, s′) is a
feasible solution of I;

3. for any instance I of Π1, and any r ≥ 1, if s′ is an r-approximate solution
of F (I), then G(I, s′) is a (1 + (r − 1)α + o(1))-approximate solution of I
where the o-notation is with respect to |I|.

An NPO problem Π is APX-hard if every problem in APX is AP -reducible to
it. If, in addition, Π is in APX then Π is called APX-complete.

It is a well-known fact (see, e.g., [1, section 8.2.1]) that AP -reductions compose.
It is well known that Max CSP(F) belongs to APX for every F (actually, it belongs
to Max SNP which is a subclass of APX [21]); a direct proof of this fact can be found
in [7]. A complete classification of the complexity of Max CSP(F) for a two-element
set D was obtained in [9, 19]; we will give it in subsection 2.2. We shall now give an
example of an APX-complete problem which will be used extensively in this paper.

Example 2.4. Given a graph G = (V,E), the Maximum k-colorable Sub-

graph problem, k ≥ 2, is the problem of maximizing |E′|, E′ ⊆ E, such that the graph
G′ = (V,E′) is k-colorable. This problem is known to be APX-complete (it is Prob-
lem GT33 in [1]). Let neqk denote the binary disequality predicate on {0, 1, . . . , k−1},
k ≥ 2, that is, neqk(x, y) = 1 ⇔ x �= y. The problem Max CSP({neqk}) is slightly
more general than the Maximum k-colorable Subgraph problem. To see this,
think of vertices of a given graph as of variables, and apply the predicate to every
pair of variables x, y such that (x, y) is an edge in the graph.

If we allow weights on edges in graphs and on constraints, then the problems
coincide; the obtained problem is known as Max k-cut. For unweighted problems,
the Max CSP({neqk}) is slightly more general because, formally, one can have con-
straints neqk(x, y) and neqk(y, x) in the same instance. In any case, it follows that
the problem Max CSP({neqk}) is APX-complete.

Interestingly, the problems Max CSP({neqk}), k = 2, 3, will be the only basic
hard problems for the case |D| ≤ 3. We will show that, for all other APX-complete
problems Max CSP(F), the set F can express, in a certain regular approximability-
preserving way, one of the predicates neq2, neq3.

2.1.2. Reduction techniques. The basic reduction technique in our APX-
completeness proofs is based on strict implementations; see [10, 19], where this notion
was defined and used for the Boolean case. We will give this definition in a slightly
different form from that of [10, 19], but it can easily be checked that it is equivalent
to the original one.

Definition 2.5. Let Y = {y1, . . . , ym} and Z = {z1, . . . , zn} be two disjoint sets
of variables. The variables in Y are called primary and the variables in Z auxiliary.
The set Z may be empty. Let g1(y1), . . . , gs(ys), s > 0, be constraints over Y ∪Z. If
g(y1, . . . , ym) is a predicate such that the equality

g(y1, . . . , ym) + (α− 1) = max
Z

s∑
i=1

gi(yi)

is satisfied for all y1, . . . , ym, and some fixed α ∈ Z
+, then this equality is said to be

a strict α-implementation of g from g1, . . . , gs.
We use α − 1 rather than α in the above equality to ensure that this notion

coincides with the original notion of a strict α-implementation for Boolean con-
straints [10, 19].

We say that a collection of predicates F strictly implements a predicate g if, for
some α ∈ Z

+, there exists a strict α-implementation of g using predicates only from
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F . In this case we write F s⇒α g. It is not difficult to show that if g can be obtained
from F by a series of strict implementations then it can also be obtained by a single
strict implementation. In this paper, we will use about 60 (relatively) short strict
implementations for the case when |D| = 3. Each of them can be straightforwardly
verified by hand, or (better still) by a simple computer program.1

The following lemma is stated in [10] for the Boolean case, but it is immediately
extendable to any finite domain.

Lemma 2.6 (Lemma 5.18 in [10]). If F strictly implements a predicate f ,
and Max CSP(F ∪ {f}) is APX-complete, then Max CSP(F) is APX-complete
as well.

As in [10], Lemma 2.6 will be the main tool in our APX-completeness proofs. It
will be used as follows: if F ′ is a fixed finite collection of predicates each of which can
be strictly implemented by F , then we can assume that F ′ ⊆ F . For example, if F
contains a binary predicate f , then we can assume, at any time when it is convenient,
that F also contains f ′(x, y) = f(y, x), since this equality is a strict 1-implementation
of f ′.

Example 2.7. The (Simple) Max Cut problem is the problem of partitioning
the set of vertices of a given undirected graph into two subsets so as to maximize
the number of edges with ends being in different subsets. This problem is the same
as Maximum 2-colorable Subgraph (see Example 2.4), and hence it is APX-
complete (see Problem ND14 in [1]). As was mentioned in Example 2.4, this problem
is essentially the same as Max CSP({neq2}). Let fdicut be the binary predicate
on {0, 1} such that fdicut(x, y) = 1 ⇔ x = 0, y = 1. Then Max CSP({fdicut}) is
essentially the problem Max Dicut (see problem ND16 in [1]), which is the problem
of partitioning the vertices of a digraph into two subsets V0 and V1 so as to maximize
the number of arcs going from V0 to V1. This problem is known to be APX-complete
as well, and this can be proved by exhibiting a strict 1-implementation from f to
neq2. Here it is: neq2(x, y) = fdicut(x, y) + fdicut(y, x).

For a subset D′ ⊆ D, let uD′ denote the predicate such that uD′(x) = 1 if and
only if x ∈ D′. Let UD = {uD′ | ∅ �= D′ ⊆ D}, that is, UD is the set of all nontrivial
unary predicates on D. We will now give two more examples of strict implementations
that will be used later in our proofs.

Example 2.8. Let D = {0, 1, 2}, and let gi, i = 0, 1, 2, be the binary predicates
on D defined by the following rule: gi(x, y) = 1 ⇔ (x = y = i or x, y ∈ D \ {i}). We
will show that F = {g0, g1, g2} ∪ UD strictly implements the binary predicate g(x, y)
such that g(x, y) = 1 ⇔ x = 0, y = 1. Indeed, one can check that the following is a
strict 5-implementation:

g(x, y) + 4 = max
z,w

[g0(x, z) + g1(y, w) + g2(z, w) + u{0}(z) + u{1,2}(w)].

Example 2.9. In this example, we will show that the predicate neq3 can be
strictly implemented from the binary equality predicate eq3 and all unary predicates
on D = {0, 1, 2}. We will use three additional binary predicates f1, f2, f3 defined as
follows:

f1(x, y) = 1 ⇔ x ≤ y,
f2(x, y) = 1 ⇔ (x, y) = (1, 2),
f3(x, y) = 1 ⇔ (x, y) ∈ {(1, 0), (1, 2), (2, 0)}.

1An example of such a program can be obtained from the authors or anonymously downloaded
from http://www.ida.liu.se/˜petej/supermodular.html.
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Then it can be checked that the following equalities hold:

f1(x, y) + 3 = max
z,w

[eq3(z, w) + eq3(z, y) + eq3(w, x) + u{2}(z) + u{1}(w) + u{0}(x)];

f2(x, y) + 5 = max
z,w

[f1(z, w) + f1(w, y) + f1(x, z) + u{0,1}(z) + u{0,2}(w) + u{1,2}(x)];

f3(x, y) + 2 = max
z,w

[f2(z, w) + f2(z, x) + f2(w, z) + f2(w, y) + f2(x,w) + f2(x, y)

+ f2(y, z) + u{0}(y)];

neq3(x, y) = f3(x, y) + f3(y, x).

As mentioned above, any chain of strict implementations can be replaced by a single
strict implementation. Since Max CSP({neq3}) is APX-complete by Example 2.4,
this and Lemma 2.6 imply that the problem Max CSP({eq3} ∪ UD) is APX-complete
as well. Note that this result was first proved in [7].

Another notion which we will use in our hardness proofs is the notion of a core
for a set of predicates. In the case when F consists of a single binary predicate h, this
notion coincides with the usual notion of a core of the directed graph whose arcs are
specified by h.

Definition 2.10. An endomorphism of F is a unary operation π on D such
that we have f(a1, . . . , am) = 1 ⇒ f(π(a1), . . . , π(am)) = 1 for all f ∈ F and all
(a1, . . . , am) ∈ Dm. We will say that F is a core if every endomorphism of F is
injective (i.e., a permutation).

If π is an endomorphism of F with a minimal image im(π) = D′, then a core of
F , denoted core(F), is the subset {f |D′ | f ∈ F} of RD′ .

The intuition here is that if F is not a core, then it has a noninjective endomor-
phism π, which implies that, for every assignment ϕ, there is another assignment πϕ
that satisfies all constraints satisfied by ϕ and uses only a restricted set of values, so
the problem is equivalent to a problem over this smaller set. As in the case of graphs,
all cores of F are isomorphic, so one can speak about the core of F . The following
rather simple lemma will be frequently used in our proofs.

Lemma 2.11. If F ′ = core(F) and Max CSP(F ′) is APX-complete, then so is
Max CSP(F).

Proof. We produce an AP -reduction from Max CSP(F ′) to Max CSP(F). We
may assume that the endomorphism π : D → D′ is the identity on D′, since if
it is not, then some power of π is such an endomorphism. We will now describe
functions F and G necessary for the reduction. The function F takes an instance of
Max CSP(F ′) and replaces every predicate f |D′ in it by f . If I is an instance of
Max CSP(F ′), with the set V of variables, and s′ is a feasible solution of F (I) (that
is, an assignment V → D), then G(F (I), s′) = s defined by s(x) = π(s′(x)) for all
x ∈ V . It is easy to see that s is also a feasible solution for I. Finally, note that,
since π is an endomorphism, s satisfies every constraint satisfied by s′; in particular,
we have Opt(I) = Opt(F (I)). Hence, if s′ is an r-approximate solution for F (I),
then s is an r-approximate solution for I, so we can choose α = 1 in the definition of
AP -reducibility.

Example 2.12. Let f be the binary predicate on {0, 1} considered in Example 2.7
and g the binary predicate on {0, 1, 2} considered in Example 2.8. It is easy to
see that {f} is the core of {g} where the corresponding endomorphism is given by
π(0) = 0, π(1) = π(2) = 1. Since Max CSP({f}) is APX-complete, Lemma 2.11
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implies that Max CSP({g}) is APX-complete as well. Now note that this also proves
that the problem Max CSP({g0, g1, g2} ∪ U{0,1,2}), as considered in Example 2.8, is
APX-complete.

2.2. Supermodularity. In this section we discuss the well-known combinatorial
algebraic property of supermodularity [24], which will play a crucial role in classifying
the approximability of Max CSP problems.

A partial order on a set D is called a lattice order if, for every x, y ∈ D, there exists
a greatest lower bound x�y and a least upper bound x�y. The corresponding algebra
L = (D,�,�) is called a lattice. For tuples a = (a1, . . . , an), b = (b1, . . . , bn) in Dn,
let a � b and a � b denote the tuples (a1 � b1, . . . , an � bn) and (a1 � b1, . . . , an � bn),
respectively.

Definition 2.13. Let L be a lattice on D. A function f : Dn → Z
+ is called

supermodular on L if

f(a) + f(b) ≤ f(a � b) + f(a � b) for all a,b ∈ Dn,

and f is called submodular on L if the inverse inequality holds.

We say that F ⊆ RD is supermodular on L if every f ∈ F has this property.

A finite lattice L = (D,�,�) is distributive if and only if it can be represented
by subsets of a set A, where the operations � and � are interpreted as set-theoretic
intersection and union, respectively. Totally ordered lattices, or chains, will be of
special interest in this paper. Note that, for chains, the operations � and � are
simply min and max. Hence, the supermodularity property for an n-ary predicate f
on a chain is expressed as follows:

f(a) + f(b) ≤ f(min(a1, b1), . . . ,min(an, bn)) + f(max(a1, b1), . . . ,max(an, bn))

for all a = (a1, . . . , an) and b = (b1, . . . , bn).

Example 2.14. (1) The binary equality predicate eq3 is not supermodular on
any chain on {0, 1, 2}. Take, without loss of generality, the chain 0 < 1 < 2. Then

eq3(1, 1) + eq3(0, 2) = 1 �≤ 0 = eq3(0, 1) + eq3(1, 2).

(2) Reconsider the predicates neq2 and f from Example 2.7. It is easy to check
that neither of them is supermodular on any chain on {0, 1}.

(3) Fix a chain on D and let a,b be arbitrary elements of D2. Consider the binary
predicates fa, f

b, and fb
a defined by the rules

fa(x, y) = 1 ⇔ (x, y) ≤ a,

fb(x, y) = 1 ⇔ (x, y) ≥ b,

fb
a (x, y) = 1 ⇔ (x, y) ≤ a or (x, y) ≥ b,

where the order on D2 is componentwise. It is easy to check that every predicate of
the form fa, f

b, or fb
a is supermodular on the chain. Note that such predicates were

considered in [7], where they were called generalized 2-monotone. We will see later in
this subsection that such predicates are generic supermodular binary predicates on a
chain.

We will now make some very simple, but useful, observations.
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h1

000
000
001

h2

000
000
011

h3

000
011
011

h4

100
000
000

h5

100
000
001

h6

100
000
011

h7

100
011
011

h8

100
100
000

h9

100
100
001

h10

100
100
011

h11

100
101
001

h12

110
110
000

h13

110
110
001

Fig. 2.1. A list of binary predicates on {0, 1, 2} that are supermodular on the chain 0 < 1 < 2.
The predicates are represented by matrices, the order of indices being also 0 < 1 < 2.

Observation 2.15.

1. Any chain is a distributive lattice.
2. Any lattice on a three-element set is a chain.
3. Any unary predicate on D is supermodular on any chain on D.
4. A predicate is supermodular on a chain if and only if it is supermodular on

its dual chain (obtained by reversing the order).

The tractability part of our classification is contained in the following result.

Theorem 2.16 (see [7]). If F is supermodular on some distributive lattice on
D, then weighted Max CSP(F) is in PO.

Given a binary predicate f : D2 → {0, 1}, we will often use a |D| × |D| 0/1-
matrix M to represent f : f(x, y) = 1 if and only if Mxy = 1. Note that this matrix is
essentially the table of values of the predicate. For example, some binary predicates
on D = {0, 1, 2} that are supermodular on the chain 0 < 1 < 2 are listed in Figure 2.1.
Matrices for all other binary predicates that are supermodular on 0 < 1 < 2 can be
obtained from those in the list or from the trivial binary predicate by transposing
matrices (which corresponds to swapping arguments in a predicate) and by replacing
some all-0 rows by all-1 rows, and the same for all-0 columns (but not for both rows
and columns at the same time). This can be shown by using Lemma 2.3 [6] or by
direct exhaustive (computer-assisted) search. Note that all predicates in Figure 2.1
have the form described in Example 2.14 (3). For example, h2 is f (2,1) and h9 is

f
(2,2)
(1,0) .

The property of supermodularity can be used to classify the approximability of
Boolean problems Max CSP(F) (though originally the classification was obtained
and stated [9, 10, 19] without using this property). It is easy to see that F ⊆ R{0,1}
is not a core if and only if f(a, . . . , a) = 1 for some a ∈ {0, 1} and all f ∈ F , in which
case Max CSP(F) is trivial.

Theorem 2.17 (see [7, 10]). Let D = {0, 1} and F ⊆ RD be a core. If F is
supermodular on some chain on D, then Max CSP(F) belongs to PO. Otherwise,
Max CSP(F) is APX-complete.

Remark 2.18. It was shown in Lemma 5.37 of [10] that, for |D| = 2, F can
strictly implement neq2 whenever F ⊆ RD is a core that is not supermodular on any
chain on D.

Combining Theorem 2.17 with Lemma 2.11, we get the following corollary which
will be used often in our APX-completeness proofs.

Corollary 2.19. If g′ is binary predicate on {0, 1, 2} and core({g′}) is {g} where
g is nonsupermodular predicate on a two-element subset of D, then Max CSP({g′})
is APX-complete.
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Note that there are only two (up to swapping of arguments) binary predicates g
on {0, 1} such that {g} is a core: the predicates neq2 and fdicut from Example 2.7.
As mentioned above, these two predicates are nonsupermodular, and fdicut strictly
1-implements neq2.

3. Main result. In this section we establish a generalization of Theorem 2.17 to
the case of a three-element domain. Throughout this section, let D = {0, 1, 2}. Note
that if F ⊆ RD is not a core, then, by Lemma 2.11, the problem Max CSP(F) either
is trivial (if F has a constant endomorphism) or else reduces to a similar problem over
a two-element domain, in which case Theorem 2.17 applies.

Theorem 3.1. Let D = {0, 1, 2} and F ⊆ RD be a core. If F is supermodular on
some chain on D, then weighted Max CSP(F) belongs to PO. Otherwise, unweighted
Max CSP(F) is APX-complete even if repetitions of constraints in instances are
disallowed.

Proof. The tractability part of the proof follows immediately from Theorem 2.16
(see also Observation 2.15 (1)). Assume for the rest of this section that F is a core
and it is not supermodular on any chain on D. We will show that (at least) one of
neq2, neq3 can be obtained from F by using the following two operations:

1. replacing F by F∪{f} where f is a predicate that can be strictly implemented
from F ;

2. taking the core of a subset of F .
By Example 2.4 and Lemmas 2.6 and 2.19, this will establish the result.

To improve readability, we divide the rest of the proof into three parts: in sub-
section 3.1, we establish APX-completeness for some small sets F consisting of at
most two binary and several unary predicates, and also for the case when F contains
an irreflexive nonunary predicate (see definition below). Subsection 3.2 establishes
the result when all unary predicates are available, and subsection 3.3 finishes the
proof.

Remark 3.2. Note that it can be checked in polynomial time whether a given F
is supermodular on some chain on D if the predicates in F are given by full tables of
values or only by tuples on which predicates take value 1.

3.1. Small cases and irreflexive predicates. We say that an n-ary predicate
f on D is irreflexive if and only if f(d, . . . , d) = 0 for all d ∈ D. It is easy to check
that any irreflexive nontrivial predicate f is not supermodular on any chain on D.
For example, if f is binary and f(a, b) = 1 for some a �= b, then f(a, b) + f(b, a) ≥ 1,
but f(min(a, b),min(b, a)) + f(max(a, b),max(b, a)) = 0 due to irreflexivity.

Since a predicate f is supermodular on a chain C if and only if f is supermodular
on its dual, we can identify chains on the three-element set D with the same middle
element: let Ci denote an arbitrary chain on D with i as its middle element. We also
define the set Qi that consists of all binary predicates on D that are supermodular
on Ci but on neither of the other two chains. For example, it is easy to check using
Figure 2.1 that Q1 consists of predicates h2, h5, h6, h8, h9, h10, h11 and the predicates
obtained from them by using the following operations:

1. swapping the variables (this corresponds to transposing the tables);
2. adding a unary predicate u(x) or u(y) in such a way that the sum is also

a predicate (this corresponds to replacing some all-0 rows/columns by all-1
rows/columns).

Recall that, for a subset D′ ⊆ D, uD′ denotes the predicate such that uD′(x) = 1
if and only if x ∈ D′, and UD = {uD′ | ∅ �= D′ ⊆ D}; that is, UD is the set of all
nontrivial unary predicates on D.
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Lemma 3.3. Let g be a binary predicate such that, for some a ∈ D, g(x, a) = 1
for all x ∈ D. Let g′(x, y) = 0 if y = a and g′(x, y) = g(x, y) otherwise. Then, the
following hold:

1. for any chain on D, g and g′ are supermodular (or not) on it simultaneously
and

2. {g, uD\{a}}) strictly implements g′.

Proof. The first statement can be straightforwardly verified by using the definition
of supermodularity. To see that the second statement holds, we note that g′(x, y)+1 =
g(x, y) + uD\{a}(y) is a strict 2-implementation of g′(x, y).

We say that a predicate g contains an all-one column if there exists a ∈ D such
that g(x, a) = 1 for all x ∈ D, and we define all-one rows analogously. Clearly, the
lemma above holds for both all-one rows and all-one columns. The lemma will be
used in our hardness proofs as follows: if F contains g(x, y) and uD\{a}(y), then, by
Lemma 2.6, we may also assume that g′ ∈ F .

The following lemma contains more APX-completeness results for some problems
Max CSP(F) where F is a small set containing at most two binary and some unary
predicates.

Lemma 3.4. Let f, h be binary predicates on D. The problem Max CSP(F) is
APX-complete if one of the following holds:

1. F = {f} where f is nontrivial and irreflexive;
2. F = {f} ∪ UD where f is not supermodular on any chain on D;
3. F = {f, h7} ∪ UD where f ∈ Q0 and h7 is given in Figure 2.1;
4. F = {f, h} ∪ UD where f ∈ Q1 and h ∈ Q0;
5. F = {f, u{0,1}} where f is such that f(0, 0) = f(1, 1) = 0 and f(2, 2) =

f(0, 1) = 1.

Proof. The lemma is proved by providing strict implementations, from F , of the
predicate neq3 (see Example 2.4) or of a binary predicate whose core is a nonsuper-
modular predicate on a two-element subset of D (see Corollary 2.19). In total, we
give 54 implementations.

We prove only case 1 here; the other cases are similar and can be found in the
appendix. First, we make the list of predicates we need to consider. There are 63
irreflexive nontrivial predicates on D. We may skip all predicates whose cores are
nonsupermodular predicates on a two-element subset of D, since we already have the
result for them (Corollary 2.19). For every pair of predicates that can be obtained
from each other by swapping the variables (that is, f(x, y) and f ′(x, y) = f(y, x)), we
can skip one of them. By symmetry, we may skip any predicate obtained from some
predicate already in the list by renaming the elements of D. Finally, we already know
that the result is true for the disequality predicate neq3, so we skip that one too. All
this can be done using a computer or by hand, and the resulting list contains only six
predicates. Here are strict implementations for them.

1. f1 :=
011
001
000

s
=⇒1

011
101
110

= neq3

Implementation: neq3 = f1(x, y) + f1(y, x)

2. f2 :=
010
001
100

s
=⇒1

011
101
110

= neq3

Implementation: neq3(x, y) = f2(x, y) + f2(y, x)
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3. f3 :=
011
101
100

s
=⇒3

010
001
100

= f2

Implementation: f2(x, y) + 2 = maxz[f3(z, x) + f3(x, y) + f3(y, z)]

4. f4 :=
011
101
000

s
=⇒3

011
101
110

= neq3

Implementation:
neq3(x, y) + 2 = maxz[f4(z, x) + f4(z, y) + f4(x, y) + f4(y, x)]

5. f5 :=
001
100
000

s
=⇒3

011
101
000

= f4

Implementation:
f4(x, y) + 2 = maxz,w[f5(z, w) + f5(z, y) + f5(w, y) + f5(x,w) + f5(y, z)]

6. f6 :=
011
001
100

s
=⇒4

011
101
100

= f3

Implementation:
f3(x, y) + 3 = maxz,w[f6(z, y) + f6(w, z) + f6(w, x) + f6(x, z) + f6(x, y)]

Proposition 3.5. If h ∈ R
(n)
D , n ≥ 2, is nontrivial and irreflexive, then Max

CSP({h}) is APX-complete.

Proof. The proof is by induction on n (the arity of h). The basis when n = 2 was
proved in Lemma 3.4(1). Assume that the lemma holds for n = k, k ≥ 2. We show
that it holds for n = k + 1. Assume first that there exists (a1, . . . , ak+1) ∈ Dk+1 such
that h(a1, . . . , ak+1) = 1 and |{a1, . . . , ak+1}| ≤ k. We assume without loss of gen-
erality that ak = ak+1 and consider the predicate h′(x1, . . . , xk) = h(x1, . . . , xk, xk).
Note that this is a strict 1-implementation of h′, that h′(d, . . . , d) = 0 for all d ∈ D,
and that h′ is nontrivial since h′(a1, . . . , ak) = 1. Consequently, Max CSP({h′}) is
APX-complete by the induction hypothesis, and Max CSP({h}) is APX-complete,
too.

Assume now that |{a1, . . . , ak+1}| = k+1 whenever h(a1, . . . , ak+1) = 1. Consider
the predicate h′(x1, . . . , xk) = maxy h(x1, . . . , xk, y), and note that this is a strict 1-
implementation of h′. We see that h′(d, . . . , d) = 0 for all d ∈ D (due to the condition
above) and h′ is nontrivial since h is nontrivial. We can once again apply the induction
hypothesis and draw the conclusion that Max CSP({h′}) and Max CSP({h}) are
APX-complete.

3.2. When all unary predicates are available. As the next step, we will
prove that Max CSP(F ∪ UD) is APX-complete if F is not supermodular on any
chain. As a special case of Lemma 6.3 of [6], we have the following result (see also
Observation 6.1 of [6]).

Lemma 3.6. An n-ary, n ≥ 2, predicate f is supermodular on a fixed chain C if
and only if the following holds: every binary predicate obtained from f by replacing
any given n− 2 variables by any constants is supermodular on C.

Proposition 3.7. The problem Max CSP(F ∪ UD) is APX-complete if F is
not supermodular on any chain.

Proof. By our initial assumptions, F is not supermodular on any chain. For
i = 0, 1, 2, let fi ∈ F be not supermodular on Ci. Recall that every unary predicate is
supermodular on any chain. Therefore, fi is n-ary where n ≥ 2 (note that n depends
on i). By Lemma 3.6, it is possible to substitute constants for some n−2 variables of fi
to obtain a binary predicate f ′

i which is not supermodular on Ci. Assume without loss
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of generality that these variables are the last n − 2 variables, and the corresponding
constants are d3, . . . , dn; that is, f ′

i(x, y) = fi(x, y, d3, . . . , dn). Then the following is
a strict (n− 1)-implementation of f ′

i :

f ′
i(x, y) + (n− 2) = max

z3,...,zn
[fi(x, y, z3, . . . , zn) + u{d3}(z3) + · · · + u{dn}(zn)].

By Lemma 2.6, it now is sufficient to show the result for F = {f ′
0, f

′
1, f

′
2}. We can

assume that F consists of at most three binary predicates and it is minimal with the
property of not being supermodular on any chain. In addition, we can assume that
the binary predicates in F do not contain any all-one columns or all-one rows (this is
justified by Lemma 3.3). We need to consider three cases depending on the number
of predicates in F .

Case 1. |F| = 1. The result is proved in Lemma 3.4 (2).

Case 2. |F| = 2. Assume F = {g, h}. We consider two subcases:

1. g is supermodular on C1 and C2 but not on C0; this implies that h ∈ Q0

because otherwise F ∪ UD is supermodular on C1 or C2, or else h is not su-
permodular on any chain, contradicting the minimality of F . By Lemma 3.3,
we can assume that neither g nor h have an all-1 row or column. It can
be easily checked by inspecting the list of binary predicates (see, e.g., Fig-
ure 2.1) that there exist only three such predicates g. These are predicates
h3, h4, and h7 from Figure 2.1. We have that h4(x, y) + 1 = h3(x, y) +
u{0}(x) + u{0}(y) is a strict 2-implementation of h4 from h3, h3(x, y) + 1 =
h4(x, y)+u{1,2}(x)+u{1,2}(y) is a strict 2-implementation of h3 from h4, and
h7(x, y) = h3(x, y) + h4(x, y) is a strict 1-implementation of h7. Hence, since
all unary predicates are available, it is enough to show the result for g = h7,
which has already been obtained in Lemma 3.4(3).

2. None of the predicates g, h is supermodular on two distinct (that is, not
mutually dual) chains. By symmetry, we may assume that g ∈ Q1 and
h ∈ Q0. Then the result follows from Lemma 3.4(4).

Case 3. |F| = 3. By the minimality of F , it follows that F = {g0, g1, g2} where
each gi is not supermodular on Ci but is supermodular on the other two chains. As
argued in the previous case, we may assume that g0 = h7. By symmetry, we may
assume that g1 and g2 have the following matrices, respectively:

1 0 1
0 1 0
1 0 1

and
1 1 0
1 1 0
0 0 1

.

It remains to say that, for such F , APX-completeness of Max CSP(F ∪ UD) was
shown in Examples 2.8 and 2.12.

3.3. The last step. We will need one more auxiliary lemma. Let CD = {u{d} |
d ∈ D}.

Lemma 3.8. For any F , if Max CSP(F ∪ UD) is APX-complete, then so is
Max CSP(F ∪ CD).

Proof. For any disjoint subsets S, T of D, uS∪T (x) = uS(x) + uT (x) is a strict
1-implementation of uS∪T . Use this repeatedly and apply Lemma 2.6.

Proposition 3.9. Let F be a core. If F is not supermodular on any chain, then
Max CSP(F) is APX-complete.
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Proof. If F contains a nontrivial irreflexive predicate then the result follows from
Proposition 3.5. Letting r(f) = {d ∈ D | f(d, . . . , d) = 1} for a predicate f , we can
now assume that r(f) �= ∅ for all f ∈ F . Let r(F) = {r(f) | f ∈ F}. If r(f) = S then
uS(x) = f(x, . . . , x) is a strict 1-implementation of uS(x). Hence, for each S ∈ r(F),
we can without loss of generality assume that uS ∈ F . Note that if, for some d ∈ D,
we have d ∈ r(f) for all f ∈ F , then the operation sending all elements of D to d
is an endomorphism of F , contradicting the assumption that F is a core. Hence, for
every d ∈ D, there is a unary predicate uS ∈ F (depending on d) such that d �∈ S.

Note that if {a, b, c} = D, then u{b}(x) + 1 = u{a,b}(x) + u{b,c}(x) is a strict 2-
implementation of u{b}(x). Hence, we may assume that, for any distinct two-element
sets S1, S2 in r(F), we also have S1 ∩ S2 ∈ r(F). It is easy to see that then r(F)
contains at least one of the following: (1) two distinct singletons, or (2) sets {a, b}
and {c} such that {a, b, c} = D. We will consider these two cases separately.

Note that, by Proposition 3.7, Max CSP(F ∪ UD) is APX-complete. Then, by
Lemma 3.8, Max CSP(F ∪ CD) is APX-complete as well. Hence, by Lemma 2.6,
showing that F can strictly implement every predicate in CD is sufficient to prove the
proposition.

Case 1. u{a}, u{b} ∈ F and a �= b. Assume without loss of generality that a = 0
and b = 1. We will show that F can strictly implement u{2}. Since F is a core, let
f ∈ F be an n-ary predicate witnessing that the operation π1 such that π1(0) = 0
and π1(1) = π1(2) = 1 is not an endomorphism of F . Let a = (a1, . . . , an) be a tuple
such that f(a) = 1, but f(π1(a)) = 0 (where π1(a) = (π1(a1), . . . , π1(an))). Note
that at least one of the ai’s must be equal to 2, since otherwise a = π1(a). For each
1 ≤ i ≤ n, let ti be x if ai = 2 and zi otherwise. Denote by l the number of ti’s that
are of the form zi. Now it is not difficult to verify that

g1(x) + l = max
{zi|ai �=2}

[
f(t1, . . . , tn) +

∑
ai �=2

u{ai}(zi)

]

is a strict (l + 1)-implementation of a unary predicate g1(x) such that g1(2) = 1 and
g1(1) = 0. That is, g1 is either u{2} or u{0,2}. If g1 = u{2} then we have all predicates
from CD, and we are done. So assume that g1 = u{0,2}.

Next, the operation π2 such that π2(1) = 1 and π2(0) = π2(2) = 0 is not an
endomorphism of F either. Acting as above, one can show that F strictly implements
a unary predicate g2(x) such that g2(2) = 1 and g2(0) = 0, which is either u{2}(x)
or u{1,2}(x). Again, if g2 = u{2} then we are done. Otherwise, g2 = u{1,2} and
u{2}(x) + 1 = g1(x) + g2(x) is strict 2-implementation of u{2}.

Case 2. u{a,b}, u{c} ∈ F and {a, b, c} = D. Assume without loss of generality
that a = 0, b = 1, and c = 2. Let f ∈ F be a predicate witnessing that the operation
π such that π(0) = π(1) = 1 and π(2) = 2 is not an endomorphism of F . If f is unary
then f = u{0} or f = u{0,2}. In the former case we go back to Case 1, and in the
latter case u{0}(x) + 1 = u{0,1}(x) + u{0,2}(x) is a strict 2-implementation of u{0}, so
we can use Case 1 again.

Assume that f is n-ary, n ≥ 2. Similarly to Case 1, let a = (a1, . . . , an) be a tuple
such that f(a) = 1, but f(π(a)) = 0. For each 1 ≤ i ≤ n, let ti be x if ai = 0, y if
ai = 1, and z otherwise. Note that y or/and z may not appear among the ti’s (unlike
x which does appear). We consider the case when z does appear; the other case is
very similar. If none of the ti’s is y then g1(x) + 1 = maxz[f(t1, . . . , tn) + u{2}(z)] is
a strict 2-implementation of a unary predicate g1 which is either u{0} or u{0,2} (since
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π is not its endomorphism). Hence we are done, as above. Assume now that some ti
is y. Now it is not difficult to verify that g2(x, y) + 1 = maxz[f(t1, . . . , tn) + u{2}(z)]
is a strict 2-implementation of a binary predicate g2 which satisfies g2(0, 1) = 1 and
g2(1, 1) = 0. If g2(0, 0) = 1, then the predicate g2(x, x) is either u{0} or u{0,2}, and we
are done. Otherwise, we have g2(0, 0) = 0. Now apply Lemma 3.4 (1) if g2(2, 2) = 0,
and use Lemma 3.4 (5) otherwise.

4. Conclusion. We have proved a dichotomy result for maximum constraint
satisfaction problems over a three-element domain. The property of supermodularity
appears to be the dividing line: those sets of predicates whose cores have this property
give rise to problems solvable exactly in polynomial time, while all other sets of
predicates can implement, in a regular way, the disequality predicate on a two- or
three-element set, and hence give rise to APX-complete problems. Interestingly, the
description of polynomial cases is based on orderings of the domain, which is not
suggested in any way by the formulation of the problem.

It can be shown using Theorem 2.16 that Theorem 3.1, as stated in the paper,
does not hold for domains with at least four elements. The reason is that all lattices on
at most three-element set are chains, but on larger sets there are other types of lattices
(for example, a Boolean lattice on a four-element set). For |D| ≥ 4, Theorem 2.16
can be used to construct examples of sets F such that Max CSP(F) is tractable,
and F is supermodular on some distributive lattice which is not a chain, but not
supermodular on any chain. Hence, more general lattices are required to make further
progress in classifying the complexity of Max CSPs, as is a better understanding of
the supermodularity property on arbitrary lattices. We believe that the ideas from this
paper can be further developed to obtain a complete classification of approximability
of Max CSP.

Notably, the hard problems of the form considered in this paper do not have a
PTAS. It is possible that, as in Theorem 8.8 of [10], a restriction on the incidence
graph of variables in instance can give rise to NP-hard problems that do have a PTAS.

Finally, techniques of [26] can probably be used to obtain better implementations
and more precise (in)approximability results for non-Boolean problems Max CSP.
We leave this direction for future research.

Appendix. Proof of Lemma 3.4 (Cases 2–5).

In each case, we generate a list of all applicable predicates, and then optimize it
as follows:

• skip a predicate f(x, y) if f ′(x, y) is in the list, with f(x, y) = f ′(y, x);
• skip all predicates with an all-1 row or column.

By Lemma 3.3, it is sufficient to prove the result for the optimized lists.

Cases 2–5 follow in order, with a description and a list of strict implementations.
Each strict implementation produces neq3 or some binary predicate whose core is a
nonsupermodular predicate on a two-element subset of D, or some other predicate for
which an implementation has already been found.

Cases 2 and 3 will also use eq3—the binary equality predicate—as an implemen-
tation target. Note that it was shown in Example 2.9 that the set {eq3} ∪ UD can
strictly implement neq3, and hence, Max CSP({eq3} ∪ UD) is APX-complete.

If some implementation produces a predicate g, whose core is a nonsupermodular
predicate on a two-element subset of D, then we write ([0, 1, 2] �→ [π(0), π(1), π(2)])
to describe the endomorphism π leading to the core, and we also give a matrix for
that nonsupermodular predicate.
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In all strict implementations in this section, the variables x, y are primary, and
z, w (when they appear) are auxiliary.

Case 2. F = {f} ∪ UD and f is not supermodular on any chain on D. We
further optimize the list of predicates for this case. We can assume that f(d, d) = 1
for some d, as the other predicates are handled in Case 1. By symmetry, we may skip
a predicate if there is another predicate in the list by renaming the elements of D.
We can also skip eq3, as we have handled it separately in Example 2.9.

{
f1 :=

110
010
000

}
∪ UD

s
=⇒2

100
010
001

=: g g = eq3

Implementation: g(x, y) + 1 = f1(x, y) + f1(y, x) + u{2}(x) + u{2}(y){
f2 :=

101
101
000

}
∪ UD

s
=⇒2

000
000
010

=: g g has core
00
10

([0, 1, 2] �→ [1, 1, 2])

Implementation: g(x, y) + 1 = f2(x, y) + u{2}(x) + u{1}(y){
f3 :=

110
001
100

}
∪ UD

s
=⇒3

000
001
010

=: g g has core
01
10

([0, 1, 2] �→ [1, 1, 2])

Implementation: g(x, y) + 2 = f3(x, y) + f3(y, x) + u{1,2}(x) + u{1,2}(y){
f4 :=

110
011
101

}
∪ UD

s
=⇒2

100
010
001

=: g g = eq3

Implementation: g(x, y) + 1 = f4(x, y) + f4(y, x){
f5 :=

101
100
000

}
∪ UD

s
=⇒3

000
101
000

=: g g has core
00
10

([0, 1, 2] �→ [0, 1, 0])

Implementation: g(x, y) + 2 = maxz[f5(z, y) + f5(x, z) + u{2}(z) + u{1,2}(x)]

{
f6 :=

001
010
000

}
∪ UD

s
=⇒2

110
010
000

=: g g = f1

Implementation: g(x, y) + 1 = maxz[f6(z, x) + f6(y, z) + u{0}(x)]

{
f7 :=

011
010
000

}
∪ UD

s
=⇒3

110
010
000

=: g g = f1

Implementation: g(x, y) + 2 = maxz[f7(z, x) + f7(z, y) + f7(y, z) + u{2}(z) + u{0}(x)]

{
f8 :=

001
110
000

}
∪ UD

s
=⇒4

001
000
000

=: g g has core
01
00

([0, 1, 2] �→ [0, 0, 2])

Implementation: g(x, y) + 3 = maxz[f8(z, y) + f8(x, z) + u{1,2}(z) + u{0,2}(x) + u{2}(y)]{
f9 :=

101
110
000

}
∪ UD

s
=⇒4

001
000
000

=: g g has core
01
00

([0, 1, 2] �→ [0, 0, 2])

Implementation: g(x, y) + 3 = maxz[f9(z, y) + f9(x, z) + u{1}(z) + u{0,2}(x) + u{2}(y)]{
f10 :=

011
110
000

}
∪ UD

s
=⇒4

001
010
000

=: g g = f6

Implementation:

g(x, y) + 3 = maxz[f10(x, z) + f10(x, y) + f10(y, z) + u{0,2}(z) + u{2}(x) + u{2}(y)]
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{
f11 :=

001
010
100

}
∪ UD

s
=⇒2

100
010
001

=: g g = eq3

Implementation: g(x, y) + 1 = maxz[f11(z, x) + f11(z, y)]{
f12 :=

011
010
100

}
∪ UD

s
=⇒3

110
010
000

=: g g = f1

Implementation: g(x, y) + 2 = maxz[f12(z, y) + f12(x, z) + u{1,2}(z)]{
f13 :=

011
110
100

}
∪ UD

s
=⇒4

011
010
000

=: g g = f7

Implementation: g(x, y) + 3 = maxz[f13(z, x) + f13(z, y) + f13(x, y) + u{0}(z) + u{0}(x)]

{
f14 :=

110
011
100

}
∪ UD

s
=⇒3

000
000
110

=: g g has core
00
10

([0, 1, 2] �→ [0, 0, 2])

Implementation: g(x, y) + 2 = maxz[f14(z, y) + f14(x, z) + u{2}(x)]

{
f15 :=

101
011
100

}
∪ UD

s
=⇒4

110
010
000

=: g g = f1

Implementation: g(x, y) + 3 = maxz[f15(z, x) + f15(z, y) + f15(x, z) + u{2}(z) + u{1}(y)]{
f16 :=

011
011
100

}
∪ UD

s
=⇒4

000
000
100

=: g g has core
00
10

([0, 1, 2] �→ [0, 0, 2])

Implementation: g(x, y) + 3 = maxz[f16(z, y) + f16(x, z) + f16(x, y) + u{2}(z) + u{2}(x)]

{
f17 :=

110
010
001

}
∪ UD

s
=⇒3

110
010
000

=: g g = f1

Implementation: g(x, y) + 2 = maxz[f17(z, y) + f17(x, z) + u{0,1}(z)]{
f18 :=

101
110
001

}
∪ UD

s
=⇒3

110
010
000

=: g g = f1

Implementation: g(x, y) + 2 = maxz[f18(z, x) + f18(y, z) + u{0,1}(x)]

{
f19 :=

110
100
000

}
∪ UD

s
=⇒5

000
101
000

=: g g has core
00
10

([0, 1, 2] �→ [0, 1, 0])

Implementation:

g(x, y)+4 = maxz,w[f19(z, w)+f19(z, y)+f19(w, x)+u{1}(z)+u{1}(w)+u{1,2}(x)+u{2}(y)]{
f20 :=

101
010
100

}
∪ UD

s
=⇒5

001
010
000

=: g g = f6

Implementation:

g(x, y) + 4 = maxz,w[f20(z, w) + f20(z, y) + f20(w, x) + u{2}(z) + u{1,2}(w) + u{1,2}(y)]{
f21 :=

101
011
110

}
∪ UD

s
=⇒4

101
010
100

=: g g = f20

Implementation: g(x, y) + 3 = maxz[f21(z, x) + f21(z, y) + f21(x, y) + u{0,2}(z)]

Case 3. F = {f, h7}∪UD and f ∈ Q0. We further optimize the list of predicates
for this case as follows. By symmetry, we can skip a predicate if there is another
predicate in the list obtained by swapping the names of elements 1 and 2 of D.
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{
f1 :=

000
000
101

, h7

}
∪ UD

s
=⇒3

100
010
001

=: g g = eq3

Implementation: g(x, y) + 2 = f1(x, y) + f1(y, x) + h7(x, y) + u{0,1}(x) + u{0,1}(y){
f2 :=

000
110
101

, h7

}
∪ UD

s
=⇒2

100
010
001

=: g g = eq3

Implementation: g(x, y) + 1 = f2(x, y) + h7(x, y) + u{0}(x)

{
f3 :=

000
010
001

}
∪ UD

s
=⇒2

000
110
101

=: g g = f2

Implementation: g(x, y) + 1 = maxz[f3(z, x) + f3(z, y) + u{0}(y)]{
f4 :=

001
110
001

}
∪ UD

s
=⇒3

000
000
101

=: g g = f1

Implementation: g(x, y) + 2 = maxz[f4(z, x) + f4(y, z) + u{2}(z)]{
f5 :=

000
010
101

}
∪ UD

s
=⇒2

000
110
101

=: g g = f2

Implementation: g(x, y) + 1 = maxz[f5(x, z) + f5(y, z) + u{0}(y)]

Case 4. F = {f, h} ∪ UD and f ∈ Q1 and h ∈ Q0. We show that {f} ∪ UD can
strictly implement h7, whereby the result follows from Case 3.

{
f1 :=

100
000
011

}
∪ UD

s
=⇒2

100
011
011

=: g g = h7

Implementation: g(x, y) + 1 = maxz[f1(z, x) + f1(z, y)]{
f2 :=

100
100
011

}
∪ UD

s
=⇒2

100
011
011

=: g g = h7

Implementation: g(x, y) + 1 = maxz[f2(z, x) + f2(z, y)]{
f3 :=

100
100
000

}
∪ UD

s
=⇒3

100
000
011

=: g g = f1

Implementation:
g(x, y) + 2 = maxz[f3(z, x) + f3(z, y) + f3(x, y) + u{2}(z) + u{2}(x) + u{1,2}(y)]{
f4 :=

100
100
001

}
∪ UD

s
=⇒4

100
100
000

=: g g = f3

Implementation: g(x, y) + 3 = maxz[f4(z, y) + f4(x, z) + u{2}(z) + u{0,1}(x) + u{0,1}(y)]{
f5 :=

100
101
001

}
∪ UD

s
=⇒4

100
100
001

=: g g = f4

Implementation: g(x, y) + 3 = maxz[f5(z, x) + f5(z, y) + f5(x, z) + u{0}(z) + u{1,2}(x)]{
f6 :=

000
000
011

}
∪ UD

s
=⇒2

100
100
000

=: g g = f3

Implementation: g(x, y) + 1 = f6(x, y) + u{0,1}(x) + u{0}(y){
f7 :=

100
000
001

}
∪ UD

s
=⇒2

100
101
001

=: g g = f5

Implementation: g(x, y) + 1 = maxz[f7(z, x) + f7(z, y) + u{1}(x)]
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Case 5. F = {f, u{0,1}} where f is such that f(0, 0) = f(1, 1) = 0 and f(2, 2) =
f(0, 1) = 1.{
f1 :=

010
001
101

, u{0,1}

}
s
=⇒3

010
100
000

=: g g has core
01
10

([0, 1, 2] �→ [0, 1, 0])

Implementation: g(x, y) + 2 = f1(x, y) + f1(y, x) + u{0,1}(x) + u{0,1}(y){
f2 :=

011
000
011

, u{0,1}

}
s
=⇒3

010
100
000

=: g g has core
01
10

([0, 1, 2] �→ [0, 1, 0])

Implementation: g(x, y) + 2 = f2(x, y) + f2(y, x) + u{0,1}(x) + u{0,1}(y){
f3 :=

010
101
101

}
s
=⇒3

010
001
101

=: g g = f1

Implementation: g(x, y) + 2 = maxz[f3(z, x) + f3(x, y) + f3(y, z)]{
f4 :=

010
000
001

, u{0,1}

}
s
=⇒4

010
000
000

=: g g has core
01
00

([0, 1, 2] �→ [0, 1, 0])

Implementation: g(x, y) + 3 = maxz,w[f4(z, w) + f4(w, y) + f4(x, z) + u{0,1}(z) + u{0,1}(w)]{
f5 :=

011
000
001

, u{0,1}

}
s
=⇒3

011
000
011

=: g g = f2

Implementation: g(x, y) + 2 = maxz,w[f5(z, y) + f5(w, z) + f5(x,w) + u{0,1}(z)]{
f6 :=

010
100
001

, u{0,1}

}
s
=⇒4

010
100
000

=: g g has core
01
10

([0, 1, 2] �→ [0, 1, 0])

Implementation: g(x, y) + 3 = maxz,w[f6(z, w) + f6(z, y) + f6(w, x) + u{0,1}(z)]{
f7 :=

011
100
001

}
s
=⇒3

010
101
101

=: g g = f3

Implementation: g(x, y) + 2 = maxz,w[f7(w, z) + f7(w, x) + f7(y, z)]{
f8 :=

010
001
001

, u{0,1}

}
s
=⇒4

000
100
100

=: g g has core
00
10

([0, 1, 2] �→ [0, 1, 1])

Implementation: g(x, y) + 3 = maxz,w[f8(z, w) + f8(x,w) + f8(y, z) + u{0,1}(z)]{
f9 :=

010
101
001

}
s
=⇒3

010
101
101

=: g g = f3

Implementation: g(x, y) + 2 = maxz,w[f9(w, z) + f9(w, y) + f9(x, z)]{
f10 :=

010
000
101

, u{0,1}

}
s
=⇒4

010
000
010

=: g g has core
01
00

([0, 1, 2] �→ [0, 1, 0])

Implementation: g(x, y) + 3 = maxz,w[f10(z, y) + f10(w, z) + f10(w, x) + u{0,1}(z)]{
f11 :=

011
000
101

, u{0,1}

}
s
=⇒4

011
000
011

=: g g = f2

Implementation: g(x, y) + 3 = maxz,w[f11(z, w) + f11(z, y) + f11(w, x) + u{0,1}(z)]{
f12 :=

011
100
101

, u{0,1}

}
s
=⇒5

011
100
100

=: g g has core
01
10

([0, 1, 2] �→ [0, 1, 1])

Implementation:
g(x, y) + 4 = maxz,w[f12(z, w) + f12(z, y) + f12(w, x) + u{0,1}(z) + u{0,1}(w)]
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{
f13 :=

010
000
011

, u{0,1}

}
s
=⇒3

011
000
011

=: g g = f2

Implementation: g(x, y) + 2 = maxz,w[f13(z, w) + f13(w, y) + f13(x, z) + u{0,1}(z)]{
f14 :=

010
001
011

, u{0,1}

}
s
=⇒4

011
000
011

=: g g = f2

Implementation: g(x, y) + 3 = maxz,w[f14(z, w) + f14(x, z) + f14(y, w) + u{0,1}(z)]{
f15 :=

010
101
011

, u{0,1}

}
s
=⇒5

010
101
010

=: g g has core
01
10

([0, 1, 2] �→ [0, 1, 0])

Implementation:
g(x, y) + 4 = maxz,w[f15(z, w) + f15(z, y) + f15(w, x) + u{0,1}(z) + u{0,1}(w)]
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BALANCED ALLOCATIONS: THE HEAVILY LOADED CASE∗
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Abstract. We investigate balls-into-bins processes allocating m balls into n bins based on the
multiple-choice paradigm. In the classical single-choice variant each ball is placed into a bin selected
uniformly at random. In a multiple-choice process each ball can be placed into one out of d ≥ 2
randomly selected bins. It is known that in many scenarios having more than one choice for each
ball can improve the load balance significantly. Formal analyses of this phenomenon prior to this
work considered mostly the lightly loaded case, that is, when m ≈ n. In this paper we present the
first tight analysis in the heavily loaded case, that is, when m � n rather than m ≈ n.

The best previously known results for the multiple-choice processes in the heavily loaded case
were obtained using majorization by the single-choice process. This yields an upper bound of the
maximum load of bins of m/n + O(

√
m lnn /n) with high probability. We show, however, that the

multiple-choice processes are fundamentally different from the single-choice variant in that they have
“short memory.” The great consequence of this property is that the deviation of the multiple-choice
processes from the optimal allocation (that is, the allocation in which each bin has either �m/n� or
�m/n� balls) does not increase with the number of balls as in the case of the single-choice process. In
particular, we investigate the allocation obtained by two different multiple-choice allocation schemes,
the greedy scheme due to Azar et al. and the always-go-left scheme due to Vöcking. We show that
these schemes result in a maximum load of only m/n + O(ln lnn) with high probability. All our
detailed bounds on the maximum load are tight up to an additive constant.

Furthermore, we investigate the two multiple-choice algorithms in a comparative study. We
present a majorization result showing that the always-go-left scheme obtains a better load balancing
than the greedy scheme for any choice of n, m, and d.

Key words. occupancy problems, balls-into-bins processes, randomized resource allocation
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1. Introduction. One of the central topics in the area of randomized algorithms
is the study of occupancy problems for balls-into-bins processes; see, e.g., [1, 2, 3, 5,
6, 8, 9, 10, 11, 12, 15, 17, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33]. We consider
allocation processes in which a set of independent balls representing, e.g., tasks or
jobs is assigned to a set of bins representing, e.g., servers or machines. Since the
framework of balls-into-bins processes can be used to translate realistic problems into
a formal mathematical model in a natural way, it has been frequently analyzed in
probability theory [15, 17], random graph theory, and, most recently, in computer
science. For example, in theoretical computer science, the balls-into-bins processes
found many applications in hashing (see, e.g., [16]) or randomized rounding. They also
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play a crucial role in load balancing and resource allocation in parallel and distributed
systems (see, e.g., [1, 10, 18, 31, 32]). The goal of our study is to derive improved upper
and lower bounds on the maximum load or even the entire distribution of the load
in all bins for balls-into-bins processes in which each ball is placed in a load-adaptive
fashion into one out of a small number of randomly chosen bins.

In the classical single-choice process (see, e.g., [15, 17, 30]), each ball is placed into
a bin chosen independently and uniformly at random (i.u.r.). For the case of n bins and
m ≥ n lnn balls it is well known that there exists a bin receiving m/n+Θ(

√
m lnn /n)

balls (see, e.g., [30]). This result holds not only in expectation but even with high
probability (w.h.p.).1 Let the maximum load denote the number of balls in the fullest
bin and let the max height above average denote the difference between the maximum
load and the average number of balls per bin (which is m/n in our notation). Then
the max height above average of the single choice algorithm is Θ(

√
m lnn /n), w.h.p.

Observe that the deviation between the randomized single-choice allocation and the
optimal allocation increases with the number of balls.

In this paper we investigate randomized multiple-choice allocation schemes (see,
e.g., [1, 3, 11, 22, 23, 33]). The idea of multiple-choice algorithms is to reduce the
maximum load by choosing a small subset of the bins for each ball at random and
placing the ball into one of these bins. Typically, the ball is placed into a bin with
a minimum number of balls among the d alternatives. It is well known that having
more than one choice for each ball can improve the load balancing significantly [1, 33].
Previous analyzes, however, are only able to deal with the lightly loaded case, i.e.,
m = O(n); the bounds for m � n are far off. Our main contribution is the first
tight analysis for the heavily loaded case, i.e., when m = ω(n). We investigate two
different kinds of well-known multiple-choice algorithms, the greedy scheme and the
always-go-left scheme.

• Algorithm Greedy[d] was introduced and analyzed by Azar et al. in [1].
Greedy[d] chooses d ≥ 2 locations for each ball i.u.r. from the set of bins.
The m balls are inserted sequentially, one by one, and each ball is placed
into the least loaded among its d locations (if several locations have the same
minimum load, then the ball is placed into an arbitrary one among them).
Azar et al. [1] show that the max height above average (and the maximum
load) is ln lnn/ ln d + Θ(m/n), w.h.p.

• Algorithm Left[d] was introduced and analyzed by Vöcking in [33]. Let n
be a multiple of d ≥ 2. This algorithm partitions the set of bins into d
groups of equal size. These groups are ordered from left to right. Left[d]
chooses for each ball d locations: one location from each group is chosen i.u.r.
The m balls are inserted one by one and each ball is placed into the least
loaded among its d locations. If there are several locations having the same
minimum load, the ball is always placed into the leftmost group containing
one of these locations. Vöcking [33] proved, rather surprisingly, that the
use of this unfair tie breaking mechanism leads to a better load balancing
than a fair mechanism that resolves ties at random. In particular, the max
height above average (and the maximum load) produced by Left[d] is only
ln lnn/(d lnφd) + Θ(m/n), w.h.p., where 1.61 ≤ φd ≤ 2.

In the lightly loaded case, the bounds above are tight up to additive constants.
In the heavily loaded case, however, these bounds are not even as good as the bounds

1Throughout the entire paper we say an event A related to the process of allocating m balls into
n bin occurs with high probability (w.h.p.) if Pr[A] ≥ 1 − n−κ for an arbitrarily chosen constant
κ ≥ 0. Notice that this probability does not depend on m, the number of balls.
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known for the classical single-choice process. In fact, the best known bounds for the
multiple-choice algorithms in the heavily loaded case are obtained using majorization
from the single-choice process showing only that the multiple-choice algorithms do
not behave worse than the single-choice process.

Unfortunately, the known methods for analyzing the multiple-choice algorithms
do not allow us to obtain better results for the heavily loaded case. Both the tech-
niques used in [1] (“layered induction”) and [33] (“witness trees”) inherently assume a
load of 2m/n already in their base case and therefore they do not seem to be suitable
to prove a bound better than 2m/n. Alternative proof techniques using differential
equations as suggested in [5, 22, 23, 34, 35] fail for the heavily loaded case, too. The
reason is that the concentration results obtained by Kurtz’s theorem hold only for a
limited number of balls. Therefore, the analysis of the heavily loaded case requires
new ideas. Before we proceed with the detailed statement of our results we first
provide some terminology.

1.1. Basic definitions and notation. We model the state of the system by
load vectors. A load vector u = (u1, . . . , un) specifies that the number of balls in
the ith bin (the load of the ith bin) is ui. If u is normalized, then the entries in the
vector are sorted in decreasing order so that ui describes the number of balls in the
ith fullest bin. In the case of Greedy[d], the order among the bins does not matter so
that we can restrict the state space to normalized load vectors. In the case of Left[d],
however, we need to consider general load vectors.

Suppose Xt denotes the load vector at time t, i.e., after inserting t balls using
Greedy[d] or Left[d]. Then the stochastic process (Xt)t∈N corresponds to a Markov
chain M = (Xt)t∈N whose transition probabilities are defined by the respective al-
location process. In particular, Xt is a random variable obeying some probability
distribution L(Xt) defined by the allocation scheme. (Throughout the paper we use
the standard notation to denote the probability distribution of a random variable
U by L(U).) We use a standard measure of discrepancy between two probability
distributions ϑ and ν on a space Ω, the variation distance, defined as

‖ϑ− ν‖ =
1

2

∑
ω∈Ω

|ϑ(ω) − ν(ω)| = max
A⊆Ω

(ϑ(A) − ν(A)).

A basic technique used in this paper is coupling (cf., e.g., [4, 7]). A coupling
for two (possibly identical) Markov chains MX = (Xt)t∈N with state space ΩX and
MY = (Yt)t∈N with state space ΩY is a stochastic process (Xt, Yt)t∈N on ΩX × ΩY

such that each of (Xt)t∈N and (Yt)t∈N is a faithful copy of MX and MY , respectively.
Another basic concept that we use frequently is majorization (cf., e.g., [1]). We

say that a vector u = (u1, . . . , un) is majorized by a vector v = (v1, . . . , vn), written
u ≤ v, if for all 1 ≤ i ≤ n it holds that∑

1≤j≤i

uπ(j) ≤
∑

1≤j≤i

vσ(j),

where π and σ are permutations of 1, . . . , n such that uπ(1) ≥ uπ(2) ≥ · · · ≥ uπ(n) and
vσ(1) ≥ vσ(2) ≥ · · · ≥ vσ(n). Given an allocation scheme X defining a Markov chain
MX = (Xt)t∈N and an allocation scheme Y defining a Markov chain MY = (Yt)t∈N,
we say that X is majorized by Y if there is a coupling between the two Markov chains
MX and MY such that Xt ≤ Yt for all t ∈ N.

In order to express our results of the always-go-left scheme we use d-ary Fibonacci
numbers. Define Fd(k) = 0 for k ≤ 0, Fd(1) = 1, and Fd(k) =

∑d
i=1 Fd(k−i) for k ≥ 2.
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Let φd = limk→∞
k
√
Fd(k). Then Fd(k) = Θ(φ k

d ). Notice that φ2 corresponds to the
golden ratio. φd is called the d-ary golden ratio. In general 1.61 < φ2 < φ3 < · · · < 2.

1.2. New results. Our main contribution is the first tight analysis for multiple-
choice algorithms assuming an arbitrary number of balls. Our first result is a tight
analysis of Greedy[d] in the heavily loaded case when the number of balls is upper-
bounded by a polynomial in the number of bins.

Lemma 1.1. Let β ≥ 1 be an arbitrary constant. Suppose we allocate m balls to
n bins using Greedy[d] with d ≥ 2 and m ≤ nβ. Then the number of bins with load at
least m

n + i + γ is upper bounded by n · exp(−d i), w.h.p., where γ denotes a suitable
constant, γ = γ(β).

Even if Lemma 1.1 may seem to be a simple extension of the analysis of the greedy
algorithm with m = O(n) from [1], our analysis is significantly more complicated.
The main idea behind the proof is similar to the layered induction approach from [1].
However, the fact that the number of balls is only bounded by a polynomial in the
number of bins requires many additional tricks to be applied. In particular, unlike in
[1], we have to consider the entire distribution of the bins in our analysis (while in [1]
the bins with load smaller than the average could be ignored).

The techniques used to prove Lemma 1.1 cannot be extended to deal with the
case when m is unbounded. This is because the analysis in the proof of Lemma 1.1
is based on an inductive argument showing that the bound given in the lemma holds
after throwing any number m′ ≤ m of the balls. Of course, this approach cannot
work if m is unbounded, because in that case we expect that for some m′ ≤ m there
will be some bins having a huge load, even w.h.p. Therefore, to extend the result of
Lemma 1.1 to all values of m we will need other techniques.

Our next result is the main technical contribution of this paper and is central for
extending Lemma 1.1 to all values of m. It shows that the multiple-choice processes
are fundamentally different from the classical single-choice process in that they have
“short memory.”

Lemma 1.2 (Short Memory Lemma). Let ε > 0. Let d ≥ 2 be any integer.
Let X and Y be any two load vectors describing the allocation of m balls to n bins.
Let Xt (Yt) be the random variable that describes the load vector after allocating t
further balls on top of X (Y , respectively) using protocol Greedy[d]. Then there is a
τ = O(mn6 ln4(1/ε)) such that ‖L(Xτ )−L(Yτ )‖ ≤ ε. In the special case when d = 2,
this result holds even with τ = O(mn2 + n4 ln(m/ε)).

The proof of Lemma 1.2 is done by analyzing the mixing time of the underlying
Markov chain describing the load distribution of the bins. Our study of the mixing
time is via a new variant of the coupling method (called neighboring coupling (see
Lemma 3.2 in section 3.1.2)) which may be of independent interest.

The Short Memory Lemma implies the following property of the Greedy[d] pro-
cess (see Corollary 4.1 for a precise statement). Suppose that we begin in an arbitrary
configuration with the load difference between any pair of bins being at most Δ. Then
the Greedy[d] process “forgets” this unbalance in Δ ·polylog(Δ) ·poly(n) steps. That
is, the allocation after inserting further Δ · polylog(Δ) · poly(n) balls is stochastically
undistinguishable from an allocation obtained by starting from a totally balanced sys-
tem. This is in contrast to the single-choice process that requires Δ2 · poly(n) steps
to “forget” a load difference of Δ. We show that this property implies a fundamental
difference between the allocation obtained by the multiple- and the single-choice al-
gorithms. While the allocation of the single-choice algorithm deviates more and more
from the optimal allocation with an increasing number of balls, the deviation between
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the multiple-choice and the optimal allocation is independent of the number of balls.
This allows us to concentrate the analysis for the large number of balls m on the case
when m is only a polynomial of n.

Next, we show how to incorporate the results above, in Lemmas 1.1 and 1.2, to
obtain our main result about the load distribution of Greedy[d].

Theorem 1.3. Let γ denote a suitable constant. Suppose we allocate m balls to n
bins using Greedy[d] with d ≥ 2. Then the number of bins with load at least m

n + i+γ
is upper bounded by n · exp(−d i), w.h.p.

This result is tight up to additive constants in the sense that, for m ≥ n, the
number of bins with load at least m

n + i±Θ(1) is also bounded below by n · exp(−d i),
w.h.p. In particular, Theorem 1.3 implies immediately the following corollary, which
is tight up to a constant additive term.

Corollary 1.4. If m balls are allocated into n bins using Greedy[d] with d ≥ 2,
then the number of balls in the fullest bin is m

n + ln lnn
ln d ± Θ(1), w.h.p. (that is, the

max height above average is ln lnn
ln d ± Θ(1), w.h.p.).

Next, we analyze the always-go-left scheme. The load distribution is described in
terms of Fibonacci numbers defined in the previous section.

Theorem 1.5. Let γ denote a suitable constant. Suppose we allocate m balls into
n bins using Left[d] with d ≥ 2. Then the number of bins with load at least m

n + i+ γ
is upper bounded by n · exp(−φ d·i

d ), w.h.p.
Also this bound is tight up to additive constants because the number of bins with

load at least m
n + i± Θ(1) is lower-bounded by n · exp(−φ d·i

d ), w.h.p., too. Similarly
as in the case of the analysis of Greedy[d], Theorem 1.5 immediately implies a tight
bound for the maximum load when using Left[d].

Corollary 1.6. If m balls are allocated into n bins using Left[d] with d ≥ 2,
then the number of balls in the fullest bin is m

n + ln lnn
d·lnφd

± Θ(1), w.h.p. (that is, the

max height above average is ln lnn
d·lnφd

± Θ(1), w.h.p.).
In addition to these quantitative results, we investigate the relationship between

the greedy and the always-go-left scheme directly.
Theorem 1.7. Left[d] is majorized by Greedy[d].
In other words, we show that the always-go-left scheme produces a (stochastically)

better load balancing than the greedy scheme for any possible choice of d, n, and m.
We notice also that Theorem 1.7 is the key part of our analysis in Theorem 1.5.

1.3. Outline. In the first part of the paper we present the analysis of the greedy
process. We begin in section 2 with the analysis of Greedy[d] for a polynomial number
of balls (Lemma 1.1). Next, in section 3, we show that Greedy[d] has short memory
(Lemma 1.2). Based on this property, we show in section 4 that our analysis for a
polynomial number of balls can be extended to the analysis of the allocation for an
arbitrary number of balls (Theorem 1.3).

In the second part of the paper we analyze the always-go-left process. Here we do
not prove the short memory property explicitly. Instead, our main tool is majorization
of Left[d] by Greedy[d]. In section 5, we show this majorization result, Theorem 1.7.
In section 6, we analyze the allocation obtained by Left[d] based on the knowledge
about the allocation of Greedy[d] to prove Theorem 1.5.

2. The behavior of Greedy[d ] in the polynomially loaded case. In this
section, we investigate the allocation obtained by Greedy[d] in the polynomially loaded
case. In particular, we prove Lemma 1.1. In this theorem it is assumed that the
number of balls is polynomially bounded by the number of bins, that is, m ≤ nδ with
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δ > 0 denoting an arbitrary constant. The theorem states that there exists a constant
γ ≥ 0 such that the number of bins with load at least m

n +i+γ is at most n ·exp(−d i),
w.h.p. Recall that the term w.h.p. means that an event holds with probability at least
1 − n−κ for any fixed κ ≥ 0. Of course, the choice of γ has to depend on κ and δ.
Observe that if n < n0 for some constant n0, then the theorem is trivially satisfied by
setting γ = n δ

0 . We will use this observation at several points in our analysis at which
certain inequalities hold only under the assumption n ≥ n0 for a suitable choice of
n0. The choice of n0 might depend only on δ and κ.

Without loss of generality, we assume that m ≤ nδ is a multiple of n. We prove
the theorem by induction. For this purpose, we divide the set of balls into at most
nδ−1 batches of size n each. The allocation at time t describes the number of balls
in the bins after we have inserted the balls of the first t batches, i.e., after placing
tn balls, starting with a set of empty bins at time 0. Our proof is by induction on
t ≥ 0. We provide several invariants characterizing a typical distribution of the balls
among the bins at time t. We prove by induction that if these invariants hold before
allocating a new batch, then they hold also after allocating the batch with probability
at least 1 − n−κ for any given κ > 0. This implies that the invariants hold with
probability at least 1 − n−κ+(δ−1) after inserting the last batch because the number
of batches is upper-bounded by nδ−1. In other words, we prove that each individual
induction step holds w.h.p. which implies that the invariants hold w.h.p. over all steps
because the number of induction steps is polynomially bounded.

2.1. Invariants for Greedy[d ]. The average number of balls per bin at time
t (that is, after allocating t n balls) is t. The bins with less than t balls are called
underloaded bins and the bins with more than t balls are called overloaded bins. The
number of holes at time t is defined as the minimal number of balls one would need
to add to the underloaded bins so that each bin has load at least t. The height of
a ball in a bin is defined such that the ith ball allocated to a bin has height i. We
investigate the number of holes in the underloaded bins and the number of balls in
the overloaded bins. In particular, we show that the following invariants hold w.h.p.

• L(t): At time t, there are at most 0.74n holes.
• H(t): At time t, there are at most 0.27n balls of height at least t + 3.

We prove these invariants by an interleaved induction; that is, the proof for L(t)
assumes H(t − 1) and the proof for H(t) assumes L(t). Notice that since t is the
average number of balls per bin at time t, the number of holes at time t corresponds
to the number of balls above height t. Thus, invariant L(t) implies that there are at
most 0.74n balls with height t + 1 or larger at time t. This property will enable us
to show the upper bound on the number of balls with large height given in H(t). In
turn, we will see that there is a way to translate the upper bound on the number of
balls with large height given in H(t− 1) into an upper bound on the number of holes,
which will enable us to prove invariant L(t).

Observe that the two invariants above do not directly imply Lemma 1.1. However,
they will allow us to split the analysis into two parts: one for the underloaded bins
and one for the overloaded bins. These two parts depend on each other only through
the invariants L and H. In both of these parts we will specify further invariants.
Finally, the invariants for the overloaded bins will imply Theorem 1.1.

Throughout the analysis, we use the following notation. For i, t ≥ 0, α
(t)
i denotes

the fraction of bins with load at most t− i at time t, and β
(t)
i denotes the fraction of

bins with load at least t + i at the same time. Figure 1 illustrates this notation.
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α

α

α
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β

t
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01
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2

Fig. 1. Illustration of the terms α
(t)
i and β

(t)
i .

2.2. Analysis of the underloaded bins. In this section, we analyze the num-
ber of holes in the underloaded bins. We prove the following two invariants for time
t ≥ 0. Let c1 and c2 denote suitable constants with c1 ≤ c2.

• L1(t): For 1 ≤ i ≤ c1 lnn, α
(t)
i ≤ 1.3 · 2.8−i.

• L2(t): For i ≥ c2 lnn, α
(t)
i = 0.

Observe that the invariants L1(t) and L2(t) imply the invariant L(t) as the number
of holes at time t is at most


c2 lnn�∑
i=1

1.3 · 2.8−min(i,�c1 lnn) · n ≤ 0.74n,

where the last inequality holds if n ≥ n0 for suitably chosen constant term n0. In
the following, we prove that L1(t) and L2(t) hold w.h.p. Our analysis is focused on
Greedy[2]; that is, we explicitly prove that the invariants L1(t) and L2(t) hold for
Greedy[2]. Given that the invariants hold for d = 2, a majorization argument [1,
Theorem 3.5] implies that the same invariants hold for every d ≥ 2. In fact, the
same argument shows that the choice of the tie breaking mechanism of Greedy[2] is
irrelevant. Therefore, without loss of generality, we can assume that Greedy[2] breaks
ties among bins of the same height by flipping a fair coin. Under this assumption, we
have the following lemma.

Lemma 2.1. Let � be an arbitrary integer and assume that at some point in
time there exist (at most) a
 n bins with at most � balls and (at most) a
−1 n bins
with at most � − 1 balls. Suppose that b is a bin with load exactly �. Then, the
probability that the next ball allocated by Greedy[2] will be placed into bin b is (at
least) (2 − a
 − a
−1)/n.

Proof. Since the term (2− a
− a
−1)/n is decreasing in both a
 and a
−1, we can
assume without loss of generality that there are exactly a
 n bins with at most � balls
and exactly a
−1 n bins with at most � − 1 balls. The probability that the ball goes
to one of the bins with load � is

(a
 − a
−1)
2 + 2(a
 − a
−1)(1 − a
) = (a
 − a
−1) · (2 − a
 − a
−1),

because this event happens if and only if either both random locations of the ball
point to a bin with load � or at least one of them points to a bin with load � and the
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other to a bin with load larger than �. Now, since we assume a random tie breaking
mechanism, each of the bins with load � is equally likely to receive the ball. Thus,
given that the ball falls into one of these bins, the probability that b receives the ball
is 1

(a�−a�−1)n
because the number of bins with load � is (a
−a
−1)n. Multiplying the

two probabilities yields the lemma.

Combining Lemma 2.1 with invariant L1, we can now analyze the probability that
a ball from batch t falls into a fixed bin b with a given number of holes. Applying

invariant L1(t− 1), there are at most α
(t−1)
i n ≤ 1.3 · 2.8−i · n bins with load at most

(t − 1) − i at time t − 1 for every 1 ≤ i ≤ c1 lnn. This upper bound not only holds
at the time immediately before the first ball of batch t is inserted but can be applied
to any ball from this batch since the load of a bin is nondecreasing over time. Now,
applying Lemma 2.1 yields that the probability that a ball from batch t is assigned
to a bin with load at most (t− 1) − i is at least

2 − α
(t−1)
i − α

(t−1)
i+1

n
≥ 2 − 1.3 · 2.8−i − 1.3 · 2.8−(i+1)

n
.

For i ≥ 3, this probability is larger than 1.9/n, which yields the following observation.

Observation 2.2. The probability that a ball from batch t goes to any fixed bin
with load at most t− 4 at the ball’s insertion time is at least 1.9/n, unless invariant
L1(t− 1) fails.

Thus bins with load t− 4 or less have almost twice the probability of receiving a
ball than the average. This might give an intuition as to why none of the bins falls
far behind. The following analysis puts this intuition into formal arguments.

Lemma 2.3. Let t ≥ 0. Suppose the probability that one of the invariants
L1(0), . . . , L1(t − 1) fails is at most n−κ′

for κ′ ≥ 1. For any fixed κ > 0, there
exist constants c0, c1, c2, c3 (solely depending on κ) such that

• there are at most n · 0.18 · 3−i+2 bins containing at most t − i balls, for
c0 < i ≤ c1 lnn, and

• every bin contains at least t− c2 lnn balls,

with probability at least 1 − n−κ − n−κ′
, provided n ≥ c3.

Proof. Consider a bin b. For any integer s ≥ 0, let �s denote the load of bin b
at time s, and let qs be the number of holes in bin b at time s; that is, qs = s − �s.
Now, suppose qt ≥ i + 4, for i ≥ 0. Since the number of holes can increase by at
most one during the allocation of a batch, there exists an integer t′, 0 ≤ t′ < t, such
that qt′ = 4 and for all s ∈ {t′ + 1, . . . , t} it holds that qs ≥ 4. Observe that by this
definition of t′, the number of balls from the batches t′ + 1, . . . , t that are assigned to
bin b is at most t− t′ − i.

The definition of t′ implies that the bin b has at least four holes at any time
during the allocation of the batches t′ + 1, . . . , t. More formally, at the insertion time
of any ball from batch s ∈ {t′ +1, . . . , t}, the bin b contains at most s−4 balls. Thus,
by Observation 2.2, it follows that every ball from these batches has probability at
least 1.9/n to be assigned to bin b or there exist s < t such that invariant L1(s) fails.
Ignoring the latter event, the number of balls from these batches that are placed
into bin b is stochastically dominated by a binomially distributed random variable
B((t − t′)n, 1.9/n). However, we cannot simply condition on L1(0, . . . , t − 1) as this
gives an unwanted bias to the random experiments under consideration. Instead we
explicitly exclude the event ¬L1(0, . . . , t − 1) from our considerations. This way, we
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obtain

Pr[(qt ≥ i + 4) ∧ L1(0, . . . , t− 1)] ≤
t−1∑
t′=0

Pr[B((t− t′)n, 1.9/n) ≤ t− t′ − i]

≤
∞∑
τ=1

Pr[B(τ n, 1.9/n) ≤ τ − i]

=

∞∑
τ=1

τ∑
k=i

Pr[B(τ n, 1.9/n) = τ − k].

Next, for 0 ≤ k < τ , we obtain

Pr[B(τ n, 1.9/n) = τ − k] =

(
τ n

τ − k

)
·
(

1 − 1.9

n

)τ n−τ+k

·
(

1.9

n

)τ−k

≤ (1.9 e τ)τ−k

(τ − k)!
e−(τ n−τ+k) 1.9/n

≤ (1.9 τ)τ−k

(τ − k)τ−k
e−0.9 τ−k+1.9 τ/n

≤
(

1.9 τ

τ − k

)τ−k

e−0.89 τ−k,

where the last inequality holds for n ≥ 190. Now, set z = τ/k > 1. Then, we obtain
for k > 0

Pr[B(τ n, 1.9/n) = τ − k] ≤
(

1.9 z k

(z − 1) k

)(z−1) k

e−0.79 z k−0.1 τ−k

=

(
1.9 z

z − 1

)(z−1) k

e−0.79 (z−1) k−1.79 k−0.1 τ

=

(
e−1.79

(
1.9 z

e0.79 (z − 1)

)(z−1)
)k

e−0.1 τ .

The term

(
1.9 z

e0.79 (z − 1)

)(z−1)

, z ≥ 1, takes its maximum at z = 2.22 . . . and is

bounded from above by 1.74. Therefore,

Pr[B(τ n, 1.9/n) = τ − k] ≤
(
1.74 · e−1.79

)k · e−0.1 τ ≤ 3.4−k · e−0.1 τ

for 0 < k < τ . The same inequality also holds for k = 0, because for n ≥ 13 it holds
that

Pr[B(τ n, 1.9/n) = τ − 0] = Pr[B(τ n, 1.9/n) = τ ]

=

(
τ n

τ

)
·
(

1 − 1.9

n

)τ (n−1)

·
(

1.9

n

)τ

≤
(
e τ n

τ

)τ

e1.9 τ n−1
n ·

(
1.9

n

)τ

=

(
1.9 e

e1.9 n−1
n

)τ

≤ e−0.1 τ .
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Finally, we can obtain the same bound for k = τ . In this case,

Pr[B(τ n, 1.9/n) = τ − k] = Pr[B(τ n, 1.9/n) = 0]

=

(
1 − 1.9

n

)τ n

≤ e−1.9 τ

≤ 3.4−k · e−0.1 τ .

Substituting this bound into the upper bound for Pr[qt ≥ i + 4] gives

Pr[(qt ≥ i + 4) ∧ L1(0, . . . , t− 1)] ≤
∑
τ≥1

∑
k≥i

3.4−k · e−0.1τ ≤ 13.5 · 3.4−i.

Now let Qt denote the maximum number of holes over all bins at time t. Recall
that the probability for the event ¬L1(0, . . . , t − 1) is bounded from above by n−κ′

.
Consequently,

Pr[Qt ≥ i + 4] ≤ n−κ′
+ Pr[(Qt ≥ i + 4) ∧ L1(0, . . . , t− 1)] ≤ n−κ′

+ n · 13.5 · 3.4−i.

It follows Qt = O(log n), w.h.p. More specifically, for every κ ≥ 0, there exists a
constant c2 such that every bin contains at least t − c2 lnn balls, with probability
1 − n−κ′ − 1

2n
−κ. This yields the second statement given in the lemma. In the

following, we show that the first statement holds with probability at least 1 − 1
2n

−κ.
In particular, we prove that for any given κ > 0, there are constants c0, c1, c3 such
that, for c0 < i ≤ c1 lnn and n ≥ c3, there are at most 0.18 · 3−i+2 ·n bins containing
t− i or less balls at time t, with probability at least 1− n−κ−1 ≥ 1− (2c1 n

κ lnn)−1.
This way, the probability that one of the statements listed in the lemma fails is at
most n−κ′

+ n−κ, so that the lemma is shown.
Let c0 = 40. For i > c0, we obtain

Pr[qt ≥ i] ≤ n−κ′
+ 13.5 · 3.4−i+4 ≤ n−1 + 0.65 · 2.8−i.

Now let Xb be an indicator random variable that is 1 if bin b holds at most t− i balls,
and that is 0, otherwise. Define X =

∑
Xb. We have to prove that X ≤ 1.3·2.8−i ·n,

w.h.p.
Let us first notice that

E[X] ≤ n · Pr[qt ≥ i] ≤ 0.65 · 2.8−i · n + 1.

The random variables Xb are “negatively associated” in the sense of [14, Proposi-
tion 7]. Hence, we can apply a Chernoff bound to these variables: For every μ ≥ E[X],
Pr[X ≥ 2μ] ≤ e−μ/2. We choose μ = 0.65 · 2.8−i · n + 1, set c1 = 0.5, and assume
that c3 is sufficiently large so that μ ≥ 2 (κ+ 1) lnn for every i ≤ c1 lnn and n ≥ c3.
This yields

Pr[X ≥ 1.3 · 2.8−i · n + 2] ≤ Pr[X ≥ 2μ] ≤ e−μ/2 ≤ e−(κ+1) lnn = n−κ−1.

This completes the proof of Lemma 2.3.
The second part of the lemma corresponds to invariant L2(t), and the first part

corresponds to invariant L1(t), but only for i > c0. Thus, it remains to show invariant
L1(t) for 1 ≤ i ≤ c0; that is, we have to show αt

i ≤ 1.3 · 2.8−i. We will solve this
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problem by specifying a recursive formula upper-bounding the term α
(t)
i , 1 ≤ i ≤ c0,

in terms of the vector (α
(t−1)
i−1 , . . . , α

(t−1)
i+3 ).

Lemma 2.4. Let ε > 0 and a0, . . . , a4 be constant reals with 0 < a4 < · · · a0 < 1.
Let k be a constant integer. Let � denote any integer. Suppose for i = 0, . . . , 4 there
are at most ai n bins with load at most �− i at time t−1. Then, at time t, the number
of bins with load at most � is at most gk(0) ·n, w.h.p., where the function g is defined
by

gj(i) =

{
ai if j = 0 or i = 4,
(1 + ε) · (gj−1(i + 1) + (gj−1(i) − gj−1(i + 1)) · E) otherwise,

where

E = exp

(
−2 − gj−1(i + 1) − gj−1(i)

k

)
.

Proof. For the time being, let us assume that n is a multiple of k. We divide the
allocation of the n balls into k phases, into each of which we insert n/k balls using
Greedy[2]. For 0 ≤ i ≤ 4 and 1 ≤ j ≤ k, we show that n · gj(i) is an upper bound on
the number of bins with load at most � − i after phase j. Observe that this claim is
trivially satisfied for i = 4.

We perform an induction on j, the index of the phase. Observe that for 0 ≤ i ≤ 4,
n·g0(i) is an upper bound on the number of bins with load at most �−i at the beginning
of phase 1. In the inductive hypothesis we assume that n · gj−1(i) is an upper bound
on the number of bins with load at most �− i at the beginning of phase j ≥ 1. Now
consider the allocation of the n/k balls in phase j. Suppose b is a bin having load �− i
(0 ≤ i ≤ 3) at the beginning of that phase. Lemma 2.1 implies that the probability
that b receives none of the next n/k balls is at most(

1 − 2 − gj−1(i) − gj−1(i + 1)

n

)n/k

≤ exp

(
−2 − gj−1(i + 1) − gj−1(i)

k

)
= E.

Thus, the expected number of bins with load exactly �− i not receiving a ball in this
phase is at most

n · (gj−1(i) − gj−1(i + 1)) · E.

As a consequence, the expected fraction of bins containing at most �− i balls at the
end of phase k is upper-bounded by

gj−1(i + 1) + (gj−1(i) − gj−1(i + 1)) · E

for 0 ≤ i ≤ 3. This term, however, by the definition, is equivalent to gj(i)/(1+ε), and
hence the expected number of bins containing at most � − i balls is upper-bounded
by n gj(i)/(1 + ε). Applying Azuma’s inequality to this expectation, we can observe
that the deviation is at most o(n), w.h.p. Hence, since n · gj(i) ≥ a4 · n = Θ(n),
we conclude that the stochastic deviation can be bounded by a factor (1 + ε) for any
ε > 0, provided n is sufficiently large. We conclude that the fraction of bins containing
at most �− i balls at the end of phase k is at most gj(i), w.h.p.

Now let us consider the case that n is not a multiple of k. In this case, we can
upper-bound the probability that b receives none of the at least n/k − 1 balls from
the next batch by (

1 − 2

n

)−1

· E
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instead of E as before. Obviously the leading factor in front of the E can be made
arbitrarily small by choosing n sufficiently large so that it is covered by the 1 + ε
factor that we already used above to cover stochastic deviations. This completes the
proof of the lemma.

In the following, we apply the recursive formula given in Lemma 2.4 to prove that
invariant L1(t) holds for every i ∈ {1, . . . , c0−1}. The recursion gives an upper bound

for α
(t)
i in terms of the vector (a0, . . . , a4) = (α

(t−1)
i−1 , . . . , α

(t−1)
i+3 ). For i ≥ 2, the terms

α
(t−1)
i−1 , . . . , α

(t−1)
i+3 can be estimated using invariant L1(t− 1). Suppose this invariant

is given. Fix any i ∈ {2, . . . , c0 − 1}. For i′ = 0, . . . , 4, we set ai′ = 1.3 · 2.8−(i+i′−1).
Then, ai′ is an upper bound on the fraction of bins with load at most i − i′ at time
t − 1. Now we choose k = 20 and ε = 1

1000 , and we numerically calculate gk(0)
using Maple. For such a choice of parameters, we obtain gk(0) ≤ 1.3 · 2.8−i. By

Lemma 2.4, gk(0) is an upper bound on α
(t)
i , w.h.p. Thus, invariant L(t) is shown for

i ≥ 2. Unfortunately, this approach does not work for i = 1, because in that case a0

corresponds to α
(t−1)
0 , which is not covered by invariant L1(t−1). In what follows, we

prove another lemma that gives an upper bound on α
(t−1)
0 based on invariant H(t−1).

Lemma 2.5. Suppose H(t−1) is fulfilled. Let (a0, . . . , a4) := (α
(t−1)
0 , . . . , α

(t−1)
4 ).

Then

a0 ≤ 1 − a1 + a2 + a3 + a4 − 0.27

2
.

Proof. At any time τ ≥ 0, the number of holes at time τ is Aτ =
∑

j≥1 α
(τ)
j n.

Since the number of balls above the average height is equal to the number of holes, we
can conclude that Aτ also corresponds to the number of balls with height at least τ+1
at time τ . Now, suppose invariant H(τ) holds. Then, there are at most Bτ = 0.27n
balls of height at least τ + 3 at time τ . Combining these two bounds, the number of
balls with height either τ +1 or τ +2 is lower-bounded by Aτ −Bτ . This implies that
at least (Aτ − Bτ )/2 bins contain more than τ balls at time τ . As a consequence,
the number of bins containing at most τ balls is upper-bounded by n− (Aτ −Bτ )/2.
Hence,

α
(τ)
0 n ≤ n− Aτ −Bτ

2
≤ n ·

(
1 −

∑4
j=1 α

(τ)
j − 0.27

2

)
.

Finally, setting τ = t− 1 and α
(τ)
j = aj gives the lemma.

Now, we are ready to prove invariant L1(t) by showing gk(0) ≤ 1.3 · 2.8−1 for all
choices of ai′ ∈ [0, 1.3 · 2.8−i′ ], 1 ≤ i′ ≤ 4, and a0 ∈ [0, 1− 1

2 (a1 +a2 +a3 +a4 − 0.27)].
Again, we check the condition on gk(0) numerically using Maple. For this purpose
we need to discretize the domains of the ai’s. For the discretization, we use the
monotonicity of gk(0): the term gk(0) is monotonically increasing in each of the
terms a0, . . . , a4. Therefore, it suffices to check the parameters a1, . . . , a4 in discrete
steps of a suitable size δ > 0 while assuming

a0 = 1 − a1 + a2 + a3 + a4 − 0.27 − 4 δ

2
.

In fact, we choose k = 20, ε = 1
1000 , and δ = 1

400 . The numerical calculations with
Maple show that the above condition on gk(0) is satisfied in all cases. Hence, the
invariants L1(t), L2(t), and, thus, L(t) are shown.
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2.3. Analysis of the overloaded bins. In this section, we will analyze the
distribution of load in the overloaded bins. In particular, we prove invariant H(t)
stating that the number of balls with height at least t + 3 is at most 0.27n. Our
analysis is based on invariant L(t) which we proved in the previous section based on
H(t− 1). Thus H(t− 1) yields L(t) and, in turn, L(t) yields H(t).

Our analysis of invariant H(t) is obtained by the analysis of two further invariants
that will imply invariant H(t) and will yield the proof of Lemma 1.1. These invariants
are defined as follows. Let

h(i) = 0.7 · 0.53d
i−2

.

Let � denote the smallest integer i such that h(i) ≤ n−0.9. Let b ≥ 1 denote a suitable
constant, whose value will be specified later. For i ≥ 3, define

f(i) =

⎧⎨
⎩

h(i) for 2 ≤ i < �,
max{h(i), 1

4 n
−0.9} for i = �,

b n−1 for i = � + 1.

We will prove that the following invariants hold w.h.p.

• H1(t): β
(t)
i ≤ f(i) for 2 ≤ i ≤ �,

• H2(t):
∑

i>
 β
(t)
i ≤ b n−1.

Roughly speaking, invariant H1 states that the sequence β2, β3, . . . , β
 decreases dou-
bly exponentially, and the number of balls on layer � is upper-bounded by 1

4 n
0.1.

Furthermore, invariant H2 states that there is only a constant number of balls with a
height larger than �. These two invariants imply the bounds given in Lemma 1.1. Fur-
thermore, these invariants imply the invariant H(t) as they upper-bound the number
of balls above layer t + 3 by


−1∑
i=3

h(i)n +
1

4
n−0.1 + b ≤ 0.26n +

1

4
n−0.1 + b ≤ 0.27n,

where the last inequality holds for n ≥ 50b + 78. We show the invariants H1 and H2

by induction. Our induction assumptions are H1(0), . . . , H1(t − 1), H2(t − 1), and
L(t). We prove that these assumptions imply H1(t), H2(t), and H(t), w.h.p. Our
analysis starts by summarizing some properties of the function f . We assume that n
is sufficiently large.

Claim 2.6.

A1. f(2) = 0.371;
A2. f(i) ≥ 0.53−2f(i + 1) for 3 ≤ i ≤ �;
A3. f(i) ≥ 0.7−1f(i− 1)d for 3 ≤ i ≤ �;
A4. f(i) ≥ 1

4n
−0.9 for 3 ≤ i ≤ �.

Proof. The properties A1 and A4 follow directly from the definition of f . Property
A2 can be seen as follows. For 3 ≤ i ≤ �−2, f(i) = h(i) as well as f(i+1) = h(i+1).
Thus,

f(i + 1) = 0.7 · 0.53d
i−1

= 0.7 · 0.53d
i−2·d ≤ 0.7 · 0.53d

i−2+2 ≤ 0.532 · f(i).

If i = �− 1, then f(i+ 1) = h(i+ 1) or f(i+ 1) = 1
4n

−0.9. In the former case, we can
apply the same argument as before. In the latter case, we apply f(i) ≥ n−0.9 which
immediately yields f(i)/f(i+1) > 4 ≥ 0.53−2. Finally, in the case i = �, we need the
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assumption that n is sufficiently large so that f(�)/f(� + 1) ≥ 1
4n

−0.9/(bn) ≥ 0.53−2.
It remains to prove property A3. For 3 ≤ i ≤ �,

f(i− 1)d = (0.7 · 0.53d
i−3

)d = 0.7d · 0.53d
i−2 ≤ 0.7 · f(i).

Now we use these properties to show H1(t) using a “layered induction” on the
index i, similar to the analysis presented in [1]. For the base case, i.e., i = 2, we apply
invariant L(t). This invariant yields that, at time t, there exist at most 0.74n balls
of height larger than t. Consequently, the number of bins with t + 2 or more balls is

at most 0.74n/2 = 0.37n. Applying property A1 yields β
(t)
2 ≤ 0.37 ≤ f(2). Thus,

invariant H1(t) is shown for i = 2.
Next we prove H1(t) for i ∈ {3, . . . , �}. Fix i, 3 ≤ i ≤ �. We assume that H1(t)

holds for i − 1. Let q denote the number of bins that contain t + i or more balls at
time t− 1, i.e., immediately before batch t is inserted, and let p denote the number of
balls from batch t that are placed into a bin containing at least t+ i− 1 balls at time

t. Observe that β
(t)
i · n ≤ q + p. Thus, it suffices to show q + p ≤ f(i) · n. Applying

induction assumption H1(t− 1), we obtain

q ≤ β
(t−1)
i+1 · n ≤ f(i + 1) · n

(A2)

≤ 0.532 · f(i) · n.

Bounding p requires slightly more complex arguments. For 3 ≤ i ≤ �, the probability
that a fixed ball of batch t is allocated to height t + i is at most f(i − 1)d. This is
because each of its locations has to point to one of the bins with t + i − 1 or more
balls, and by our induction on i, the fraction of these bins is bounded from above by
f(i− 1). Taking into account all n balls of batch t, we obtain

E[p] ≤ f(i− 1)d · n
(A3)

≤ 0.7 · f(i) · n.

Applying a Chernoff bound yields, for every ε ∈ (0, 1],

Pr[p ≥ (1 + ε) · 0.7 · f(i) · n] ≤ exp

(
−0.7 ε2

2
· f(i) · n

)
(A4)

≤ exp

(
−0.7 ε2

8
· n0.1

)
≤ n−κ,

where the last inequality holds for any given κ and ε > 0, provided n is sufficiently

large. Hence, p ≤ (1 + ε) · 0.7 · f(i) · n, w.h.p. Consequently, β
(t)
i · n ≤ q + p ≤

(0.532 +0.7 · (1+ ε)) · f(i) ·n, w.h.p. We set ε = 0.02 so that (0.532 +0.7 · (1+ ε)) ≤ 1.
This proves invariant H1(t) for 2 ≤ i ≤ �.

Finally, we prove invariant H2(t). For 0 ≤ τ ≤ t, let xτ denote a random variable
which is one if at least one ball of batch τ is allocated into a bin with load larger
than τ + �, and zero, otherwise. Furthermore, let hτ denote the number of balls from
batch τ that are allocated into a bin with load larger than τ + �. Because of the
invariants H1(1), . . . , H1(t), the probability that a fixed ball from batch τ will fall
into a bin with more than τ + � balls is at most f(�)d ≤ (n−0.9)d ≤ n−1.8. Therefore,
Pr[xτ = 1] ≤ n · n−1.8 = n−0.8. In particular, for any integer j ≥ 1,

Pr[hτ ≥ j] ≤
(
n

j

)(
1

n1.8

)j

≤ n−0.8j .
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In other words, hτ = O(1), w.h.p. Thus, we can assume that there exists a
suitable constant j so that hτ ≤ j for 1 ≤ τ ≤ t. A violation of H2(t) implies that the
bins with load at least t+ �+ 1 contain more than b balls of height at least t+ �+ 1.
Observe that these balls must have been placed during the last b rounds or one of the
invariants H2(1), . . . , H2(t− 1) is violated. That is, if H2(1), . . . , H2(t− 1) hold, then
a violation of H2(t) implies that j ·

∑t
τ=t−b xτ ≥ b. The probability for this event is

at most

Pr

[
t∑

τ=t−b

xτ ≥ b/j

]
≤

(
b

b/j

)
·
(

1

n0.8

)b/j

≤
(

ej

n0.8

)b/j

≤ n−κ

for any constant κ, provided that n is sufficiently large. Consequently, invariant H2

holds, w.h.p., over all batches. This completes the proof of Lemma 1.1.

3. Greedy has short memory. The goal of this section is to prove the Short
Memory Lemma, Lemma 1.2. We will study the performance of Greedy[d] by analyz-
ing the underlying Markov chain describing the load distribution of the bins and our
analysis uses a new variant of coupling approach (neighboring coupling (see section
3.1.2)) to study the convergence time of Markov chains.

Remark 1. It is well known that the Short Memory Lemma does not hold for d = 1,
that is, for the single-choice algorithm. In that case, in order to claim that Xτ has
stochastically almost the same distribution as Yτ one must have τ = Ω(m2 ·poly(n)).

3.1. Auxiliary lemmas. In this subsection we state some auxiliary results that
will be used in order to prove Lemma 1.2.

3.1.1. A simple load estimation. We present here the following simple (and
known) lemma (see, e.g., [15, 17, 30]) that we use in the proof of Lemma 3.9.

Lemma 3.1. Suppose that m balls are allocated in n bins using Greedy[2]. Let p
be any positive real. Then with probability at least 1− p the minimum load in any bin
is larger than or equal to

m

n
−
√

2m

n
· ln n

p
.

Proof. The proof follows easily from the fact that the minimum load in Greedy[2]
is (stochastically) not smaller than the minimum load in the process that allocates m
balls in n bins i.u.r. (this follows, for example, from the majorization results presented
in [1, Theorem 3.5]). The minimum load in the process that allocates m balls in n
bins i.u.r. can be estimated by looking at each bin independently. Then, we apply the
Chernoff bound2 to estimate the probability that the load of the bin is smaller than

the expected load (i.e., from m
n ) by more than

√
2m
n · ln n

p . We apply the Chernoff

bound to m independent random variables X1, . . . , Xm with Xi indicating the event
that the ith ball is allocated in the given bin. Then, we obtain for every t ∈ N

Pr
[
given bin has load ≤ m

n
− t

]
≤ exp

(
−n t2

2m

)
.

2We use the following form of the Chernoff bound (see, e.g., [21, Theorem 2.3 (c)]): If X1, . . . , Xm

are binary independent random variables and if X =
∑m

j=1 Xj , then for any δ, 0 < δ < 1, it holds

that Pr[X ≤ (1 − δ)E[X]] ≤ exp(−δ2 E[X]/2).
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Therefore, by the union bound,

Pr
[
minimum load ≤ m

n
− t

]
≤ n · exp

(
−n t2

2m

)
.

This implies our result by setting t =
√

2m
n · ln n

p .

3.1.2. Neighboring coupling. Our main tool in the analysis of the convergence
of Markov chains is a new variant of the path coupling arguments that extends the
results from [7, 13] and which is described in the following lemma.

Lemma 3.2 (Neighboring Coupling Lemma). Let M = (Yt)t∈N be a discrete-
time Markov chain with a state space Ω. Let Ω∗ ⊆ Ω. Let Γ be any subset of Ω∗ ×Ω∗

(elements (X,Y ) ∈ Γ are called neighbors). Suppose that there is an integer D such
that for every (X,Y ) ∈ Ω∗×Ω∗ there exists a sequence X=Λ0,Λ1, . . . ,Λr =Y , where
(Λi,Λi+1) ∈ Γ for 0 ≤ i < r, and r ≤ D.

If there exists a coupling (Xt, Yt)t∈N for M such that for some T ∈ N, for all
(X,Y ) ∈ Γ, it holds that Pr[XT 	= YT | (X0, Y0) = (X,Y )] ≤ ε

D , then

‖L(XT |X0 = X) − L(YT |Y0 = Y )‖ ≤ ε

for every (X,Y ) ∈ Ω∗ × Ω∗.
Proof. For any pair of neighbors (Λ,Λ′) ∈ Γ,

‖L(ZT |Z0 = Λ) − L(ZT |Z0 = Λ′)‖ ≤ ε

D

by the well-known Coupling Lemma (see, e.g., [4, Lemma 3.6]). As a consequence, we
obtain

‖L(ZT |Z0 = X) − L(ZT |Z0 = Y )‖

≤
r∑

i=1

‖L(ZT |Z0 = Λi) − L(ZT |Z0 = Λi−1)‖ ≤ r · ε

D
≤ ε.

Thus, if we can find a neighboring coupling, we obtain immediately a bound on
the total variation distance in terms of the tail probabilities of the coupling time, i.e.,
a random time T for which Xt = Yt for all t ≥ T.

3.1.3. Random walks on N. In this section we present some auxiliary results
on the convergence rates of a random walk on the line N with the starting point D,
with the absorbing barrier at 0, and with a drift β ≥ 0 toward 0. We feel that these
results might be known, but since we have not seen them in forms needed in our
paper, we decided to present them here in detail for the sake of completeness.

We begin with the following result which can be viewed as a bound on the number
of steps needed by a random walk on the integer line with positive drift toward 0 until
the “barrier” 0 is hit.

Lemma 3.3 (random walk on N—positive drift toward 0). Let ε and β be any
positive reals. Let D be an arbitrary natural number. Let c ≥ 1 be an arbitrary
constant. Let (Xt)t∈N be a sequence of (not necessarily independent) random variables
such that

(1) 0 ≤ X0 ≤ D,
(2) for every t ∈ N, |Xt+1 −Xt| ≤ c,
(3) for every t ∈ N, if Xt > 0 then E[Xt+1 −Xt | X0,X1, . . . ,Xt] ≤ −β, and
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(4) for every t ∈ N, if Xt ≤ 0 then Xt+1 = 0.
Then, for certain T = Θ(D/β + ln(1/ε)/β2), if τ ≥ T then Pr[Xτ > 0] ≤ ε.
Proof. We eliminate the requirement that Xt is never negative by introducing

a new sequence of random variables (Yt)t∈N. If Xt > 0 then we set Yt = Xt, and
otherwise we define Yt = Yt−1 − β.

Then, conditions (1)–(2) still hold for sequence (Yt)t∈N, condition (3) holds for
(Yt)t∈N even without the assumption that Yt > 0, and we have a new condition (4∗)
such that for every t ∈ N, if Yt ≤ 0 then Yt+1 ≤ 0. Additionally, it is easy to see that
for every t ∈ N it holds that Pr[Yt > 0] = Pr[Xt > 0].

Next, since for every t we have E[Yt+1 − Yt | Y0, . . . ,Yt] ≤ −β, we see that
E[Yt] ≤ D − β t. Therefore, we can apply the Hoeffding–Azuma inequality (see, e.g.,
[21, Theorem 3.10]) to obtain that for every α > 0 it holds that

Pr[Yt > α + E[Yt]] ≤ e−α2/(2tc).

Since for α = t β −D we have α + E[Yt] ≤ 0, we can conclude that

Pr[Xt > 0] = Pr[Yt > 0] ≤ e−(t β−D)2/(2tc),

which yields the lemma.
Next, we investigate random walks on the integers with “balanced” drift, or a

drift which is very small; that is, β in Lemma 3.3 is tiny and hence the bound at that
lemma is weak.

Lemma 3.4 (random walk on N—balanced case). Let ε be any positive real. Let
D be an arbitrary natural number. Let c ≥ 1 be an arbitrary constant. Let (Xt)t∈N

be a sequence of (not necessarily independent) integer random variables such that the
following properties hold:

1. 0 ≤ Xt ≤ D for every t ∈ N,
2. for every t ∈ N, |Xt+1 −Xt| ≤ c,
3. for every t ∈ N, if Xt > 0 then Xt+1 	= Xt and E[Xt+1−Xt | X0,X1, . . . ,Xt] ≤

0, and
4. for every t ∈ N, if Xt = 0 then Xt+1 = 0.

Then, for certain T = Θ(D2 · ln(1/ε)), if τ ≥ T then Pr[Xτ > 0] ≤ ε.
Proof. We first observe that it is enough to prove the lemma only for E[Xt+1 −

Xt | X0, . . . ,Xt] = 0. We follow here arguments given in [19, Lemma 4]. Recall
that random variables V0,V1, . . . , form a submartingale with respect to a sequence
(Wt)t∈N if E[Vt+1 − Vt | W0,W1, . . . ,Wt] ≥ 0 for every t ∈ N. A random variable
τ is a stopping time for the submartingale if for each t one can determine if τ ≥ t.
We shall use the optional stopping time theorem (due to Doob) for submartingales
which says that if (Ut)t∈N is a submartingale (Ut)t∈N with bounded |Ut+1 − Ut| for
every t ∈ N and τ is a stopping time with finite expectation, then E[Uτ ] ≥ E[U0].

Fix X0. Define the stochastic process Z0,Z1, . . . such that for every t ∈ N,

Zt =

{
(D −Xt)

2 − t if either t = 0 or t > 0 and Xt−1 > 0,
Zt−1 if t > 0 and Xt−1 = 0.

Let us first observe that Zt is a submartingale with respect to the sequence (Xt)t∈N.
Indeed, conditioned on X0,X1, . . . ,Xt, if Xt = 0 then Zt+1 − Zt = 0. Otherwise, if
Xt > 0, then we obtain E[Zt+1 −Zt] = E[((D−Xt+1)

2 − (t+1))− ((D−Xt)
2 − t)] =

E[(Xt+1−Xt)
2−1+2·(Xt−Xt+1)·(D−Xt)] ≥ E[(Xt+1−Xt)

2]−1+2·(D−Xt)·E[Xt−
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Xt+1] ≥ 1 − 1 + 0 ≥ 0. Here, we used the fact that if Xt > 0 then Xt+1 	= Xt, and
therefore since each of Xt+1 and Xt is an integer, it holds that E[(Xt+1 −Xt)

2] ≥ 1.
Next, we notice that the differences |Zt+1 − Zt| are bounded for every t ∈ N

and the random time TX0 = min{t : Xt = 0} is a stopping time for Zt with finite
expectation. Moreover, Z0 = (D−X0)

2 and ZTX0
= D2−TX0 . Since E[ZTX0

] ≥ E[Z0]

by the optional stopping time theorem, we get E[TX0 ] ≤ X0 · (2D −X0) ≤ D2.
Take t = e · D2. The Markov inequality implies that Pr[TX0 ≥ t] ≤ e−1. If we

run ln(1/ε) independent trials of length t then for T = t · ln(1/ε) the probability that
XT 	= 0 is at most ε−1.

3.2. Greedy[d ] has short memory: Analysis for d=2. In this section we
prove Lemma 1.2 for d = 2. More precisely, we will prove various properties about
Greedy[d]. For d = 2 these properties will immediately imply Lemma 1.2. For d > 2
we need some additional arguments which are then presented in section 3.3.

Throughout this section we deal only with normalized load vectors. For every
k ≥ 0, let Ωk denote the set of normalized load vectors with k balls. In our analysis, we
investigate the following Markov chain M[d] = (Mt)t∈N, which models the behavior
of protocol Greedy[d]:

Input: M0 is any load vector in Ωm

Transitions Mt ⇒ Mt+1:

Pick q ∈ [n] at random such that Pr[q = k] = kd−(k−1)d

nd

Mt+1 is obtained from Mt by adding a new ball to the qth fullest bin

It is easy to see that the choice of q is equivalent to the choice obtained by
the following simple randomized process: Pick q1, q2, . . . , qd ∈ [n] i.u.r. and set q =
max{qi : 1 ≤ i ≤ d}. This in turn, is equivalent to the choice of q obtained by
Greedy[d]: Pick d bins i.u.r. and let the least loaded among the chosen bins be the qth
fullest bin in the system.

Our proof of Lemma 1.2 is via the neighboring coupling method discussed in detail
in section 3.1.2. Let X and Y denote two vectors from Ωm. We study the process
by which we add new balls on the top of each of the allocations described by these
vectors. We analyze how many balls one has to add until the two allocations are
almost indistinguishable.

3.2.1. Neighboring coupling. In order to apply the Neighboring Coupling
Lemma to analyze the Markov chain M[d] = (Mt)t∈N, we must first define the notion
of neighbors. Let us fix m and n. Let us define Ω∗ = Ωm and let Γ be the set of pairs
of those load vectors from Ωm which correspond to the balls’ allocations that differ in
exactly one ball (cf. Figure 2). In that case, if X can be obtained from Y by moving
a ball from the ith fullest bin into the jth fullest bin, then we write X = Y − ei + ej .
Thus,

Γ = {(X,Y ) ∈ Ωm × Ωm : X = Y − ei + ej for certain i, j ∈ [n], i 	= j}.

Clearly, for each X,Y ∈ Ωm there exists a sequence X = Z〈0〉, Z〈1〉, . . . , Z〈l−1〉, Z〈l〉

= Y , where l is the number of balls on which X and Y differ, l ≤ m, and (Z〈i〉, Z〈i+1〉) ∈
Γ for every i, 0 ≤ i ≤ l − 1. Thus, we can apply the Neighboring Coupling Lemma
with D = m.
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8 7 5 4 4 3 389X 8 7 4 4 4 3 38Y 10

Fig. 2. An example of neighboring load vectors X and Y with X = Y − e1 + e5 and Δ(X,Y ) = 6.

3.2.2. Short memory lemma using neighboring coupling. The main result
of this section is the following technical lemma.

Lemma 3.5. Let ε > 0 and let d ≥ 2 be integer. Let X,Y ∈ Ωm. There exists a
coupling (Xt, Yt)t∈N for M[d] and there is T = Θ(m ·nd +n2 d · ln(m/ε)) such that for
any τ ≥ T it holds that Pr[Xτ 	= Yτ | (X0, Y0) = (X,Y )] ≤ ε.

Let us first observe that for d = 2 Lemma 3.5 immediately implies the Short
Memory Lemma for Greedy[2]. However, Lemma 3.5 yields a weaker bound for d ≥ 3.
Therefore, a more specialized analysis for the case d ≥ 3 is postponed to section 3.3.

Notice that since for any pair X,Y ∈ Ωm there exists a sequence Λ0,Λ1, . . . ,Λk

such that k ≤ m, Λ0 = X, Λk = Y , and (Λi−1,Λi) ∈ Γ for every 1 ≤ i ≤ k, Lemma
3.5 follows immediately from the following lemma.

Lemma 3.6. Let ε > 0 and let d ≥ 2 be integer. Let X,Y ∈ Γ. There exists a
coupling (Xt, Yt)t∈N for M[d] and there is T = Θ(m ·nd +n2 d · ln(m/ε)) such that for
any τ ≥ T it holds that Pr[Xτ 	= Yτ | (X0, Y0) = (X,Y )] ≤ ε

m .
The rest of this subsection is devoted to the proof of Lemma 3.6.
For any load vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn) with X = Y −ei+ej ,

i, j ∈ [n], let us define the distance function Δ(X,Y ) (cf. Figure 2),

Δ(X,Y ) = max{|xi − xj |, |yi − yj |}.

Observe that Δ(X,Y ) is always a nonnegative integer, it is zero only if X = Y and it
never takes the value of 1. Let

ξ = min{Pr[Greedy[d] picks the jth fullest bin]

− Pr[Greedy[d] picks the ith fullest bin] : i, j ∈ [n], i < j}.

Then, clearly, ξ ≥ 1/nd. The following lemma describes main properties of the desired
coupling.

Lemma 3.7. If (X,Y ) ∈ Γ then there exists a coupling (Xt, Yt)t∈N for M[d] that,
conditioned on (X0, Y0) = (X,Y ), satisfies the following properties for every t ∈ N:

• if Xt = Yt then Xt+1 = Yt+1,
• if Xt 	= Yt then Xt and Yt differ in at most one ball,
• Δ(Xt+1, Yt+1) − Δ(Xt, Yt) ∈ {−2,−1, 0, 1}, and
• if Xt 	= Yt then E[Δ(Xt+1, Yt+1) | Xt, Yt] ≤ Δ(Xt, Yt) − ξ.

Proof. We use the following natural coupling: each time we increase the vectors
X and Y by one ball, we use the same random choice. That is, in each step the
obtained load vectors will be obtained from X and Y , respectively, by allocating a
new ball to the qth fullest bin for certain q ∈ [n].
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6 6 5 5 5 4 3 2 2 13

α

8

βl ri j

X 6 6 6 5 5 4 38 2 2 12

l α β ri j

Y

Fig. 3. Illustration to the proof of Claim 3.8. In this case X = Y − e4 + e9, Δ(X,Y ) = 4,
l = 2, α = 6, β = 8, and r = 11.

The lemma now follows directly from the properties of the coupling described in
Claim 3.8 below.

Claim 3.8. Let X,Y be two load vectors from Ωm that differ in one ball with
X = Y − ei + ej for certain i < j. Let X〈q〉 and Y 〈q〉 be obtained from X and Y ,
respectively, by allocating a new ball to the qth fullest bin. Then, either

1. X〈q〉 = Y 〈q〉 and Δ(X〈q〉, Y 〈q〉) = Δ(X,Y ) − 2, or
2. X〈q〉 and Y 〈q〉 differ in one ball and

Δ(X〈q〉, Y 〈q〉) =

⎧⎨
⎩

Δ(X,Y ) − 1 if and only if q = j,
Δ(X,Y ) + 1 if and only if q = i,
Δ(X,Y ) otherwise.

Proof. The proof is by case analysis which is tedious but otherwise straightforward
(see also Figure 3 for some intuition behind the coupling). We assume that Δ(X,Y ) =
yi − yj ; the case Δ(X,Y ) = xi − xj can be done similarly. Let

l = min{s ∈ [n] : ys = yi},
α = max{s ∈ [n] : xi = xs},
β = min{s ∈ [n] : xs = xj},
r = max{s ∈ [n] : yj = xs}.

Let us notice that 1 ≤ l ≤ i ≤ α, l < α, β ≤ j ≤ r ≤ n, and β < r. We first consider
six cases when either 1 ≤ q ≤ i or j ≤ q ≤ n.

Case (1) 1 ≤ q < l. Since q < l the same happens for both processes. For
certain s, s ≤ q, we have X〈q〉 = X + es and Y 〈q〉 = Y + es. Therefore, after
adding the ball to the qth fullest bin, we still have X〈q〉 = Y 〈q〉 − ei + ej . Hence,

Δ(X〈q〉, Y 〈q〉) = y
〈q〉
i − y

〈q〉
j = yi − yj = Δ(X,Y ).

Case (2) l ≤ q < i. After reordering of the bins, the load of the lth largest
bin has increased by one for both load vectors (note that all load vectors between the
lth largest and the i− 1th largest bin have the same load in both processes). Hence,
X〈q〉 = X + el and Y 〈q〉 = Y + el. Therefore, X〈q〉 = Y 〈q〉 − ei + ej and the rest of
the case is similar to Case (1).

Case (3) q = i. In this case we have X〈q〉 = X+ei. After reordering of the load
vector of Y we have Y 〈q〉 = Y + el (see Case (2)). This yields X〈q〉 = Y 〈q〉 − el + ej

and Δ(X〈q〉, Y 〈q〉) = y
〈q〉
l − y

〈q〉
j = (yl + 1) − yj = Δ(X,Y ) + 1.

Case (4) q = j. The βth and the jth largest bins have the same number of
elements after adding a ball to the jth largest bin of X. Hence, X〈q〉 = X + eβ and
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Y 〈q〉 = Y + ej (in the case of Y the bins do not have to be reordered). Therefore
X〈q〉 = Y 〈q〉 − ei + eβ .

Now, there are two possibilities. First, if Δ(X,Y ) = 2, then i = β and therefore
X〈q〉 = Y 〈q〉. Otherwise, Δ(X,Y ) > 2 and hence i ≤ α < β, which implies that

Δ(X〈q〉, Y 〈q〉) = y
〈q〉
i − y

〈q〉
β = yi − (yj + 1) = Δ(X,Y ) − 1.

Case (5) j < q ≤ r. After reordering we have X〈q〉 = X + ej+1 and Y 〈q〉 =

Y + ej . We get X〈q〉 = Y 〈q〉 − ei + ej+1 and Δ(X〈q〉, Y 〈q〉) = y
〈q〉
i − y

〈q〉
j+1 = yi − yj =

Δ(X,Y ).

Case (6) r < q ≤ n. This case is similar to Case (1). For certain s, r < s ≤ q,
it holds that X〈q〉 = X + es and Y 〈q〉 = Y + es. Therefore, X〈q〉 = Y 〈q〉 − ei + ej and
Δ(X〈q〉, Y 〈q〉) does not change.

Now it remains to consider the case when i < q < j. We distinguish here two
main cases.

Case (A) xi = xj . In this case we have Δ(X,Y ) = 2. After reordering we
have X〈q〉 = X + ei and Y 〈q〉 = Y + ei+1. This means X〈q〉 = Y 〈q〉 − ei+1 + ej and

Δ(X〈q〉, Y 〈q〉) = y
〈q〉
i+1 − y

〈q〉
j = yi − yj = 2 = Δ(X,Y ).

Case (B) xi > xj . In this case α < β and we distinguish three subcases:

Case (B.1) i < q ≤ α. After reordering we get X〈q〉 = X + ei and Y 〈q〉 =
Y + ei+1. Therefore, X〈q〉 = Y 〈q〉 − ei+1 + ej and Δ(X〈q〉, Y 〈q〉) =

y
〈q〉
i+1 − y

〈q〉
j = yi − yj = Δ(X,Y ).

Case (B.2) α < q < β. Again, this case is similar to Case (1); for certain
s, α < s ≤ q < β, we get X〈q〉 = X + es and Y 〈q〉 = Y + es. Hence,
Δ(X,Y ) does not change.

Case (B.3) β ≤ q < j. In this case X〈q〉 = X + eβ and Y 〈q〉 = Y + eβ .
Therefore, X〈q〉 = Y 〈q〉 − ei + ej and Δ(X,Y ) does not change.

Now we are ready to present the proof of Lemma 3.6.

Proof. We use the coupling constructed in Lemma 3.7. Observe that if we define
Δt = Δ(Xt, Yt), t ≥ 0, then from Lemma 3.7 the random variable Δt behaves like a
random walk on N with drift toward 0; see section 3.1.3. By our assumption, we can
set ξ = 1/nd. Given that, we can conclude the proof by applying Lemma 3.3 with
Xt = Δ(Xt, Yt), ct = 2 for every t ∈ N, and with D = m and β = ξ = 1/nd.

3.3. Short memory property of Greedy[d ] for large d . The main problem
with applying Lemma 3.7 for large d is that the value of ξ may be very small. Now
we modify the analysis above to give a better bound for Greedy[d] than the one of
Lemma 3.5 for all d > 2.

3.3.1. Load difference reduction in Greedy[d ] for d ≥ 3. For any load
vector W let us denote by Low(W) (Upp(W)) the minimum load (respectively, the
maximum load) in W. We prove that independently of the initial difference between
Low(W) and Upp(W) at some moment of the allocation process Greedy[d], after
allocating some new balls, this difference will be kept small.

Lemma 3.9. Let n and M be any positive integers and let ε be any positive
real. Let d ≥ 2 be any integer. Let X ∈ ΩM . Let M[d] = (Xt)t∈N with X0 =
X; that is, X0, X1, . . . is the sequence of random variables describing the Markov
chain M[d] conditioned on the event X0 = X. Then, there exist a certain T =
Θ
(
M n2 + n4 · ln(M/ε)

)
and a constant c > 0 such that the following hold.
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(1) If M = O(n3 ln(n/ε)), then the following two bounds hold:

Pr

[
Low(XT) ≤ M + T

n
− c ·

√
(M + n2 ln(M/ε)) · n · ln(n/ε)

]
≤ ε,

Pr

[
Upp(XT) ≥ M + T

n
+ c ·

√
(M + n2 ln(M/ε)) · n · ln(n/ε)

]
≤ ε.

(2) If M = Ω(n3 ln(n/ε)), then the following two bounds hold:

Pr

[
Low(XT) ≤ M + T

n
− c · n1.25 ·M0.25 · (ln(n/ε))0.75

]
≤ ε,

Pr

[
Upp(XT) ≥ M + T

n
+ c · n1.25 ·M0.25 · (ln(n/ε))0.75

]
≤ ε.

Proof. We prove the lemma only for M being the multiple of n; the general case
can be handled similarly. Since the proofs for Low(W) and Upp(W) are almost the
same, we will deal only with Low(W). We also point out that our proof uses ideas
similar to those discussed later in section 4.

Let Y0, Y1, . . . be the sequence of random variables (normalized load vectors)
describing the Markov chain M[2] conditioned on the event Y0 = X. It is known
that for every l ∈ N the normalized load vector Xl is majorized by the normalized
load vector Yl (see, e.g., [1, Theorem 3.5]). Therefore, in particular, Low(Xl) is
stochastically larger than or equal to Low(Yl) (the minimum load in Yl). Hence, it
is enough to prove the lemma only for the load vectors Y0, Y1, . . . .

Let ς be any positive real. Let Z be the ideally balanced load vector in ΩM (i.e.,
the loads of all bins in Z are the same). Let Z0, Z1, . . . be the sequence of random
variables (normalized load vectors) describing the Markov chain M[2] conditioned on
the event Z0 = Z. Lemma 3.5 implies that for certain T = Θ(M n2 + n4 · ln(M/ς)),
for any t ≥ T the load vectors Yt and Zt are almost indistinguishable (formally,
‖L(Zt) − L(Yt)‖ ≤ ς). In particular, this means that the random variables Low(Yl)
and Low(Zl) are stochastically the same with probability at least 1−ς. Furthermore,
by Lemma 3.1, we know that for any t ∈ N, it holds that

Pr

[
Low(Zt) ≤

M + t

n
−
√

2 (M + t)

n
ln

n

ς

]
≤ ς.(1)

Therefore, since for any t ≥ T we have ‖L(Zt) − L(Yt)‖ ≤ ς, we may conclude that
for t ≥ T it holds that

Pr

[
Low(Yt) ≤

M + t

n
−
√

2 (M + t)

n
ln

n

ς

]
≤ 2 ς.(2)

With inequality (2) we immediately obtain the first estimation for Low by setting
ε = 2 ς and T = t = T .

In order to obtain the second estimation, we first fix the smallest τ ≥ T such that

τ is a multiple of n. Let E be the event that Low(Yτ ) ≥ M+τ
n −

√
2 (M+τ)

n ln n
ς . Let

us condition on this event for a moment.
For any t ≥ τ , let Y ∗

t be the load vector obtained from Yt after removing

r = �M+τ
n −

√
2 (M+τ)

n ln n
ς � balls from each bin in Yt. Clearly, since Low(Yt) ≥
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Low(Yτ ) ≥ r, Y ∗
t is a proper normalized load vector in Ωt+M−r·n. Notice further

that there are M∗ = M + τ − r · n balls in the system described by Y ∗
τ .

Now we apply once again a similar procedure as we did above for the first esti-
mation. Let V be the ideally balanced load vector in ΩM∗ (i.e., each bin in V has the
same load). Let V0, V1, . . . be the sequence of random variables (normalized load vec-
tors) describing the Markov chain M[2] conditioned on the event V0 = V . Proceeding
similarly as above, we want to compare Y ∗

t+τ with Vt for t ≥ 0.
Lemma 3.5 implies that for certain T ∗ = Θ(M∗ n2+n4 ·ln(M∗/ς)), for any t ≥ T ∗

it holds that ‖L(Vt) − L(Y ∗
t+τ )‖ ≤ ς. Therefore, in particular, the random variables

Low(Y ∗
t+τ ) and Low(Vt) are stochastically the same with probability at least 1 − ς.

Furthermore, by Lemma 3.1, we know that for any t ∈ N it holds that

Pr

[
Low(Vt) ≤

M∗ + t

n
−
√

2 (M∗ + t)

n
ln

n

ς

]
≤ ς.

Therefore, since ‖L(Vt)−L(Y ∗
t+τ )‖ ≤ ς for any t ≥ T ∗, we may conclude that for any

t ≥ T ∗ it holds that

Pr

[
Low(Y ∗

t+τ ) ≤
M∗ + t

n
−
√

2 (M∗ + t)

n
ln

n

ς

]
≤ 2 ς.

Furthermore, since the load vector Y ∗
t+τ is obtained from the load vector Yt+τ by

removing r balls from each bin, we obtain that (conditioned on E) for any t ≥ T ∗,

Pr

[
Low(Yt+τ ) ≤

M + τ + t

n
−
√

2 (M∗ + t)

n
ln

n

ς

∣∣∣ E
]
≤ 2 ς.

Finally, since we have proved that event E holds with probability at least 1− 2 ς (see
inequality (2)), we can conclude that for any t ≥ T ∗ it holds that

Pr

[
Low(Yt+τ ) ≤

M + τ + t

n
−
√

2 (M∗ + t)

n
ln

n

ς

]
≤ 4 ς.

Now, it remains to resolve this bound with respect to n, M , and ς. We observe that

τ = Θ(M n2 + n4 ln(M/ς))

and

M∗ = Θ
(√

τ n ln(n/ς)
)

= Θ
(
n1.5

√
M ln(n/ς) + n2.5

√
ln(M/ς) ln(n/ς)

)
.

Furthermore,

T ∗ = Θ(M∗ n2 + n4 · ln(M∗/ς))

= Θ

(
n3.5

√
M · ln(n/ς) n4.5

√
ln(M/ς) ln(n/ς)

+ n4 ln

(
nM ln(n/ς) ln(M/ς)

ς

))
.

Now, we use our assumption that M = Ω(n3 ln(n/ς)) for ς = Θ(ε). In this case,
the first term dominates the other one in the bounds for τ and for M∗ and the first
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term dominates the other two in the bound for T ∗. Hence, τ = Θ(M n2), M∗ =
Θ(n1.5

√
M ln(n/ς)), T ∗ = Θ(n3.5

√
M · ln(n/ς)), and τ + T ∗ = Θ(τ). Therefore, we

can conclude with the following claim: There exists a positive constant c such that
for T = τ + T ∗ it holds that

Pr

[
Low(XT) ≤ M + T

n
− c · n1.25 ·M0.25 · (ln(n/ς))0.75

]
≤ 4 ς.

Now, the lemma follows by setting ε = 4 ς.

3.3.2. Coupling arguments and the short memory lemma for d > 2.
Observe that a trivial implication of Lemma 3.9 is that if we start with any pair of
normalized load vectors X0, Y0 ∈ ΩM , then for certain τ = Θ(M n2 + n4 ln(M/ε)),
w.h.p. (depending on ε and κ), it holds that for any integer κ > 0, and for all t,
0 ≤ t < κ, the difference in the maximum load and the minimum load in Xτ+t (or
Yτ+t) is upper-bounded by

ζ =

{
O
(√

(M + n2 ln(M/ε))n ln(n/ε)
)

for M = O(n3 ln(n/ε)),

O
(
n1.25 M0.25 (ln(n/ε))0.75

)
for M = Ω(n3 ln(n/ε)).

From now on we shall fix τ and κ and shall condition on this event (which, by applying
the union bound to Lemma 3.9, is satisfied with probability larger than 1 − 2κ ε).

Now we proceed with coupling arguments. Let X,Y ∈ Γ. We use the same
distance function Δ(·, ·) as in section 3 and the same coupling as in Lemma 3.7 and
Claim 3.8. Observe that by our discussion in section 3.2.2, for any t ∈ N, either Xt

and Yt are identical or they differ by one ball.
Epochs. Let τ and κ be set as above. We divide the time into epochs. The 0th

epoch starts at time step l0 = 0 and ends in time step r0 = τ . Each following epoch
corresponds to the time period when the value of Δ remains unchanged. That is, if
the (k − 1)st epoch, k ≥ 1, ends in time step rk−1, then, inductively, the kth epoch
begins in time step lk = 1 + rk−1 and ends in the smallest time step t ≥ lk for which
Δ(Xt−1, Yt−1) 	= Δ(Xt, Yt). Additionally, if Xrk−1

= Yrk−1
, then we define rk = ∞,

and the kth epoch lasts until the infinity.
Claim 3.10. Let μ be any positive integer. Let for every t, τ ≤ t ≤ τ + κ, the

difference between the maximum load and the minimum load in each of Xt and Yt be
upper-bounded by μ. Then, for every 1 ≤ k ≤ κ

2nμ+1 , if Xrk−1
	= Yrk−1

, then the kth
epoch lasts at most 2nμ + 1 time steps.

Proof. Let Xt = Yt − ei + ej with i < j and let Xt+1 = Yt+1 − ei∗ + ej∗ , where
Xt+1 and Yt+1 are obtained from Xt and Yt, respectively, by allocating a ball to bin
q. By the case analysis (cf. also the proof of Claim 3.8) one can show that one of the
following two cases must hold:

• q = i or q = j in the transition (Xt, Yt) → (Xt+1, Yt+1) of the coupling.
• The load of the i∗th fullest bin in Yt+1 is the same as the load of the ith

fullest bin in Yt.
Consider a kth epoch and suppose that Xrk−1

	= Yrk−1
with Xrk−1

= Yrk−1
−ei∗ +ej∗ ,

i∗ < j∗, in time rk−1. Let � be the load of the i∗th fullest bin in Yrk−1
. Then, by

the observation above and by Claim 3.8, for every t with rk−1 ≤ t ≤ rk − 1, if
Xt = Yt − ei + ej with i < j, then the load of the ith fullest bin in Yt is �.

Now, we want to use the assumption that for every t, τ ≤ t ≤ τ +κ, the difference
between the maximum load and the minimum load in Yt is upper-bounded by μ.
Therefore, if τ ≤ rk−1 ≤ τ + κ, then in time rk−1 the value of � (which is the load of
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one of the bins in Yrk−1
) is at most rk−1

n + μ. Furthermore, if τ ≤ rk ≤ τ + κ, then
in time rk − 1 the value of � (which is the load of one of the bins in Yrk−1) is at least
rk−1
n − μ. Therefore, we obtain that

rk−1

n + μ ≥ � ≥ rk−1
n − μ.

This implies immediately that rk − lk ≤ 2nμ. This also yields inductively that if
1 ≤ k ≤ κ/(2nμ + 1) and Xrk−1

	= Yrk−1
, then the kth epoch lasts at most 2nμ + 1

time steps.

Let Δk be the value of Δ(Xt, Yt) for t = rk, i.e., for t being the last time step of
the kth epoch. Clearly, Δk−1 	= Δk. Furthermore, by Claim 3.8 the following holds:

• If Δk−1 ≥ 3 then Δk ∈ {Δk−1 − 1,Δk−1 + 1} and E[Δk − Δk−1] < 0.
• If Δk−1 = 2 then Δk ∈ {0, 3} and E[Δk − Δk−1] < 0.

Therefore, similarly as in the proof of Lemma 3.5, we can model sequence Δ0,Δ1, . . .
as a random walk on the line N with the starting point D ≤ ζ, the absorbing barrier
in 0, and with a positive drift toward 0. This time, however, the drift is very small
and therefore we use a weaker bound for the convergence of this random walk. From
Lemma 3.4 we obtain that

Pr[Δk > 0] ≤ 2κ ε for all k ≥ γ ζ2 ln(2κ ε)−1,

where γ is some absolute positive constant. Now, since by Claim 3.10 each epoch
k with Δk−1 > 0 lasts at most 2n ζ + 1 time steps, the last inequality implies the
following. For all t, t ≥ τ+γ ζ2 ln(2κ ε)−1·(2n ζ+1), it holds that Pr[Xt 	= Yt] ≤ 2κ ε.
Since, by Lemma 3.9, we have proven that with probability larger than or equal to
1 − 2κ ε, for every t, τ ≤ t < τ + κ, the difference between the maximum load and
the minimum load in each of Xt and Yt is upper bounded by ζ, we can conclude with
the following lemma.

Lemma 3.11. Let n and m be any positive integers and let ε be any positive real.
Let d ≥ 2 be any integer. Let X0, Y0 ∈ Ωm.

(1) If m = O(n3 ln(n/ε)), then there is a coupling (Xt, Yt)t∈N for M[d] such that
for certain T

∗,

T
∗ = Θ

(
n2.5 · (m + n2 ln(n/ε))1.5 · ln(n/ε)1.5 · ln(1/ε)

)
;

it holds for any t ≥ T
∗ that

Pr[Xt 	= Yt | (X0, Y0) = (X,Y )] ≤ ε.

(2) If m = Ω(n3 ln(n/ε)), then there is a coupling (Xt, Yt)t∈N for M[d] such that
for certain T

∗,

T
∗ = Θ

(
m · n2 + m0.75 · n4.75 · (ln(m/ε))2.25 · ln(1/ε)

)
;

it holds for any t ≥ T
∗ that

Pr[Xt 	= Yt | (X0, Y0) = (X,Y )] ≤ ε.

Now, Lemma 3.11 directly implies the Short Memory Lemma, Lemma 1.2, for all
values of d.
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4. A reduction to a polynomial number of balls for Greedy[d ]. In this
section, we discuss our main use of the Short Memory Lemma which is a reduction of
the analysis of the problem of allocating an arbitrary number m of balls into n bins to
the case when m is upper-bounded by a polynomial of n. If we combine this analysis
with the analysis for a polynomial number of balls in section 2, we will immediately
obtain Theorem 1.3.

Our arguments are similar to those used in section 3.3. We begin with the fol-
lowing corollary which follows directly from Lemma 1.2.

Corollary 4.1. Let X0 be any normalized load vector describing an arbitrary
allocation of some number m of balls to n bins. Let Δ be the difference between
the maximum and the minimum load in X0. Let Y0 be the normalized load vector
describing the optimally balanced allocation of m balls into n bins (that is, each bin in
Y0 has either �m/n� or �m/n� balls). Let Xk and Yk, respectively, denote the vectors
obtained after inserting k ≥ 1 further balls into both systems using Greedy[d]. For
every constant α there is a constant c such that if k ≥ cn7Δ ln4(nΔ), then

||L(Xk) − L(Yk)|| ≤ k−α.

Proof. Let � denote the minimum load of any bin in X0. We consider the scenario
after removing � balls from each bin in X0 and Y0; let X∗

0 and Y ∗
0 be the respective

load vectors. X∗
0 and Y ∗

0 have an identical number of balls that we denote by m∗.
Observe that since the maximum load in X0 was � + Δ, we have m∗ ≤ nΔ.

Next, let X∗
t and Y ∗

t , respectively, denote the vectors obtained after inserting t ≥ 1
further balls to the systems corresponding to X∗

0 and Y ∗
0 , where we use Greedy[d] to

place the balls. We apply the Short Memory Lemma, Lemma 1.2, to the sequences
X∗

t and Y ∗
t to obtain that there is τ ≤ c′m∗ n6 ln4(1/ε) ≤ c′Δn7 ln4(1/ε) for a

suitable constant c′ > 0, such that for every t ≥ τ we have ||L(X∗
t ) − L(Y ∗

t )|| ≤ ε.
Therefore, if we set ε = k−α and choose k such that it satisfies k = c′Δn7 α ln4 k =
O(n7Δ ln4(nΔ)), we have ||L(X∗

k) − L(Y ∗
k )|| ≤ k−α.

Now, the claim follows from the fact that for every t ≥ 0 the distributions of Xt

and Y ∗
t , and Yt and Y ∗

t , respectively, differ only in that every bin corresponding to
Xt (Yt) has � less balls than the corresponding bin in X∗

t (Y ∗
t , respectively).

Using Corollary 4.1, we present a general transformation which shows that the
allocation obtained by an allocation process with “short memory” is more or less
independent of the number of balls. The following theorem shows that the allocation
(its distribution) is essentially determined after inserting a polynomial number of balls.
In particular, this theorem together with Lemma 1.1 immediately imply Theorem 1.3.
We assume that n is sufficiently large.

Theorem 4.2. Let us consider the process Greedy[d], d ≥ 2, in which the balls are

allocated into n bins. For any integer m, let Xm = (x
(m)
1 , . . . , x

(m)
n ) be a load vector

obtained after allocating m balls with Greedy[d] and let X̃m = (x
(m)
1 − m

n , . . . , x
(m)
n −

m
n ). Let N = n36. Then, for every M , M ≥ N , that is a multiple of n,

||L(X̃M ) − L(X̃N )|| ≤ N−α,

where α denotes an arbitrary constant.
Proof. Let us first begin with the claim that if M and m are multiples of n with

M ≥ n36 and M ≥ m ≥ M0.8, then

||L(X̃M ) − L(X̃m)|| ≤ M−α.(3)
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Let us set m′ = M −m. We use the majorization from the single-choice process to
estimate the distribution of the bins’ loads after inserting m′ balls. Since Greedy[d]

is majorized by the single-choice process, each bin contains m′

n ±O(
√
m′ ln(n/p)/n)

balls, with probability at least 1 − p for any p ∈ [0, 1]. We set Δ = M0.6 and

p = M−α/2. Applying M ≥ m′ ≥ n yields that every bin contains between m′

n −Δ/2

and m′

n + Δ/2 balls, with probability at least 1 − p, provided that n is sufficiently

large. Let us now condition on this event and assume that the entries in X̃m′ are in
the Δ-range specified above.

Let Y describe another system in which the first m′ balls are inserted in an
optimal way; that is, Ym′ = (m

′

n , . . . , m′

n ). Now, we add m balls using protocol
Greedy[d] on top of Xm′ and Ym′ , respectively. Now, applying Corollary 4.1, we
obtain ||L(XM ) − L(YM )|| ≤ m−2·α ≤ M−α/2 as m ≥ M0.8 ≥ n7 M0.6 ln4 M ≥
c n7 Δ ln4(nΔ), where c is the constant specified in the corollary. Thus, conditioned

on the event that the values in X̃m′ are in the interval [m
′

n −Δ/2, m′

n +Δ/2], we have

L(ỸM ) = L(X̃m), with probability at least 1−M−α/2. Therefore, since the condition
is satisfied with probability at least 1 −M−α/2 as well, we have

||L(X̃M ) − L(X̃m)|| ≤ M−α/2 + ||L(XM ) − L(YM )|| ≤ M−α/2 + M−α/2 = M−α,

which completes the proof of inequality (3).
Finally, we use inequality (3) to prove Theorem 4.2. Observe first that if M ≤

N1/0.8, then (3) directly implies Theorem 4.2. Otherwise, we have to apply inequality
(3) repeatedly as follows. Let m0,m1, . . . ,mk denote a sequence of integers such that
m0 = N , mk = M , m0.8

i ≤ mi−1, and mα
i ≥ 2mα

i−1. Then

||L(X̃M ) − L(X̃N )|| ≤
k∑

i=1

||L(X̃mi
) − L(X̃mi−1

)|| ≤
k∑

i=1

m−α
i ≤ N−α,

where the last inequality follows from the fact that m−α
i ≤ 2−im−α

0 = 2−iN−α.
Remark 2. It is easy to see that the proof above does not use any of the properties

of Greedy[d] but the following two: Corollary 4.1 and the fact that Greedy[d] is ma-
jorized by the single-choice process. Therefore, Theorem 4.2 holds for any allocation
protocol P that has short memory (in the sense of Corollary 4.1) and that is majorized
by the single-choice process.

5. Greedy[d ] majorizes Left[d ]. In this section, we will begin our analysis of
the always-go-left allocation scheme and prove Theorem 1.7. Let d ≥ 2, n be any
multiple of d, and m ≥ 0. We show that Left[d] is majorized by Greedy[d].

Our proof is by induction on the number of balls in the system. Let u denote the
load vector obtained after inserting some number of balls with Left[d], and let v denote
the load vector obtained after inserting the same number of balls with Greedy[d].
Without loss of generality, we assume that u and v are normalized, i.e., u1 ≥ u2 ≥
· · · ≥ un and v1 ≥ v2 ≥ · · · ≥ vn. Notice that the normalization of u jumbles the
bins in the different groups used by Left[d] in some unspecified way so that it remains
unclear which bin belongs to which group. Let u′ and v′ denote the load vectors
obtained by adding another ball b with Left[d] and Greedy[d], respectively. To prove
Theorem 1.7 by induction, we show that if u ≤ v then there is a coupling of Left[d]
and Greedy[d] with respect to the allocation of b such that u′ ≤ v′, regardless of the
unspecified mapping of the bins to the groups underlying u.
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As a first step in the description of the coupling, we replace the original formula-
tions of the allocation rules of the two random processes by alternative formulations
that enable us to define an appropriate coupling.

• At first, we describe the alternative formulation of the allocation rules for
Greedy[d]. For 1 ≤ i ≤ n, let ei denote the ith unit vector, and define

bi = Pr[v′ = v + ei]. For 0 ≤ i ≤ n, let Bi =
∑i

j=1 bi; that is, Bi denotes
the probability that the next ball is added to a bin with index at most i with
respect to the considered order of bins. Without loss of generality, we assume
that Greedy[d] gives the ball to the bin with larger index in case of a tie.
Then Bi = (i/n)d because Greedy[d] places the ball b in a bin with index
smaller than or equal to i if and only if all of the d locations of b point to bins
whose indices are at most i. Instead of inserting the next ball using the rules
of Greedy[d], we now choose a continuous random variable x uniformly at
random from the interval [0, 1] and allocate b in the ith bin if Bi−1 < x ≤ Bi.
By our construction, this results in the same distribution.

• Now we turn our attention to Left[d]. Given any allocation of the balls to bins
corresponding to the load vector u, define ai = Pr[u′ = u + ei] for 1 ≤ i ≤ n

and Ai =
∑i

j=1 ai for 0 ≤ i ≤ n. Observe that the probabilities ai and Ai

do not depend only on the index i (as in the case of Greedy[d]) or the vector
u, but also on the hidden mapping of the bins to the groups. Consequently,
we cannot specify these terms as a functional of i or u. Nevertheless, for any
given mapping of the bins to groups, the terms A0, . . . , An are well defined
so that we can replace the original allocation rules by the following rule that
results in the same distribution: Choose a random variable x uniformly at
random from the interval [0, 1] and allocate the ball b into the ith bin if
Ai−1 < x ≤ Ai.

For the coupling, we now assume that Left[d] and Greedy[d] use the same random
number x to assign the ball b. By our construction, this coupling is faithful. Under
the coupling, we have to show u′ ≤ v′. Let u′ = u + ei and v′ = v + ej for some i
and j; that is, i and j specify the indices of the bins in the vectors u and v into which
Left[d] and Greedy[d], respectively, put the ball b.

First, let us assume that the initial vectors u and v are equal. In this case, we
have to show that u+ei ≤ u+ej . Consider the plateaus of u, i.e., maximal index sets
of bins with the same height. Suppose there are k ≥ 2 plateaus U1, . . . , Uk such that
the load is decreasing from U1 to Uk. Let I and J denote the indices of the plateaus
that contain i and j, respectively. Observe that I ≥ J implies u+ei ≤ u+ej because
adding a ball to different positions of the same plateau results in the same normalized
vector. Thus, we have only to show that J ≤ I. Let � = max{UI}. Since i ≤ �, we
have x ≤ A
. In the following lemma, we show that A
 ≤ (�/n)d. Above we have
shown that B
 = (�/n)d. Therefore, the lemma implies x ≤ B
, which shows that
Greedy[d] places its ball in a bin with index at most �; that is, j ≤ � and, hence,
J ≤ I. Consequently, u + ei ≤ u + ej .

Lemma 5.1. For any mapping of the bins to the groups underlying the vector u,
A
 ≤ (�/n)d.

Proof. Recall that A
 corresponds to the probability that Left[d] places the ball
b in a location with index (with respect to u) smaller than or equal to �. Let �k for
0 ≤ k < d denote the number of bins in group k with load greater than or equal to
u
. Then A
 =

∏d−1
k=0


k
n/d because the kth location of b must be one of those �k bins

among the d/n bins in group k that have load at least u
. Since
∑d−1

k=0 �k = �, A
 is
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maximized for �0 = · · · = �d−1 = �/d. Consequently, A
 ≤ (�/n)d.
Until now we have analyzed only the case when u = v and have shown u + ei ≤

u+ ej . This, however, can be easily generalized to arbitrary normalized load vectors.
Indeed, for any two normalized load vectors w and w′, w ≤ w′ implies w+ei ≤ w′+ei,
cf. [1, Lemma 3.4]. Consequently, we can conclude from u + ei ≤ u + ej that
u′ = u + ei ≤ u + ej ≤ v + ej = v′. Thus, Theorem 1.7 is shown.

6. Analysis of Left[d ]. In this section, we investigate the allocation generated
by Left[d]. In particular, we prove Theorem 1.5, that is, we show that the number of
bins with load at least m

n + i + γ is at most n · exp(−φ d·i
d ), w.h.p., where φd denotes

the d-ary golden ratio (cf. section 1.1) and γ is a suitable constant. Similarly to the
proof for Greedy[d], we divide the set of balls into batches of size n and we apply an
induction on the number of batches. On one hand, the proof for Left[d] is slightly
more complicated since we have to take into account that the set of bins is partitioned
into d groups. On the other hand, we can avoid the detour through analyzing the
holes below average height as we can instead make use of the majorization of Left[d]
by Greedy[d].

For the time being, let us assume that m ≥ n log2 n. We will use the majorization
from Greedy[d] to estimate the allocation after allocating the first m′ = m− n log2 n
balls. The special properties of Left[d] will only be taken into account for the remain-
ing n log2 n balls. Let us divide the set of these balls into log2 n batches of size n
each. Let time 0 denote the point of time before the first ball from batch 1 is inserted,
that is, after inserting the first m′ balls; and, for 1 ≤ t ≤ log2 n, let time t denote the

point of time after inserting the balls from batch t. Furthermore, set Γ = m′

n +7 and,

for i ≥ 0, 0 ≤ j < d, 0 ≤ t ≤ log2 n, let ν
(t)
i,j denote the number of bins with load at

least Γ + t + i in group j at time t. The following lemma gives an upper bound on
the allocation of Left[d] obtained by the majorization from Greedy[d] at time 0. This
upper bound is specified in terms of the function

h0(i) =
1

4i · 64d
.

Later we will use the same lemma to estimate parts of the allocation also for other
points of time, t ≥ 1.

Lemma 6.1. Let � denote the smallest integer such that h0(�) ≤ n−0.9, i.e.,
� = �0.9 log4 n − log4 d� − 2. For 0 ≤ i < �, 0 ≤ j < d, 0 ≤ t ≤ log2 n, it holds

ν
(t)
i,j ≤ h0(i) · n/d, w.h.p. For i ≥ �, ν

(t)
i,j = 0, w.h.p.

Proof. Fix a time step t. Theorem 1.3 shows that, when using Greedy[d], the frac-

tion of bins with load at least m′

n +t+ i is upper-bounded by a function that decreases
doubly exponentially in i. Now, in order to simplify the subsequent calculations, we
upper-bound this function by another function that decreases only exponentially in
i, namely, the function h0. With lots of room to spare, the analysis in section 2.3
yields that the fraction of bins with load at least Γ + t + i can be upper-bounded by
h0(i)/(2d), w.h.p., provided n is sufficiently large. This result holds for Greedy[d],
and we want to apply it to Left[d] via majorization. In order to make use of the
majorization of Left[d] by Greedy[d], we need a bound on the number of balls above
some given height rather than a bound on the number of bins with load above the
height. However, since the bound given above on the number of bins decreases geo-
metrically in i, the number of balls of height at least Γ + t + i when using Greedy[d]
is bounded from above by h0(i) · n/d. Now, because of the majorization, this result
holds for Left[d], too. In turn, the number of balls above height Γ+t+i upper-bounds
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the number of bins with load at least Γ + t + i. Hence, when using Left[d], the total
number of bins with load at least Γ + t + i is bounded from above by h0(i) · n/d. Of
course, the same upper bound holds for the number of such bins in each individual
group.

Finally, it remains to be shown that ν
(t)
i,j = 0, w.h.p., for i ≥ � with � =

�0.9 log4 n− log4 d�−2. Again this follows via majorization from Greedy[d]. Theorem
1.3 implies that the maximum load of Greedy[d] and, hence, also of Left[d] at time
t is bounded from above by Γ + t + O(logd log n), w.h.p. Thus there is no ball with
height Γ + t + �, w.h.p.

Before we turn to the technical details, let us explain the high-level idea behind the

following analysis. We will use a function f(k, t) as an upper bound for ν
(t)

k/d�,jmodd.

For t = 0, f(k, t) will be set equal to h0(�k/d�), and we will use the above lemma to

show that f(k, 0) upper-bounds ν
(0)

k/d�,kmodd. When increasing t, the function f(k, t)

will become more similar to the function h1(k) defined by

h1(k) =
exp(−Fd(k − d + 1))

64d
,

where Fd(k) denotes the kth d-ary Fibonacci number as defined in section 1.1. Let
i = �k/d� and j = k mod d. Then h1(k) will serve as an upper bound on the fraction
of bins with height Γ + t+ i in group j. As explained in section 1.1, we use the d-ary
golden ratio to upper-bound the d-ary Fibonacci numbers. This way,

h1(k) =
exp

(
−φ

k±O(d)
d

)
64d

=
exp

(
−φ

(i±O(1))d
d

)
64d

.

Hence, for large t, the fraction of bins with some given height decreases “Fibonacci
exponentially” with the height, exactly as described in Theorem 1.5.

Now we come to the technical details. We define

f(k, t) = max{h0(�k/d�) · 2−t, h1(k)}.

Observe that f changes smoothly from h0 into h1 when increasing t. In particular,
f(k, 0) = h0(�k/d�) and f(k, log2 n) ≤ h1(k) + 1

n . We need to refine the function f
slightly. Intuitively, we truncate the function when the function values become “too
small.” Let c denote a sufficiently large constant term, whose value will be specified
later. Let �t denote the smallest integer such that f(�t, t) ≤ n−0.9. We set

f ′(k, t) =

⎧⎪⎨
⎪⎩

max

{
n−0.9

4
, f(k, t)

}
if 0 ≤ k < �t + d,

cd

n
if k ≥ �t + d.

The following properties of f ′ are crucial for our analysis. They hold only if n is
sufficiently large.

Lemma 6.2.

B1. f ′(k, t) = h0(0) for 0 ≤ k < d, t ≥ 0;
B2. f ′(k, t) ≥ 2 · f ′(k + d, t− 1) for d ≤ k < �t + d, t ≥ 1;

B3. f ′(k, t) ≥ (4d) ·
∏d

j=1 f
′(k − j, t) for d ≤ k < �t + d, t ≥ 0;

B4. f ′(k, t) ≥ n−0.9/4 for d ≤ k < �t, t ≥ 0.
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Proof. We start with the proof of property B1. First, let us check the property
for f instead of f ′. For 0 ≤ k < d, Fd(k−d+1) = 0 so that h1(k) = 1/(64d) = h0(0).
Hence, for every t ≥ 0,

f(k, t) = max{h0(�k/d�) · 2−t, h1(k)} = h0(0).

If n is sufficiently large then the same is true for f ′.

Next we show property B2, first for f and then for f ′. The function f(k, t) is
defined by the maximum of the two terms h0(�k/d�) · 2−t and h1(k). We study these
terms one after the other. The definition of h0 immediately implies

h0(�k/d�) · 2−t = 4h0(�(k + d)/d�) · 2−t = 2h0(�(k + d)/d�) · 2−(t−1).

Furthermore, for k ≥ d,

h1(k) =
exp(−Fd(k − d + 1))

64d
≥ 2 exp(−Fd(k + 1))

64d
= 2h1(k + d).

As a consequence, f(k, t) ≥ 2f(k+d, t−1), that is, B2 is shown for f . The refinement
from f to f ′ might raise the right-hand side of the inequality from 2f(k + d, t − 1)
to the value 2n−0.9/4, or the right-hand side might take the value 2cd/n. At first,
suppose f ′(k + d, t − 1) = n−0.9/4. Then k < �t−1 so that f(k, t − 1) ≥ n−0.9. Now
this implies f(k, t) ≥ n−0.9/2 as f(k, t) ≥ f(k, t− 1)/2. Consequently,

f ′(k, t) = max

{
f(k, t),

n−0.9

4

}
≥ n−0.9

2
= 2f ′(k + d, t− 1).

In the second case, f ′(k + d, t − 1) = cd/n. Observe that property B2 needs to be
shown only for k < �t + d. For this choice of k, f ′(k, t) ≥ n−0.9/4 so that f ′(k, t) ≥
2f ′(k + d, t− 1) if n is sufficiently large. Hence, B2 is shown.

Property B3 is shown as follows. Again we first show the property for f and then
for f ′. Fix k ≥ d. Depending on the outcome of the terms f(k−d, t), . . . , f(k−1, t), we
distinguish two cases. First, suppose there exists δ ∈ {1, . . . , d} such that f(k−δ, t) =
h0(�(k − δ)/d�) · 2−t. Observe that h0(�(k − δ)/d�) ≤ h0(�k/d� − 1) = 4h0(�k/d�).
We obtain

d∏
j=1

f(k − j, t) = h0(�(k − δ)/d�) · 2−t ·
d∏

j=1

j �=δ

f(k − j, t)

≤ 4h0(�k/d�) · 2−t ·
(

1

64d

)d−1

≤ h0(�k/d�) · 2−t

4d

≤ f(k, t)

4d
.
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Second, suppose f(k − δ, t) = h1(k − δ) for all δ ∈ {1, . . . , d}. Then

d∏
j=1

f(k − j, t) =

d∏
j=1

exp (−Fd(k − j − d + 1))

64d

=
exp

(
−
∑d

j=1 Fd(k − j − d + 1)
)

(64d)d

≤ exp (−Fd(k − d + 1))

(4d)(64d)

=
h1(k)

4d

≤ f(k, t)

4d
.

The refinement from f to f ′ affects the above proof only if f ′(k, t) 	= f(k, t), since
otherwise, f(k−δ, t) = f ′(k−δ, t) for all 0 ≤ δ ≤ d, so that the above arguments hold.
If f ′(k, t) 	= f(k, t) then f ′(k, t) = n−0.9/4. In this case, either f ′(k− 1, t) might take
the value n−0.9/4 as well or it takes the value f(k−1, t). In the latter case, B3 follows
by the same arguments as before, if we additionally apply f(k, t) ≤ n−0.9/4 = f ′(k, t).
If both f ′(k, t) and f ′(k − 1, t) take the value n−0.9/4, then

d∏
j=1

f(k − j, t) ≤ n−0.9

4
·

d∏
j=2

f(k − j, t) ≤ n−0.9

4
· 1

4d
=

f(k, t)

4d
.

Thus, B1, B2, and B3 hold for f and f ′. B4 does not hold for f . However, our
refinement explicitly ensures this property for f ′.

Based on these properties we prove now that the following invariants hold w.h.p.
for every t ∈ {0, . . . , log2 n}. We say that a ball has index k at time t if the ball
belongs to one of the batches 1, . . . , t and it is placed in group k mod d with height
�(Γ + t + k)/d�.

• H1(t): ν
(t)
i,j ≤ f ′(id + j, t) · n/d for i ≥ 0, 0 ≤ j < d.

• H2(t): The number of balls with index at least �t + d at time t is bounded
from above by a constant term c.

Observe that these invariants imply the bounds given in Theorem 1.5 as the function
f ′(i, log2 n) decreases “Fibonacci exponentially” in i as discussed above.

We show the invariants H1 and H2 by an induction on the number of rounds t.
Lemma 6.1 gives that the invariants hold at time 0. In the following, we prove that
H1(t) and H2(t) hold w.h.p. assuming that H1(t − 1) and H2(t − 1) are given. Fix
t ∈ {1, . . . , log2 n}. First, we consider H1(t). We prove this invariant by a further
induction on k = id+j. Observe that we need only to prove the invariant for k < �t+d
as the upper bound given for k ≥ �t + d is a direct consequence of invariant H2. For
k ∈ {0, . . . , d− 1}, property B1 gives f ′(k, t) = h0(0). Hence, for k < d, invariant H1

follows again directly from Lemma 6.1.
Now assume d ≤ k < �t +d. Suppose H1(t) is shown for all k′ < k. For i = �k/d�

and j = k mod d, let q(k) = q(i, j) denote the number of bins of group j containing
Γ + t + i balls already at the beginning of round t, and let p(k) = p(i, j) denote the
number of balls from batch t that are placed into a bin of group j that contains at
least Γ + t + i− 1 balls. Clearly,

ν
(t)
i,j ≤ q(k) + p(k).
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In the following, we calculate upper bounds for q(k) and p(k).

Observe that q(k) = q(i, j) corresponds to ν
(t−1)
i+1,j . Hence, invariant H1(t−1) gives

q(k) ≤ f ′((i + 1)d + j, t− 1) · n
d

≤ f ′(k + d, t− 1) · n
d

(B2)

≤ 0.5 · f ′(k, t) · n
d

for d ≤ k < �t + d.
The term p(k) = p(i, j) can be estimated as follows. If a ball is placed into a bin

of group j with Γ + t + i − 1 balls, the d possible locations for that ball fulfill the
following conditions. The randomly picked location from group g, 0 ≤ g < j, points
to a bin with load at least Γ + t + i. (Otherwise, the always-go-left scheme would
assign the ball to that location instead of location j.) At the ball’s insertion time the

number of these bins is at most ν
(t)
i,g . By the induction on k, ν

(t)
i,g ≤ f ′(i ·d+ g, t) ·n/d.

Thus, the probability that the location points to a suitable bin is at most f ′(i·d+g, t).
Furthermore, the randomly picked location from group g, j ≤ g < d, points to a bin
with load at least Γ + t+ i− 1. At the ball’s insertion time, the number of these bins

is at most ν
(t)
i−1,g. Thus, the probability for this event is at most f ′((i− 1) · d + g, t).

Now multiplying the probabilities for all d locations yields that the probability that
a fixed ball is allocated to group j with height Γ + t + i or larger is at most

j−1∏
g=0

f ′(i · d + g, t) ·
d−1∏
g=j

f ′((i− 1) · d + g, t) =

d∏
g=1

f ′(k − g, t)
(B3)

≤ f ′(k, t)

4d

for d ≤ k < �t + d. Taking into account all n balls of batch t, we obtain E[p(k)] ≤
n · f ′(k, t)/(4d). Applying a Chernoff bound yields

Pr

[
p(k) ≥ 2n · f

′(k, t)

4d

]
≤ exp

(
−n · f

′(k, t)

8d

)
(B4)

≤ exp

(
−n0.1

32d

)
.

As a consequence, p(k) ≤ 0.5f ′(k, t) · n/d, w.h.p.
Combining the bounds on q(k) and p(k) gives

ν
(t)
i,j ≤ q(k) + p(k) ≤ f ′(k, t) · n

d
≤ f ′(id + j, t) · n

d

for d ≤ k = id + j < �t + d. Thus, invariant H1(t) is shown.
Now we turn to the proof of H2(t). For s ≥ 0, let Ls denote the number of balls

with index at least �s + d at time s. Using this notation, invariant H2(t) states that
Lt ≤ c. For s ≥ r ≥ 1, let Ls(r) denote the number of balls from batch r with index
at least �s + d at time s. We claim

Lt =

t∑
s=1

Lt(s) ≤
t∑

s=1

Ls(s).

The first equation follows directly from the definition. The second equation can be
seen as follows. First, observe that �s−1 might be larger than �s as the function f ′

decreases over time. However, property B2 combined with the fact that f ′ decreases
by at most a factor of two from time s − 1 to time s yields �s−1 ≤ �s + d for every
s ≥ 0, which implies Ls(r) ≤ Ls−1(r) for every r ≤ s − 1. By induction, we obtain
Lt(r) ≤ Ls(r) for r ≤ s ≤ t and especially Lt(s) ≤ Ls(s).
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Let us study the probability that a fixed ball from batch s has index at least
�s + d at time s and, hence, contributes to Ls(s). This event happens only if each of
the d randomly selected locations of the ball points to a bin whose topmost ball has
index at least �s + d− d = �s. invariant H1(s) yields that the fraction of such bins in
each group is at most f(�s, s) ≤ n−0.9. Thus, the probability that a ball from batch s
contributes to L(s) is at least n−0.9d ≤ n−1.8. Now let us estimate the probability that
there exist c balls from the batches 1 to t that fulfill this condition. This probability
is at most

(
tn

c

)
·
(

1

n1.8

)c

≤
(

log2 n

cn0.8

)c

≤ n−c/2,

where the last inequality holds for sufficiently large n. Consequently, with probability
at least 1− n−c/2, Lt ≤

∑t
s=1 Ls(s) ≤ c. Thus, we have shown that H1(0), . . . , H1(t)

imply H2(t), w.h.p. This completes the proof for the case m ≥ n log2 n.

Finally, let us investigate the case m < n log2 n. We break the set of balls into at
most t ≤ log n batches. All batches except for the last one contain exactly n balls; only
the last batch might contain less. We use a simplified variant of the above analysis. In
particular, we define f(k, t) = h1(k) instead of f(k, t) = max{h0(�k/d�) · 2−t, h1(k)}.
The invariants H1 and H2 can be shown by the same arguments as before. The
advantage is that the identity between f(k, t) and h1(k) is given from the beginning
on, so that one does not have to iterate for log2 n batches until the two functions
become similar. In other words, the invariants H1 and H2 imply the bounds described
in the theorem already after the first batch as well as after all subsequent batches.
This completes the proof of Theorem 1.5.

7. Conclusions. We have presented the first tight analysis of two balls-into-bins
multiple-choice processes: the greedy protocol of Azar et al. [1] and the always-go-left
scheme due to Vöcking [33]. We showed that these schemes result in a maximum
load (w.h.p.) of only m

n + ln lnn
ln d + Θ(1) and m

n + ln lnn
d lnφd

+ Θ(1), respectively. Both
these bounds are tight up to additive constants. In addition, we have given upper
bounds on the number of bins with any given load. Furthermore, we presented the
first comparative study of the two multiple-choice algorithms and gave a majorization
result showing that the always-go-left scheme obtains a stochastically better load
balancing than the greedy scheme for any choice of d, n, and m.

Our important technical contribution is the Short Memory Lemma, which infor-
mally states that the multiple-choice processes quickly “forget” their initial distri-
bution of balls. The great consequence of this property is that the deviation of the
multiple-choice processes from the optimal allocation (that is, the allocation in which
each bin has either �m/n� or �m/n� balls) does not increase with the number of balls
as in the case of the single-choice process. This property played a fundamental role
in our analysis. We also hope that it will find further applications in the analysis
of allocation processes. In particular, we believe that the use of the Markov chain
approach to estimate the mixing time of underlying stochastic processes will be an
important tool in analyzing other balls-into-bins or similar processes.

Our calculations in section 2 use some help from computers; it would be interesting
to come up with a more elegant analysis that would possibly provide more insight on
the greedy process for a polynomial number of balls.
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[33] B. Vöcking, How asymetry helps load balancing, J. ACM, 50 (2003), pp. 568–589.
[34] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich, Queueing system with

selection of the shortest of two queues: An assymptotic approach, Probl. Inform. Transm.,
32 (1996), pp. 15–27.

[35] N. D. Vvedenskaya and Y. M. Suhov, Dobrushin’s Mean-Field Approximation for Queue
with Dynamic Routing, Technical report 3328, INRIA, Le Chesnay, France, 1997.



SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 35, No. 6, pp. 1386–1439

LINEARIZATION AND COMPLETENESS RESULTS
FOR TERMINATING TRANSITIVE CLOSURE QUERIES

ON SPATIAL DATABASES∗

FLORIS GEERTS† , BART KUIJPERS† , AND JAN VAN DEN BUSSCHE†

Abstract. We study queries to spatial databases, where spatial data are modeled as semi-
algebraic sets, using the relational calculus with polynomial inequalities as a basic query language.
We work with the extension of the relational calculus with terminating transitive closures. The main
result is that this language can express the linearization of semialgebraic databases. We also show
that the sublanguage with linear inequalities only can express all computable queries on semilinear
databases. As a consequence of these results, we obtain a completeness result for topological queries
on semialgebraic databases.
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1. Introduction. Spatial database systems [1, 8, 12, 24, 25, 42] are concerned
with the representation and manipulation of data that have a geometric or topological
interpretation. Conceptually, spatial databases store geometric figures, which are
possibly infinite sets of points in a real space Rn. The framework of constraint
databases [34], introduced by Kanellakis, Kuper, and Revesz [27], provides an elegant
and powerful model for spatial databases. In the setting of the constraint model,
a geometric figure is finitely represented as a Boolean combination of polynomial
equalities and inequalities over the real numbers. Such figures are known as semi-
algebraic sets. Special cases of figures definable by linear polynomials are known as
semilinear sets [6].

The relational calculus or first-order logic, expanded with polynomial equalities
and inequalities and evaluated over the semialgebraic sets (viewed as relations over
the reals) stored in the database, serves as a basic spatial query language and is de-
noted by FO+Poly. The special case of queries expressed using linear equalities and
inequalities is denoted by FO+Lin. Several authors have argued that the restriction
to linear polynomial constraints provides a sufficiently general framework for spatial
database applications [21, 46, 47]. Indeed, in geographic information systems (GIS),
which form one of the main application areas of spatial databases, linear represen-
tations are used to model spatial objects [34, Chapter 9]. Existing implementations
of the constraint model, for instance, the work on the system DEDALE [19, 20, 21],
are also restricted to linear polynomial constraints. Indeed, for these constraints, the
evaluation of queries expressed in FO+Lin is conceptually easier and can be com-
puted by numerous efficient algorithms for geometric operations on linear figures [38].
The computational complexity of evaluating an FO+Lin query on linear constraint
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databases (NC1) is also slightly lower than that of evaluating an FO+Poly query on
polynomial constraint databases (NC) [2, 22, 41].

Since the expressive power of the basic query languages FO+Poly and FO+Lin

is rather limited [34, Chapters 5 and 6], it makes sense to consider more powerful
extensions.

Various extensions with recursion have already been introduced and studied.
Grumbach and Kuper [18] defined syntactic variants of DATALOG with linear con-
straints which capture exactly the queries on linear constraint databases in the plane,
which have PTIME and PSPACE data complexity. Kreutzer [30] defines several re-
cursive languages capturing PTIME and PSPACE on a restricted class of linear con-
straint databases. Termination properties of DATALOG with polynomial constraints
are investigated by Kuijpers et al. [31] and Kuijpers and Smits [33].

In this paper, we study the expressive power of FO+Poly (and FO+Lin) ex-
tended with the transitive closure operator (TC). Transitive closure is a simple form
of recursion and we apply it only in a simple way; specifically, we do not apply TC to
formulas with extra free variables (parameters), as is allowed in the standard definition
of transitive closure logic [11].

In the first part of the paper, we show that when we extend the TC operator
with explicit stop conditions, which we denote by TCS, the language FO+Lin+TCS

is computationally complete on the class of databases definable by linear polynomi-
als with integer coefficients (Z-linear databases). This means that for every partial
computable query Q, there is a formula ϕ such that for every Z-linear database D,
the evaluation of ϕ on D terminates if and only if Q(D) is defined and results in
Q(D). It remains an open problem whether FO+Lin+TC (without explicit stop con-
ditions) is also computationally complete in this sense. We point out that recently,
Kreutzer [29] defined an extension of FO+Lin with a different transitive closure op-
erator and proved completeness on linear constraint databases as well (see the end of
section 3 for more details).

In the second part of the paper, we investigate the expressive power of FO+
Poly+TCS on general polynomial constraint databases. In contrast to the linear
case, we have not been able to establish the computational completeness. Yet, we
will show that the language is complete as far as all Boolean topological queries are
concerned.

In order to prove this result, we show that there is a formula of FO+Poly+TC

(no stop conditions are needed) that expresses linearization: when evaluated on an

arbitrary semialgebraic set A, it results in a semilinear set Â topologically equivalent
(i.e., homeomorphic) to A. Moreover, Â can be assumed to be a Z-linear set.

Our linearization formula always terminates, in the sense that on any input A,
every application of the TC operator in the formula converges after a finite number
of stages. In the case when A is bounded, the linearization formula can be sharpened
to produce a set Â that is arbitrarily close to the input set A.

The components of the linearization formula require a number of new geometric
constructions in FO+Poly. More specifically, we introduce the uniform cone radius
decomposition of semialgebraic sets. Using the result of Geerts [14], we show that
this decomposition can be defined in FO+Poly. Also, we define the regular decom-
position of semialgebraic sets and use the results of Rannou [39] to show that this
decomposition is expressible in FO+Poly.

The linearization algorithm also implies that semialgebraic sets in Rn can be
linearized, a fact which has been known for a long time [7]. The standard constructive
linearization (or triangulation) algorithm for semialgebraic sets, which is attributed
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to Hardt [26], can be found in the standard textbook on real algebraic geometry [6,
section 9.2] and in the more recent book on algorithms in real algebraic geometry [3,
Chapter 5].

The difference of the existing linearization algorithm for semialgebraic sets is
that the polynomials appearing in the description of the semialgebraic sets are used
explicitly. This is not possible in our setting because we can only interact with the
semialgebraic set using queries. Because of this, our algorithm is not likely to be as
efficient as the existing algorithm (we did not compute the exact complexity though).
Moreover, our linearization is based on the local conical behavior of semialgebraic
sets, and the inductive construction based on these cones might be of interest in real
algebraic geometry.

Finally, we use the linearization formula in the following two ways to show the
expressibility in FO+Poly+TC of two common queries which are known to be not
expressible in FO+Poly: (1) We show that the connectivity query on polynomial
constraint databases is expressible by an always terminating formula in FO+Poly+
TC; (2) we show that there is a formula in FO+Poly+TC that always has a ter-
minating evaluation and that evaluates on a given bounded semialgebraic set A to a
number that is arbitrarily close to the volume of A.

We remark that some of the above results were already described (in considerably
less detail) for two dimensions [16] and arbitrary dimensions [13].

This paper is organized as follows. Section 2 gives the definition of polynomial
constraint databases and defines the standard first-order query languages. Section 3
extends these languages with a transitive closure operator. Section 4 studies the
computational completeness of these extensions and gives some inexpressibility results
of the first-order query languages. Section 5 provides geometric tools necessary for
the linearization construction. Section 6 presents the construction itself and discusses
applications of linearization (testing connectivity and approximating the volume).

2. Preliminaries. We denote the set of real numbers by R, the set of algebraic
numbers by A, the set of integers by Z, and the set of natural numbers by N.

A semialgebraic set in Rn is a finite union of sets definable by conditions of the
form

f1(�x) = f2(�x) = · · · = fk(�x) = 0, g1(�x) > 0, g2(�x) > 0, . . . , g�(�x) > 0,

where �x = (x1, . . . , xn) ∈ Rn, and where f1(�x), . . . , fk(�x), g1(�x), . . . , g�(�x) are multi-
variate polynomials in the variables x1, . . . , xn with integer coefficients. A Z-linear
(A-linear) set in Rn is a semialgebraic set which can be defined in terms of linear
polynomials with integer (algebraic) coefficients.

A database schema S is a finite set of relation names, each with a given arity. A
polynomial constraint database D over S assigns to each S ∈ S a semialgebraic set SD

in Rk, where k is the arity of S. A Z-linear (A-linear) constraint database assigns
to each S ∈ S a Z-linear (A-linear) set SD in Rk, where k is the arity of S. A k-ary
query over S is a partial function Q that maps each database D over S to a k-ary
relation Q(D) ⊆ Rk.

First-order logic over the vocabulary (+,×, 0, 1, <) expanded with the database
schema S provides a basic query language which we denote by FO+Poly. The
sublanguage of FO+Poly consisting of the formulas that do not use multiplication is
denoted by FO+Lin.
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Every formula ϕ(x1, . . . , xk) in FO+Poly expresses a k-ary query as follows: Let
D be a database over S; then

ϕ(D) = {(a1, . . . , ak) ∈ Rk | 〈R, D〉 |= ϕ(a1, . . . , ak)}.

Here, by 〈R, D〉 we mean the standard structure of the reals 〈R; +,×, 0, 1, <〉 ex-
panded with the relations (semialgebraic sets) in D.

Example 2.1. Suppose that S contains the binary relation name S. Then the
FO+Poly formula

ϕ(x, y) ≡ ∃ε∀x′∀y′
(
ε > 0 ∧ ((x− x′)2 + (y − y′)2 < ε → S(x′, y′))

)
expresses the query that maps any database D over S to the interior of SD. �

FO+Poly queries can be effectively evaluated as follows. Let ϕ(x1, . . . , xk) be
an FO+Poly formula over schema S, and let D be a database over S. For every
S ∈ S, we represent the set SD by some quantifier-free polynomial constraint formula
ψS(y1, . . . , yk), where k is the arity of S, that defines SD in the sense that SD = {(a1,
. . . , ak) ∈ Rk | R |= ψS(a1, . . . , ak)}. Now replace in ϕ every subformula of the form
S(z1, . . . , zk) with ψS(z1, . . . , zk). Making these replacements for every S ∈ S, we
obtain a polynomial constraint formula which we denote by ϕD and which defines
ϕ(D) in the sense that ϕ(D) = {(a1, . . . , ak) ∈ Rk | R |= ϕD(a1, . . . , ak)}.

Because first-order logic over the reals admits quantifier elimination [43], we can
rewrite ϕD in a quantifier-free form from which we can conclude that ϕ(D) is always a
semialgebraic set. This is called the closure principle. The reals without multiplication
also admit quantifier elimination, so in the same way, if D is semilinear and ϕ is in
FO+Lin, then ϕ(D) is also semilinear. Thus, there is also a closure principle for
FO+Lin provided we work with semilinear databases. For more information on FO+
Poly and FO+Lin queries, we refer the reader to the literature [34].

3. Transitive closure logics. Many interesting spatial database queries are not
expressible in the first-order query languages FO+Poly and FO+Lin, e.g., the query
that asks whether a given set is topologically connected or not. Therefore, it makes
sense to consider extensions of FO+Poly (or FO+Lin) with recursion to obtain more
powerful query languages. We study one of the most simple recursion constructs in
this context, i.e., the transitive closure operator TC.

An immediate observation is that TC cannot be added “just like that” with its
standard mathematical semantics without losing the important closure principle.

Example 3.1. The transitive closure of the semialgebraic set {(x, y) ∈ R2 | y =
2x} equals {(x, y) ∈ R2 | ∃i ∈ N : y = 2ix}, which is not a semialgebraic set. �

Therefore, we look at the TC operator quite naturally as a programming construct
with a purely operational semantics. For example, we will look at the transitive
closure example just mentioned simply as a nonterminating computation. Almost all
programming languages allow for the expression of nonterminating computations, and
it is part of the programmer’s job to avoid writing such programs.

A formula in FO+Poly+TC is a formula built in the same way as an FO+Poly

formula, but with the following extra formation rule: If ψ(�x, �y ) is a formula with �x,
�y k-tuples of variables, and �s, �t are k-tuples of terms, then

[TC�x;�y ψ](�s,�t )(3.1)

is also a formula which has as free variables those in �s and �t. Since the only free
variables in ψ(�x, �y ) are those in �x and �y, we do not allow parameters in applications
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of the TC operator, as are allowed in general transitive closure logic studied in finite
model theory [11]. With parameters, it is not so clear how to preserve the simple and
elegant operational semantics we define next.

The semantics of a subformula of the above form (3.1) evaluated on a database
D is defined in the following operational manner:

1. Evaluate, recursively, ψ(D).
2. Start computing the following iterative sequence of 2k-ary relations:

X0 := ψ(D),

Xi+1 := Xi ∪ {(�x, �y ) ∈ R2k | ∃�z (Xi(�x, �z) ∧X0(�z, �y ))}.

Stop as soon as an i has been found such that Xi = Xi+1.
3. The semantics of [TC�x;�y ψ](�s,�t ) is now defined as the 2k-ary relation Xi.

Since every step in the above algorithm, including the test for Xi = Xi+1, is express-
ible in FO+Poly, every step is effective and the only reason why the evaluation may
not be effective is that the computation does not terminate. In that case the seman-
tics of the formula (3.1) (and any other formula in which it occurs as subformula) is
undefined.

The language FO+Lin+TC consists of all FO+Poly+TC formulas that do not
use multiplication.

Example 3.2. Let S be a relation name of arity n. Consider the following FO+
Poly+TC formula:

connected ≡ ∀�s∀�t
((
S(�s ) ∧ S(�t )

)
→ [TC�x;�y lineconn](�s,�t )

)
,

where lineconn(�x, �y) is the formula

∀λ
(
0 ≤ λ ≤ 1 ∧ ∀�t(�t = λ�x + (1 − λ)�y → S(�t ))

)
.

In section 6.5, we will prove that the TC-subformula in connected terminates on all
linear constraint databases over S. Note that a pair of points (�p, �q) belongs to the
TC of lineconn(D) (with D semilinear) if and only if �p and �q belong to the same
connected component of SD. Hence, connected effectively expresses connectivity of
semilinear sets. �

We will sometimes want to be able to specify an explicit termination condition on
transitive closure computations. To this end, we introduce the language FO+Poly+
TCS.

Formulas in FO+Poly+TCS are again built in the same way as in FO+Poly

but with the following extra formation rule: If ψ(�x, �y) is a formula with �x, �y k-tuples
of variables; σ is an FO+Poly sentence (formula without free variables) over the
schema S expanded with a special 2k-ary relation name X; and �s, �t are k-tuples of
terms, then

[TC�x;�y ψ | σ](�s,�t )(3.2)

is also a formula which has as free variables those in �s and �t. We call σ the stop
condition of this formula.

The semantics of a subformula of the above form (3.2) evaluated on databases D
is defined in the same manner as in the case without stop condition, but now we stop
not only in case an i is found such that Xi = Xi+1, but also in case an i is found such
that (D,Xi) |= σ, whichever case occurs first.
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Fig. 3.1. Illustration of the difference between transitive closure without stop condition (left)
and with stop condition (right).

Example 3.3. Let S be a relation name of arity n in S, and consider the FO+
Poly+TCS formula

ϕ1(s, t) ≡ [TCx;y S](s, t)(3.3)

and the formula

ϕ2(s, t) ≡ [TCx;y S | X(1, 8)](s, t).(3.4)

On the database D over S, where SD = {(x, y) ∈ R2 | y = 2x}, the evaluation of
formula (3.3) does not terminate, but formula (3.4) evaluates in three iterations to
{(s, t) ∈ R2 | t = 2s ∨ t = 4s ∨ t = 6s ∨ t = 8s}. An illustration is given in Figure
3.1. �

The language FO+Lin+TCS consists of all FO+Poly+TCS formulas that do
not use multiplication.

An alternative way of controlling the computation of the transitive closure is
provided by Kreutzer [29]. He allows a parametrized transitive closure operator in
which the computation of the transitive closure can be restricted to certain paths
(after specifying certain starting points).

It can be easily seen that any formula in FO+Lin+TC or FO+Poly+TC can
be expressed by an equivalent formula in the corresponding logics of Kreutzer (see
Geerts and Kuijpers [17]). Moreover, the transitive closure logic FO+Lin+KTC

(the “K” stands for “Kreutzer”) is computationally complete on Z-linear constraint
databases [29]. As we will see in the next section, the same completeness result
holds for FO+Lin+TCS. Hence, FO+Lin+KTC and FO+Lin+TCS are equally
expressive on Z-linear constraint databases. Despite this similarity, the way in which
queries are expressed in each language is quite different. Indeed, FO+Lin+KTC has
an “a priori” character because starting points have to be properly selected in order
to obtain terminating formula. In FO+Lin+TCS, termination is forced by the stop
conditions, which are of an “a posteriori” character.

We point out that termination properties of these logics on general polynomial
constraint databases have already been studied [17]. However, a complete comparison
of these logics on polynomial constraint databases is left open.

4. Expressivity results. In this section, we show a general result on the ex-
pressive power of FO+Lin+TCS. More specifically, we prove that FO+Lin+TCS is
computationally complete on Z-linear constraint databases (Theorem 4.4). The proof
consists of three steps. In the first step, we show that any computable function on
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the natural numbers can be simulated in FO+Lin+TCS (Lemma 4.1). In the second
step, we show that there exists an encoding of Z-linear constraint databases by finite
sets of rational numbers, and show that both the encoding and the corresponding
decoding are expressible in FO+Lin+TCS (Lemmas 4.2 and 4.3). This implies that
FO+Lin+TCS is computationally complete on Z-linear constraint databases.

For polynomial constraint databases, we show that FO+Poly+TCS is compu-
tationally complete for Boolean topological queries. This follows from the complete-
ness on Z-linear constraint databases and the existence of an FO+Poly+TC query
that, given any polynomial constraint database as input, returns a Z-linear constraint
database which is topologically equivalent to the input. In this section we show that
this “linearization query” is not expressible in FO+Poly. The FO+Poly+TC con-
struction of the linearization query will be presented in section 6 (following prepara-
tions in section 5.1).

4.1. Recursive functions on the natural numbers. We first show that FO+
Lin+TCS is computationally complete on the set of natural numbers N.

Lemma 4.1. For every partial computable function f : Nk → N, there ex-
ists a formula ϕf (y) in FO+Lin+TCS over the schema S = {S}, with S a k-
ary relation, such that for any database D over S with SD = {(n1, . . . , nk)}, we
have that ϕf (D) is defined if and only if f(n1, . . . , nk) is defined, and in this case
ϕf (D) = {f(n1, . . . , nk)}.

Proof. We show this by simulating the run of a nondeterministic p-counter ma-
chine Mf which computes f . Here Mf = (Q, δ, q0, qf ), where Q is a finite set of
internal states, q0 ∈ Q is the initial state, and qf ∈ Q is the final (halting) state.
The set δ contains quadruples of the form [q, i, s, q′] ∈ Q × {1, . . . , p} × {Z,P} × Q
or [q, i, d, q′] ∈ Q × {1, . . . , p} × {−,+} × Q. The quadruple [q, i, s, q′] means that
if Mf is in state q and the ith counter is equal to zero (when s = Z) or positive
(when s = P ), then change the state into q′. The quadruple [q, i, d, q′] means that
if Mf is in state q, then increase the ith counter by one (when d = +), or decrease
the ith counter by one (when d = −), and change the state into q′. We assume that
Q = {0, 1, . . . ,m− 1,m}, q0 = 0, and qf = m. Moreover, we assume that p � k and
that the initial configuration of Mf when computing f(n1, . . . , nk) has n1, . . . , nk as
the values of the first k counters. When a halting state is reached, we assume that
the first counter contains f(n1, . . . , nk).

We define the first-order formula Ψstep(q, n1, . . . , np, q
′, n′

1, . . . , n
′
p), which de-

scribes a single step in a run of Mf . The formula Ψstep is the disjunction of the
following formulas for [q, i, s, q′] and [q, i, d, q′] in δ:

Ψ[q,i,Z,q′] ≡ Q(q) ∧Q(q′) ∧ n′
i = ni = 0 ∧

∧
j∈{1,... ,i−1,i+1,... ,p}

nj = n′
j ,

Ψ[q,i,P,q′] ≡ Q(q) ∧Q(q′) ∧ n′
i = ni > 0 ∧

∧
j∈{1,... ,i−1,i+1,... ,p}

nj = n′
j ,

Ψ[q,i,+,q′] ≡ Q(q) ∧Q(q′) ∧ n′
i = ni + 1 ∧

∧
j∈{1,... ,i−1,i+1,... ,p}

nj = n′
j ,

Ψ[q,i,−,q′] ≡ Q(q) ∧Q(q′) ∧ n′
i = ni − 1 ∧

∧
j∈{1,... ,i−1,i+1,... ,p}

nj = n′
j .
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We use the stop condition σ, which checks whether the final state has been reached
starting from the initial state:

σ ≡ ∃y1 · · · ∃yp∃n1 · · · ∃nk

(
S(n1, . . . , nk) ∧X(0, n1, . . . , nk,�0p−k,m, y1, . . . , yp)

)
.

Here, �0� denotes the 	-tuple (0, . . . , 0).
The desired formula ϕf (y) extracts f(n1, . . . , nk) from the first counter (repre-

sented by the variable y) when the stop condition is satisfied:

∃y2 · · · ∃yp∃n1 · · · ∃nk(S(n1, . . . , nk)

∧ [TCq,�n;q′,�n′ Ψstep | σ](0, n1, . . . , nk,�0p−k,m, y, y2, . . . , yp)).

4.2. Finite representation of Z-linear constraint databases.
Lemma 4.2. There exists an encoding of Z-linear constraint databases into finite

relational databases over the rationals, and a corresponding decoding, which are both
expressible in FO+Lin+TCS.

Proof. It was shown by Vandeurzen [46] and Vandeurzen, Gyssens, and Van
Gucht [48] that any Z-linear set in Rn has a finite geometric representation by means
of a finite set over Q consisting of (n + 1)2-ary tuples. Basically, this geometric rep-
resentation contains the projective coordinates1 of a complete triangulation of the
Z-linear set. Moreover, this representation can be expressed in FO+Poly. Van-
deurzen [46] and Vandeurzen, Gyssens, and Van Gucht [48] actually show that this
representation can be expressed in an extension of FO+Lin with some limited amount
of multiplicative power. Also, the corresponding decoding, which computes the Z-
linear constraint database given its finite geometric representation, can be expressed
in this logic.

Hence, the lemma follows if we can show that FO+Lin+TCS can perform this
limited amount of multiplication.

More specifically, we have to be able to express the multiplication of rationals qi
from a finite set S = {q1, . . . , qm} with a real number x, i.e., qix for i = 1, . . . ,m.
First, we express how integers ni and di can be computed in FO+Lin+TCS such
that qi = ni

di
for i = 1, . . . ,m.

We assume that all rational numbers in the set S are positive. The case of all
negative rational numbers is completely analogous. If both positive and negative
rational numbers occur in the set, we separate the positive from the negative and
treat both sets separately.

Consider the following enumeration enum of pairs of natural numbers: enum is
a mapping from N × N to N × N defined by

enum : (i, j) �→
{

(i + 1, j − 1) if j > 0,

(0, i + 1) if j = 0.

For every pair (p, q) ∈ N×N, there clearly exists k ∈ N such that enumk(0, 0) = (p, q).
We shall interpret (p, q) as the rational number p

q in case q �= 0 and as 0 otherwise.
Given a rational number q and two natural numbers n and d, we can test in FO+

Lin+TCS whether q = n
d . This test can be performed as follows. Let frac : R3 → R3

be the mapping defined as

frac : (q, j, v) �→ (q, j − 1, v + q).

1Projective coordinates are used to deal with unbounded databases and the unbounded simplices
in their triangulation.
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Then for given q ∈ Q and n, d ∈ N, we have that q = n
d if and only if fracd(q, d, 0) =

(q, 0, n).
To find the numerator and denominator of a rational number q, we will enumerate

all pairs of natural numbers (n, d) = enumk(0, 0), k = 0, 1, . . . and test for each pair
whether fracd(q, d, 0) = (q, 0, n). For this, we combine enum and frac into a partial
mapping tryall : R5 → R5 defined as

(q, i, j, u, v) �→
{

(q, i, j, u′, v′) with (q, u′, v′) = frac(q, u, v) if u � 1,

(q, i′, j′, j′, 0) with (i′, j′) = enum(i, j) if u = 0.

We claim that q = n
d for n, d ∈ N if and only if tryallk(q, 0, 0, 0, 0) = (q, n, d, 0, n).

Indeed, starting from (q, 0, 0, 0, 0) the iterates of tryall behave as follows. Suppose
we are at the kth iterate. If the third coordinate of tryallk(q, 0, 0, 0, 0) is zero, a
new pair of natural numbers is generated (using the enum mapping). Assume that
tryallk+1(q, 0, 0, 0, 0) = (q, i, j, j, 0) and suppose that j > 0 (otherwise we jump to a
new pair of natural numbers immediately). Then, using the frac mapping, we end up
after j more iterations at tryallk+j+1(q, 0, 0, 0, 0) = tryallj(q, i, j, j, 0) = (q, i, j, 0, jq)
(frac reduces the fourth coordinate by one in each iteration). Note that if i = jq,
then we have found a numerator i and denominator j of q. In any case, we move on
to tryallk+j+2(q, 0, 0, 0, 0) = (q, i′, j′, j′, 0), where (i′, j′) is the next pair of natural
numbers, and the above process starts again. In this way, the iterates of tryall visit
every pair of natural numbers starting from (q, 0, 0, 0, 0); between two consecutive
pairs, it is checked whether the first pair is a numerator/denominator pair for q. The
mapping tryall can clearly be expressed by an FO+Lin formula,

ψtryall(q, i, j, u, v, q
′, i′, j′, u′, v′),

expressing that tryall(q, i, j, u, v) = (q′, i′, j′, u′, v′).
Let Ψ(q, i, j, u, v, q′, i′, j′, u′, v′) be the formula

q � 0 ∧ i � 0 ∧ j � 0 ∧ i′ � 0 ∧ j′ � 0 ∧ u � 0 ∧ q = q′

∧ ψtryall(q, i, j, u, v, q
′, i′, j′, u′, v′).

Given a finite set of rational numbers S = {q1, . . . , qm}, we obtain a denominator
and numerator for all these numbers by taking the transitive closure

[TCq,i,j,u,v;q′,i′,j′,u′,v′ Ψ | σ](�s,�t),(4.1)

where �s and �t are 5-tuples of variables, and where

σ ≡ ∀q(S(q) → ∃n∃dX(q, 0, 0, 0, 0, q, n, d, 0, n)).

This condition stops the computation of the transitive closure of Ψ when, for each
rational number q in S, there exists a k such that tryallk(q, 0, 0, 0, 0) = (q, n, d, 0, n),
or in other words, when a pair of natural numbers (n, d) has been encountered such
that q = n

d . If multiple pairs (n, d) represent the same rational number in S, we
select the pair with the smallest value of n. Thus, we obtain for each q ∈ S a unique
denominator and numerator.

We are now ready to show how to express the multiplication of rational numbers
from a finite set S with a real number. By what we just showed, we may assume that
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the rational numbers are represented as numerator/denominator pairs; i.e., we may
assume that S = {(n1, d1), . . . , (nm, dm)}.

Let max be the largest natural number occurring in S. We first compute any
multiplication of the form rn with r ∈ R and n ∈ {0, 1, . . . ,max}.

For this, we define the following formula natmult(x, y, z, x′, y′, z′):

x = x′ ∧ y′ = y − 1 ∧ z′

= z + x ∧ ∃max(∃n(S(max, n) ∨ S(n,max))

∧ ∀n∀d(S(n, d) → n � max∧d � max) ∧ 0 � y ∧ y � max).

Then the formula

mult(a, b, c) ≡ [TCx,y,z;x′,y′,z′ natmult](a, b, 0, a, 0, c)

holds if and only if ab = c for a ∈ R, b ∈ N and b � max. In this way, we can retrieve
any multiple up to max of any real number.

Finally, we define ratmult(z, y, n, d) ≡ ∃u(mult(z, d, u) ∧ mult(y, n, u)). This
formula holds for (z, y, n, d) if and only if z = yq with z, y ∈ R, and q = n

d with
(n, d) ∈ S.

4.3. Natural number representation.
Lemma 4.3. There exists an encoding of finite relations over the rational numbers

into single natural numbers, and a corresponding decoding, which are both expressible
in FO+Lin+TCS.

Proof. We assume that the relation to be encoded involves positive rational
numbers only. The general case can be dealt with by splitting the relation into “sign-
homogeneous” pieces, dealing with each piece separately and encoding the tuple of
natural numbers obtained for each piece again into a single natural number.

In the proof of Lemma 4.2, we have seen that in FO+Lin+TCS we can go from ra-
tional numbers (out of a finite set) to denominator/numerator pairs and back. Hence,
we can actually assume that the relation to be encoded involves positive natural
numbers only.

We will encode this in two steps. In the first step, we encode a finite relation
over N into a finite subset of N. In the second step, we encode a finite subset of N
into a single natural number. Since queries can be composed, we can treat these two
encoding steps (and their corresponding decoding steps) separately.

Encoding, first step. A finite k-ary relation s over N can be encoded into a finite
subset Enc1(s) of N:

Enc1(s) :=

{
k∏

i=1

pni
i | (n1, . . . , nk) ∈ s

}
.

Here, pi denotes the ith prime number.
Now let S be a k-ary relation name. We will construct an FO+Lin+TC formula

ε1 over {S} such that for any database D where SD is finite and involves natural
numbers only, ε1(D) = Enc1(S

D). For notational simplicity, we give the construction
only for the case k = 2; the general case is analogous.

Consider the following formula ψ(x1, x2, y, x
′
1, x

′
2, y

′):

∃u1∃u2(S(u1, u2) ∧ x1 ≤ u1 ∧ x2 ≤ u2)

∧ ((x1 > 0 ∧ x′
1 = x1 − 1 ∧ x′

2 = x2 ∧ y′ = 2y)

∨ (x1 = 0 ∧ x2 > 0 ∧ x′
1 = x1 ∧ x′

2 = x2 − 1 ∧ y′ = 3y)).
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Here, y′ = 2y is an abbreviation for y′ = y + y, and similarly for y′ = 3y; note that 2
and 3 are the first two prime numbers.

We now define the mapping p(x1, x2, y) = (x′
1, x

′
2, y) if and only if ψ(x1, x2, y, x

′
1,

x′
2, y

′). As long as k � x1, we have that pk(x1, x2, y) = (x1 − k, x2, y2
k). As soon as

k > x1, p
k(x1, x2, y) is undefined. If k = x1, we can compute further iterates and have

that pk+�(x1, x2, y) = p�(0, x2 − 	, y2x13�) as long as 	 � x2. Iterates again become
undefined in case 	 > x2. Finally, if 	 = x2 then pk+�(x1, x2, y) = (0, 0, y2x13x2), and
we obtain the encoding for (x1, x2) for y = 1. No further iterates are defined starting
from (0, 0, y′).

We will compute the iterates of p using transitive closure and check for each
(n1, n2) whether there exists a k such that pk(n1, n2, 1) = (0, 0, y). More specifically,
the desired formula ε1(y) is equal to

∃n1∃n2

(
S(n1, n2) ∧ [TCx1,x2,y;x′

1,x
′
2,y

′ ψ](n1, n2, 1, 0, 0, y)
)
.

The discussion above shows that this formula gives the correct answer. The
condition S(u1, u2) ∧ x1 ≤ u1 ∧ x2 ≤ u2 in ψ bounds the values of x1 and x2, and
hence ensures that the transitive closure computation always terminates.

Decoding, first step. Let S be a unary relation name. We will construct an
FO+Lin+TC formula δ1 over {S} such that for any database D where SD equals
Enc1(r) for some r, we have δ1(D) = r. As above, we give the construction only for
the case k = 2.

Consider now the following formula ψ(x1, x2, y, x
′
1, x

′
2, y

′):

x1 ≥ 0 ∧ x2 ≥ 0 ∧ y ≥ 1 ∧ ((x′
1 = x1 + 1 ∧ x′

2 = x2 ∧ y′ = 2y)

∨ (x′
1 = x1 ∧ x′

2 = x2 + 1 ∧ y′ = 3y)) ∧ ∃u(S(u) ∧ y′ ≤ u).

An analysis similar to that for Enc1 shows that when we define q(x1, x2, y) =
(x′

1, x
′
2, y

′) if and only if ψ(x1, x2, y, x
′
1, x

′
2, y

′), the iterates of q satisfy qk(0, 0, 1) =
(n1, n2, u) if and only if u = 2n13n2 .

Then the desired formula δ1(n1, n2) is

∃u(S(u) ∧ [TCx1,x2,y;x′
1,x

′
2,y

′ ψ](0, 0, 1, n1, n2, u)).

The condition ∃u(S(u) ∧ y′ ≤ u) in ψ bounds the value of y′, and hence ensures the
termination of the computation of the transitive closure.

Encoding, second step. A finite ordered subset s = {n1, . . . , n�} of N can be

encoded into a single natural number Enc2(s) :=
∏�

i=1 p
ni
i .

Let S be a unary relation name. We will construct an FO+Lin+TCS formula
ε2 over {S} such that for any database D where SD is a finite subset of N, we have
ε2(D) = {Enc2(S

D)}.
We will use the following auxiliary FO+Lin+TCS formulas; we will explain later

how to get them (except for min and max, which are easy to get).
• Formulas card, min, and max over {S}, with the property that for any D

where SD is finite of cardinality 	, card(D) = {	}; min(D) = {minSD}; and
max(D) = {maxSD}.

• Formulas prime, mult, and nat, over {M}, with M a unary relation name,
with the property that for any D where MD = {m} is a natural number
singleton,

– prime(D) = {pm};
– mult(D) = {(x, y, z) ∈ R3 | xy = z and y ∈ N and y ≤ m}; and
– nat(D) = {0, 1, 2, . . . ,m}.
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• Formula pow over {M,M2}, with M , M2 unary relation names, with the
property that for any D where MD = {m} and MD

2 = {m2} are natural
number singletons, pow(D) = {(x, y, z) ∈ R3 | xy = z and x ∈ N and x ≤
m and y ∈ N and y ≤ m2}.

Using composition, we also obtain that
• maxprime ≡ prime(card), defining p� where 	 is the cardinality of S;
• nat′ ≡ nat(maxprime), defining {0, 1, 2, . . . , p�}; and
• pow′ ≡ pow(maxprime, max), defining exponentiation of natural numbers ≤ p�

by natural numbers ≤ maxS.
We furthermore construct the following formulas:
• mult′, obtained from mult by replacing each occurrence of a subformula M(u)

with

∃p�∃m(maxprime(p�) ∧ max(m) ∧ pow′(p�,m, u)).

This formula defines multiplication by natural numbers ≤ pmaxS
� .

• isprime(p), which defines {p1, p2, . . . , p�}:

nat′(p) ∧ p > 1 ∧ ¬∃u∃v(nat′(u) ∧ nat′(v) ∧ u > 1 ∧ v > 1 ∧ mult′(u, v, p)).

• succ(x, x′), which specifies the next element after x in S (or max(S)+1) and
is given by the formula

(¬max(x) ∧ S(x′) ∧ x < x′

∧ ¬∃x′′(S(x′′) ∧ x < x′′ < x′)) ∨ (max(x) ∧ x′ = x + 1).

• next(p, p′), which specifies the next prime number greater than p and smaller
than or equal to p� (or p� + 1) and is given by the formula

(¬maxprime(p) ∧ isprime(p′) ∧ p < p′

∧ ¬∃p′′(isprime(p′′) ∧ p < p′′ < p′)) ∨ (maxprime(p) ∧ p′ = p + 1).

We need to compute the product
∏�

i=1 p
ni
i . Consider now the following formula

ψ(x, p, y, x′, p′, y′):

S(x) ∧ succ(x, x′) ∧ next(p, p′) ∧ ∃y′′(pow′(p, x, y′′) ∧ mult′(y, y′′, y′)).

Note that the variables y and y′ are related by y′ = pxy. In order to find the
desired product, we have to compute the transitive closure of ψ and check which y′-
value is in the transitive closure with (n1, 2, 1) and (m+1, p� +1, y′). More explicitly,
the desired formula ε2(n) is

∃n1∃m∃p�(min(n1) ∧ max(m) ∧ maxprime(p�)

∧ [TCx,p,y;x′,p′,y′ ψ](n1, 2, 1,m + 1, p� + 1, n)).

It remains to show how the auxiliary formulas can be constructed. Formula card(	)
can be written as

∃n1∃m(min(n1) ∧ max(m)

∧ [TCx,c;x′,c′ S(x) ∧ succ(x, x′) ∧ c′ = c + 1](n1, 0,m + 1, 	)),

where succ(x, x′) is as above.
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From the computationally completeness of FO+Lin+TCS (Lemma 4.1), we de-
rive directly the formula prime.

For formula mult, consider the following formula ψ(x, y, u, x′, y′, u′):

x′ = x ∧ y′ = y − 1 ∧ u′ = u + x ∧ 0 < y ∧ ∃m(M(m) ∧ y ≤ m).

Then mult(x, y, z) is [TCx,y,u;x′,y′,u′ ψ](x, y, 0, x, 0, z).
Formula nat(n) can be written as

n = 0 ∨ [TCx;x′ (0 ≤ x ∧ ∃m(M(m) ∧ x < m) ∧ x′ = x + 1)](0, n).

Finally, for formula pow, consider the following formula ψ(x, u, v;x′, u′, v′):

nat(x) ∧ ∃m(M(m) ∧ x < m) ∧ 0 ≤ u ∧ ∃m2(M2(m2) ∧ u < m2) ∧ u′

= u + 1 ∧ mult(v, x, v′).

Then pow(x, y, z) is (y = 0 ∧ z = 1) ∨ [TCx,u,v;x′,u′,v′ ψ](x, 0, 1, x, y, z).
Decoding, second step. Let E be a unary relation name. We will construct an

FO+Lin+TCS formula δ2 over {E} such that for any database D where ED is a
singleton {e} such that e equals Enc2(s) for some s, we have δ2(D) = s.

By Lemma 4.1, we have formulas highprime and highexp over {E} such that
for any D as above, we have highprime(D) = {p�} and highexp(D) = {m}, where
p� is the highest prime factor of e, and m is the highest exponent of a prime number
in the prime factorization of n. Composing the formula pow of above with these two
formulas, we obtain a formula defining exponentiation of natural numbers ≤ p� by
natural numbers ≤ m, which we again denote by pow′. Also, analogously to the way we
constructed the formula isprime above, we obtain a formula defining {p1, p2, . . . , p�},
which we again denote by isprime.

We need a formula divisor that finds all divisors of a natural number. First,
consider the following formula ψ(u, v, u′, v′):

0 ≤ u ∧ ∃e(E(e) ∧ u ≤ e) ∧ v ≥ 1 ∧ v′ = v ∧ u′ = u− v

and let divisor(d) be the formula

∃e(E(e) ∧ [TCu,v;u′,v′ ψ](e, d, 0, d)).

Then, the desired formula δ2(n) is

∃p(isprime(p) ∧ ∃d(pow′(p, n, d) ∧ divisor(d))

∧ ¬∃n′∃d′(pow′(p, n′, d′) ∧ divisor(d′) ∧ n′ > n)).

4.4. Completeness result for Z-linear constraint databases.
Theorem 4.4. For every partially computable query Q on Z-linear constraint

databases, there exists an FO+Lin+TCS formula ϕ such that for each database D,
ϕ(D) is defined if and only if Q(D) is, and in this case ϕ(D) and Q(D) are equal.

Proof. The proof follows directly from the lemmas above, as is illustrated in
the following diagram. Let D be a Z-linear constraint database over a schema
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S = {S1, . . . , Sk}, and let Q be an arbitrary partially computable query:

D
Q−−−−−−−−→ Q(D)

(Lemma 4.2)

⏐⏐� �⏐⏐(Lemma 4.2)

{S1,fin, . . . , Sk,fin} Sfin

(Lemma 4.3)

⏐⏐� �⏐⏐(Lemma 4.3)

(n1, . . . , nk) ∈ Nk fQ−−−−−−−−→
(Lemma 4.1)

nQ(D) ∈ N

First, each SD
i , i = 1, . . . , k, is encoded in a finite relations Si,fin, which in its turn is

encoded in a natural number ni. In this way, a k-tuple (n1, . . . , nk) is obtained. Since
Q is computable, there exists a partial computable function fQ which implements Q
on these encodings. Let nQ(D) be the result of fQ on input (n1, . . . , nk). This
integer is decoded into a finite relation Sfin which in its turn is decoded into a Z-
linear constraint database D′. This database is then the result of the query Q on the
input database D, i.e., D′ = Q(D).

4.5. Implications for polynomial constraint databases. For polynomial
constraint databases, we cannot prove completeness and have to settle for less. Al-
though finite representations of polynomial constraint databases exist, it is not known
whether a finite encoding can be expressed in FO+Poly+TCS.

Let A be a semialgebraic set in Rn. An algebraic linearization of A is an A-linear
set Â in Rn such that A and Â are topologically equivalent. A rational linearization
of A is a Z-linear set Ârat in Rn such that A and Ârat are topologically equivalent.

For �x ∈ Rn, we define ‖�x‖ =
√

x2
1 + · · · + x2

n. A linearization approximates the
set A also from a metric point of view if the following condition is satisfied: for every
point �p in A, ‖�p − h(�p)‖ < ε for a fixed ε > 0, where h is a homeomorphism of Rn

such that h(A) = Â. If this condition is satisfied for a (rational) linearization, we call
this linearization a (rational) ε-approximation of the set A. We will denote rational

and algebraic ε-approximations, respectively, by Ârat,ε and Âε.
Example 4.1. Consider the planar semialgebraic set A = {(x, y) ∈ R2 | x2 + y2 =

2}. Let ε = 1
2 . In Figure 4.1, we have drawn an algebraic ε-approximation Âε =

{(x, y) ∈ R2 | max{|x|, |y|} =
√

2}, a rational ε-approximation Ârat,ε = {(x, y) ∈ R2 |
max{|x|, |y|} = 1}, and a linearization Â which is not an ε-approximation. �

Algebraic and rational linearizations exist for any semialgebraic set. This is no
longer true for ε-approximations, where the existence is guaranteed only for bounded
semialgebraic sets. Consider, e.g., the semialgebraic set {(x, y) ∈ R2 | y = x2}. It
is easy to see that this parabola cannot be approximated by a finite number of line
segments, and hence has no ε-approximation for any ε > 0.

Let S = {S}, with S an n-ary relation name. We define for any polynomial con-
straint database D over S an algebraic (rational) linearization query Qlin (Qrat−lin)
as a query such that Qrat(D) (Qrat-lin(D)) is an algebraic (rational) linearization
of SD.

Similarly, for any ε > 0 and any polynomial constraint database D over S
such that SD is a bounded semialgebraic set, we define an algebraic (rational) ε-
approximation query Qε (Qrat,ε) as a query such that Qε(D) (Qrat,ε(D)) is an alge-
braic (rational) ε-approximation of SD.
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ε

ε

ε ε

√
2 1

ε

Âε Ârat,ε Â

ε

Fig. 4.1. Let A be the circle (grey). Left: an algebraic ε-approximation. Middle: a rational
ε-approximation. Right: an algebraic linearization.

It is an open question whether some algebraic or rational linearization query can
be expressed in FO+Poly. With respect to the ε-approximation query, neither the
algebraic nor the rational version can be expressed in FO+Poly.

Proposition 4.5. Let ε > 0 be a real number. No ε-approximation query is
expressible in FO+Poly.

Proof. Let S = {S}, with S a binary relation name. Let D be a polynomial
constraint database over S. Consider the following FO+Poly formulas over S:

• A formula circle such that for any database D over S, circle(D) is either
the circle through the points of SD, if SD consists of three noncollinear points,
or circle(D) = ∅. This formula is easily seen to be in FO+Poly.

• A formula cornerpoints such that for any database D over S, corner-
points(D) is either the set of points in which SD is not locally a straight
line, in the case when SD is semilinear, or cornerpoints(D) = ∅, otherwise.
By a result of Dumortier et al. [10], it is expressible in FO+Poly whether a
semialgebraic set is semilinear. Hence, cornerpoints is expressible in FO+
Poly.

Assume that the query Qε (and similarly, Qrat,ε) is expressible in FO+Poly. Let
ε-approx be the formula which expresses Qε. Then the formula

ϕ ≡ cornerpoints(ε-approx(circle))

is also in FO+Poly. However, the number of points in ϕ(D), |ϕ(D)| can be made
arbitrarily large by choosing D such that SD consist of three points far enough apart.
This contradicts the dichotomy theorem of Benedikt and Libkin [4], which guarantees
the existence of a polynomial pϕ such that |ϕ(D)| < pϕ(|SD|) = pϕ(3) in the case
when |ϕ(D)| is finite.

In contrast to the negative expressiveness result in Proposition 4.5, we will prove
that all kinds of linearizations are expressible in FO+Poly+TC. Indeed, in section 6
we show that there exists

• an FO+Poly+TC expressible algebraic linearization query (Theorem 6.6);
• an FO+Poly+TC expressible rational linearization query (Theorem 6.9);
• an FO+Poly+TC expressible algebraic ε-approximation query (Theorem 6.7);
• an FO+Poly+TC expressible rational ε-approximation query (Theorem 6.10).
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We shall denote the FO+Poly+TC formula, which expresses the rational lin-
earization by ratlin. Let Q be a partially computable Boolean topological query.
Since Q is partially computable, it is in particular partially computable on Z-linear
constraint databases, and therefore by Theorem 4.4 is expressible on these databases
by a formula ϕQ in FO+Lin+TCS.

Because Q is topological, Q(D) is true if and only if ϕQ(ratlin(D)) is true.
Hence, we have proven the following theorem.

Theorem 4.6. For every partially computable Boolean topological query Q on
polynomial constraint databases, there exists an FO+Poly+TCS formula ϕ such that
for each database D, ϕ(D) is defined if and only if Q(D) is defined, and in this case
ϕ(D) and Q(D) are equal.

5. Geometrical properties of semialgebraic sets. In this section, we discuss
a number of topological properties of spatial databases that can be expressed in first-
order logic. They are used in the construction of the linearization of polynomial
constraint databases in the next section.

We will use the following notation. Let A ⊆ Rn; the closure of A is denoted by
cl(A), and int(A) indicates the interior of A. We denote cl(A)− int(A) (the boundary
of A) by ∂A.

5.1. The cone radius. Let A be a semialgebraic set in Rn, and let �p be a point
in Rn. We define the cone with base A and top �p as the union of all closed line segments
between �p and points in A. Formally, this is the set {t�b + (1 − t)�p | �b ∈ A, 0 ≤ t ≤ 1}
and we denote this set by Cone(A, �p).

For a point �p ∈ Rn, and ε > 0, we denote the closed ball centered at �p with radius
ε by Bn(�p, ε), and we denote the sphere centered at �p with radius ε by Sn−1(�p, ε).

The local conic structure of semialgebraic sets characterizes the local topology of
semialgebraic sets.

Theorem 5.1 (local conic structure; see Theorem 9.3.6 of [6]). Let A be a
semialgebraic set in Rn and �p be a point of cl(A). Then there is a real number ε > 0
such that intersection Bn(�p, ε)∩A is homeomorphic to the set Cone(Sn−1(�p, ε)∩A, �p),
in the case when �p ∈ A, and homeomorphic to Cone(Sn−1(�p, ε)∩A, �p)−{�p} otherwise.

Before we can state a “box” version of this theorem, we need the following def-
initions. Consider a 2n-tuple B = (a1, b1, . . . , an, bn) ∈ R2n with ai � bi for each i.
One can associate with each such tuple an n-ary relation |B| in Rn:

|B| := {(x1, . . . , xn) ∈ Rn | (a1 � x1 � b1) ∧ · · · ∧ (an � xn � bn)}.

We call B a box in Rn, and |B| is the geometric realization of B. The dimension of a
box is the number of pairs (ai, bi) with ai �= bi. The diameter of a box B, diam(B),
equals (

∑n
i=1(bi−ai)

2)1/2. The center of B is the point ((a1+b1)/2, . . . , (an+bn)/2).
Theorem 5.2 (see [14]). Let A be a semialgebraic set in Rn and �p a point of

cl(A). Then there is a real number ε > 0 such that for any n-dimensional box B in
Rn such that

1. �p ∈ int(|B|), and
2. |B| ⊆ (p1 − ε, p1 + ε) × · · · × (pn − ε, pn + ε),

we have that the intersection A∩|B| is homeomorphic to the set Cone(A∩∂|B|, �p), in
the case when �p ∈ A, and homeomorphic to the set Cone(A∩∂|B|, �p)−{�p} otherwise.

Any positive real number ε as in Theorem 5.2 is called a cone radius of A in �p
(see Figure 5.1).
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Cone(A ∩ ∂|B|, �p)

h

A ∩ |B|

�p �p

Fig. 5.1. The local conic structure of semialgebraic sets.

Let S = {S}, with S an n-ary relation name. We define the cone radius query
Qradius as a query which maps any polynomial constraint database D over S to a set
of pairs (�p, r) ∈ Rn × R such that for every �p ∈ cl(SD) there exists at least one pair
(�p, r) ∈ Qradius(D), and for every (�p, r) ∈ Qradius(D), r is a cone radius of SD in �p.

Theorem 5.3 (see [14]). The cone radius query defined above is expressible in
FO+Poly.

The FO+Poly formula over S, constructed in [14] and whose existence is referred
to in Theorem 5.3, will be denoted by radius. The exact properties of this formula
are not important (except for the fact that, for each point �p, it assigns an open
interval (0, r) ⊂ R such that for each r′ ∈ (0, r), r′ is a cone radius) until the proof
of Claim 6.1. There we have to go back to the construction of radius for the cone
radius query as presented in [14].

As observed above, for each point �p,

{r′ | (�p, r′) ∈ radius(D)} = (0, r).

Define r�p to be the cone radius r/2. Moreover, let uniqueradius be the FO+Poly

formula over S such that for each point �p ∈ cl(SD), (�p, r�p) is in uniqueradius(D).
Basically, uniqueradius assigns a unique cone radius to each point.

For a given semialgebraic set A in Rn, we now define the semialgebraic mapping2

γcone,A from cl(A) to R which maps each point �p ∈ cl(A) to the unique cone radius
r�p ∈ R given by uniqueradius(D), where SD = A.

5.2. The uniform cone radius decomposition. Although every point of a
semialgebraic set has a cone radius which is strictly greater than zero (Theorem 5.2),
we are now interested in finding a uniform cone radius for a semialgebraic set. We
define a uniform cone radius of a semialgebraic set A ⊆ Rn as a real number εA > 0
such that εA is a cone radius of A in all points of A. For any X ⊆ A ⊆ Rn, we define
a uniform cone radius of X with respect to A as a real number ε > 0 such that ε is a
cone radius of A in all points of X.

A first observation is that a uniform cone radius of a semialgebraic set does not
always exist.

Example 5.1. Consider the set shown in Figure 5.2. We have drawn the maximal
cone radius around the points �p1, �p2, �p3, �p4, and �p5. It is clear that the closer these
points are to the point �p, the smaller their maximal cone radius is. Because we can
make the maximal cone radius arbitrarily small by taking points very close to �p, we
may conclude that the set shown in this figure has no uniform cone radius. �

2A mapping is called semialgebraic if its graph is a semialgebraic set.
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�p

�p4

�p1

�p2

�p3
�p5

Fig. 5.2. Example of a semialgebraic set which does not have a uniform cone radius.

Let A be a semialgebraic set in Rn. We define the ε-neighborhood of A as

Aε := {�x ∈ Rn | ∃�y (�y ∈ A ∧ ‖�x− �y‖ < ε)}.

We will frequently use the following notation. Let U0, . . . , Um be pairwise disjoint
semialgebraic subsets of cl(A), which satisfy the condition that for any m-tuple (ε0,
. . . , εm) of positive real numbers, and for i = 0, . . . ,m, the sets

inf

{
γcone,A

(
Ui −

m⋃
j=i+1

U
εj
j

)}
> 0.(5.1)

Note that these sets have a uniform cone radius with respect to A. Hence, we say
that the sets U0, . . . , Um form a uniform cone radius collection of cl(A).

When the sets U0, . . . , Um of a uniform cone radius collection of A form a decom-
position of cl(A), i.e.,

cl(A) = U0 ∪ · · · ∪ Um,

then we call U0, . . . , Um a uniform cone radius decomposition of cl(A).
We now show how to construct such a uniform cone radius decomposition of cl(A).

For any closed subset X ⊆ cl(A), we define

Γnc(X) := {�p ∈ X | γcone,A |X is not continuous in �p}.(5.2)

Let Δ0 := cl(A), and let Δi+1 := cl(Γnc(Δi)) ∩ Δi. We define for k = 0, 1, . . . the
sets

Ck := Δk − Δk+1.(5.3)

By taking f = γcone,A in the following lemma, we obtain that Γnc(X) is semi-
algebraic and dim(Γnc(X)) < dimX.

Lemma 5.4. For each semialgebraic set X in Rn and each semialgebraic function
f : X → R, the set Γ(f) = {�p ∈ X | f(�p) is not continuous in �p} is semialgebraic
and dim(Γ(f)) < dimX.

Proof. The set

Γ(f) = {�p ∈ Rn | (∃ε > 0)(∀δ > 0)∃�q ∈ Rn(�q ∈ X ∩Bn(�p, δ) ∧ |f(�p) − f(�q)| > ε)}

is clearly semialgebraic. This proves the first assertion.
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ε0

�p1 �p2

�p3

�p4

ε1

�p5

Fig. 5.3. The points �p1, �p2, �p3, �p4, and �p5 form the part C1 which has ε1 as uniform cone
radius. As can be seen, the set C0 = A− Cε1

1 has a uniform cone radius ε0.

We prove the second assertion by contradiction. Let d = dimX and suppose that
dim(Γ(f)) = d. Then there exists a semialgebraic cell V ⊆ Γ(f) of dimension d. By
the cell decomposition theorem of semialgebraic sets [44, Theorem 2.11] there exists
a semialgebraic cell decomposition of V into a finite number of semialgebraic cells,

V = V1 ∪ · · · ∪ Vk ∪ Vk+1 ∪ · · · ∪ V�,

with dim(Vi) = d for i = 1, . . . , k and dim(Vj) < d for j = k + 1, . . . , 	, such that

f |Vi
is continuous for every i = 1, . . . , 	.(5.4)

Since Vi ⊆ V has dimension d for i = 1, . . . , k, Vi is open in V , and Vi is also open in
X for i = 1, . . . , k. From (5.4) we deduce that each Vi for i = 1, . . . , k is included in
X − Γ(f), which is impossible since V ⊆ Γ(f). Hence, dim(Γ(f)) < d.

An immediate consequence of this lemma is that from i = n + 1 on, the Ci’s are
all empty. Let us denote by m the latest index such that Cm is nonempty. Thus,
m � n.

We now prove that for any tuple (ε0, . . . , εm) of positive real numbers, the sets

Ci −
m⋃

j=i+1

C
εj
j for i = 0, 1, . . . ,m

have a uniform cone radius. Since Cm = Δm is closed, γcone,A(Cm) is also closed and
therefore has a minimum which is strictly positive. Hence, Cm has a uniform cone
radius. For i > 0 there exists an η < min{ε0, . . . , εm} such that

Ci −
m⋃

j=i+1

C
εj
j ⊆ Z := Δi − Δη

i+1.(5.5)

The set Z is closed and the restriction γcone,A | Z is continuous. Hence, γcone,A(Z) is
closed in R and has a minimum which is strictly positive. We may conclude that Z
has a uniform cone radius, and by (5.5), so has Ci −

⋃m
j=i+1 C

εj
j . Thus, C0, . . . , Cm

is a uniform cone radius decomposition of cl(A).
Example 5.2. In Figure 5.3, we have shown the uniform cone radius decomposition

of the set depicted in Figure 5.2. �
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Let S = {S}, with S an n-ary relation name. We define the n+1 queries Quniform
k

such that for any polynomial constraint database D over S,

Quniform
k (D) := Ck

for k = 0, 1, . . . , n, with C0, . . . , Cn being the uniform cone radius decomposition of
cl(SD).

Because γcone,SD equals uniqueradius(D), and by Theorem 5.3 the formula
uniqueradius is in FO+Poly, the following lemma is immediate.

Lemma 5.5. The queries Qk-uniform, k = 0, 1, . . . , n, are expressible in FO+
Poly.

5.3. The regular decomposition. In this section, we construct a decomposi-
tion of semialgebraic sets such that a certain regularity condition is satisfied on each
part of the decomposition. In order to define this regularity condition, we need to
define the tangent space to a semialgebraic set in a point. The following definitions
are taken from Rannou [39].

Let A be a semialgebraic set in Rn. The secants limit set of A in a point �p ∈ A
is defined as the set

limsec�p A :=
⋂
η>0

cl({λ(�u− �v) ∈ Rn | λ ∈ R and �u,�v ∈ A ∩Bn(�p, η)}).

If limsec�p A is a vector space, then we define the tangent space of A in �p as T�p A :=
�p + limsec�p A. If limsec�p A is not a vector space, then the tangent space of A in �p is
undefined.

Let S = {S}, with S an n-ary relation name. We define the query Qtangent as the
query such that for any polynomial constraint database D over S,

Qtangent(D) := {(�x,�v) ∈ SD × Rn | T�x S
D exists in �x and �v ∈ T�x S

D}.

Lemma 5.6. The query Qtangent is expressible in FO+Poly.
Proof. It is shown by Rannou [39, Lemma 2] that the definition of the secant

limit set of a set in a point can be translated into a first-order formula over the reals.
Since it is straightforward to check in FO+Poly whether a secant limit set is a vector
space (i.e., we need to check whether, for all �s,�t in a secant limit set, the sum �s+�t is
also an element of this secant limit set), the lemma is immediate.

The set A is regular in �p if and only if T�p A exists and there exists a neighborhood
U of �p such that the orthogonal projection of A ∩ U on T�p A is bijective. A set is
regular if it is regular in all of its points.

A finite number of pairwise disjoint regular sets R1, . . . , Rk is called a regular
decomposition of A if A = R1 ∪ · · · ∪Rk.

We now show that every semialgebraic set A has a regular decomposition.
We denote the set of points where A is regular and where the local dimension of

A is k by Regk(A). Note that Regk(A) is either empty or dimRegk(A) = k.
Define inductively for k = n, n− 1, . . . , 0, the sets

Rk := Regk

(
A−

n⋃
j=k+1

Rj

)
.(5.6)

These sets are pairwise disjoint and form a decomposition of A, i.e.,

A = Rn ∪Rn−1 ∪ · · · ∪R0.(5.7)
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�p

�s

�q

�r T�r A

T�q A

Fig. 5.4. The snowman A has no tangent space in �p, A has a tangent space in �q and �r but is
not regular in these points, and A is regular in �s.

∪ ∪

R2R3 R0R1

∪

Fig. 5.5. The three-dimensional set A of Figure 5.4 is decomposed into four parts R0, R1, R2,
and R3 according to the construction of the regular decomposition.

Note that n+ 1 parts are really sufficient because, for any semialgebraic set X ⊆ Rn

of dimension d, X −Regd(X) has a strictly lower dimension than X [45].
Moreover, by (5.6) each Rk is regular, and hence we define the regular decompo-

sition of A as the n + 1 sets R0, . . . , Rn.
Example 5.3. In Figure 5.4, we have illustrated the three possible cases: T�p A

does not exist; T�q A and T�r A exist but A is not regular in �q and �r; and finally, A is
regular in �s. In Figure 5.5, we have drawn an example of the regular decomposition
of a three-dimensional set in R3. �

Let S = {S}, with S an n-ary relation name. We define the n+ 1 queries Qreg
k as

the queries such that for every polynomial constraint database D,

Qreg
k (D) := Rk

for k = 0, . . . , n, with R0, . . . , Rn the regular decomposition of SD.
It was proved by Rannou [39, Proposition 2] that checking whether a semi-

algebraic set is regular in a point is first-order expressible. Hence the next lemma
follows.

Lemma 5.7. The queries Qk-reg, k = 0, 1, . . . , n are expressible in FO+Poly.
Regular decompositions of semilinear sets are fully treated by Dumortier et al. [10]

and Vandeurzen [46]. These authors showed that on semilinear databases, the n + 1
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queries Qk-reg are already expressible in FO+Lin. There is, however, a great difference
between the semilinear and semialgebraic cases. Indeed, in the semialgebraic case,
regularity implies that the set is a C1-smooth algebraic variety, while in the semilinear
case, regularity implies that the set is a C∞-smooth algebraic variety. One could ask
if it is possible to define a regularity condition in first-order logic such that it also
induces C∞-smoothness of semialgebraic sets, but this is impossible [49].

However, we still can generalize the regular decompositions defined above to Ck-
regular decompositions by demanding Ck-smoothness instead of C1-smoothness (reg-
ularity). Using again results from Rannou [39, Proposition 3], we have first-order
expressibility of the corresponding query in this case too.

An interesting question is which extensions of FO+Poly can express C∞-regular
decompositions. A useful observation in this context might be that for every semi-
algebraic set, there exists a natural number K such that for all k > K, a Ck-regular
decomposition is already a C∞-regular decomposition. Unfortunately, it is not known
how to find K for a given semialgebraic set [40] and we might have to compute Ck-
regular decompositions for increasing values of k until two consecutive decompositions
are identical. This indicates that recursion is needed for the computation of C∞-
regular decompositions. We leave open whether the recursion in FO+Poly+TC or
FO+Poly+TCS is sufficient for this purpose.

5.4. Transversality. In computational geometry [9], a convenient assumption is
the hypothesis of “general position,” which dispenses with the detailed consideration
of special cases. In the description of our linearization algorithm in section 6, we
would like to assume this hypothesis. However, we need to make precise what we will
mean by general position and see if this hypothesis may indeed be assumed.

Let A and B be two regular semialgebraic sets in Rn. From differential topol-
ogy [23], we recall that A and B are said to intersect transversally at �p ∈ A ∩ B
if 3

T�p A + T�p B = Rn.(5.8)

The sets A and B are in general position if they intersect transversally in every point
of A ∩B. We denote this by A � B. This is illustrated in Figure 5.6 and Figure 5.7,
where some examples of transversal and nontransversal intersections in R2 and R3

are depicted.
Let A = {A1, . . . , An} and B = {B1, . . . , Bm} be finite sets of regular semi-

algebraic sets in Rn such that Ai ∩ Aj = ∅ and Bi ∩ Bj = ∅ for i �= j. We say
that A and B are in general position if Ai and Bj are in general position for every
i = 1, . . . , n and every j = 1, . . . ,m. We denote this by A � B.

Let S = {S1, S2}, with S1 and S2 two n-ary relation names. We define the
Boolean query Q� such that for every polynomial constraint database D over S,

Q�(D) = true if and only if SD
1 and SD

2 are regular and SD
1 � SD

2 .

Condition (5.8) can be readily expressed in FO+Poly, and by Lemma 5.7, regularity
is expressible in FO+Poly. Hence Lemma 5.8 follows.

Lemma 5.8. The Boolean query Q� is expressible in FO+Poly.
Given two arbitrary regular semialgebraic sets A and B in Rn not in general

position, we can ask how to force them to be in general position. The following

3Let U and V be two subspaces of a vector space X; then the sum U +V is the set of all vectors
�u + �v, where �u ∈ U and �v ∈ V . Besides, U + V is a subspace of X.
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transversal nontransversal

Fig. 5.6. Curves in R2.

not transversal

not transversal

transversal

transversal

Fig. 5.7. Curves and surfaces in R3.

theorem answers this question. A translation of a set X ⊆ Rn is a set of the form
X + τ := {�x + τ ∈ Rn | �x ∈ X}, where τ ∈ Rn.

Theorem 5.9. Let A and B two regular semialgebraic sets in Rn. For almost
all τ ∈ Rn, we have that A + τ and B are in general position.

Proof. This theorem is a direct consequence of the transversality theorem of
differential topology. A proof of the transversality theorem given by Guillemin and
Pollack [23] for C∞-smooth varieties in Rn literally remains valid in this case, except
that the C1-version of Sard’s theorem given by Wilkie [50] needs to be used instead
of the standard C∞-smooth version.

Here, “almost all” means that the set of translation vectors τ for which A+τ and
B are not in general position has measure zero.4 Since a set of measure zero cannot
contain an open set in Rn, the set of translation vectors τ for which A+τ and B are
in general position is dense in Rn.

Moreover, Theorem 5.9 can be easily generalized as follows.
Corollary 5.10. Let A = {A1, . . . , An} and B = {B1, . . . , Bm} be sets of

regular semialgebraic sets in Rn such that Ai ∩Aj = ∅ (Bi ∩Bj = ∅) for i �= j. Then
for almost all τ ∈ Rn, A + τ � B.

We mention three useful properties of sets in general position. Let A and B be
as above; then if A � B, there exists an ε > 0 such that A + τ � B for any τ ∈ Rn

of norm less than ε. Therefore, one says that transversality is a stable property. A
second useful property is that the intersection of two regular sets in general position is
again regular. A third property is that the tangent space in a point of the intersection
of two sets in general position is the intersection of the tangent spaces of these sets
in this point [23].

4A set in Rn has measure zero if it can be covered by a countable number of n-dimensional boxes
with arbitrary small volume.
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|D|

H1

H2
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|B2| |B3|
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Fig. 5.8. A two-dimensional example of the construction of a box collection for two boxes in
the R2.

5.5. Box collections. We need one more ingredient before we can start explain-
ing the linearization algorithm: box collections.

We define an n-dimensional box collection B in Rn as a finite set of n-dimensional
boxes satisfying an intersection condition. Let B1 and B2 be two arbitrary boxes in
B. Then, if |B1| and |B2| intersect, the intersection is included in their boundaries
∂|B1| and ∂|B2|. By the geometric realization |B| of B, we mean the union of the
geometric realizations of all boxes in B. If X ⊆ Rn is a semialgebraic set and B an
n-dimensional box collection in Rn, then B ∩ X is the set of all boxes B ∈ B such
that B ∩X �= ∅.

Let D be a set of n-dimensional boxes, which does not necessarily satisfy the
above intersection condition. In the following, we show how in FO+Poly to split the
boxes in D into smaller boxes such that the collection of these smaller boxes is a box
collection. We call this the box collection of D and denote it by D. By construction,
the geometric realization of each box in D is the union of the geometric realizations
of certain boxes of D.

We first give an example of the construction and then present the general con-
struction more formally.

Example 5.4. Fix the dimension n = 2 and consider the set D consisting
of two boxes (0, 2, 0, 3) and (1, 3, 1, 4). The geometric realization |D| of D is de-
picted in Figure 5.8. In this figure, two sets of lines, HD,x = {H1, H2, H3, H4} and
HD,y = {V1, V2, V3, V4}, are drawn. Denote the intersection

⋃
HD,x∩

⋃
HD,y by I. In

this example, I consists of 16 points {�p1, . . . , �p16}. From these points, we construct
the set P which contains the 9 two-dimensional boxes denoted by Bi, i = 1, . . . , 9.
The geometric realizations of these boxes are shown in the figure. As can be seen,
these boxes intersect only at their boundaries, and hence form a two-dimensional box
collection. Finally, we define the box collection D of D as the boxes included in |D|,
i.e., D = {B1, B2, B4, B6, B6, B8, B9}. �

In general, we define n unions of (n− 1)-dimensional hyperplanes,

HD,i := {(x1, . . . , xn) ∈ Rn | ∃(a1, b1, . . . , an, bn) ∈ D ∧ (xi = ai ∨ xi = bi)},

for i = 1, . . . , n. Let I ⊆ Rn be the set of points HD,1 ∩ · · · ∩ HD,n.
It is easily shown that I is a finite set of points. Indeed, a proof by induction

shows that dim(HD,1 ∩ · · · ∩ HD,k) = n − k for any k = 1, . . . , n. In particular,
dim(I) = n− n = 0, or in other words, I is a finite set.

Next, we construct an n-dimensional box collection, which we denote by P,
such that the geometric realization of each box in D is the union of the geometric
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Fig. 5.9. The set |D|− |D|2 (left). The one-dimensional box collection Px ∪Py, where the line
segment Li is labeled with the number i (center). The set |D|0 (right).

realizations of boxes in P. More specifically,

P :=

{
(a1, b1, . . . , an, bn) ∈ R2n | ∃�p1∃�q1 · · · ∃�pn∃�qn ∈ I

n∧
i=1

(ai = (�pi)i ∧ bi = (�qi)i ∧ ai < bi)

∧
(
∀�r ∈ I

n∧
i=1

¬(ai < (�r)i < bi)

)}
.

Finally, we define D as those n-dimensional boxes B in P such that |B| is included
in the geometric realization of any of the boxes in B. By construction, D is a box
collection, and the geometric realization of any box in D is the union of the geometric
realizations of certain boxes in D. The construction of D for a given D can be
expressed in FO+Poly, as is clear from the above expressions for HD,i and P.

Let S = {S}, with S a 2n-ary relation name. We define the box collection query
Qbc such that for any polynomial constraint database D over S representing a set of
n-dimensional boxes in Rn,

Qbc(D) = D,

where D is the box collection of D. From the constructions above, the following result
is immediate.

Lemma 5.11. The query Qbc is expressible in FO+Poly.
When applied to the union of two box collections D and D′, we will denote the

box collection Qbc(D ∪D′) by D �D′.
We next define a useful decomposition of box collections. We again give first an

example.
Example 5.5 (see Figure 5.8 and Figure 5.9). Let us continue the previous exam-

ple. Let |D|2 be the set in R2 defined by
⋃

i∈{1,2,4,5,6,8,9} int(|Bi|). Consider the set

|D|−|D|2 and define Px to be the set of horizontal line segments Li, with i = 1, . . . , 12,
and let Py be the set of vertical line segments Li, with i = 13, . . . , 24. The line seg-
ments Li can easily be defined from the points in I and from a one-dimensional box
collection. We define D1 to be the box collection consisting of boxes in Px∪Py, which
are contained in |D|. Next, define |D|1 to be the set

⋃
i∈{1,... ,24}−{3,10,22,15} int(|Li|).

Here, when taking the interior, we regard each |Li| as a space on itself, so the result
is an open line segment without the endpoints (as opposed to the empty set, where
we would regard each |Li| as a set in R2). Now, |D| − |D|2 − |D|1 is a subset of I,
which we denote by |D|0. Hence, we have obtained a decomposition of |D|. �
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This decomposition is important for two reasons. First, the geometric realization
of each box of D is the disjoint union of the interiors of the geometric realizations of
certain boxes in D2, D1, and D0. Second, the interiors of boxes in D are open subsets
of Reg2(|D|), the interiors of boxes in D1 are open subsets of Reg1(|D| − |D|2), and
finally, |D|0 equals Reg0(|D| − |D|2 − |D|1).

In general, the construction of this decomposition goes as follows. For k =
0, 1, . . . , n and any combination of k different elements i1, . . . , ik in {1, . . . , n}, we
define the following set of (n− k)-dimensional boxes in Rn:

P{i1,... ,ik} :=

{
(a1, b1, . . . , an, bn) ∈ R2n | ∃�p1∃�q1 · · · ∃�pn∃�qn ∈ I(5.9)

∧
i∈{1,... ,n}

(ai = (�pi)i ∧ bi = (�qi)i) ∧ ∀�r ∈ I

n∧
i=1

¬(ai < (�r)i < bi)

∧
∧

i∈{1,... ,n}−{i1,... ,ik}
ai < bi ∧

∧
i∈{i1,... ,ik}

ai = bi

}
.

Note that P{1,... ,n} = I and P∅ = P. It is clear that these sets are expressible in FO+
Poly. We also define for k = 0, 1, . . . , n and any combination of k different elements
i1, . . . , ik in {1, . . . , n} the following (n− k)-dimensional box collection in Rn:

D{i1,... ,ik} :=

{
(a1, b1, . . . , an, bn) ∈ P{i1,... ,ik} | ∃(a′1, b

′
1, . . . , a

′
n, b

′
n) ∈ D

∧
n∧

i=1

(a′i � ai ∧ bi � b′i)

}
.

We then define

Dn−k :=
⋃

{i1,... ,ik}
D{i1,... ,ik}.

Finally, for k = 0, 1, . . . , n, we define |D|n−k as the union of the interiors of the
geometric realizations of boxes in Dn−k. Here, when taking the interior, we regard
each geometric realization of a box as a space on itself, so the result is an open box.
By construction, we have the following properties:

1.

|D| = |D|n ∪ · · · ∪ |D|0;(5.10)

2. each geometric realization of a box in D is the union of the geometric real-
izations of boxes in |D|k for k = 0, 1, . . . , n; and

3. the interiors of the geometric realizations of boxes in Dk are open subsets of
Regk(|D| − |D|n − · · · − |D|k+1).

Let S = {S}, with S a 2n-ary relation name. We define the n + 1 queries
Qk-box such that for any polynomial constraint database D over S representing a box
collection D,

Qk-box(D) = Di

for k = 0, 1, . . . , n with Di the i-dimensional box collection in Rn defined above. The
following trivially holds.

Lemma 5.12. The queries Qk-box, k = 0, 1, . . . , n, are expressible in FO+Poly.
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x
1

1

y

Fig. 5.10. The δ-cover of a semiopen annulus for δ = 1.

5.6. Expressing the box covering query. Let δ > 0 be a real number. We
define the n-dimensional standard grid of size δ, called the δ-grid, as the n-dimensional
box collection δ-grid consisting of all boxes of the form (k1δ, (k1 + 1)δ, . . . , knδ, (kn +
1)δ), where k1, . . . , kn ∈ Z. We define the box covering of size δ of a semialgebraic set
A, denoted by δ-cover(A), as those boxes in the δ-grid that intersect the closure of A
(see Figure 5.10). Let S = {S}, with S an n-ary relation name. For each δ > 0 we
define the box covering query Qδ-cover such that for every constraint database D over S,

Qδ-cover(D) := δ-cover(SD).

Proposition 5.13. Let δ > 0. The query Qδ-cover is not expressible in FO+
Poly.

Proof. Let S = {S}, with S a binary relation name. We consider the following
FO+Poly formula over S: a formula circle such that for any database D over
S, either circle(D) is the circle through the points of SD, if SD consists of three
noncollinear points, or circle(D) = SD.

Assume that the query Qδ-cover is expressible in FO+Poly. Let δ-cover be the
formula which expresses Qδ-cover. Then the formula

ϕ ≡ δ-cover(circle)

is also expressible in FO+Poly. However, the number of 4-tuples in ϕ(D) can be
made arbitrarily large by choosing D to be a database over S such that SD consists
of three points far enough apart. This contradicts the dichotomy theorem of Benedikt
and Libkin [4], which guarantees the existence of a polynomial pϕ such that |ϕ(D)| <
pϕ(|SD|) = pϕ(3) in the case when |ϕ(D)| is finite.

However, in FO+Poly+TC we can express the box covering query as follows.
Proposition 5.14. For each δ > 0, the query Qδ-cover is expressible in FO+

Poly+TC when restricted to bounded input databases.
Proof. Let S = {S}, with S an n-ary relation name. We define the bounding box

query Qbb as the query such that for every polynomial constraint database D, such
that SD is bounded, Qbb(D) := {M}, with M a real number such that cl(SD) ⊆
[−M,M ]n. This query is clearly FO+Poly expressible by a formula over S which we
denote by boundingbox(x). Let

grid(u) ≡ [TCx;x′ ∃M(boundingbox(M) ∧ x � 0

∧ x′ = x + δ ∧ x′ � M)](0, u) ∨ u = 0.
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Let

δ-cover(u1, v1, . . . , un, vn) ≡
n∧

i=1

(vi = ui + δ ∧ grid(ui))

∧ ∃�x
(

cl(S)(�x) ∧
n∧

i=1

ui < xi < vi

)
.

Then Qδ-cover(D) = δ-cover(D) for any database D over S such that SD is
bounded.

6. Linearization and approximation of semialgebraic sets. In this section,
we give a construction of both an algebraic linearization and an ε-approximation of
semialgebraic sets which are implementable in FO+Poly+TC. This implementation
is based on the construction of a box collection satisfying some special properties.

More specifically, it is shown in section 6.1 how to construct such a box collection
R for a semialgebraic set A. In section 6.2 we derive a box collection U from R
and take a closer look at A on the boundaries of U . We show that we can apply the
construction in section 6.1 again for A on the lower-dimensional box collections on the
boundaries of U . This inductive process is the basis of the algorithm Linearize in
section 6.3 which builds an algebraic linearization and an ε-approximation of bounded
semi-algebraic sets. In the same section, we prove the correctness of the algorithm
Linearize and show that the algorithm can be expressed by a query in FO+Poly+
TC.

We also show how to extend this algorithm such that it also builds algebraic
linearizations of possibly unbounded semialgebraic sets. Finally, in section 6.4 we
show that after some minor changes, the algorithm Linearize can be used to build
a rational linearization and an ε-approximation of semialgebraic sets.

6.1. Construction of a special box collection. Let B be an n-dimensional
box collection in Rn, and let X = {X1, . . . , Xk} be a finite set of pairwise disjoint
semialgebraic sets in Rn. We now define when B and X are in general position. We
decompose |B| and X into a finite number of regular sets and then define “being in
general position” in terms of these decompositions as follows.

In (5.10), we defined a decomposition of a box collection into regular sets. Applied
to |B|, this results in the decomposition |B|n, . . . , |B|0, where |B|i is a union of interiors
of i-dimensional boxes in Rn.

For each Xi, let Ri0, . . . , Rini be a regular decomposition of Xi. We say that B
and X are in general position if and only if {|B|n, . . . , |B|0} and {R1,0, . . . , R1,n1 , . . . ,
Rk,0, . . . , Rk,nk

} are in general position.
We now describe the construction of an n-dimensional special box collection (the

properties of this box collection will become clear later on). The construction takes
as input

• a bounded semialgebraic set A in Rn;
• a uniform cone radius collection U0, . . . , Um of cl(A) (as defined in sec-

tion 5.2); and
• a fixed n-dimensional box collection F in Rn, which is in general position

with {U0, . . . , Um}.
The result of the construction will be

• a set of box collections R = {R0, . . . ,Rm} and
• a positive real number δ
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BR
0 (τ )

R0 + τ

R1 + τ

U1

U0

(R0 �R1) + τ

Fig. 6.1. Illustration of the construction of the box collection BR
0 (τ ) for R = {R0,R1} and

U = U0 ∪U1 as explained in Example 6.1. The picture shows R+ τ (right), the intermediate result
(R0 �R1) + τ (middle), and the end result BR

0 (τ ) (right).

satisfying some properties. Before we can state these properties, we need to define for
k = m, . . . , 0 and τ ∈ Rn the box collections

BR
k (τ ) := (((Rk � · · · � Rm) + τ � F) ∩ Uk)

\ {B′ ∈ ((Rk � · · · � Rm) + τ � F) ∩ Uk | |B′| ⊆ |BR
k+1(τ ) ∪ · · · ∪ BR

m(τ )|}.

In the following, we will write BR
i for BR

i (0) and let U = U0∪· · ·∪Um. The definition
of BR

k (τ ) basically tells how to fit together all the box collections in R and specifies
which boxes should be disregarded. We illustrate the definition of BR

k by the following
example.

Example 6.1. Assume we have a box collection R = {R0,R1} covering U =
U0 ∪U1. In Figure 6.1 (left) we have depicted R0 and R1 with solid and dotted lines,
respectively. Moreover, the set U1 consists of the dotted curve, while U0 is shown as a
thick solid line. In this example, we assume that no fixed box collection F is present.

Then by definition, BR
1 (τ ) = (R1 + τ )∩U1. This box collection (in this example

consisting of a single box only) corresponds to the large shaded box in Figure 6.1
(middle). For the construction of BR

0 (τ ), we first compute the box collection (R0 �
R1) + τ , which consists of all the boxes shown in Figure 6.1 (middle). Solid-lined
boxes intersect U0; dotted-lined boxes do not. In order to obtain BR

0 (τ ), all dotted-
lined boxes are removed as well as those solid-lined boxes, which are included in
BR

1 (τ ) (the shaded area). The resulting box collection BR
0 (τ ) is shown in Figure 6.1

(right). �
We now continue with the statement of the desired properties of the box collection

R and real number δ. They must satisfy the properties
(i) cl(U)δ ⊆ int(|BR

0 ∪ · · · ∪ BR
m|);

(ii) for all i = 0, . . . ,m and for all τ ∈ Rn of norm less than δ, (Ri+τ )�F � Ui;
and

(iii) for all i = 0, . . . ,m and for all τ ∈ Rn of norm less than δ, and for each
n-dimensional box B ∈ BR

i (τ ), there exists a point �p ∈ int(|B| ∩ Ui) such
that γcone,A(�p) > diam(B).

Construction algorithm. The construction of the box collection is done inductively
on the number of parts m in the uniform cone radius collection {U0, . . . , Um}.

For the base case, when the uniform cone radius collection is empty, we define
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R−1 = ∅ and take δ = ∞. Properties (i), (ii), and (iii) are then trivially satisfied.
Suppose now that U is nonempty and consists of m parts. By the induction hy-

pothesis, there exist n-dimensional box collections R′ = {R′
1, . . . ,R′

m} and a positive
real number δ′ such that

(i)′ cl(U \ U0)
δ′ ⊆ int(|BR′

1 ∪ · · · ∪ BR′

m |);
(ii)′ for all i = 1, . . . ,m and for all τ ∈ Rn of norm less than δ′, (R′

i+τ )�F � Ui;
and

(iii)′ for all i = 1, . . . ,m and for all τ ∈ Rn of norm less than δ′, and for each
n-dimensional box B ∈ BR′

i (τ ), there exists a point �p ∈ int(|B| ∩ Ui) such
that γcone,A(�p) > diam(B).

The construction consists of two steps:
Step 1. Cover the part of U0 which may become uncovered by translations of the

box collection R′ + τ , for ‖τ‖ < δ′, with a box covering of a certain size. This size
is determined by the uniform cone radius of the part of U0 possibly uncovered by the
translates of R′.

Step 2. Some of the boxes in the above box covering might be in a degenerate
position and in this way prevent the box collection from satisfying the required prop-
erties. This can be easily resolved, however, by translating all boxes with a small
translation vector τ . Lemma 6.3 shows that it is possible to bring all boxes into
general position; Lemma 6.4 shows that translating the boxes indeed results in a box
collection with the desired properties.

We describe the two steps now in more detail. An example of the construction
can be seen in Figure 6.2 and is described in the following example.

Example 6.2. We consider the case that no fixed box collection F is present. Let
{A0, A1} be the uniform cone radius decomposition of cl(A) (see Figure 6.2(a)). The
set A1 consists of the horizontal circle and point �p in Figure 6.2(a). The set A0 is
equal to the remainder cl(A) \A1.

1. Base case (not shown in Figure 6.2): U = ∅, U0 = ∅. By definition, R−1 =
{∅}, δ = ∞.

2. Case m = 1, U = A1, U0 = A1.
Covering U0 : Since in Step 1 nothing is yet constructed, we have that V = U0,
W = ∅, and ζ = ∞. Hence, R′′ = εV

4
√

3
-cover(V ). This box covering is

depicted by the dashed boxes in Figure 6.2(a). By definition, δ′′ = min{ δ′

3 =
∞, η, ζ = ∞} = η, where η is such that cl(V )η ⊆ int(|R′′|).
Translating R′′ : As can be seen in Figures 6.2(a), (b), the point �p lies on a
side of one of the boxes at the bottom. In other words, �p is not in general
position with the box collection. A simple small translation, however, resolves
this situation and brings �p into general position with the box collection (see
Figure 6.2(b)) while keeping the other points U0 in general position as well.
The resulting box collection is denoted by R.

From R we get BR
0 , as shown in Figure 6.2(c), by removing, in this case,

a single box which no longer intersect U0.
3. Case m = 2, U = A0 ∪ A1, U0 = A0, R′′

1 = R, and δ′ = δ (obtained in
Step 2).
Covering U0 : We focus on a region around the box B in R′′

1 containing �p
(See Figure 6.2(d)). For expository reasons, the position of U with respect
to B is slightly simplified.

We have depicted the set V (dark shaded area) of points in U0, which might
be outside |B| when B is slightly translated, and show the remaining set W
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(a)

εV
4
√
n

V

(c)

(b)

�p

R′′

R′′ + τ

�p�p

R′′

�p

BR
0

τ

(d)

(f)

(e)

U0 ∩ |B|

�pW

V

|B|

�p

|B|
�p

R′′
0

BR
0

Fig. 6.2. Construction of the special box collection R.

(light shaded area) as well. The new box collection R′′
0 will be εV

4
√

3
-cover(V ).

In order to not overload the figure, we have depicted the box collection from
a sideways point of view (See Figure 6.2(e)). Let R′′ = {R′′

0 ,R′′
1}.

The constraint δ′′ on the norm of translation vectors is given by δ′′ =
min{ δ′

3 , η, ζ}. It takes into account the distance between W and the bound-
ary of the boxes constructed in Step 2 (ζ), the distance between V and the
boundary of boxes in R′′

0 (η), and the constraint given in Step 2 (δ′).
Translating R′′ : If necessary, slightly translate R′′ to bring it in general
position such that it satisfies the desired properties. This results in the final
box collection R.
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We also show part of BR
0 (See Figure 6.2(f)). We refer to Example 6.1 for

a discussion of its construction. The collection BR
1 is equal to BR

0 constructed
in Step 2. �

We now continue with the general description of the construction.
First step: Covering U0. We will define a set R′′

0 and define R′′
i = R′

i for i =

1, . . . ,m such that for R′′ = {R′′
0 , . . . ,R′′

m}, cl(U)δ
′′ ⊆ int(|BR′′

0 (τ ) ∪ · · · ∪ BR′′

m (τ )|)
for some δ′′ > 0.

All points of U0 that can become uncovered by varying the vector τ in |BR′

1 (τ )∪
· · · ∪ BR′

m (τ )| with ‖τ‖ < δ′

3 are included in the set

V := U0 − (|BR′

1 ∪ · · · ∪ BR′

m | − (∂|BR′

1 ∪ · · · ∪ BR′

m |) δ′
3 ).

By (i)′, the minimal distance from any point in U \U0 to the boundary ∂(|BR′

1 ∪ · · · ∪
BR′

m |) is greater than or equal to δ′. This implies that

cl(U \ U0)
δ′
3 ⊆ |BR′

1 ∪ · · · ∪ BR′

m | − (∂|BR′

1 ∪ · · · ∪ BR′

m |) δ′
3 ,

and hence, because U0, . . . , Um is a uniform cone radius collection, there exists a
uniform cone radius, εV , of A for the set V . Let R′′

0 be εV
4
√
n
-cover(V ). Note that

diam(B) =
εV
2

(6.1)

for any box B ∈ R′′
0 . The reason why we take this specific box covering is that the

box collection, which we are constructing, must satisfy property (iii).
We now show that there exists a positive real number δ′′ such that (i) holds for

R′′ = {R′′
0 , . . . ,R′′

m} and δ′′.
We partition U0 ∪ · · · ∪ Um into three parts: U \ U0, V , and

W := U0 ∩ (|BR′′

0 ∪ · · · ∪ BR′′

m | − (∂|BR′′

0 ∪ · · · ∪ BR′′

m |) δ′
3 ).

By (i)′,

cl(U \ U0)
δ′
3 ⊆ int(|BR′

1 ∪ · · · ∪ BR′

m |) ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).(6.2)

We shall need the following lemma, which is readily verified.
Lemma 6.1. Let X and Y be two sets in Rn. If X is bounded, then cl(X) ⊆

int(Y ) implies that there exists a positive real number ε such that cl(X)ε ⊆ int(Y ).
By the definition of a box covering, cl(V ) ⊆ int(|BR′′

0 |) ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).
Since A is bounded, V is also bounded. By Lemma 6.1, there exists a positive real
number η such that

cl(V )η ⊂ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).(6.3)

We now prove that Lemma 6.1 can also be used for W .
Lemma 6.2. cl(W ) ⊆ int(|BR′

1 ∪ · · · ∪ BR′

m |).
Proof of Lemma 6.2. Suppose that there exists a point �p ∈ cl(W ) such that

�p �∈ int(|BR′

1 ∪ · · · ∪ BR′

m |). Let (�pm) for m > 0 be a sequence of points in W such
that ‖�p− �pm‖ < 1/m. By the definition of W , for all points in �r ∈ ∂|BR′

1 ∪ · · · ∪BR′

m |,
‖�r − �pm‖ � δ′

3 for every m.

Now, every line segment {λ�pm+(1−λ)�p | 0 � λ � 1}, intersects ∂|BR′

1 ∪· · ·∪BR′

m |
in a point �rm. However, since ‖�pm − �p‖ < 1/m, also ‖�pm − �rm‖ < 1/m. Thus, we

obtain a contradiction for m large enough such that 1
m < δ′

3 .
Hence, by Lemma 6.1 and Lemma 6.2 there exists a positive real number ζ such

that

W ζ ⊆ int(|BR′

1 ∪ · · · ∪ BR′

m |) ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).(6.4)
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From the inclusions (6.2), (6.3), and (6.4), it follows that property (i) is satisfied for

R′′ and δ′′, with δ′′ = min{ δ′

3 , η, ζ}.
Second step: translating R′′. The box collections in R′′ already satisfy property

(i) for δ′′. However, properties (ii) and (iii) are not necessarily satisfied. This can
be seen in Figure 6.2 (a), (b). We now show that a little translation of the box
collection is all that is needed so that all properties are satisfied by the translated box
collections.

Lemma 6.3. For each i = 0, . . . ,m, there exists a translation τ ∈ Rn of norm
‖τ‖ < δ′′ such that

(R′′
i + τ ) � F � Ui.

Proof of Lemma 6.3. Consider the decomposition of |(R′′
i + τ ) � F| into the sets

|(R′′
i + τ ) � F|j for i = 0, . . . ,m and for j = 0, . . . , n. Recall from section 5.5 that

|(R′′
i +τ )�F|j is the union of the geometric realizations of boxes in ((R′′

0 +τ )�F)j .
We need to prove that there exists a translation τ ∈ Rn, ‖τ‖ < δ′′, such that

for each i = 0, . . . ,m, for each r ∈ {0, . . . , ni}, for each j ∈ {0, . . . , n}, and for each
B ∈ ((R′′

i + τ ) � F)j , we have that

|B| � Ri,r.(6.5)

Let T denote the set of all possible translations: T := {τ ∈ Rn | ‖τ‖ < δ′′}. Note
that case i > 0 of (6.5) holds for any τ ∈ T by induction. Hence, we can focus on
the case i = 0. Take an arbitrary B as in (6.5), take r arbitrary in {0, . . . , n}, and
consider a point �x ∈ |B| ∩R0,r. We are going to impose several conditions on T such
that if τ ∈ T and τ satisfies these conditions, then (6.5) holds for τ . By definition
of the union operator �, there exists a neighborhood W of �x such that one of the
following three cases holds:

1. |B| ∩W = |B′| ∩W for some B′ ∈ Fp for some p. Note that

T�x |B| = T�x(|B| ∩W ) = T�x(|B′| ∩W ) = T�x |B′|.(6.6)

Given that F � U0, |B′| and R0,r are transversal in �x for all τ ∈ T . By (6.6),
we may conclude that |B| and R0,r are transversal in �x for all τ ∈ T .

2. |B| ∩W = |B′′| ∩W for some B′′ ∈ (R′′
0 + τ )q for some q. Note that

T�x |B| = T�x(|B| ∩W ) = T�x(|B′′| ∩W ) = T�x |B′′|.(6.7)

Suppose that

(R′′
0 + τ ) � U0.(T1)

Then, |B′′| � U0 and hence, |B′′| and R0,r are transversal in �x for all τ ∈ T
such that condition (T1) is satisfied. By (6.7), we may conclude that |B| and
R0,r are transversal in �x for all τ ∈ T such that condition (T1) is satisfied.

3. |B| ∩ W = |B′| ∩ |B′′| ∩ W for some B′ ∈ Fp for some p, and for some
B′′ ∈ (R′′

0 + τ )q for some q. Suppose that

(R′′
0 + τ ) � F .(T2)

Because the intersection of regular sets in general position is regular, the
tangent space T�x(|B′| ∩ |B′′|) exists. Note that

T�x |B| = T�x(|B| ∩W ) = T�x(|B′| ∩ |B′′| ∩W ) = T�x(|B′| ∩ |B′′|).(6.8)
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Furthermore, suppose that

|B′′| � (|B′| ∩R0,r).(T3)

When two regular sets intersect transversally in a point, the tangent space
of the intersection in this point is the intersection of the tangent spaces of
the regular sets in this point [23]. Hence, by (T2) and given that F � U0,
we have that T�x |B′| ∩ T�x |B′′| = T�x(|B′| ∩ |B′′|) and T�x |B′| ∩ T�x(R0,r) =
T�x(|B′|∩R0,r). Moreover, T�x(|B′|∩R0,r) ⊆ T�x(R0,r). By (T3) we have that
T�x(|B′| ∩ |B′′|) + T�x(|B′| ∩R0,r) = T�x |B′|. Hence,

T�x |B| + T�x(R0,r) = T�x(|B′| ∩ |B′′|) + T�x(R0,r)

= T�x(|B′| ∩ |B′′|) + T�x(|B′| ∩R0,r) + T�x(R0,r)

= T�x(|B′|) + T�x(R0,r)

= Rn.

Hence, we may conclude that |B| and R0,r are transversal in �x for all τ ∈ T
such that conditions (T2) and (T3) are satisfied.

We may conclude that |(R′′
0 + τ ) � F| � U0 if τ ∈ T and if τ is such that, for

each box B ∈ ((R′′
0 + τ ) � F)j for j = 0, . . . , n, either no extra condition holds, the

condition (T1) holds, or both conditions (T2) and (T3) hold. Hence, we obtain a
finite number of conditions on the translations in T . By Corollary 5.10, the set of
translations τ ∈ T for which a single transversality condition, like (T1), (T2), or (T3),
is not satisfied, has measure zero. Since a finite union of sets of measure zero also has
measure zero, this implies that for almost all translations in T , all conditions can be
satisfied simultaneously. This concludes the proof of the lemma.

Let τ 0 be a translation, as specified in Lemma 6.3. We now define for i =
0, . . . ,m, Ri = R′′

i + τ 0 and consider R = {R0, . . . ,Rm} and δ′′′ < δ′′ − ‖τ 0‖.
Lemma 6.4. There exists a δ > 0 such that R0, . . . ,Rm and δ satisfy properties

(i), (ii), and (iii).
Proof of Lemma 6.4. We first prove that there exists a δ > 0 such that property

(ii) is satisfied. Indeed, the proof of Lemma 6.3 shows that for i = 0, . . . ,m, (R′′
i +τ )�

F � Ui holds for any τ which satisfies a finite number of transversality conditions.
Recall from section 5.4 that transversality is a stable property. Hence, if τ is a
translation vector satisfying these transversality conditions, then there exists an ε > 0
such that any τ ′ ∈ Rn, for which ‖τ ′ − τ‖ < ε, also satisfies these transversality
conditions.

Since Ri = R′′
i + τ 0, and τ 0 is such that Lemma 6.3 holds, there exists a ε > 0

such that for τ ∈ Rn, ‖τ‖ < ε,

(Ri + τ ) � F � Ui

for i = 0, . . . ,m. Hence, property (ii) is satisfied for R0, . . . ,Rm and δ = min{δ′′′, ε}.
We now prove that R0, . . . ,Rm and δ also satisfy property (i). We will need the

following properties which can be readily verified. Let X and Y be semialgebraic sets
in Rn. Then

(1) Xε ⊆ Y ⇒ X ⊆ Y + τ for any τ ∈ Rn such that ‖τ‖ < ε, and
(2) (Xε1)ε2 = Xε1+ε2 .
We already know cl(U)δ

′′ ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |). Let ε = δ′′ −‖τ 0‖− δ. Since
δ < δ′′ − ‖τ 0‖, we have ε > 0, and by property (2),

cl(U)δ
′′

= (cl(U)δ)‖τ0‖+(δ′′−‖τ0‖−δ) ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |).
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By property (1), we have that

cl(U)δ ⊆ int(|BR′′

0 ∪ · · · ∪ BR′′

m |) + τ ∀τ : ‖τ‖ < ‖τ 0‖ + ε.

In particular, cl(U)δ ⊆ int(|BR′′

0 ∪· · ·∪BR′′

m |)+τ 0 = int(|BR
0 ∪· · ·∪BR

m|), and property
(i) is satisfied for R and δ.

We now prove that property (iii) is satisfied. Let B ∈ BR
i (τ ) for any τ ∈ Rn,

‖τ‖ < δ. We distinguish between the following two cases:
1. i > 0. Since BR

i (τ ) ⊆ BR′

i (τ 0 + τ ) and ‖τ − τ 0‖ < δ′, we have by induction
that there exists a �p ∈ int(|B|) ∩ Ui such that γcone,A(�p) > diam(B).

2. i = 0. Since |B|∩U0 �= ∅, we need to prove that there exists a �p ∈ int(|B|)∩U0

such that γcone,A(�p) > diam(B).
Thus, let �x ∈ |B| ∩ U0. If �x ∈ int(|B|), we are done. If �x ∈ ∂|B|, then

�x ∈ |B′| ∩ U0 for some |B′| ∈ (((R0 � · · · � Rm) + τ ) � F)p and some p. Let
D = (x1 − ε, x1 + ε, . . . , xn − ε, xn + ε) be an n-dimensional box centered
around �x, with ε ∈ R. For ε sufficiently small, |B′| ∩ int(|D|) has the form

(x1 − ε, x1 − ε) × · · · × (xp − ε, xp + ε) × {xp+1} × · · · × {xn},

or a permutation of this form, which is handled analogously. Hence, int(|B|)∩
int(|D|) has the form

(x1 − ε, x1 − ε)× · · · × (xp − ε, xp + ε)× (xp+1, xp+1 + ε)× · · · × (xn, xn + ε),

or a permutation of this form, which is handled analogously, or even a variant
of this form, where some of the n − p intervals (xi, xi + ε) are replaced by
(xi − ε, xi), which again is handled analogously.

By property (ii),

T�x |B′| + T�x U0 = Rn.(6.9)

Now, any �v ∈ T�x |B′| is of the form �v = (v1, . . . , vp, xp+1, . . . , xn); hence,
by (6.9) there exists a tangent vector �w ∈ T�x U0 such that xp+1 < wp+1, . . . ,
xn < wn. By definition of the tangent space, if ‖�w−�x‖ is small enough, there
exists a point �q in U0 arbitrarily close to �w. This point �q is also arbitrarily
close to �x and also has n− p last coordinates, which are strictly greater than
the n−p last coordinates of �x. Hence, �q is in int(|B|)∩ int(|D|), and we have
found a point in int(|B|) ∩ U0.

We now show that for any �p ∈ int(|B|) ∩ U0, γcone,A(�p) > diam(B).
Indeed, any box in BR

0 (τ ) is included in a box in R′′
0 + τ 0 + τ . By (6.1),

R′′
0 consists of boxes which have a diameter that is strictly smaller than the

uniform cone radius of int(|B|) ∩ U0. Hence, γcone,A(�p) > diam(B) for any
point �p ∈ int(|B|) ∩ U0.

As a result, property (iii) is satisfied for R and δ.
This concludes the construction of the box collection R and δ > 0.

6.2. A first glance at the linearization algorithm. In this section we de-
scribe how the special box collection R, constructed in the previous section, helps us
in achieving our goal of linearizing a semialgebraic set A ⊆ Rn.

First, using the box collection R, we define

U = BR
0 ∪ · · · ∪ BR

n .(6.10)



LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1421

∂|B| ∩ {z = a}

Â

A

a

Construction

Linearize

Cone

x

y

πzz

y

x |B|

U{z}

U(z),a

A(z),a

�p

�p

Fig. 6.3. Illustration of the linearization Â inside |B|. The top side of ∂|B| is shown together
with that part of U(z) and A lying on it. The top side has z-coordinate a (top left). The two-
dimensional projected sets U(z),a and A(z),a are shown (top right). The linearization algorithm is
called inductively on these lower-dimensional sets (bottom right). The three-dimensional lineariza-
tion consists of building a cone with top �p and base the previously constructed linearization on the
boundary of B (bottom left).

Recall that BR
i stands for BR

i (0). Since each BR
i is a box collection and int(|BR

i |) ∩
int(|BR

j |) = ∅ for any i �= j, U is a box collection too. It is clear that U inherits some
of the properties of R. Indeed, by property (i) of R, we know that U is a box covering
of cl(A) and, by property (iii) of R, we know that for each box B ∈ U there exists a
point �p ∈ int(|B|) ∩A such that γcone,A(�p) > diam(B).

The linearization algorithm, which will be described in more detail in section 6.3,
works inductively on the boundaries of the boxes in U . For each box B ∈ U , the
linearization algorithm replaces |B| ∩ A with a semilinear set in two steps. In the

induction step, it replaces the intersection ∂|B| ∩ A with a semilinear set ̂∂|B| ∩A
on ∂|B|, which is homeomorphic to ∂|B| ∩ A. Then, for each box B ∈ U , it replaces
|B| ∩A with the semilinear set

Cone( ̂∂|B| ∩A, �p),

where �p ∈ int(|B|)∩A such that γcone,A(�p) > diam(B). It is shown in Lemma 6.5 that
in this way we end up with a linearization of A. An illustration of the linearization
algorithm is given in Figure 6.3.

In order to construct the linearization ̂∂|B| ∩A on ∂|B| of boxes B ∈ U , we will
need to construct again a box collection R, but this time on the boundaries of the
boxes in U .

We will decompose the boundaries of the boxes in U according to the direction
of their supporting hyperplanes and according to the coordinate value of the fixed
coordinate of these hyperplanes.
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These coordinates can be computed as

Coord(U{i}) = {a ∈ R | ∃a1,∃b1, . . . ,∃ai−1,∃bi−1,∃ai+1,∃bi+1, . . . ,∃an,∃bn
(a1, b1, . . . , ai−1, bi−1, a, a, ai+1, bi+1, . . . , an, bn) ∈ U{i}}

for i = 1, . . . , n and where U{i} are the n-dimensional box collections defined in (5.9).
Recall that U{i} contains all n-dimensional boxes on the boundaries of boxes in U ,
whose ith coordinates are all equal.

For each a ∈ Coord(U{i}), we will need all the points in cl(A) with the ith
coordinated fixed to a, i.e.,

cl(A)(i),a := {(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 |
(x1, . . . , xi−1, a, xi+1, . . . , xn) ∈ cl(A)}

for i = 1, . . . , n.
Similarly, we define the (n− 1)-dimensional box collections

U(i),a := {(a1, b1, . . . , bi−1, ai+1, . . . , an, bn) ∈ R2(n−1) |
(a1, b1, . . . , bi−1, a, a, ai+1, . . . , an, bn) ∈ U{i}}

for i = 1, . . . , n.
Since cl(A) = C0 ∪ · · · ∪ Cm, and Cm = Rm,n ∪ · · · ∪Rm,0, we have that

cl(A)(i),a = (C0)(i),a ∪ · · · ∪ (Cm)(i),a,

(Cj)(i),a = (Rj,n)(i),a ∪ · · · ∪ (Rj,0)(i),a.

For each i = 0, . . . , n and each a ∈ Coord(U{i}), we now show that we can con-
struct an (n−1)-dimensional box collection R, as described in section 6.1, for cl(A)(i),a
in the role of cl(A), (C0)(i),a, . . . , (Cm)(i),a in the role of, respectively, U0, . . . , Um,
and U(i),a in the role of F .

However, for the construction to be successful, we need to verify that we start
with valid input data. In other words, we need to show that (C0)(i),a is a uniform
cone radius with a regular decomposition given by (Rj,n)(i),a and that F (which is
U(i),a) is in general position with (C0)(i),a for the regular decomposition (Rj,n)(i),a.

Claim 6.1. The sets (C0)(i),a, . . . , (Cm)(i),a form a uniform cone radius decom-
position of cl(A)(i),a.

Proof. By definition, the sets (C0)(i),a, . . . , (Cm)(i),a form a decomposition of
cl(A)(i),a, so we need only show that each of the sets (C0)(i),a, . . . , (Cm)(i),a form a
uniform cone radius collection.

We will need the following property, which is readily verified. Let X and Y be
semialgebraic sets in Rn. Then

(1) if Y is closed and bounded, then for all ε′ there exists an ε such that Xε∩Y ⊆
(X ∩ Y )ε

′
.

Let H(i),a = {�x ∈ Rn | xi = a}, and let πi : Rn → Rn−1 be defined by
πi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn). Let j ∈ {0, . . . ,m}, and let ε′0, . . . , ε

′
m

be positive real numbers. We have that

(Cj)(i),a\
m⋃

k=j+1

((Ck)(i),a)
ε′k = πi

(
(Cj ∩H(i),a)\

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

)
.
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By property (1), there exist ε0 > 0, . . . , εm > 0 such that

(Cj ∩H(i),a) \
m⋃

k=j+1

(Ck ∩H(i),a)
ε′k ⊆ (Ck ∩H(i),a) \

m⋃
k=j+1

(Cεk
k ∩H(i),a)(6.11)

=

(
Cj \

m⋃
k=j+1

Cεk
k

)
∩H(i),a.

Moreover, we have that cl(A) = C0 ∪ · · · ∪ Cm and, since C0, . . . , Cm is a uniform
cone radius collection, from the inclusion (6.11), it follows that

0 < inf

{
γcone,A

((
Cj \

m⋃
k=j+1

Cεk
k

)
∩H(i),a

)}

� inf

{
γcone,A

(
(Cj ∩H(i),a) \

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

)}
.

We will next show that the following inequality holds:

inf

{
γcone,A

(
(Cj ∩H(i),a) \

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

)}

� inf

{
γcone,A∩H(i),a

(
(Cj ∩H(i),a) \

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

)}

= inf

{
γcone,πi(A∩H(i),a)

(
πi

(
(Cj ∩H(i),a) \

m⋃
k=j+1

(Ck ∩H(i),a)
ε′k

))}
.

Hence,

0 < inf

{
γcone,A(i),a

(
(Cj)(i),a \

m⋃
k=j+1

((Ck)(i),a)
ε′k

)}
,

which proves that (C0)(i),a, . . . , (Cm)(i),a is a uniform cone radius collection.
We still need to prove that for each �x ∈ Cj ∩H(i),a,

γcone,A(�x) � γcone,A∩H(i),a
(�x).

The proof is illustrated in Figure 6.4. The main ingredient is the construction of
the cone radius, as described in the proof of Theorem 2 in [14]. As explained in the
paragraph immediately following Theorem 5.3, the radius query produces for each
point �x an interval (0, r) of cone radii, where r is the minimal distance between �x and
each �s ∈ S ⊆ Rn, where S contains those points �s which have a tangent space that
is orthogonal to �x − �s or parallel to one of the axes-parallel hyperplanes. Here, the
tangent spaces are taken with respect to a Whitney-decomposition Z of A, which is
compatible with the union of all axes-parallel hyperplanes (including Hi,a) through
�x. An example of such a Whitney-decomposition is given in Figure 6.4 (top right).
Also in this figure, we have depicted the set S. The (maximal) cone radius of A in
(a, b) is illustrated by the dashed circle centered around (a, b).

Recall that we defined

γcone,A(�x) =
1

2
r =

1

2
min
�s∈S

d(�x,�s),
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a a

Whitney-decomposition of A′

(a, b) (a, b)

Whitney-decomposition of A

A′ = πx(A ∩ {y = a}

A

Fig. 6.4. Semialgebraic set A locally around (a, b) (top left). Whitney-decomposition Z of A
compatible with axes-parallel hyperplanes through (a, b) (top right). Intersection A′ of A with hor-
izontal hyperplane through (a, b) and projected on the x-axis (bottom left). Whitney-decomposition
Z′ of A′ (bottom right). The isolated points (top and bottom right) denote the critical points, i.e.,
points (c, d) with a horizontal or vertical tangent space, or a tangent space perpendicular to the
vector (c, d) − (a, b). Note that these tangent spaces are relative to the Whitney-decomposition.
Moreover, by construction the set S of critical points for A around (a, b) shown as the isolated
points (top right) includes the set S′ of critical points of A′ around a (bottom right). Consequently,
γcone,A(a, b) � γcone,A′ (a).

where d denotes the ordinary distance function.
In the same way,

γcone,A∩H(i),a
(�x) =

1

2
min
�s∈S′

d(�x,�s),

where S ′ contains those points �s which have a tangent space that is orthogonal to
�x−�s or parallel to one of the axes-parallel hyperplanes. Here, the tangent spaces are
taken with respect to a Whitney-decomposition Z ′ of A∩H(i),a. An example of such
a Whitney-decomposition is given in Figure 6.4 (bottom right). Also in this figure we
have depicted S ′. The (maximal) cone radius is illustrated by the interval bounded
by the two dashed line segments centered around a.

Due to the requirement that Z is compatible with the axes-parallel hyperplanes
through �x, the Whitney-decomposition Z ′ of A∩H(i),a is equal to those strata Z ∈ Z
such that Z ⊆ H(i),a. In other words, S ′ ⊆ S, and hence,

γcone,A(�x) =
1

2
min
�s∈S

d(�x,�s) � 1

2
min
�s∈S′

d(�x,�s) = γcone,A∩H(i),a
(�x),

as desired.
Claim 6.2. The sets (Rj,0)(i),a, . . . , (Rj,nj )(i),a form a regular decomposition of

(Cj)(i),a.
Proof. By definition, the sets (Rj,n)(i),a, . . . , (Rj,0)(i),a form a decomposition of

(Cj)(i),a, so we need only show that each of the sets (Rj,k)(i),a, for k = 0, . . . , n, is
regular. Let H(i),a = {�x ∈ Rn | xi = a}, and let πi : Rn → Rn−1 be defined by
πi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn).

It is sufficient to show that Rj,k and H(i),a are in general position. Indeed, by the
observation at the end of section 5.4, the intersection of two regular sets in general
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position is again regular. Hence, Rj,k ∩H(i),a is regular. Thus, (Rj,k)(i),a = πi(Rj,k ∩
H(i),a) is the image by the C1-diffeomorphism πi of a regular set, and hence is regular
itself.

We still need to show that Rj,k � H(i),a. By property (ii) of the constructed box
collection U , we know that Rj,k � U , and hence Rj,k � |U|�. Let �x ∈ Rj,k ∩ H(i),a

and B ∈ (U)� such that �x ∈ B ⊂ H(i),a. Note that such a B always exists because
a ∈ Coord(U(i)) and U covers A. Hence, Rj,k � |B| or, in other words, T�x Rj,k +
T�x |B| = Rn. Since |B| ⊂ H(i),a, we have that T�x |B| ⊆ T�x H(i),a, and hence also
T�x Rj,k + T�x H(i),a = Rn.

Claim 6.3. The box collections U(i),a are in general position with (C0)(i),a, . . . ,
(Cm)(i),a.

Proof. We need to prove that {|U(i),a|0, . . . , |U(i),a|n} � {(Rj,k)(i),a | j = 0, . . . ,m,
k = 0, . . . , n}. Let H(i),a = {�x ∈ Rn | xi = a}, and let πi : Rn → Rn−1 be defined
by πi(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn).

We have that |U(i),a|� = πi(|U|� ∩ H(i),a). Thus, B′ ∈ (U(i),a)
� if and only if

|B′| = πi(|B|) with B ∈ (U)� and |B| ⊆ H(i),a.
As already observed in the proof of Claim 6.2, Rj,k ∩ |U|� is a regular set. Hence,

for �x ∈ Rj,k∩|U|� the tangent space T�x(Rj,k∩|U|�) exists. Moreover, T�x(Rj,k∩|U|�) =
T�x(Rj,k ∩ |B|) for some B ∈ (U)� and |B| ⊆ H(i),a.

Let |B′| = πi(|B|). We need to prove that

T�x(i),a
|B′| + T�x(i),a

((Rj,k)(i),a) = Rn−1.(6.12)

We have that

T�x(i),a
|B′| = dπi(Tx |B|) and(6.13)

T�x(i),a
((Rj,k)(i),a) = dπi(T�x(Rj,k ∩ |B|)),(6.14)

where dπi is the differential of πi [23].
Moreover, because of property (ii) of the box collection U and the remark at the

end of section 5.4 on the intersection of tangent spaces, we have

T�x |B| + T�x(Rj,k) = Rn and(6.15)

T�x(Rj,k ∩ |B|) = T�x Rj,k ∩ T�x |B|.(6.16)

Now, let (v1, . . . , vi−1, vi+1, . . . , vn) ∈ Rn−1 and let �v = (v1, . . . , vi−1, 0, vi+1,

. . . , vn) ∈ Rn. By (6.15) there exists �b ∈ T�x |B| and �r ∈ T�x(Rj,k) such that �v = �b+�r.
Moreover, we may take bi = 0 since vectors in T�x |B| have no component in the ith
coordinate. Hence ri has to be zero too. By (6.16), we have �r ∈ T�x(Rj,k ∩ |B|).
Let �b′ = dπi(�b) and �r′ = dπi(�r). Then by (6.13), �b′ ∈ T�x(i),a

|B′|, and by (6.14),

�r′ ∈ T�x(i),a
((Rj,k)(i),a). By construction, (v1, . . . , vi−1, vi+1, . . . , vn) = �b′+�r′, proving

(6.12).

6.3. Putting everything together: The linearization algorithm. The al-
gorithm that constructs an A-linear set, which is homeomorphic to a given semi-
algebraic set, works inductively on the dimension of the surrounding space in which
the semialgebraic set is embedded.

6.3.1. The bounded case. The algorithm consists of two parts. The first
part is a preprocessing step, which takes as input a bounded semialgebraic set A in
Rn and returns the regular decomposition of each part of the uniform cone radius
decomposition of A.
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Subroutine: Preprocess

Input: A semialgebraic set A in Rn.
Output: A uniform cone radius decomposition C0, . . . , Ck of A and for each

Ci a regular decomposition Ri,0, . . . , Ri,i of Ci.
Method:

1. Compute the uniform cone radius decomposition of A:

A = C0 ∪ · · · ∪ Ck.

2. Compute the regular decomposition of Ci, for i = 0, . . . , k:

Ci = Ri,0 ∪ · · · ∪Ri,i.

Subroutine: Linearize-In-n-Dimensions

Input: ({Ci}, {Ri,r},F) with C0, . . . , Ck a uniform cone radius collection,
{Ri,r} a regular decomposition of Ci, and F an n-dimensional box
collection in Rn which is in general position with C0, . . . , Ck.

Output: An A-linear set Ĉ in Rn which is homeomorphic to C = C0 ∪ · · · ∪
Ck.

Method:
• If n > 1, do the following:

1. Compute the box collection U constructed in section 6.2.
2. Compute a (3n+1)-ary relation P consisting of pairs (B, �pB , b),

where B is an n-dimensional box in U , �pB ∈ Rn, and b ∈ {0, 1}
such that:
(a) �pB ∈ cl(C) ∩ int(B) and is uniquely selected for each B;
(b) γcone,C(�pB) > diam(B); and
(c) b = 0 in case �pB ∈ cl(C) \ C and b = 1 in case �pB ∈ C.

3. Compute all U(i),a with a ∈ Coord(U{i}) and i ∈ {1, . . . , n}.
4. Compute all (Cj)(i),a ⊂ Rn−1 with a ∈ Coord(U{i}) and i ∈

{1, . . . , n}.
5. Compute all (Ri,r)(i),a ⊂ Rn−1 with a ∈ Coord(U{i}) and i ∈

{1, . . . , n}.
6. For all input triples ({(Cj)(i),a}, {(Ri,r)(i),a},U(i),a) with a ∈

Coord(U{i}) and i ∈ {1, . . . , n}, apply linearize-in-(n − 1)-
dimensions and embed the result in the corresponding hyper-
plane in Rn, i.e., apply (x1, . . . , xn−1) �→ (x1, . . . , a, . . . , xn−1)
where a appears in the ith position.

7. Initialize Ĉ to the union of the results of the calls to linearize-

in-(n− 1)-dimensions of step 6.
• If n = 1, then do the following:

1. Initialize Ĉ to C0 ∪ · · · ∪ Ck.
• Output

Ĉ := Ĉ ∪ {Cone(Ĉ ∩ ∂B, �pB) | (B, �pB , b) ∈ P and b = 1}
∪ {Cone(Ĉ ∩ ∂B, �pB) \ {�pB} | (B, �pB , b) ∈ P and b = 0}.
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Algorithm: Linearize

Input: A bounded semialgebraic set A in Rn.

Output: An A-linear set Â in Rn which is homeomorphic to A.
Method:

1. Call Linearize-In-n-Dimensions(Preprocess(A), ∅).

Before we prove the correctness of the Linearize algorithm, we want to point out
the importance of the general position assumption made in the input of the algorithm.
First of all, it allows us to treat all boxes in U in the same way. More specifically,
for every box B we are assured of having a point �pB ∈ int(|B|) as described in step
2 of the algorithm (see Lemma 6.4). The existence of these points is essential for
the linearization, as is clear from the last step in the algorithm. Second, the general
position assumption ensures that the lower-dimensional sets defined in steps 3–5 are
nice and are again in general position (see the three claims in section 6.2). This implies
that we can apply Linearize on the lower-dimensional sets, which is a key feature
for the algorithm.

Lemma 6.5. For any semialgebraic set A in Rn, the set Â = Linearize(A) is
indeed a linearization of A.

Proof. The linearity of Â is immediate, so we focus on the existence of a homeo-
morphism h : Rn → Rn, which maps A to Â.

The existence proof (which is also a constructive proof) is an inductive proof.
Before we can state the induction hypothesis, we need to define some box collections
in Rn.

We define U[n] to be the n-dimensional box collection U in Rn constructed in step
1 when Linearize-In-n-Dimensions is called.

Let k < n. With each call of Linearize-In-k-Dimensions during the lineariza-
tion of A we associate the pair (in−k, ai−k) ∈ {1, . . . , n} × R such that an−k is the
value in Coord(U{in−k}) used in step 6. Note that U is the box collection constructed
in step 1 during the preceding call of Linearize-In-(k + 1)-Dimensions.

This sequence of pairs gives us a unique identifier for the box collection con-
structed in step 1 during each call of the algorithm. More specifically, we denote by
U(i1,a1),... ,(in−k,an−k) the box collection U constructed in step 1 of the call Linearize-

In-k-Dimensions corresponding to (in−k, an−k), which was called within Linearize-

In-(k + 1)-Dimensions corresponding to (in−k−1, an−k−1), and so forth until
Linearize-In-(n − 1)-Dimensions is called with (i1, a1) within the initial call
Linearize-In-n-Dimensions. If k = 1, then no box collection U is constructed,
since step 1 is skipped in the algorithm. However, for the purpose of this proof,
we define U(i1,a1),... ,(in−1,an−1) to be U{in−1},an−1

, where U is the box collection con-
structed in step 1 of the preceding call to Linearize-In-2-Dimensions corresponding
to (in−2, an−2), and so forth.

At the same time, the sequence of pairs (ij , aj) tells us how to correctly embed
U(i1,a1),... ,(in−k,an−k) into Rn. Indeed, the embedding simply maps �x ∈ Rk to the
vector �x′ ∈ Rn obtained by putting aj at position ij and filling up the k open
slots with the values (in this order) x1, . . . , xk. We will denote this embedding by
ρ(i1,a1),... ,(in−k,an−k).

We now define the k-dimensional box collection U[k] in Rn as

U[k] = ∪(i1,a1),... ,(in−k,an−k)ρ(i1,a1),... ,(in−k,an−k)(U(i1,a1),... ,(in−k,an−k)).
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Let U[�k] be the union of all boxes in U[k], . . . ,U[1]. We shall construct homeo-
morphisms hk : |U[�k]| → |U[�k]|, such that

• hk(A ∩ |U[�k]|) = Â ∩ |U[�k]|, and
• for all boxes B in U[k], . . . ,U[1], hk||B| : |B| → |B| is a homeomorphism.

We shall construct the homeomorphisms hk by induction on k.
For the base case, k = 1, the linearization algorithm keeps A intact (see the

case n = 1 in the description of the Linearize-In-n-Dimensions algorithm). Hence,

U[1] ∩ Â = U[1] ∩ A and we let hk be the identity mapping on U[1]. Both conditions
are trivially satisfied for h1.

Suppose we have constructed a homeomorphism hk−1 : |U[�k−1]| → |U[�k−1]| such
that

• hk−1(A ∩ |U[�k−1]|) = Â ∩ |U[�k−1]|, and
• for all boxes B in U[k], . . . ,U[1], hk−1||B| : |B| → |B| is a homeomorphism.

Let B′ ∈ U[k]; then we will define hk||B′| : |B′| → |B′| as the composition of two
homeomorphisms f and g. Let us first describe the homeomorphism g. By definition,
|B′| = ρ(i1,a1),... ,(in−k,an−k)(|B|) with B ∈ U(i1,a1),... ,(in−k,an−k).

Let P be the relation computed in step 2 after U(i1,a1),... ,(in−k,an−k) was computed.
By the definition of the relation P and by Theorem 5.2, there exists a homeomorphism
g||B| : |B| → |B| such that g|∂|B| is the identity, and either

1. g||B|(|B| ∩A) = Cone(A ∩ ∂|B|, �pB) in case (B, �pB , 1) ∈ P, or
2. g||B|(|B| ∩A) = Cone(A ∩ ∂|B|, �pB) \ {�pB} in case (B, �pB , 0) ∈ P.

Since the second case is completely analogous to the first case, we assume that the
first case holds for g. This concludes the description of the homeomorphism g.

Before we explain the construction of the second homeomorphism f , we show how
to partition |B| using the boundary of boxes |Bt| parametrized by t ∈ [0, 1]. Suppose
that |B| = [a1, b1] × · · · × [an, bn], and suppose �pB = (c1, . . . , cn) with ai < ci < bi
for i = 1, . . . , n. Then the following sets for 0 � t � 1 partition |B| such that
|B| = ∪t∈[0,1]∂|Bt|:

|Bt| := [ta1 + (1 − t)c1, tb1 + (1 − t)c1] × · · ·
× [tan + (1 − t)cn, tbn + (1 − t)cn] 0 � t � 1.

Let �x ∈ |B|. To start with the construction of f(�x) for �x ∈ |B|, we define the
unique t0 such that �x ∈ ∂|Bt0 |. Then, let L be the halfline from �pB to �x and define

�y = L ∩ ∂|B|.

Next, let L′ is the halfline from �pB to hk−1(�y). Note that hk−1(�y) still lies on the
boundary ∂|B|. Finally, define f ||B| : |B| → |B| in �x as

f ||B|(�x) = ∂|Bt0 | ∩ L′.

The construction of f is illustrated in Figure 6.5. It can easily be verified that
f ||B| is a homeomorphism from |B| to |B| such that

f ||B|(Cone(A ∩ ∂|B|, �pB)) = Cone(hk−1(A ∩ ∂|B|), �pB).(6.17)

Finally, we define hk||B′| : |B′| → |B′| using the composition of the two homeo-
morphisms f ||B| and g||B|, i.e.,

hk||B′| = ρ(i1,a1),... ,(in−k,an−k) ◦ f ||B| ◦ g||B| ◦ πi1,... ,in−k
.
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f(�x)

∂|Bt0 |

∂|B|

�pB

L′

L

�x
�y

hk−1(�y)

Fig. 6.5. Construction of the homeomorphism f : |B| → |B|. The figure shows the construction
of f(�x) for a point �x ∈ |B|.

We now define hk : |U[�k]| → |U[�k]| as

hk :=
⋃

B∈U[k]

hk||B|

and show that it has the desired properties. First, we prove that hk is a homeomor-
phism. By the gluing Lemma [35, Lemma 3.8], it is sufficient to show that for any
two boxes B and B′ in U[k], we have that

hk||B|∪|B′| = hk||B| ∪ hk||B′| : |B| ∪ |B′| → |B| ∪ |B′|.

For this to hold, it is sufficient to show that for any k-dimensional box B′ ∈ U[k] in
Rn,

(hk||B|)||B′| = (hk||B′|)||B|.(6.18)

This holds indeed. If |B| ∩ |B′| = ∅, then we are done. Suppose that �x ∈ |B| ∩ |B′|.
Then by the definition of a box collection, �x ∈ ∂|B| ∩ ∂|B′|. Now, for every box
B′′ ∈ U[k], we have hk|∂|B′′|(�x) = f |∂|B′′|(�x) = hk−1(�x). Hence,

(hk||B|)||B′|(�x) = hk|∂|B|∩∂|B′|(�x)

= hk−1(�x)

= hk|∂|B′|∩∂|B|(�x)

= (hk||B′|)||B|(�x).

Hence, hk : |U[�k]| → |U[�k]| is a homeomorphism.
Second, we show that for all boxes B in U[k], . . . ,U[1], hk−1||B| : |B| → |B| is a

homeomorphism. By construction, this holds for any box B ∈ U[k]. For boxes B′ in
U[i] for i < k, it is sufficient to observe that such boxes B′ lie on the boundary of a
box B in U[k], and on these boundaries hk coincides with hk−1 for which the desired
property holds by induction.

Finally, we still need to verify that hk(A∩ |U[�k]|) = Â∩ |U[�k]|. It is sufficient to

show that hk(A∩|B|) = Â∩|B| for any B ∈ U[k]. By (6.17), the induction hypothesis,
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and the definition of Â in the algorithm linearize-in-n-dimensions, we have

hk(A ∩ |B|) = Cone(hk−1(A ∩ ∂|B|), �pB)

= Cone(Â ∩ ∂|B|, �pB)

= Â ∩ |B|.

Since |U| is closed, a standard result from topology [36] implies that the final
homeomorphism hn can be extended to a homeomorphism h : Rn → Rn.

We are now ready to state the main result of this section.
Theorem 6.6. For each n, there exists an FO+Poly+TC formula linearize

over the schema S = {S}, with S an n-ary relation name such that for any polynomial
constraint database D over S, linearize(D) is an algebraic linearization of SD if
SD is bounded.

Proof. The desired FO+Poly+TC formula linearize expresses the algorithm
Linearize described above. From Lemma 5.5 and Lemma 5.7, it follows that the
algorithm Preprocess is FO+Poly-expressible.

Concerning the algorithm Linearize-In-n-Dimensions, we have that in step
1, the box collection U is computed. In the construction of this box collection in
section 6.1, we need to compute the following:

• The computation of a uniform cone radius. This is FO+Poly-expressible by
Theorem 5.3.

• The computation of a finite number of box coverings, i.e., the εV
4
√
n
-cover(V )

coverings of section 6.1. This is FO+Poly+TC-expressible by Proposi-
tion 5.14.

• A candidate τ ∈ Rn as specified in Lemma 6.3 needs to be found. Since
this is essentially checking a finite number of transversality conditions, this
is FO+Poly-expressible by Lemma 5.8.

Hence, we may conclude that the computation of U is in FO+Poly+TC. In step 2,
the relation P is constructed. Given the box collection U , we know by property (iii)
of this collection that in each B ∈ U there exists a point �p ∈ int(|B|)∩cl(C) such that
γcone,C(�p) > diam(B). The set of points in int(|B|) with this property is FO+Poly-
expressible by Theorem 5.3. Hence, we can also select in FO+Poly for each B ∈ U
a unique representant among these points. This will be �pB . Hence, we may conclude
that the computation of the relation P is FO+Poly-expressible. In steps 3, 4, and 5,
we need to compute Coord(U{i}), U(i),a, (Cj)(i),a, and (Ri,r)(i),a. By definition these
are all FO+Poly-expressible. In step 6 we call the algorithm n times. We have to be
careful of how the inductive step is translated in FO+Poly+TC. A straightforward
translation would result in a parametrized call of the transitive closure operators in
the computation of the box coverings in step 1. Observe, however, that the set of
parameters Coord(U(i)) for i = {1, . . . , n} can be computed inside the transitive clo-
sure operator and that these parameters can then be passed on outside the transitive
closure operator by simply annotating the vectors inside the transitive closure with
these parameters. Indeed, suppose that we want to compute the transitive closure
of a parametrized set X ∈ Rn+m, where the last m coordinates are the parameters.
Suppose that the set of parameters is FO+Poly+TC-definable from the database by
a formula ϕ. We now define Y = [TC�x,�a;�y,�bX ∧ �a = �b ∧ ϕ(�a)]. We can then uniquely
identify the result of this transitive closure computation for each parameter value by
asking for all (�x,�a) ∈ Y , for which ϕ(�a) holds. By adapting the box covering formula
constructed in Proposition 5.14, we can compute the box coverings for the parameter
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(0, 0, 1) (0, 0, 1)
σρ

(0, 0, 0)

Fig. 6.6. A semialgebraic set (shaded area) is mapped onto the sphere S2(�0, 1), flipped vertically,
and projected back onto the sphere S2(�0, 1). This brings the point at infinity �p∞ to the origin �0.

set Coord(U(i)) in parallel and keep them apart afterwards. In this way, we do not need
parametrized transitive closure, and hence step 6 is expressible in FO+Poly+TC.

In step 7 a simple union is performed (which is trivially in FO+Poly), and finally,
the cones are constructed, which is also clearly expressible in FO+Poly.

Since the recursion depth is bounded by the dimension, we can write the complete
execution of the algorithm as a single FO+Poly+TC formula.

If the linearization obtained in Theorem 6.6 also needs to be a good approximation
from a metrical point of view, we can easily adapt the algorithms such that the
approximation lies arbitrarily close to the original polynomial constraint database.
Indeed, we can simply bound the diameter of the boxes used in the construction by a
specified ε-value. We will see some applications of these ε-approximations in the next
section.

Theorem 6.7. For each n there exists an FO+Poly+TC query ε-approx over
the schema S = {S} with S an n-ary relation name such that for any polynomial
constraint database D over S such that SD is bounded, the set ε-approx(D) is an
algebraic ε-approximation of SD.

Proof. The proof follows at once from the fact that the homeomorphism h con-
structed in the proof of Theorem 6.6 maps A ∩ |B| to Â ∩ |B| for each box B ∈ U .
Thus, if �p ∈ A∩|B| then also h(�p) ∈ |B|. Because diam(B) < ε, the distance between

�p and h(�p) is smaller than ε, so in this case Â will be an ε-approximation of A.

6.3.2. The general case. Let A be an unbounded semialgebraic set in Rn.
We reduce the construction of an algebraic linearization of A to the construction for
bounded semialgebraic sets as follows.

First, we need to define the cone radius of A in the point at infinity �p∞. Con-
sider the embedding i : Rn → Rn+1 : (x1, . . . , xn) �→ (x1, . . . , xn, 0). Let ρ :
Rn+1 → Rn+1 be the reflection defined by (x1, . . . , xn+1) �→ (x1, . . . , xn,−xn+1).
Let Rn ∪ {�p∞} be the one-point compactification of Rn [35]. Finally, consider the
stereographic projection σ : Sn((0, . . . , 0), 1) → i(Rn) ∪ {�p∞} defined by σ(x1, . . . ,

xn+1) = (x1,... ,xn)
1−xn+1

and σ(0, . . . , 0, 1) = �p∞.

We define a cone radius of A at �p∞ as a cone radius of the semialgebraic set

i−1(σ(ρ(σ−1(i(A) ∪ {�p∞}))))

in the origin of Rn. Figure 6.6 illustrates the above transformation process. The local
conic structure of semialgebraic sets implies that there exists an m > 0 such that
{�x ∈ Rn | ‖�x‖ � m} ∩ A is topologically equivalent to {λ�x ∈ Rn | �x ∈ ∂([−m,m] ×
· · · × [−m,m]) ∩A ∧ λ � 1}.
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We now present the unbounded version of the algorithm Linearize.

Algorithm Linearize
′

Input: A semialgebraic set A in Rn Rn.
Output: An A-linear set Â in Rn which is homeomorphic to A.
Method:

1. Compute a cone radius m of A in �p∞. Let M = [−m,m] × · · · ×
[−m,m].

2. Call Linearize(A ∩M).
3. Output

Â := ̂(A ∩M) ∪ {λ�x ∈ Rn | �x ∈ A ∩ ∂M ∧ λ � 1}.

We obtain the following generalization of Theorem 6.6.
Theorem 6.8. For each n there exists an FO+Poly+TC formula linearize

over the schema S = {S}, with S an n-ary relation name such that for any polynomial
constraint database D over S, linearize(D) is an algebraic linearization of SD.

6.4. Rational linearizations. We now refine the previous theorems to rational
linearization.

Theorem 6.9. For each n, there exists an FO+Poly+TC query ratlin over
the schema S = {S}, with S n-ary, such that for any polynomial constraint database
D over S such that SD is bounded, ratlin(D) is a rational linearization of SD.

Proof. We can obtain this result easily by modifying the construction of the
special box collection in section 6.1 in the following way. When the box covering V
of size εV√

n
is computed in this construction, we compute a rational number that is

smaller than εV√
n

and take this as the size of the box covering V to be computed. By

similar techniques as those in section 4, it is easy to show that there exists an FO+
Poly+TC query, which returns a rational number smaller than the input number.
In this way, all boxes in R ⊂ Q2n. A second adaptation is that the relation P is
replaced by the following relation

P ′ = {(B,�cB , b) ∈ U × Qn × {0, 1} | ∃�pB(B, �pB , b) ∈ P},

where �cB denote the center of the box B.
In this way the algorithm Linearize-In-n-Dimensions will select points with

rational coordinates.
We also have a rational equivalent of Theorem 6.7.
Theorem 6.10. For each n there exists an FO+Poly+TC query ε-ratlin over

the schema S = {S}, with S an n-ary relation name, such that for any polynomial
constraint database D over S such that SD is bounded, the set ε-ratlin(D) is a
rational ε-approximation of SD.

6.5. The connectivity query. Although we know already that the connectivity
query, which asks whether a polynomial constraint database is connected, is express-
ible in FO+Poly+TCS, we show in this section that the connectivity query is already
expressible in FO+Poly+TC. Let A be a semialgebraic set in Rn. For semialgebraic
sets, expressing the connectivity query is the same as expressing whether any two
points can be connected by a path lying entirely in A [6, Proposition 2.5.13]. One
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can even choose the paths to be semialgebraic, in case of a semialgebraic set, and
semilinear, in case of a semilinear set [44, Chapter 6, Proposition 3.2].

We now show that this query can be expressed in FO+Poly+TC using the
formula linearize given in Theorem 6.8.

Let S = {S}, with S an n-ary relation name. Consider the FO+Poly+TC for-
mula lineconn(�r,�s) over S such that for any database D over S, (�p, �q) ∈ lineconn(D)
if and only if

∀λ(0 � λ � 1), λ�p + (1 − λ)�q ∈ linearize(D).

Define now the FO+Poly+TC sentence connected, which tests for any database D
over S whether

∀�p ∈ linearize(D),∀�q ∈ linearize(D), (�p, �q) ∈ [TC�x;�ylineconn(D)].

Proposition 6.11. Let S = {S} with S an n-ary relation name. The FO+
Poly+TC formula connected always terminates and expresses the connectivity query.

Proof. Since linearize(D) is topologically equivalent to SD, SD is connected if
and only if linearize(D) is. Since linearize(D) is semilinear, two points �p and �q
belong to the same connected component of linearize(D) if and only if there exists
a piecewise linear path from �p to �q lying entirely in linearize(D). The formula
connected expresses that all points of linearize(D) belong to the same connected
component, i.e., that linearize(D) is connected.

To conclude that the evaluation of the transitive closure in the formula connected

ends in finitely many steps, we need to show that there exists an upper bound on
the number of line segments in linearize(D), which is needed to connect any two
points in the same connected component of linearize(D). Now, any semilinear set
can be decomposed into a finite number of convex sets [44]. The finiteness of this
decomposition yields the desired bound.

Since FO+Poly+TC is included in stratified DATALOG with polynomial con-
straints, Proposition 6.11 solves the question [15, 31, 33] of whether stratified DAT-
ALOG with polynomial constraints can express the connectivity query.

6.6. Volume approximation. In this section, we shall use the box covering
and the ε-approximation to approximate the volume of semialgebraic sets with an
FO+Poly+TC formula. We restrict our attention to bounded semialgebraic sets
and require that the evaluation of this FO+Poly+TC formula is effective for all
bounded semialgebraic inputs.

Let S = {S}, with S an n-ary relation name. Let D be a polynomial constraint
database over S.

The volume of a database D is defined as the Lebesgue-measure of the semi-
algebraic set SD ⊆ Rn and is denoted by Vol(D).

Since we want an FO+Poly+TC formula whose evaluation is effective on all da-
tabases, it is impossible to define the exact volume of polynomial constraint databases
in FO+Poly+TC. Indeed, consider the database consisting of the unit disk D in R2.
The volume of D equals π. Since π is not algebraic, this value cannot be the output
of an effective FO+Poly+TC query.

Hence, as suggested by Koiran [28] and Benedikt and Libkin [5], we consider for
each ε > 0 an ε-volume approximation query Vol

ε, such that for any polynomial
constraint database D over S, such that if v ∈ Vol

ε(D), then

|v − Vol(SD)| < ε.
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A

L

Fig. 6.7. A semialgebraic set A with κ(A) = 12.

It is known that volume approximation is not expressible in FO+Poly [5]. We
show that it is expressible in FO+Poly+TC.

We will use the following result.
Theorem 6.12 (see [28]). Let A be a semialgebraic set in Rn, and let δ-cover(A)

be its box covering of size δ. Then

|Vol(A) − Vol(δ-cover(A))| < 1

δ
(diam(A))n+1κ(A)n,(6.19)

where κ(A) is the maximal number of connected components of the intersection of
A with any axis-parallel line L (see Figure 6.7), and where diam(A) is the diameter
of A.5

Theorem 6.13. For each ε > 0, there exists an ε-volume approximation query
in FO+Poly+TC.

Proof. We first show that the number κ of Theorem 6.12 is expressible in
FO+Poly+TC. Thereto, first we define n sets Ki which contain (2n − 1)-tuples
(a1, . . . , ai−1, ai+1, . . . , an, �p), where aj ∈ R for j = 1, . . . , i − 1, i + 1, . . . , n, and
where �p is either an isolated point on the intersection of A with {�x |

∧
j �=i xj = aj},

or in the middle of an interval in this intersection. Using similar techniques as in
section 4, we compute for each (a1, . . . , ai−1, ai+1, . . . , an) the number of points �p
such that (a1, . . . , ai−1, ai+1, . . . , an, �p) ∈ Ki. We then obtain n sets K ′

i consisting of
n-tuples (a1, . . . , ai−1, ai+1, . . . , an, N) with N ∈ N, and we define Mi to be the max-
imum of all those N which are in K ′

i for some (a1, . . . , ai−1, ai+1, . . . , an). Finally,
κ = max{M1, . . . ,Mn}.

Let δ = 1
ε (diam(SD))nκ(SD)n + 1. By Proposition 5.14, the box covering of

SD of size δ is expressible in FO+Poly+TC. By Theorem 6.12, Vol(δ-cover(SD))
approximates the volume of SD within an ε-error margin.

Recall that δ-cover(SD) is represented as a 2n-ary relation. Each 2n-tuple corre-
sponds to an n-dimensional box of size δ (see section 5.5). Let nrofboxes(y) be the
formula

[TC�b,x;�b′,x′lexicographic(�b,�b
′) ∧ x′ = x + 1](�bmin, 1,�bmax, y),

where lexicographic(�b,�b′) is an FO+Poly formula expressing that �b is less than �b′

with respect to the lexicographical ordering on tuples in Rn, and where �bmin,�bmax ∈
δ-cover(SD) is the minimum (respectively, maximum) n-tuple in δ-cover(SD) with
respect to the lexicographical ordering. Finally, let N ∈ R such that nrofboxes(N)
holds. Then we define Vol

ε(v) to be the FO+Poly+TC formula which expresses
that v = Nδn.

5For X ⊆ Rn bounded, the diameter of X is defined as the supremum of {‖�x− �y‖ | �x, �y ∈ X}.
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Since the δ-approximation of A is included in the box covering δ-cover(A), a better
volume approximation can be obtained by using the volume of the δ-approximation
instead of the volume of δ-cover(A). By the next theorem, this also gives an FO+
Poly+TC expressible ε-approximation query.

It is known that taking the volume of a semilinear set does not take us out of the
semialgebraic setting and that the volume of a semilinear set can be expressed in the
aggregate language FO+Poly+Sum [5].

Theorem 6.14. Let S = {S}, with S an n-ary relation name. There exists an
FO+Poly+TC formula volume over S such that volume(SD) is the volume of SD

for any linear constraint database D over S.
Proof. If dim(SD) < n, then we define volume(x) ≡ x = 0. Suppose that

dim(SD) = n. Since Vol(SD) = Vol(cl(int(SD))), we actually may assume that SD

is closed and consists entirely of n-dimensional pieces.
It is well known that SD is a finite union of convex sets c1, . . . , cr of a partition

of Rn induced by a finite number of (n−1)-dimensional hyperplanes H1, . . . , Hs [48].
Vandeurzen, Gyssens, and Van Gucht [48] show that there exists an FO+Poly

formula hyperplanes(v1, . . . , vn, d) such that hyperplanes(D) consists of s tuples
(�v1, d1), . . . , (�vs, ds) such that Hi = {�x ∈ Rn | �vi�x = di}. Moreover, there exists an
FO+Poly formula points such that points(D) is equal to the extremal points of
the convex sets c1, . . . , cs. Recall that the extremal points of a convex set are those
points which cannot be written as a linear combination of two other points of the
convex set [51].

We now want to retrieve the extremal points of the convex sets c1, . . . , cr. In
order to do so, we shall first select a unique point in the interior of each convex
set. With each of these points we then associate all special points which are in the
corresponding convex set. These will then be the extremal points.

We thus define an FO+Poly+TC formula unique over S such that unique(D)
consists of points �p1, . . . , �ps such that �pi ∈ int(ci) for i = 1, . . . , s. The formula
unique makes use of the following formulas over S:

• A formula over S which computes the barycenter of any n-dimensional sim-
plex obtained as the convex hull of an (n+1)-tuple of points in specialpoints

(D), i.e.,

barycenter(�x) ≡ ∃�y1 · · · ∃�yn+1

(
n∧

i=1

points(�yi)

∧ xi =
1

n + 1
((�y1)i + · · · + (�yn+1)i)

)
.

• A formula interiors over S which computes the interiors of the sets c1, . . . , cs,
i.e.,

interiors(�x) ≡ S(�x) ∧ ¬(∃�v ∃ d(hyperplanes(�v, d) ∧ �v · �x = d)).

• A formula over S which checks whether two barycenters are in the same
convex set ci for some i, i.e.,

samecell(�x, �y) ≡ barycenter(�x) ∧ barycenter(�y)

∧ ∀λ(0 � λ � 1) → interiors(λ�x + (1 − λ)�y).
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We then define the formula unique(�x) as

∀�zsamecell(�x, �z) → lexicographic(�x, �z),

where lexicographic(�x, �z) is an FO+Poly formula expressing that �x is less than or
equal to �z with respect to the lexicographical ordering on tuples in Rn.

Define the formula

extremal(�x, �y) ≡ points(�x) ∧ unique(�y)

∧ ∀λ(0 < λ � 1) → interiors(λ�y + (1 − λ)�x).

We can now identify each convex set c1, . . . , cr, so we may focus on a single
convex set. We now show that, given the extremal points of a convex set c in Rn, a
decomposition of c in a finite number of n-simplices can be constructed in FO+Poly.
The n-simplices will be represented by n + 1 independent points.

We first identify the hyperplanes which have an (n− 1)-dimensional intersection
with the boundary of the convex set c. Let �e1, . . . , �ek be the extremal points of c. Let
onboundary be the FO+Poly formula which selects the tuples in hyperplanes(D)
with this property. Next, let sameface be an FO+Poly formula such that face(�e,�v, d)
if and only if �e is an extremal point of c, (�v, d) ∈ onboundary(�e1, . . . , �ek), and
�e ∈ {�x ∈ Rn | �v · �x = d}. In this way, we can group the extremal points of c
such that each group corresponds to a single face of the convex cell c.

For each face of c, we now project the extremal points corresponding to this face
to Rn−1 such that they are the extremal points of a convex set in Rn−1. Thus,
if face(�x1, �v, d,�e1, . . . , �ek) ∧ · · · ∧ face(�x�, �v, d,�e1, . . . , �ek), then we obtain extremal
points of a convex set in Rn−1 as follows: Let i ∈ {1, . . . , n} be such that {�x ∈ Rn |
xi = 0} is not perpendicular to {�x ∈ Rn | �v · · · �x = d} (this can be easily expressed
in FO+Poly). Then consider the projection πi : Rn → Rn−1 defined as πi(x1, . . . ,
xn) �→ (x1, . . . , xi−1, xi+1, . . . , xn) and apply this map on �x1, . . . , �x�.

Algorithm Triangulate-In-n-Dimensions

Input: The extremal points �e1, . . . , �ek of a convex set c in Rn.
Output: A finite number of n-simplices forming a decomposition of c.
Method:

1. Compute the pairs (�v, d) ∈ onboundary(�e1, . . . , �ek).
2. For each (�v, d) ∈ onboundary(�e1, . . . , �ek) do the following:

(a) Compute face(�x,�v, d,�e1, . . . , �ek).
(b) Find an i as described above and call Triangulate-In-(n− 1)-

Dimensions(πi(face(�v, d,�e1, . . . , �ek))).
3. Select a point �pn+1 in the interior of c.
4. Output the (n + 1)-tuples (�p1, . . . , �pn, �pn+1), where (�p1, . . . , �pn) is

an n-tuple in the result of the calls of Triangulate-In-(n − 1)-
Dimensions in step 2(b).

We now define the FO+Poly formula simplexdecomp over S such that simplex-
decomp(D) is a decomposition into n-simplices of SD for any polynomial constraint
database D over {S}. Let triang be a formula which expresses the algorithm
Triangulate-In-n-Dimensions. Then

simplexdecomp(�x1, . . . , �xn+1) ≡ ∃�y(unique(�y)
∧ triang(extremal)(�x1, . . . , �xn+1, �y)).



LINEARIZATION AND COMPLETENESS FOR TC QUERIES 1437

Let (�p1, . . . , �pn+1) be an n-simplex points. Let �ri = �pi − �p1 for i = 2, . . . , n + 1,
and let G be the n × n matrix whose rows contain the coordinates of the vectors �rj
for 1 � j � n. Then by the Gram determinant formula [37], the volume of (�p1, . . . ,
�pn+1) is equal to

|det(GGt)| 12
n!

,

where Gt is the transpose of G. Hence, the volumes of the simplices are expressible
by an FO+Poly formula, which we will denote by volsimplex.

Finally, define

Ψ(y) ≡ [TCx,s;x′,s′s = ∃�p1, . . . ,∃�pn+1,∃�q1, . . . ,∃�qn+1

volsimplex(�p1, . . . , �pn+1) ∧ s′ = volsimplex(�q1, . . . , �qn+1)

∧ successor(�q1, . . . , �qn+1, �p1, . . . , �pn+1)

∧ simplexdecomp(�p1, . . . , �pn+1) ∧ simplexdecomp(�q1, . . . , �qn+1)

∧ x′ = x + s](0, v1, y, v�),

where successor is a successor relation defined on the n-simplices in the decompo-
sition into simplices simplexdecomp(D), and where v1 and v� are, respectively, the
volume of the first and last simplex according to this successor relation. The total
volume of SD is then given by

volume(v) ≡ ∃yΨ(y) ∧ v = y + v�,

with v� as above.

Acknowledgments. We would like to thank the referees for their comments
which contributed significantly towards the readability of the paper.

REFERENCES

[1] D. Abel and B. C. Ooi, eds., Advances in Spatial Databases—3rd Symposium (SSD’93),
Lecture Notes in Comput. Sci. 692, Springer-Verlag, Berlin, New York, 1993.

[2] S. Basu, R. Pollack, and M.-F. Roy, On the combinatorial and algebraic complexity of
quantifier elimination, J. ACM, 43 (1996), pp. 1002–1046.

[3] S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms
Comput. Math. 10, Springer-Verlag, Berlin, New York, 2003.

[4] M. Benedikt and L. Libkin, Safe constraint queries, SIAM J. Comput., 29 (2000), pp. 1652–
1682.

[5] M. Benedikt and L. Libkin, Aggregate operators in constraint query languages, J. Comput.
System Sci., 64 (2002), pp. 626–654.

[6] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb.
(3) 36, Springer-Verlag, Berlin, 1998.

[7] H. Brakhage, Topologische Eigenschaften algebraischer Gebilde über einem beliebigen reell-
abgeschlossenen Konstantenkörper, Dissertation, Universität Heidelberg, Heidelberg, Ger-
many, 1954.

[8] A. P. Buchmann, O. Günther, T. R. Smith, and Y.-F. Wang, eds., Design and Implemen-
tation of Large Spatial Databases—First Symposium (SSD’89), Lecture Notes in Comput.
Sci. 409, Springer-Verlag, Berlin, New York, 1989.

[9] M. de Berg, M. Van Kreveld, M. Overmars, and O. Schwarkopf, Computational Geom-
etry, Springer-Verlag, Berlin, New York, 1997.

[10] F. Dumortier, M. Gyssens, L. Vandeurzen, and D. Van Gucht, On the decidability of
semilinearity for semialgebraic sets and its implications for spatial databases, J. Comput.
System Sci., 58 (1999), pp. 535–571.



1438 F. GEERTS, B. KUIJPERS, AND J. VAN DEN BUSSCHE

[11] H. D. Ebbinghaus and J. Flum, Finite Model Theory, Springer-Verlag, Berlin, 1995.
[12] M. J. Egenhofer and J. R. Herring, eds., Advances in Spatial Databases—4th Symposium

(SSD’95), Lecture Notes in Comput. Sci. 951, Springer-Verlag, Berlin, New York, 1995.
[13] F. Geerts, Linear approximation of semi-algebraic spatial databases using transitive closure

logic, in arbitrary dimension, in Proceedings of the 8th International Workshop on Data-
bases and Programming Languages, Lecture Notes in Comput. Sci., Springer-Verlag, 2002,
pp.

[14] F. Geerts, Expressing the box cone radius in the relational calculus with real polynomial
constraints, Discrete Comput. Geom., 30 (2003), pp. 607–622.

[15] F. Geerts and B. Kuijpers, Expressing topological connectivity of spatial databases, in
Research Issues in Structured and Semistructured Database Programming. Proceedings of
the 7th International Workshop on Database Programming Languages, Lecture Notes in
Comput. Sci. 1949, Springer-Verlag, Berlin, New York, 1999, pp. 224–238.

[16] F. Geerts and B. Kuijpers, Linear approximation of planar spatial databases using transitive-
closure logic, in Proceedings of the 19th ACM Symposium on Principles of Database
Systems, ACM, New York, 2000, pp. 126–135.

[17] F. Geerts and B. Kuijpers, On the decidability of termination of query evaluation in
transitive-closure logics for polynomial constraint databases, Theoret. Comput. Sci., 336
(2005), pp. 125–151.

[18] S. Grumbach and G. Kuper, Tractable recursion over geometric data, in Proceedings of
the 3rd Conference on Principles and Practice of Constraint Programming, G. Smolka, ed.,
Lecture Notes in Comput. Sci. 1330, Springer-Verlag, Berlin, New York, 1997, pp. 450–462.

[19] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin, DEDALE, a spatial constraint
database, in Proceedings of Database Programming Languages (DBPL ’97), S. Cluet and
R. Hull, eds., Lecture Notes in Comput. Sci. 1369, Springer-Verlag, Berlin, New York, 1998,
pp. 38–59.

[20] S. Grumbach, P. Rigaux, and L. Segoufin, The DEDALE system for complex spatial queries,
in Proceedings of the ACM International Conference on Management of Data (SIGMOD
’98), L. M. Haas and A. Tiwary, eds., ACM, New York, 1998, pp. 213–224.

[21] S. Grumbach and J. Su, Towards practical constraint databases, in Proceedings of the 15th
ACM Symposium on Principles of Database Systems (PODS ’96), ACM, New York, 1996,
pp. 28–39.

[22] S. Grumbach and J. Su, Queries with arithmetical constraints, Theoret. Comput. Sci., 173
(1997), pp. 151–181.

[23] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, NJ,
1974.

[24] O. Gunther and H.-J. Schek, eds., Advances in Spatial Databases—2nd Symposium
(SSD’91), Lecture Notes in Comput. Sci. 525, Springer-Verlag, Berlin, New York, 1991.
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Abstract. We solve the open problem of characterizing the leading constant in the asymptotic
approximation to the expected cost used for random partial match queries in random k-d trees. Our
approach is new and of some generality; in particular, it is applicable to many problems involving
differential equations (or difference equations) with polynomial coefficients.
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1. Introduction. Multidimensional binary search trees (abbreviated as k-d trees
or simply kd trees, k being the dimensionality) were first proposed by Bentley [2] and
represent extremely useful data structures for problems in diverse fields, especially
those having to do with range queries; nearest neighbor search; or partial, exact,
or approximate match queries. For example, they are useful in statistical learning,
databases, data-mining, computer graphics, robotics, medical imaging, neural net-
works, multimedia, statistical computing, computer-aided design, astronomy, pattern
recognition, geographic information systems, music information retrieval, computa-
tional biology, etc. For more information, see Bentley [3], Bentley and Friedman [4],
Bertino et al. [5], Friedman, Bentley, and Finkel [19], Gray and Moore [21], Grother,
Candela, and Blue [22], Nichol et al. [28], Omohundro [29], Preparata and Shamos
[31], Reiss, Aucouturier, and Sandler [32], Samet [33, 34], and Schwarzer and Lotan
[35]. According to the statistics collected in the Stony Brook Algorithm Repository,
k-d trees were among the most popular algorithmic problems; see Skiena’s account
in [37].

Despite the usefulness and diversity of k-d trees, their precise probabilistic analysis
appears only sporadically in the literature (although many properties can be derived
from those for random binary search trees); see [6, 11, 12, 13, 19, 20, 25, 26, 27]. We are
concerned in this paper with the expected cost used by random partial match queries
in random k-d trees. The growth order of this cost has been known since Flajolet and
Puech’s work [17], but the characterization of the leading constant remains a very
challenging problem. We propose a new approach to filling this gap.

The prototypes of k-d trees are binary search trees when there is a total ordering
for the input keys or when k = 1. A binary search tree B is a binary tree constructed
from a given sequence of keys as follows. If the tree size is n = 0, then B is empty.
If n ≥ 1, then the first key is placed at the root. The remaining keys are compared
successively to the root key, which may be called a “discriminator,” and are directed
to the left (or right) branch if they are smaller (or larger); keys directed to the same
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branch are constructed recursively as a binary search tree. By construction, a query
operation such as “x ∈ B?” can be easily carried out in binary search trees; hence the
name “search tree.”

When given k-dimensional points or keys, k ≥ 2, the simple idea of k-d trees is to
use each coordinate cyclically, say, in the order from the first coordinate to the last,
as the “discriminator” to direct points falling in the same subtree as in binary search
trees (but using the (� mod k) + 1st coordinate for a node at a distance of � from the
root); see Figure 1.1 for a plot of a simple 2-d tree.

In addition to exact match searches, as in binary search trees, k-d trees can also
be used for partial match queries when some coordinates are either unspecified, don’t-
cares, or wild cards. Thus the range search is continued in both subtrees when the
unspecified coordinate is used as a discriminator in the k-d tree and in either the left
or the right subtree (but not both) otherwise; see Bentley [2] for details. Two simple
instances of a range search in 2-d trees are shown in Figure 1.2.

Fig. 1.1. The stepwise constructions of a 2-d tree of six points.

We consider the following probabilistic model for our average-case analysis. A
sequence of n independently and identically distributed random points in [0, 1]k is
given, where each coordinate is uniformly distributed over the unit interval and is
independent of other coordinates. Then we construct the k-d tree T , called a random
k-d tree. For partial match queries, we then consider a query of the form Y =
(Y1, . . . , Yk), where Yj is either the unit interval (meaning don’t-care) or a random
variable uniformly distributed over the unit interval (Yj = Uniform(0, 1)), the number
of specified coordinates s satisfying 0 ≤ s ≤ k. We then perform the range search of



1442 HUA-HUAI CHERN AND HSIEN-KUEI HWANG

Fig. 1.2. Two instances of partial match queries (as marked by the dashed line) in a 2-d tree:
visited nodes are the filled-in grey circles. Here the query pattern [0, 1] means that the first coordinate
is unspecified and the second is specified; the meaning of [1, 0] is similar.

the query Y in the tree T . The number of nodes visited is a random variable, say,
Xn. The main quantity of interest in this paper is the expected value Qn := E(Xn),
or simply the expected cost of a random partial match query in random k-d trees of n
nodes.

While the uniform model we are considering may seem too idealized, it is sim-
ple yet mathematically tractable; also the asymptotics obtained under such a model
usually subsists under more general ones; see [17] for more discussions.

For convenience, throughout this paper we write the query pattern as q :=
[q1, . . . , qk] since Qn depends only on q, where qj ∈ {0, 1} and 0 ≤ q1 + · · · + qk ≤ k.
Here qj = 0 means that the jth coordinate is unspecified, and qj = 1 means that it is
specified. Flajolet and Puech [17] showed that

Qn ∼ Cnα−1 (1 ≤ s < k),(1.1)

where C is a constant and α > 1 solves the equation

(α + q1) · · · (α + qk) = 2k,

or, equivalently, the equation αk−s(α + 1)s = 2k, where s = q1 + · · ·+ qk denotes the
number of specified coordinates. Their result corrected the original claim of Bentley
[2, p. 513] that Qn = O(n1−s/k) since α can be written as α = 1−s/k+ε(s/k), where
ε(u) > 0 for 0 < u < 1; see [17] and [6].

The approach of Flajolet and Puech [17] is based on a linear differential system
and starts from the generating function y1(z) :=

∑
n≥1(n + 1)Qnz

n. Then

d

dz
y(z) = Ω(z)y(z) + b(z),

where y(z) = (y1(z), . . . , y2k−s(z))
T , b(z) = (b1(z), . . . , b2k−s(z))

T , and Ω(z) is a
(2k − s) × (2k − s) matrix. For example, when q = [0, 1, 1],

d

dz

⎛
⎜⎜⎝

y1(z)
y2(z)
y3(z)
y4(z)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
z(1−z)

2
1−z 0 − 1

z2(1−z)

0 0 2
1−z 0

2
1−z 0 0 0

1 0 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

y1(z)
y2(z)
y3(z)
y4(z)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1
(1−z)3

2
(1−z)3

2
(1−z)3

0

⎞
⎟⎟⎠ .
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From this system, they proved that the generating function Q(z) :=
∑

n≥1 Qnz
n

satisfies

Q(z) ∼ K(1 − z)−α

for some constant K and for z in some region in the z-plane. Then (1.1) follows from
singularity analysis (see [16]). But as is often the case for linear systems, the constant
K or C in (1.1) does not seem to have simple computable forms by this approach.

Chanzy, Devroye, and Zamora-Cura [6] proved (1.1) by a more combinatorial and
probabilistic approach, but the calculation of C still remains open.

The recurrence for Qn we are solving is of the form (j0 := n)

Qn = 1 +
∑

1≤i<k

2i
∑

1≤ji<···<j1<n

∏
1≤r≤i

1 + qrjr
jr−1(1 + qrjr−1)

+ 2k
∑

1≤jk<···<j1<n

Qjk

∏
1≤r≤k

1 + qrjr
jr−1(1 + qrjr−1)

(1.2)

for n ≥ 1, with Q0 := 0. In particular (writing Qn = Qn[q1, . . . , qk])

Qn[0, 1] = 3 − 2

n
+

4

n2

∑
1≤j<n

(n− 1 − j)Qj [0, 1],

Qn[0, 0, 1] = 7 − 6

n
− 4

n
Hn−1

+
8

n

∑
1≤j<n

(
Hn−1 −Hj − (j + 1)

(
H

(2)
n−1 −H

(2)
j

))
Qj [0, 0, 1]

for n ≥ 1 with Q0 := 0. Here H
(i)
n :=

∑
1≤j≤n j

−i and Hn = H
(1)
n .

While the problem we are studying in this paper is similar to partial match queries
in random quadtrees (see [14, 9]), the nature of the associated analytic problems is
very different (although both problems can be written in terms of linear systems).
Intuitively, random quadtrees seem to have more independence in subtrees, while the
independence of k-d trees is somehow “bound” by the cyclic construction. For partial
match queries in quadtrees, the dominant asymptotic approximation to the expected
cost depends only on the number (but not the pattern) of specified coordinates; in
contrast, the leading constant in the asymptotic approximation to the expected cost
for k-d trees depends strongly on the query pattern, making the analytic problem
harder.

We propose in the next section a more straightforward approach, which is based
on translating the system of recurrences satisfied by Qn into a scalar differential equa-
tion with polynomial coefficients for the generating function of Qn. Some explicitly
solvable cases of the differential equation are discussed in section 3. We then solve
the general differential equation by using Mellin transforms (see Flajolet, Gourdon,
and Dumas [15]) in section 4. This Mellin approach leads, by suitably changing the
initial conditions, to a series form for K that is absolutely convergent. But the justifi-
cation of the application of the Mellin inversion integrals is more delicate and requires
stronger analytic estimates. We thus develop in section 5 a different approach based
on extending our asymptotic theory for Cauchy–Euler differential equations (see [10]).
Such an approach is very general and is mostly algebraic and elementary in nature,
requiring little knowledge in differential equations as in [10]. It is also applicable to
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other situations, where one has linear differential equations with polynomial coeffi-
cients. We briefly indicate the application to k-d-t trees in section 6, which are locally
balanced versions of k-d trees; see [11]. The development of a general theory with
many applications will be given elsewhere; see [7] for further exploration of the same
approach to quadtrees.

Notation. Throughout this paper, [q1, . . . , qk] ∈ {0, 1}k, k ≥ 2, always denotes
the query pattern with s := q1 + · · · + qk, where 0 means unspecified and 1 specified.
We also introduce the symbol

ρn,j(q) :=
1 + qj

1 + qn
(q ∈ {0, 1}).

Finally, α > 1 denotes the zero of the equation (except in section 6 on k-d-t trees)

(x + q1) · · · (x + qk) − 2k = xk−s(x + 1)s − 2k = 0.

2. From recurrences to differential equations. In this section, we first show
that the expected cost Qn = Qn[q1, . . . , qk] satisfies a system of recurrences (of quick-
sort type) and then derive a “normal form” for the differential equation satisfied by
the generating function Q(z) = Q[q1, . . . , qk](z) :=

∑
n≥1 Qnz

n.
Basic recurrences. By definition, Q0 = 0 for all query patterns.
Lemma 2.1. The expected cost Qn satisfies the recurrence

Qn[q1, . . . , qk] = 1 +
2

n

∑
1≤j<n

ρn,j(q1)Qj [q2, . . . , qk, q1] (n ≥ 1),(2.1)

with Q0 = 0.
Proof. When the first coordinate is unspecified, the search is conducted in both

subtrees. The probability that the left subtree is of size j is 1/n for 0 ≤ j < n. By
cyclic construction of k-d trees, we then have

Qn[q1, . . . , qk] = 1 +
1

n

∑
0≤j<n

(Qj [q2, . . . , qk, q1] + Qn−1−j [q2, . . . , qk, q1]) ;

thus (2.1) follows with q1 = 0. On the other hand, if q1 = 1, then the probability of
going to the left subtree of the root (when it has j nodes) is (j+1)/(n+1) since with
probability 1 the query results in an unsuccessful search. Thus

Qn[q1, . . . , qk] = 1 +
1

n

∑
0≤j<n

(
j + 1

n + 1
Qj [q2, . . . , qk, q1] +

n− j

n + 1
Qn−1−j [q2, . . . , qk, q1]

)
.

This proves (2.1).

Write Q
[j]
n := Qn[qj , . . . , qk, q1, . . . , qj−1], 1 ≤ j ≤ k.

Corollary 2.2. The Q
[j]
n ’s satisfy the system of recurrences⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q[1]
n = 1 +

2

n

∑
1≤j<n

ρn,j(q1)Q
[2]
j ,

...

Q[k]
n = 1 +

2

n

∑
1≤j<n

ρn,j(qk)Q
[1]
j ,

(n ≥ 1).(2.2)
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Proof. The proof follows from Lemma 2.1 and the cyclic relation of k-d
trees.

The recurrence (1.2) then follows from (2.2).

Corollary 2.3. If we assume that Q
[1]
n ∼ Cnβ−1 for β > 1, then

Q[j]
n ∼ 2k−j+1C

(β + qj) · · · (β + qk)
nβ−1 (j = 1, . . . , k),(2.3)

and β solves the equation (β + q1) · · · (β + qk) = 2k.
Proof. From (2.2), we have

Q[k]
n ∼ 2C

n1+qk

∑
1≤j<n

jβ−1+qk ∼ 2C

β + qk
nβ−1.

Then the asymptotics of Q
[k−j]
n can be obtained one after another. On the other

hand, since

Q[1]
n ∼ 2kC

(β + q1) · · · (β + qk)
nβ−1 ∼ Cnβ−1,

β has to satisfy the equation (β + q1) · · · (β + qk) = 2k. Thus β = α.

The corollary says that once we obtain the asymptotics of one of the Q
[j]
n ’s, those

of the others are all known. One can show that the number of distinct query patterns
needed to be computed in order to derive Qn for all 2k possible queries is equal to
(essentially the number of different types of necklaces with two distinct colors)

Nk := k−1
∑
d|k

φ(d)2k/d,(2.4)

where φ(d) denotes Euler’s totient function; see Flajolet and Sedgewick [18, p. 18].
For large k, Nk ∼ 2k/k.

We can rewrite and simplify (2.2) as follows.
Corollary 2.4. For n ≥ 1,⎛

⎜⎜⎝
Q

[1]
n

...

Q
[k]
n

⎞
⎟⎟⎠ = M

⎛
⎜⎜⎝

Q
[1]
n−1
...

Q
[k]
n−1

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1+q1
n+q1

...
1+qk
n+qk

⎞
⎟⎟⎠ ,(2.5)

where M = (ai,j)k×k with ai,i = (n − 1)/(n + qi), ai,(i+1)modk = 2/(n + qi), and all
other entries are zeros.

Proof. Taking the difference n(n + qj)Q
[j]
n − (n− 1)(n− 1 − qj)Q

[j]
n−1 gives

(n + qj)Q
[j]
n = (n− 1)Q

[j]
n−1 + 2Q

[j+1]
n−1 + 1 + qj (1 ≤ j ≤ k),

where Q
[k+1]
n = Q

[1]
n .

The nonhomogeneous matrix recurrence (2.5) can be converted into a homoge-
neous one by considering

Q̄[j]
n := Q[j]

n +
1 +

∑
1≤�<k(2 − q1) · · · (2 − q�)

2s − 1
;
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then ⎛
⎜⎜⎝

Q̄
[1]
n

...

Q̄
[k]
n

⎞
⎟⎟⎠ = M

⎛
⎜⎜⎝

Q̄
[1]
n−1
...

Q̄
[k]
n−1

⎞
⎟⎟⎠ ,

with obvious initial conditions.
Integral equations. Lemma 2.1 is next translated into an integral equation for the

generating function Q(z). For convenience, we introduce two integral operators,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I0[ϕ](z) :=

∫ z

0

ϕ(t)

1 − t
dt,

I1[ϕ](z) :=
1 − z

z

∫ z

0

tϕ(t)

(1 − t)2
dt.

Let fj(z) = Q[qj , . . . , qk, q1, . . . , qj−1](z), 1 ≤ j ≤ k.
Lemma 2.5. The generating function f1 satisfies the integral equation

f1(z) =
z

1 − z
+ 2Iq1 [f2](z).(2.6)

Proof. The proof for (2.6) with q1 = 0 is straightforward. When q1 = 1, (2.6)
follows from

∑
n≥1

zn

n(n + 1)

∑
0≤j<n

(j + 1)Qj =
∑
n≥1

(
zn

n
− zn

n + 1

) ∑
0≤j<n

(j + 1)Qj

=

∫ z

0

1

1 − t
(tQ(t))

′
dt− 1

z

∫ z

0

t

1 − t
(tQ(t))

′
dt.

The form given in (2.6) for q1 = 1 is the main diverging point on which our
approach differs from that used in [17]. Roughly, we keep the inverse operator of I1 to
be of first order, so that the associated linear system is of degree k, instead of 2k − s
as used in [17]; cf. also (2.5).

Corollary 2.6. We have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(z) = 2Iq1 [f2](z) +
z

1 − z
,

...

fk(z) = 2Iqk [f1](z) +
z

1 − z
.

By composing the above integral equations, we obtain a single integral equation
for f1(z) = Q(z).

Corollary 2.7. The generating function of Qn satisfies

Q(z) − 2k(Iq1 ◦ · · · ◦ Iqk)[Q](z) = G0(z),(2.7)

where (Iq1 ◦ · · · ◦ Iqj )[f ](z) := Iq1 [· · · [Iqj [f ]] · · · ](z), 1 ≤ j ≤ k, and

G0(z) =
z

1 − z
+

∑
1≤j<k

2j(Iq1 ◦ · · · ◦ Iqj )
[

z

1 − z

]
(z).
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Note that Qn = [zn]G0(z) for 1 ≤ n < k, where [zn]ϕ(z) denotes the coefficient
of zn in the Taylor expansion of ϕ. On the other hand, by (1.2),

Qn = 1 +
∑

1≤i≤n

2i
∑

1≤ji<···<j1<n

∏
1≤r≤i

1 + qrjr
jr−1(1 + qrjr−1)

(1 ≤ n < k).

Differential equations. Define the differential operator ϑ := (1 − z)(d/dz). Then
the inverse operator of Iq is

I−1
q = ϑ +

q

z
(q ∈ {0, 1}),

and the integral equation (2.7) can be converted into a scalar differential equation

(
ϑ +

qk
z

)
· · ·

(
ϑ +

q1
z

)
Q(z) − 2kQ(z) =

∑
1≤j≤k

2j−1
(
ϑ +

qk
z

)
· · ·

(
ϑ +

qj
z

) z

1 − z
.

(2.8)

If we multiply both sides by zk, then the left-hand side can be written in the
form

∑
0≤j≤k(1− z)jLk,j(ϑ)Q(z) for some polynomials Lk,j , all of degree k. But this

approach does not lead to simpler solutions.
Two special cases are indicative of the general pattern for simplification.
(i) If all qj ’s are zeros, then (2.8) becomes

(
ϑk − 2k

)
Q(z) =

2k − 1

1 − z
.(2.9)

(ii) If the qj ’s are all ones, then, by the relation(
ϑ +

1

z

)
ϕ(z)

zj
=

1 − j(1 − z)

zj+1
ϕ(z) (j = 0, 1, . . . ),

we have (
ϑ− 2k +

(ϑ + 1)k − ϑk

z

)
Q(z) = z−1

(
2 − 2k+1 +

k2k

1 − z

)
,

which, by multiplying both sides by z, yields

(
(ϑ + 1)k − 2k

)
Q(z) − (1 − z)

(
ϑk − 2k

)
Q(z) = 2 − 2k+1 +

k2k

1 − z
.(2.10)

These observations suggest that we define a “minimum exponent” μq as k−v+1,
where v denotes the last position of the first block of 1’s (from left to right) and
μq := 0 if s = 0. In symbols,

[q1, . . . , qk] = [0, . . . , 0, 1, . . . , 1, 0, ∗, . . . , ∗︸ ︷︷ ︸
μq

] (∗ ∈ {0, 1})

so that μq := 1 if s = k.
Lemma 2.8. Let μq be defined as above. Then

zμq

((
ϑ +

qk
z

)
· · ·

(
ϑ +

q1
z

)
− 2k

)
Q(z)

= Pk,0(ϑ)Q(z) −
∑

1≤�≤μq

(1 − z)�Pk,�(ϑ)Q(z),(2.11)
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where the Pk,�’s are polynomials of degree k defined by Pk,0(x) = pk,0(x)−2k, and for
1 ≤ � ≤ μq,

Pk,�(x) := pk,�(x) + (−1)�2k
(
μq

�

)
,(2.12)

with{
pk,1(x) = (x + qk − 1)pk−1,1(x) + (x + μq − 1)pk−1,0(x),
pk,�(x) = (x + qk − �)pk−1,�(x) − (x + μq − �)pk−1,�−1(x) (2 ≤ � < μq),

and the boundary values pk,0(x) = xk−s(x+1)s and pk,μq(x) = (−1)μq+1xk for k ≥ 1.
Proof. The two cases of when s = 0 and when s = k are easily checked by (2.9)

and (2.10), respectively. We assume that 1 ≤ s < k.
For k = 2, there are two query patterns, [0, 1] and [1, 0]. The differential equation

for [0, 1] is (μq = 1)

(
ϑ(ϑ + 1) − 4 − (1 − z)(ϑ2 − 4)

)
Q(z) = 1 +

6z

1 − z
,(2.13)

and that for [1, 0] is (μq = 2)

(
(ϑ(ϑ + 1) − 4) − (1 − z)

(
2ϑ2 + ϑ− 7

)
+ (1 − z)2(ϑ2 − 4)

)
Q(z) =

4z2

1 − z
.(2.14)

Thus (2.11) holds.
When the query is of the form

[0, . . . , 0︸ ︷︷ ︸
k−s

, 1, . . . , 1︸ ︷︷ ︸
s

] (1 ≤ s < k),(2.15)

we have μq = 1, and the left-hand side of (2.8) satisfies

z

(
ϑ +

1

z

)s

ϑk−sQ(z) =
(
ϑk−s(ϑ + 1)s − 2k − (1 − z)

(
ϑk − 2k

))
Q(z);

thus (2.11) holds.
The remaining cases follow by induction on k. The proof is messy and omitted

here.
Similarly, the right-hand side of (2.8) can be rewritten as

zμq

∑
1≤j≤k

2j−1
(
ϑ +

qk
z

)
· · ·

(
ϑ +

qj
z

) z

1 − z
=

∑
−1≤�<μq

νk,�(1 − z)�.(2.16)

For the special query pattern (2.15), we have{
νk,−1 = (s + 1)2k − 2s,
νk,0 = −2k+1 + 2k−s + 1.

(2.17)

For other cases, we obtain, by induction,

νk,� :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
2k−1 + νk−1,−1

)
(qk + 1), � = −1,

2k−1(qk + 1)(−1)�
(

μq

� + 1

)
+ ((�− μq)νk−1,�−1 + (qk − �)νk−1,�) , 0 ≤ � ≤ μq − 2,

2k−1(qk + 1)(−1)μq − νk−1,μq−2, � = μq − 1,

(2.18)
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with the initial values ντ+1,−1 = 2(2τ+1 − 1) and ντ+1,0 = −3 · 2τ + 1, τ being the
largest integer for which q1 = · · · = qτ = 0 but qτ+1 = 1. The proof is again lengthy
and laborious, and thus omitted here.

Combining (2.11) and (2.16), we obtain the following “normal form” for Q.
Proposition 2.9. The generating function Q(z) satisfies the initial value prob-

lem ⎧⎨
⎩

Pk,0(ϑ)Q(z) −
∑

1≤�≤μq

(1 − z)�Pk,�(ϑ)Q(z) =
∑

−1≤�<μq

νk,�(1 − z)�,

Q(z) = z + Q2z
2 + · · · + Qk−1z

k−1 + · · · ,
(2.19)

where the Pk,�’s are polynomials of degree k defined in (2.12) and the νk,�’s are con-
stants given in (2.17) and (2.18).

The exact solution for such a general problem is still not obvious and exists only
for a few special cases to be discussed below.

3. Explicitly solvable cases. Exactly solvable cases of (2.19) include s = 0,
s = k, and k = 2, where s is the number of specified coordinates.

None specified: s = 0. When no coordinate is specified, the search cost is ob-
viously n. The associated differential equation is given by (2.9), with the initial
conditions Q(z) = z+2z2 + · · ·+(k−1)zk−1 + · · · . The solution is Q(z) = z/(1− z)2

for all k ≥ 1. This is a case when the particular solution is itself the exact solution
because all initial values coincide.

All queries specified: s = k. In this case, the two Qn’s on the two sides of the
recurrence (2.1) are the same so that Qn satisfies

Qn = 1 +
2

n(n + 1)

∑
1≤j<n

(j + 1)Qj (n ≥ 1),

with Q0 = 0, which is easily solved to be

Qn = 2(Hn+1 − 1) (n ≥ 1).(3.1)

The solution is invariant in k. This is nothing but the expected number of comparisons
used for an unsuccessful search in random binary search trees; see [6, 23].

Note that Q(z) satisfies the differential equation (2.10), with the initial values
Q(0) = 0 and

Qj = 1 + [zj−2]
1

(1 − z)2

(
1 − 2Γ(j + 2z)

Γ(j + 2)Γ(1 + 2z)

)
(1 ≤ j < k),

Γ being the Gamma function. The differential equation (2.10) can be rewritten as

(
(ϑ + 1)

k − 2k
)

(zQ(z)) = 2 + (k − 2)2k +
k2k

1 − z
z,

which is indeed of Cauchy–Euler type (see [10]). The exact solution is

Q(z) =
2

z (1 − z)
log

(
1

1 − z

)
− 2

1 − z
,

from which one derives (3.1). This is another case when the particular solution is
itself the exact solution.
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2-d trees. In this case, Q[0, 1](z) satisfies (2.13) and Q[1, 0](z) satisfies (2.14),
both with the initial conditions Q(0) = 0 and Q′(0) = 1.

Let 2F1 denote Gauss’s hypergeometric function

2F1

(
a, b
c

∣∣∣∣z
)

= 1 +
∑
j≥1

aj̄ bj̄

cj̄ j!
zj ,

where xj̄ = x(x + 1) · · · (x + j − 1) denotes the rising factorial.
Lemma 3.1 (exact solutions for Q(z)). The generating function of Qn[0, 1] sat-

isfies

Q[0, 1](z) =
13

2
(1 − z)−α

2F1

(
2 − α,−2 − α

1

∣∣∣∣z
)
− 7

2
+ 4z − 3

2
z2 − 3

1 − z
,(3.2)

and that for Qn[1, 0]

Q[1, 0](z) =
13

2
z(1 − z)−α

2F1

(
3 − α,−1 − α

3

∣∣∣∣z
)

+ 2 − 7

2
z +

3

2
z2 − 2

1 − z
,(3.3)

where α = (
√

17 − 1)/2.
The corresponding recurrence relations have the forms

Qn[0, 1] = 3 − 2

n
+

4

n2

∑
1≤j<n

(n− 1 − j)Qj [0, 1],

Qn[1, 0] = 3 − 2

n
+

4

n(n + 1)

∑
1≤j<n

(n− 1 − j + Hn−1 −Hj)Qj [1, 0],

with Q0 = 0 for both cases.
Corollary 3.2 (exact solutions for Qn). For n ≥ 3,

Qn[0, 1] =
13

2

∑
0≤j≤n

(
n− j + α− 1

n− j

)
(2 − α)j̄(−2 − α)j̄

j!j!
− 3,

Qn[1, 0] = 13
∑

0≤j<n

(
n− j + α− 2

n− 1 − j

)
(3 − α)j̄(−1 − α)j̄

(j + 2)!j!
− 2.

Proof. The proof follows from taking coefficients of zn on both sides of (3.2) and
of (3.3).

Corollary 3.3 (asymptotics of Qn).

Qn[0, 1] =
13(2α− 3)

2
· Γ(2α)

Γ(α)3
nα−1 − 3 + O(nα−2),

Qn[1, 0] =
13(8 − 5α)

2
· Γ(2α)

Γ(α)3
nα−1 − 2 + O(nα−2).

Proof. The proof follows from applying the exact solutions of Qn or by applying
singularity analysis to (3.2) and (3.3), and then using Gauss’s identity (see [1, Eq.
15.1.20, p. 556]).

Numerically,

13(2α− 3)

2
· Γ(2α)

Γ(α)3
≈ 2.55275,

13(8 − 5α)

2
· Γ(2α)

Γ(α)3
≈ 1.99312,
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which are to be compared with the asymptotic approximation

1

2
· Γ(2α)

Γ(α)3
nα−1 ≈ 1.59099nα−1

for the expected cost of partial match queries in random two-dimensional quadtrees;
see [9, 14].

Proof of Lemma 3.1. Consider first the case when the query pattern is [0, 1]. In
this case, the differential equation is

z(1 − z)2Q′′(z) + (1 − z)2Q′(z) − 4 zQ(z) = −5 +
6

1 − z
.

To solve this equation, we first observe that the particular solution is given by

yp(z) = −7

2
+ 4z − 3

2
z2 − 3

1 − z
.

Thus we consider Q(z) = (1 − z)−αy(z) + yp(z), and we have

z(1 − z)2y′′(z) + (1 − z)(1 − z + 2 zα)y′(z) +
(
α + zα2 − 4 z

)
y(z) = 0.

Since α(α + 1) − 4 = 0, we can simplify the above equation and obtain

z(1 − z)y′′(z) + (1 + (2α− 1)z)y′(z) + αy(z) = 0.

This equation is then rewritten as a generalized hypergeometric differential equation

(
δ2 − z(δ2 − 2αδ − α)

)
y(z) = 0,

where δ = z(d/dz). The differential equation has two fundamental solutions, and the
only one that is regular at the origin is

2F1

(
2 − α,−2 − α

1

∣∣∣∣ z
)
.

Thus the solution is of the form

Q(z) = −7

2
+ 4z − 3

2
z2 − 3(1 − z)−1 + c0(1 − z)−α

2F1

(
2 − α,−2 − α

1

∣∣∣∣ z
)
,

and by matching the initial values, we conclude (3.2).

For the query pattern [1, 0], the particular solution for (2.14) is

yp(z) := 2 − 7

2
z +

3

2
z2 − 2

1 − z
.

The only different part of the above proof is considering y(z) := (Q[1, 0](z) − yp(z)) /z;
the remaining analysis is similar and omitted.

The approach we used for deriving (3.2) and (3.2) is similar to the one used in
[14]. However, such an approach does not apply for k ≥ 3. We need a different
approach to solving (2.19).
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4. Constants for general query patterns. We rewrite the differential equa-
tion (2.19) as

P0(ϑ)Q(z) =
∑

1≤�≤μ

(1 − z)�P�(ϑ)Q(z) +
∑

−1≤�<μ

νk,�(1 − z)�,(4.1)

where, for simplicity, we write P� = Pk,� (defined in (2.12)) and μ = μq.
Our main result in this paper is the following asymptotic estimate for Qn.
Theorem 4.1. The expected cost of a random partial match query in a random

k-d tree of n nodes satisfies

Qn ∼ K

Γ(α)
nα−1 (1 ≤ s < k),(4.2)

where the constant K is defined in (4.6) below.
This theorem is proved in the next section by extending the asymptotic theory

in [10] for Cauchy–Euler differential equations. The idea is roughly as follows. If
the right-hand side of (4.1) is independent of Q, then the solution of Q would satisfy
Q(z) ∼ c1(1 − z)−α + yp(z) for some constant c1 and particular solution yp(z); see
[10]. But the intricate part here is that the right-hand side of (4.1), expected to have
a smaller contribution to Q(z), itself depends on Q.

In this section we give an approach to the proof of (4.2) based on Mellin-type
integrals. The proof is almost complete, up to an estimate in the complex plane that
is needed in justifying the Mellin inversion integrals. The advantage of this approach
is that it quickly gives the right form for the constant.

Shifting the initial values. A minor but crucial step in our analysis is to consider
the function f(z) := Q(z) −

∑
1≤j<k Qjz

j . The differential equation for f remains
the same, but all initial values become zero. Indeed, by the integral equation (2.7),
we have

f(z) − 2k(Iq1 ◦ · · · ◦ Iqk)[f ](z) = G1(z),

with f(0) = · · · = f (k−1)(0) = 0, where

G1(z) := G0(z) −
∑

1≤j<k

Qjz
j − 2k(Iq1 ◦ · · · ◦ Iqk)

⎡
⎣ ∑

1≤j<k

Qjz
j

⎤
⎦ (z).

Note that Iq[z
j ] = zj+1/(j +1+ q)+ · · · , q ∈ {0, 1}. This, together with the relations

Qj = [zj ]G0(z) for 0 ≤ j < k, implies that [zj ]G1(z) = 0 for j < k.
Now applying the inverse operators to the above integral equation, and then

multiplying both sides by zμ, we obtain

P0(ϑ)f(z) =
∑

1≤�≤μ

(1 − z)�P�(ϑ)f(z) + g(z),(4.3)

with f (j)(0) = 0, 0 ≤ j ≤ k − 1, where

g(z) = zμ
∑

1≤j≤k

2j−1
(
ϑ +

qk
z

)
· · ·

(
ϑ +

qj
z

) z

1 − z

− zμ
((

ϑ +
qk
z

)
· · ·

(
ϑ +

q1
z

)
− 2k

)
(Q1z + · · · + Qk−1z

k−1).
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By using the same arguments as in the proof of Proposition 2.9, we obtain the
alternative form for g,

g(z) =
νk,−1

1 − z
+ Π(z),

with Π(z) being a polynomial of degree k+μ− 1. With this form, we can now define

g∗(w) :=

∫ 1

0

(1 − x)w−1g(x) dx (
(w) > 0).(4.4)

Then g∗ satisfies

g∗(w) =
νk,−1

w − 1
+

∑
0≤j<k+μ

(−1)jΠ(j)(1)

j!(w + j)
;

see Table 5.2. The function g∗ can be viewed either as the Mellin transform (see [15])
of g(x) (defined to be zero for x > 1) or as the factorial series of the sequence [zj ]g(z).

The following estimate is needed in proving the absolute convergence of the series
representation (4.6) of K.

Lemma 4.2. The function g∗ satisfies the estimate

g∗(w) = O(|w|−μ−1)(4.5)

for large |w| and | arg(w)| ≤ π − ε, ε > 0.
Proof. Observe first that by definition,

g(z) = zμ
(
ϑ +

qk
z

)
· · ·

(
ϑ +

qj
z

)
G1(z),

and that [zj ]G1(z) = 0 for j < k. Since each operator ϑ + qk/z has the effect of
decreasing the powers of monomials by 1 (from zj to zj−1), we can expand g as
g(z) =

∑
j≥μ gjz

j for some coefficients gj . By using this expansion and interchanging
the summation and integral, we obtain

g∗(w) =
∑
j≥μ

gjj!

w(w + 1) · · · (w + j)
(
(w) > 1),

which is not only a factorial series but also an asymptotic expansion for large |w|.
Characterization of K. Now we are ready to give an explicit form for the constant

K in Theorem 4.1.
Proposition 4.3. The constant K in (4.2) is given by

K =
1

P ′
0(α)

∑
j≥0

g∗(α + j)Bj ,(4.6)

with the series being absolutely convergent, where

Bj =
∑

1≤�≤μ

P�(α + j)

P0(α + j)
Bj−� (j ≥ 1),(4.7)

with the initial conditions B0 = 1 and Bj = 0 for j < 0.
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We defer the hard part of proving (4.6) to later sections and prove here only the
absolute convergence, which is a direct consequence of the estimate (4.5) for g∗ and
the following lemma.

Lemma 4.4. Let B(z) =
∑

j≥0 Bjz
j. Then B(z) satisfies the differential equation

(1 − z)μ
((

q1 − μz

1 − z
+ α + zDz

)
· · ·

(
qk − μz

1 − z
+ α + zDz

)
− 2k

)
B(z) = 0,(4.8)

where Dz := d/dz, and the sequence Bj satisfies

Bj = O
(
jμ−qk−1

)
.(4.9)

Proof. The proof is adapted from that of Lemma 3 in [7]. Define the operator

Ψ(q1, . . . , qk)[ϑ] :=
(
ϑ +

qk
z

)
· · ·

(
ϑ +

q1
z

)
.

By the Cauchy integral representation,

Bj =
1

2πi

∮
(1 − z)−j−1B(1 − z)dz (j ≥ 0),

where, here and throughout the proof, the integration contour is a sufficiently small
circle around unity, we obtain

(4.10)

0 =
1

2πi

∮
B(1 − z)(1 − z)α−1

×

⎛
⎝P0(j + α) −

∑
1≤�≤μ

(1 − z)�P�(j + α)

⎞
⎠ (1 − z)−j−αdz

=
1

2πi

∮
B(1 − z)(1 − z)α−1

⎛
⎝P0(ϑ) −

∑
1≤�≤μ

(1 − z)�P�(ϑ)

⎞
⎠ (1 − z)−j−αdz

=
1

2πi

∮
B(1 − z)(1 − z)α−1

(
zμΨ(q1, . . . , qk)[ϑ] − 2kzμ

)
(1 − z)−j−αdz

= Vj − 2k[zj ]B(z)(1 − z)μ,

where

Vj :=
1

2πi

∮
B(1 − z)(1 − z)α−1zμΨ(q1, . . . , qk)[ϑ](1 − z)−j−αdz

=
1

2πi

∮
B(1 − z)(1 − z)α−1zμ

(
ϑ +

qk
z

)
Ψ(q1, . . . , qk−1)[ϑ](1 − z)−j−αdz.

By an integration by parts (for the term corresponding to ϑ), we have

Vj =
1

2πi

∮
B1(1 − z)(1 − z)α−1zμΨ(q1, . . . , qk−1)[ϑ](1 − z)−j−αdz,

where

B1(1 − z) :=

(
qk − μ(1 − z)

z
+ α− ϑ

)
B(1 − z).
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Repeating the same argument k − 1 times, we obtain

Vj =
1

2πi

∮
(1 − z)−j−1zμ

×
(
q1 − μ(1 − z)

z
+ α− ϑ

)
· · ·

(
qk − μ(1 − z)

z
+ α− ϑ

)
B(1 − z)dz

= [zj ](1 − z)μ
(
q1 − μz

1 − z
+ α + zDz

)
· · ·

(
qk − μz

1 − z
+ α + zDz

)
B(z).

From this and (4.10), the result (4.8) follows from multiplying both sides of (4.10)
and summing over all j ≥ 0.

According to the Frobenius method (see [24]), we seek solutions to the differential
equation (4.8) of the form B(z) = (1− z)ζξ(1− z) for some ζ ∈ C and some function
ξ(z) analytic at the origin. Substituting this form into (4.8), we see that the indicial
equation for (4.8) is given by∏

1≤j≤k

(−μ− ζ + k − j + qj) = 0.

In particular, the dominant zero is ζ = −μ + qk, which is a simple zero. This implies
that

B(z) = O
(
|1 − z|−μ+qk

)
,

and, by singularity analysis (see [16]), proves (4.9).
Note that, by (4.7), B(z) also satisfies the differential equation

P0(α + zDz)B(z) =
∑

1≤�≤μ

(1 − z)�P�(α + � + zDz)B(z),

but this form is less manageable than (4.8) for our purposes.
While the series form (4.6) may seem recursive, it is readily modified for numerical

purposes; see Table 5.1.
We next give a formal proof of the formula (4.6) by Mellin integrals, which will

be justified by a more algebraic procedure.
Factorial series and Mellin integrals. Define the factorial series

f∗(w) :=

∫ 1

0

(1 − z)w−1f(z) dz =
∑
j≥k

Qjj!

w(w + 1) · · · (w + j)
.

Then f∗(w) is well defined in the half-plane 
(w) > α.
By a Mellin inversion formula (or by a standard argument for the integral repre-

sentation for factorial series), we have

f(z) =
1

2πi

∫ σ+i∞

σ−i∞
f∗(w)(1 − z)−w dw (σ > α).(4.11)

Substituting this into (4.3) and using (4.4), we obtain

1

2πi

∫ σ+i∞

σ−i∞
f∗(w)P0(w)(1 − z)−w dw

=
1

2πi

∫ σ+i∞

σ−i∞
f∗(w)

∑
1≤�≤μ

P�(w)(1 − z)−w+� dw +
1

2πi

∫ σ+i∞

σ−i∞
g∗(w)(1 − z)−w dw.
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By absolute convergence and by the changes of variables w �→ w + j, we are led to
the difference equation

f∗(w) =
∑

1≤�≤μ

P�(w + �)

P0(w)
f∗(w + �) +

g∗(w)

P0(w)
(4.12)

for 
(w) > α, with the additional property that f∗(w) → 0 as |w| → ∞ in the
half-plane | arg(w)| < π. But the right-hand side of (4.12) also gives a meromorphic
continuation of f∗(w) to the whole plane (up to the zeros of P0(w + �) for � ≥ 0).

In particular, since α is a simple zero of P0(w) (see [9]),

f∗(w) ∼ K ′

w − α
(w ∼ α),(4.13)

where the residue K ′ can be computed by

K ′ := lim
w→α

(w − α)f∗(w)

=
1

P ′
0(α)

⎛
⎝ ∑

1≤�≤μ

P�(α + �)f∗(α + �) + g∗(α)

⎞
⎠ .(4.14)

Mellin inversion and singularity analysis. Heuristically, the series form (4.6)
results easily from (4.13) and the Mellin inversion formula (4.11) as follows. First, by
(4.11) using (4.13), we expect that

f(z) ∼ K ′(1 − z)−α,

by formally shifting the integration line to 
(w) = α− ε and by taking into account
the residue of the integrand at w = α.

Then by a formal application of the singularity analysis, we anticipate the ap-
proximation

[zn]Q(z) = [zn]f(z) ∼ K ′

Γ(α)
nα−1,

so that K ′ should equal K.
Justifying the above quick analysis requires an estimate of |f∗(σ ± iT )| for large

T . On the other hand, because of the presence of the factor (1 − z)−w, which can
be exponentially large when z ∈ C lies near unity and when T grows, we need an
estimate of |f∗(σ ± iT )| that decays at infinity at an exponential rate (in T ). While
this approach might be made rigorous, we prefer to develop another approach that
is more general and does not rely on analytic properties but instead on algebraic
manipulations of integrals.

Effective expressions for K. Iterating the right-hand side of (4.14) N times by
the same difference equation (4.12), we deduce that

P ′
0(α)K =

∑
1≤j≤(μ−1)N+1

AN,jf
∗(α + N + j − 1) + KN(4.15)

for any N ≥ 1, where A1,j := Pj(α + j) for 1 ≤ j ≤ μ and for N ≥ 2,

AN,� =
∑

1≤i≤μ

Pi(α + N + �− 1)

P0(α + N + �− 1 − i)
AN−1,�+1−i (1 ≤ � ≤ N(μ− 1) + 1),

(4.16)
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and

KN = KN−1 +
∑

1≤j≤(N−1)(μ−1)+1

g∗(α + N + j − 2)

P0(α + N + j − 2)
AN−1,j

= g∗(α) +
∑

1≤i≤N−1

∑
1≤j≤i(μ−1)+1

g∗(α + i + j − 1)

P0(α + i + j − 1)
Ai,j

= g∗(α) +
∑

1≤j≤(N−1)μ

g∗(α + j)

P0(α + j)

∑
1≤i≤j

Ai,j+1−i.

By induction and the recursive expression for Pj ’s, we have Pj(x) � xk for large
x. From this and the estimate (4.5), we obtain

K =
1

P ′
0(α)

lim
N→∞

KN =
1

P ′
0(α)

⎛
⎝g∗(α) +

∑
j≥1

g∗(α + j)

P0(α + j)

∑
1≤i≤j

Ai,j+1−i

⎞
⎠ .

Define

Bj :=
1

P0(α + j)

∑
1≤i≤j

Ai,j+1−i.

Then Bj is easily seen to satisfy (4.7) by using (4.16).

5. A Cauchy–Euler approach. In this section we develop a different approach
to proving (4.6). The reason we write (4.3) in the form of a Cauchy–Euler differential
equation is that if

f(z) = (1 − z)−αξ(1 − z)(5.1)

for z ∈ C near unity, where ξ(z) is analytic at the origin, then∑
1≤�≤μ

(1 − z)�P�(ϑ)f(z) = O
(
|1 − z|−α+1

)
,(5.2)

and thus the dominant (asymptotic) solutions are expected to be determined by the
left-hand side of (4.3), with the right-hand side behaving as if it is independent of
f . We apply again the Frobenius method to prove (5.1). Once (5.1) is proved, (4.3)
is then solved asymptotically by extending our approach of iterative linear operators
developed in [10].

The growth order of f . By using the formula

ϑjf(z) =
∑

0≤�≤j

(−1)j+�S(j, �)(1 − z)�f (�)(z),

where the S(j, �)’s represent the Stirling numbers of the second kind, we can rewrite
(4.3) in the form ∑

0≤j≤k

Lj(z)(1 − z)jf (j)(z) = g(z)

for some polynomials Lj of degree k. In particular, Lk(z) = zμ(1 − z)k. Therefore,
the possible singularities of (4.3) are the two zeros z = 0 and z = 1 of the polynomial
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zμ(1 − z)k, z = ∞, and the singularities of g(z) (z = 1 only). In particular, the
singularity z = 1 is a regular singular point.

Before applying the Frobenius method (see [24]), we use suitable operators to
convert the nonhomogeneous equation into a homogeneous one. We start from the
relation

(ϑ + j)(1 − z)j = 0 (j ∈ Z).

Then we can annihilate the nonhomogeneous term in (4.3) by multiplying both sides
by a sufficient number of the above annihilating operators, giving⎛

⎝ ∏
−1≤j<k+μ

(ϑ + j)

⎞
⎠
⎛
⎝P0(ϑ)f(z) −

∑
1≤�≤μ

(1 − z)�P�(ϑ)f(z)

⎞
⎠ = 0.(5.3)

This means that if f(z) solves the nonhomogeneous equation (4.3), then it is also
a solution of (5.3) since the dominant growth order of f near the singularity z = 1 is
determined by the zero of the new indicial equation⎛

⎝ ∏
−1≤j≤d

(ϑ + j)

⎞
⎠P0(ϑ)

with the largest real part. By the Frobenius method (see [24]), we then deduce the
required estimate (5.1), from which (5.2) follows.

Method of iterative linear operators. As in [10], let αj , 1 ≤ j ≤ k, be the zeros of
P0(z) arranged in decreasing order of their real parts (see [9])

α = α1 > 
(α2) ≥ · · · ≥ 
(αk).

Define

Iη[f ](z) = (1 − z)−η

∫ z

0

(1 − x)η−1f(x) dx.

To solve (4.3), we first factor P0(ϑ) into linear operators

P0(ϑ)f(z) = (ϑ− α1) · · · (ϑ− αk)f(z) = R(z),

where

R(z) := g(z) +
∑

1≤j≤μ

(1 − z)jPj(ϑ)f(z),

and then solve the linear equations one after another, giving (see [10])

f(z) = (Iαk
◦ Iαk−1

◦ · · · ◦ Iα)[R](z).

By using successive integrations by parts (see [8]) or the inductive arguments used
in [10], we deduce that

f(z) =
1

P ′
0(α)

Iα[R](z) + T1(z),
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where [zn]T1(z) = o(nα−1).
Then (see [10])

Qn = [zn]f(z) =
1

P ′
0(α)

[zn]Iα[R](z) + o(nα−1)

=
1

P ′
0(α)

∑
0≤�<n

[z�]R(z)

� + 1

∏
�+2≤j≤n

(
1 +

α− 1

j

)
+ o(nα−1)

=
K ′′

P ′
0(α)Γ(α)

nα−1 + o(nα−1),

where

K ′′ =

∫ 1

0

(1 − x)α−1R(x) dx =
∑
�≥0

�![z�]R(z)

α(α + 1) · · · (α + �)
.

Iteration of the leading constant. We next “mimic” the operations of the Mellin
approach and show that

K ′′ = P ′
0(α)K,

and this will complete the proof of Theorem 4.1.
Lemma 5.1. Let ω(x) and β(x) be two polynomials of degree at most k. Let h(x)

be defined in the unit interval. If h satisfies
(i) h(j)(0) = 0 for 0 ≤ j < k, and
(ii) the integral

h∗(w) :=

∫ 1

0

(1 − x)η−1h(x) dx

converges,
then for any η ∈ C for which β(η) �= 0,

∫ 1

0

(1 − x)η−1ω(ϑx)β(ϑx)−1h(x) dx =
ω(η)

β(η)
h∗(η),(5.4)

where β(ϑx)−1 represents the inverse operator of the differential operator β(ϑx) and
ϑx := (1 − x)(d/dx).

Proof. Obviously, (5.4) holds when ω(x) = β(x). It is also easily checked, by
integration by parts, for the two fundamental cases ω(x) = x, β(x) = 1 and ω(x) = 1,
β(x) = x− ν for ν �= η.

When ω(x) is a polynomial of degree at most k, we first write ω(x) = (x−ν)ω1(x),
where ν is a zero of ω(x). Then

∫ 1

0

(1 − x)η−1ω(ϑx)h(x) dx =

∫ 1

0

(1 − x)η−1(ϑx − ν)ω1(ϑx)h(x) dx

= (η − ν)ω1(ϑx)h∗(η).

Repeating the same argument, we have∫ 1

0

(1 − x)η−1ω(ϑx)h(x) dx = ω(η)h∗(η)
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and ∫ 1

0

(1 − x)η−1β(ϑx)−1h(x) dx =
h∗(η)

β(η)
.

Similarly, we derive (5.4).
Define

Λf (α) :=

∫ 1

0

(1 − x)α−1P0(ϑx)f(x) dx.

Note that Λf (α) = K ′′. By substituting (4.3) into the above integral and by applying
(5.4), we have

Λf (α) = g∗(α) +
∑

1≤�≤μ

P�(α + �)

P0(α + �)
Λf (α + �),(5.5)

where g∗(α) is defined as in (4.4). By definition, we have

K ′′ = g∗(α) +
∑

1≤�≤μ

P�(α + �)

P0(α + �)
Λf (α + j).

It follows by (4.12) and the property Λf (x) → 0 as x → ∞ that K ′′ = P ′
0(α)K, as

required.
More refined approximations. We can refine the above analysis and derive the

effective approximation

Qn =
K

Γ(α)
nα−1 − 1

2k − 2s

∑
1≤j≤k

2j−1+qj+···+qk + O
(
nα−2 + n	(α2)−1(log n)κ−1

)
,

(5.6)

where κ denotes the largest multiplicity of zeros with real parts equal to 
(α2)
(see [10]).

Hypergeometric cases: μ = 1. When the query pattern is of the form (2.15), we
can obtain more explicit expressions. In this case, μ = 1 and P1(x) = xk − 2k. Then

K =
1

P ′
0(α)

∑
j≥0

g∗(α + j)
∏

1≤�≤j

P1(α + �)

P0(α + �)
,

where, by a lengthy calculation,

g∗(w) :=
(s + 1)2k − 2s

w − 1
+

2kσ0 − 2k+1 + 2k−s + 1

w
−

∑
1≤�≤k

P0(−�)σ� − P1(1 − �)σ�−1

w + �
,

with σ� := (−1)�
∑

�≤j<k

(
j
�

)
Qj . From this expression of g, we can further rewrite the

above series form for K in terms of generalized hypergeometric functions.
μ ≥ 2. When μ ≥ 2, the solution to the recurrence (4.7) is, in general, less

explicit. But there are special cases when μ > 1 can be reduced to μ = 1. These
occur when the query patterns are of the form

[ 0, . . . , 0︸ ︷︷ ︸
k−μ−s+1

, 1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0] (1 ≤ s ≤ k − μ + 1),
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Table 5.1

Approximate numerical values of α and Qn/nα−1 for all generating query patterns (up to
cyclic rotations) for k = 3, 4, 5, and 6. Note that the periodic patterns [0, 1, 0, 1], [0, 1, 0, 1, 0, 1],
[0, 0, 1, 0, 0, 1] and [0, 1, 1, 0, 1, 1] are not shown. The total number of different patterns (up to rota-
tions) needed to cover all 2k possible query forms is given by (2.4).

k Query α ≈ Qn/nα−1 ≈
3 [0, 0, 1] 1.71618 86589 93105 1.88700 34494 16788

[0, 1, 1] 1.39485 86738 66065 4.30626 60684 05608
4 [0, 0, 0, 1] 1.78995 09772 69481 1.66842 10542 80183

[0, 0, 1, 1] 1.56155 28128 08830 2.91912 77264 05377
[0, 1, 1, 1] 1.30555 31614 36616 6.16148 43696 18751

5 [0, 0, 0, 0, 1] 1.83323 02942 30338 1.55981 70883 35171
[0, 0, 0, 1, 1] 1.65556 26632 48591 2.46232 74709 13660
[0, 0, 1, 0, 1] 1.65556 26632 48591 2.21247 44030 89626
[0, 0, 1, 1, 1] 1.46323 88095 76994 4.05206 48849 27873
[0, 1, 1, 0, 1] 1.46323 88095 76994 3.24485 54614 39396
[0, 1, 1, 1, 1] 1.24956 22677 97953 8.07657 98073 98937

6 [0, 0, 0, 0, 0, 1] 1.86170 55962 67907 1.49483 95666 52432
[0, 0, 0, 0, 1, 1] 1.71618 86589 93105 2.23506 40352 34654
[0, 0, 0, 1, 0, 1] 1.71618 86589 93105 2.04449 79159 05194
[0, 0, 0, 1, 1, 1] 1.56155 28128 08830 3.35792 47385 71823
[0, 0, 1, 1, 0, 1] 1.56155 28128 08830 2.79761 13698 36274
[0, 0, 1, 0, 1, 1] 1.56155 28128 08830 3.03451 26969 10640
[0, 1, 1, 1, 0, 1] 1.39485 86738 66065 3.95385 24193 61293
[0, 0, 1, 1, 1, 1] 1.39485 86738 66065 5.25849 03652 85129
[0, 1, 1, 1, 1, 1] 1.21106 87077 39977 10.0301 95663 53780

Table 5.2

Coefficients of (w + j)−1, −1 ≤ j < k + μ in g∗(w) for k ≤ 5.

Query −1 0 1 2 3 4 5 6 7

[0, 0, 1] 14 13 −64 69 −32

[0, 1, 1] 20 11 −64 65 −32

[0, 0, 0, 1] 30 73 −320 298 114 −195

[0, 0, 1, 1] 44 69 −320 342 60 −195

[0, 1, 1, 1] 56 571
9

− 2752
9

1034
3

200
9

− 1625
9

[0, 0, 0, 0, 1] 62 273 −1280 2670 −5926 8425 −4224

[0, 0, 0, 1, 1] 92 265 −1280 2390 −4900 7657 −4224

[0, 0, 1, 0, 1] 76 994
9

− 15400
9

46513
9

− 33088
3

180400
9

− 219772
9

142805
9

− 12320
3

[0, 0, 1, 1, 1] 120 2317
9

− 11360
9

6634
3

− 37144
9

62165
9

− 12320
3

[0, 1, 1, 0, 1] 88 524
9

− 4616
3

13757
3

− 82924
9

49202
3

− 61148
3

122495
9

−3608

[0, 1, 1, 1, 1] 144 2099
9

− 10424
9

5818
3

− 29600
9

51647
9

−3608

the expected cost of which can be computed via that of the special patterns (2.15)
and the relations (2.3).

Tables. For concreteness, we give numerical approximations to K/Γ(α) in Ta-
ble 5.1 and the expansions of g∗(w) for k ≤ 5 in Table 5.2.
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Note that the general terms in (4.6) converge slowly; thus it is more efficient, for
numerical purposes, to use the expression (4.15); see Table 5.1. The idea is roughly
to take a sufficiently large N , say 1000, to compute the first N terms as precisely as
we can, and then to estimate the errors by the values of f∗(α + N), which can be
easily computed by

f∗(α + N) =
∑
j≥k

Qjj!

(α + N) · · · (α + N + j)
,

the series itself being an asymptotic expansion.

6. k-d-t trees. In this section we extend our approach to k-d-t trees, t ∈ N,
which are locally balanced versions of k-d trees (in which all trees of sizes larger than
2t have both subtrees of sizes at least t); see [11]. For simplicity, trees of sizes ≤ 2t
are not rearranged.

The probabilistic model for partial match queries remains the same as above. For
convenience, we use the same set of notations as for k-d trees (indexed by t when
ambiguity may arise). Let Qn,t = Qn[q1, . . . , qk; t] stand for the expected number of
nodes visited when performing the range search algorithm of a random partial match
query in a random k-d-t tree of n nodes. Then Qn,0 = Qn. Cunto, Lau, and Flajolet
[11] showed that

Qn,t ∼ Ctn
α−1

for some constant Ct, where α > 1 solves the equation P0(α) = 0, with

P0(x) :=
(
(x + t)t+1

)k−s (
(x + t + 1)t+1

)s
−
(
(t + 2)t+1

)k
.(6.1)

We show that Ct can be computed as above but with more complicated compo-
nents.

Lemma 6.1 (basic recurrences). Define �n,j :=
(
j
t

)(
n−1−j

t

)
/
(

n
2t+1

)
. The expected

search cost Qn,t for fixed t ∈ N satisfies the system of recurrences

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Qn[q1, . . . , qk; t] = 1 + 2
∑

1≤j<n

ρn,j(q1)�n,jQj [q2, . . . , qk, q1; t],

...

Qn[qk, q1, . . . , qk−1; t] = 1 + 2
∑

1≤j<n

ρn,j(qk)�n,jQj [q1, . . . , qk; t]

(6.2)

for n ≥ 2t + 1, with the initial values Qn,t ≡ Qn for n ≤ 2t.
Differential equations. Define the differential operator

Jq[ϕ](z) =

(
(ϑ + t) · · · (ϑ + 2t) +

q(t + 1)

z
(ϑ + t + 1) · · · (ϑ + 2t)

)
ϕ(z) (q ∈ {0, 1}).

From (6.2), we derive a system of differential equations satisfied by the generating
functions

f
[t]
j (z) := Q[qj , . . . , qk, q1, . . . , qj−1; t](z) :=

∑
n≥1

Qn,tz
n.
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Lemma 6.2. Let λt := (2t + 2)!/(t + 1)!. For any query pattern [q1, . . . , qk],⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Jq1 [f
[t]
1 ] = Jq1

[
z

1 − z

]
+ λtf

[t]
2 ,

...

Jqk [f
[t]
k ] = Jqk

[
z

1 − z

]
+ λtf

[t]
1 .

Proof (sketch). When qj = 0, we have

ϑ2t+1

(
f

[t]
j − z

1 − z

)
= λtϑ

tf
[t]
j+1 (1 ≤ j ≤ k),

where f
[t]
k+1 := f

[t]
1 .

When qj = 1, the differential equation becomes

ϑ2t+2

(
zf

[t]
j − z2

1 − z

)
= λtϑ

t+1(zf
[t]
j+1).

By applying the identity ϑ ((1 − z)ϕ(z)) = (1 − z)(ϑ− 1)ϕ(z), we obtain(
(ϑ + t) · · · (ϑ + 2t) +

(t + 1)

z
(ϑ + t + 1) · · · (ϑ + 2t)

)
f

[t]
j = λtf

[t]
j+1.

Corollary 6.3.

(
Jqk ◦ · · · ◦ Jq1

)
[f

[t]
1 ] − λk

t f
[t]
1 =

∑
1≤j≤k

λj−1
t

(
Jqk ◦ · · · ◦ Jqj

)[ z

1 − z

]
.

Differential equations: Normal form. We multiply, as in the case of k-d trees,
both sides by zμq(t), where μq(t) denotes the “minimum exponent”

μq(t) := (k − v)(t + 1) + 1,

with v being the last position of the first block of 1’s (from left to right), and μq(t) := 0
if s = 0.

Then the generating function

f(z) := f
[t]
1 (z) −

∑
1≤j<k(t+1)

Qjz
j

satisfies the differential equation

P0(ϑ)f =
∑

1≤�≤μq(t)

(1 − z)�P�(ϑ)f + g,

where the P�’s are polynomials of degree k(t + 1) and

g(z) = zμq(t)
∑

1≤j≤k

λj−1
t (Jk ◦ · · · ◦ Jj)

[
z

1 − z

]
(z) + zμq(t)λk

t

∑
1≤j<k(t+1)

Qjz
j

− zμq(t) (Jk ◦ · · · ◦ J1)

⎡
⎣ ∑

1≤j<k(t+1)

Qjz
j

⎤
⎦ (z).
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In particular, P0(x) is as given in (6.1).
A series form for Kt. Following the same method of proof as for k-d trees, we

can derive a series representation for Kt.
Theorem 6.4. The expected cost Qn,t satisfies the approximation

Qn,t ∼
Kt

Γ(α)
nα−1,

where

Kt =
1

P ′
0(α)

∑
j≥0

g∗(α + j)Bj ,

with the series being absolutely convergent. Here g∗(w) :=
∫ 1

0
g(x)(1 − x)w−1 dx and

Bj is defined recursively by

Bj =
∑

1≤�≤μq(t)

P�(α + j)

P0(α + j)
Bj−� (j ≥ 1),

with the initial values B0 = 1 and Bj = 0 for j < 0.
The method of proof is the same as that for k-d trees. In particular, the estimates

g∗(w) = O(|w|−μq(t)−1) and Bj = O(|j|μq(t)−qk−1) hold. Note that the generating
function B(z) :=

∑
j Bjz

j satisfies the differential equation⎛
⎝ ∏

t<�≤2t

(
� + α− μq(t)z

1 − z
+ zDz

)⎞⎠×
(
q1(t + 1)

1 − z
+ t + α− μq(t)z

1 − z
+ zDz

)
× · · ·

×

⎛
⎝ ∏

t<�≤2t

(
� + α− μq(t)z

1 − z
+ zDz

)⎞⎠(
qk(t + 1)

1 − z
+ t + α− μq(t)z

1 − z
+ zDz

)
B(z) = 0,

and the indicial equation is given by

∏
1≤j≤k

⎛
⎝(−ζ − μ + (qk−j+1 + j − 1)(t + 1))

∏
1≤�≤t

(−ζ − μ + (j − 1)(t + 1) + �)

⎞
⎠ ,

with the dominant (simple) zero being ζ = −μ + qk.
All coordinates specified: s = k. In this case, the two Qn’s on both sides of (6.2)

are the same; thus the k recurrences reduce to a single one. The associated differential
equation is (

ϑ2t+2 − λtϑ
t+1

)
(zf(z)) =

(2t + 2)!

1 − z
,

with suitable initial conditions. Note that the polynomial (x+t+1) · · · (x+2t+1)−λt

has 1 as the simple, largest zero (in real part). By applying [10, Theorem 1], we have

Qn[1, . . . , 1; t] ∼ log n

H2t+2 −Ht+1
,

another well-known result; see [11, 30, 36].
Hypergeometric cases: μq(t) = 1. For query patterns of the form (2.15), we have

μq(t) = 1, and

P1(x) =
∏

t≤j≤2t

(x + j)k − λk
t .
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7. Conclusions. We derived an effective expression for the leading constant of
the expected cost used for random partial match queries in random k-d trees. The
proposed approach for solving linear differential equations with polynomial coefficients
is very general, and its success relies on the close interplay between complex-analytic
methods and elementary methods (without complex analysis).

Complex-analytic methods, when they apply, usually give efficient approximations
and neat expressions, but at the cost that stronger analytic properties are needed. On
the other hand, elementary methods are computationally less efficient but can provide
more general results under weaker conditions. A combination of both (heuristically
or rigorously) usually yields very powerful tools, as already shown by the problems
studied in [7, 8, 9, 10] and in this paper.
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Abstract. We show that sets consisting of strings of high Kolmogorov complexity provide
examples of sets that are complete for several complexity classes under probabilistic and nonuniform
reductions. These sets are provably not complete under the usual many-one reductions.

Let RC, RKt, RKS, RKT be the sets of strings x having complexity at least |x|/2, according
to the usual Kolmogorov complexity measure C, Levin’s time-bounded Kolmogorov complexity Kt
[L. Levin, Inform. and Control, 61 (1984), pp. 15–37], a space-bounded Kolmogorov measure KS,
and a new time-bounded Kolmogorov complexity measure KT, respectively.

Our main results are as follows:
1. RKS and RKt are complete for PSPACE and EXP, respectively, under P/poly-truth-table

reductions. Similar results hold for other classes with PSPACE-robust Turing complete sets.
2. EXP = NPRKt .
3. PSPACE = ZPPRKS ⊆ PRC .
4. The Discrete Log, Factoring, and several lattice problems are solvable in BPPRKT .

Our hardness result for PSPACE gives rise to fairly natural problems that are complete for

PSPACE under ≤p
T reductions, but not under ≤log

m reductions.
Our techniques also allow us to show that all computably enumerable sets are reducible to RC

via P/poly-truth-table reductions. This provides the first “efficient” reduction of the halting problem
to RC.
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1. Introduction. Much recent work in derandomization can be viewed as an
attempt to understand and exploit the interplay between the two common meanings
of the phrase “random string”: a string picked at random (according to some dis-
tribution), and a string with high Kolmogorov complexity (in some sense). In this
paper, we further investigate the relationship between these two notions. We apply
recent advances in derandomization to obtain fundamentally new types of complete
sets for several standard complexity classes. The sets consist of random strings with
respect to various Kolmogorov measures.
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We will focus on the set RC = {x : C(x) ≥ |x|/2} of strings with high tradi-
tional Kolmogorov complexity, as well as various resource-bounded variants Rμ for
μ = KT,KS,Kt. See section 2 for the definitions of KT,KS, and Kt. The choice of
|x|/2 as a quantification of “high complexity” is rather arbitrary. Our results hold for
any reasonable bound ranging from |x| to |x|ε for any positive ε. In most cases, our
results carry over to other notions of resource-bounded Kolmogorov complexity that
have been considered in the literature.

The sets Rμ of Kolmogorov random strings are good examples of sets with a lot
of information content that is difficult to access. There are many examples in the
literature where sets consisting of strings with high resource-bounded Kolmogorov
complexity have been studied as possible examples of intractable sets that are not
complete for any of the standard complexity classes. We list a few of these results
here.

1. Buhrman and Mayordomo [20] studied a time-bounded Kolmogorov com-

plexity measure Kt for exponential time bounds t(n) ≥ 2n
2

, and they showed that
the set Rt = {x : Kt(x) ≥ |x|} lies in EXP − P and is not complete for EXP under
polynomial-time Turing reducibility ≤p

T.
2. Ko [38] studied the measure Kt for polynomial time bounds t(n) and showed

that the questions of whether the set {x : Kt(x) ≥ ε|x|} is in P or is coNP-complete
(with respect to ≤p

T reductions) cannot be answered using relativizing techniques.
3. Kabanets and Cai [36] study the Minimum Circuit Size Problem (MCSP)

defined as the set of all pairs (χf , s) where χf denotes a string of length 2n that is
the truth-table of a Boolean function f on n variables and s denotes an integer such
that f can be computed by a Boolean circuit of size at most s. Because the circuit
size of f is polynomially related to KT(f) (see section 2), the MCSP can be seen to
be related to RKT. Kabanets and Cai present evidence that the MCSP is not in P
but is also not likely to be NP-complete under ≤p

m reductions.
4. In the traditional setting of Kolmogorov complexity, where no resource

bounds are present, the set of Kolmogorov random strings RC is easily seen to be
co-computably enumerable (co-c.e.) and not decidable, but the complement of the
halting problem is not reducible to RC via a many-one reduction. It was shown only
within the last decade by Kummer that a truth-table reduction is sufficient to reduce
the complement of the halting problem to RC [40], although it had long been known
[46] that Turing reductions can be used. It should be emphasized that Kummer’s
reduction, which is in fact a disjunctive truth-table reduction, is not feasible and asks
many queries. It can be shown that RC is not complete for the co-c.e. sets under
polynomial-time disjunctive truth-table reductions. (This was originally observed in
[9]; a more general statement is proved in [8].)

These results suggest that the sets of resource-bounded random strings are not
complete for the complexity class they naturally live in. Buhrman and Torenvliet
[21] gave some evidence that this is not the complete picture. They showed that for
the conditional version of space-bounded Kolmogorov complexity, the set of random
strings is hard for PSPACE under NP reductions. However, their result had the major
drawback that it needed conditional Kolmogorov complexity and used NP reductions,
and, moreover, their proof technique could not be used beyond PSPACE.

Using very different techniques, we provide much stronger results in the same
direction. We show that the set of random strings can be exploited by efficient reduc-
tions. For instance, we show that the set RKt of strings with high complexity using
Levin’s time-bounded Kolmogorov notion Kt [43] is complete for EXP under truth-
table reductions computable by polynomial-size circuits. Since this set is provably
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not complete under polynomial-time many-one reductions, we obtain natural exam-
ples that witness the difference in power of various reducibilities.

It is significant that all of our completeness results are obtained via derandomiza-
tion techniques. This provides a new paradigm for proving completeness in settings
where more traditional methods provably are not applicable.

In some instances, we are also able to provide completeness results under uniform
reductions. By making use of multiple-prover interactive proofs for EXP [13] we show
that RKt is complete for EXP under NP-Turing reductions.

Of greater interest is the fact that the set RKS of strings with high space-bounded
Kolmogorov complexity is complete for PSPACE under ZPP-Turing reductions. Our
proofs rely on the existence of complete sets for PSPACE that are both downward
self-reducible and random self-reducible [57], and hence our proofs do not relativize.
It remains unknown whether the results themselves hold relative to all oracles.

For the unbounded case we even show that PSPACE is reducible to RC under
deterministic polynomial-time Turing reductions. The main tool in proving this is a
polynomial-time algorithm that constructs a string of high Kolmogorov complexity,
using RC as an oracle.

For RKT, a set in coNP, we do not obtain completeness results but we show that
RKT is hard under BPP-reductions for some well-known candidate NP-intermediate
problems: Discrete Log, Factoring, and several lattice problems. These hardness
results also hold for the minimum circuit size problem (MCSP), thereby improving
results of [36].

1.1. The connection to derandomization. There is an obvious connection
between Kolmogorov complexity and derandomization. For any randomized algorithm
A having small error probability, and any input x, the coin flip sequences r resulting
in a wrong answer are atypical and hence have short descriptions of some kind.

By considering different notions of Kolmogorov complexity, less obvious (and
more useful) connections can be exposed. Assume that the coin flip sequences that
result in wrong answers have small μ-complexity, for some Kolmogorov measure μ. If
we can generate a coin flip sequence r belonging to the set Rμ of strings with high
μ-complexity, then we obtain an upper bound on the complexity of A, by running the
randomized algorithm on (x, r). Instead of generating a string in Rμ, if we assume
only that we can check membership in Rμ, then we obtain a zero-error probabilistic
algorithm by picking a coin flip sequence r at random until we get one in Rμ (of which
there are many) and then running A on (x, r).

The first interesting application of this approach is due to Sipser [54]. His proof
that BPP lies in the polynomial-time hierarchy uses μ = KDt, the t(n)-time-bounded
distinguishing complexity, for some polynomial t. The corresponding set Rμ lies in
Πp

2. The hardness versus randomness tradeoffs by Babai et al. [14] and by Impagli-
azzo and Wigderson [33] and the “easy witness technique” of [35, 32] can be cast as
an application of this approach with μ = KT. A survey of some derandomization
results from this perspective can be found in [6]. The observation from [37] that
the construction of [33] relativizes with respect to any oracle A can be viewed in
terms of a Kolmogorov measure which we denote as KTA. This interpretation plays
a crucial role in Trevisan’s influential construction of extractors out of pseudorandom
generators [56].

Our main technique is to use relativizing hardness versus randomness tradeoffs in
the contrapositive. Such results state that if there exists a computational problem in a
certain complexity class C that is hard when given oracle access to A, then there exists
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a pseudorandom generator secure against A that is computable within C. However,
we argue that no pseudorandom generator computable in C can be secure against Rμ.
Thus we conclude that every problem in C is easy given oracle access to Rμ; i.e., C
reduces to Rμ. For our results, we exploit the nonuniform hardness versus randomness
tradeoffs in [14] and [33], as well as the uniform ones in [30] and [34].

1.2. The structure of complexity classes. The tools of reducibility and com-
pleteness are responsible for most of the success that complexity theory has had in
proving (or providing evidence for) intractability of various problems. It has been
known since the work of Ladner [41] that, if P is not equal to NP, then there are
intractable problems in NP that are not NP-complete. There are not many inter-
esting candidates for this status, though. Certainly the sets constructed in [41] are
quite artificial; they are constructed by putting huge empty segments inside a stan-
dard complete problem such as SAT. Similarly, there are a great many notions of
reducibility that have been considered and for many of these notions it is known that
more powerful reducibilities provide more complete sets (at least for large complexity
classes such as EXP) [61, 2]. However, almost all of the known constructions proceed
by diagonalization and do not produce very “natural” languages.

We have already mentioned three notable examples that run counter to this trend
[20, 36, 38]. Using the insight that circuit size is closely connected to a version of time-
bounded Kolmogorov complexity, all of these examples can be seen to be variations on
a single theme. Our results amplify and extend these earlier papers. For instance, the
set Rt (for t = 2n

2

) was shown in [20] not to be complete for EXP under ≤p
T reductions,

but the authors presented no positive results showing how to reduce problems in

EXP to Rt. In contrast, we show that this set is complete under ≤P/poly
tt and ≤NP

T

reductions. To the best of our knowledge, this is the first example of a “natural” set
A with the property that PA �= NPA. All previous examples of such sets have been
explicitly constructed via diagonalization, to separate P and NP. For polynomial
time bounds t, Ko raised the prospect that Rt might be complete for NP under ≤SNP

T

reductions, but he presented no unconditional results reducing supposedly intractable
problems to Rt. In contrast, we show that factoring and various problems arising in
cryptography are reducible to Rt (and in many cases we present ≤ZPP

T reductions).
As an additional application of our techniques toward explicating the structure

of complexity classes, we present natural examples of sets that witness the difference
of ≤p

tt and ≤log
T or ≤p

T and ≤p
m completeness notions in PSPACE.

1.3. Outline of the rest of the paper. In section 2 we present background
and definitions regarding resource-bounded Kolmorogov complexity. In section 3 we
present our results for RKt, RKS, and RC, and in section 4 those for RKT. We conclude
with open problems in section 5.

2. Resource-bounded Kolmogorov complexity. In this section, we present
the notions of resource-bounded Kolmogorov complexity that we use in stating most of
our results. Before presenting our definitions, it is necessary to give some justification
for introducing new definitions, because it might seem to the reader that the literature
has more than enough notions of resource-bounded Kolmogorov complexity already.

2.1. Motivation. Kolmogorov complexity provides a very useful and elegant
tool for measuring the complexity of finite objects. We refer the reader to [44] for
the standard theorems and notation related to Kolmogorov complexity. Since the
Kolmogorov complexity C(x) of a string x cannot be computed, many definitions
have been proposed for computable approximations to C(x).
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One of the most useful of these was given by Levin [43]. Given a universal
Turing machine U , Levin defined Kt(x|y) to be min{|d| + log t : U(d, y) = x in at
most t steps} and Kt(x) to be a shortcut for Kt(x|λ), where λ denotes the empty
string. Levin’s Kt measure has many useful properties, among which is the fact that
it provides a search strategy for finding accepting computations for nondeterministic
Turing machines that provably is nearly optimal. Stated another way, suppose that
you want to find satisfying assignments for Boolean formulae. Given a formula φ with
n variables, you want to find a string v ∈ {0, 1}n that satisfies φ. If this problem can
be solved in time t(n), then it can be solved in time nearly O(t(n)) by a program
that, on input φ, enumerates strings v in order of increasing value of Kt(v|φ). For
details, see [44].

For reasons of ease of presentation, we will slightly change the formal definition
of Kt in section 2.2. The modification affects the value of Kt by at most a logarithmic
additive term and does not alter any of Kt’s desirable properties. The principal
change is in the way the universal machine U uses the description d. In Levin’s
original definition, U uses the description d to output the entire string x. In the new
definition, the description d allows U to compute each bit of x. That is, given d and
i, U can compute the ith bit of x. Although this causes no substantial change to the
measure Kt, it opens up the possibility of considering run times that are much smaller
than the length of the string x. In turn, this allows us to introduce a new notion of
time-bounded Kolmogorov complexity, denoted KT, which is very closely related to
circuit complexity. More precisely, KT(x) is polynomially related to the minimum
circuit size of the function that has x as its truth-table (see Theorem 11).

Other notions of resource-bounded Kolmogorov complexity have been studied
previously. One definition that one encounters fairly frequently [38, 45, 44, 20, 21] is
the measure Kt(x), in which one explicitly bounds the running time of the universal
machine U by t(|x|), where the function t is an additional parameter. In contrast to
our notion KT, there is no known relationship between circuit size and Kt. The need
to fix the running time t also makes the notion Kt less robust with respect to the
choice of the underlying universal machine U . See section 2.2 for more details.

It turns out to be convenient to consider relativized measures KTA where the uni-
versal machine is given access to an oracle A. This highlights some close connections
with some previously studied Kolmogorov complexity measures. For instance,

1. Levin’s measure Kt(x) is linearly related to KTA(x), where A is a certain
complete set for E; and

2. the original Kolmogorov measure C(x) is linearly related to KTH(x), where
H is the halting problem.

The relationship between KT and circuit size also holds in the relativized setting.
Thus Levin’s measure Kt is roughly the same thing as circuit size on oracle circuits
that have access to an E-complete set, and C is roughly the same thing as circuit size
relative to the halting problem.

The computational model that we use throughout this paper is the multitape
Turing machine with random access to its input tape. Our ideas work in any general
model of computation. The main reason for providing random access to the input
tape is that KT(x|y) can be seen to be closely related to the circuit size of the function
represented by x on circuits that have oracle access to the function represented by y.
For this correspondence to hold, U must be able to access any bit of y quickly. Let us
emphasize that all of our theorems in sections 3 and 4 hold verbatim for models such
as Turing machines with sequential access to their input tapes or Turing machines
that have random access to all their tapes.
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2.2. Formal definitions. We begin by defining the models of computation used
in this paper and by observing some basic properties relating them to one another.

Definition 1. We consider circuits with And, Or, and negation gates, as well
as oracle gates for one or more oracles. An oracle gate for an oracle A has inputs
z1, . . . , zr for some r; it outputs the value 1 if the string z = z1, . . . , zr is in A, and
outputs 0 otherwise. We define the size of a circuit as the number of connections in
the circuit.

We also associate circuit complexities with Boolean strings viewed as truth-tables
of Boolean functions.

Definition 2. Let x be a string in {0, 1}∗ of length n. Let 2k−1 < n ≤ 2k and
let x′ be the string of length 2k of the form x0i for some i. Let fx be the Boolean
function on k variables, having x′ as its truth-table. We define SIZE(x) to be the size
of a minimal-sized circuit with k input variables computing the function fx. For any
oracle A, SIZEA(x) denotes the circuit size required to compute fx on circuits with
oracle A. If y ∈ {0, 1}∗, then SIZEA,y(x) denotes the circuit size required to compute
fx on circuits with two kinds of oracle gates: oracle gates for A of arbitrary fan-in
and oracle gates for fy of fan-in �log |y|�.

For a good overview of circuit complexity refer to [60].
We have already mentioned that we will be using a Turing machine with random

access to its input tape; we now make more precise what we mean by this. We
use essentially the same notion that was considered in [15]. The machine has one
read-only input tape of length n, a constant number of read-write working tapes of
infinite length, and a read-write input address tape. At every time step the machine
can modify the content of its read-write tapes using the appropriate heads and move
these heads left or right by one tape cell. It can also query the content of the input
bit whose address is written on the input address tape. If there is no such input bit
the reply to the query is the symbol “*.”

In the case where the machine is an oracle Turing machine, for each oracle the
machine has one read-write oracle tape. At every step the machine can query any
of its oracles whether the string written on the corresponding oracle tape belongs to
the oracle set or not. We also allow finite oracles. For a finite oracle y ∈ {0, 1}∗, the
machine obtains as an answer to its query i bit yi if i ≤ |y| and “*” otherwise. Note
that the input tape behaves like an oracle tape accessing a finite oracle.

As usual, the running time of a Turing machine on a particular input is the
number of steps before a computation of the machine stops on that input, and the
space used during the computation is the number of read-write tape cells visited during
the computation.

As with ordinary Turing machines, running time on our machines is closely related
to circuit size.

Proposition 3 (simulation of circuits). Let k ≥ 0 be an integer. There is
a constant c and a two-tape oracle Turing machine M such that for every oracle
A, finite oracles y1, . . . , yk, and circuit CA,y1,...,yk of size m computing a function
of n input bits, there is an encoding dC of C of size ≤ cm(logm + log n), so that
for any string x, if |x| = n then MA,dC ,y1,...,yk(x) outputs CA,y1,...,yk(x) in time ≤
c(m2 logm + m log n), and it outputs ∗ in time ≤ c(log n) otherwise.

Proposition 4 (simulation by circuits). For every oracle Turing machine M
there is a constant cM such that if MA,y1,...,yk runs in time t = t(n, n1, . . . , nk) on
inputs of length n with oracles y1, . . . , yk of length n1, . . . , nk, respectively, then for
every n and n1, . . . , nk there is a circuit Cn,n1,...,nk

of size cM t(t2 + n+ log
∑k

i=1 ni),
such that CA,y1,...,yk(x) = MA,y1,...,yk(x) for all inputs x of length n.
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Using the technique of Hennie and Stearns [31] and Fürer [26, 27] we can establish
the following proposition.

Proposition 5 (minimal simulation overhead). There is a Turing machine U
with two work tapes, such that for any oracle Turing machine M there is a constant
cM so that for any oracle A and finite oracles d and y and input x, there is a finite
oracle d′ of length at most |d|+cM such that UA,d′,y(x) = MA,d,y(x). The computation
time of U is at most cM t log t and the space used is at most cMs, where MA,d,y(x)
runs for time t and uses space s. Furthermore, if M is a two-tape machine, then the
running time of U is bounded by cM t.

We call any machine U that satisfies the previous proposition a universal Tur-
ing machine; note that we require our universal Turing machines to be efficient in
simulating other machines.

Definition 6. A Turing machine U is universal if it satisfies all properties stated
in Proposition 5.

It is customary to define the Kolmogorov complexity function C(x) to be the
length of the shortest description d ∈ {0, 1}∗ such that U(d) = x, where U is a
universal Turing machine. In order to present all of our definitions in a uniform
framework, we give a slightly different definition below. We use the notation x|x|+1 = ∗
to denote the “end of string marker.”

Definition 7 (Kolmogorov complexity). Let U be a Turing machine and let A
be an oracle. Define

CA
U (x|y) = min{ |d| : ∀b ∈ {0, 1, ∗} ∀i ≤ |x| + 1 , the machine UA,d,y(i, b)

accepts iff xi = b }.
We let CU (x|y) denote C∅

U (x|y), and we let CU (x) denote CU (x|λ).
Definition 7 deviates from the standard definition in two respects. First, the

universal machine U gets the index i of a bit position of the string x as input and
needs only to determine xi, the ith bit of x. Since this mechanism alone does not
encode the length of x, we stipulate that we obtain ∗ for bit position i = |x| + 1. As
discussed in section 2.1, this change allows us to consider sublinear running times for
U , which will be critical for the new Kolmogorov measure KT we introduce.

Second, the way we define the value of xi is through a distinguishing process; i.e.,
the machine U needs only to recognize the correct value of xi. For the results in our
paper, we could as well use the traditional defining mechanism, which calls for the
machine U to produce xi. In fact, we used that convention in our original definition
of the measure KT [6, 9]. However, it has subsequently been useful to consider new
measures in this framework, where nondeterministic and alternating machines U are
also taken into account [11, 7]. In order that all of these measures can be presented
in a uniform framework, we adopt the convention that the machine U needs only to
recognize the correct value of xi. That is, given description d, index i, and b ∈ {0, 1, ∗},
Ud should accept (i, b) if and only if b equals xi.

The reader can easily check that Definition 7 is exactly equivalent to the usual
one. That is, if d is a description of x in the “traditional” definition, then d will also
be a description of x in Definition 7, for a suitable machine U .

If U is a universal machine, we have the useful property that for any other machine
U ′ there is a constant c such that CA

U (x|y) ≤ CA
U ′(x|y)+c for all x, y, and A. Following

convention (as in [44]), we pick one such universal machine U and define CA(x|y) to
be equal to CA

U (x|y). C(x|y) and C(x) are defined similarly in terms of U .
Now we present a formal definition of Levin’s time-bounded Kolmogorov com-

plexity measure Kt using this framework.
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Definition 8 (Kt). Let U be a Turing machine and let A be an oracle. Define
the measure KtAU (x|y) of a string x as

KtAU (x|y) = min{ |d| + log t : ∀b ∈ {0, 1, ∗} ∀i ≤ |x| + 1, the machine UA,d,y(i, b)

accepts in t steps iff xi = b }.
We use KtU (x|y) to denote Kt∅U (x|y), and we use KtU (x) to denote KtU (x|λ).

Our definition is essentially equivalent to Levin’s original one up to a logarithmic
term. More precisely, for suitable choices of the underlying machines, Definition 8
yields a value that is between Levin’s and Levin’s plus log |x|.1

As in the case of resource-unbounded Kolmogorov complexity, the measure KtU
is essentially invariant under the particular choice of universal machine U . Now, how-
ever, instead of an additive constant term, it seems that we must accept an additive
logarithmic term. Universal Turing machines can simulate any other Turing machine
M in time O(t log t) (Proposition 5), where t is the original time required for the
computation of M . We pick one such universal machine U and define KtA(x|y) to be
equal to KtAU (x|y). Kt(x|y) and Kt(x) are defined similarly in terms of U .

Another Kolmogorov measure that has been studied before is Kt, where the run-
ning time of the underlying machine U is bounded by a parameter t.

Definition 9 (Kt
). Let U be a Turing machine and t a time bound. Define the

measure Kt
U (x) of a string x as

Kt
U (x) = min{ |d| : ∀b ∈ {0, 1, ∗} ∀i ≤ |x| + 1 , the machine Ud(i, b)

accepts in t(|x|) steps iff xi = b }.

In contrast to all other Kolmogorov measures that we consider, changing the
choice of universal Turing machine might cause a huge change in the value of Kt(x).
Nonetheless, we follow the usual convention [38, 45, 44, 20, 21] and pick some universal
machine U and define Kt(x) to be Kt

U (x). Proposition 5 guarantees that for any other
choice U ′ of universal machine, there is a constant c such that Kct log t(x) ≤ Kt

U ′(x)
(although we observe that Kct log t(x) might be much less than Kt

U ′(x)). (In this paper,
we will consider neither Kt(x|y) nor Kt relative to oracles A.)

It is now time to give the formal definition of the measure KT that will be one
of our main objects of study. This definition can be seen as a variant on a definition
introduced by Antunes, Fortnow, and van Melkebeek in [12].

Definition 10 (KT). Let U be a Turing machine and A an oracle. Define the
measure KTA

U (x|y) to be

KTA
U (x|y) = min{ |d| + t : ∀b ∈ {0, 1, ∗} ∀i ≤ |x| + 1, the machine UA,d,y(i, b)

accepts in t steps iff xi = b }.

We omit the superscript A if A = ∅, and the string y if y = λ.

1As discussed briefly in [44], Levin’s original definition of Kt was formulated in terms of
“Kolmogorov–Uspensky machines.” This model of computation is one of several that allow for
the existence of universal machines that can simulate any other algorithm with at most a linear
slow-down; see also [16]. This allows for a more elegant statement of certain theorems regarding
Kt complexity. For instance, using this model of computation, one can show that for a universal
machine U , for every machine M KtU (x) ≤ KtM (x)+O(1), and searching for satisfying assignments
y to a Boolean formula φ in order of increasing Kt(y|φ) can be shown to be optimal up to a linear
slow-down. However, Kolmogorov–Uspensky machines confer no special advantages when consider-
ing more refined measures such as KS and KT, and thus we choose to use the more familiar Turing
machines in defining our measures.
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Note that the only difference between KT and Levin’s measure Kt is that in KT
the time bound is given exponentially more weight than in Kt. The capital “T” in
the notation for KT reflects the fact that the time component weighs more strongly
than in the Kt measure.

Along with the greater emphasis on running time, we unfortunately incur a greater
sensitivity on the underlying machine U . Definition 6 implies that for any universal
Turing machine U and any other machine U ′, KTA

U (x|y) ≤ c·KTA
U ′(x|y) log KTA

U ′(x|y).
We pick one such universal Turing machine U (guaranteed to exist by Proposition 5)
and define KTA(x|y) to be equal to KTA

U (x|y). KT(x|y) and KT(x) are defined
similarly in terms of U .

If one views a given string x as the truth table of a function fx, then KT(x|y)
roughly corresponds to circuit complexity of fx on circuits that have oracle access to
fy. This is made precise below.

Theorem 11. There is a constant c such that for any oracle A and any strings
x and y in {0, 1}∗,

(i) SizeA,y(x) ≤ c(KTA(x|y))2 ((KTA(x|y))2 + log |x| + log |y|); and
(ii) KTA(x|y) ≤ c (SizeA,y(x))2 (log SizeA,y(x) + log log |x|).

Proof. To prove (i), let c1, c2 be suitably large constants. Assume a given string
x of length n has KTA(x|y) = m. Thus there is a description dx of length at most
m, such that UA,dx,y(i, b) accepts if and only if b = xi in at most m steps. By
Proposition 4, there is a circuit CA,dx,y

n,m of size c1m(m2+log n+log(m+|y|)) such that

CA,dx,y
n,m (i, b) = UA,dx,y(i, b) for all i and b. The finite oracle dx can be replaced by a

circuit of size c2m to obtain a desired circuit for x of size cm2(m2+log n+log(m+|y|)),
provided that c ≥ c1c2.

To prove (ii), let c1 and M be the constant and machine given by Proposition 3.
Assume that there is a circuit C of size m with oracle gates for A and y, such that
on input i (in binary) the circuit computes C(i) = xi for i ≤ |x|. Denote n = |x|.

By Proposition 3 there is an encoding dC of C of size c1m(logm + log logn)
such that machine M , given oracle access to A, dC , and y, outputs C(i) in time
c1m

2 logm + m log log n. From M one can easily construct a two-tape machine M ′

such that M ′A,dC ,y(i, b) accepts if xi = b and that runs in essentially the same time
as M . Thus KTA

M ′(x|y) ≤ c2m
2(logm + log log n) for some c2 ≥ c1.

The theorem now follows by Definition 6 and the fact that the defining Turing
machine U for KT is universal.

So far we have considered time-bounded Kolmogorov complexity measures. In
section 3 we will see how these measures give rise to complete problems for time-
bounded complexity classes. It is useful to define space-bounded notions that will
yield complete problems for space-bounded complexity classes.

Definition 12 (KS). Let U be a Turing machine and A be an oracle. We define
the following space-bounded complexity measure.

KSA
U (x|y) = min{ |d| + s : ∀b ∈ {0, 1, ∗} ∀i ≤ |x| + 1 , the machine UA,d,y(i, b)

accepts in s space iff xi = b }.

We omit the superscript A if A = ∅, and the string y if y = λ.
As usual, we will fix a universal Turing machine U and then drop the subscript

U when considering this space-bounded Kolmogorov complexity measure. Similar to
the measure KT, the measure KS is somewhat sensitive to the exact choice of the
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universal machine U . However, regardless of the particular choice of universal Turing
machine, Proposition 5 implies that for any Turing machine U ′, there is a constant c
such that KSA(x|y) ≤ cKSA

U ′(x|y).
As is the case with traditional Kolmogorov complexity, for each of these resource-

bounded Kolmogorov complexity measures KT,KS,Kt, every string has a description
that is not much longer than itself.

Proposition 13. There is a constant c, such that for all strings x: KT(x) ≤
|x| + c log |x|, KS(x) ≤ |x| + c log |x|, and Kt(x) ≤ |x| + c log log |x|.

It is useful to observe that the measures C,Kt, and KS can be approximated in
terms of KTA for appropriate choices of oracle A.

Theorem 14. Let H denote the halting problem. There exist a complete set A
for E, a complete set B for DSPACE(n), and a constant c such that

(i) 1
cKt(x) ≤ KTA(x) ≤ c · Kt(x),

(ii) 1
cKS(x) ≤ KTB(x) ≤ c · KS(x), and

(iii) 1
cC(x) ≤ KTH(x) ≤ c · (C(x) + log |x|).

Proof. Let us prove first the relation between Kt and KTA. The proof for KS is
similar. Then we will consider the claim for C.

Let A ∈ E and let x be given, such that KTA(x) = m. Thus, there is a description
dx of length |dx| ≤ m, such that UA,dx(i, b) accepts if and only if xi = b in time at
most m. During the computation, U can ask queries of length at most m, and since
A ∈ E, each such query can be answered in time 2O(m). If M denotes the algorithm
that simulates the computation of UA,dx(i, b) for every i by directly computing the
answers to the oracle queries to A, then the description d′x = 〈M,dx〉 is sufficient for
U to compute Ud′

x(i, b) in time 2O(m). As |d′x| = m + O(1), we can conclude that
Kt(x) ≤ m + O(1) + log(2O(m)) = O(m).

For the other inequality, let A = {〈(1r, dx), i, b〉 : Udx(i, b) accepts in 2r steps}.
(It is not hard to show that A is complete for DTime(2n) under linear-time many-one
reductions.) Let x be given and let Kt(x) = m. Thus, there is a description dx of
length m, such that Udx(i, b) accepts if and only if xi = b in at most 2m steps. The
following algorithm M (computable by a two-tape Turing machine) accepts the input
(i, b) if and only if xi = b and runs in time O(m) given oracle A and given finite oracle
(1m, dx). Given (i, b), the machine M writes the query q = 〈(1m, dx), i, b〉 onto the
query tape. If the oracle accepts q, then M accepts; else it rejects. Clearly, given
finite oracle (1m, dx), the machine M accepts (i, b) if and only if b = xi. The time
required for M is O(m+ |dx|+ |q|) = O(m). The length of |(1m, dx)| is O(m). Thus,
KTA

M (x) = O(m). By Definition 6, the first part of the theorem follows.
Now we show that C(x) = O(KTH(x)). Let KTH(x) = m. Thus there is a

description dx of length at most m, such that UH,dx(i, b) accepts in time m if and
only if xi = b. Let r be the number of strings in H of length at most m. Note that
r can be written using O(m) bits. Let M be an algorithm with an oracle encoding
dx, r, and m that, given (i, b), enumerates all the r elements of H that have length
at most m and then simulates UH,dx on input (i, b). It follows that CM (x) = O(m),
which is sufficient to prove the claim.

It remains only to show that KTH(x) = O((C(x) + log |x|) log(C(x) + log |x|)).
Let C(x) = m and let dx be a description of x. The set L = {〈dx, i, b〉 : Udx(i, b)
accepts} is a c.e. set; thus it is reducible to H in linear time by a trivial reduction f .
Hence there is a machine M that, on input (i, b) with oracle dx, computes f(dx, i, b)
and poses this question to the oracle H. The running time is O(m + log |x|). The
claim follows by Definition 6.
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In [11], the approach developed here has been extended to provide new measures of
resource-bounded Kolmogorov complexity that are polynomially related to branching
program size and formula size.

2.3. Sets of random strings. Our attention will be focused on sets containing
strings of high complexity, for various measures of complexity. Specifically, we consider
the following sets.

Definition 15. For any Kolmogorov complexity measure μ (such as C, Kt, KS,
KT, Kt), define Rμ = {x : μ(x) ≥ |x|/2}.

The bound of |x|/2 in the definition of Rμ is arbitrary; all of our results hold
for any reasonable bound in the range |x| to |x|ε for any positive ε. Essentially,
apart from the mere fact that strings in Rμ do not have short descriptions of the
appropriate type, all we need is that the set Rμ has polynomial density. We refer to
the density of a language L as the fraction of all strings of length n that belong to
L. L is said to have polynomial density if it contains at least 2n/nk strings of each
length n, for some k. The set of μ-incompressible strings, i.e., the set of strings x with
μ(x) ≥ |x|, is well known to have polynomial density for μ = C [44]. The same holds
for μ ∈ {Kt,KS,KT} by a trivial counting argument: Since each of these measures μ
involves a nontrivial additional cost on top of the length of the describing program d,
μ-compressible strings of length n are defined by strings d of length less than n − 1,
of which there are fewer than 2n−1. We refer the reader to [39] for the detailed proofs
of our main theorems in their full generality, for arbitrary ε.

Proposition 16. The sets RC, RKt, RKt for any t, and RKS all have polynomial
density.

Many of our results about Kt and KT complexity carry over to Kt complexity for
certain values of t because of the following observation. A similar statement holds for
Kt in relationship to C and for KS in relationship to Kt.

Proposition 17. For some constant c > 1,
(i) C(x) ≤ Kt(x) for any time bound t,
(ii) Kt(x) < KT(x) for any time bound t ≥ n + c log n,
(iii) Kt(x) < Kt(x) for any time bound t ≥ (log n)c2n, and
(iv) Kt(x) ≤ cKS(x).
Proof. The first item follows directly from the definition. For the second state-

ment, let m = KT(x). Thus, there is a description d of length less than m such that
each bit of x can be produced in time at most m. By Proposition 13, m ≤ n+ c log n.
Thus, the same description d shows that Kt(x) < m for any t ≥ n + c log n. The
proof for Kt is analogous. The last inequality follows from the fact that if a halting
machine runs in time t and space s then t ≤ 2O(s).

Corollary 18. For some constant c,
(i) RC ⊆ RKt for any time bound t,
(ii) RKt ⊆ RKT for t ≥ n + c log n, and
(iii) RKt ⊆ RKt for t ≥ nc2n.

Proposition 19. If Kt(x) ≤ |x|ε, then K2nε

(x) ≤ |x|ε.
The following upper bounds on the complexity of the various sets of random

strings are straightforward.
Proposition 20. RC ∈ co-c.e., RKt ∈ E, RKS ∈ DSPACE(n), and RKT ∈ coNP.

Also, RKt ∈ EXP for any constructible t = 2n
O(1)

, and RKt ∈ coNP for any
constructible t = nO(1).

We show in Corollary 32 that every c.e. set is reducible to RC via a reduction
computable by polynomial size circuits. It follows that RC requires circuits of size at
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least 2n
ε

for some ε > 0. For the rest of these sets Rμ, the best unconditional circuit
lower bound known is that none of these sets are in AC0.

Theorem 21. Let A be any set in AC0 that contains at least 2n/nk strings of
each length n. Then there is a constant c such that, for every length n, there is a
string x ∈ A ∩ {0, 1}n such that KT(x) ≤ logc n.

Proof. Nisan [48] showed that the Nisan–Wigderson generator can be used to
derandomize any probabilistic AC0 circuit. His construction presents a generator G
that takes a seed of length logc n and produces pseudorandom output of length n,
with the property that any AC0 circuit C of size nl and depth d that accepts at least
2n/nk inputs of length n must accept some string in the range of G. (The constant c
depends on the constants l, k, and d.) Furthermore, it was shown in [59] that there

is a circuit (actually, even a formula) of size logO(1) n that takes s and i as input and
produces the ith bit of G(s). It follows that, for any seed s, the pseudorandom string
G(s) has polylogarithmic KT complexity.

Corollary 22. For t = Ω(n2), none of the sets RKt, RKt , RKT, and RKS are
in AC0.

2.4. Nonhardness results for Rμ. As stated in the introduction, earlier re-
sults had indicated that sets of strings with high resource-bounded Kolmogorov com-
plexity would not be complete for the complexity classes in which they reside. In this
subsection, we present a few of these nonhardness results as they relate to the sets
RKT, RKS, and RKt.

Theorem 23.

(i) RKt is not hard for EXP under ≤p
tt reductions.

(ii) RKS is not hard for PSPACE under ≤log
T reductions.

Proof. We present the proof for RKS. The proof for RKt is analogous. (The

interested reader can consult [6].) Note first that ≤log
T reducibility coincides with ≤log

tt

reducibility [42].

Let T be a subset of {0}∗ that is in PSPACE but not in L. Suppose T≤log
tt RKS,

and let f be the query generator of such a reduction. Note that KS(f(0n)) = O(log n).
Thus each of the strings y that the reduction queries on input 0n has KS(y) = O(log n).
Hence, the only strings y for which the query can receive a “yes” answer are of length
O(log n), and for such queries the answer is computable directly in space O(log n).
Hence all of the queries can be answered in space O(log n) and it follows that T ∈ L,
contrary to our choice of T .

An interesting picture emerges if we consider even more restrictive reducibili-
ties than polynomial-time and logspace reductions. Most natural examples of NP-
complete sets are complete even under many-one reductions computed by uniform
AC0 circuits. However, as the following theorem shows, uniform AC0 reductions
cannot reduce even some very small complexity classes to RKS and RKt.

Theorem 24. RKt and RKS are not hard for TC0 under AC0 many-one reduc-
tions.

Proof. Let A be any set that is hard for TC0 under AC0 many-one reductions.
Agrawal shows in [1] that A is also hard for TC0 under length-increasing AC0 reduc-
tions. Thus, there is a length-increasing AC0 reduction f reducing 0∗ to A. Since this
reduction f is computable in logspace, it follows that KS(f(0n)) and Kt(f(0n)) are
each O(log n). Since f is length-increasing, it follows that A must contain infinitely
many strings of low KS and Kt complexity.

Unfortunately, we do not know how to argue that the strings f(0n) in the pre-
ceding proof have low KT complexity; in fact it follows easily from Lemma 25 below
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that this happens if and only if every problem in the polynomial-time hierarchy has

circuits of size 2n
o(1)

.
The linear-time hierarchy is a subclass of the polynomial-time hierarchy consisting

of the union of the classes Σk-time(n).
Lemma 25. Let s be a monotone nondecreasing function. Every problem in the

linear-time hierarchy has circuits of size s(n)O(1) if and only if for each function f
computable in AC0, KT(f(0n)) ≤ s(log n)O(1).

Proof. Suppose that every problem in the linear-time hierarchy has circuits of
size s(n)O(1). Let f be computable in AC0. By a standard padding argument (see,
for instance, [10]) it follows that the set {(n, i) : the ith bit of f(0n) is 1} is in the
linear-time hierarchy. It follows from our hypothesis that this set has circuits of size
s(log n)O(1), and therefore by Theorem 11 that KT(f(0n)) ≤ s(log n)O(1).

For the other direction, suppose that each function f computable in AC0 has the
property that KT(f(0n)) ≤ s(log n)O(1). Let A be any problem in the linear-time
hierarchy, and consider the function f that maps 0n for n = 2m to the characteristic
string of A for inputs of length m. The function f is computable in AC0. It follows
from the hypothesis and Theorem 11 that A on inputs of size m has circuits of size
s(log 2m)O(1) = s(m)O(1).

In particular, Lemma 25 states that SAT has polynomial-size circuits if and only
if for every function f computable in uniform AC0, KT(f(0n)) is polylogarithmic.

Based on Lemma 25, the best we can offer for RKT is the following conditional
nonhardness theorem. The hypothesis to this theorem is unlikely; thus the proper
way to interpret this result is that it is unlikely that one will be able to prove that
RKT is hard for TC0 under AC0 reductions.

Theorem 26. If every problem in the polynomial-time hierarchy has circuits of

size 2n
o(1)

, then RKT is not hard for TC0 under AC0 many-one reductions.2

Proof. Let A and f be as in the proof of Theorem 24. Since f is computable
in AC0, the hypothesis and Lemma 25 imply that KT(f(0n)) ≤ no(1). Since f is
length-increasing, this means that A has to contain infinitely many strings of low KT
complexity.

On the other hand, if SAT requires large circuits, the proof of Lemma 25 ensures
the existence of an AC0 computable function f such that f(0n) has high KT complex-
ity (for every large n that is a power of 2). By concatenating elements of SAT with
f(0n), we obtain a set SAT′ that is AC0-isomorphic to SAT but where each element
of SAT′ has large KT complexity. Combining the two directions, we see that SAT
requiring large circuits is in fact equivalent to the existence of sets AC0-isomorphic
to SAT containing only strings of high KT complexity.

The results of this section are related to the issue that was raised by Kabanets and
Cai [36] in considering the question of whether or not MCSP is NP-complete under
length-increasing reductions. They observed that if MCSP (or RKT) is complete for
coNP under length-increasing reductions, then there is a polynomial-time computable
length-increasing function f such that each string f(0n) has high KT complexity,
which implies that there is an efficient way to construct the truth tables of certain
functions on m = Θ(logn) bits that require circuits of size 2εm for some ε > 0. As
Kabanets and Cai discuss (see also [6]), this implies BPP = P.

2In [6], it is asserted that the conclusion of this theorem follows from the weaker assumption that

SAT has circuits of size 2n
o(1)

. We do not know how to prove this stronger statement.
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3. Complexity of RKt, RKS, and RC. Improving greatly the results in [21],
we show that strings of high Kolmogorov complexity are very useful as oracles. Our
main technique is to use relativizing hardness-randomness tradeoffs in the contrapos-
itive. In particular we will argue that an appropriate set Rμ of Kolmogorov random
strings can be used to distinguish the output of a pseudorandom generator Gf (based
on a function f) from truly random strings. This in turn will enable us to efficiently
reduce f to Rμ. In this section, we will exploit pseudorandom generators Gf that
may take more time to compute than the randomized procedure they try to fool.
They yield our hardness results for RKt, RKS, and RC. In the next section, we will
use pseudorandom generators Gf that are more efficiently computable and obtain
hardness results for RKT.

We first describe the derandomization tools we will use. Then we present some
hardness results in terms of nonuniform (P/poly) reductions that apply to many
complexity classes. Finally, we consider some special cases where we are able to
strengthen our results to provide uniform reductions.

3.1. Tools. It will be useful to recall the definition of PSPACE-robustness [14].
A language A is PSPACE-robust if PSPACEA = PA. (Here we assume that machines
are allowed to ask oracle queries of only polynomial size.) The complete sets for many
large complexity classes like PSPACE, EXP, and EXPSPACE, have this property, as
well as the complete sets (under linear-time reductions) for classes like DSPACE(n)
and E. It will be useful for us to observe that the halting problem is also PSPACE-
robust.

Theorem 27. The halting problem H is PSPACE-robust.
Proof. Let M be a PSPACE machine using space nk. The set A = {(1n, i) : there

are at least i strings in H of length at most n} is c.e., and thus it is reducible in linear
time to H. Using binary search on calls to A, we can compute the number of strings
in H of length at most nk. Now consider the set B = {(M,x, r) : MH′

(x) accepts,
where H ′ is the set consisting of the first r strings of length at most |x|k that show up
in the enumeration of H}. Deciding whether MH accepts x boils down to computing
the desired number r (using calls to A) and then making a single call to B. Since
both A and B are efficiently reducible to H, the proof is complete.

We will use several related constructions that build a pseudorandom generator
Gf out of a function f . They are all based on the Nisan–Wigderson paradigm [49].
The authors of [14] construct, for any ε > 0, a variant GBFNW

f : {0, 1}nε �→ {0, 1}n
such that for any x of size nε, the function GBFNW

f (x) is computable in space O(nε)
given access to the Boolean function f on inputs of size at most nε. Moreover, if f
is PSPACE-robust, then there is a constant c independent of ε, such that each bit of
GBFNW

f (x) is computable in time nεc with oracle access to f . The following hardness
versus randomness tradeoff holds.

Theorem 28 (see [14, 37]). Let f be a Boolean function, let ε > 0, and denote
the pseudorandom generator described above as GBFNW

f : {0, 1}nε �→ {0, 1}n. Let T be

a set and p(n) a polynomial. If |Prr∈Un [r ∈ T ] − Prx∈Unε [GBFNW
f (x) ∈ T ]| ≥ 1/p(n)

for all large n, then there exists a polynomial size oracle circuit family {Cn}n∈N with
oracle T that computes f and queries T nonadaptively.

In fact, as observed in [11], close analysis of [14, 37] reveals that the circuit family
{Cn} can be constructed to be in TC0. Thus, in particular, we can also conclude that
f is in LT /poly.

In [34], Impagliazzo and Wigderson reexamine the approach of [14]. For any ε > 0,
their pseudorandom generator GIW98

f : {0, 1}nε �→ {0, 1}n is also computable in space
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O(nε) with oracle access to f on inputs of size at most nε. It satisfies the following
uniform version of Theorem 28. Recall that a function f is random self-reducible if
there exists a randomized polynomial-time reduction from f to itself such that each
individual query the reduction makes on an input of length n is uniformly distributed
among the inputs of length n. A function f is downward self-reducible if there exists a
polynomial-time reduction from f to itself that makes only queries of length strictly
less than the input.

Theorem 29 (see [34]). Let f : {0, 1}∗ �→ {0, 1}∗ be a random and downward
self-reducible function, ε > 0, and GIW98

f : {0, 1}nε �→ {0, 1}n be the pseudoran-
dom generator described above. Let T be a set and p(n) be a polynomial. If for all
large enough n, |Prr∈Un [r ∈ T ] − Prx∈Unε [GIW98

f (x) ∈ T ]| ≥ 1/p(n), then there exists
a probabilistic, polynomial-time Turing machine with oracle T that on input x outputs
f(x) with probability at least 2/3.

The preceding two theorems provide the key derandomization techniques that are
required to prove our completeness results. They are stated in the contrapositive of
their original formulations since that is the way we will use them. However, some of
our completeness results (namely for EXP and PSPACE) involve uniform reductions
that make use of randomness. These reductions can then be further derandomized by
applying hardness versus randomness tradeoffs in the standard way. We will make use
of the strengthening of the results of [14], as provided by Impagliazzo and Wigderson
[33] (see also [55]). Given access to a Boolean function f , they show how to construct a
pseudorandom generator GIW97

f : {0, 1}O(log n) �→ {0, 1}n with the following property
(see also [37]).

Theorem 30 (see [33, 37]). For any ε > 0, there exist constants c, c′ > 0 such that
the following holds. Let A be a set and n > 1 be an integer. Let f : {0, 1}c logn �→ {0, 1}
be a Boolean function that cannot be computed by oracle circuits of size ncε with
oracle A. Then GIW97

f : {0, 1}c′ logn �→ {0, 1}n satisfies the following for any oracle

circuit CA of size at most n: |Prr∈Un [CA(r) = 1] − Prx∈Uc′ log n
[CA(GIW97

f (x)) = 1]|
< 1/n.

For x of size c′ log n, GIW97
f (x) is computable in time polynomial in n given access

to f on inputs of length c log n.

3.2. Nonuniform hardness results. Our first result illustrates our main tech-
nique. Recall that a language L has polynomial density if it contains at least 2n/nk

strings of each length n, for some k. We use the notation A≤P/poly
tt B to denote that

there exists a truth-table (i.e., nonadaptive) reduction from A to B that is computable
by a family of polynomial-size circuits.

Theorem 31. Let A be any PSPACE-robust set. Let L be a set of polynomial
density such that for every x ∈ L, KTA(x) > |x|γ for some constant γ > 0. Then A

is reducible to L via ≤P/poly
tt reductions.

Proof. Let f be the characteristic function of A. Consider the generator
GBFNW

f : {0, 1}nε �→ {0, 1}n, where we choose ε as follows. We know that every bit of

GBFNW
f is computable in time nεc for some constant c independent of ε, given access

to A. We may assume that c > 1, so we set ε = γ/2c. We claim that any string
in the range of GBFNW

f has small KTA complexity. Let y = GBFNW
f (x) for some

x ∈ {0, 1}nε

. On input x, every bit of GBFNW
f (x) is computable in time nγ/2 with

access to oracle A. Hence, KTA(y) ≤ |x|+O(nγ/2 log n) +O(1) ≤ nγ . It follows that

L distinguishes the output of GBFNW
f from random, so by Theorem 28, f is ≤P/poly

tt

reducible to L.
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By Theorem 14 and Proposition 16, we can apply Theorem 31 to the following
choices for the pair (A,L):

(i) (A,L) = (the set A from Theorem 14, RKt),
(ii) (A,L) = (the set B from Theorem 14, RKS), and
(iii) (A,L) = (H, RC).

(In order to apply Theorem 31 we require that A is PSPACE-robust. By Theorem 27,
H is PSPACE-robust, and the sets A and B from Theorem 14 are clearly PSPACE-
robust, since they are complete for EXP and PSPACE, respectively.) Together with
Proposition 20, this leads to the following results.

Corollary 32.

(i) RKt is complete for EXP under ≤P/poly
tt reductions.

(ii) RKt is complete for EXP under ≤P/poly
tt reductions for any constructible

time bound t such that 2n
ε ≤ t ≤ 2n

O(1)

for some ε > 0.

(iii) RKS is complete for PSPACE under ≤P/poly
tt reductions.

(iv) H≤P/poly
tt RC.

Proof. The results for RKt, RKS, and RC are immediate. The result for RKt

follows from Proposition 19 and Theorem 31 (letting A be complete for E under
linear-time reductions).

The last item in Corollary 32 appears to be the first “efficient” reduction from
the halting problem to the Kolmogorov random strings. This should be contrasted
with the uniform but very high-complexity truth-table reduction of [40].

A complete set for exponential space can be defined by considering a variant on KS
complexity (which could naturally be denoted Ks), where the value to be minimized
is |d| + log s. Similarly, complete sets for doubly exponential time can be defined by
minimizing |d|+ log log t. This can be generalized to higher complexity classes in the
straightforward manner.

It is natural to wonder how much nonuniform advice is needed for the reductions
of Corollary 32. For instance, can the reductions be done with linear advice? For the
case of deterministic nonadaptive reductions to RKt, Ronneburger shows in [52] that
there is no fixed k such that advice of length nk is sufficient, even if the reduction

is not restricted to run in polynomial time, but instead can run for time 2n
k

. In
contrast, in the next subsection we consider settings in which no nonuniform advice
is needed at all.

3.3. Uniform hardness results. For the special cases of EXP and PSPACE,
we are able to show hardness results under uniform notions of reducibility. First we
state and prove a general uniform hardness result for PSPACE.

Theorem 33. Let L be a set of polynomial density such that for every x ∈ L,
KS(x) > |x|γ for some constant γ > 0. Then PSPACE ⊆ BPPL.

Proof. We make use of the uniform derandomization technique of [34], together
with the following theorem of [57].

Theorem 34 (see [57]). There exists a problem in DSPACE(n) that is hard for
PSPACE, random self-reducible, and downward self-reducible.

Let f ∈ DSPACE(n) be a function that is downward and random self-reducible
and that is hard for PSPACE, as guaranteed by Theorem 34. Consider the gener-

ator GIW98
f : {0, 1}nγ/2 �→ {0, 1}n. Since the function GIW98

f is computable in space

O(nγ/2) with oracle access to f on inputs of length O(nγ/2) and f is computable in

linear space, we can compute GIW98
f (z) for z ∈ {0, 1}nγ/2

in space O(nγ/2). It follows

that every y in the range of GIW98
f satisfies KS(y) ≤ O(|y|γ/2). Since L is a set of at
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least polynomial density that contains only strings y of KS complexity at least |y|γ ,
the set L distinguishes the output of GIW98

f from random strings and by Theorem 29,
there is a probabilistic procedure with oracle L that on input x outputs f(x) with
probability at least 2/3. Hence, PSPACE ⊆ BPPL.

For many sets L satisfying the hypothesis of Theorem 33 (including any such
set that lies in PSPACE/poly, and all of the sets Rμ for which nonuniform hardness
results were presented in the previous section), the BPP reduction of Theorem 33 can
be improved to obtain a ZPP reduction. This is a consequence of the next lemma,
which shows how probabilistic complexity classes can be derandomized using oracle
access to strings of high Kolmogorov complexity. The proof makes use of the by now
familiar fact that having access to the truth-table of a hard function can be used to
derandomize BPP [49, 33].

Lemma 35. Let A be any oracle and L be a set such that L ∈ PA/poly and for
every x ∈ L, KTA(x) > |x|γ for some constant γ > 0.

(i) MAL = NPL if L contains at least one string of almost every length.
(ii) BPPL = ZPPL if L is of at least polynomial density.
(iii) BPPL = PL if there exists a polynomial time machine with oracle access to

L that, on input 0n, produces an element of L of length n.
All three statements hold even if the respective hypothesis on L holds only for infinitely
many constants c and almost all lengths of the form nc.

Proof. (i) The NP-machine M guesses a string χf ∈ L of length m, for m = nc,
and interprets it as the truth-table of a Boolean function f on inputs of size logm.
Since χf ∈ L, KTA(χf ) ≥ mγ . Thus by Theorem 11, f requires circuits of size at
least Ω(mγ/3) even when the circuit has access to the oracle A. If, instead of A,
the circuit has access to L, then (because of our assumption that L is reducible to
A by circuits of size mk for some k ≥ 1), the size required to compute f is at least
Ω(mγ/6k). The function f is of sufficient hardness to construct the generator GIW97

f ,
as stated in Theorem 30, to stretch O(log n) random bits into n pseudorandom bits
that are indistinguishable from random by any oracle circuit of size n with access to
L. Thus we can fully derandomize the probabilistic part of the MA computation.

(ii) The proof is almost identical to the preceding argument. We have the ad-
ditional assumption that L has polynomial density. Thus, instead of “guessing” the
string χf as in the preceding argument, we can repeatedly pick strings at random.
The expected running time until we find a χf ∈ L is polynomial. The result follows.

(iii) Instead of randomly choosing a candidate for χf as in the proof of statement
(ii), we use the generating algorithm from the hypothesis to produce it. The rest of
the argument is unchanged.

By Theorem 14 and Propositions 16 and 20, the common hypothesis of Lemma 35
holds for L = RKt (using the set A from Theorem 14 as the set A), for L = RKS (using
the set B from Theorem 14 as the set A), and for L = RC (using A = H). Thus
one can obtain, e.g., BPPRKt = ZPPRKt , BPPRKS = ZPPRKS , NPRKt = MARKt .
Moreover, we have the following corollary.

Corollary 36. PSPACE = ZPPRKS ⊆ ZPPRKt .
The techniques of Theorem 33 cannot be used to prove hardness results for classes

larger than PSPACE. For EXP, however, we are able to use the theory of interactive
proofs to obtain hardness results under NP-Turing reducibility. First, we mention a
result that is implicit in [14].

Theorem 37 (see [14]). If EXP≤P/poly
T L, then EXP ⊆ MAL.

Proof. Let A be any language in EXP. Then A is accepted by a 2-prover inter-
active proof system with provers computable in EXP [13]. Thus these strategies are
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computable in PL/poly. The MAL protocol is as follows. Merlin sends Arthur the
polynomial-size circuits that, when given access to the oracle L, compute the answers
given by the two provers for A. Arthur then executes the MIP protocol, simulating
the provers’ answers by executing the circuits and querying the oracle L.

Corollary 38. Let L be a set of polynomial density in EXP such that for every
x ∈ L, Kt(x) > |x|γ for some constant γ > 0. Then EXP = NPL.

Proof. The inclusion NPL ⊆ EXP is trivial. For the other inclusion, observe that
Corollary 32 implies that the hypothesis to Theorem 37 is satisfied. The theorem now
follows from the first item of Lemma 35.

Corollary 39. EXP = NPRKt .
We also obtain the following curious corollary.
Corollary 40. PRKt �= NPRKt = EXP for any constructible monotone t such

that nO(1)2nt(n− 1) ≤ t(n) ≤ 2n
O(1)

, e.g., t = 2n
2

.
Proof. The equality follows from Corollary 38 by the third part of Proposition 17

and by Proposition 20. The inequality holds because the proof in [20] showing that
Rt is not complete for EXP under ≤p

T reductions carries over unchanged to RKt . We
include a somewhat simplified argument.

Consider a ≤p
T reduction from a unary language A to RKt . We claim that for

inputs x = 0n of sufficiently large length, none of the queries of length n or more can
be in RKt . Otherwise, we could describe the first such query q by n and the index
i of the query. This yields a description of length O(log n) < n. Moreover, we can
generate q from this description in time nO(1)2nt(n − 1) ≤ t(n) by simulating the
polynomial-time reduction up to the moment it generates its ith query and answering
all earlier queries by running the trivial exponential-time algorithm for RKt . This
contradicts the hypothesis that q is in RKt . Thus, we can decide A as follows: Run
the reduction by answering queries of length n or more negatively and running the
trivial exponential-time algorithm for RKt on smaller queries. This yields a correct
algorithm for A that runs in DTime(2dn) for some fixed constant independent of A.
However, the time hierarchy theorem implies that there are unary languages A in
EXP that have higher complexity than this.

To the best of our knowledge, all prior examples of oracles for which P �= NP
have been specifically constructed for that purpose. We know of no other “natural”
examples of sets A for which PA �= NPA.

We are unable to present any completeness or hardness results under deterministic
polynomial-time reductions for any of the resource-bounded notions of Kolmogorov
complexity that we have studied. It is interesting to observe, however, that we are
able to do better when we consider the undecidable set RC.

Theorem 41. PSPACE ⊆ PRC .
Theorem 41 follows immediately from Theorem 33 and the following lemma, which

implies that BPPRC = PRC by the third item of Lemma 35 applied to A = H
and L = RC. It is observed in [8] that very similar techniques suffice to show that
NEXP ⊆ NPRC .

Lemma 42 (see [19]). There is a polynomial-time algorithm with oracle access to
RC that, on input 0n, outputs a string of length n in RC.

We include a simple proof of Lemma 42 which works for our standard version of
RC, i.e., with a randomness threshold of |x|/2. Our proof also works for the smaller
randomness thresholds we consider but does not work for a randomness threshold
close to |x|. [19] gives a more complicated proof for the case where the oracle used
is {x : C(x) ≥ |x|}, i.e., for a randomness threshold of |x|; that proof works for any
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reasonable randomness threshold between |x| and |x|ε for any positive ε (see Remark 2
after Theorem 10 in [19]).

Proof of Lemma 42. (We prove the lemma for the standard randomness threshold
of |x|/2.) For any m = nO(1), we show how to construct a string z of length m
such that C(z) ≥ |z|/2 via a polynomial-time computation with access to oracle RC.
We will use the following property referred to as symmetry of information in [44,
section 2.8]: There exists a constant c1 such that for any strings z and y, C(zy) ≥
C(z) + C(y|z) − c1 log |zy|.

We build z inductively. We start with z equal to the empty string. Assume (in-
ductively) that C(z) ≥ |z|/2. Try all strings y of length 2c1 logm, and use the oracle
RC to see if C(zy) ≥ |zy|/2. We are guaranteed to find such a y, since C(y|z) ≥
|y| holds for most y, and for any such y, C(zy) ≥ C(z) + C(y|z) − c1 log |zy| ≥
|z|/2 + |y| − c1 log |zy| ≥ |zy|/2. Set z to be zy.

In a similar way, part 3 of Lemma 35 would allow us to obtain a deterministic
polynomial-time reduction of PSPACE to RKS in Corollary 36 if there was a deter-
ministic method to construct a string of high KS complexity using RKS as an oracle.
We do not know if this is possible.

The question of whether or not long elements of RKt can be obtained in polynomial
time relative to RKt turns out to be of critical importance in understanding the
completeness properties of RKt. Let us formalize this as follows. Let Q denote the
proposition “For all c there is a function f computable in polynomial time relative to
RKt such that f(0n) ∈ RKt ∩ {0, 1}nc

.” If Q is true, then Corollary 36 and the third
item of Lemma 35 imply that PSPACE ⊆ ZPPRKt = PRKt ; moreover, RKt �∈ P since
otherwise Corollary 39 implies that EXP = NPRKt = NP ⊆ PSPACE ⊆ PRKt = P.
On the other hand, if Q is false then EXP �= PRKt . This follows from an argument
similar to one presented in the proof of Corollary 40: If there is some c for which
no computation in PRKt on input 0n can access a string in RKt of length greater
than nc, then it follows that every unary language in PRKt is in DTime(23nc

), which
contradicts the time hierarchy theorem.

It should be noted in this regard that the property of symmetry of information,
which was used in the proof of Lemma 42, provably does not hold for RKt [52].

Let us mention one other consequence of our PSPACE-completeness result. In
[62] Watanabe and Tang showed that ≤p

T and ≤p
m reducibilities yield different classes

of PSPACE-complete sets if and only if ≤BPP
T and ≤p

m reducibilities yield different
PSPACE-complete sets. Using similar techniques, we are able to prove the following.

Theorem 43. There is a tally set T such that PSPACE = PRKS∪T , where at
least one of the following holds:

(i) RKS is complete for PSPACE under ≤p
tt reductions, but not under ≤log

T

reductions, or
(ii) RKS ∪ T is complete for PSPACE under ≤p

T reductions, but not under ≤p
m

reductions.
Proof. By Theorem 33 there is a probabilistic Turing machine M running in time

nk accepting QBF with oracle RKS, with error probability less than 2−2n. Let S be
the set of all strings r such that r is the lexicographically first string of length nk

with the property that, for all strings x of length n, MRKS(x, r) accepts if and only
if x ∈ QBF. The set S is in PSPACE and, for almost all n, S contains exactly one
string of length nk. We encode the “good” coin flip sequences of S in the tally set

T = {02nk+i : the ith bit of the unique string of length nk in S is 1}. The set RKS

contains only a finite number of strings in 0∗. It is immediate that T ∈ PSPACE and
that QBF ∈ PRKS∪T .
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If RKS ∪ T is not complete for PSPACE under ≤p
m reductions, then the second

condition of the theorem holds.
On the other hand, if QBF ≤p

mRKS ∪ T , then we can apply a standard argument
of [17]. Berman showed that if a length-decreasing self-reducible set A is ≤p

m-reducible
to a tally set, then A ∈ P. A similar argument applied to the ≤p

m reduction from
A = QBF to RKS ∪ T yields a ≤p

tt reduction from QBF to RKS. We sketch the
argument below for completeness. This, combined with Theorem 23, shows that the
first condition of the theorem holds.

The modification of Berman’s argument goes as follows. Let M denote the length-
decreasing self-reduction of A, and f the reduction from A to RKS ∪ T . We build
a reduction tree starting from the given input x as the single node. In the kth
phase, we apply M to the active leaves of length |x| + 1 − k. Those nodes that map
under f to a string outside of 0∗ are made inactive. For each integer m ≥ 0, we
choose a representative among all nodes (if any) which f maps to 0m. We keep the
representative active and make all the other nodes which f maps to 0m inactive.
This process finishes after at most |x| phases. Since the number of active nodes is
polynomially bounded, each step involves only a polynomial amount of work. The
leaves which f maps to strings outside of 0∗ constitute the truth-table queries we
make to RKS. Once we know the answers to these queries, we can determine the
answers to all remaining nodes in the reduction tree from bottom to top.

Note that in either case, we obtain a set that is ≤p
T-complete but not ≤log

m -complete
for PSPACE, namely, RKS or RKS ∪ T . It was already known (using the techniques
of [61]) that ≤p

T and ≤log
m reducibilities provide different classes of PSPACE-complete

sets, but the preceding theorem provides fairly “natural” examples of sets witnessing
the difference.

4. Complexity of RKT. The previous section paints an illuminating picture
about the hardness of sets with high Kt, KS, and C complexity for PSPACE, EXP,
and larger complexity classes. In this section, we explore what these techniques have
to say about the hardness of RKT, a set in coNP. We are not able to show completeness
of RKT for coNP, but we can show the hardness of RKT under randomized polynomial-
time reductions for problems that are thought to be NP-intermediate: Discrete Log,
Factorization, and certain lattice problems.

We point out that the set RKT seems closely related to the set MCSP defined
in [36] as {(x, s) : SIZE(x) ≤ s}. Although we do not know of efficient reductions
between RKT and MCSP in either direction, all our hardness results for RKT also hold
for MCSP. Based on a connection with natural proofs, [36] showed that if MCSP is
in P, then, for any ε > 0, there is a randomized algorithm running in time 2n

ε

that
factors Blum integers well on the average. Our results imply that if MCSP is in P,
then there is a randomized polynomial-time algorithm that factors arbitrary integers.

4.1. Tools. In order to prove hardness results for RKT, we need to apply hard-
ness versus randomness tradeoffs for pseudorandom generators Gf of lower compu-
tational complexity than in section 3. We will use the cryptographic pseudorandom
generators that developed out of the seminal work by Blum and Micali [18], and
by Yao [63]. In [30], it is shown how to construct such a pseudorandom generator
GHILL

f : {0, 1}n �→ {0, 1}2n out of any function f . The pseudorandom generator GHILL
f

is computable in polynomial time given access to f and is secure provided f is one-way.
The known hardness versus randomness tradeoffs for GHILL

f differ in two relevant

respects from those used in section 3. First, breaking GHILL
f only lets us invert f
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on a nonnegligible fraction of the inputs, but not necessarily on all inputs. The
implicit or explicit random self-reducibility of the problems considered in section 3
allowed us to make the transition from “nonnegligible fractions of the domain” to “the
entire domain.” However, unlike for EXP and PSPACE, there are no NP-complete
problems that are known to be random self-reducible. In fact, there provably are
no nonadaptively random self-reducible NP-complete sets unless the polynomial-time
hierarchy collapses [25].

Nevertheless, for some specific NP-intermediate problems h and polynomial-time
computable functions f (where h may or may not coincide with f−1), a worst-case
to average-case connection is known. That is, inverting f on a nonnegligible fraction
of the inputs allows one to compute h efficiently on any input. We are able to prove
hardness of RKT for such problems.

The second difference from section 3 is that the uniform hardness versus ran-
domness tradeoffs in [30] are as strong as the nonuniform ones. Therefore, unlike in
section 3, we need only to consider uniform reductions here.

We will apply GHILL
f for functions f that take some additional parameters y

besides the actual input x. In the case of the Discrete Log problem, for example, y
will describe the prime p and the generator g of Z

∗
p defining the basis for the logarithm.

More precisely, we will consider functions of the form f(y, x) that are length-preserving
for every fixed y, i.e., fy : {0, 1}n �→ {0, 1}n, where fy(x) = f(y, x). The function
f(y, x) will be computable uniformly in time polynomial in |x| (so without loss of
generality, |y| is polynomially bounded in |x|). The hardness versus randomness
tradeoff in [30] can be stated as follows.

Theorem 44 (see [30]). Let f(y, x) be computable uniformly in time polynomial
in |x|. For any oracle L, polynomial-time probabilistic oracle Turing machine M , and
polynomial p, there exists a polynomial-time probabilistic oracle Turing machine N
and polynomial q such that the following holds for any n and y: If∣∣∣∣ Pr

|r|=2n,s
[ML(y, r, s) = 1] − Pr

|x|=n,s
[ML(y,GHILL

fy (x), s) = 1]

∣∣∣∣ ≥ 1/p(n),

then

Pr
|x|=n,s

[f(y,NL(y, f(y, x), s)) = f(y, x)] ≥ 1/q(n),

where r and x are chosen uniformly at random and s denotes the internal coin flips
of M or N , respectively.

Theorem 44 states that if there exists a distinguisher with access to an oracle
L that distinguishes the output of GHILL

f from the uniform distribution, then oracle
access to L suffices to invert f on a polynomial fraction of the inputs. We now
argue that such a distinguisher exists in the case where L denotes RKT or any set of
polynomial density that contains no strings of small KT complexity.

Theorem 45. Let L be a language of polynomial density such that, for some
ε > 0, for every x ∈ L, KT(x) ≥ |x|ε. Let f(y, x) be computable uniformly in time
polynomial in |x|. There exists a polynomial-time probabilistic oracle Turing machine
N and polynomial q such that for any n and y

Pr
|x|=n,s

[f(y,NL(y, f(y, x), s)) = f(y, x)] ≥ 1/q(n),

where x is chosen uniformly at random and s denotes the internal coin flips of N .
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Proof. Let Gy(x) denote GHILL
fy

(x). As in [51], we use the construction of [29]

to modify Gy and obtain a pseudorandom generator G′
y producing longer output.

Specifically, the proof of Theorem 4.1 of [51] constructs G′
y : {0, 1}n �→ {0, 1}2k

, and

shows that if z = G′
y(x), then SIZE(z) = (n + k)O(1). We can pick k = O(log n)

such that for each x and polynomially bounded y, KT(G′
y(x)) < |G′

y(x)|ε. Thus L

is a statistical test that accepts many random strings of length |x|O(1), but rejects
all pseudorandom strings. As in [51], this gives us a probabilistic oracle machine M
using L that distinguishes Gy from the uniform distribution. We then apply Theo-
rem 44.

4.2. Hardness results. We now apply Theorem 45 to obtain our hardness re-
sults for RKT. As will be clear from the proofs, RKT can be replaced by any suitably
dense language containing no strings of KT-complexity less than nε for some ε > 0,

such as RKt for polynomial t. Other examples of such sets can be found in PMCSP,
and thus our hardness results carry over to MCSP as well. As observed in [11], the
reductions in this section show that, under popular cryptographic assumptions, it is
impossible even to approximate KT(x) or SIZE(x) within |x|1−ε.

We first consider the Discrete Log Problem, which takes as input a triple (p, g, z),
where p is a prime number, 0 < g < p, and 0 < z < p, and outputs a positive integer
i such that gi ≡ z mod p, or 0 if there is no such i. We have the following theorem.

Theorem 46. The Discrete Log Problem is computable in BPPRKT .
Proof. On input (p, g, z), we first check if p is prime [3]. Let n be the number of

bits in p, and let y denote the pair (p, g). Consider the function f(y, x) = gx mod p.
Theorem 45 with L = RKT gives us a polynomial-time probabilistic oracle Turing
machine N such that for some polynomial q and all p and g, with probability at least
1/q(n) over randomly chosen x and s, NRKT(p, g, gx, s) produces an output i such
that gi ≡ gx mod p.

Now we make use of the self-reducibility properties of the Discrete Log Problem.
In particular, on our input (p, g, z), we choose many more than q(n) values v at
random and run algorithm N on input (p, g, zgv mod p). If z is in the orbit of g,
then with high probability at least one of these trials will return a value u such that
gu = zgv mod p, which means that we can pick i = u − v and obtain z ≡ gi mod p.
On the other hand, if none of the trials is successful, then with high probability z is
not in the orbit of g and the algorithm should return 0.

We are not able to improve our reduction from a BPP-reduction to a ZPP-
reduction. That is, we know of no analogue of Lemma 35 for KT-complexity. We
note that, for inputs (p, g, x) such that x is in the orbit of g, which is the usual class
of inputs for which the discrete log is of interest, we do have ZPP-like behavior, since
we can check whether the number i we obtain satisfies gi ≡ x mod p. However, when
x is not in the orbit of g, we obtain no proof of this fact—merely strong evidence.

The proof of Theorem 46 relies on the random self-reducibility of the Discrete
Log Problem. In the terminology of section 4.1, this allows us to consider f−1 as the
problem h that reduces to RKT. The next problem we consider is a first example
where h differs from f−1.

Theorem 47. Factorization is computable in ZPPRKT .
Proof. Consider Rabin’s candidate one-way function f(y, x) = x2 mod y, where

0 ≤ x < y. Theorem 45 with L = RKT gives us a probabilistic polynomial-time
procedure with oracle access to RKT that, for any fixed y, finds an inverse of f(y, x)
for a fraction at least 1/|y|O(1) of the x’s with 0 ≤ x < y. Rabin [50] showed how
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to use such a procedure and some randomness to efficiently find a nontrivial factor
of y in case y is composite. This leads to a BPPRKT algorithm for factoring. Since
primality is in P [3], we can avoid errors and obtain the promised ZPPRKT factoring
algorithm.

Since Ajtai’s seminal paper [4, 5], several worst-case to average-case connections
have been established for lattice problems. We will exploit these next.

We first review some lattice terminology. We refer to [22] for more background.
Given a set B of n linearly independent vectors b1, . . . , bn over R

n, the set
L(B) = {

∑n
i=1 zibi | zi ∈ Z} is called the lattice spanned by the basis B. We consider

the usual notion of length of a vector v, |v| =
√∑

v2
i , and define the length of a set

of vectors as the length of a longest vector in that set. For a lattice L(B), λi(B),
1 ≤ i ≤ n, denotes the length of a shortest set of i linearly independent vectors from
L(B). The covering radius of L(B), ρ(B), is defined as the smallest ρ such that the
union of all spheres of radius ρ centered at the points of L(B) covers the entire space
R

n.
Applying our technique to Ajtai’s worst-case to average-case connections and their

subsequent improvements and extensions [24, 47], we obtain the following hardness
results for RKT.

Theorem 48. For every ε > 0, we can solve each of the following problems in
BPPRKT . Given a basis B ⊆ Z

n (and a vector t ∈ Z
n), find

(i) (Shortest Independent Vector Problem (SIVP)) a set of n linearly indepen-
dent vectors in L(B) of length at most n3+ε · λn(B),

(ii) (Shortest Basis Problem (SBP)) a basis for L(B) of length at most n3.5+ε ·
λn(B),

(iii) (Length of Shortest Vector Problem (LSVP)) a value λ̃, such that λ1(B) ≤
λ̃ ≤ ω(n3.5 log n) · λ1(B),

(iv) (Unique Shortest Vector Problem (Unique-SVP)) a shortest vector in L(B)
in case λ2(B) > n4+ε · λ1(B),

(v) (Closest Vector Problem (CVP)) a vector u ∈ L(B) such that |u − t| ≤
n3.5+ε · λn(B),

(vi) (Covering Radius Problem (CRP)) a value ρ̃, s.t. ρ(B) ≤ ρ̃ ≤ ω(n2.5 log n) ·
ρ(B).

The approximation factors in Theorem 48 represent the current state-of-the-art
but are likely to be improved in the future.

In order to prove the statements above, we will use the following worst-case to
average-case connection.

Theorem 49 (see [5, 24]). For any ε > 0, there exist functions q(n) = nO(1)

and m(n) = n log2 q with q a power of 2 such that the following holds. For every
c > 0, if there is probabilistic algorithm A, such that, with probability at least 1/nc

(over M ∈ Z
n×m
q and over the random choices of A), A(M) outputs a nonzero vector

u ∈ Z
m such that |u| ≤ m and Mu ≡ 0 mod q, then there exists a BPPA-algorithm

A′ that, given any basis B ⊆ Z
n, outputs with high probability a set of n linearly

independent vectors in L(B) of length at most n3+ε · λn(B).
Proof of Theorem 48. Let q(n) and m(n) be as in Theorem 49. Consider the

collection of functions fq,m : Z
n×m
q × {0, 1}m �→ Z

n×m
q × Z

n
q defined by fq,m(M, v) =

(M,Mv mod q). Letting y = (q,m) and x = (M, v), the function fy(x) is computable
uniformly in time |x|O(1). By Theorem 45, there exists a polynomial-time probabilistic
algorithm N with oracle access to RKT that computes a preimage of fq,m(M, v) for
at least a 1/nO(1) fraction of the inputs (M, v).

For any fixed M , f maps to at most qn different values. Thus there can be at
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most qn vectors v, such that f(M, v) �= f(M, v′) for all v′ �= v. In other words, for
a fraction at least 1 − qn/2m > 1 − O(1/2n) of the vectors v, there is a v′ �= v with
f(M, v′) = f(M, v). Therefore, if we pick M and v uniformly at random and run
N to invert f(M,Mv mod q), with probability at least 1/nO(1) we obtain a vector
v′ ∈ Z

m such that v′ �= v and Mv ≡ Mv′ mod q.
Setting u = v− v′ yields a nonzero vector in Z

m of length |u| ≤ m and satisfying
Mu ≡ 0 mod q. This vector u is the output of the algorithm A on input M . Applying
Theorem 49 to A yields the BPPRKT algorithm for the SIVP.

The reductions for the SBP, the Unique-SVP, and the CVP follow from the one for
the SIVP by arguments given in [24, 23]. The results for the LSVP and the CRP are
obtained in a similar way based on the variants of the candidate one-way function f
and the worst-case to average-case connection corresponding to Theorem 49 presented
in [47].

4.3. RKT versus NP. Given our inability to prove that RKT is coNP-complete,
one may wonder whether RKT is in NP. If it is, then this would provide a dense
combinatorial property in NP that is useful against P/poly, contrary to a conjecture
of Rudich [53]. We can also show the following.

Theorem 50. If RKT is in NP, then MA = NP.
Proof. It is shown in [32] that if an NP machine can, on input of length n, find the

truth table of a function of size nO(1) with large circuit complexity, then MA = NP.
Certainly this is easy if RKT is in NP.

This observation (similar to ones in [32]) cannot be taken as evidence that RKT �∈
NP, since many conjecture that MA is equal to NP. However, it does show that
proving RKT in NP would require nonrelativizing proof techniques.

5. Open problems. In this paper, we present KT as a notion of time-bounded
Kolmogorov complexity with close connections to circuit complexity. In so doing, we
expose connections between circuit complexity and traditional Kolmogorov complex-
ity and Levin’s measure Kt. KT-complexity is also useful as a tool for summarizing
some recent progress in the field of derandomization, and for describing the theory
of natural proofs from the standpoint of Kolmogorov complexity. For an exposition
along these lines, see [6].

The measures KT,KS, and Kt provide natural and interesting examples of ap-
parently intractable problems in NP, PSPACE, and EXP that are not complete un-
der the more familiar notions of reducibility and hence constitute a fundamentally
new class of complete problems. It is worth pointing out that variants of these
sets (such as {x : Kt(x) ≥ |x|/3}) appear to be incomparable to our standard
RKt = {x : Kt(x) ≥ |x|/2} under ≤p

m reductions. As another example of this phe-
nomenon, we are unable to present any reduction between {x : KTU (x) ≥ |x|/2} and
{x : KTU ′(x) ≥ |x|/2}, where U and U ′ are two universal machines. This deserves
further investigation.

Corollaries 39 and 36 combine to show that EXP = ZPP if and only if
RKt ∈ ZPP. This is because RKt ∈ EXP and if RKt ∈ ZPP then EXP = PSPACE =
ZPPRKt . This suggests that one might be able to show that RKt is complete under
ZPP reductions, but we have not been able to show this.

Can one settle (one way or the other) the question of whether or not RKt is
complete for EXP under ≤p

T reductions? For instance, is it possible to construct an
element of RKt in PRKt (which would suffice to prove completeness, as in the proof of
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Theorem 41)? Or is RKt more similar to the Buhrman–Mayordomo set Rt (which is
provably not complete) in this regard?

Is there some sense in which KT complexity yields NP-complete sets? For in-
stance, what can one say about {(x, y, i) : KT(x|y) ≤ i}? The result of [58] is
intriguing in this light; in [58] Vazirani and Vazirani presented a language in NP
that is complete under probabilistic reductions that is not known to be complete
under deterministic reductions. Their problem superficially seems to be related to
time-bounded Kolmogorov complexity.

Other intriguing open questions are: Is PSPACE ⊆ PRKS? Is the EXP-complete
set RKt in P? Is it in AC0[⊕]? We know of no fundamental obstacles that lie in the
way of a direct proof that RKt is not in P, although it was pointed out to us by Rahul
Santhanam that EXP = ZPP if and only if there is a set in P of polynomial density
containing only strings of Kt-complexity ≥ nε. The backward implication follows via
the same argument that we used to show that EXP = ZPP if and only if RKt ∈ ZPP.
For the other direction, assume that EXP = ZPP, and let B be a set in EXP of
polynomial density such that neither B nor its complement has an infinite subset in
DTime(2n) [28]. Let A be the set in P consisting of (string, witness) pairs for the
ZPP machine accepting B. If A contains infinitely many strings of low Kt complexity,
then B contains infinitely many instances where membership can be decided in time
2n, contrary to our choice of B.

The containment of PSPACE in PRC raises the question of whether it might be
possible to obtain characterizations of complexity classes in terms of efficient reduc-
tions to RC. This is studied in more detail in [8] (where a nontrivial characterization
of P having this flavor is presented).
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Abstract. We show that there exists a constant ω < 1 such that the fully dynamic d-dimensional
orthogonal range reporting problem for any constant d ≥ 2 can be solved in time O(logω+d−2 n) for
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1. Introduction. Consider a database R of persons where each person has at-
tributes such as an age, a weight, and a height. One of the most fundamental types
of queries in the database is to ask for the set of persons in R who have an age be-
tween, say, 30 and 50 years, a weight between 80 and 90 kg, and a height between 160
and 170 cm. Data structures supporting these kinds of queries are called orthogonal
range reporting structures and have been widely studied during the last 30 years. For
surveys see Agarwal and Erickson [1] and Chiang and Tamassia [18]. In this paper
we give new upper bounds for the fully dynamic variant of this problem where we in
an online setting allow queries to be intermixed with updates which can insert a new
person or delete an existing person. In case each person has exactly two attributes our
upper bound is optimal in terms of time per operation by a lower bound of Alstrup,
Husfeldt, and Rauhe [4].

1.1. Problem definition. In the d-dimensional fully dynamic orthogonal range
reporting problem (henceforth the dynamic d-dimensional range reporting problem
or just the d-dimensional range reporting problem) we must maintain a set R of
at most O(n) d-dimensional points under insertions and deletions. For each point
(x1, . . . , xd) ∈ R we must have xi ∈ Li for 1 ≤ i ≤ d, where Li is an ordered
set. Given a query (x′

1, x
′′
1 , . . . , x

′
d, x

′′
d) ∈ L1 × L1 × · · · × Ld × Ld we must report

the set {(x1, . . . , xd) ∈ R |x′
1 ≤ x1 ≤ x′′

1 ∧ · · · ∧ x′
d ≤ xd ≤ x′′

d}. We assume that if
(x1, . . . , xd) ∈ R and (y1, . . . , yd) ∈ R are two different points, then x1 �= y1∧· · ·∧yd �=
yd. Our model of computation is a unit cost RAM with word size at least logn bits.
We define the update time to be the time it takes to insert a point into or delete a
point from R. We consider only solutions to the problem where the time to answer
a query has the form Q + O(r), where r is the number of reported points and Q is
independent of r, and we say such a solution has query time Q. Further, we call the
maximum of the update time and the query time the time per operation.
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2005; published electronically April 21, 2006. This paper is based on [31] and [30]. The result of [31]
for the orthogonal segment intersection problem is not covered in this paper. Also, we use another
method for extending into higher dimensions than in [30].
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We get different problems depending on what we select as Li. Traditionally, one
is only allowed to compare the elements of Li using a unit cost comparison operation.
This is often specified as Li = R and makes good sense on a pointer machine. We
call this the comparison order variant of our problem. Another possibility is to take
Li to be the set of nonnegative integers smaller than m (we assume here m ≤ 2w,
where w is the word size). We define this as the m-order variant. We define the
word order variant to be the m-order variant with m = 2w. All these variants have
their shortcomings. In the comparison order variant, there is a trivial lower bound of
Ω(log n) on the time per operation because this is a lower bound for the dictionary
problem on R. In the m-order variant, it is not always possible to create a new
attribute between two existing attributes when performing an insertion. For these
reasons, we introduce in this paper what we define as the list order variant. For any
linked list L we order the elements of L such that if e, e′ ∈ L, then e < e′ if e �= e′

and e appears before e′ in L. In the list order variant, we then let Li be a linked
list and require each element of Li to be the coordinate of exactly one point in R.
When a point is inserted into (resp., deleted from) R a new element is then inserted
into (resp., deleted from) each Li for 1 ≤ i ≤ d. Using a result by Dietz and Sleator
[21] (cited as Theorem 8 in section 5.3) a structure for the comparison order variant
can be turned into a structure for the list order variant with the same performance.
Conversely, a structure for the list order variant can be turned into a structure for
the comparison order variant if we add a term of O(log n) to the update and query
time since such a term allows us to maintain a balanced search tree with the elements
of each Li. Finally, by the use of Theorem 6 cited in section 5.1, a structure for the
list order variant can be turned into a structure for the word order variant if we add
a term of O(

√
log n/ log log n) to the update and query time.

1.2. Our results. We show (Theorem 32) that there exists a constant ω <
1 such that for any constant d ≥ 2 the d-dimensional range reporting problem in
the list order variant can be solved with update time O(logω+d−2 n), query time
O((log n/ log log n)d−1), and space O(n logω+d−2 n). The time bounds are worst case
and the solution is deterministic. In the comparison order variant, the discussions of
section 1.1 imply that the same result holds for d ≥ 3 and that for d = 2 the time per
operation becomes Θ(log n).

For d = 2 we also consider queries of the restricted form (x′
1, x

′′
1 , x

′
2, x

′′
2) ∈ L1 ×

L1 × L2 × L2, where x′
2 is the minimal element of L2. Such queries are called 3-

sided, whereas queries where x′
2 can take any value in L2 are called 4-sided. We

show (Theorem 24) that the 2-dimensional range reporting problem in the list order
variant with 3-sided queries only can be solved with update time O(logω n), query
time O(log n/ log log n), and space O(n). Here also, the time bounds are worst case
and the solution is deterministic.

The data structures of this paper are too complicated and the constants involved
too large to be useful in practice. However, some of the ideas of the paper may still
have practical implications (see section 9 on open problems).

1.3. Relation to other work. The static 2-dimensional range reporting prob-
lem in the comparison order variant can be solved with query time O(log2 n) and
space O(n log n) using range trees. The range tree data structure was independently
discovered by Bentley, Lee, Lueker, Shamos, Willard, and Wong (see [12, 9, 10, 25,
26, 40, 42]). It is commonly recognized that Bentley and Shamos were chronologically
the first authors to publish their results [12, 9]. In a dynamic setting, their data
structure was known to have an O(log3 n) query time and an O(log2 n) update time
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using some version of the Logarithmic update method—sometimes called the static-
to-dynamic transformation [11, 34, 36]. It was observed by Lueker and Willard (first
independently and then in a joint paper [26, 40, 46]) that the query time of this dy-
namic method for range trees could be reduced to O(log2 n) time (with no sacrifice in
update time) using the BB(α) dynamic method. Willard [42] observed how to extend
range trees with “downpointers” so that the query time could be further reduced to
O(log n) time in the static case. The downpointer discovery by Willard [42] should
not be confused with the BB(α) dynamic method (that was jointly coauthored by
Lueker and Willard (see [26, 40, 46])). Because the two discoveries of the BB(α) dy-
namic method and the downpointer were made nearly simultaneously, several articles
reviewing the prior literature have often inadvertently confused them.

Chazelle and Guibas [17] generalized downpointers as well as other ideas into
a data structuring technique called fractional cascading. Mehlhorn and Näher [29]
made fractional cascading dynamic with amortized time bounds on updates. They
used this to develop a data structure for the 2-dimensional range reporting problem
in the comparison order variant with update and query time O(log n log log n) on
a pointer machine. Dietz and Raman [20] removed amortization from the results
of [29] on a RAM. Using range trees the structure from [29] can be extended to
d > 2 dimensions giving update and query time O(logd−1 n log log n) and space usage
O(n logd−1 n). Until now, this was the fastest known solution in terms of time per
operation (even in the n-order variant). Range trees with slack parameter [28, 37]
can be used to get a structure with polylogarithmic update and query time and
with space usage O(n(log n/ log log n)d−1). Until now, no solution with space usage
o(n(log n/ log log n)d−1) and polylogarithmic time per operation was known (see end
of paragraph for very recent work). For d = 2 a solution with linear space usage O(n),
update time O(log n), and query time O(nε) for a constant ε > 0 is known [24]. Also,
for d = 2, if only insertions or deletions (but not both) are supported Imai and Asano
[23] described a solution using space O(n log n) and time Θ(logn) per operation. Very
recently, Nekrich [33] dynamized a structure by Alstrup, Brodal, and Rauhe [3] and
obtained a structure for the d-dimensional dynamic range reporting problem with
update time O(logd n), query time O(logd−1 n), and space usage O(n logd−2+ε) for
any constant ε > 0.

Let U be the update and Q be the query time of an orthogonal range reporting
structure. For word size polylogarithmic in n Alstrup, Husfeldt, and Rauhe [4] showed
that Q = Ω(log n/ log(U log n)). This lower bound holds in the cell probe model of
computation (which is stronger than the RAM model) for the amortized cost per
operation, for 3-sided queries, and for the n-order variant. It follows that with poly-
logarithmic update time, the query time becomes Ω(log n/ log log n). Together with
our new upper bound, this lower bound gives that the time per operation for the 4-
sided 2-dimensional range reporting problem in the list order variant and the m-order
variant is Θ(logn/ log log n) for m ≥ n. As already mentioned our results also imply
a bound of Θ(logn) in the comparison order variant. The time per operation for the
2-dimensional range reporting problem in all the order variants of section 1.1 is thus
now completely understood, and this is the major contribution of this paper.

McCreight [27] developed the priority search tree which solves the 2-dimensional
range reporting problem in the comparison order variant with 3-sided queries only on
a pointer machine. The update and query time of the priority search tree is O(log n)
and it uses space O(n). Willard [45] modified the priority search tree and obtained
a structure using time O(log n/ log log n) for updates and queries in the word order
variant on a RAM. In this paper, we reduce the update time for this problem further
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without increasing the query time or the space usage. Also, we generalize the result
to the list order variant. As did Willard, we use a modified version of the priority
search tree.

A longstanding open problem mentioned by McCreight [27] is whether it is harder
to make a fully dynamic structure supporting 4-sided than it is for 3-sided queries.
This paper together with the lower bound of [4] partly answers this question by
showing that on the RAM the time per operation needed for the two problems is the
same in all the order variants described in section 1.1. Whether the space usage for
structures supporting 4-sided queries can be reduced to linear as for 3-sided queries
is still open. This is even the case in the static case where the best known structures
with polylogarithmic query time and constant time for each reported point use space
O(n logε n). The query time is O(log n) for the comparison order variant [15] and
O(log log n) for the n-order variant [3].

On the pointer machine in the comparison order variant, Chazelle [16] has shown
that any static or dynamic structure for the 2-dimensional range reporting problem
with polylogarithmic query time must use space Ω(n(log n/ log log n)d−1). For d = 2
this bound is matched by a static structure with query time O(log n) and space usage
O(n log n/ log log n) [14]. For d > 2 the best known upper bound with matching space
usage has query time O(logd−1+ε n) for any constant ε > 0 also in the static case [16].

In the input/output (I/O) model of computation with block size B and in 2
dimensions, a structure for 3-sided queries using space O(n/B) disk blocks support-
ing updates in time O(logB n) and queries in time O(logB n + r/B) when r points
are reported is described by Arge, Samoladas, and Vitter [6]. This is optimal in
terms of time per operation in the comparison order variant. For 4-sided queries they
describe a solution supporting updates in time O((logB n) log(n/B)/ log logB n) and
queries in time O(logB n+r/B) when r points are reported. The structure uses space
O((n/B) log(n/B)/ log logB n) disk blocks.

1.4. Outline of paper. After this introduction we continue with preliminaries
in section 2. In section 3 we give various definitions related to 2-dimensional range
reporting. Also, we give an outline of how the results of this paper are obtained.
In section 4 we give probably the most central construction of this paper, and this
construction may be of independent interest. In section 5 we review various well-
known data structures which we use in this paper. Also, we develop some new results
on top of these structures. In section 6 we develop our solution to the 2-dimensional
range reporting problem with 3-sided queries only. In section 7 we develop our solution
to the 4-sided 2-dimensional range reporting problem. In section 8 we extend the
solution of section 7 to higher dimensions. The paper concludes with open problems
in section 9 and acknowledgments.

2. Preliminaries. For the rest of this paper we define [i . . . j] = {k ∈ Z|i ≤ k ≤
j} and we let log denote the base-two logarithm. We will measure space in bits. We
will use logi log n as an abbreviation for (log logn)i. All time bounds are worst case
and all structures are deterministic if not otherwise noted.

A linked list is a list where the elements are doubly linked with pointers. We make
no assumptions about how the elements are laid out in memory. If the list supports
insertions, we can insert a new element in it if we have a pointer to the existing element
the new element should be inserted before or after. If the list supports deletions, we
can delete an element if we have a pointer to it. We assume the elements of a linked
list and the children of a node in a tree are ordered from left to right.
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We will not distinguish between a data structure and the set of elements it con-
tains. As a consequence, |G| is the number of elements in the data structure G and
e ∈ G means that e is an element in G.

A function f is said to be subadditive if for integers m,n ≥ 0 we have f(m) +
f(n) ≤ f(m + n) + O(1). Suppose for each n ≥ 0 we have a data structure Gn

which uses space f(n) bits and which can contain at most n elements. It follows (by
induction on k) that if f is subadditive, then storing the elements of Gn in k different

structures Gn(1), . . . , Gn(k) uses space at most f(n)+O(k) bits, where n =
∑k

i=1 n(i).

We will assume that the number of points which can be contained in the range
reporting structures we ultimately design is bounded by O(N). We note that N was
called n in the introduction and that we have assumed a word size of at least logN
bits. All the data structures we create in this paper are a part of one of our ultimate
structures and can contain at most O(N) elements. When constructing such a data
structure, we often state that we can compute some function f from [0 . . . O(N)] to
[0 . . . O(N)] in constant time using a global lookup table. What we mean by this is
the following. As a part of the ultimate structure the data structure is a part of,
we keep a table of size at most O(N logN) bits which is constructible in time O(N).
The function f can then be computed by performing a constant number of lookups in
this table. We are allowed to assume the existence of such tables by using the global
rebuilding of Overmars [34]. For brevity, we will omit the details in constructing and
looking up in these tables.

3. Definitions and outline of constructions. The constructions of this paper
involve many different kinds of range reporting structures. In section 3.1 we will define
notation which captures almost all the kinds of 2-dimensional structures we look at.
We will use this notation throughout the rest of the paper. Next, in section 3.2 we
will give an outline of the constructions that lead to the results of section 1.2.

3.1. Definitions. We now define what it means for a range reporting structure
R to have type Rτ (tx : nx, ty : ny), where nx and ny are integers, τ ∈ {3, 4}, and
tx, ty ∈ {d, s, s′}. R must have an x-axis R.Lx and a y-axis R.Ly. The rest of this
section is parametrized over a parameter z ∈ {x, y}. Each sentence of this section
that contains a z should then be read twice: first with z = x and then with z = y.
So we can state which axes R must have as follows. R must have a z-axis R.Lz. R
contains elements e ∈ R which are also called points. A point e ∈ R has a z-coordinate
e.z ∈ R.Lz.

If tz = d, we say the z-axis is dynamic and in this case, the z-axis is a linked list
with O(nz) elements. Also, when tz = d we require that each element of R.Lz is the
z-coordinate of exactly one point. If τ = 4, the structure supports 4-sided queries and
if τ = 3, the structure support 3-sided queries as defined in section 1.2. We will make
this more precise in a moment. As an example, a structure with type R4(d :n,d :n)
is a 4-sided 2 dimensional range reporting structure in the list order variant, and the
structure can contain O(n) points.

If tz = s or tz = s′, we say the z-axis is static and in this case, R.Lz is the set
[0 . . .Θ(nz)] (which is not required to be explicitly stored). If tz = s, there can be at
most one point in R with a given z-coordinate; if tz = s′, we have no such restriction.
We require that no two points share the same x- and y-coordinate. More precisely,
we require that e, e′ ∈ M and e.x = e′.x and e.y = e′.y imply e = e′. As an example,
a structure with type R4(s : n, s : n) can contain at most O(n) points, and no two
points can share an x- or y-coordinate. On the other hand, a structure with type
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R4(s′ :n, s′ :n) can contain O(n2) points.

We support updates in the form of inserting a new point into R and deleting an
existing point from R. From our requirements above it follows that if tz = d, we will
then also have to insert an element into and delete an element from R.Lz, respectively.
For x1, x2 ∈ R.Lx and y1, y2 ∈ R.Ly we support a query (x1, x2, y1, y2) which must
report the set {e ∈ R|x1 ≤ e.x ≤ x2 ∧ y1 ≤ e.y ≤ y2}. We say that the points in
this set are in the query region. If τ = 3, we require that y1 in such a query can be
assumed to be the minimal element of R.Ly. An implication of our definitions is that
for τ = 4 structures of type Rτ (s : n,d : n) and Rτ (d : n, s : n) are identical modulo
renaming of axes, while this is not the case for τ = 3.

Suppose R can contain at most n points for n small compared to N . In case
R has static axes, we will sometimes allow updates to be performed in subconstant
time per update by packing several updates into a single word. In this case, the user
must assign to each point e ∈ R a unique identifier or just id e.id of size O(log n)
bits. For each point e inserted into R the user must then in the words describing
the update provide the triple (e.x, e.y, e.id). For each point e ∈ R deleted from R,
the user must, again in the words describing the update, provide the tuple (e.x, e.y).
Finally, in connection with queries the id of the reported points are given to the user
(using constant time per point reported).

We say R has performance (U,Q, S, t) if R supports O(t) updates in time O(U),
has query time O(Q), and has uses space O(S) bits. S is allowed only to depend on
the type of R and not on the number of points stored in R. It follows that if R can
contain n points, we must have S = Ω(n log n). We write (U,Q, S) as an abbreviation
for (U,Q, S, 1).

3.2. Outline of constructions. We now have the terminology to give an outline
of the constructions leading to the results of section 1.2. Our construction consists
of a number of steps which we will refer to during the paper. First, we give on
outline of how we prove Theorem 24. This theorem gives our structure with type
R3(d :N, d :N) proving the second result in section 1.2. All the steps O1 to O4 are
performed in section 6.

O1 First, we create a range reporting structure for the case we have only few
points. For sufficiently small u compared to N (we have u = 2logε N for a
constant ε > 0) the structure has type R3(s :u, s :u), has subconstant update
time, and small query time. The result of this step is in Lemma 20.

O2 We then give the structure of step O1 a dynamic y-axis transforming it into
a structure with type R3(s :u, d:u). What we lose is the subconstant update
time; this structure has only constant update time. The query time is un-
changed. The technique used is to assign a label of size O(u) to each element
on the y-axis and then to relabel elements on insertions. The result of this
step is in Lemma 22.

O3 By creating a fixed-shape tree (actually, a variant of a priority search tree)
with a structure of step O2 in each internal node, we get a structure with
type R3(s :n,d:n) for any n ≥ u. The result of this step is in Lemma 23.

O4 We then create our final structure with type R3(d : n,d : n). This is done
by grouping points on the x-axis into blocks with a polylogarithmic number
of points in each block. The blocks are then numbered respecting the order
of the blocks, and then they are inserted into the structure of step O3 using
these numbers. The result of this step is in Theorem 24.

Next, we give an outline of how we prove Theorem 32. This theorem gives a structure
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with type R4(d : N, d : N) and a similar structure for higher dimensions. This is
the first result from section 1.2. Steps O5 to O10 are performed in section 7, while
step O11 is performed in section 8.

O5 We extend the construction in step O1 to give a structure with type R4(s′ :
u, s :u). As in step O1 this structure has subconstant update time and small
query time. The result of this step is in Lemma 25.

O6 We use the same construction as in step O2 to get a dynamic x-axis. More
precisely, we get a structure with type R4(d :u, s′ :u). The result of this step
is in Lemma 26.

O7 By maintaining a predecessor structure, we transform this into a structure
with a static but long x-axis. The structure we get has type R4(s′ :n, s :u) for
any n, u ≤ n ≤ N . The result of this step is in Lemma 27.

O8 We then use the construction of section 4 to give the structure of step O7
type R4(s′ :n, s′ :u) almost without reducing its query time or increasing its
update time. The result of this step is in Lemma 28.

O9 We then give this structure a dynamic x-axis creating a structure R with
type R4(d : n, s′ : u/ log3 n). This is done by grouping points into blocks of
size O(u) on the x-axis. In each block, we keep a structure of step O6. As
in step O4 we maintain a numbering of the blocks and we insert each block
into the structure of step O8 using the numbers as x-coordinate. The result
of this step is in Lemma 29.

O10 We then construct our structure with type R4(d : n,d : n). This is done by
constructing a variant of a range tree using the structure of step O9 in some
nodes and the structure of step O4 in some nodes of the tree. The result of
this step is in Theorem 31.

O11 Finally, we extend the structure of step O10 to higher dimensions. The result
of this step is in Theorem 32.

4. From few to many points. In this section, we give the construction used
in step O8 in section 3.2. As mentioned earlier, this is probably the most central
construction of this paper. The construction allows us to create a 4-sided range
reporting structure which can contain many points from one that can contain few
points. The construction has applications besides the one in this paper [32, 31], and
for this reason we will give a slightly more general form of the construction than we
need here.

We now define what it means for a data structure G to have type (n, Y,Y), where
n is an integer and Y is a set of subsets of Y . G contains elements e ∈ G, where e.x,
0 ≤ e.x < n, is the position of e and e.y ∈ Y is the height of e. Two different elements
in G are not allowed to have both the same position and height implying |G| ≤ n|Y |.
We are allowed to update G by inserting a new element or by deleting an existing
element. Further, for 0 ≤ i, j < n and q ∈ Y we can ask the query report(G, i, j, q)
which must report the set {e ∈ G |i ≤ e.x ≤ j ∧ e.y ∈ q}. As in the rest of the paper,
the query time is said to be O(Q) if reporting this set takes time O(Q) plus constant
time for each reported point. We will then show the following theorem.

Theorem 1. Suppose we have a data structure G′ with type (n, Y,Y) and the
restriction

e, e′ ∈ G′ ∧ e.y = e′.y =⇒ e = e′.(1)

Suppose further G′ uses space O(S) bits, has query time O(Q), and update time O(U).
Then we can make a structure G with type (n, Y,Y) without the restriction (1) which
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uses space O(Sn log log n) bits, has query time O(Q log log n), and has update time
O(U log log n).

Observe that since G′ can contain |Y | elements we must have S = Ω(|Y | log n).
In this paper, we use only the following corollary to the theorem.

Lemma 2. Suppose there exists a structure with type R4(s′ : n, s : u) and per-
formance (U,Q, S). Then there exists a structure with type R4(s′ : n, s′ : u) and
performance (U log log n,Q log log n, Sn log log n).

Proof. The lemma is just another way of phrasing Theorem 1 if we select Y =
[0 . . . O(u)] and Y = {[y1 . . . y2] | 0 ≤ y1, y2 ≤ O(u)}.

The rest of this section is devoted to the proof of Theorem 1. We need the
following theorem which is shown by van Emde Boas et al. (see [39, 38]).

Theorem 3. Let w be the word size in bits. There exists a data structure called
a VEB which can maintain a collection of n ≤ U ≤ 2w elements having keys in
[0 . . . U ] which uses space O(U logU) bits and supports updates as well as predecessor
and successor queries in time O(log logU).

We create a VEB of Theorem 3 for each element y ∈ Y . Each element e ∈ G is
inserted at position e.x into the VEB for height e.y. Using these VEBs we link all
elements with the same height together in order according to their positions. This
will use space O(n|Y | log n) = O(Sn) and insertions and deletions can be performed
in time O(log log n).

We maintain a data structure Sn which we develop in the following. The data
structure Sn contains triples (e, x, y) ∈ Sn, where e is an arbitrary pointer, x is an
integer in [0 . . . n−1], and y ∈ Y is the height of the triple. We maintain Sn such that
(e, e.x, e.y) ∈ Sn iff e ∈ G. We support a special reportsub(Sn, i, j, q) query which
has the following properties:

1. reportsub(Sn, i, j, q) ⊆ report(G, i, j, q).1

2. If for given y there exists an element e ∈ report(G, i, j, q) with i ≤ e.x ≤ j
and e.y = y, then reportsub(Sn, i, j, q) contains at least one such e.

3. Sn has query time O(Q).
A report(G, i, j, q) query can then be answered as follows. First, we perform a
reportsub(Sn, i, j, q) query. Properties 1 and 3 ensure that we will not use too
much time on this. For each height y ∈ Y for which there exists an element e ∈
reportsub(Sn, i, j, q) with height y we follow the pointers from e maintained by the
VEB for height y to report the rest of the elements with this height. Property 2
ensures that this will report all elements.

We now describe the structure Sn. To avoid tedious details, we assume n has the
form n = 22m

for an integer m ≥ 0. We observe that if n > 2 has this form, then√
n has same form. The structure Sn is somewhat similar to a VEB, and we define it

inductively on n. If Sn = ∅, the recursion stops. Otherwise, we keep an array Sn.min
(resp., Sn.max) indexed by Y . For each y ∈ Y we store the triple (e, x, y) ∈ Sn with
minimal (resp., maximal) value of x in Sn.min[y] (resp., Sn.max[y]) if any. We also keep
an array Sn.bottom indexed by [0 . . .

√
n− 1] where in each entry we store a recursive

structure with type S√
n. We store each triple (e, i, y) ∈ Sn \ (Sn.min ∪ Sn.max) as

(e, imod
√
n, y) in Sn.bottom[idiv

√
n].2 Finally, we keep a single recursive structure

Sn.top also with type S√
n. If for y ∈ Y the structure Sn.bottom[i] contains exactly

one triple (e, x, y) ∈ Sn with height y, we store (e, i, y) in Sn.top. We note that in

1In section 4 we will not distinguish between a query and its answer.
2For integers i and d we define imod d and idiv d to be the unique integers such that 0 ≤

imod d < d and i = d(idiv d) + imod d.
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this case e is stored in both Sn.bottom and in Sn.top. If Sn.bottom[i] contains more
than one triple with height y, we store (e′, i, y) in Sn.top, where e′ is a pointer to the
recursive structure in Sn.bottom[i].

Inserting a triple (e, x, y) into Sn: If Sn contains at most one triple with height
y, we just update Sn.min[y] and Sn.max[y] and we are done. Otherwise, we first
check if (e, x, y) should go into Sn.min[y] (resp., Sn.max[y]), and if this is the case
we interchange (e, x, y) and the triple in Sn.min[y] (resp., Sn.max[y]). Let T be the
structure in Sn.bottom[xdiv

√
n]. We then insert (e, xmod

√
n, y) into T . Let m be

the number of triples in T with height y after this insertion. If m = 1, we insert
(e, xdiv

√
n, y) into Sn.top. If m = 2, there is a triple (e′, xdiv

√
n, y) in Sn.top, and

we replace (see next paragraph) this triple with the triple (e′′, xdiv
√
n, y), where e′′

is a pointer to T . We observe that when we update Sn.top then T has at most two
triples with height y and the update in T is performed by just accessing T.min and
T.max. It follows that we perform only a nonconstant number of updates in at most
one recursive structure.

Replacing a triple (e, x, y) ∈ Sn with the triple (e′, x, y): If (e, x, y) = Sn.min[y]
(resp., (e, x, y) = Sn.max[y]), we just update Sn.min[y] (resp., Sn.max[y]) and we are
done. Otherwise, let T be the structure in Sn.bottom[xdiv

√
n]. First, we replace in T

(e, xmod
√
n, y) with (e′, xmod

√
n, y). Next, if T has exactly one triple with height

y, we replace (e, xdiv
√
n, y) with (e′, xdiv

√
n, y) in Sn.top. As with insertions we

note that we need only to perform a nonconstant number of updates in at most one
recursive structure.

Deleting a triple (e, x, y) from Sn: If Sn has at most two triples with height y, we
just update Sn.min[y] and Sn.max[y] and we are done. Suppose therefore that Sn con-
tains at least three triples with height y. We split into three cases: Case 1: In this case
(e, x, y) = Sn.min[y]. Let (e′, t, y) = Sn.top.min[y], (e′′, l, y) = Sn.bottom[t].min[y]
and i = l + t

√
n. Then (e′′, i, y) is the triple in Sn \ (Sn.min ∪ Sn.max) with height

y which has the minimal value of i. Instead of deleting (e, x, y) from Sn we delete
(e′′, i, y) and afterwards we set Sn.min[y] to (e′′, i, y). Case 2: In this case (e, x, y) =
Sn.max[y] and this case is handled in a symmetric way to Case 1. Case 3: In this
case (e, x, y) is not equal to Sn.min[y] or Sn.max[y]. The case is handled in a way
similar to insertions: Let T be the structure in Sn.bottom[xdiv

√
n]. We then delete

(e, xmod
√
n, y) from T . Let m be the number of triples in T with height y after this

deletion. Suppose m = 1 and let (e′, i, y) be the triple with height y in T . Then there
is a triple (e′′, xdiv

√
n, y) in Sn.top, where e′′ is a pointer to T , and we replace this

triple with the triple (e′, xdiv
√
n, y). If m = 0, we delete (e, xdiv

√
n, y) from Sn.top.

Again we observe that we need only to perform a nonconstant number of updates in
at most one recursive structure.

What remains is to describe how to answer a reportsub query. In order to do
this, we in addition to Sn.min (resp., Sn.max) maintain a structure Sn.min

′ (resp.,
Sn.max

′) with the type of the structure given to Theorem 1. We maintain Sn.min
′

(resp., Sn.max
′) such that Sn.min

′ (resp., Sn.max
′) contains an element e with position

x, height y, and a value e.v = e′ iff Sn.min (resp., Sn.max) contains the triple (e′, x, y).
Answering a reportsub(Sn, i, j, q) query: If i > j or Sn = ∅, we report noth-

ing. Otherwise, let M be the set of pairs {(e.v, e.y) | e ∈ report(Sn.min
′, i, j, q) ∪

report(Sn.max
′, i, j, q)}. We then iterate the following as long as possible: Take

a pair (e, y) ∈ M , where e points to a recursive structure T in our induction on
n, and replace the pair with (e′, y) and (e′′, y) assuming T.min[y] = (e′, x′, y) and
T.max[y] = (e′′, x′′, y). We observe that the time we spend on performing these re-
placements is proportional to |M |. After this, report the elements {e | ∃y.(e, y) ∈ M}.
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If i = 0 or j = n − 1, we stop. Otherwise, if idiv
√
n = j div

√
n, we perform a

reportsub(Sn.bottom[idiv
√
n], imod

√
n, j mod

√
n, q) query. Finally if idiv

√
n �=

j div
√
n, we split the query into the three queries reportsub(Sn.bottom[idiv

√
n],

imod
√
n,

√
n−1, q), reportsub(Sn.top, idiv

√
n+1, j div

√
n−1, q), and reportsub(

Sn.bottom[j div
√
n], 0, j mod

√
n, q). We note that the first and the last of these three

queries are answered by just looking at the min, min′, min, and max′ fields in the re-
cursive structure. To analyze the space usage of Sn we need the following lemma.

Lemma 4. Suppose p is defined by p(0) = 2 and p(h) = 2 + (1 + 22h−1

)p(h − 1)

for h ≥ 1. Then p(h) ≤ (h + 1)22h

.
Proof. We show the lemma by induction on h. For h = 0 the lemma is trivially

true. Suppose h ≥ 1 and that the lemma is true for less h. Then we have p(h) ≤
2 + (1 + 22h−1

)h22h−1

= 2 + h22h−1

+ h22h ≤ 22h

+ h22h

= (h + 1)22h

.
With p as in the lemma we observe that p(log log n) is the number of min, max,

min′, and max′ structures we need and the lemma then bounds the space usage of Sn

to O(Sn log log n) bits as desired.
The running time of the update operations in Sn is O(U log log n). This follows

from the observation that when an update operation operates in more than one re-
cursive structure, it does a nonconstant number of updates in at most one of these.
A similar argument shows that the Sn has query time O(Q log log n) concluding our
proof of Theorem 1.

5. Lists, trees, and predecessor. In sections 5.1 to 5.5 we review various well-
known data structures for lists, trees, and the predecessor problem. In sections 5.6
and 5.7 we develop some new results based on some of these well-known structures.

5.1. The predecessor problem. In this section we review various data struc-
tures for the predecessor problem. We have already cited one such structure, namely
the VEB of Theorem 3. Combining the hashing scheme of [22] with Willard [41] we
get the following structure.

Lemma 5. If we allow randomization, the space usage of Theorem 3 can be
reduced to O(n logU) bits. The update time is then with probability 1 − n−c for any
desired constant c > 0.

Building on Beame and Fich [8], Andersson and Thorup [5] have shown the fol-
lowing theorem.

Theorem 6. There exists a data structure called a BFAT which can main-
tain a collection of n elements having keys in [0 . . . U ]. The structure uses space
O(n logU) bits and supports updates as well as predecessor and successor queries in
time O(min(

√
log n/ log log n, log log n log logU/ log log logU)). U is called the uni-

verse size and we require U = 2O(w), where w is the word size in bits.
We will take the time usage of Theorem 6 to be O(log2 logU) (recall that we write

logi logU for (log logU)i). This is possible since we will always have n ≤ U and thus
log log n log logU/ log log logU ≤ log2 logU .

5.2. WBB trees. In this section we review WBB trees (weight balanced B-
trees). Variants of these trees have been described by Willard [43], Dietz [19], and
Arge and Vitter [7]. The description here is similar to the one in [7], where more
details can be found.

Like an (a, b)-tree a WBB tree is a multibranching search tree where (1) elements
are kept in the leaves, (2) keys to guide the search are kept in internal nodes, and
(3) all leaves have the same depth (and height 0). We support updates to the tree in
the form of insertions (not deletions) of elements. We define the weight of an internal
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node as the number of elements in the leaves descendant to the node. The tree is
parametrized over a branching parameter d ≥ 8 and a leaf parameter k ≥ 1. A leaf
node must contain between k and 2k − 1 elements. When an insertion makes a leaf
node contain 2k elements it is split into two leaves, each with k elements. An internal
node v at height h must have weight between kdh and 4kdh, except if v is the root, in
which case we require it only to have weight at most 4kdh. When an insertion gives
v weight exactly 3kdh a key in v is marked such that there is at least kdh elements
descendant to v both to the left and to the right of the marked key. Such a key exists
because (k3dh − k4dh−1)/2 = kdh(3 − 4/d)/2 ≥ kdh. When v gets weight exactly
4kdh it is split at the marked key. When a node w (leaf or internal) splits, a new child
and a new key are inserted into the parent of w. If w is the root node, a parent of w
is first created as new root. The following lemma gives central properties for WBB
trees.

Lemma 7. Let T be a WBB tree with branching parameter d, leaf parameter k,
and n elements. Then we have the following:

1. A leaf contains between k and 2k − 1 elements.
2. Internal nodes have degree O(d).
3. T has height at most min(logn,O(log n/ log d)).

Further, let v ∈ T be an internal node at height h ≥ 1. Then we have the following:
4. At most one key in v is marked and when v splits it is at the marked key.
5. There are at most 4kdh and at least kdh−1 elements descendant to v.
6. Exactly kdh insertions are performed in leaves descendant to v from the time

when a key in v is marked until the time when v splits.
As observed in [7], in WBB trees we can maintain secondary structures in each

internal node v containing all elements in leaves descendant to v and at the same
time have worst case time performance on updates: When a key in v is marked, we
can start to build the secondary structures for the two nodes v will eventually split
into. Each time an update is performed in a leaf descendant to v we move a constant
number of elements to the two new secondary structures. Items 5 and 6 in Lemma 7
ensure that we have sufficient time to do this and item 4 of the lemma ensures that
we know which elements to put into which of the two new secondary structures. We
finally remark that we can assume there are pointers between an internal node and
its children.

5.3. The list order problem. The following theorem is shown by Dietz and
Sleator [21]. This theorem was mentioned in the introduction as the theorem allowing
us to transform a structure for the list order variant into a structure for the comparison
order variant.

Theorem 8. There exists a linear sized data structure for a linked list supporting
deletion and insertion of list elements in constant time such that we for given list
elements e and e′ in constant time can determine if e < e′.

5.4. The online list labeling problem. We define the online list labeling
problem as follows (other similar definitions are used in other papers; see, e.g., [47]).
Let L be a linked list with at most n elements supporting insertions and deletions of
elements. We must for each element e ∈ L maintain an integer label e.label of size
O(n) such that for e, e′ ∈ L,

e < e′ =⇒ e.label < e′.label.(2)

An algorithm solving this problem is allowed to change the label of (relabel) elements
when an element is inserted into or deleted from L. We require (2) to be maintained
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during this relabeling. If the algorithm relabels at most m elements on each insertion
into or deletion from L, we say that the algorithm has relabeling cost m. The following
theorem is shown by Willard [44].

Theorem 9. There exists an algorithm for the online list labeling problem with
relabeling cost O(log2 n) and space usage O(n log n) bits, which uses time O(log2 n)
for insertions and deletions.

5.5. List block balancing. The following theorem is proved by Dietz and
Sleator [21, Theorem 5]. Recall that the Harmonic numbers Hn =

∑n
i=1 1/i sat-

isfy Hn = Θ(logn).
Theorem 10. Suppose x1, . . . , xn are variables which are initially zero. Iterate

the following two steps. (1) Add a nonnegative value to each xi such that
∑n

i=1 xi

increases by at most one. (2) Set a largest xi to zero. Then for all i, 1 ≤ i ≤ n, we
always have xi ≤ 1 + Hn−1.

The next lemma follows directly from this theorem.
Lemma 11. Suppose k ≥ 1 and that C is a collection of at most n sets and that

initially C = {∅}. Iterate the following two steps. (1) Add at most k elements to the
sets of C. (2) If M ∈ C is a largest set in C and |M | ≥ 5k(1 + Hn−1), then split M
into two sets each of size at least 2k(1 + Hn−1) and let these replace M in C. Then
for all M ∈ C we always have |M | ≤ 6k(1 + Hn−1).

We now describe a general technique used in [21] which we will call list block
balancing with block size s ≥ log3 n. We use this technique as a part of the steps O4
and O9 in section 3.2 where we group elements of an axis into numbered blocks and
use this to convert a static axis to a dynamic axis.

Let L be an initially empty linked list in which at most O(n) updates in the form
of insertions and deletions can be performed. We want to maintain a grouping of the
elements of L in blocks of size at most s respecting the order of the elements. Further,
we want to maintain an integer label of size O(n/s) for each block such that labels
are always strictly increasing over the blocks.

Assume first that only insertions and not deletions can be performed in L. Define
k = s/(6(1 + Hn−1)) and note that k = Θ(s/ log n). When a block contains 4k(1 +
Hn−1)� elements, we mark the middle position of the block. For every kth insertion
in L we take (in constant time) a block with most elements, and if it has 5k(1+Hn−1)
elements or more, we split it into two at the marked position. Lemma 11 gives that
no block becomes larger than s. We use Theorem 9 to assign labels to the blocks.
Each block split requires O(log2 n) relabelings and we distribute this work over the k
insertions until the next split. It can be seen that we have to relabel a block for every
Ω(k/ log2 n) = Ω(s/ log3 n) insertion in L. We note that from the time a position
in a block is marked until the block is split, Ω(s) insertions are performed in the
block. This allows us to move all existing elements of the block into the two new
blocks and possibly insert them into some data structure maintained in each block.
This includes maintaining pointers between a block and the elements it contains. We
finally describe how to handle deletions of elements in L. We maintain a list L′ which
has L as a sublist. We never delete elements from L′, but when we insert an element
in L we also insert it in L′ such that L remains a sublist of L′. We then use the
algorithm just described to maintain a block division of L′ which induces the wanted
block division on L (some blocks in L may become empty). The following lemma
gives central properties for the list block balancing technique.

Lemma 12. Let L be an initially empty linked list in which at most O(n) updates
in the form of insertions and deletions can be performed. If we use list block balancing
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with block size s ≥ log3 n on L, then we have the following:
1. Each block has size at most s.
2. Each block has a label of size O(n/s). Further, Ω(s/ log3 n) insertions are

performed in L between each relabeling of a block.
3. At most one position in each block is marked, and when a block is split it is

at the marked position.
4. At least Ω(s) insertions are performed in a block from the time it is marked

until it is split.

5.6. A variant of the online list labeling problem. In this section we con-
sider a variant of the online list labeling problem defined in section 5.4 where the
elements are relabeled in subconstant time per element. This is the basis for the steps
O2 and O6 in section 3.2 where we convert a static axis to a dynamic axis by relabeling
coordinates. In the variant we consider, the user must assign to each element e ∈ L a
unique id of O(log n) bits when e is inserted into L, and this id cannot be changed as
long as e remains in L. Further, we do not require the labels to be explicitly stored
in the elements of L. Instead, we require that we can calculate the label of a given
element in constant time. A similar approach was used by Dietz and Sleator [21] in
their proof of Theorem 8. Finally, when an element is inserted into or deleted from
L, the user must be given an array of triples describing the relabeling taking place
because of the insertion or deletion. A triple (i, l, l′) in this array means that the
element with id i and current label l is given label l′. For technical reasons we allow
only a total of O(n) updates in the form of insertions and deletions to be performed
in L.

When n is sufficiently small compared to N (that is, if we have a sufficiently large
word size and can use a sufficiently large global lookup table), the following lemma
gives a way to perform the relabeling caused by an insertion or deletion in constant
time. In order to be able to do this, we pack the array describing the relabeling into
a single word.

Lemma 13. If log4 n ≤ log1−ε N for a constant 0 < ε < 1, the described variant
of the online list labeling problem can be solved in constant time per insertion in and
deletion from L, with a relabeling cost of O(log3 n) and a space usage of O(n log n)
bits.

Proof. We use list block balancing with block size log3 n on L. The label assigned
to an element e ∈ L in block b consists of the label of b multiplied with log3 n plus
the rank e has in b. This assignment of labels clearly fulfills (2) in section 5.4, and
because blocks have labels of size O(n/ log3 n) the labels assigned to elements in L
have size O(n). Further, we need only to relabel O(1) blocks for each insertion in
L, and since blocks have size at most log3 n we get a relabeling cost of O(log3 n) as
claimed.

For each block we maintain an array with the ids of the elements in the block
in order. We store this array in a single word which is possible because it takes up
only O(log4 n) bits. These arrays can be used to find the label of a given element in
constant time using a global lookup table. Also, using these arrays we can find the
array of triples in constant time to return to the user because of an update.

5.7. The colored predecessor problem. In this section we consider the col-
ored predecessor problem which we define as follows. Let L be a linked list with O(n)
elements into which new elements can be inserted and from which existing elements
can be deleted. Further, the user must assign a color to an element when it is inserted
into L, and the user can also change the color of an element in L. Given an element
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e ∈ L and a color c, we must be able to find the predecessor of e in L with color c.
Dietz and Raman [20, Lemma 4.2] have shown the following theorem.

Theorem 14. With two colors the colored predecessor problem can be solved in
time O(log log n) for updates and queries and space O(n log n) bits.

Using an extension of the techniques in [20] we show the following theorem, where
we will use only the deterministic result. The theorem may be of independent interest,
which is why we also provide the randomized result.

Theorem 15. The colored predecessor problem without restriction on the number
of colors can be solved in space O(n log n) bits and in time O(log2 log n) for updates
and queries. Alternatively, if we allow randomization, the time usage can be reduced
to O(log log n) and the update time is then with probability 1 − n−c for any desired
constant c.

Proof. We first describe the randomized solution. The solution builds on ideas
from the list block balancing technique. We first assume we can only update L by
inserting a new element. Define k = log2 n. For each color c we divide the elements
of L with color c into blocks with color c containing at most 6k(1 + Hn−1) elements
respecting the order of the elements. We store the elements of each block in a balanced
binary search tree. We mark the first element of each block b with color c except if
b is the first block in L with color c. We insert all elements of L into the structure
of Theorem 14 using marked and not-marked as the two colors. We use Theorem 9
to assign a label e.label to each marked element e ∈ L. We create a predecessor
structure Pc of Lemma 5 for each color c, and each marked element e ∈ L with color
c is inserted into Pc at position e.label.

Answering queries: Suppose we want to find the predecessor of e ∈ L with color c.
We first use time O(log log n) to find the marked predecessor e′ of e in L. Assuming
first that e′ exists, we use e′.label to perform a predecessor query in Pc which will
identify a block b in time O(log log n). If e′ or b does not exist, we take b to be the
first block in L with color c. The block b will contain the element we are looking for
(provided it exists), and this element can then be found in time O(log log n) using
the binary search tree with the elements of b. We need to be able to compare two
elements in L in constant time to do this, but this can be done using Theorem 8. We
conclude that the total query time becomes O(log log n).

Inserting an element e with color c in L: First, by performing a query as just
described, we identify the strict predecessor e′ of e with color c. We then insert e
in the block containing e′. If e′ does not exist, we insert e into the first block with
color c. So far, we have used O(log log n) time. We observe that e′ will never become
the first element of a nonfirst block with color c; so far we do not need to remark
elements in L because of the insertion. We now describe how to ensure that blocks
do not become too big. Every time we have inserted k elements in L, we take (in
constant time) a largest block, and if it has at least 5k(1 + Hn−1) elements we split
it in O(log log n) time into two blocks, each with at least 2k(1 + Hn−1) elements.
Lemma 11 ensures that no block becomes too big. Splitting a block will mark a new
element of L, and thus the structure of Theorem 9 requires us to change the label
of O(log2 n) marked elements. We distribute this work over the following k = log2 n
insertions in L performing O(1) relabelings on each insertion. When relabeling a
marked element with color c′ we also update the structure Pc′ to reflect the new label
of the element. Lemma 5 then gives that we get an update time of O(log log n) with
probability 1 − n−c for any desired constant c > 0.

We now support that the user can dot an element e ∈ L in time O(log log n).
When answering queries we must then ignore the dotted elements. We modify the
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binary search tree in each block such that we can identify the predecessor of an
element among the nondotted elements. This can be done by writing in each node if
the subtree rooted in that node contains a nondotted element. Next, for each color
c we modify the structure Pc such that we can perform a query among the blocks
which contain at least one nondotted element. Using these modified structures we
can answer queries as before with one remark. When we have searched in a block b
we may discover that the predecessor e′ of the query is contained in the predecessor
block b′ of b which contain at least one nondotted element. But we can find b′ and
then e′ in time O(log log n).

In order to make the data structure for L we do as in the list block balancing
technique. We maintain a list L′ using the data structure just described such that
the nondotted elements of L′ correspond to the elements of L in the same order. We
can then answer queries in L by asking in L′. When we insert an element in L we
also insert a corresponding element in L′. When we delete an element from L we dot
the corresponding element in L′. When we change the color of an element in L we
dot the corresponding element in L′ and insert a new corresponding element with the
new color in L′. Using global rebuilding [34] we can ensure that no more than O(n)
updates are performed in L′.

Finally, for the deterministic result, we just use a BFAT of Theorem 6 as Pc

instead of the predecessor structure of Lemma 5.
For readers familiar with dynamic fractional cascading [17, 29, 20] we note that we

will use Theorem 15 in situations where dynamic fractional cascading has traditionally
been used. The reason for this is that if we use dynamic fractional cascading, the
catalog graph will get high degree, leading to bad performance in the known data
structures for dynamic fractional cascading.

6. Structures supporting 3-sided queries. The main purpose of this section
is to perform the steps O1 to O4 in section 3.2, thus giving our final 3-sided range
reporting structure. The data structure we develop will be based on the priority search
tree of McCreight [27] and on extensions of the tree similar to the ones described by
Willard [45] and Arge, Samoladas, and Vitter [6]. This is combined with the use of
buffers in the style of Brodal [13].

This section is organized as follows. In section 6.1 we review priority search trees
with the extensions of [45, 6]. In section 6.2 we describe a dictionary for points and
in section 6.3 we describe how this dictionary can be transformed into a structure
similar to the priority search tree of section 6.1. In section 6.4 we describe a way to
implement the structure in section 6.3 for few points giving the structure of step O1.
Also, we give this structure a dynamic y-axis performing step O2. In section 6.5
we look at 3-sided structures with many points first performing step O3 and finally
step O4.

6.1. Priority search trees. The following theorem is essentially shown in [27].
Theorem 16. There exists a structure with type R3(d :n,d:n) and performance

(log n, log n, n log n).
The structure of the theorem is called a priority search tree. We will not show

the theorem here. Instead, we will describe a way to make a structure R with type
R3(s : n, s : n) or R3(s : n,d : n), and we will also refer to this structure as a priority
search tree. The structure uses ideas from [27, 45, 6], where more details can be
found. We defer the exact implementation details to later sections. We span a tree T
with degree d ≥ 2 and thus height O(log n/ log d) over R.Lx. For each node v ∈ T we
maintain a set v.P such that the following invariants are fulfilled.
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j1. The sets v.P for v ∈ T are disjoint and their union are the points of R.
j2. If v ∈ T is a nonroot ancestor of w ∈ T and w.P is nonempty, then v.P is

nonempty.
j3. If v ∈ T is an ancestor of w ∈ T and pw ∈ w.P and pv ∈ v.P , then pv.y ≤

pw.y.
j4. If v ∈ T and p ∈ v.P , then v is an ancestor of the leaf with p.x.

Observe that given the points of R and the values |v.P | for all v ∈ T there is at most
one way to select v.P for v ∈ T . We define for each internal node v ∈ T the set v.C
as ∪w child of vw.P . Suppose we are given a query (x1, x2, 0, y2), where 0 is the first
element in R.Ly. Let M ⊆ T be the set of internal nodes which are an ancestor to
a leaf with x1 or x2 and note that |M | = O(log n/ log d). The query is answered as
follows:

q1. For the root v ∈ T report the points from v.P inside the query region.
q2. Set M ′ = M .
q3. While M ′ is not empty, do the following:

q3.1. Remove a node v from M ′.
q3.2. Report the points from v.C which are inside the query region.
q3.3. Add to M ′ the internal nodes u ∈ T \M for which a point from u.P was

reported in item q3.2.

Lemma 17. We have the following:

1. All points of R inside the query region are reported.
2. All the descendant leaves to the nodes added to M ′ in item q3.3 are between

x1 and x2 on R.Lx.
3. If item q1. and q3.2 can be handled in time O(1 + r) when r points are

reported, then the query time in R becomes O(log n/ log d).

We now describe how to update R. We insert a point p into R by inserting it into
v.P for the root v of T . If this insertion breaks invariant j3 or if v.P has become too
big (according to some additional requirements we may have imposed), we take the
point with the largest y-coordinate in v.P , remove it from v.P , and insert it recursively
into w.P for the child w of v such that invariant j4 is preserved. We delete a point by
deleting it from the set v.P in which it is located. If this deletion breaks invariant j2
or if v.P becomes too small (again, according to some additional requirements), we
take the point p′ from v.C with minimal y-coordinate, add p′ to v.P , and recursively
delete p′ from the set w.P in which it is located (w will be a child of v).

6.2. A dictionary for points. In this section we describe a dictionary for
points. Besides supporting insertion of new points, it supports deletion and lookups
of existing points given their x-coordinate. The dictionary uses ideas from [13]. In
section 6.2 we modify the dictionary to support 3-sided queries in the style of sec-
tion 6.1. We require updates to be performed such that two different points which
are in the dictionary at the same time do not have the same x-coordinate. Further,
it is not legal to perform a delete operation on a point which is not in the dictionary.

Our dictionary is parametrized over three parameters d ≥ 8, g, and r, where
g ≥ r. We create a WBB tree T with branching parameter d and leaf parameter
g. We keep pebbles in the nodes of T . Each pebble represents a point and there
exists three kinds of pebbles: light pebbles, insert pebbles, and delete pebbles. Light
pebbles are green, while insert and delete pebbles are red. We think of light pebbles
as representing contained points and of red pebbles as representing updates which
are not fully completed. The internal nodes can contain only red pebbles and leaf
nodes can contain only green pebbles. It is important to distinguish between pebbles
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and elements in the WBB tree—the former are used to describe which points the
dictionary contains, while the latter are used to balance the tree and to maintain keys
to guide the search in internal nodes. For h ≥ 1 define

mh = r

(
(d− 2)/(d− 1) +

∞∑
n=h

1/dh

)

= r(dh − 2dh−1 + 1)/(dh − dh−1).

Because h ≥ 1 we have mh ≤ r. The following procedure describes how to perform r/3
updates to the dictionary where pebbles describing the updates are added in item u3.
In this section we do not add any pebbles in item u2 or item u4.1, but we allow it to
be done to support our modifications in section 6.3.

u1. Set v to the root of T and h to the height of v.
u2. Add at most r/dh red pebbles to v.
u3. Add at most r/3 red pebbles to v representing the updates.
u4. While v is not a leaf, do the following:

u4.1. Add at most r/dh red pebbles to v.
u4.2. Take mh red pebbles from v (or as many as there is if there is fewer)

and move them (one at a time) to the children of v as determined by
their x-coordinate and the keys to guide the search in v.

u4.3. Set v to the child of v which has most red pebbles and set h = h− 1.
Note that in case there is more than mh red pebbles in v in item u4.2 we do not
specify which pebbles to take. When a pebble enters a node v ∈ T we apply the
following items exhaustively:

a1. If v contains a delete pebble p and an insert pebble p′ such that p deletes p′,
then remove both p and p′.

a2. If v is a leaf and contains an insert pebble p, then (1) convert p to a light
pebble and (2) if there is no element with the same x-coordinate as p in the
WBB tree, insert such an element into v.

a3. If v is a leaf and contains a delete pebble p, then remove the light pebble in
v that p deletes (which we know is there).

When a node v is split the red and green pebbles are distributed to the two new
nodes as determined by their x-coordinate and the marked key in v (if v is an internal
node) or by their x-coordinate and the elements in v (if v is a leaf). Note that we can
perform a lookup in the dictionary by looking at the pebbles in the nodes between a
leaf and the root of T . We have the following lemma.

Lemma 18. At item u1, a maximal set of siblings at height h ≥ 1 contains at
most (d− 1)mh red pebbles.

Proof. First, observe that we can ignore splitting of nodes since they do not
increase the number of pebbles in a maximal set of siblings. Further, there is no
problem when a new root is created because it will contain no red pebbles. Consider
the root node and assume it is not a leaf. Using d ≥ 8 it is easy to show that
r/3 + 2r/dh ≤ mh, giving that all pebbles added to the root in items u2, u3, and
u4.1 are removed again in item u4.2. Finally, consider a maximal set S of nonroot
nonleaf siblings with height h. Assume by induction that the nodes in S contain at
most (d− 1)mh red pebbles. Assume further that they receive at most mh+1 pebbles
from their common parent in item u4.2 and then receive additional, at most r/dh,
pebbles in item u4.1. The total number of red pebbles added to the nodes in S is
then at most mh+1 + r/dh = mh. Let s ≤ dmh be the total number of pebbles in the
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nodes of S after this and let v be the node in S with most red pebbles selected in item
u4.3. There must be at least s/d pebbles in v which are then removed in item u4.2.
After this the nodes in S contain at most s(1− 1/d) ≤ dmh(1− 1/d) = (d− 1)mh red
pebbles.

The following lemma gives central properties for the maintained structure.
Lemma 19. We have the following:
1. The execution of items u1 to u4 inserts at most r elements in T and this is

done in a set of leaves which are siblings.
2. The space usage of T and its contained pebbles are linear in the number of

insertions.
3. A leaf never contains more than 2g green pebbles.
4. A set of siblings never contains more than dr red pebbles.

Proof. Items 1 and 2 are immediate. Item 3 follows from the fact that in each
leaf there is an injective mapping from the green pebbles in the leaf to the elements of
the WBB tree in the leaf. Finally, item 4 is true for leaf nodes since they contain no
red pebbles. For internal nodes, item 4 is just a weak version of Lemma 18 because
mh ≤ r.

6.3. A structure supporting 3-sided queries. We now make a number of
modifications to the structure of section 6.2 in order to make it support 3-sided queries
in the style of section 6.1. Initially, we will ignore marking of keys and splitting of
nodes in T . As in section 6.2 two different points in the structure at the same time
cannot have the same x-coordinate and in this section they cannot have the same
y-coordinate either. We will still use insert and delete pebbles to represent updates
which have not been fully completed. Also, the leaf nodes can still contain only light
pebbles. However, we will now store both green and red pebbles in the internal nodes
of T such that the green pebbles constitute a priority search tree of section 6.1. We
will keep the following invariant which corresponds to invariant j3.

i1. The y-coordinate of a green pebble in a node v may not be larger than the
y-coordinate of any pebble below v in T .

For each internal node v ∈ T we define a number igreen(v) which we think of as the
number of green pebbles we would like to be in v (there may be less but not more).
If the root v ∈ T is not a leaf, we require

0 ≤ igreen(v) ≤ 2g(3)

and for other internal nodes for v ∈ T we require

g ≤ igreen(v) ≤ 2g.(4)

As described below, a green pebble may be deleted by a red pebble, thus bringing the
number of green pebbles in v down below igreen(v). For this reason we introduce a
new red pebble called a poll pebble which basically says that there should be a green
pebble which is not there. Whenever a poll pebble is moved from a node v to one of
its children w in step u4.2, we move a green pebble from w to v. This is made more
precise below. We maintain the following invariant.

i2. Suppose v is an internal node and let vo denote the number of poll pebbles
and vg the number of green pebbles in v. Then we require igreen(v) = vg+vo.

It may happen that we have no light pebble to move from w to v because all light
pebbles in that part of the tree have either been deleted or moved up higher in the
tree. For this reason we also introduce a new green pebble which we call a heavy
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pebble. A heavy pebble has no x-coordinate but has a y-coordinate larger than all
nonheavy pebbles. According to invariant i1, a heavy pebble will never be above a
light pebble in the tree; thus the names heavy and light pebble. When we consider
splitting of nodes in T below, we relax invariant i1 such that this is not always true.

We now describe what happens when a red pebble enters a node v ∈ T in item
u4.2. We apply the following items exhaustively in addition to items a1 and a2 above
(items a5 and a6 make item a3 superficial):

a4. Let p be an insert pebble in v and let p′ be a green pebble in v with the largest
y-coordinate among the green pebbles in v. If p has a smaller y-coordinate
than p′, then (1) convert p to a light pebble; (2) if p′ is a light pebble, convert
it to an insert pebble; and (3) if p′ is a heavy pebble, remove it.

a5. If v contains a delete pebble p and a light pebble p′ such that p deletes p′,
then remove p and p′ and add a poll pebble to v.

a6. If v is a leaf, remove any poll pebble from v.
The following item describes how a poll pebble p in a node v is moved to a child of
v in item u4.2. This does not follow from the description so far because poll pebbles
have no x-coordinate.

m1. Let p′ be the green pebble with the smallest y-coordinate among the green
pebbles stored in the children of v if it exists. If p′ exists, interchange p and
p′. If p′ does not exist, add a heavy pebble to v and remove p.

We note that items a4, a5, a6, and m1 never increase the number of red pebbles in
a node. Thus, the described pebble game is indeed just a variant of the game of
section 6.2 and all the lemmas of section 6.2 still hold. Also it can be checked that
invariants i1 and i2 are never broken.

The described structure can answer 3-sided queries as in section 6.1 in the fol-
lowing sense. In items q1 and q3.2 we report the points represented by the insert
and light pebbles in the node. However, we do not report a point which is deleted
by a delete pebble above it. We can avoid this as follows. First, we implement M ′

as a stack so that T is traversed in depth-first order. Next, while we traverse T we
maintain the set of delete pebbles contained in the nodes which are ancestors to the
node we are currently visiting. We then report a point only if it is not in this set.
In order for the algorithm to work, we must maintain some variant of invariant j2.
Essentially this is done by ensuring that all internal nonroot nodes v ∈ T contain at
least one green pebble which is not deleted by a delete pebble above it. We handle
this issue in detail in section 6.4.

We now describe how to handle marking of keys and splitting of nodes in T
and how to select igreen(v) for internal nodes v ∈ T . If v does not have a marked
key, we select igreen(v) = 0 if v is the root and igreen(v) = g otherwise. Assume
for the rest of this paragraph that v is an internal node with a marked key. Each
time we pass though v in item u2 or item u4.1 we increase the value of igreen(v) with
min(2g−igreen(v), r/dh) and we add the same amount of poll pebbles to v to preserve
invariant i2. Since each pass through v adds at most r elements to T below v (item 1
of Lemma 19) it follows from property 6 of Lemma 7 that when v is split into v′ and
v′′, we have igreen(v) = 2g. We then set igreen(v′) = igreen(v′′) = g. In the following
we modify our structure such that invariant i2 and a relaxed version of invariant i1
are preserved in v′ and v′′. We will say a child of v is a child of the left (resp., right)
side of v if the the keys of the child are all smaller (resp., larger) than the marked
key in v. Similarly, we will say a pebble is in the left (resp., right) side of v if it has
an x-coordinate and if this coordinate is smaller (resp., larger) than the marked key
in v. We will put each heavy pebble in the left or right side of v, and this determines
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where the pebble should go when v splits. We will replace invariant i1 with invariant
i1’ and i1”. These variants are weaker than invariant i1. Also, we will introduce a
new invariant, i3.

i1’. The y-coordinates of the g green pebbles (or all of them if there are less than
g green pebbles) in a nonroot node w with smallest y-coordinates may not
be larger than the y-coordinate of any pebble below w in T .

i1”. If an internal node v has a marked key, the y-coordinate of a green pebble
in the left (resp., right) side of v must not be larger than the y-coordinate of
any pebble below the left (resp., right) side of v.

i3. If an internal node v has a marked key, there can be at most g green pebbles
in each side of v.

Invariant i1’ is sufficient to ensure we can use the same query algorithm as outlined
above. Further, it can be checked that invariants i1” and i3 allow us to preserve
invariant i1’ when we split a node. Inspired by invariant i3 we will say the left (resp.,
right) side of v is full if v has a marked key and the left (resp., right) side of v has g
green pebbles.

We now modify the way we maintain our structure in order to preserve these
modified invariants. First, we modify the way we select p′ in item m1 as follows. If
a side of v is full, we select p′ to be the green pebble with the smallest y-coordinate
among the green pebbles stored in the children of the nonfull side of v. Further, if we
add a heavy pebble in item m1, we do it to a nonfull side. Next, we modify the way we
select p′ in item a4 as follows. If p is on a full side of v, we let p′ be a green pebble in v
with the largest y-coordinate among the green pebbles in v on the same side of v as p.
With these modifications it can be checked that the modified invariants are preserved.

6.4. Few points. The proof of the following lemma gives a way to implement
the structure from section 6.3 if there are few points. This is the structure from
step O1 in section 3.2.

Lemma 20. Suppose d ≥ 8 and that 1 ≤ t ≤ (log1−ε N)/(d2 log3 u) for a constant
0 < ε < 1. Then there exists a structure with type R3(s : u, s : u) and performance
(1, 1 + log u/ log d, u log u, t).

Proof. As a basis for the structure we use the tree T from section 6.3 with the
same value of d as in the lemma here.

We store as a part of each insert and light pebble the point it represents including
x- and y-coordinates using O(log u) bits for each pebble. Next, we store as a part of
each delete pebble the coordinates of the point it deletes, again using O(log u) bits.
Poll and heavy pebbles do not have any associated information, so any pebble can be
stored using O(log u) bits. Lemma 19 item 2 now gives that the space usage of T is
linear in the number of insertions performed. Using global rebuilding of [34] we can
get space usage O(u log u) bits and, further, Lemma 7 property 3 gives that we can
keep the height of T on at most min(2 log u,O(log u/ log d)) (we use 2 log u instead of
log u because we use global rebuilding on T ).

In order to get constant update time, we modify the structure as follows. We
maintain a set U of insert and delete pebbles. The user can then perform t updates by
adding t pebbles to U (using a global lookup table to convert them to the appropriate
format). Each time the user does this we execute a constant number of steps in item
u4. In item u3 we take all pebbles in U and insert them into the root of T . Since T
has height O(log u) there are not too many pebbles in U if

t log u ≤ r.(5)
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We will select g and r such that the following properties are fulfilled.
k1. All pebbles in a maximal set of siblings of T can be stored in O(log1−ε N)

bits in a single word.
k2. The maximal size of U plus the maximal number of red pebbles on a root

path is larger than the minimal number of green pebbles in an internal node
fulfilling invariant i1’.

Property k1 together with a global lookup table of size 2log1−ε N allows us to perform
item u4.2, item u4.3, and the corresponding updates in the involved nodes in constant
time. Updating T will take constant time since we have just argued it consists of a
constant number of steps, each taking constant time. Note that in order for this
to work, it is central that we explicitly store the x- and y-coordinates as a part of
the insert, delete, and light pebbles. Property k2 together with invariant i1’ implies
that any internal node v contains a green pebble p which is not deleted by a delete
pebble above it and such that all green pebbles in nodes descendant to v have a y-
coordinate not smaller than p (p may be a heavy pebble). This essentially ensures that
invariant j2 is fulfilled. More precisely it ensures that the query algorithm outlined in
section 6.3 reports all points inside the query region. Also, using a global lookup table

with size 2log1−ε N we can execute items q1 and q3.2 in time O(1 + r) when r points
are reported. Lemma 17 item 3 then gives that we get query time O(log u/ log d) in T .

We now discuss how to select g in order to fulfill property k1. Because g ≥ r,
Lemma 19 items 3 and 4 together with (3) and (4) implies that a set of siblings never
contains more than 3dg pebbles. Since each pebble uses O(log u) bits, property k1 is
fulfilled if dg log u ≤ log1−ε N . So we select

g = (log1−ε N)/(d log u).(6)

We then describe how to select r in order to fulfill property k2. Using Lemma 19
item 4 the number of green pebbles in an internal node is at least g − dr. If we also
use the fact that T has height at most 3 log u (it also has height at most 2 log u, but
we use 3 log u to support the modifications in the proof of Lemma 25), the number of
red pebbles on a root path plus the number of pebbles in U is at most r + 3dr log u.
So we require r+ 3dr log u < g− dr which is fulfilled if 4dr log u ≤ g. So based on (6)
we select

r = (log1−ε N)/(4d2 log2 u).(7)

Equation (5) together with (7) now gives our requirement for t.
The reader may observe that a tree with fixed shape instead of the more compli-

cated WBB tree appears to be sufficient in order to prove Lemma 20. The reason we
use a WBB tree is the proof of Lemma 30.

In order to perform step O2 in section 3.2 we need to give the structure of
Lemma 20 a dynamic y-axis. Since the same construction is needed in step O7 we
prove the following general lemma which can do this transformation.

Lemma 21. Suppose log4 u ≤ log1−ε N for a constant 0 < ε < 1 and there
exists a structure with type Rτ (s : u, s : u) (resp., Rτ (s′ : u, s : u)) and performance
(U,Q, S, log3 u). Then there exists a structure with type Rτ (s :u, d :u) (resp., Rτ (s′ :
u, d:u)) and performance (U,Q, S).

Proof. We describe a solution in which at most O(u) updates can be performed.
This restriction can be removed by the use of global rebuilding [34]. Let R be the
structure with type Rτ (s : u, d : u) (resp., Rτ (s′ : u, d : u)) we want to design from
the structure R′ with type Rτ (s : u, s : u) (resp., Rτ (s′ : u, s : u)). We assume each
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element e ∈ R has a unique id e.id of size O(u) which we must report when reporting
an element from a query in R. We maintain a labeling of the elements of R.Ly

using Lemma 13 getting the requirement log4 u ≤ log1−ε N . If e ∈ R, then as id for
e.y ∈ R.Ly we use the pair (e.id, e.x). Lemma 13 then assigns a label y.label of size
at most O(u) to each y ∈ R.Ly. For each element y ∈ R.Ly with id (i, x) we keep an
element in R′ with y-coordinate y.label, x-coordinate x, and id i. This can be done by
using a global lookup table to convert the array of triples provided by Lemma 13 into
updates to give to R′. A query (x1, x2, y1, y2) ∈ R is then answered by performing
the query (x1, x2, y1.label, y2.label) in R′.

We remark that we cannot use the same technique to give the structure two
dynamic axes. We finally get the structure of step O2 in section 3.2.

Lemma 22. Suppose d ≥ 8 and that log6 u ≤ (log1−ε N)/d2 for a constant
0 < ε < 1. Then there exists a structure with type R3(s : u, d : u) and performance
(1, 1 + log u/ log d, u log u).

Proof. Selecting t = log3 u in Lemma 20 gives a structure with type R3(s : u, s :
u) and performance (1, log u/ log d, u log u, log3 u). Further, we get the requirement
that log3 u ≤ (log1−ε N)/(d2 log3 u) or, equivalently, log6 u ≤ (log1−ε N)/d2. Finally,
inserting the obtained structure into Lemma 21 gives the desired result since the
requirement log4 u ≤ log1−ε N is fulfilled by our other requirement for u.

6.5. Many points. The following lemma gives our structure from step O4.
Lemma 23. For any sufficiently small constant ε > 0 there exists a structure with

type R3(s :n,d:n) and performance (1+logn/ log1/6−ε N, 1+log n/ log logN,n log n).

Proof. Define u = min(n, 2log1/6−ε/2 N ). We let R′ be the structure we get from
Lemma 22 if we set d in the lemma to logε N . Then the maximal u we can use in
the lemma is equal to the u we have just defined and R′ gets type R3(s :u, d :u) and
performance (1, 1 + log u/ log logN,u log u).

We assume for the rest of the proof that n ≥ u and thus u = 2log1/6−ε/2 N since
otherwise R′ is the structure we need to prove the theorem. We let the structure R
with type R3(s :n,d:n) we want to design be a priority search tree of section 6.1. We
give T degree u and require |v.P | ≤ 1 for all v ∈ T . In each internal node v ∈ T we
keep a structure v.R with the same type as R′. Let v ∈ T be an internal node and
assume p ∈ w.P for a child w of v. We then store a point p′ ∈ v.R corresponding to
p with p′.y = p.y and with p′.x set to the number of siblings w has to the left in T .
Also, we link p and p′ together with pointers. For each element e ∈ R.Ly there is a
unique node v ∈ T and a unique element e′ ∈ v.R.Ly such that e and e′ represent the
same y-coordinate. We make a pointer from e to e′ and color e with the color v. We
maintain the colored predecessor structure of Theorem 15 on R.Ly using the assigned
colors.

We answer queries as in section 6.1 with the following remarks. Assume first a
node v ∈ M ∩M ′ is picked in item q3.1. In item q3.2 we then do as follows. For the
(at most two) children w ∈ M ∩M ′ of v we report the point in w.P if it is in the query
region. The remaining points to report can be found by a query in v.R. In order to
find the y-coordinate to use in this query we make a query for the color of v in the
structure of Theorem 15 maintained on R.Ly. We conclude that we must use a total
time of O(log u/ log logN + log2 log n + r) to report r elements from v. This is also
O(log u/ log logN + r) since u ≤ n ≤ N . Assume next a node v ∈ M ′ \M is picked in
item q3.1. Then Lemma 17 item 2 gives that we should report all the points in v.C
with a sufficiently low y-coordinate. These points can be found in constant time per
point by walking through v.R.Ly from the beginning stopping when the y-coordinate
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becomes too big. Since |M | = O(log n/ log u) we conclude that the query time in R
becomes O((log u/ log logN) log n/ log u) = O(log n/ log logN).

Updates can also be performed as in section 6.1 with remarks similar to the
ones described for queries. For a total of O(log n/ log u) nodes v ∈ T we need to
update v.R and to recolor an element of R.Ly. Updating v.R takes constant time,
while updating R.Ly takes time O(log2 log n). The total update time thus becomes

O(log2 log n log n/ log u) = O(log2 log n log n/ log1/6−ε/2 N) = O(log n/ log1/6−ε N) as
claimed.

Finally, the following theorem gives the structure of step O4 from section 3.2. For
n = N this gives the second result from the introduction.

Theorem 24. For any sufficiently small constant ε > 0 there exists a structure
with type R3(d : n,d : n) and performance (log log n + log n/ log1/6−ε N, log log n +
log n/ log logN,n log n).

Proof. We describe a solution in which at most O(n) updates can be per-
formed. This restriction can be removed by the use of global rebuilding [34]. Let
R be the structure with type R3(d : n,d : n) we want to design. We maintain a
structure T of Lemma 23 with type R3(s : n/ log3 n,d : n/ log3 n) and performance

(1+ log n/ log1/6−ε N, 1+ log n/ log logN,n/ log2 n). We use list block balancing with
block size log3 n on R.Lx. We keep the points of a block b in a structure b.R of Theo-
rem 16. Let b be a block with assigned label x and let y be the first element of b.R.Ly.
We then insert b in T with x-coordinate x and y-coordinate y. This is possible because
labels of blocks have size O(n/ log3 n). If an element e ∈ R.Ly represents the same
y-coordinate as an element e′ ∈ T.Ly (resp., e′′ ∈ b.R.Ly), we link e and e′ (resp., e′′)
together with pointers.

We maintain the structure of Theorem 14 on R.Ly giving elements which have a
pointer to an element in T.Ly one color and other elements another color. This allows
us to identify the position in T.Ly of any element in R.Ly in time O(log log n). For
each block b we keep the elements of b.R.Ly in a balanced binary search tree and we
maintain a structure of Theorem 8 on R.Ly. This allows us to identify the position
in b.R.Ly of any element in R.Ly also in time O(log log n).

We need to relabel O(1) blocks for each update in R, so we need to perform O(1)
updates in T for each update in R. Since updating b.R for a block b and identifying
elements in and updating b.R.Ly and T.Ly takes time O(log log n) the total update

time becomes O(log log n + log n/ log1/6−ε N).
We now describe how to answer a query (x1, x2, 0, y2), where 0 is the minimal

element of R.Ly. Let b1 be the block with x1 and b2 be the block with x2. We then
answer the query by first making a local query in b1.R and then a local query in
b2.R using time O(log log n) (if b1 = b2, we need only to perform one local query in
total). The remaining points can be found by performing a query in T . For each
reported block b we identify the points from b to report by walking through b.R.Ly

from the beginning stopping when the y-coordinate becomes larger than y2 (as in
the proof of Lemma 23). Identifying the elements to query from in b1.R.Ly, b2.R.Ly,
and T.Ly requires time O(log log n), so the total query time becomes O(log log n +
log n/ log logN).

7. Structures supporting 4-sided queries. The purpose of this section is to
perform steps O5 to O10 in section 3.2, thus giving our final 4-sided range reporting
structure for the 2-dimensional case. The section is organized as follows. In section 7.1
we describe a simple way to make a structure supporting 4-sided queries from one
supporting 3-sided queries. In section 7.2 we use this to perform steps O5, O6,
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and O7. We then apply the construction from section 4 to perform step O8 and then
we perform step O9. Finally, in section 7.3 we perform step O10.

7.1. From 3-sided to 4-sided. In this section we describe a simple way to make
a structure supporting 4-sided queries from one supporting 3-sided queries. Similar
ideas have been used by Chazelle [14] and Overmars [35]. Suppose for any m, m ≤ n,
we have a structure with type R3(s′ :n, s :m) and performance (Um, Qm, Sm). We will
now describe how to make a structure R with type R4(s′ : n, s : n) and performance
(Un log n,Qn, Sn log n), provided Um and Qm are nondecreasing functions of m and
provided Sm is a subadditive function of m. We span a complete binary tree T over
R.Ly. Each node v ∈ T spans a subinterval I of R.Ly, where |I| ≤ n. We store in
v two secondary structures v.R1 and v.R2 both with type R3(s′ : n, s : |I|) and both
containing all points of R with a y-coordinate in I. The structure v.R1 (resp., v.R2)
should support queries of the form (x1, x2, y1, y2), where y1 (resp., y2) is the leftmost
(resp., rightmost) element in I. Inserting (resp., deleting) a point p into (resp., from)
R requires inserting (resp., deleting) p into (resp., from) two secondary structures in
each of the O(log n) ancestors of the leaf of T with p.y using time O(U log n). Suppose
we are given a query (x1, x2, y1, y2). Let v ∈ T be the nearest common ancestor of
y1 and y2 and let vl be the left and vr the right child of v. The query can then be
answered by performing a single query in vl.R2 and a single query in vr.R1 giving a
query time O(Q).

7.2. At least one short axis. The following lemma gives the structure from
step O5 of section 3.2.

Lemma 25. Suppose 1 ≤ t ≤ (log1−ε N)/ log4 u for a constant 0 < ε < 1.
Then there exists a structure with type R4(s′ : u, s : u) and performance (1, 1 +
log u, u log2 u, t).

Proof. We will first how to construct a structure with type R4(s : u, s : u) and
the claimed performance. We will do this by combining the proof of Lemma 20 with
the construction in section 7.1. We keep all points in the dictionary of section 6.2.
To avoid confusion we call the tree T ′ instead of T . Further, we make a number
of modifications and simplifications described in the following. First, we use the y-
instead of the x-coordinates of points. Second, we let T ′ be a complete binary tree
with fixed shape, so nodes never split and keys are never marked. This implies that
each leaf contains at most one green pebble. Third, we define mh = r/3 for all h.
Fourth, in our procedure for performing r/3 updates in T ′ we remove items u2 and
u4.1. Lemma 18 can be shown to still hold with these modifications (a simpler proof
carries through).

As in section 7.1 we have two secondary structures in each internal node of T ′.
Each time a pebble is moved from a node v ∈ T ′ in item u4.2, a copy of the pebble is
also given to the two secondary structures in v. For the secondary structures, we use
structures similar to the one of Lemma 20 with d = 8. We select the same value for r
in T ′ as in Lemma 20, namely the one given by (7) with d = 8. We can now answer
queries as in section 7.1. We note that when reporting points from the secondary
structures in T ′ we must also take the delete pebbles of the relevant nodes of T ′ into
account. But this is not a problem because the height of T ′ plus the height of any
secondary structure is at most 3 log u.

As in the proof of Lemma 20 we will add only t pebbles at a time to the root of T ′

(where t will be determined in a moment). We note that during the time r/3 pebbles
are inserted into the root of T ′ we must go through items u1 to u4 as in the proof
of Lemma 20. Further, each time we execute item u4.2 in T ′ we must also execute
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the loop in items u1 to u4 in a constant number of secondary structures. Since the
height of T ′ as well as the height of any secondary structure is at most O(log u) the
following condition ensures that we do not add too many pebbles to the root of T ′

before we empty it again:

t log2 u ≤ r.

Together with (7) this gives our requirement for t.

At most O(log u) pebbles are created for each insertion in T ′, so using global
rebuilding [34] we can get a space usage of O(u log2 u) bits.

We give the structure type R4(s′ :u, s :u) using a standard trick: We insert each
point e into the structure just described as a point e′ with e′.x = c · u · e.x + e.y
and e′.y = e.y for a constant c. Clearly, each point inserted will have unique x- and
y-coordinates. However, it doubles the number of bits in each x-coordinate. It can be
checked in our construction that this is not a problem.

As a corollary we get the following lemma, which gives the structure from step O6
of section 3.2.

Lemma 26. Suppose log7 u ≤ log1−ε N for a constant 0 < ε < 1. Then there
exists a structure with type R4(d:u, s′ :u) and performance (1, log u, u log2 u).

Proof. Selecting t = log3 u in Lemma 25 gives a structure with type R4(s′ :u, s :u)
and performance (1, log u, u log2 u, log3 u). Further, we get the restriction on u that
log3 u ≤ (log1−ε N)/ log4 u or, equivalently, log7 u ≤ log1−ε N . Finally, inserting the
obtained structure into Lemma 21 and interchanging the two axes gives the desired
result since the requirement log4 u ≤ log1−ε N is fulfilled by our other requirement
for u.

As a corollary, we get the structure from step O7 of section 3.2.

Lemma 27. Suppose log7 u ≤ log1−ε N for a constant 0 < ε < 1. Then
for any n ≤ N there exists a structure with type R4(s′ : n, s : u) and performance
(log2 log n, log u + log2 log n, u(log2 u + log n)).

Proof. Let R′ be the structure of Lemma 26 restricted to having type R4(d:u, s :u).
Let R be the structure with type R4(s′ : n, s : u) we want to design. We insert each
element e ∈ R into a BFAT of Theorem 6 with universe size O((n + 1)u) at position
u · e.x + e.y. We link all elements in R together according to this position. This list
can be used as R′.Lx. Further, at most u elements will be stored in the BFAT and
this concludes the proof of the lemma.

Plugging the structure of this lemma into Lemma 2 we get the structure of step O8
of section 3.2.

Lemma 28. Suppose log7 u ≤ log1−ε N for a constant 0 < ε < 1. Then
for any n ≤ N there exists a structure with type R4(s′ : n, s′ : u) and performance
(log3 log n, log u log log n + log3 log n, nu log n log log n(log2 u + log n)).

The following lemma gives the structure from step O9 of section 3.2.

Lemma 29. For any n ≤ N and for any u where log3 n ≤ u and log7 u ≤ log1−ε N
for a constant 0 < ε < 1 there exists a structure with type R4(d :n, s′ :u/ log3 n) and
performance (log3 log n, (log u + log2 log n) log log n, n log2 u + n log n).

Proof. We describe a solution in which at most O(n) updates can be performed.
This restriction can be removed by the use of global rebuilding [34]. Let T be the
structure of Lemma 28 where we select u in the lemma as u/ log3 n and n in the lemma
as n/u. The structure T then gets type R4(s′ : n/u, s′ : u/ log3 n) and performance
(log3 log n, log u log log n + log3 log n, n log n) (the space usage is actually smaller).
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Let R be the structure with type R4(d : n, s′ : u/ log3 n) we want to design. We
use list block balancing with block size u on R.Lx. If a block b with assigned label
x contains one or more points with y-coordinate y, we insert b in T at x-coordinate
x and y-coordinate y. This is possible because labels have size O(n/u). Further, we
need only to relabel a block for every O(u/ log3 n) update of R. Since this is also the
length of R.Ly we need only to perform O(1) updates in T for each update in R. We
maintain in each block b a structure b.R of Lemma 26 with type R4(d : u, s′ : u) and
performance (1, log u, u log2 u). All points in b are stored in b.R and the total space
used by these structures is O(n log2 u + n log n) bits.

Suppose we are given a query (x1, x2, y1, y2). Let b1 be the block with x1 and b2
be the block with x2. We answer the query by first performing a local query in b1.R
and then a local query in b2.R (if b1 = b2, we need only to perform one local query
in total). The remaining points can be found by performing a query in T and then
reporting relevant points from the reported blocks. This can be done in constant time
per point if we for each block b and each y-coordinate y ∈ R.Ly maintain a linked list
with the points in b with y-coordinate y.

The space usage of the structure is dominated by the space used in the b.R
structures for the different blocks b. The update time is dominated by the time used
in T and this concludes the proof of the lemma.

The following lemma gives the structure of Lemma 29 a somewhat dynamic y-axis.
Lemma 30. The structure of Lemma 29 can be given a dynamic y-axis in the

following sense. The y-axis is a linked list where each element has a unique id of size
O(u). The id of an element is fixed when the element is inserted in the y-axis and we
do not allow elements to be deleted from the y-axis. We allow many points to share a
y-coordinate. We must provide a function f which, given (in a single word) an array
with O(log1−ε N/ log u) ids, in constant time returns an array where the ids are sorted
according to the order the elements with these ids have on the y-axis.

Proof. Looking into the proofs of Lemma 27, Lemma 28, and Lemma 29 together
with the construction of section 4 we see that it is sufficient to show that we can
get a dynamic y-axis in the described way in the structure of Lemma 26. From the
proof of this lemma it follows that it is sufficient that we can get a dynamic x-axis in
the described way in Lemma 25. When inserting a point into this structure we will
use the id of the x-coordinate as x-coordinate. Looking into the proof of Lemma 25
we see that the x-coordinates of points are not used in the maintenance of the tree
T ′. They are, however, used in the secondary structures which are the structures of
Lemma 20. Here they are used as x-coordinates of pebbles and as keys of the WBB
tree. However, the function f will give us all the information we need about the order
of these coordinates. Further, it will do it fast enough because the construction in
Lemma 20 never handles more than O(log1−ε N/ log u) pebbles at once.

7.3. Two long axes. We are now ready to prove the following theorem which
for n = N shows the first result from the introduction for d = 2.

Theorem 31. For any constant γ > 0 there exists a structure with type R4(d :

n,d:n) and performance (log7/8+γ N, logN/ log logN, log1+7/8+γ N).
The structure we construct in the proof of the theorem is a kind of range tree

(see section 1.3). Traditionally, range trees have degree 2. Our range trees are split
into two parts. In the top part, nodes have degree u of Lemma 30 and we keep the
points of an internal node in a structure of Lemma 30. In the bottom part, nodes
have constant degree. The reason we need the bottom part is that the structure of
Lemma 30 does not have a completely dynamic y-axis. The bottom part ensures that
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nodes in the top part have sufficiently many points below them to allow the table to
compute the function f of Lemma 30 to be built. Finally, to keep the query time low
we keep in some levels of the tree the points in the structure of Theorem 24.

Proof of Theorem 31. Let R be the structure with type R4(d:n,d:n) we want to
design. We store the elements of R in a WBB tree T with leaf parameter 1 and for
e ∈ R we use e.y as key. We specify the degree of T in a moment. We let vr denote
the root of T . We first ignore splitting of nodes and marking of keys. We keep in each
node v ∈ T a linked list v.L containing the points located in the leaves descendant to
v sorted according to their x-coordinate. Let v ∈ T be an internal node. We color the
children of v such that no two different children of v have the same color. For each
e ∈ v.L there is exactly one child v′ of v and one e′ ∈ v′.L such that e and e′ represent
the same point. We color e with the color of v′ and we keep in e a pointer to e′ (such
a pointer is called a downpointer [42]). We keep the elements of v.L in a colored
predecessor structure of Theorem 15 using the assigned colors. The update and query
time of this structure is O(log2 log |v.L|); we will take it to be O(log2 logN).

Suppose we are given a query (x1, x2, y1, y2) in R. We observe that vr.L contains
all points of R sorted according to their x-coordinate. The coordinates x1 and x2

identify two elements in vr.L corresponding to the query interval on the x-axis. Fur-
ther, using the pointers of the nodes of T to their parents we can identify the simple
path in T between vr and the leaf identified by y1. We proceed from vr down along
this path using the downpointers and the colored predecessor structures to maintain
the query interval on v.L for the nodes v ∈ T we meet. Beginning in some node of T ,
we must report the elements in this interval that has a relevant set of colors. After
this, we repeat the same process with y2 instead y1 and we are done.

Inserting a point p into R is performed in a way similar to the way a query is
answered. p.x identifies a position in vr.L where the point should be inserted. Also,
p.y identifies a simple path in T between the leaf with p.y and vr. We proceed from
vr down along this path inserting p into v.L for the nodes v we meet and using the
downpointers and the colored predecessor structures to maintain the position to insert
into.

Deleting a point p from R is done as follows. p.x determines the location of p
in vr.L. We then delete p from vr.L and use the downpointers to remove p from the
other lists v.L it is in. We do not delete p from T . Instead, we use global rebuilding
[34] to ensure that at most half of the elements of T are deleted points.

Let ε > 0 be a constant to be determined in a moment and suppose v ∈ T . If v
has a height smaller than log1−ε N , we say v is in the bottom part and otherwise we
say v is in the top part of T . We will give v different degree parameters depending on
whether it is in the bottom or top part. It is straightforward to modify WBB trees
to support that. If a node w has a child v in the bottom part, we say that w is a
leaf of the top part and that v is a root of the bottom part. Below we will analyze
the time we need to use in the top and bottom part when performing an update or
a query. Also, we will analyze how much space is used in the top and bottom part.
Our results are summarized in Table 1.

Table 1

Top part Bottom part

Update time O(log6/7+ε/7 N log3 logN) O(log1−ε N log2 logN)
Query time O(logN/ log logN) O(log1−ε N log2 logN)

Bits used O(n log1+6/7+ε/7 N) O(n log2+ε N)
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Ignoring log logN factors the update time and space usage in the upper and lower
part becomes identical if we select ε = 1/8. The values here then become smaller than
the ones claimed in the lemma.

Suppose v ∈ T is a node in the bottom part. We then give v degree parameter
8 which is the minimal degree parameter we allow for WBB trees. We note that
according to Lemma 7 property 5 a subtree rooted at a root in the bottom part of
T has Θ(8log1−ε N ) leaves and according to property 3 has height O(log1−ε N). If we
link the elements of v.L with the same color together in order, we need only to spend
time O(log2 logN) plus constant time for each point reported when we visit v during
a query. Also, when visiting v during an update, we need to spend time O(log2 logN).
We conclude that we get update and query time O(log1−ε N log2 logN) in the bottom
part of T . Since each point of R is stored in exactly one list v.L for each level of T
the total space usage for the bottom part becomes O(n log2−ε N) bits.

Suppose now v ∈ T is a node in the top part. We store the elements of v.L
in the structure of Lemma 30 using the colors as ids of y-coordinates. For this

reason we give v degree parameter u = 2log(1−ε)/7 N and note that with this se-
lection the structure of Lemma 30 with an x-axis of length m gets performance
(log3 logN, log u log logN,m logN). The maximal length of a simple path from the

root of T to a leaf of the top part is O(logN/ log u) = O(log6/7+ε/7 N). We keep

in v a table v.G with length 8log1−ε N . Such a table is large enough to allow f ,
needed by Lemma 30 to be computed in constant time. Also, it will not increase the
space usage except for a constant factor. The update time in the top part becomes
O(log6/7+ε/7 N log3 logN) and the space usage becomes O((logN/ log u)n logN) =

O(n log1+6/7+ε/7 N) bits again because each point of R is stored in exactly one list
v.L for each level of T .

The query time in the top part of T is O((logN/ log u) log u log logN) =
O(logN log logN) and this is an O(log2 logN) factor too high. We fix this prob-
lem as follows. For each node v in the top part of T which is on a level divisible by
logN/((log2 logN) log u), we keep two structures of Theorem 24. In these structures
we save the points of v.L in the style of section 7.1. We then modify the way we
answer queries as follows. When we in our proceeding down in T meet a node v in
the top part of T on a level divisible by logN/((log2 logN) log u) and when we have
tried to report points from w.L for the parent w of v, we stop. We then perform a
query in one of the structures of Theorem 24 kept in v. After this, we do not need
to proceed further down in T . This modification reduces the query time in the top
part of T to O(logN/ log logN). Further, since each point of R is stored in at most
O(log2 logN) structures of Theorem 24, the time and space usage is not increased
except for constant factors.

We now describe how to handle marking of keys and splitting of nodes in T .
Consider the situation where a key k in a node v with parent w is marked (to simplify
the discussion we assume that w exists or equivalently that v is not the root). Suppose
v will eventually split into itself and a new node v′ which will become the right sibling
of v. We then select a color c′ for v′ such that no other current or coming child of
w has color c′. During the time v is marked we move the points from v.L with keys
larger than k to v′.L. When a point p is moved we also color p with c′ in w.L. Using
the remark following Lemma 7 things can be adjusted such that we are finished when
v split such that v can be split in constant time. We have to adjust queries such that
they can handle partly split nodes. The details are tedious but standard and are thus
omitted. If v contains a structure of Theorem 24, the splitting of this structure can
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be handled in a way similar to the one just described. One problem remains. If v is
in the top part of T we need to insert c′ on the y-axis of the structure of Lemma 30
into w. This is done by updating w.G. Since w is in the top part of T it follows
from Lemma 7 item 5 that Ω(2log1−ε N ) insertions of elements descendant to v will be
performed before v splits, so we have time to rebuild w.G. We rebuild parts of w.G
during these insertions as follows (stating that all of w.G should be rebuilt does not
make sense because several children of w may be marked at the same time). When
a key in v is marked there is a current set C of colors given to current or coming
children of w. During the insertions of elements descendant to v before v splits we fill
in all entries of w.G which compare colors from C ∪ {c′}. This will ensure that w.G
can always compare any set of colors of the children of w. In order to make queries
work while v is splitting we actually need to update w.G before we start building up
v′.L, building up v′′.L, and changing color of elements in w.L.

8. Higher dimensions. We will say a structure for the d-dimensional range
reporting problem in the list order variant has type Rd

n if it can contain n points.
Further, we will say such a structure has performance (U,Q, S) if it has update time
O(U), query time O(Q), and space usage O(S) bits. As in section 3.1 we allow U , Q,
and S to depend on d and n but not on the number of points stored. This section is
devoted to the proof of the following theorem which for n = N shows the first result
from the introduction.

Theorem 32. Let d ≥ 2 and ε > 0 be any constants and define ω = 7/8 + ε.
Then for any n ≤ N there exists a structure for Rd

n with performance (logd−2+ω N,
(logN/ log logN)d−1, n logd−1+ω N).

Our proof of Theorem 32 is based on Lemma 33 below, which is a dynamization
of a method proposed by Alstrup, Brodal, and Rauhe [3]. They described how to
extend the dimension of a range reporting structure in a static setting where updates
were not allowed.

Lemma 33. Suppose for any n we have a data structure with type Rd
n and

performance (Un, Qn, Sn), where Un and Qn are nondecreasing functions of n and
Sn is a subadditive function of n. Then for any n and any constant ε > 0 we
can make a structure for Rd+1

n with performance ((Un + log2 log n) log1+ε n, (Qn +
log2 log n) log n/ log log n, Sn log1+ε n).

Proof. Let R be the structure with type Rd+1
n we want to make. For the proof

we fix an axis of R, say, the x-axis. We store the elements of R in a WBB tree T with
degree parameter logε/2 n and leaf parameter 1. For e ∈ R we use e.x as key, where
e.x is the x-coordinate of e. We first ignore deletion of points, splitting of nodes, and
marking of keys.

Lemma 7 item 3 gives that T gets height O(log n/ log log n). Let v ∈ T be an
internal node with height h and t children. For each pair (i, j), where 1 ≤ i ≤ j ≤ t,

we keep a secondary structure v.R(i,j) with the given type Rd
m, where m = 4 loghε/2 n.

Let v1, . . . , vt be the ordered children of v. We then in v.R(i,j) save all points which
are in leaves descendant to vk, where i ≤ k ≤ j and where we ignore the x-coordinates
when we store the points. Lemma 7 item 5 gives that there is room for these points
in v.R(i,j).

We give each secondary structure of T a unique color. For any axis R.Ly different
from the x-axis let v.R(i,j).Ly be the same axis of the secondary structure v.R(i,j).
We then maintain pointers between the elements of v.R(i,j).Ly and the corresponding
elements of R.Ly. Each element in R.Ly will contain a number of pointers and we use
the BFAT of Theorem 6 (as a dictionary) to store these. Also, we maintain a structure
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of Theorem 15 on R.Ly where an element has the colors of the secondary structures
it has pointers to (Theorem 15 can easily be generalized to allow an element to have
any number of colors).

Assume we are given a query in R. By following pointers from nodes of T to
their parents we can in linear time identify O(log n/ log log n) secondary structures
such that asking the query in these structures (ignoring the x-axis) gives the desired
points. For each secondary structure the position on the axes in which we should
perform the query can be found in time O(log2 log n) using the structure of Theorem 15
maintained on the axes of R. This shows that the query time becomes O((Qn +
log2 log n) log n/ log log n) as claimed (Qn is a nondecreasing function of n).

Each point is stored in O(logε n) secondary structures in O(log n/ log log n) nodes
of T . When inserting new points the updates to perform in the secondary structures
can be found in a way similar to when answering queries and the update time becomes
O((Un+log2 log n) log1+ε n/ log log n) (Un is a nondecreasing function of n). The space
usage becomes O(Sn log1+ε n/ log log n) bits (because Sn is a subadditive function
of n).

Marking of keys and splitting of nodes can be handled as described after the
remark of Lemma 7. The details are, as in the proof of Theorem 31, tedious but
standard and are thus omitted. Finally, we delete a point by removing it from the
axes of R and from the secondary structures in which it is located. We never delete
elements from T . Instead, we use global rebuilding [34] to ensure that at most half of
the elements of T are deleted points.

Finally, we have the following proof.
Proof of Theorem 32. If d = 2, Theorem 31 gives the desired result. Otherwise,

we get the desired structure by applying Lemma 33 d− 2 times to Theorem 31 where
we set n = N .

9. Open problems. We have given an optimal structure in terms of time per
operation for the 2-dimensional range reporting on RAM. Also, we have given a new
solution for the d-dimensional range reporting problem for any constant dimension
d ≥ 3. A very interesting open problem is to prove or disprove that our solution is
optimal for any constant dimension d ≥ 3. Showing a matching lower bound seems
to be well beyond current lower-bound techniques.

The construction leading to our 2-dimensional range reporting structure (Theo-
rem 31) is rather involved. Of course, it would be nice to have a simpler construction
obtaining the same or a similar bound.

For query time O(log n/ log log n), the update time of our 2-dimensional range
reporting structures is O(logω n) for a constant ω < 1. However, the lower bound of
[4] does not prevent even constant update time in this case. An open problem is to
close or narrow the gap between these two update times.

The basic technique in the data structures of this paper has been to pack many
points together in a single word. This has allowed us to process points in subconstant
time per point. This idea is not new and is very similar to what is done in the I/O
model of computation [2], where elements (or points) are packed together on disk
blocks. For this reason, data structures for the I/O model and for the RAM model
of computation have often inspired each other, and we have also used ideas from the
I/O model in this paper. An open problem is to use ideas of this paper in the I/O
model. In particular, it may be possible to reduce the update time of the structure
of Arge, Samoladas, and Vitter [6] for dynamic range reporting in the I/O model of
computation by using ideas from this paper. Such a solution may even be practical.
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